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The computational identification of gene Transcription Start Sites (TSSs) can provide 

insights into the regulation and function of genes without performing expensive 

experiments, particularly in organisms with incomplete annotations. High-resolution 

general-purpose TSS prediction remains a challenging problem, with little recent 

progress on the identification and differentiation of TSSs which are arranged in 

different spatial patterns along the chromosome. 

In this work, we present TIPR, a sequence-based machine learning model which 

identifies TSSs with high accuracy and resolution for multiple spatial distribution 

patterns along the genome, including broadly distributed TSS patterns which have 

previously been difficult to characterize. TIPR predicts not only the locations of TSSs, 



 

 

but also the expected spatial initiation pattern each TSS will form along the 

chromosome—a novel capability for TSS prediction algorithms. As spatial initiation 

patterns are associated with spatiotemporal expression patterns and gene function, this 

capability has the potential to improve gene annotations and our understanding of the 

regulation of transcription initiation. The high nucleotide-resolution of this model 

locates TSSs within 10 nucleotides or less on average. 
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1 Introduction 

Transcription Start Sites (TSSs) and their associated promoter regions play a critical 

role in the transcription of genes. However, the mechanisms by which transcription is 

initiated at specific genomic locations is still not fully understood, including how the 

spatial distribution of TSSs is defined, how promoter architecture influences this 

spatial pattern, and how genes lacking canonical elements within the core promoter are 

transcribed. The advent of high-throughput TSS sequencing protocols such as CAGE 

and PEAT have transformed the field of promoter analysis, providing genome-wide 

nucleotide-resolution information on TSS usage (Carninci et al., 2005; Ni et al., 2010). 

One important goal in this field is the identification of TSS locations when TSS-Seq 

data is unavailable. While start codons are easily identified, the length of the 5’ UTR 

upstream of the first exon varies from gene to gene and even between transcripts of the 

same gene, yielding different mRNA products. Several studies have taken 

computational approaches to TSS identification, building machine learning models 

which predict the location of TSSs from the surrounding sequence content with 

varying degrees of success and resolution, ranging from the prediction of individual 

nucleotides to regions up to 500 nt wide (Abeel et al., 2009; Boer et al., 2014; 

Knudsen, 1999; Megraw et al., 2009; Morton et al., 2014; Ohler et al., 2000; 

Sonnenburg et al., 2006; Zhao et al., 2007). 
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Figure 1: Common TSR Initiation Patterns 

The four Transcription Start Region initiation patterns introduced by Carninci et al. 

(2006), as identified in genome-wide mouse and human CAGE studies. In this work, 

we focus on the Single Peak and Broad Peak initiation patterns, also identified in 

Drosophila melanogaster (Ni et al., 2010) and Arabidopsis thaliana (Morton et al., 

2014). 

 

The mRNA products produced during the transcription of genes typically do not all 

initiate at a single genomic location. Instead, transcription initiates upstream of the 

gene’s start codon in a region that can range from vary narrow (2—3 nt) to wide 

(upwards of 50 nt or more), forming a collection of individual TSSs known as a TSS 

cluster or TSR (Transcription Start Region) (Carninci et al., 2006; Ni et al., 2010; 

Rach et al., 2009). TSS clusters can be grouped by the width and distribution of 

individual TSSs that define the cluster (Figure 1). In this study, we focus on the Single 

Peak (or Narrow Peak) and Broad Peak (or Weak Peak) patterns defined in previous 

TSS-Seq studies (Carninci et al., 2006; Ni et al., 2010). Previous studies have shown 

that different initiation patterns are associated with different types of genes, tissues, 

and regulatory mechanisms such as Transcription Factors (TFs) and CpG islands 

(Morton et al., 2014; Ohler and Wassarman, 2010; Sandelin et al., 2007). While there 
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has been success in the identification of Narrow Peak initiation patterns (Megraw et 

al., 2009), it has remained unclear whether other initiation patterns can be predicted 

from sequence content alone at the same nucleotide-level resolution. Models 

incorporating additional data types such as histone modifications have had success in 

the prediction of these less well-defined patterns (Rach et al., 2011), though prediction 

of broadly distributed patterns is still clearly a greater challenge. An analysis of 17 

TSS prediction models found that these broad patterns could be predicted with low 

resolution (500 nt) from sequence content alone, but did not explore nucleotide-

resolution models (Abeel et al., 2009). 

In this work we present a machine learning model capable of predicting TSSs of 

multiple initiation patterns with high performance and positional resolution, while also 

suggesting the probable initiation pattern the TSS cluster would form along the 

chromosome. The TIPR model utilizes features derived from sequence content and TF 

binding affinity to predict the probability of transcription initiation at an individual 

nucleotide. Because this model provides nucleotide resolution and initiation pattern 

prediction, the model can be used to infer answers to a wide variety of topics, 

including a better understanding of promoter architecture, improved gene finding and 

annotations, identification of TFs which could be involved in the regulation of genes, 

and positional information guiding wet-laboratory experiments. We evaluate the TIPR 

model using publicly available high-throughput TSS-Seq datasets from mouse 

(Carninci et al., 2006) and Arabidopsis thaliana (Morton et al., 2014). Our model 
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performs well (AUROC 0.99, AUPRC 0.82), demonstrating that TIPR can 

successfully predict TSSs across multiple organisms and tissue types. TIPR uses only 

sequence information, and is therefore applicable in cases where TSS-Seq data is not 

yet available. 
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2 Literature Review 

Previous studies have constructed machine learning models which predict TSSs with 

varying degrees of accuracy and resolution. The first TSS prediction models grew out 

of gene finding programs. At the most basic level, these tools searched for simple 

sequence content enrichments or well-known binding elements, such as the TATA box 

and CpG islands. Many early TSS predictors suffered from issues with high numbers 

of false positives (Fickett and Hatzigeorgiou, 1997), limiting their use. 

PromoterScan (Prestridge, 1995) was one of the first TSS predictors to utilize a large 

collection of Transcription Factor Binding Site (TFBS) elements as predictors. 

Because most TFBSs were not well-characterized at this time, PromoterScan used 

subsequence matching to score the number of detected promoters within a sequence of 

interest. The importance of a TFBS was calculated by computing a density ratio 

comparing the presence of the TFBS in positive (TSS-containing sequences) and non-

transcribed sequences. These ratios are used to form a Promoter Recognition Profile, 

essentially ranking TFBSs by how discriminative they are between TSS and non-TSS 

sequences. Predictions were made by scoring a sequence based on the presence of 

TFBSs within a 250 nt window upstream of the TSS, weighted by their Promoter 

Recognition Profile score. In addition, the well-characterized TATA box  was 

considered separately, using a published PWM derived from 502 Pol-II transcribed 

regions (Bucher, 1990) within the 3’-most 50 nt of the sequence. PromoterScan 

performed well compared to other TSS predictors at the time, however the resolution 
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of the model was limited both by the coarse windowing procedure and data available 

at the time. 

Promoter2.0 (Knudsen, 1999) took inspiration from neural networks and genetic 

algorithms to identify sub-patterns within DNA sequence and discriminate between 

promoter-containing and non-promoter genomic regions. Neural networks are used to 

model TFBSs as k-mers, scoring a region of DNA by measuring the highest activity of 

the output neuron within the window. Each k-mer is represented as a binary vector of 

length 4k and used as input for the neural network. Neural networks are trained 

individually by changing the value of a randomly selected weight by a random amount 

during each generation and evaluated by computing the correlation coefficient and 

SSE of classifying training data using the current model. The study evaluated neural 

networks with random initial weights, as well as networks which were designed to 

model the binding sites of 4 TFs, TATA box, the cap site, CCAAT box, and the GC 

box. Promoter2.0 was evaluated on a variety of promoter sequences available at the 

time, including the Bucher database of promoters (Bucher and Trifonov, 1986) and the 

complete adenovirus 2 genome. The Promoter2.0 model scores windows of sequence, 

assigning them scores corresponding to how promoter-like the sequence is. Therefore, 

the model’s resolution is limited by the width of the sequence windows used in 

training and testing. In testing, the model predicted several TSSs within 161 nt of the 

true TSS. 
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More advanced predictors were developed in the early 2000s, taking advantage of the 

availability of larger data sets and more complex modeling techniques. McPromoter 

(Ohler et al., 2000) uses a generalized form of hidden Markov models (HMMs) known 

as a stochastic segment model (SSM). Segment models can be defined for different 

regions of the promoter, such as the region upstream of the TSS, the core promoter, 

and the region directly downstream of the TSS. These regions can be further separated 

as desired for more complex modeling, such as separating the core promoter into 

regions which are bound by different elements of the transcription preinitiation 

complex like TATA and Initiator. Segment models had been previously used in gene 

finding models, segmenting genes into regions such as the start codon, introns, exons, 

splice sites, and so on. However, unlike genes, promoters do not contain such 

universal, well-defined segments. Because there is no clear universal promoter 

structure (combination of TFBSs), we know neither the number of segments nor the 

positions where they would fall. Each segment contains an output distribution model, 

used to generate the most probable sequence given a segment. McPromoter uses 

fourth-order Markov chains as the output distribution of each segment. A non-

promoter model was created with a mixture distribution of two Markov chains, one 

trained on coding sequences and the other on intronic sequences. Unlike the earlier 

models discussed above, McPromoter scores smaller windows of sequence (on the 

order of 10-50 nt), producing a much higher resolution prediction signal. However, 
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Megraw et al. (2009) reports that while McPromoter can technically achieve high 

resolution, predicted TSSs are often 80 nt or further from the true TSS. 

