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Summary. A major issue in non-inferiority trials is the controversial assumption of constancy,
namely that the active control has the same effect relative to placebo as in previous studies
comparing the active control with placebo. The constancy assumption is often in doubt, which
has motivated various methods that ‘discount’ the control effect estimate from historical data
as well as methods that adjust for imbalances in observed covariates. We develop a new
approach to deal with residual inconstancy, i.e. possible violations of the constancy assumption
due to imbalances in unmeasured covariates after adjusting for the measured covariates. We
characterize the extent of residual inconstancy under a generalized linear model framework and
use the results to obtain fully adjusted estimates of the control effect in the current study based
on plausible assumptions about an unmeasured covariate. Because such assumptions may
be difficult to justify, we propose a sensitivity analysis approach that covers a range of situa-
tions.This approach is developed for indirect comparison with placebo and effect retention, and
implemented through additive and multiplicative adjustments.The approach proposed is applied
to two examples concerning benign prostate hyperplasia and human immunodeficiency virus
infection, and evaluated in simulation studies.

Keywords: Active control; Conditional effect; Constancy; Discounting; Effect retention;
Putative placebo

1. Introduction

The use of an active control is becoming increasingly common in randomized clinical trials,
mostly for ethical reasons. The placebo control, which has traditionally been considered the
gold standard for treatment evaluation, may be unethical to use when effective treatments are
available and delaying treatment has irreversible consequences (Rothman and Michels, 1994;
Temple and Ellenberg, 2000; Ellenberg and Temple, 2000; Schumi and Wittes, 2011; Witte
et al., 2011). Although a placebo control is usually not included in an active-controlled study, it
remains relevant in important scientific and regulatory questions concerning the new treatment.
For example, the efficacy or effectiveness of a treatment is often defined in comparison with a
placebo in regulatory settings. Even for comparing the new and control treatments, it makes
sense to consider not only the absolute difference but also the relative effect (i.e. the ratio of
their effects relative to placebo), with interest in showing that the new treatment retains a certain
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fraction of the control effect. Thus, appropriate analysis of an active-controlled trial, which is
also known as a non-inferiority trial, usually requires external information about the control
effect, which is often available in one or more historical studies comparing the active control
with a placebo.

Among the many issues arising from non-inferiority trials is the controversial assumption
of constancy, namely that the control effect remains constant between the historical study or
studies and the current trial comparing the new treatment with the active control. The constancy
assumption is often in doubt, which has motivated various ‘discounting’ methods (Snapinn,
2004). Under the fixed margin approach, a conservative estimate of the control effect based on
historical data is used to define a non-inferiority margin, which is then treated as a constant in
testing non-inferiority hypotheses (Hauck and Anderson, 1999; Wiens, 2002; Hung et al., 2003;
Rothman et al., 2003). Under the synthesis approach, one seeks to demonstrate the effectiveness
of the experimental treatment by showing that it preserves a specified fraction of the control
effect (Holmgren, 1999; Hung et al., 2003). There are also hybrid methods that combine the
aforementioned two approaches in various ways (Food and Drug Administration, 1999; Wang
and Huang, 2003; Gao and Ware, 2008; Witte et al., 2011). Although attempting to address
the lack of constancy, these discounting methods raise new issues. Scientifically, it is generally
helpful to distinguish different objectives and different sources of uncertainty. For example,
retaining a fraction of the control effect is an interesting hypothesis in its own right and should
(ideally) be addressed separately from possible violations of the constancy assumption. Likewise,
a lower confidence bound for the control effect is designed to account for uncertainty in the
historical data and not that about the constancy assumption. When used as a fixed margin,
it leads to an amount of discounting that is driven by the amount of historical data that are
available and not by scientific considerations about between-trial differences. Practically, it can
be difficult to determine the appropriate amount of discounting, and too much discounting can
lead to unrealistically large sample sizes. Furthermore, even if the type I error rate is effectively
controlled at or below the nominal level by means of discounting, it is not always clear how to
estimate the effect of the new treatment relative to placebo in accordance with the discounting
methods.

In light of these issues, covariate adjustment methods have been proposed to relax the con-
stancy assumption (Zhang, 2009; Nie and Soon, 2010; Nie et al., 2010). These methods allow
the control effect to vary across studies, as long as the variation can be explained by relevant
covariates (e.g. patient demographics and baseline characteristics) that are measured and dif-
ferentially distributed in the current and historical studies. The latter assumption, which was
formulated and termed ‘conditional constancy’ by Zhang (2009), is similar in spirit to the miss-
ingness at random assumption concerning missing data (Rubin, 1976) and the assumption of
strongly ignorable treatment assignment in causal inference (Rosenbaum and Rubin, 1983). A
practical limitation of covariate adjustment methods is the requirement for patient level data,
unless the adjustment is focused on a single discrete covariate (Nie et al., 2010). More impor-
tantly, the conditional constancy assumption, although less stringent than constancy, cannot be
taken for granted because some relevant covariates may be unmeasured (e.g. drug resistance or
concomitant drugs) or simply unknown to the investigator (e.g. unidentified genotype). There-
fore, covariate adjustment does not eliminate all possible concerns about the lack of constancy,
although it does represent a step forward.

In this paper, we propose a sensitivity analysis approach to deal with residual inconstancy,
i.e. possible violations of the conditional constancy assumption due to unmeasured or unknown
covariates. Under a generalized linear model framework, we show that the extent of residual
inconstancy can be quantified under appropriate assumptions about the relationship of an
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unmeasured covariate with the outcome and its distributions in the studies. The results can be
used to obtain fully adjusted estimates of the control effect in the current study by modifying
the results of a partially adjusted analysis based on the observed covariates alone. Under the
approach proposed, a variety of clinically plausible scenarios will be explored in preliminary
calculations, a range will be specified for an additive or multiplicative adjustment that accounts
for residual inconstancy, formal inference will be made for each value of the adjuster in the
specified range and the results will be presented graphically and can be summarized numerically
for specific purposes. This approach allows us to separate different sources of uncertainty, to
crystallize the scientific question that requires clinical judgement and to deal with other types
of uncertainty by using appropriate statistical techniques without unnecessary conservatism.
It also provides some ability to work with summary statistics when patient level data are not
available.

The approach proposed is developed for two distinct research questions:

(a) indirect comparison of the new treatment with placebo and
(b) the new treatment retaining a fraction of the control effect, both in the current patient

population.

Both items have been discussed before, although their precise roles and interpretations vary
across researchers (e.g. Food and Drug Administration (2010) and Huitfeldt et al. (2011)). Item
(a) is also known as a putative placebo analysis (Hauck and Anderson, 1999; Fisher et al., 2001;
Hasselblad and Kong, 2001; D’Agostino et al., 2003; Durrleman and Chaikin, 2003; Zhang,
2009). It should be noted that item (b), which has been used as a discounting mechanism, is
regarded as a standalone research question in this paper.

The rest of the paper is organized as follows. The next section formulates the problem and
explains the rationale for covariate adjustment. Section 3 describes residual inconstancy, and
Section 4 presents a sensitivity analysis approach. The approach proposed is applied to two
examples in Section 5 and evaluated in simulation studies in Section 6. The paper ends with a
discussion in Section 7. Some additional information is provided as Web-based supplementary
materials.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibary.com/journal/rss-datasets

2. Preliminaries

2.1. Basic set-up
For conceptual clarity, we formulate the statistical problem in terms of potential outcomes
(Rubin, 1974). For a patient in the target population, let Y.t/ denote the (potential) clinical
outcome that will realize if the patient receives a placebo (t =0), a standard treatment (t =1) or
an experimental treatment (t =2). To fix ideas, suppose that the treatments are to be compared
in terms of mean values of the corresponding outcomes: μt =E{Y.t/}, t =0, 1, 2. The treatment
differences will be denoted by Δtt′ =μt′ −μt for distinct treatments t and t′. The effectiveness of
the experimental treatment, in a regulatory sense, may be defined by Δ02, which compares the
experimental treatment with a placebo. One may also be interested in the difference Δ12, which
compares the experimental treatment with the standard treatment, or the ratio λ=Δ02=Δ01,
which measures the relative clinical utility of the experimental treatment to the standard of care.
We are primarily interested in estimating Δ02 and λ in this paper.

Suppose that the experimental treatment is evaluated in a randomized study which also
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includes the standard treatment as an active control but not placebo. Write T for the actual
treatment and Y =Y.T/ for the observed outcome. The study design implies that T is either 1 or
2 and never 0, so μ1 and μ2 are identifiable but μ0 is not. The only treatment difference that is
identified in this study is Δ12. We note that

Δ02 =Δ01 +Δ12, .1/

λ= .Δ01 +Δ12/=Δ01: .2/

Thus, estimation of the quantities of interest could be helped by incorporating external
information about Δ01, which we assume is available from a historical study comparing the
active control with a placebo with respect to the same clinical outcome as in the present study.
We use a parallel notation system for the historical study, with an added asterisk to distinguish
quantities from their counterparts in the present, active-controlled study. Thus YÅ.t/, T Å and
YÅ denote respectively the potential outcomes, actual treatment and observed outcome in the
historical study. Unlike T , T Å is either 0 or 1 and never takes the value 2. The historical data
are directly informative about ΔÅ

01 =E{YÅ.1/−YÅ.0/}, but not about Δ01 without additional
assumptions.

The two studies could be connected through the so-called constancy assumption, namely
that Δ01 =ΔÅ

01. Under this assumption, Δ01 in equations (1) and (2) can be replaced by ΔÅ
01,

which shows that both Δ02 and λ can be identified from the two studies combined and estimated
by substituting estimates of Δ12 and ΔÅ

01 from the present and historical studies respectively.
Furthermore, variance formulae can be easily derived because the two studies are typically
independent.

2.2. Covariate adjustment
The constancy assumption can be relaxed into the so-called conditional constancy assumption
(Zhang, 2009), which essentially requires that any difference between Δ01 and ΔÅ

01 can be
explained by imbalances across studies in a vector of baseline covariates that are measured in
both studies. Denote this covariate vector by X for the current study and by XÅ for the historical
study. Define the conditional effects δ01.x/ = E{Y.1/ − Y.0/|X = x} and δÅ

01.x/ = E{YÅ.1/ −
YÅ.0/|XÅ = x}; then Δ01 = E{δ01.X/} and ΔÅ

01 = E{δÅ
01.XÅ/}. The conditional constancy as-

sumption can be formulated as

δ01.x/= δÅ
01.x/ for all x: .3/

Assumption (3) may be more realistic than the constancy assumption in that the marginal effects
Δ01 and ΔÅ

01 are allowed to differ. It allows Δ01 to be identified as

Δ01 =E{δÅ
01.X/}, .4/

where the conditional effect δÅ
01.·/ is identifiable from the historical study, and the expectation

is taken with respect to the covariate distribution in the current study. To fix ideas, consider the
generalized linear model

E.YÅ|T Å = t, XÅ =x/=g.αt1 +α′
tXx/, .5/

where g is an inverse link function. Write αt = .αt1, α′
tX/′ and α= .α′

0, α′
1/′. This parameteriza-

tion is chosen for notational convenience, as will become clear later. Because of randomization,
the left-hand side of equation (5) is just E{YÅ.t/|XÅ =X}, so the model implies that

δÅ
01.x/=g{.1, x′/α1}−g{.1, x′/α0}: .6/

Now assumption (3) further implies that
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Δ01 =E[g{.1, X′/α1}−g{.1, X′/α0}], .7/

which can be estimated by substituting regression parameter estimates based on the historical
data and then averaging over X in the current study.

3. Residual inconstancy

In reality, even assumption (3) can be violated because the current and historical studies may
differ in covariates that are unmeasured or simply unknown. We therefore relax assumption
(3) by including an unmeasured baseline variable, which is denoted by U for the present study
and by UÅ for the historical study. Let d01.x, u/=E{Y.1/−Y.0/|X =x, U =u} and dÅ

01.x, u/=
E{YÅ.1/−YÅ.0/|XÅ =x, UÅ =u}; then the relaxed assumption can be written as

d01.x, u/=dÅ
01.x, u/ for all .x, u/: .8/

δ01.x/=E{d01.x, U/|X=x} and δÅ
01.x/=E{dÅ

01.x, UÅ/|XÅ =x}. Because .U|X=x/ and .UÅ|XÅ

=x/ may follow different distributions, assumption (8) does allow the conditional effects δ01.x/

and δÅ
01.x/ to differ. Thus assumption (3) no long holds, and equation (4) is generally invalid. We

denote the right-hand side of equation (4) by Δ◦
01 and call it the partially adjusted control effect.

Analogously to model (5), we assume that YÅ is related to .T Å, XÅ, UÅ/ through the model

E.YÅ|T Å = t, XÅ =x, UÅ =u/=g.βt1 +β′
tXx +βtUu/: .9/

Write βt = .βt1, β′
tX, βtU/′ and β= .β′

0, β′
1/′. Then

dÅ
01.x, u/=g{.1, x′, u/β1}−g{.1, x′, u/β0},

and, by assumption (8),

Δ01 =E[g{.1, X′, U/β1}−g{.1, X′, U/β0}]: .10/

As we shall see in Section 5.2, U and UÅ may be vector valued and partially measured in one
or both studies. In this section, however, we assume for simplicity that U and UÅ are completely
unmeasured scalars. Without additional information, it is impossible to fit model (9) directly or
to estimate Δ01 by using equation (10). Therefore, we work with the induced model

E.YÅ|T Å = t, XÅ =x/=
∫

g{.1, x′, u/βt}dFÅ.u|x/, .11/

where FÅ.·|x/ denotes the conditional distribution of UÅ given XÅ = x. With .β0U , β1U/ given
and FÅ fully specified, one could estimate the rest of β by fitting model (11). If we further specify
F , the current study counterpart of FÅ, then Δ01 could be estimated by using the relationship

Δ01 =E

(∫
[g{.1, X′, u/β1}−g{.1, X′, u/β0}]dF.u|X/

)
: .12/

This approach is available for any inverse link g and arbitrary distributions .FÅ, F/, but its
implementation may require considerable computational effort for evaluating the integrals and
fitting model (11) separately for each specification of .β0U , β1U , FÅ/. In the rest of this section,
we show that expressions (11) and (12) simplify for some common link functions combined with
suitable assumptions about UÅ and U. Specifically, we assume that UÅ and U are independent of
XÅ and X respectively, that we are given plausible values of β0U , β1U , γÅ =E.UÅ/ and γ =E.U/

(or some functions of these parameters), and in some cases that the (now marginal) distributions
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FÅ and F are fully specified (as Bernoulli or normal). The subsections to follow are independent
in notation.

3.1. The identity link
For the identity link, without specifying FÅ and F , model (5) is correct with

αt1 =βt1 +βtUγÅ,

αtX =βtX:

Substituting these into equation (7) shows that the partially adjusted control effect is

Δ◦
01 =α11 −α01 + .α1X −α0X/′E.X/=β11 −β01 + .β1U −β0U/γÅ + .β1X −β0X/′E.X/: .13/

From equation (10) and the assumptions stated, the true control effect is easily seen to be

Δ01 =β11 −β01 + .β1X −β0X/′ E.X/+ .β1U −β0U/γ: .14/

Comparing equations (13) and (14), the bias in the partially adjusted estimate of Δ01 based on
equation (7) is seen to be

Δ◦
01 −Δ01 = .β1U −β0U/.γÅ −γ/: .15/

The first difference on the right-hand side, β1U −β0U , represents the strength of the unmeasured
covariate as an effect modifier, whereas the second, γÅ −γ, measures the discrepancy between the
two studies with respect to the unmeasured effect modifier. The bias vanishes if either difference
is 0. Once the two differences have been specified, expression (15) can be used to correct for bias
in a sensitivity analysis.