ARTS (Sonnenburg et al., 2006) takes a machine-learning approach to promoter 

prediction, building a support vector machine (SVM)-based model. The ARTS model 

uses combinations of SVM kernels which capture sequence similarity between 

training examples, TFBS sequences located in the promoter region, and the 3D 

structure of the DNA molecule. Specifically, four kernels are utilized by ARTS, each 

capturing a different aspect of TSS complexity. A WDS (Weighted Degree Kernel 

with Shifts) kernel (Rätsch et al., 2005) captures similarities between sequences which 

have been shifted relative to a TSS, but are otherwise very similar in content and 

order. This kernel gives some flexibility for the position of elements relative to the 

TSS. A second kernel captures the presence of TFBSs without penalizing them for 

location or order. This spectrum kernel (Leslie et al., 2002) measures the over- or 

under-representation of a TFBS within the promoter. A separate spectrum kernel is 

applied to the sequence downstream of the TSS in the gene’s 5’ UTR, coding, and 

intronic regions due to the difference in sequence and element composition compared 

to the promoter region. Two linear kernels are used to incorporate the DNA 

molecule’s 3D structure, capturing the twisting angles and stacking energies of 

windows of sequence. The ARTS model can be efficiently trained and evaluated on a 

genome-wide scale and predicts regions containing TSSs with high accuracy. In an 

analysis of 17 TSS prediction models, ARTS out-performed all other models on every 
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metric (Abeel et al., 2009). In a comparison of 4 models, ARTS correctly predicts 

most TSSs with few false positives (Megraw et al., 2009). However, the model under-

performs at identifying the precise genomic location of TSSs, with many predicted 

TSS locations falling between 60 – 80 nt from the true TSS. 

CoreBoost (Zhao et al., 2007) utilized a decision-stump based model for TSS 

prediction, and focused on making predictions with high resolution over smaller 

genomic regions. CoreBoost considered CpG-related and non-CpG-related promoters 

separately, building separate models for each promoter class. This approach was taken 

to focus on the more difficult non-CpG-related class of promoters, similar to the 

separate initiation pattern classifiers we have constructed in this work. CoreBoost 

models transcription as a hierarchical system, allowing for more flexible decision 

boundaries. Models included core promoter elements (such as TATA and Inr), TFBSs 

from TRANSFAC, sequence content enrichment of dimers, third-order Markov 

models, and structural properties of DNA molecules. The combination of all of these 

features was critical to CoreBoost’s good performance. CoreBoost is implemented 

using LogitBoost with decision stumps, with separate families of classifiers trained for 

CpG and non-CpG promoters. In addition, separate class labels are assigned to the 

upstream and downstream regions surrounding a TSS due to their differing structure 

and content. This allows classifiers to pick the most discriminating features for their 

specific class and contributed to a boost in CoreBoost performance. CoreBoost is 

designed for the identification of TSSs with high resolution—identifying their 
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locations very accurately within a region of the genome. However, the authors 

recommend using another method to focus CoreBoost’s predictions within a 2.4 kb (or 

smaller) region using other data sources, such as ChIP-chip, ESTs, mRNAs, or gene 

finding programs, and note that CoreBoost’s performance increased substantially 

when Chip-CHIP data was used to identify promoter-containing regions. 

As the volume and resolution of available high-throughput TSS sequencing data 

increased, it became possible to train and evaluate models more accurately. The TSS 

prediction models reviewed here were trained and evaluated using older and lower-

throughput protocols, such as data curated by the DBTSS project (Wakaguri et al., 

2008). Most TSSs in these datasets were identified from low-resolution sources such 

as cDNAs and ESTs. New high-throughput TSS-Seq protocols like CAGE and PEAT 

have revolutionized the availability, quality, and resolution of TSS data. These 

protocols have been used to generate genome-wide, nucleotide-resolution TSS 

datasets in multiple species, including human and mouse (Carninci et al., 2006), 

Drosophila melanogaster (Ni et al., 2010), and Arabidopsis thaliana (Morton et al., 

2014). The availability of this data has inspired several new TSS models (Boer et al., 

2014; Megraw et al., 2009; Morton et al., 2014) and re-analysis of existing methods 

(Abeel et al., 2009), trained and tested with higher-resolution data. 

S-Peaker (Megraw et al., 2009) was the first TSS prediction model to take advantage 

of genome-wide TSS-Seq datasets for TSS prediction. Using L1-regularized logistic 

regression and TFBS PWMs from TRANSFAC (Wingender, 2008), S-Peaker is an 
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interpretable, high-resolution model which is capable of predicting Narrow Peak TSSs 

in mouse. When compared directly, S-Peaker identified the locations of TSSs with 

higher accuracy than ARTS, CorePromoter, or McPromoter achieved on the same test 

set. However, S-Peaker was limited to the prediction of TSSs with Narrow Peak 

initiation patterns, while the other methods were capable of predicting TSSs of any 

type. 

In this work, we build on S-Peaker and 3PEAT (Morton et al., 2014) to build a model 

capable of predicting both Narrow Peak and Broad Peak initiation patterns with a 

single model, while maintaining the resolution and preciseness of the S-Peaker model. 

We also investigate the impact of L1-regularized regression and explore alternative 

regularization techniques which could produce more interpretable models, while still 

maintaining the same prediction performance. Previous models have primarily focused 

on the latter, while the former was often considered a secondary priority. An L1-

regularized logistic regression model is easily interpretable: the most informative 

predictors are assigned the highest weights, while uninformative features are removed 

from the model entirely. Other modeling techniques such as SVMs and HMMs can 

define non-linear decision boundaries, but are more difficult to interpret owing to their 

higher-order and more flexible nature. The TIPR model achieves both of these goals: 

TSSs are predicted with high accuracy and resolution while being constructed using a 

simple combination of multiple logistic regression models. At the same time, TIPR 
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achieves better performance (in both AUROC and AUPRC) than the older S-Peaker 

model. 

3 Methods 

3.1 Overview of TIPR Pipeline 

Our TSS prediction pipeline begins with the creation of a dataset containing the 

genomic locations of TSSs identified by high-throughput TSS-Seq protocols. In this 

analysis we have restricted our model to the prediction of protein coding genes.. While 

other products such as miRNAs, snoRNAs, and lncRNAs are also Pol-II transcribed, 

the promoter architecture of these products are not as well-understood as protein-

coding mRNAs, and in some cases may utilize unique promoter elements and 

regulatory programs (Alam et al., 2014). Therefore, we restrict our analysis to TSSs 

which are located no further than 500 nt upstream of a protein-coding gene’s 

annotated 5’ UTR. TSS tag clusters (spatially grouped TSS-Seq reads) are next filtered 

by read count, ensuring that only commonly-transcribed TSSs are used to build the 

model. After filtering, TSS tag clusters are grouped by initiation pattern (Single Peak 

and Broad Peak, Figure 1) into individual datasets. Finally, the mode of each tag 

cluster (the nucleotide where transcription most frequently initiates within the cluster) 

is determined and used as a single, putative genomic location for the tag cluster. 

After the set of TSS tag clusters are created, 5 KB of genomic sequence is extracted 

upstream and downstream of each tag cluster mode. The sequences are converted into 

numerical features representing the presence of general transcription factor binding 
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sites (including TFBSs and TATA-binding protein associated sites) in regions where 

they are likely to be functional and involved in recruitment of transcription machinery, 

following the procedure described in Megraw et al. (2009). In this work, we use TFBS 

as a general term for all vertebrate binding sequences described by the TRANSFAC 

database (Wingender, 2008). These include both transcription factor binding sites and 

TATA-binding protein associated (TAF) site sequences. In addition to positive 

examples (locations where transcription initiates), negative examples (locations with 

no evidence of transcription initiation) are selected by randomly choosing genetic 

sequence from genic, intergenic, and promoter-proximal regions. 

Four different binary logistic regression classification models are constructed from 

the training dataset, shown in Table 1. Models are constructed using a modified 

version of the l1_logreg package, an implementation of the interior-point method for 

L1-regularized logistic regression (Koh et al., 2007). Cross-validation is used to select 

the TIRP model parameters. The optimal L1 penalty parameter λ is chosen by finding 

the λ values which yield the highest AUROC in each validation partition, and 

computing the average of these values. A second parameter d used by the SP vs BR 

model is selected on a secondary held-out validation partition by F1 score. After 

parameter selection, final models of each type are constructed using the entire training 

dataset with the optimal λ parameter. 

Finally, the model is evaluated by classifying examples from a held-out test set, 

comprised of 20% of all examples in each dataset (including negative examples 
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described above) and an additional 100,000 negative examples drawn randomly from 

the entire genome. Each model is used to classify every test-set example, producing a 

total of 4 probability values per example. The SP vs BR classifier is used to select the 

appropriate TSS vs NoTSS classifier for a given example, based on the d parameter 

calculated during training and cross-validation. This process can be applied on a 

genomic scale by repeating this prediction process at every nucleotide in the region of 

interest, producing a signal along the chromosome representing the probability of 

transcription initiation at each nucleotide. Figure 2 shows a flow chart summarizing 

our TSS prediction data preparation pipeline and classification process. 
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Table 1: List of binary classification models trained and tested in this study 

Model Name Class 1 Class 2 

SP vs NO Single Peak TSSs Negative (Non-TSS) Genomic Locations 

BR vs NO Broad Peak TSSs Negative (Non-TSS) Genomic Locations 

SP vs BR Single Peak TSSs Broad Peak TSS 

ALL SP and BR TSSs Negative (Non-TSS) Genomic Locations 

 

3.2 Identification of TFBS Regions of Enrichment 

In this study, TFBSs are characterized by experimentally supported Positional 

Weight Matrices curated by the TRANSFAC project (Wingender, 2008) which 

approximate the affinities of many Transcription Factors for potential DNA binding 

sequences. Because TFBSs are often short, degenerate sequences, they occur 

frequently throughout the genome for many TFs. Even if we assume that TF binding 

does occur at every TFBS location that occurs in the genome, a majority of this 

binding almost certainly does not lead to transcription. For example, the TATA box 

TFBS is typically located in a window 25 – 35 bp upstream of the TSS, where it binds 

to the TFIID protein, forming a multi-protein complex which binds to the Pol-II 

complex and initiates transcription. If a TATA box binding site is observed hundreds 

of base-pairs upstream from a TSS, it is unlikely that this TATA site is involved in the 

transcription of this TSS. Therefore, as part of our training process, we 
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computationally identify regions of the promoter in which each TFBS in our dataset is 

likely to be functional. This procedure specifically focuses our model on TFBSs 

located in regions of the promoter where they are likely to be involved in transcription, 

as opposed to including every TFBS located near a TSS, regardless of location. We 

call these locations “Regions of Enrichment,” as they are regions positioned relative to 

TSSs in which a TFBS is significantly enriched compared to the promoter background 

sequence distribution. Our machine learning analysis is restricted to TFBSs which fall 

within these regions. This technique has two major advantages. Firstly, it serves as a 

feature reduction technique, enabling faster model training and testing. Secondly, it 

allows the model to identify features which are more likely to be biologically relevant. 