3.2. The log-link
Now consider the log-link (i.e. g ≡ exp). Without specifying FÅ and F yet, it is easy to see that
model (5) is correctly specified with

αt1 =βt1 + log[E{exp.βtUUÅ/}],

αtX =βtX,

and the partially adjusted control effect is given by

Δ◦
01 =E[exp{.1, X′/α1}− exp{.1, X′/α0}]:

In contrast, the true control effect is

Δ01 =E[exp{.1, X′/α�
1}− exp{.1, X′/α�

0}], .16/

where α�
t1 =αt1 + log[E{exp.βtUU/}=E{exp.βtUUÅ/}] and α�

tX =αtX, t =0, 1. With αt directly
estimable from the historical data, expression (16) can be estimated as long as we can evaluate the
ratio E{exp.βtUU/}=E{exp.βtUUÅ/}, which requires assumptions on F and FÅ. For example,
if U and UÅ are binary (0 or 1), then

E{exp.βtUU/}
E{exp.βtUUÅ/} = 1−γ +γ exp.βtU/

1−γÅ +γÅ exp.βtU/
:

Alternatively, if we assume that

U ∼N.γ, σ2/ and UÅ ∼N.γÅ, 1/, .17/
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we then have

E{exp.βtUU/}
E{exp.βtUUÅ/} = exp.βtUγ +β2

tUσ2=2/

exp.βtUγÅ +β2
tU=2/

:

In expression (17), there is no loss of generality in assuming that var.UÅ/= 1 because the βtU

need to be specified anyway.

3.3. The probit link
Now let g = Φ, the standard normal distribution function, and assume that expression (17)
holds. Using the argument of Carroll et al. (1984), it can be shown that model (5) holds with
regression coefficients αt = .1 +β2

tU/−1=2.βt1 +βtUγÅ, β′
tX/′, and the partially adjusted control

effect is

Δ◦
01 =E[Φ{.1, X′/α1}−Φ{.1, X′/α0}]:

The same argument can be used to show that the true control effect is

Δ01 =E[Φ{.1, X′/α�
1}−Φ{.1, X′/α�

0}],

where
α�

t = .1+β2
tUσ2/−1=2.βt1 +βtUγ, β′

tX/′

= .1+β2
tUσ2/−1=2..1+β2

tU/1=2αt1 +βtU.γ −γÅ/, .1+β2
tU/1=2α′

tX/′:

Thus, as soon as αt is estimated and .βtU , γ − γÅ, σ2/ specified, the above expressions can be
used to estimate α�

t and eventually the true control effect.

3.4. The logit link
Unfortunately, for the logit link with g.z/= expit.z/= exp.z/={1+ exp.z/}, the induced model
(11) does not seem to take a simple form, even for fully specified FÅ. We therefore consider
an approximation of the expit function by Φ.·=c/ with c = 15π=.16

√
3/ ≈ 1:70 (e.g. Johnson

and Kotz (1970), Zeger et al. (1988) and Liang and Liu (1991)). This allows us to write, under
assumption (17),

E.T Å|T Å = t, XÅ =x/=
∫

expit{.1, x′, u/βt}dFÅ.u/

≈
∫

Φ{c−1.1, x′, u/βt}dFÅ.u/

=Φ
{

βt1 +β′
tXx +βtUγÅ

c
√

.1+β2
tU=c2/

}

≈ expit
{

βt1 +β′
tXx +βtUγÅ

√
.1+β2

tU=c2/

}
,

where the second-to-last step follows from the same argument as used for the probit link. Thus,
under assumption (17), model (5) holds approximately with parameters αt = .1+β2

tU=c2/−1=2×
.βt1 +βtUγÅ, β′

tX/′. A similar argument leads to

Δ01 ≈E[expit{.1, X′/α�
1}− expit{.1, X′/α�

0}],

where
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α�
t = .1+β2

tUσ2=c2/−1=2.βt1 +βtUγ, β′
tX/

= .1+β2
tUσ2=c2/−1=2..1+β2

tU=c2/1=2αt1 +βtU.γ −γÅ/, .1+β2
tU=c2/1=2α′

tX/′:

Once again, these expressions allow us to perform a sensitivity analysis using estimates of αt

and specified values of .β0U , β1U , γ −γÅ, σ2/.

4. Sensitivity analysis

4.1. Outline
The foregoing discussion suggests a sensitivity analysis approach that can be outlined as follows.

Initially, obtain a partially adjusted estimate of Δ01 based on model (5) and equation (7).

Step 1: obtain fully adjusted estimates of Δ01 based on clinically plausible specifications
of .β0U , β1U , F , FÅ/ or some functionals of these parameters, using the results of Section 3.
Formal inference on the quantities of interest (Δ02 and λ) could be made for each specification
of the unidentifiable parameters. However, this can be cumbersome because some parameters
may need to be specified, giving rise to a potentially large number of combinations.
Step 2: for dimension reduction, one might focus instead on the difference a=Δ01 −Δ◦

01 or
the ratio r =Δ01=Δ◦

01 if both effects are positive. A range of plausible values, A for a or R
for r, can be specified by using the results from step 1 and other sources of information (to
be discussed shortly).
Step 3: modify the partially adjusted estimate of Δ01 additively or multiplicatively, and make
formal inference on Δ02 and λ accordingly. This will be done for each a∈A or r∈R separately,
assuming that Δ01 =Δ◦

01 + a or Δ01 = rΔ◦
01 respectively. The resulting point estimates and

confidence intervals can then be plotted against a or r.
Step 4: the results of step 3 can be summarized succinctly for specific purposes. For testing
hypotheses, say H0 : Δ02 � 0 versus H1 : Δ02 > 0, one could report the smallest value of a or
r at which the test is significant. To obtain a single confidence interval, one could take the
union of the ‘pointwise’ confidence intervals over a ∈A or r ∈R, or a subset of values that
are deemed most likely.

4.2. Implementation
Let .Ti, Xi, Yi/, i=1, : : : , n, denote the data from the current active-controlled study, which are
assumed to be independent copies of .T , X, Y/. Similar notation (with an asterisk) is used for
the historical data.

For the initialization, we give a brief description of the partially adjusted estimates based on
model (5) and equation (7). The working model (5) is estimated by solving a system of estimating
equations:

nÅ∑
i=1

[YÅ
i −g{.1, XÅ

i
′
/αT Å

i
}]h.T Å

i , XÅ
i /=0, .18/

where h is a vector-valued function of the same dimension as α. For efficiency, h.T Å
i , XÅ

i / is
usually taken to be an estimate of var.YÅ

i |T Å
i , XÅ

i /−1gα.T Å
i , XÅ

i /, where gα.T Å
i , XÅ

i / =
@g{.1, XÅ

i
′
/αT Å

i
}=@α. For the identity link, a unique solution to equation (18) exists in closed

form. In general, equation (18) can be solved by using an iterative algorithm such as the itera-
tively reweighted least squares algorithm. Denote by α̂= .α̂′

0, α̂′
1/′ the resulting estimate of α;

then equation (7) suggests that Δ01 be estimated by
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Δ̂01 = 1
n

n∑
i=1

[g{.1, X′
i/α̂1}−g{.1, X′

i/α̂0}]: .19/

Suppose that Δ12 is estimated by the observed treatment difference

Δ̂12 = μ̂2 − μ̂1 = 1
N2

n∑
i=1

I.Ti =2/Yi − 1
N1

n∑
i=1

I.Ti =1/Yi,

where Nt = Σn
i=1I.Ti = t/ (t = 1, 2) and I.·/ is the indicator function. Then partially adjusted

estimates of Δ02 and λ are given by

Δ̂02 = Δ̂01 + Δ̂12,

λ̂= Δ̂02=Δ̂01:

In step 1, we simply substitute these estimates together with specified values of unidentifiable
parameters. With the identity link, for example, a fully adjusted estimate of Δ01 based on
equation (15) is given by

Δ̃01 = Δ̂01 + .β1U −β0U/.γ −γÅ/:

Suppose that the unmeasured effect modifier is a genotype whose presence results in an
increase of 10 units in the effect of the active treatment relative to placebo. Assuming inde-
pendence of this genotype and the measured effect modifiers, the above equation then indicates
that an adjustment of a=2 would be appropriate if the genotype is 20% more prevalent in the
current patient population than in the historical population. In the other special cases that were
considered in Section 3, the fully adjusted estimate of Δ01 is given by

Δ̃01 = 1
n

n∑
i=1

[g{.1, X′
i/α̃

�
1}−g{.1, X′

i/α̃
�
0}],

where α̃� is obtained from α̂ through a linear transformation determined by unidentifiable
parameters.

In step 2, we specify a range (A or R) by using statistical techniques and clinical knowledge.
This can be helped by comparing Δ̂01 with Δ̃01 on the basis of a variety of assumptions. If
dim.X/�2, a jackknife-type approach can be used to yield additional information. Denote by
Δ̂.−j/

01 the analogue of Δ̂01 based on a reduced set of covariates excluding the jth element of
X (and XÅ). Then the difference aj = Δ̂01 − Δ̂.−j/

01 measures the effect of omitting a covariate,
and a candidate for A is given by the interval [minj aj, maxj aj]. Similarly, a candidate for R
may be obtained as [minj rj, maxj rj], where rj = Δ̂01=Δ̂.−j/

01 , j =1, : : : , dim.X/. These choices
could be sharpened by incorporating clinical information, if available. For example, one could
draw on the relationships

|a|= |E{δ01.X/− δÅ
01.X/}|� sup

x
|δ01.x/− δÅ

01.x/|,
inf

x
{δ01.x/=δÅ

01.x/}� r � sup
x

{δ01.x/=δÅ
01.x/},

the latter assuming that both δ.·/ and δÅ.·/ are positive valued. To approximate the bounds,
one might ask a clinician ‘Knowing what we know about the studies, are you concerned that
an unmeasured factor alone could alter the control effect by a factor of k or more?’. The
question could be repeated with different values of k > 1 until the smallest value of k is found
for which the answer is negative; then it seems reasonable to use the interval .1=k, k/ to truncate
a tentative choice of R (obtained by using other methods). The question can be reworded to
yield information on A.
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In step 3, we make simple (additive or multiplicative) adjustments to the point estimates
from the initialization and adjust the inferential procedure accordingly. For a∈A, the additive
adjustment yields

Δ̃+
01.a/= Δ̂01 +a,

Δ̃+
02.a/= Δ̃+

01.a/+ Δ̂12

= Δ̂02 +a,

λ̃
+

.a/= Δ̃+
02.a/=Δ̃+

01.a/

= .Δ̂02 +a/=.Δ̂01 +a/:

For r ∈R, the multiplicative adjustment leads to

Δ̃×
01.r/= rΔ̂01,

Δ̃×
02.r/= Δ̃×

01.r/+ Δ̂12

= rΔ̂01 + Δ̂12,

λ̃
×

.r/= Δ̃×
02.r/=Δ̃×

01.r/

= .rΔ̂01 + Δ̂12/=.rΔ̂01/:

Assuming that the historical and current samples grow proportionally, all these estimates are
asymptotically normal though not necessarily consistent. The associated formulae for asymp-
totic inference are given in the on-line appendix A. Because the formulae for λ are somewhat
cumbersome, one might prefer a bootstrap procedure for inference on λ.

5. Applications

5.1. A urological example
We now illustrate the proposed approach with a urological example analysed previously by
Zhang (2009) using covariate adjustment. Trans-urethral microwave therapy (TUMT) is a non-
invasive treatment of symptoms due to benign prostate hyperplasia. A randomized, sham-
controlled, multicentre clinical study has been conducted to evaluate a TUMT device, say
TUMT1. The study enrolled 300 male subjects over the age of 50 years who had been diag-
nosed with benign prostate hyperplasia and had not been treated for it, with prostate size 20–50
cm3 and American Urology Association Symptom index AUASI at least 12. The AUASI-score
ranges between 0 and 35 with higher values indicating more severe symptoms. The subjects in
the study were assigned randomly, at a 2:1 ratio, to either treatment TUMT1 or a sham control,
which ‘treated’ the patient with the same device in the off mode. Thus, the sham in a medical de-
vice trial is largely equivalent to a placebo in a drug trial. The subjects in this study were blinded
to the assigned treatment. The primary effectiveness end point was the decrease in AUASI from
baseline to 6 months post treatment. A summary of the primary analysis is given in Table 1,
which is reproduced from Zhang (2009), Table 3, under the heading ‘Historical study’. The
results show a statistically significant treatment difference as well as a remarkable sham effect.

Of interest to us is a newly developed TUMT device which might be called TUMT2. Given
the existence of proven effective treatments including TUMT1, another sham-controlled study
for TUMT2 would have been difficult to implement because of ethical as well as practical issues
such as patient enrolment. Thus, the evaluation of TUMT2 was based primarily on a non-
inferiority study comparing TUMT2 with TUMT1. Like the original study for TUMT1, this
latter study was randomized and blinded, involved multiple centres, used essentially the same
inclusion–exclusion criteria and had the same primary end point. The key summary statistics,
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Table 1. Summary of primary effectiveness analyses for the two benign prostate
hyperplasia studies in Section 5.1

Historical study results Current study results

Sham TUMT1 TUMT1 TUMT2

Number of evaluable patients 95 198 98 97
Mean decrease in AUASI 7.0 10.8 13.6 12.1
Standard deviation 6.9 7.4 7.9 7.2
Observed difference (left − right) 3.8 −1.5
95% confidence interval .2:1, 5:5/ .−3:6, 0:6/
p-value for superiority (1 sided) < 0:0001 0.9171

which are presented in Table 1 under ‘Current study’, show that the mean decrease in AUASI
observed in the TUMT2 group was smaller than that seen in the TUMT1 group, although the
difference was not statistically significant.

It is necessary to combine information from the two studies to answer the aforementioned
research questions about TUMT2 (i.e. indirect comparison with sham and effect retention with
respect to TUMT1). This seems promising given the apparent similarities between the two
studies, with one notable exception: the mean baseline AUASI-score was higher in the second
study than in the first (26.6 versus 23.5), even though the same entry criterion (baseline AUASI �
12) was used. Fig. 1 shows histograms of baseline AUASI-scores in both studies as well as a
non-parametric regression analysis of the historical data suggesting that the effect of TUMT1
relative to sham decreases with the patient’s baseline AUASI-score. Thus, baseline AUASI-score
appears to be an effect modifier that requires adjustment, and the studies may differ in other
important aspects that are unmeasured or simply unknown. The latter source of uncertainty
can be addressed by using the proposed sensitivity analysis approach, as we now demonstrate.