To identify these Regions of Enrichment, we consider all TSS tag clusters grouped 

by TSS initiation pattern. TFBS PWMs are scanned along regions 2kb upstream and 

downstream of the TSS, computing the log-likelihood score of the TFBS at every 

nucleotide compared to the promoter background distribution. These scores are 

combined and averaged into a single score at each nucleotide. Starting from the 

highest scoring nucleotide within 100 nt of the TSS, the ROE is expanded left and 

right until the log-likelihood score falls below the average TFBS score of the promoter 

(within 2kb of the TSS) for at least 5 nt. This region represents the most-common 

positions in which TFBSs for a particular TF occur relative to the TSS. During 

featurization and prediction, only TFBSs which fall within the ROE are considered by 

the TIPR model. Figure 3 shows a diagram of this process. 
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Figure 3: Diagram of ROE Identification 

Diagram of how ROEs are identified from raw TSS-Seq reads. Individual reads (tags) 

are aligned (orange bars) and clustered together by their location (each row represents 

a TSS tag cluster). The most highly expressed nucleotide within each cluster is 

considered to be the putative TSS location and assigned a relative position of 0. The 

DNA sequence surrounding each tag cluster is extracted and TFBSs are identified and 

scored by log-likelihood score (purple and green). These scores are averaged across all 

tag clusters (bottom plots) and the region most enriched for a particular TFBS is 

selected as the TF’s ROE (dashed lines). 

 

3.3 Featurization and Model Construction 

After TSS tag clusters have been identified from the TSS-Seq data and Regions of 

Enrichment have been defined, we convert the DNA sequence surrounding TSSs into 
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numerical features for the purposes of model training and evaluation (Figure 4). These 

numerical features characterize the presence of TFBSs within ROEs. Within the ROE 

of a given TFBS, the log-likelihood score of the TFBS PWM (with respect to the 

promoter background distribution) is calculated at every nucleotide within the ROE 

and summed together to produce a single numerical score. This score is large when the 

promoter sequence of a TSS closely resembles the TFBS and small when the ROE 

does not contain any sequences which closely match the TFBS of the given TF. In 

order to increase the resolution of the features and allow the model to select the most 

informative locations, each ROE is split into 7 sub-regions, 5 central overlapping 

windows and 2 flanking windows (Megraw et al., 2009, Figure 3). In addition, 

sequence enrichments for GC, GA, and CA dinucleotides surrounding the TSS are 

computed and included as features. We also considered a higher-order model which 

was composed of the above features plus all pairwise interactions between features. 

Pairwise interactions were computed by multiplying each feature by every other in the 

feature model, producing a model containing a total of n2 features. 

The ROEs used to construct the ALL model were selected by combining the SP 

and BR datasets together before performing ROE selection. For the sub-models of the 

MSC classifier, ROE selection was performed on individual initiation pattern datasets, 

and the resulting ROEs from each dataset were combined together. This was done 

because initiation patterns seem to have distinct promoter architectures and differing 

preferred locations for TFBSs relative to the TSS. 
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Negative training and testing examples are featurized as above, but rather than 

using TSS-proximal sequences, they are instead composed of randomly selected 

genomic locations at which there is no evidence of transcription initiation. In order to 

create a high-resolution model that performs with high sensitivity and specificity, the 

model must differentiate between true TSSs and nearby sequences which are not 

transcribed, but which have similar sequence content. To ensure the model training 

and testing sets support this goal, we select 20 negative examples for every 1 positive 

TSS example which are drawn from genomic locations located 200 to 2000 nt 

upstream of the TSS. In addition, we also draw 1 negative examples from exonic and 

intergenic regions for every positive example in the training set. Finally, an additional 

100,000 negative examples are drawn randomly from the entire genome and used for 

testing. In future work, selecting the 100,000 negative examples only from regions 

where transcription initiation of any type is not known to occur may improve the 

model’s performance in testing. However, given the size of mammalian genomes, it is 

unlikely that a significant number of TSSs (if any) were included in this test set. In 

addition, because these randomly-selected examples are not used in model training or 

parameter selection, false negatives within this set don’t affect the final model, only 

underestimate the sensitivity/recall reported in testing. 
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Figure 4: Diagram of sequence featurization process 

The DNA sequence surrounding experimentally identified TSSs are extracted (labeled 

TSS, green arrow) and the presence of absence of TFBSs within their ROEs are 

scored. The ROEs identified for each TF are shown in dotted lines. Red arrows denote 

the positions of randomly-selected negative examples where no evidence of 

transcription was supported by the TSS-Seq dataset. 

 

3.3.1 Flanking Features 

The featurization method described above assumes that TFBSs are located 

relative to the mode of the TSS tag cluster. While this site is the most commonly 

transcribed location within the cluster, many other sites surrounding the mode are also 

transcribed, especially within the broad initiation pattern. We hypothesized that the 

presence of TFBSs located nearby to (but outside of) the TSS’s ROEs could also be 

informative to the model, especially for discriminating between different initiation 

patterns. Therefore, we created another set of features we called “flanking features.” 

These are additional features added to models which characterize the sequence content 

in the vicinity of the TSS mode, capturing TFBS scores upstream and downstream of 

the TSS mode’s ROE for each TF. Flanking features are computed by essentially 
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shifting the “0” position which is used to compute the location of ROEs relative to the 

“0” position. For example, the TATA ROE is a region 25 – 35 nt upstream of the TSS. 

When a flanking feature 10 nt upstream of the TSS mode is computed, the TATA 

ROE region is shifted to fall 35 – 45 nt upstream of the TSS mode. We tested a variety 

of flanking widths. Positions up to 200 nt upstream and downstream of the TSS mode 

were included in the model dataset, with 1 feature window computed every 10 nt, 

yielding a total of 40 additional features (20 upstream and 20 downstream of the TSS). 

3.3.2 Featurization of Conservation Information 

Sequence conservation has been shown to be a useful predictor of the 

functionality of DNA sequences, including TFBSs (Jin et al., 2006). When a region of 

DNA is conserved, it is thought that this region must be under evolutionary pressure, 

where mutations are harmful and do not survive. Conservation scores represent the 

stability of a nucleotide over evolutionary time. The PhastCons score (Siepel et al., 

2005) compares the sequence similarity of genes and orthologs of these genes in other 

related species. In this study, we investigated multiple methods for including sequence 

conservation information within the model. 

The PhastCons scores from the most recent mouse genome (mm10) were used to 

calculate the conservation of the promoter region of each TSS. In this study, we 

considered the ROE of each TFBS separately, reasoning that even though within a 

gene’s promoter region, important TFBSs would likely be conserved, but sequence 

between the TFBSs would not necessarily be under evolutionary pressure. For each 
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ROE, a score was computed by summing all PhastCons scores within the ROE. 

Missing scores were presumed to be 0. Models using this final score feature as well as 

models using sub-score features (matching the ROE sub-windows) were considered. 

Two different methods of combining these resulting features with the model were 

considered. In the first model, these conservation scores were included directly in the 

model as features. In the second model, conservation scores were multiplied by the 

TFBS’s cumulative log-likelihood score, creating a combination feature influenced by 

both the score of the TFBS and how well-conserved the site is. These models included 

both the original log-likelihood score feature along with the combined log-likelihood 

and conservation feature. 

This representation of conservation is not without issues, however. For example, 

conservation scores are typically computed by aligning segments of genomes to 

discover genes which are common across multiple organisms. However, TFBSs are 

short, degenerate sequences which are found throughout the entire genome, so the 

alignment of promoter regions requires special attention. A naïve approach is to align 

all gene orthologs by their start codon and make no attempt to align the 5’ UTR or 

promoter region of each ortholog separate. This causes multiple issues, as 5’ UTRs are 

variable in length (especially across species), and exact TSSs are not well-

characterized in many species. Even assuming that the TSSs of orthologs could be 

identified and used as a common reference point, the locations of functional TFBSs 

within promoters are not fixed, especially across species. An analysis by Kunarso et 



24 

 

 

al. (2010) showed that the occupancy profiles of the transcription factors OCT4 and 

NANOG in embryonic stem cells are significantly different between mouse and 

human. While genes which were regulated by OCT4 were enriched for OCT4 and 

NANOG in both mouse and human, the locations of these binding sites were often not 

conserved (Kunarso et al., 2010; Villar et al., 2014). More concretely, we can imagine 

a TF with a functional in a region of [-20, -10] in one species, but is functional in the 

region [-100, -90] in another. A more complex modeling approach would be to 

compute ROEs across all related species and calculate conservation (or TFBS log-

likelihood) scores within the appropriate ROE for each species. 

3.4 Model Construction 

After featurization, the TIPR model is constructed by training the 4 models listed in 

Table 1 independently, trained on 80% of the dataset. 80% of each cross-validation 

fold is used for model training, 10% for regularization parameter (λ) selection, and the 

remaining 10% for the SP vs BR cutoff threshold (d) parameter selection. The 

regularization parameter λ is selected by choosing the value which provides the 

highest AUROC on the validation partition of each fold. The cutoff parameter d is 

selected by choosing the value which optimizes the classifier’s F1 score over the held-

out partition. The optimal λ of each fold is used in the classification of these examples. 

The F1 score is the harmonic mean of precision and recall; it is used to select a 

classifier that is optimized to predict both SP and BR initiation patterns successfully. 
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After all parameters are selected and models have been built using the full 80% of 

the training data, the held-out testing data is classified by each model independently. 

After classification by the binary models (SP vs No and BR vs No), a two-stage 

classifier is used to produce the final call. When predicting an individual example, first 

the SP vs BR prediction is examined, determining if this nucleotide more closely 

resembles a SP or BR initiation pattern. If the SP vs BR prediction predicts SP (above 

the SP_vs_BR threshold d), the prediction of the SP vs No classifier is used to predict 

the final class label. Conversely, the BR vs No classifier is used to predict the final 

class label when the SP vs BR model predicts the location resembles a BR initiation 

pattern. We call this classifier the MSC (multi-stage classifier) model, as it applies a 

hierarchical procedure for determining the appropriate classification models. This 

allows for more flexibility in the selection of probability cutoff thresholds. 

3.5 Model Evaluation and Testing 

We evaluate the TIPR model using a variety of metrics. For each binary classifier, 

the AUROC and AUPRC is calculated. The multi-class MSC classifier is evaluated on 

sensitivity, specificity, and micro/macro F1 scores, reported in the results section. In 

addition to standard numerical metrics, we evaluate the model in a more practical 

setting by predicting TSSs on a larger scale, using entire regions of the genome. 