A linear regression model with both linear and quadratic terms was used to adjust for baseline
AUASI-score, leading to a partially adjusted estimate of 3.1 for the control effect (i.e. the effect
of TUMT1 relative to placebo in the current population), which is lower than the unadjusted
estimate (3.8) assuming constancy. Under this linear model, the bias due to omitting an unmea-
sured effect modifier is given by equation (15), which involves the strength of the unmeasured
effect modifier and the difference of its means in the two populations. Using this relation-
ship (with the unmeasured covariate assumed to be a genotype), a wide range of scenarios was
explored with the help of a clinical expert, leading to A= .−1:6, 1:6/ and R= .0:5, 2/ as plausible
ranges for a and r respectively. Fig. 2 shows point estimates and confidence intervals for Δ02
and λ, obtained from an additive or multiplicative adjustment and plotted against a or r over
the specified range. The confidence intervals for Δ02 are based on the formulae in the on-line
appendix A, whereas those for λ are based on 1000 bootstrap samples. The results suggest that
TUMT2 may have a positive effect relative to sham, but the evidence for that is not conclusive.

5.2. A human immunodeficiency virus example
Our second example concerns treatment of human immunodeficiency virus type 1 (HIV-1) in
treatment-experienced patients. Raltegravir is an inhibitor of HIV-1 integrase active against
HIV-1 susceptible or resistant to older antiretroviral drugs. The drug was developed by Merck
& Co. and approved for marketing in the USA on the basis of two identically designed, random-
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Fig. 1. Histograms of baseline AUASI-scores in (a) the historical and (b) the current studies, and (c) a
kernel estimate of the conditional effect of TUMT1 relative to a sham

ized, placebo-controlled, double-blind, multicentre trials, which are combined for our purpose
(because of consistent results) and collectively referred to as the ‘BENCHMRK’ study (Steig-
bigel et al., 2008; Cooper et al., 2008). The study randomized 703 HIV-1 patients to either
Raltegravir or placebo, at a 2:1 ratio, both in combination with optimized background therapy.
In our analysis, the primary end point is taken to be the virologic response rate (i.e. the pro-
portion of patients with HIV ribonucleic acid (RNA) levels below 50 copies per millilitre) at
week 48 of treatment, which is more informative of long-term effects than the original primary
end point (virologic response rate at week 16). The key summary statistics for this primary end
point, which are shown in Table 2, indicate clearly that the use of Raltegravir in combination
with optimized background therapy improves the virologic response rate at week 48.

Our research question pertains to the efficacy of Elvitegravir, which is another HIV-1 integrase
inhibitor under investigation. Elvitegravir was compared with Raltegravir in a randomized,
double-blind, multicentre trial known as ‘Study 145’ in a population of treatment-experienced
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Fig. 2. Point estimates ( ) and 95% confidence intervals ( ) (a), (b) of the effect of TUMT2
relative to a sham (Δ02) and (c), (d) the fraction of the control (TUMT1) effect retained by TUMT2 (λ), both in
the current patient population, obtained by using the proposed sensitivity analysis approach with an additive
((a), (c)) or multiplicative ((b), (d)) adjustment following standard covariate adjustment (see Section 5.1 for
details)

patients (Molina et al., 2012). The study randomized 724 patients to Elvitegravir or Raltegravir
with equal probability, both with a background regimen of a fully active, ritonavir-boosted
protease inhibitor and a second agent. The virologic response rate at week 48 was the prespecified
primary end point in Study 145, for which a summary is also presented in Table 2. The results
show that Elvitegravir is associated with a response rate that is similar to, if not slightly higher
than, that of Raltegravir. Though not sufficiently strong for superiority, these data appear to
meet a non-inferiority criterion with a 10% margin (Molina et al., 2012).
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Table 2. Summary of primary efficacy analyses for the two HIV studies in Section 5.2

BENCHMRK study results Study 145 results

Placebo Raltegravir Raltegravir Elvitegravir

Number of evaluable patients 228 443 351 351
Response proportion (%) 34 64 58 59
Observed difference (right − left) 30 1.1
95% confidence interval .22, 38/ .−6:2, 8:4/
p-value for superiority (1 sided) < 0:0001 0.3102

Table 3. Relevant subgroup information for the two HIV studies in Section 5.2

Subgroup Study 145 BENCHMRK study results
proportion (%)

Variable Level Proportion Response rate (%)
(%)

Raltegravir Placebo Difference

RNA �105 74 65 73 43 30
> 105 26 35 48 16 32

API No 0 39 54 14 40
Yes 100 61 71 49 22

GSS 0 ? 26 45 3 42
1 �15 40 67 37 30
2 �82 23 77 62 15
�3 ? 11 71 52 19

PSS 0 0 17 51 2 49
1 ? 32 61 29 32
2 ? 31 71 39 32
�3 0 20 71 61 10

To compare Elvitegravir with placebo, we need to adjust for important covariates such as
RNA (baseline plasma HIV-1 RNA level, dichotomized at 100000 copies per millilitre), API
(concomitant use of active protease inhibitors), and GSS and PSS (genotypic and phenotypic
sensitivity scores, defined as the number of antiretroviral drugs used concomitantly to which a
patient’s HIV was fully susceptible, as determined by genotypic and phenotypic resistance test-
ing). These four covariates were measured in the BENCHMRK study and reported in separate
subgroup analyses (Cooper et al., 2008). The right-hand half of Table 3 gives the proportion
of each subgroup as well as the response rates and the treatment difference in each subgroup,
calculated after excluding small amounts of missing data (less than 5%). Table 3 also shows the
proportions of subgroups in Study 145, with partial information on GSS and PSS. Note that
the study design implies that API is always positive in Study 145. It can be determined that at
least 103 patients (14.7%) had GSS = 1 and 575 (81.9%) had GSS = 2 in Study 145 (Molina
et al. (2012), Table 3), but it is unclear whether the other 24 patients (3.4%) belonged to the
other categories or had missing GSS-information. PSS-information is not reported for Study
145; however, the study design implies that 1 and 2 are the only possible values.
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In this example, the main motivation for a sensitivity analysis is the unavailability of patient
level data (which are necessary for simultaneous adjustment for all four covariates). So we
adjust for RNA only in a binary regression model with the identity link, which is convenient for
our purpose, and consider the other three covariates in a sensitivity analysis. API is obviously a
strong effect modifier, and Table 3 suggests that the control effect shrinks by 8 percentage points
(from 30% overall to 22% in API positive patients) because of changes in API. Alternatively,
this can be calculated by using equation (15) together with the relevant information in Table
3. Similar calculations for GSS show that the control effect is expected to shrink by 10–12
percentage points owing to changes in the GSS distribution, with the ambiguity arising from
the 3.4% GSS-ambiguous patients. The lower end (10%) corresponds to all of these patients
having GSS=0, and the upper end to GSS=2. Lastly, despite the lack of complete information
about the PSS-distribution in Study 145, the available information in Table 3 suggests an increase
of 2 percentage points because the observed treatment difference in the BENCHMRK study is
32% in both subgroups (PSS=1, 2) that are relevant in Study 145. Note that these estimates of
effect modifications account for the different factors separately and not simultaneously. Because
the three covariates in our sensitivity analysis are closely related and presumably have common
pathways, it is likely that some of these effect modifications will be attenuated in a model that
includes all three covariates as well as RNA level. Together, these considerations lead to an
additive sensitivity analysis with A= .−20, 0/. The results, which are shown in Fig. 3, indicate
that Elvitegravir would be superior to placebo and retain at least half of the control effect in the
current population, assuming that the aforementioned covariates are sufficient for conditional
constancy. If the latter assumption is violated, another sensitivity analysis could be conducted
to incorporate additional covariates.

6. Simulation studies

In this section, we report simulation results concerning the accuracy of the fully adjusted
estimate of Δ01 derived in Section 3, under correct and incorrect assumptions, as well as the
operating characteristics of the sensitivity analysis approach of Section 4 for making inference
on Δ02.

6.1. Data generation
In general, our simulation of trial data .T , X, Y/ starts with an initial covariate vector W, gener-
ates T independently of W, and then generates Y according to a model for .Y |T , W/. One element
of W (chosen a priori or randomly) will then be designated as U, and the rest as X. The same
approach is used to generate historical trial data, under the conditions that dim.WÅ/=dim.W/=:
m and that UÅ relates to WÅ in the same way that U relates to W. The dimension m will be
specified in each experiment. For a given m, we generate WÅ ∼Nm.0, Im/ and W ∼Nm.μ, Im/,
where Nm is the m-variate normal distribution, Im the m × m identity matrix and μ a mean
vector to be specified later. The vector μ describes the discrepancies in baseline characteristics
between the current and historical study populations. Independently of baseline covariates, T Å

is generated as a Bernoulli variable with probability 0.5, and T takes the values 1 and 2 with
equal probabilities. Given WÅ and T Å, YÅ is generated according to model (9), which in the
present notation may be written as

E.YÅ|T Å = t, WÅ =w/=g.βt1 +β′
tW w/, t =0, 1:

Given W and T , Y is generated according to a similar model:
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Fig. 3. Point estimates ( ) and 95% confidence intervals ( ) of (a) the effect of Elvitegravir
relative to placebo (Δ02) and (b) the fraction of the control (Raltegravir) effect retained by Elvitegravir (λ),
both in the current patient population, obtained by using the proposed sensitivity analysis approach with an
additive adjustment following standard covariate adjustment (see Section 5.2 for details)

E.Y |T = t, W =w/=g.β11 +β′
1W w/, t =1, 2:

Note that the latter expression does not distinguish between t =1 and t =2, so treatments 1 and 2
have the same mean response in the current population. In our simulation studies, we consider
two types of outcome: binary outcomes following logistic models (with g ≡ expit, defined in
Section 3.4) and continuous outcomes following normal linear models (with an identity link).
In the latter case, the error standard deviation is fixed at 0.5 to produce comparable variability
with the binary case. In both cases, we fix β01 = 0 and β11 = 1, and consider the following
scenarios concerning the values of μ, β0W and β1W .

(a) μ= .0, : : : , m−1/′=.m−1/=: bm and β0W =−β1W = sm=2, where sm is an m-vector of the
form .1, −1, 1, −1, : : :/.

(b) μ=1, β0W =0 and β1W =bm Å sm, where ‘Å’ denotes elementwise multiplication.
(c) μ=1 and β0W =−β1W =bm Å sm=2.
(d) μj ∼ U.0, 1/, β0Wj ∼ U.−0:5, 0:5/ and β1Wj ∼ U.−0:5, 0:5/, independently of each other

and across j ∈{1, : : : , m}, where the subscript j denotes the jth element of a vector and
U denotes a uniform distribution.
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(e) μj ∼ N.0, 0:52/, β0Wj ∼ N.0, 0:252/ and β1Wj ∼ N.0, 0:252/, independently of each other
and across j ∈{1, : : : , m}.

The numerical values in these specifications are chosen to cover realistic situations in terms
of population discrepancy and effect modification. For instance, it would be uncommon to have
mean shifts that are greater than 1 standard deviation (i.e. |μj|>1) between the current and his-
torical populations, which are only allowed in scenario (e) with a small probability. The scenarios
with fixed parameter values ((a)–(c)) are designed to separate the consequences of population
discrepancy and effect modification. In scenario (a), all covariates are equal in strength as effect
modifiers, but they differ in the extent of population discrepancy. In scenarios (b) and (c), the
extent of population discrepancy is fixed, but the covariates differ in their interactions with
treatment (and also main effects, in scenario (b)). The scenarios with random parameter values
((d) and (e)) are designed to provide an overall evaluation in a range of situations comparable
with the fixed value scenarios.

10000 data sets are simulated in each scenario for each given m (with the exception of Table 4,
for which 1000 replications seem adequate). In this section, we focus on a common sample size of
500 for the non-inferiority trial and the historical trial, which represents a compromise between
the two examples in Section 5 and a typical situation in practice. We have also experimented with
different sample sizes (200 and 1000), which together cover a wide range of realistic situations,
and the results are similar to those presented here (see the on-line appendix B).

Note that Δ01 =Δ02 (because Δ12 =0) in all our simulation experiments. The true value of the
effect is straightforward to calculate in the case of a continuous outcome. For a binary outcome,
we approximate the true value of Δ01 =Δ02 by using simulated data sets. Specifically, in a fixed
value scenario ((a), (b) or (c)), we calculate

1
n

n∑
i=1

{g.β11 +β′
1W Wi/−g.β01 +β′

0W Wi/} .20/

for each simulated data set and then take the average across the 1000 replicates. The resulting
average is unbiased by construction, and its variability is negligible for all practical purposes.
In a random-value scenario ((d) or (e)), each data set is associated with a different value of
Δ01 =Δ02, which we approximate by evaluating expression (20) on 104 hypothetical patients
(in the current population), simulated by using the same parameter values that generate the
‘observed’ data. Larger numbers (such as 5×105) of hypothetical patients have been attempted
without producing materially different results, and we therefore work with 104 hypothetical
patients to reduce the computational burden.

6.2. Point estimation
Our evaluation of point estimates is focused on Δ01, because estimation of Δ12 is straightforward
and not subject to bias. Because theoretical results are readily available for a continuous outcome
with the identity link, this simulation study is limited to a binary outcome with the logit link.
Using the logit link allows us to assess also the quality of the approximation that is used in
Section 3.4. To evaluate bias and variability in the usual sense, we restrict attention to the fixed
value scenarios ((a)–(c)). In each scenario, we generate data with five covariates (i.e. m=5) and
apply the method of Section 3.4 (for a logit link) to a reduced data set (with one covariate omitted
as U) under correct or incorrect assumptions (i.e. with values of γ, β0U and β1U for one of the
original five covariates, which may or may not be the same as the covariate designated as U).
All possible combinations (of true versus working choices for U) are included in our simulation
study. For comparison, the simulation study also includes a naive estimate which is simply
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Table 4. Point estimation of Δ01 with a binary outcome: comparison of
several estimates (described in Section 6) in terms of sampling means
and standard deviations (in parentheses)†

Adjust for Missing covariate

W1 W2 W3 W4 W5

Scenario (a)‡
Proposed adjusted estimate (standard deviation, 0.05–0.07)

W1 0.09 0.05 0.19 −0.05 0.28
W2 0.14 0.09 0.23 0.00 0.32
W3 0.00 −0.05 0.09 −0.14 0.19
W4 0.23 0.19 0.32 0.09 0.41
W5 −0.09 −0.14 0.00 −0.23 0.10

Scenario (b)§
Proposed adjusted estimate (standard deviation, 0.08–0.10)

W1 0.25 0.28 0.18 0.34 0.09
W2 0.21 0.25 0.13 0.31 0.04
W3 0.31 0.34 0.25 0.39 0.18
W4 0.14 0.19 0.05 0.25 −0.06
W5 0.35 0.38 0.30 0.42 0.25

Scenario (c)§§
Proposed adjusted estimate (standard deviation, 0.08–0.10)

W1 0.10 0.05 0.21 −0.05 0.31
W2 0.15 0.10 0.26 0.00 0.36
W3 0.00 −0.05 0.11 −0.16 0.21
W4 0.25 0.20 0.35 0.11 0.45
W5 −0.10 −0.15 0.01 −0.25 0.11

†Each entry is based on 1000 replicates.
‡Gold standard, 0.10 (0.02); naive estimate, 0.19 (0.04); full data estimate,
0.09 (0.07).
§Gold standard, 0.25 (0.01); naive estimate, 0.18 (0.04); full data estimate,
0.25 (0.10).
§§Gold standard, 0.11 (0.01); naive estimate, 0.21 (0.04); full data estimate,
0.10 (0.11).

the observed treatment difference in the historical study, and a full data estimate that results
from applying the standard covariate adjustment method of Section 2.2 to the full set of (five)
covariates. Applying the method of Section 2.2 to the set of observed covariates (without any
further adjustment) is equivalent to adjusting for W1 (the first element of W) as U by using the
proposed method in the present context, where U =W1 implies either γ =γÅ = 0 or β0U =β1U

and therefore is not shown as a separate method. The true value of Δ01 is approximated by
averaging expression (20) across replicates, and the results are labelleded as ‘gold standard’ in
Table 4.