While the model can be successfully applied to predict the probability that an 

individual nucleotide is a TSS, more commonly we wish to know of regions where 

transcription initiation is likely to occur. To evaluate the TIPR model on a practical 
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scale, we tested the model on 4 kb regions upstream and downstream of TSSs in the 

held-out set. First, each nucleotide in the surrounding 8kb region is featurized as 

above. Next, nucleotides are classified as TSS or Not-TSS using the appropriate TIPR 

model. The output of this process is a signal reflecting the probability of transcription 

initiation at every nucleotide scanned. After this signal is produced, it is smoothed 

using a moving average (10 nt for SP vs BR, 2 nt for SP vs No and BR vs No). As in 

the single-nucleotide prediction workflow, the SP vs BR model is first used to select 

the appropriate initiation pattern classifier. Finally, the locations of TSS clusters are 

determined from the resulting probability signal. The signal is smoothed using a 2 nt 

moving average, then TSS tag clusters are defined by locating regions of the signal 

where the probability rises above a probability threshold. A TSS cluster ends after the 

signal falls below the threshold for 10 consecutive nucleotides. 

The above procedure was repeated using a range of probability threshold values 

between 0.05—0.95. The distance between the predicted TSS and ground-truth TSS 

locations were calculated, along with the number of correctly predicted TSSs (true 

positives) and additional positive predictions (false positives). To understand the 

impact of the flanking region size on the above performance metrics, we also 

calculated an AUROC-like metric as the flanking distance was increased from 100 bp 

to 4 kb. This metric is a relative measure of the TPR and FPR of the model, and not 

directly comparable to standard AUROC values. To calculate these values, a TPR of 

1.0 corresponded to all test set TSSs being predicted correctly as above, a FPR of 1.0 
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corresponded to all flanking nucleotides in the test set being incorrectly predicted as 

transcribed, and that the MSC model would achieve a TPR and FPR of 1.0 at a 

probability cutoff of 0.0. The total number of true positives and false positives were 

computed as described above, and the area under this curve was computed. Note that 

this is an overestimate of the FPR, as due to the peak-calling procedure, it would be 

impossible for all nucleotides to be classified individually. However, because the FPR 

is normalized by the flanking size, these relative AUROC values give insight into the 

performance of the MSC model as more nucleotides are examined. 

3.6 Construction of Synthetic Data Sets 

In order to understand the behavior of regularization methods on datasets with 

multiple optimal feature vector assignments, we created synthetic datasets designed to 

model expected biological regulatory mechanisms. Our primary purpose of these 

experiments was to understand what happens when a dataset can be explained by 

different equivalence classes of predictors. For example, a gene could be regulated 

through the presence of transcriptions TF1 and TF2 or by the presence of TF3 and 

TF4. An ideal regularization method and model would inform us of both these 

possibilities, instead of simply building a model which utilized TF1 and TF2, while 

completely ignoring TF3 and TF4 as redundant. The synthetic datasets were designed 

to be simple, toy-like examples to ease the interpretation of the resulting models, while 

still modeling most of the complexity of these biological systems. The results of this 

experiment are reported in section 0. 
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Three different synthetic datasets were created and analyzed in this study. Seven 

continuous predictors were used in each dataset, numbered TF1 – TF7 and examples 

were assigned binary class labels. Each feature was modeled as two Gaussian 

distributions with one distribution per class label. Feature values were randomly 

selected from these distributions based on the desired class label. Datasets were 

balanced with a 50/50 split between negative and positive class labels. In each dataset, 

two equivalence classes were modeled. TF1 and TF2 formed one group of correlated 

features, TF3 – TF5 formed another, and TF5 – TF6 were uncorrelated with the class 

label (or each other). Unique datasets were constructed by generated different 

combinations of examples and changing the variance and means of individual feature 

distributions. The parameters used to create each synthetic dataset are listed in Table 

2.   
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Table 2: Parameters used to generate synthetic datasets 

The parameters used to generate synthetic data sets containing equivalence classes of 

predictors. Each predictor has two associated Gaussian distributions. Positive 

examples are drawn from the distribution defined by the parameters (up, σp), while 

negative examples are drawn from (un, σn). The predictors TF6 and TF7 are not listed 

in this table, as they were the same across all datasets, and were completely 

uncorrelated with the class label. 
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3.7 Feature Reduction 

In this study, we applied several standard feature reduction techniques to our 

datasets, including PCA, mutual information, and a novel extension of mutual 

information called MRMR (Ding and Peng, 2005). A brief review of these techniques 

is given in Appendix A. Feature reduction was performed on SP and BR datasets 

containing the flanking features described in section 3.3.1. 
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4 Results 

4.1 TIPR Successfully Predicts Broad Initiation Patterns 

Previous high-resolution TSS prediction models focused primarily on the 

prediction of Narrow Peak TSS initiation patterns (Megraw et al., 2009), reasoning 

that these promoters are likely more tightly regulated by specific transcription factors, 

as opposed to non-sequence mechanisms such as histone markers and chromatin 

structure (Rach et al., 2011). We trained and tested the TIPR model on multiple 

initiation patterns, using the CAGE mouse dataset (Carninci et al., 2006), filtered as 

described in the Methods section. The training and testing sets used are shown in 

Table 3. 

Our results show that our model can predict initiation patterns beyond the Narrow 

Peak class with high accuracy (both high AUROC and AUPRC) from sequence 

content alone (Table 4, Figure 5, and Figure 6). The models trained on a dataset of an 

individual initiation pattern perform well, meaning that the model describes a set of 

TFBS enrichments which well-characterize the initiation pattern used to build and test 

the model. Logistic regression models (such as the ones used in this study) are 

composed of a series of weights assigned to each input feature. These weights form 

the linear combination coefficients used to perform model predictions. The magnitude 

of these feature weights corresponds to the predictive importance of the corresponding 

input feature. By examining the feature weights of the models, we see different TFs 
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weighted more heavily, implying that genes with different initiation patterns are likely 

regulated by different sets of TFs. 

 

Table 3: CAGE datasets used to train and test TIPR model 

Initiation 

Pattern 

Total Tag Clusters Training Tag 

Clusters 

Testing Tag 

Clusters 

Single Peak 1247 (33%) 998  249 

Broad Peak 2497 (66%) 1998 499 

All 3744 (100%) 2996 748 

Summary of CAGE TSS-Seq dataset used for training and testing the TIPR model 

after quality filtering was performed. 

 

Table 4: Performance of TIPR’s three binary TSS classifiers 

Model AUROC AUPRC 

SP vs NO 0.99 0.72 

BR vs NO 0.99 0.81 

SP + BR (ALL) vs NO 0.99 0.82 

The results of classifying testing examples with the individual binary classifiers TIPR 

uses internally. The SP and BR models are trained and tested on a single TSS 

initiation pattern, while the SP + BR model combines both initiation patterns together, 

creating a general purpose classifier. 

 



34 

 

 

 

Figure 5: ROC Plot of SP + BR (ALL) vs NO Classifier 

 

Figure 6: PRC Plot of SP + BR (ALL) vs NO Classifier 
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While the individual initiation pattern classifiers perform well on their respective 

datasets, a general purpose classifier is required for the prediction of TSSs without 

prior knowledge of the initiation pattern. The two general classifiers constructed in 

this study (ALL and MSC) both performed well at the task of general TSS 

identification. The ALL model, trained on the combination of both Single Peak and 

Broad initiation patterns, forms a general-purpose TSS prediction model. Due to this 

model’s simplicity, it is useful for the task of predicting TSSs when the spatial 

initiation pattern is of little interest to the user. The more complex MSC classifier 

functions as a general-purpose TSS prediction model, while also providing specific 

spatial initiation pattern predictions with the same predictive accuracy as the ALL 

classifier. 

As transcription of a gene typically initiates at many locations within a genomic 

region—as opposed to one single location at a specific nucleotide—a successful model 

must predict these regions with high resolution and precision. To evaluate the 

performance of our model in this context, we performed a scanning procedure where 

the model was used to predict the probability of a TSS at each nucleotide within an 

8kb region containing an experimentally observed TSS tag cluster. After smoothing of 

the probability signal output by the model, we evaluated performance on two metrics: 

the number of TSSs predicted at a given probability threshold compared to the number 

of false positives (Figure 7), and the distance between the predicted and ground-truth 

TSS locations (Figure 8). These results show that the generic ALL models can identify 
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TSS clusters with high accuracy regardless of initiation pattern. This also 

demonstrates the necessity of the SP vs NO and BR vs NO classifiers, and how the 

MSC and ALL classifiers perform better overall than either of these specialized 

classifiers. The SP classifier curve (diamond, Figure 7) is below all other models, 

meaning that this model identifies fewer true positives. As SP initiation patterns are 

less common overall, this is expected, as the SP classifier is trained to identify only 

Single Peak patterns, while a majority of the dataset is composed of BR TSS tag 

clusters. On the other hand, Figure 8 shows that the SP classifier is more precise in 

terms of locating the ground truth TSS. However, as SPs are typically narrower and 

more well-defined than the BR pattern, this increased resolution may simply be an 

artifact of the SP TSSs which are correctly identified by the SP model. The Broad 

initiation pattern classifier identifies TSSs with roughly the same accuracy as the ALL 

and MSC models, but the preciseness of the BR model is slightly reduced. In this way, 

the ALL and MSC models perform better than either the SP or BR model alone. 

As a numerical comparison, we also compared the MSC and ALL models at 

specific FPRs (Table 5). At a false positive rate corresponding to 1 false positive per 

kilobase, the ALL classifier correctly identifies 89.1% (667) of the testing examples, 

with an average distance of 30 nt between the predicted and actual TSS mode. In 

comparison, the MSC classifier correctly identifies an additional 11 testing examples, 

or 90% (678) of the testing examples, while the resolution decreases by 2 nt on 

average. 
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To understand how the metrics shown in Figure 7, Figure 8, and Table 5 were 

affected by the size of the region scanned, we computed a metric we termed relative 

AUROC, described in detail section 3.5. This metric essentially normalizes the FPR 

approximated in the x-axis of Figure 7 by the width of the flanking region and 

computes the area under this curve. As the width of the region scanned surrounding 

the TSS was increased from 100 bp to 8 kb, the relative AUROC was computed is 

summarized in Figure 9. The decreased performance with smaller flanking regions 

(corresponding to a higher false positive rate) is due to the total percentage of the 

flanking region predicted as being transcribed by the MSC model. Intuitively, regions 

surrounding the experimentally-supported TSS are more likely to be predicted as 

transcribed themselves, especially in broad peak initiation patterns. However, our 

analysis considers all such predictions as false positives, under-estimating the model’s 

sensitivity. When a small region surrounding the TSS, a high percentage of the 

flanking nucleotides will be predicted as transcribed, increasing the calculated FPR. 

However, when a larger region is analyzed, a vast majority of the flanking region is 

(correctly) predicted as non-transcribed, driving down the FPR, and increasing the 

relative AUROC. Relative AUROC stops increasing after 1000 nt surrounding the 

TSS are examined. This result implies that the majority of additional predicted TSSs 

per kilobase fall within 500 nt upstream or downstream of the experimentally 

supported TSS, with few predictions further upstream or downstream in intergenic and 
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exonic/intronic regions. A representative example of this scanning procedure is shown 

in Figure 10 and Figure 11. 

Figure 11 shows the output of the model when scanned 4 kb upstream and 

downstream of the TSS, which shows the model predicts several additional TSSs 

while labeling most sequence as non-TSS locations. The model predicts a secondary 

high-probability region slightly further downstream of the putative TSS. While this 

site is not highly expressed in the CAGE data, there is some evidence of 

transcriptional activity in addition to several ESTs in the region. A third TSS location 

is predicted further downstream on an exon boundary and is also supported by several 

ESTs and a CAGE TSS tag cluster upstream of the predicted TSS. These figures show 

that TIPR is both accurate and precise, correctly identifying the CAGE-supported TSS 

tag cluster and predicting very few other TSSs (potential false positives). 
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Figure 7: Performance of all classifiers during gene scanning 

The accuracy of all classifiers when applied on a large scale to the entire testing 

dataset. The vertical axis shows the percentage of TSSs in the test set which are 

correctly predicted (TSSs). The horizontal axis measures the number of additional 

TSSs which are predicted (false positives). The color scale shows the probability 

cutoff threshold, the value the model prediction must be above to be considered a TSS.  
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Figure 8: Preciseness of all classifiers during gene scanning 

The preciseness of all TSS classifiers, as quantified by the distance between the TSS 

tag cluster mode (experimentally supported ground truth data) and the center of the 

predicted tag cluster. 
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Figure 9: Relative AUROC of MSC model as predicted region is increased 

This graph shows how the relative AUROC of the MSC model in gene scanning (see 

section 3.5: Model Evaluation and Testing for details on calculation), as the region 

surrounding the experimentally-supported TSS is increased from 200 nt to 8000 nt. 

This plot shows an increase of relative AUROC as the flanking region is increased, a 

value which becomes nearly constant when 1000 nt or more (500 nt upstream and 500 

downstream) surrounding the TSS are scanned. The lower relative AUROC with 

smaller flanking regions is due to higher percentages of flanking regions being 

predicted as transcribed by the MSC model. 
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Table 5: Comparison of accuracy and resolution of ALL and MSC models 

 ALL CLASSIFIER MULTI-STAGE CLASSIFIER 

ADDITIONAL 

HITS/KB 

Percent 

TSSs Hit 

Distance to 

Center (nt) 

Percent 

TSSs Hit 

Distance to 

Center (nt) 

Additional 

TSSs Hit 

0.76 86.23% 24.61 87.17% 26.09 +7 

0.85 87.57% 26.35 88.77% 28.61 +9 

1.00 89.17% 30.40 90.64% 32.13 +11 

1.25 90.78% 36.22 92.65% 37.51 +14 

1.51 91.98% 41.19 93.45% 43.73 +11 

 

 

 

Figure 10: Example of TIPR gene scan output surrounding CAGE TSS 

This figure shows the agreement between CAGE TSS-Seq data (top) and TIPR 

prediction (middle, red) on M. musculus gene Smarcd1. The prediction region is 

centered around the CAGE TSS tag cluster mode and matches the shape of the tag 

cluster closely. 
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Figure 11: Example of TIPR gene scan output of 8 kb region of sequence 

 

This figure shows the TIPR MSC model used to predict TSSs in the 8 kb region 

surrounding the gene Smarcd1. The top track  displays the alignment of TSS-Seq 

(CAGE) reads along chromosome 15 of the M. musculus genome (CAGE tag cluster 

T15F05F85E9F). The second track (in red) is the probability output from the TIPR 

MSC model. The expanded track below shows that Mouse ESTs align well with 

TIPR’s predictions. Some additional TIPR predictions are located near other CAGE 

tag clusters or ESTs. 
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4.2 TIPR Predicts Initiation Pattern Type 

In addition to predicting the locations of TSSs from sequence content, our model 

predicts which initiation pattern the surrounding TSS cluster is likely to form. This is a 

more complex type of prediction, because the classifier must incorporate information 

that effectively considers an entire genomic region of nucleotides as possible TSSs. 

On the held-out test set, the SP vs BR model achieves an average AUROC of 0.88 

with an AUPRC of 0.84. This model is combined with the TSS classifiers built on 

individual initiation patterns to produce the final MSC model. Given a model which 

can differentiate between initiation patterns, the initiation pattern prediction is used to 

select the appropriate model to predict if a nucleotide is a TSS. The MSC model 

achieves the same performance as the binary ALL classifier with regards to precision 

and recall, if all positive TSS predictions (SP or BR) are considered as true positives. 

At the cutoff threshold which achieves the optimal F1 score, the MSC model has a 

recall of 0.84 and precision of 0.84. At the same recall of 0.84, the binary ALL 

classifier achieves a precision of 0.857. In a multi-class prediction model context, the 

MSC classifier achieves a macro-F1 score of 0.79. The Macro-F1 statistic is the 

traditional multi-class F1 score which has been adjusted for the size of each class. 

Because the negative (No TSS) class contains many more examples than the SP or BR 

classes, this weighting is important for evaluating classifiers. For example, the 

unweighted multi-class F1 statistic of the MSC classifier is 0.98, heavily dominated by 

the size of the No TSS class. 
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While the MSC classifier performs no better than the simple ALL classifier on the 

single-nucleotide classification dataset, it does provide important additional 

information—the predicted spatial initiation pattern of the TSS. This extra information 

is highly relevant from a biological perspective, as initiation patterns have been shown 

to associate with different biological interpretations. Genes associated with Single 

Peak initiation patterns are often tissue-specific developmental genes, while genes 

with broad patterns are more commonly involved in general and housekeeping 

processes. The initiation pattern of a gene has been demonstrated to be related to the 

promoter structure of the gene, including the presence of TFBS elements, sequence 

enrichments including CpG islands in mammals, and gene function (Carninci et al., 

2006; Megraw et al., 2009; Morton et al., 2014; Rach et al., 2009). 

By examining the feature weights of these models, we can gain insight into the 

differences in promoter content of different initiation patterns. Sequence enrichment 

features were among the most informative features across all the models. The SP vs 

NO and BR vs NO models highly weighted the GC content feature (representing the 

presence of CpG islands), while highly negatively weighting the CA enrichment 

feature, implying that promoter regions may be depleted of CA dinucleotides. While 

the SP and BR models contain approximately the same number of features (657 for SP 

vs 609 for BR), the relative importance of TFs varies. For example, the INI motif is 

the 3rd most important feature for the BR model, while it is ranked as 17th most 
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important in the SP model. The TATA box motif (highly ranked in SP) does not 

appear at all in the BR model. 

We can also examined the features of the SP vs BR model to better identify 

differences between the two initiation patterns. This model is simpler (containing only 

49 features), but highlights TFs which are likely unique to NP initiation patterns, such 

as TATA and CDXA, and those which are more associated with broad patterns (such 

as GABPA and CpG island enrichment). Table 6 shows the magnitude of the top-10 

highest-weighted feature coefficients present in the SP vs BR model. 

The performance of the predictive models suggests that some of the underlying 

biological mechanisms which give rise to multiple transcription initiation patterns can 

be inferred from the models. This interpretability is an important feature if the TIPR 

model which many other TSS predictive do not provide in as clear a manner. There 

are two related inquiries which we also investigated. First, we investigated why some 

testing examples were being incorrectly classified by the model, suggesting these 

examples used a different set of elements to initiate transcription. Second, we 

considered ways of improving the interpretability of the model and how different 

combinations of regulatory elements could impact the resulting model. 
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Table 6: Top-10 features selected by SP vs BR model 

Single Peak Broad Peak 

Feature Weight Feature Weight 

CDXA_02_REV_4 0.221 GABPA_FWD_3 0.131 

CDXA_01_REV_4 0.213 GCcontent 0.128 

ATATA_B_FWD_4 0.213 E2F_Q2_FWD_6 0.126 

TBP_01_FWD_4 0.197 HINFP_REV_3 0.086 

CAP_01_FWD_4 0.193 E2F1_Q3_FWD_4 0.069 

CDXA_01_FWD_4 0.183 CREB_02_FWD_4 0.060 

TBP_Q6_REV_4 0.180 MYB_Q5_01_FWD_7 0.056 

GEN_INI_B_FWD_4 0.171 CKROX_Q2_REV_7 0.055 

CAP_01_FWD_5 0.138 NRF1_Q6_REV_4 0.044 

ATATA_B_FWD_3 0.094 CHCH_01_FWD_5 0.042 

These 20 features were identified by the SP vs BR model as the most discriminative 

features for differentiating SP and BR initiation patterns. 