Table 4 presents the sample mean and standard deviation of each method over 1000 replicates.
Although Table 4 is based solely on m=5, other values of m have been attempted and the results
are qualitatively similar (and therefore have been omitted). Considering the observed variability
and the number of replicates, the gold standard mean, as an approximation to the true value
of Δ01, is accurate to two decimal places with high confidence. As expected, the naive estimate
is generally biased, and the full data estimate is nearly unbiased though more variable than the
naive estimate. Under correct assumptions (i.e. adjusting for the ‘right’ covariate), the adjusted
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estimate proposed is also nearly unbiased, and its variability is similar to or slightly less than
that of the full data estimate. It is not surprising that the estimate proposed can be more efficient
than the full data estimate, because the former essentially compensates for unobserved data with
true parameter values (under correct assumptions). Under incorrect assumptions, the estimate
proposed can be seriously biased—in some cases more biased than the naive estimate. Thus,
there is no guarantee that the proposed adjustment based on an arbitrary set of assumptions
will necessarily outperform the naive estimate. This suggests that one should not rely on a single
set of assumptions for inference unless there are good reasons for doing so. One may, however,
explore a variety of assumptions in developing a range of plausible values for a sensitivity
analysis.

6.3. Interval estimation
For inference, our proposal is to conduct a sensitivity analysis that summarizes results from
multiple analyses based on different assumptions about U (see Section 4.1). We now evaluate this
approach withΔ02 being the inferential target. This evaluation is focused on confidence intervals,
which are closely related to hypothesis tests. Specifically, we consider the union confidence
interval that is described in step 4 of Section 4.1, with an additive adjustment (a multiplicative
adjustment would behave similarly, except for the complication that all effects involved must be
positive). In practice, the range A for an additive adjustment should be chosen on the basis of
all available information, including expert opinions as well as empirical evidence. However, in a
simulation study it is convenient to use a data-driven mechanism for specifying A, and we use the
jackknife approach that was described in Section 4.2 in this particular study. In addition to the
sensitivity analysis approach proposed, the study also includes a naive approach that assumes
constancy and makes no use of covariate data, and a partially adjusted approach described in
Section 2.2, which adjusts for observed covariates (and nothing more) under the conditional
constancy assumption (3). This simulation study involves all five scenarios described in Section
6.1 and many different values of m.

Table 5 presents, for a continuous outcome with the identity link, simulation results (empirical
coverage and average length) for the aforementioned three confidence intervals with a nominal
level of 95%. Also shown in Table 5 are the dimension of X, which is m − 1 by design, and
the true value of Δ02, calculated by using equation (15) and knowledge of true distributions
and parameter values. There is clearly an undercoverage problem for the naive method and, to
a lesser extent, the partially adjusted method. The sensitivity analysis approach proposed has
higher coverage than both of the other two methods, and its coverage probability increases with
the dimension of X. This should be expected because the jackknife version of A tends to become
larger with more covariates available. In all five scenarios that are considered here, the sensitivity
analysis approach has coverage probability close to the nominal level when dim.X/ ≈ 8. This
approach suffers from an overcoverage problem when there are too many covariates, in which
case one might want to shrink the jackknife version of A in some way. It might be possible to
develop a formally justified procedure for shrinking A (or, rather, the union confidence interval)
by treating the (observed and missing) covariates as a random sample from some universe of
covariates, although the details of such an approach are not yet available. The higher coverage
probability of the sensitivity analysis approach comes at a price: the resulting confidence intervals
are generally longer than the partially adjusted intervals, with a typical ratio of 2–3 in average
length.

Parallel results for a binary outcome with the logit link are shown in Table 6. The results in
Table 6 are qualitatively similar to those in Table 5, with a few notable differences. First, a smaller
number of covariates (dim.X/≈5) is required here for the sensitivity analysis approach to grow
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Table 5. Interval estimation of Δ02 with a continuous outcome: empirical coverage and average length of
(intended) 95% confidence intervals obtained by using a naive method that assumes constancy, a partially
adjusted method that assumes conditional constancy (given observed covariates) and the proposed sensi-
tivity analysis approach with a jackknife procedure specifying the range for additive adjustments (see Section
6 for details)†

dim(X) Δ02 Empirical coverage for the Average length for the
(m−1) following methods: following methods:

Naive Partially Sensitivity Naive Partially Sensitivity
adjusted analysis adjusted analysis

Scenario (a)
4 0.50 0.11 0.36 0.68 0.61 0.68 2.23
5 1.60 0.06 0.38 0.81 0.66 0.74 2.41
6 0.50 0.21 0.41 0.88 0.70 0.79 2.53
7 1.57 0.15 0.43 0.93 0.74 0.85 2.63
8 0.50 0.30 0.45 0.95 0.78 0.89 2.72

10 0.50 0.37 0.49 0.97 0.86 0.98 2.86
15 1.53 0.47 0.57 0.99 1.02 1.18 3.14
20 0.50 0.60 0.63 0.99 1.16 1.35 3.38

Scenario (b)
4 1.50 0.14 0.40 0.75 0.64 0.76 2.31
5 0.40 0.07 0.42 0.85 0.68 0.83 2.49
6 1.50 0.23 0.45 0.91 0.73 0.88 2.63
7 0.43 0.17 0.48 0.95 0.77 0.94 2.74
8 1.50 0.33 0.51 0.96 0.81 1.00 2.84

10 1.50 0.40 0.56 0.98 0.88 1.10 3.02
15 0.47 0.48 0.66 0.99 1.04 1.32 3.41
20 1.50 0.62 0.73 0.99 1.18 1.52 3.74

Scenario (c)
4 0.50 0.00 0.32 0.67 0.42 0.59 2.14
5 1.60 0.00 0.33 0.80 0.44 0.64 2.31
6 0.50 0.01 0.35 0.87 0.47 0.69 2.43
7 1.57 0.00 0.38 0.92 0.49 0.73 2.52
8 0.50 0.03 0.39 0.94 0.51 0.78 2.60

10 0.50 0.05 0.42 0.97 0.55 0.86 2.75
15 1.53 0.09 0.52 0.99 0.63 1.03 3.04
20 0.50 0.20 0.60 0.99 0.71 1.19 3.30

Scenario (d)
4 1.00 0.30 0.66 0.85 0.40 0.45 0.93
5 1.00 0.28 0.68 0.89 0.43 0.48 1.03
6 1.00 0.28 0.70 0.91 0.45 0.51 1.12
7 1.00 0.28 0.71 0.93 0.47 0.54 1.20
8 1.00 0.27 0.72 0.94 0.49 0.56 1.27

10 1.00 0.26 0.75 0.95 0.53 0.62 1.40
15 1.00 0.26 0.79 0.97 0.62 0.73 1.64
20 1.00 0.25 0.82 0.99 0.70 0.83 1.84

Scenario (e)
4 1.00 0.40 0.75 0.88 0.37 0.40 0.74
5 1.00 0.37 0.77 0.91 0.39 0.43 0.82
6 1.00 0.36 0.78 0.93 0.41 0.45 0.90
7 1.00 0.34 0.79 0.93 0.43 0.47 0.96
8 1.00 0.33 0.80 0.94 0.44 0.50 1.01