 

4.3 Analysis of Incorrectly Classified TSSs 

While the predictive TSS models performed very well, there were a subset of test 

examples which could not be successfully predicted. We investigated why these 

misclassifications occurred to determine the reason for failure and improve the model 
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if possible. In general, it did not appear that these false negatives were simply caused 

by the choice of probability threshold. That is, the predicted probability of the 

misclassified examples of being a TSS was far below the probability cutoff threshold 

used to differentiate a TSS from a non-transcribed reason, and were instead very close 

to 0—signifying a confident Non-TSS label (Figure 12). The low-scoring positive 

examples implied that these promoters were very different from the other promoters in 

the initiation pattern, more closely resembling the non-transcribed negative sites used 

in training. To investigate this further, we examined the promoter makeup of these 

misclassified promoters and compared them to the correctly-classified nominal 

promoters. Overall, while these promoters were strongly expressed, their promoters 

did not appear to contain many known binding elements within the expected regions 

of enrichment. 
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Figure 12: Density plots of model probability output 

Density plots of prediction model output (x axis) in correctly-classified (first column) 

and incorrectly-classified (second column) test dataset examples. The red and blue 

plots are the output of the SP and BR models, respectively. When models correctly 

classify examples (first column), the probability of the class is very close to 1.0 

(predicting the example is a TSS). However, when examples are misclassified (second 

column), both initiation pattern models are very close to 0.0 (predicting the example is 

not a TSS).  
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Class Correctly Classified Incorrectly Classified 

Single 

Peak 

  

Broad 

Peak 

  

Figure 12: Density plots of model probability output 
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We separated promoters into two classes: those which were correctly classified by 

the model, and those which were incorrectly classified. Within these two classes, we 

counted the number of TFBSs of each TF located within the regions of enrichment of 

each example (FPR=0.001), normalized by the size of the ROE and computed the fold 

decrease in the misclassified set compared to the correctly classified examples. 80/110 

of the TFs had a fold decrease greater than 1.0. Included in this list were the highly 

weighted TFBSs TATA (fold decrease 14.07), ETF (1.39), SP1 (3.15), and KLF1 

(3.28). Table 7 lists the fold change and feature weights of the transcription factors 

with the largest fold decrease. These results indicate that the misclassified examples 

may have a different promoter structure, as on average they do not contain TFBSs in 

the same regions as the correctly classified promoters. 
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Table 7: Changes in promoter composition of TSSs 

TFBS HITS/KB 

(CORRECTLY-

CLASSIFIED) 

HITS/KB 

(MISCLASSIFIED) 

FOLD 

DECREASE 

FEATURE 

WEIGHT 

IN 

MODEL 

TATA_01 19.93 1.40 14.23 0.05 

TBP 19.71 1.40 14.07 0.33 

STAT1_03 8.81 1.55 5.69 0.01 

HLTF 7.10 1.55 4.59 0.00 

EGR1 4.31 0.96 4.47 0.02 

FOXD1 5.76 1.40 4.11 0.00 

FOXL1 10.36 2.67 3.87 0.00 

ZNF263 2.44 0.70 3.48 0.00 

ARID3A 5.39 1.55 3.48 0.00 

 

Change in the promoter composition of correctly- and incorrectly- TSSs. A promoter 

was considered to contain a TFBS (be a “hit”) if a site was located within the TF’s 

ROE and received a log-likelihood score corrosponding to a FPR of 0.001. 

 

To investigate if these misclassifications were caused by a shift in TFBS locations 

compared to the majority of TSSs (suggesting a secondary region of functionality), we 

recomputed the ROEs using only TSSs in the misclassified dataset. If the ROEs 
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defined by the misclassified dataset were different than those defined by the entire 

TSS dataset, this would suggest that some TFs have multiple regions relative to the 

TSS where they are biologically functional. Because the different initiation patterns 

used different ROEs, we further split the misclassified dataset by their labeled 

initiation pattern and recomputed ROEs over this new set. 

This analysis did not reveal any new potential ROEs for this new dataset. 

Representative examples typical of the TFBS enrichments are shown in Figure 

13.Overall, the discovered ROEs were a subset of those already present in the original 

set of ROEs. In general, these new ROEs were less well defined, likely because of the 

small number of misclassified examples and the overall reduction in the number of 

TFBSs as shown in the above analysis. This does not mean that alternate regions of 

biological functionality do not exist or are not responsible for the transcription of these 

genes. However, we were unable to discover them using our modeling approach and 

database of TFBSs. 
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Figure 13: TFBS Enrichment in Correctly and Incorrectly Classified TSSs 

This show the changes in the enrichment (y axis) and position (x axis) of TFBS in 

correctly-classified (top row) and incorrectly classified (bottom row). Overall, 

misclassified examples had the same locations of maximal enrichment, but these 

enrichments were less pronounced (Initiator and TATA) or entirely absent (OCT1 and 

YY1). 

 

4.4 Initiation Patterns Reveal Differences in Gene Promoter 

Architectures 

As previous reported in Megraw et al. (2009), Single Peak initiation patterns have 

well-defined regions of the promoter with heavy enrichment for specific TFBSs, 

relative to the rest of the promoter. These enrichments are much less pronounced in 

the Broad initiation pattern, where only 312/843 TFBSs were detected as containing 

an ROE on the forward strand, compared to 511/843 in SP. In addition, overall the BR 

ROEs are not as pronounced or narrowly defined as the ROEs defined by the SP 

patterns. In most cases, the BR ROEs are a subset of the SP ROEs, though some 

TFBSs are unique to BR promoters or have different enrichment locations between the 
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two initiation patterns (Figure 14). In general, the ROEs of broad promoters are wider 

than single peak promoters, suggesting that while Narrow Peak initiation patterns are 

likely primarily regulated by the presence of Transcription Factors, and the 

transcription of Broad patterns is more strongly governed by sequence enrichments. 

 GABPA TFBS En1 TFBS 

Broad 

Peak 

  

Single 

Peak 

  

Figure 14: Examples of differentially-enriched TFBSs by initiation patterns 

 

Previous studies have studied the classes of genes associated with different 

initiation patterns and the differences between these families, including gene function, 

spatiotemporal expression, and transcriptional regulation (Carninci et al., 2006; 

Haberle et al., 2014; Morton et al., 2014; Rach et al., 2009). Using a model which 
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provides the most likely transcription initiation pattern in a region of interest is 

therefore particularly informative in cases where a gene’s functional annotation is 

incomplete. By making predictions of initiation patterns, we can produce data-

informed suggestions of a gene’s function or regulatory network. These suggestions 

can be further improved by combining suggested locations of importance (ROEs) with 

the feature weights of the TIPR model. We next investigated several techniques to 

improve the interpretability of the TIPR model. 

4.5 Elastic Net Regularization May Improve Model Interpretability 

In this work, we evaluated the impact of regularization methods on the features 

utilized in models to understand how models interpretability could be improved. A 

more interpretable model can be used to provide more insight into the biological 

processes underlying transcription initiation.. A brief review of these regularization 

methods is provided in Appendix B. As described in Methods, synthetic datasets were 

generated to test the effectiveness of the elastic net in a TSS-prediction context. These 

datasets were designed to emulate different sets of transcription factors which could 

regulate a set of genes to understand the behavior of the elastic net in networks of 

varying complexity. Each synthetic dataset is evaluated on a range of α values ranging 

from 0 to 1. The final coefficients along with the regularization path are examined. In 

all cases, models were trained using 5000 instances and tested on a separate held-out 

test set of another 5000 elements. Because of the simplicity of the synthetic datasets, 

all tested models (regardless of regularization scheme) achieved 100% accuracy on 
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their held-out test sets. Therefore all feature weightings assigned by each model are 

equivalent with regards to classification performance, so maximizing model 

interpretability is our primary concern in this analysis. 

Figure 15 show the clear trade-off between L1 and L2 regularization. This dataset 

contains examples from two different groups: those which are correlated with features 

TF1 and TF2, and those which are correlated with features TF3-5. Features TF6 and 

TF7 are random and uncorrelated. Lasso (α=1) does not include the uncorrelated 

features in the model, while selecting one feature from each group (TF1 and TF5) as 

the most important. Note that the other (redundant) features are not completely 

removed from the model, but are more lowly-weighted with no clear correlation 

between them and their grouped members along the regularization path. At the other 

extreme (ridge regularization, α=0), the groupings of the features is obvious from the 

regularization path, but the uncorrelated features are not completely removed from the 

model. The elastic net produces almost exactly the same regularization path in a 

slightly more complex case (Figure 16) where in addition to the groups above, some 

examples contain features from both the TF1-2 and TF3-5 groups. 

We further evaluated regularization methods with more complex, real-world-like 

datasets. The TF_ALL_MIXED_HIGH_VAR_DIFF dataset tested the ability of 

regularization methods to avoid higher-variance features when a correlated higher-

quality feature was available. In this dataset, TF1 and TF5 (still grouped as described 

above) had higher variance than the other features within their groups. The 
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regularization paths of models trained on this dataset are shown in Figure 17. L1 (α=1) 

was effective at rejecting the nosier variables, assigning them lower weights than their 

lower-variance group members. TF2 is assigned 6x the weight of the noisy feature 

TF1, while TF3 and TF4 were assigned weights 12x and 3x larger respectively than 

the noise predictor TF5. However, this is not the case with ridge regression (α=0), 

where TF3-5 were assigned nearly identical weights (standard deviation of 0.0032). 

TF2 was weighted higher than TF1, by only by a factor of 1.3. At larger values of α, 

the elastic net did weight TF2 over TF1 more clearly while still dropping the 

uncorrelated features TF6-7. It however did not weight TF5 significantly lower than 

its lower-variance group members. 

These results suggest that while elastic net regularization provides some benefit 

over L1 and likely can be used to create models which provide insights into 

equivalence classes of features, L1’s sparse model and ability to reject noisy variables 

provide benefits as well. The elastic net (and L2) perform well at grouping correlated 

features along the regularization path in simple cases, however it’s not clear if these 

simplistic networks appear in biological networks, or how these regularization 

methods function with more complex and real-world networks. Even with these 

limitations, other features of the elastic net—such as the ability to select more 

predictors than examples—are beneficial, particularly in models with large feature sets 

where classical feature reduction techniques are impractical. As an alternative to the 

elastic net, we discuss other feature reduction techniques in the next section. 
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Figure 15: L1 and L2 regularization paths on synthetic TF Separate dataset 

The differences between the regularization paths of L2- (left) and L1-regularized 

(right) regression. In this dataset, the features TF1 and TF2 formed one set of 

correlated predictors, while TF3-5 formed another. Positive examples contain features 

from one group class or the other, but not both. L1 (lasso) top weights to 1 feature 

from each group (blue and red), while the other correlated features receive lower 

weights, with no clear grouping. Ridge regression shows 2 distinct regularization paths 

for the 2 feature groups, with each feature within a group being assigned a nearly-

equal weight. 
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Figure 16: Regularization paths on synthetic TF All Mixed dataset 

Regularization paths of ridge (top-left), lasso (bottom-right), and elastic net 

regularized regression on a dataset containing positive examples with features from 

each feature group, or both groups at the same time. As in Figure 15, L1 selects 1 

feature from each group as the most important (TF1 and TF5). When the L1- and L2- 

penalties are combined with the elastic net, the regularization paths of correlated 

features grow together as the L2- penalty is increased (α becomes smaller). However, 

the uncorrelated features (TF6-7) appear more highly weighted in this model than in 

the one shown in Figure 15 as α is decreased. 
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Figure 17: Regularization paths of synthetic TF All Mixed High Variance dataset 

The regularization paths of the elastic net in a dataset containing correlated, but high-

variance (noisy) features. L1 is successful at rejecting the high-variance features TF1 

(red) and TF5 (light blue), favoring their lower-variance group members instead by 

assigning them higher weights. 
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4.6 Feature Reduction 

Due to the large number of features included in our model and L1’s issues with 

large numbers of predictors, we investigated feature reduction as a way to reduce the 

number of features considered by the model. While L1 can be an effective feature 

selection technique, building a regression model with large numbers of features is 

likely not as efficient as performing some pre-processing before model construction. 

This step was especially important when building models which contained all pairwise 

combinations of features, as these models contained millions of features. We evaluated 

PCA and Mutual Information-based techniques in this study. Initial testing revealed 

that it was impractical to apply PCA to our datasets directly due to the number of 

features (over 50 millions). 

Our primary question was if pairwise features contributed extra information which 

would improve the performance on misclassified examples. Because information gain 

does not consider interactions between features, it can be computed relatively 

efficiently and in parallel (unlike PCA). We began by computing the information gain 

of each feature (including pairwise combinations) in the SP vs No TSS dataset. In 

addition, these datasets included flanking features covering 50 nt upstream and 

downstream of the TSS, with 1 flanking feature set located every 10 nt. Table 8shows 

the top 6 features, ranked by their information gain. It’s obvious from this table that 

the redundancy introduced by flanking and pairwise features limits the usefulness of 

this method for feature reduction. From this analysis, it’s clear that ETF, E2F, and GC 
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sequence enrichment are all informative features. For example, GC content is a good 

predictor of TSSs. At the same time, the pairwise (GC content)x(GC content) feature 

is equally informative. In addition, sequence enrichment flanking features are all 

highly correlated as they are computed over a wide window (250 nt), so the pairwise 

interactions between sequence enrichment features are redundant. While this situation 

could be avoided for sequence enrichment features by not computing flanking features 

or pairwise interactions for them, these same problems occur with TFBS features as 

well. For example, the table shows that E2F is an informative feature with high 

information gain. This causes pairwise combinations of features with E2F to be biased 

by E2F’s information gain. Unfortunately, this redundancy limits the use of 

conventional mutual information for feature reduction. 
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Table 8: Information Gain of pairwise and flanking features 

Feature Info. Gain 

M00695_ETF_Q6_FWD_3_2_x_M00803_E2F_Q2_REV_4_-4 0.375 

M00695_ETF_Q6_FWD_3_2_x_M00803_E2F_Q2_REV_4_-3 0.370 

M00695_ETF_Q6_FWD_3_2_x_M00803_E2F_Q2_REV_4_-2 0.370 

M00695_ETF_Q6_FWD_3_1_x_M00803_E2F_Q2_REV_4_-4 0.367 

M00695_ETF_Q6_FWD_3_2_x_M00803_E2F_Q2_REV_4_-1 0.366 

GCcontent_-8_x_GCcontent_5 0.362 

 

Several methods have been proposed for feature reduction in datasets with highly 

correlated features (Ding and Peng, 2005; Hall, 1999; Liu and Motoda, 2007; Vinh et 

al., 2012; Xing et al., 2001; Yu, 2004; Yu and Liu, 2004). In summary, these methods 

build on conventional mutual information by ranking features by their information 

gain, and then calculate the pairwise mutual information between all features, 

selecting the best non-redundant feature at each step. We used the technique proposed 

by Ding and Peng (2005), a method called MRMR (minimum redundancy, maximum 

relevance). The algorithm is briefly described in Appendix A. 

This procedure avoids the issues with mutual information described above with 

redundant features by selecting the least-redundant remaining feature. Unfortunately it 

requires the calculation of mutual information between each unselected predictor and 
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all of those which have already been selected. In addition, MRMR cannot be 

parallelized because of the sequential nature of the algorithm. We first tested the 

MRMR algorithm on the SP vs No TSS classification model, containing 150,000 

features. After approximately 120 hours, the algorithm had selected only 760 features 

(2.2 GHz CPU with 512 GB RAM). We evaluated these selected features by building 

an SP vs No TSS classifier using only these features and compared the performance to 

the original model containing 150,000 features. The original model out-performed the 

feature-reduced model in both AUROC and AUPRC, achieving 0.99 and 0.92, 

respectively. The feature-reduced model had an AUROC of 0.97 and AUPRC of 0.87. 

These results show that MRMR is effective at selecting informative features, creating 

a model using 0.05% of the full models features with only a 5% reduction in AUPRC. 

However, the speed of the algorithm limits its usefulness on datasets with large 

numbers of features. For this reason, it was impractical to repeat this experiment using 

the full set of pairwise-combinations. 

Feature reduction techniques are important to improving model performance and 

interpretability, especially in large datasets where the types of information and the 

optimal representation of that information is not clear. These results show that MRMR 

and related techniques show promise, but are in general too slow for large datasets. 

Other, more efficient techniques will be required for datasets containing tens or 

hundreds of thousands of features. Regression regularization techniques which 
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perform variable selection such as the elastic net are an alternative method, and may 

be more successful than mutual-information based approaches. 

 

5 Discussion 

Transcription Start Site prediction has many practical applications, particularly in 

organisms with poorly annotated genomes. Predictions can be used to assist in the 

identification of the regulatory networks controlling genes by identifying which 

TFBSs are positioned in biologically relevant locations relative to the predicted TSS. 

These models can also be used to identify potential alternative start sites and the 

regulators which may control these different sites, leading to the production of 

different isoforms. Many genes have been shown to have tissue-specific transcription 

start sites (Fürbass et al., 1997; Shemer et al., 1992; Toffolo et al., 2007; White et al., 

1998), and different regulatory networks of transcription factors have been implicated 

in at least some of these genes (Toffolo et al., 2007; White et al., 1998). Another 

recent study showed a change in TSS selection, initiation pattern, and TF usage during 

the transition from maternal to zygotic transcription in zebra fish (Haberle et al., 

2014). TSS prediction tools can be used to identify potential alternative TSSs, which 

can help guide wet-lab experiments to validate sites and regulatory networks. The 

prediction of spatial TSS initiation pattern along the genome can also provide insight 

into the nature of transcripts produced from the site. For example, it may suggest 
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spatiotemporal expression more consistent with housekeeping functions or one more 

consistent with tissue or time-specific expression. 

5.1 Improved Model Performance Enhances Genome-Wide TSS 

Identification 

The TIPR model provides a large boost in performance over previous sequence-

based models (Megraw et al., 2009). Likely, this is due to an increased number of 

TFBS PWMs (the complete TRANSFAC dataset) along with new sequence 

enrichment features. For example, the CA sequence enrichment feature (not included 

in the S-Peaker model) was highly negatively weighted, implying that promoter 

regions may be significantly depleted of CA. In humans, CA is known to be the most 

common simple-sequence repeat motif, with 19.4 repeats occurring per Mb (Hui et al., 

2005). Several studies have shown that intronic CA repeats play a role in the 

regulation of alternative splicing in some genes (Hui et al., 2005; Yang et al., 2013). 

Sawaya et al. (2013) report that the AC motif is significantly depleted directly 

downstream of human TSSs, but the same depletion is not seen in the entire promoter 

region. 

This increased performance is crucial for good performance in genome-scale TSS 

prediction. A successful TSS predictor must both be sensitive and specific, as it is 

important to predict both transcribed and non-transcribed sites accurately. A model 

which predicts TSS regions with high sensitivity will correctly identify regions which 

contain TSSs. However, without high specificity, the resolution of these predictions 
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will be limited, especially if a large (non-transcribed) region surrounding the true TSS 

cluster is also incorrectly predicted as a TSS. Our model is capable of identifying TSS 

regions both accurately and precisely, regardless of the initiation pattern, an 

improvement over previous models which were focused on a single initiation type or 

lacked the ability to identify TSSs with high precision. 

The ability to predict spatial TSS initiation patterns is a new and novel ability of the 

TIPR model, something not provided by previous models. In addition to suggestion 

gene function and potential spatiotemporal expression of specific TSSs, this provides 

insights into the biological differences between Single Peak and Broad Peak patterns, 

and what causes them to arise. This information can guide the development of more 

accurate and informative TSS prediction models, such as high resolution models 

predicting the level of transcription of genes at the nucleotide level. Differentiating 

initiation patterns requires a set of features which capture the underlying biological 

processes which cause these patterns to arrive, along with proper techniques to tune 

models to identify all patterns successfully. Our works suggests that in addition to 

TATA, the presence of other TFs such as CDXA and CAP appear to be indicative of 

narrow peak initiation patterns as well. Future work could build on this model by 

investigating other feature engineering methods to capture additional sequence 

information, such as the spatial positioning of TFBSs relative to one another and the 

region under investigation. Such additions could further boost the performance of this 
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classifier and provide more insight into the biological rules which cause these 

initiation patterns to arise. 