10 1.00 0.33 0.82 0.96 0.48 0.54 1.11
15 1.00 0.32 0.84 0.97 0.55 0.64 1.34
20 1.00 0.30 0.86 0.98 0.62 0.72 1.51

†Each entry is based on 10000 replicates.
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Table 6. Interval estimation of Δ02 with a binary outcome: empirical coverage and average length of (in-
tended) 95% confidence intervals obtained by using a naive method that assumes constancy, a partially
adjusted method that assumes conditional constancy (given observed covariates) and the proposed sensi-
tivity analysis approach with a jackknife procedure specifying the range for additive adjustments (see Section
6 for details)†

dim(X) Δ02 Empirical coverage for the Average length for the
(m−1) following methods: following methods:

Naive Partially Sensitivity Naive Partially Sensitivity
adjusted analysis adjusted analysis

Scenario (a)
2 0.10 0.61 0.59 0.62 0.23 0.21 0.28
3 0.32 0.42 0.63 0.77 0.22 0.26 0.47
4 0.10 0.65 0.69 0.88 0.23 0.23 0.38
5 0.29 0.56 0.72 0.93 0.23 0.28 0.52
7 0.27 0.63 0.76 0.96 0.23 0.30 0.53

10 0.08 0.73 0.82 0.97 0.23 0.25 0.42
15 0.22 0.76 0.85 0.98 0.22 0.34 0.54
20 0.07 0.81 0.89 0.98 0.22 0.27 0.43

Scenario (b)
2 0.27 0.72 0.76 0.75 0.22 0.28 0.41
3 0.06 0.51 0.80 0.88 0.24 0.26 0.37
4 0.25 0.74 0.85 0.93 0.22 0.34 0.51
5 0.07 0.63 0.86 0.95 0.24 0.29 0.43
7 0.07 0.68 0.89 0.97 0.23 0.32 0.46

10 0.22 0.80 0.90 0.97 0.22 0.42 0.59
15 0.06 0.79 0.92 0.98 0.23 0.38 0.53
20 0.18 0.84 0.91 0.97 0.22 0.48 0.65

Scenario (c)
2 0.11 0.56 0.66 0.68 0.23 0.25 0.33
3 0.35 0.34 0.72 0.82 0.22 0.32 0.54
4 0.11 0.58 0.77 0.91 0.23 0.29 0.45
5 0.33 0.45 0.79 0.94 0.22 0.37 0.62
7 0.32 0.52 0.83 0.96 0.22 0.41 0.66

10 0.10 0.63 0.87 0.97 0.23 0.36 0.55
15 0.28 0.63 0.88 0.97 0.23 0.49 0.73
20 0.09 0.69 0.91 0.97 0.23 0.43 0.62

Scenario (d)
2 0.22 0.73 0.88 0.89 0.23 0.25 0.29
3 0.21 0.69 0.87 0.91 0.23 0.26 0.32
4 0.21 0.65 0.87 0.92 0.23 0.26 0.34
5 0.21 0.62 0.86 0.93 0.23 0.27 0.35
7 0.20 0.59 0.86 0.91 0.23 0.28 0.37

10 0.20 0.53 0.84 0.88 0.23 0.29 0.40
15 0.18 0.49 0.81 0.86 0.23 0.31 0.42
20 0.17 0.45 0.78 0.82 0.23 0.32 0.44

Scenario (e)
2 0.22 0.82 0.91 0.92 0.23 0.25 0.28
3 0.22 0.78 0.91 0.94 0.23 0.25 0.30
4 0.22 0.75 0.90 0.94 0.23 0.26 0.32
5 0.22 0.74 0.91 0.94 0.23 0.26 0.33
7 0.21 0.69 0.90 0.94 0.23 0.28 0.35

10 0.20 0.64 0.89 0.93 0.23 0.29 0.37
15 0.19 0.58 0.87 0.91 0.23 0.31 0.40
20 0.18 0.55 0.84 0.88 0.23 0.32 0.42

†Each entry is based on 10000 replicates.
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close to the nominal confidence level. Second, the increase in average length for the sensitivity
analysis approach versus the partially adjusted approach tends to be smaller here, in both ab-
solute and relative terms, than in Table 5. Finally, in scenarios (d) and (e) in Section 6.1, the cov-
erage probability appears to decline for all three methods when there are ‘too many’ covariates.
This may be due to an increased chance of having ‘difficult’ parameter configurations that tend
to produce erratic estimates (e.g. when there are few successes or failures in a treatment group).

7. Discussion

It is well recognized that possible violations of the constancy assumption present a serious
challenge to the analysis and interpretation of non-inferiority trial data. Covariate adjustment,
which accounts for inconstancy due to imbalances in observed covariates, represents a partial
solution. This paper attempts to address the remaining part of the problem, namely residual
inconstancy due to unmeasured covariates. We characterize residual inconstancy under a gen-
eralized linear model framework and derive fully adjusted estimates of the control effect in the
current study based on plausible assumptions about an unmeasured covariate. It is admittedly
difficult to specify and justify such assumptions, and we therefore propose a sensitivity analysis
approach that covers a range of situations. The range for the sensitivity analysis may be based
on clinical judgement about an unmeasured covariate as well as statistical analysis of observed
data. The need for judgement is not a drawback of the approach proposed; rather, it reflects the
nature of the problem and highlights the inherent limitations of active-controlled trials. Those
limitations are best addressed by asking relevant scientific questions. In addition to clinical
judgement, one could also use a jackknife procedure for gauging the effect of omitting a rele-
vant covariate. Simulation results show that the jackknife-based sensitivity analysis has higher
coverage probabilities than the partially adjusted approach and sometimes attains or approaches
the nominal confidence level, although it may have an overcoverage problem. For a given ap-
plication, further simulation experiments could be performed to assess the appropriateness of
the approach.

Another possible approach to this problem would be a Bayesian approach, which has not been
considered in this paper. Under a Bayesian approach, one could express the uncertainty about
(conditional) constancy in the form of a prior distribution for some parameter that represents
the extent of residual inconstancy. Such a prior distribution can provide some extra flexibility
(relative to the range for a sensitivity analysis), although it may not be easy to specify. It may
be worthwhile to explore such a Bayesian approach in the context of a suitable application.

The approach proposed is designed for interpretation of data with respect to a specific efficacy
or effectiveness end point: not for decision making in a regulatory setting. The latter objective
would require a different framework (decision theory rather than estimation) as well as addi-
tional information on safety, other efficacy end points and utility functions that quantify the
consequences of different possible actions. Furthermore, it may be difficult to base a decision
rule on a sensitivity analysis, which tends to be exploratory in nature. A Bayesian approach may
once again prove helpful for this purpose.

It is for ease of presentation that we have focused on the simple case of a single historical study.
The approach proposed extends easily to the case of multiple historical studies if assumption (8)
continues to hold between the different historical studies and the same collection of covariates
is measured in each study. If different collections of covariates are measured in different studies,
as is often the case, this in principle could be addressed within the sensitivity analysis approach
proposed, although the implementation will be more complicated. With multiple historical
studies available, one may be able to estimate the variability between studies due to unobserved
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covariates without having to guess what it might be. An interesting possibility in that regard is
the random-effects meta-analysis approach of Brittain et al. (2012).

This paper is focused on the mean difference as the effect measure of interest. This may be
appropriate for binary data if the event rates are sufficiently high, as in the example of Section
5.2, and our discussion includes various link functions. For rare events, however, it would be
more natural to consider the relative risk or the odds ratio as the effect measure. It will be of
interest to extend the proposed approach to those effect measures with appropriate adjustment
for possible non-collapsibility (Gail et al., 1984; Greenland et al., 1999).
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