5.2 Regularization Techniques Can Improve Model 

Interpretability 

Our investigation of different regularization techniques with the goal of improving 

model interpretability suggest that the elastic net has potential over both ridge and 

lasso regression. However, the use of the elastic net introduces several new issues 

which must be addressed. The method requires an additional parameter α, controlling 

the combination of L1 and L2 penalties. This can be chosen through cross-validation 

along with the penalty parameter λ at the cost of increased training time. While α will 

certainly have an impact of model performance, it’s important to remember that we 

wish to optimize for model interpretability in addition to performance. Unlike 

classification performance, which can be characterized by any number of well-

understood statistical metrics, model interpretability is a much more subjective. While 

synthetic datasets like the ones used in this work can be created to develop an intuition 

of the elastic net’s behavior with correlated features, this may not transfer to real-

world datasets where the correlations are not known a priori. Existing datasets with 

known correlations (derived from wet-lab experiments, or those manipulated to 

contain correlations, for example) could be used to guide the selection of the α 

parameter to increase model interpretability. 
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In addition to the problem of parameter selection, techniques for extracting 

interpretable information from the model must be improved as well. Our results show 

that correlated features often follow similar regularization paths, in agreement with 

Zou and Hastie (2005). One potential method to cluster features by the similarity in 

their regularization paths, measured by the values of their coefficients at similar λ 

values. These clustering could form potential equivalence classes which could then be 

further investigated by retraining models which include only subsets of the classes and 

measuring the impact on model performance. 
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6 Conclusion 

In this work, we have proposed a new machine-learning based TSS prediction model, 

capable of identifying TSSs with high accuracy and resolution, along with the 

predicted spatial initiation pattern the TSS will form along the genome. We have 

shown that it is possible to predict TSSs of different initiation patterns (including 

broad peaks) from sequence content alone. In addition to performing well, the TIPR 

model is easy to interpret. This modeling technique can be used to get new insights 

into the structure of promoters, the regulation of genes, and what differentiates the 

genes utilizing different initiation patterns. The TIPR model and techniques therein 

have applications both within and outside of the field of TSS prediction. Accurate TSS 

predictions made using sequence content alone can be used to improve genome 

annotations, particularly in organisms which are poorly studied or annotated. These 

prediction can be used to suggest TFs which are involved in the regulation of a gene 

by identifying TFBSs which are correctly positioned relative to the TSS. They can 

also identify alternative TSSs which may yield different protein products, such as an 

alternate TSS which skips the first exon of a gene. In summary, these techniques can 

be used to build general purpose TSS predictors which function across a wide array of 

species, and have the potential to help open new avenues of discovery in the field of 

regulatory genetics. 

We also investigated feature reduction techniques, the incorporation of new features 

and datasets, and how different regularization techniques can be used to build 
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informative models. Many new large scale datasets are regularly being published and 

have the potential to further improve TSS prediction and to enhance our understanding 

of transcription regulation (Neph et al., 2012; Thurman et al., 2012). Including these 

new sources of data into prediction models will require new feature modeling 

approaches to incorporate data in a manner which is informative to the model. In this 

work, we investigated multiple feature engineering approaches, including pairwise 

combinations of features, inclusion of information from regions flanking the location 

of interest, and methods of incorporation conservation information into the model. 

As the amount of available data grows, feature reduction will become increasingly 

important. Not only is feature reduction important for improving model performance 

and interpretability, but it is also as a matter of practicality. While models containing 

thousands or tens of thousands of features can be trained relatively quickly (in hours 

using currently available computing power), a model containing several hundred 

thousand features can takes weeks to train. Increased features also increase dataset 

size, imposing other practical limitations such as the amount of data which can be 

stored and analyzed at one time. We investigated several feature reduction techniques, 

with special focus on methods applicable to large datasets containing highly correlated 

features. MRMR and related techniques showed promise, but the time complexity of 

the algorithm was too large to be directly applicable. New feature reduction methods 

will be required as the amount of available data grows. 
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Regularization methods also warrant more investigation, as it has a direct impact on 

both classification accuracy and model interpretability. In most modeling techniques, 

there is a trade-off between accuracy and interpretability. For example, while SVMs, 

multi-layer neural networks, and decision trees may all capture complex decision 

boundaries, inferring the underlying biological functions from these models is often 

difficult. On the other hand, a logistic regression model is simple to interpret when 

appropriately regularized, but the flexibility of the decision boundary is limited. To 

increase the usefulness of predictive models for biological inference, we need models 

which can identify the subgroups of features involved in a process, not just a large 

collection of features with no apparent sub-structure. The elastic net seems to show 

some promise in this area with its ability to groups of correlated features. However, 

more work is needed to develop methods and heuristics to identify these groups to 

create truly interpretable models. 

Finally, there are many other interesting avenues of investigation beyond TSS 

prediction to which these methods can be applied. The prediction of gene expression 

(or simply the level of mRNA production) from sequence content has been a 

challenging problem, with little progress made in recent years (Beer and Tavazoie, 

2004; Yuan et al., 2007). The move from a problem of classification to one of 

regression introduces a host of new challenges, including featurization, model 

evaluation, and even how training examples should be aligned with each other (as 

there is no obvious “start” position as there is with the TSS mode used in TIPR). 
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However, the ability to accurately predict expression from content—and to understand 

the underlying regulatory mechanisms—would be incredibly helpful for understanding 

regulatory networks and guiding wet-lab experiments. 
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Appendix A: Review of Feature Reduction Techniques 

Information gain (or mutual information) computes the mutual dependence of two 

variables, or the information that two variables share. This can be used to select the 

most informative features in a dataset by computed the mutual information between 

each predictor and the class label. Let H(D) be the entropy of dataset D, and let a be a 

predictor for the dataset. Information gain is defined as: 

𝐼𝐺(𝐷, 𝑎) = 𝐻(𝐷) − 𝐻(𝐷|𝑎) 

This can be computed in parallel for each predictor in the dataset by computing: 

𝐼𝐺(𝐷, 𝑎) = 𝐻(𝐷) − ∑
|{𝑥 ∈ 𝐷|𝑥𝑎 = 𝑣}|

|𝐷|
× 𝐻({𝑥 ∈ 𝐷|𝑥𝑎 = 𝑣})

𝑣∈𝑣𝑎𝑙𝑠(𝑎)

 

In addition to standard information gain, we also applied the technique proposed in 

Ding and Peng (2005), a method called MRMR (minimum redundancy, maximum 

relevance). The algorithm works as follows: 

1. Select top-ranked feature by mutual information: 

𝑖 = argmax
𝑖

𝐼(𝑐, 𝑖) 

2. Define the following sets: 

𝑆 = {𝑖} 

𝛺 = {𝐴𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠} 

𝛺𝑆 = 𝛺 − 𝑆 

3. For each remaining feature: 
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a. We would like to select the feature which optimizes the following two 

equations, selecting the maximally-informative feature (with respect to 

the class label) which is minimally-redundant with already selected 

features in set S: 

max
𝑖∈𝛺𝑆

𝐼(𝑐, 𝑖) 

min
𝑖∈𝛺𝑆

1

|𝑆|
∑ 𝐼(𝑖, 𝑗)

𝑗∈𝑆

 

MRMR computes the best feature i and adds the feature to the set of 

selected features S: 

𝑖 = argmax
𝑖∈𝛺𝑆

𝐼(𝑐, 𝑖) −
1

|𝑆|
∑ 𝐼(𝑖, 𝑗)

𝑗∈𝑆

 

𝑆 = {𝑆 ∪ 𝑖} 

This procedure performs better than information gain in datasets with high redundancy 

between features by selecting the most informative features (with regards to the class 

label) which are not explained by other features in the dataset. 
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Appendix B: Review of Regularization Techniques 

In this section, we review several common regularization techniques and the benefits 

and issues of each. L1-regularization (also known as lasso regularization) attempts to 

limit the number of features included in a model by imposing a penalty for each 

included feature (Tibshirani, 1996). This discourages lowly-weighted features which 

do not make large contributions to the model’s performance from being included. L1-

regularized logistic regression can be formulated as follows: 

min ∑ − log 𝑝(𝑦𝑖|𝑥𝑖; 𝜃) + 𝜆‖𝜃‖1

𝑀

𝑖=1

 

λ is the penalty assigned to the L1 norm of the feature weight vector θ. The L1 norm 

yields a sparse solution vector, as it aggressively drives small weights towards 0, 

thereby finding a solution which includes only features which significantly improve 

performance. In addition, this solution is interpretable, as the importance of a feature 

to the model is proportional to its feature weight, as opposed to the feature being used 

to “cancel out” another redundant and correlated feature. 

While L1-regularized solution provides an optional solution, it is not guaranteed to be 

unique (the lasso penalty is convex, but not strictly convex). In other words, there can 

be multiple optimal solutions which are composed of different weightings of different 

features, essentially forming equivalence classes of features which are equally 

predictive of the training dataset. For example, if 2 features are perfectly correlated, 

either feature can be included in the final solution to achieve optimal performance, 
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however L1-regularization would penalize a model where both features were assigned 

high weights. Typically L1 will assign a high weight to one feature and a low (or zero) 

weight to the other. In a classification-only model, this is usually not important, as the 

goal is to build an accurate, efficient predictor. However, when the interpretation of 

the model is important, knowing of alternate, equally-performing feature weight 

assignments is critical. Perhaps a more appropriate weighting of these features (to 

maximize model interpretability) would be to assign equal weights to each correlated 

feature. 

Zou and Hastie (2005) note that L1 has several other issues when applied to datasets 

with a large number of predictors. Given n training examples and p predictors, the 

lasso can select no more than n features in the model. In the reverse case (p < n), L1 

typically has lower performance than other regularization methods if there is high 

correlation between many of the predictors (Tibshirani, 1996; Zou and Hastie, 2005). 

Other regularization methods have been proposed to address these issue, particularly 

within the context of large-scale genomics data. Zou and Hastie (2007) review several 

such methods, including elastic net regularized logistic regression, elastic net 

penalized SVMs, and sparse PCA, a modification of PCA which uses regularization 

techniques to impose a penalty on non-zero loadings in the principal components. 

L2-regularized regression (Hoerl and Kennard, 1988) is another popular regularization 

method for logistic regression (often called ridge regression). In this method, a bound 

is placed on the L2-norm of the coefficients, and the residual sum of squares is 
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minimized within this bound. While the L2-norm bound increases performance over 

traditional OLS due to its bias-variance tradeoff, ridge regression cannot perform 

variable selection because no coefficients can be set exactly to 0. This means that 

correlated variables will not be completely removed from a model like with the lasso, 

but makes no guarantees about how correlated features will be handled. In addition, 

uninformative variables will also be included in the model, yielding a model which is 

less interpretable. 

The elastic net regularization and variable selection method introduced by Zou and 

Hastie (2005) aims to resolve both of these issues by performing variable selection and 

capturing groups of related variables through the use of the elastic net penalty. This 

penalty can be thought of as a weighted combination of the ridge and lasso penalties. 

In our results, the mixture of L1 and L2 is controlled by the α parameter, where α=0 is 

a ridge-regularized model and α=1 is lasso-regularized model. 
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