
AN ABSTRACT OF THE THESIS OF

Sriraam Natarajan for the degree of Master of Science in Computer Science

presented on June 2, 2004.

Title: Multi-Criteria Average Reward Reinforcement Learning

Abstract approved:

Prasad Tadepalli

Reinforcement learning (RL) is the study of systems that learn from interac-

tion with their environment. The current framework of Reinforcement Learning

is based on receiving scalar rewards, which the agent aims to maximize. But in

many real world situations, tradeoffs must be made among multiple objectives.

This necessitates the use of vector representation of values and rewards and the

use of weights to represent the importance of different objectives.

In this thesis, we consider the problem of learning in the presence of time-

varying preferences among multiple objectives. Learning a new policy for every

possible weight vector is wasteful. Instead we propose a method that allows us

store a finite number of policies, choose an appropriate policy for any weight

vector and improve upon it. The idea is that though there can be infinitely

many weight vectors, a lot of them will have the same optimal policy. We

prove this empirically in two domains: a version of the Buridan's ass problem

and network routing. We show that while learning is required for the first few

weight vectors, later the agent would settle for an already learnt policy and thus

would converge very quickly.

Redacted for Privacy

Multi-Criteria Average Reward Reinforcement Learning

by

Sriraam Natarajan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 2, 2004
Commencement June 2005

Master of Science thesis of Sriraam Natarajan presented on June 2, 2004

APPROVED:

Major Pofessor, representing Computer Science

Associate Director of the School of Electrical Engineering and Computer Sci-

ence

Dean of th 1itad'uate School

I understand that my thesis will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

thesis to any reader upon request.

Sriraam Natarajan, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for
Privacy

ACKNOWLEDG MENTS

I would like to express my sincere gratitude to my major professor, Dr.Prasad

Tadepalli for his patience, guidance, encouragement, and support during my

graduate study. I am indebted to him for funding me for over a year while I

was working on this thesis.

I would like to thank Dr.Saurabh Sethia, Dr.Thomas G. Dietterich and Dr.

John Bolte for sparing their valuable time and being on my committee. I would

also like to thank the CS office staff for their help over the past 3 years.

I am grateful to OPNET Technologies Inc. for providing me with their

simulator and support.

My special thanks to my family and friends for their love and support.

This material is based upon work supported by the National Science Foun-

dation under Grant No. 0329278. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the National Science Foundation. I would

also like to acknowledge the support of Defense Advanced Research Projects

Agency under grant number HRO011-04-1-0005.

TABLE OF CONTENTS
Page

Chapter 1: Introduction .

1.1 Outline 1

1.2 Organization of the thesis 3

Chapter 2: Background 5

2.1 Reinforcement Learning 5

2.2 Markov Decision Process 7

2.3 Optimization schemes 8

2.3.1 Total Reward Optimization 8
2.3.2 Discounted Total Reward Optimization 9
2.3.3 Average Reward Optimization 10

2.4 Model Based Vs Model Free methods 10

2.5 Model Free Average Reward Reinforcement Learning - R Learning 12

2.6 Model Based Average Reward Reinforcement Learning H Learning 15

Chapter 3: Multi-Criteria Reinforcement Learning 18

3.1 Decomposition of values and rewards 18

3.2 Learning from prior policies 22

3.3 Multi-Criteria Model-free Average Reward Reinforcement Learning 27

TABLE OF CONTENTS (Continued)
Page

3.4 Multi-Criteria Model-based Average Reward Reinforcement Learn-ing.................................. 29

Chapter 4: Implementation and Results 32

4.1 Grid world domain 32

4.1.1 Experimental Setup 33
4.1.2 Multi-Criteria R Learning 34
4.1.3 Multi-Criteria H Learning 37

4.2 Network Routing Domain 39

4.2.1 Experimental Setup 40
4.2.2 Network Model 40
4.2.3 Node Model 41
4.2.4 Process Model 42
4.2.5 Implementation details 44
4.2.6 R-Learning 45
4.2.7 H-Learning 47

Chapter 5: CONCLUSION 50

Bibliography 52

LIST OF FIGURES
Figure Page

2.1 Interaction of an agent with the environment 6

2.2 Schematic of Model based Learning 11

2.3 Schematic of Model Free Learning 12

3.1 Buridan's ass problem in a 3 x 3 grid 19

3.2 A few policies for a weight vector with 2 components. The dark
lines represent the best policies for any weight........... 23

4.1 Policies for R and H Learning corresponding to different weights 35

4.2 Learning curves for 3 weights using R-Learning 35

4.3 Convergence graph for R-Learning 36

4.4 Learning curves for 3 weights using H-Learning 37

4.5 Convergence graph for H-Learning 38

4.6 Network Model 41

4.7 Node Model for a node of degree 3 42

4.8 Process Model for the processor of a node 43

4.9 Learning curves for 3 weights in the Network Routing domain
using R-Learning 46

4.10 Convergence graph for R-Learning in the Network Routing Domain 46

4.11 Learning curves for 3 weights in the Network Routing domain
using H-Learning 48

4.12 Convergence graph for H-Learning in the Network Routing domain 49

LIST OF TABLES
Table Page

2.1 R-Learning 14

2.2 H-Learning 17

3.1 Algorithm for learning from prior policies 26

3.2 Multi-Criteria R Learning 28

3.3 Multi-Criteria H Learning 30

MULTI-CRITERIA AVERAGE REWARD REINFORCEMENT
LEARNING

CHAPTER 1

INTRODUCTION

1.1 Outline

One of the harder problems in the field of artificial intelligence is the design

of autonomous agents. These agents must typically interact with a dynamic

environment, i.e., perceive the environment and take actions that achieve their

goals. A truly intelligent system must learn from its environment.

An autonomous learning agent must interact in its own way with the environ-

ment, receive perceptions and take its own actions and learn from its experience

what action it needs to take in each situation. Learning from environment is

a complex issue. The agent must explore the environment to get a clear pic-

ture about the environment and about the effects of its actions [19]. It must
use knowledge of these effects to make decisions in the future. If the agent is

tracking the model of the environment, it should update the model with every

action that it takes.

Reinforcement learning is the process by which the agent learns the correct

behavior in an environment through trial and error interactions with the envi-

ronment. The agent is not told explicitly what actions to take; instead the agent

must determine the most useful actions by executing them. Each action would

2

yield some reward and the agent must try to maximize the rewards. There are

many optimization criteria including, the total reward optimization, discounted

reward optimization and the average reward optimization. In this work, we

consider the average reward optimization, which aims to optimize the expected

average reward per time step over an infinite horizon.

Traditional Reinforcement Learning techniques are essentially scalar based,

i.e., they aim to optimize a particular criterion that is expressed as a function

of a scalar reinforcement. In many real world domains, however, the aim may

not be to optimize a single criterion. For example consider the Buridan's ass

problem. There is a donkey at equi-distance from two piles of food. It is hungry

and so wants to move to one of the piles. The problem is that if it moves towards

one of the piles, the food in the other pile can be stolen. So, if the donkey is

very greedy, then it would stay at the center and would eventually die. If it

chooses to move to one of the piles every time it is hungry, it would lose a lot

of food.

So it is clear that there are two goals here. The agent has to find a reason-

able compromise in this case. One such compromise would be to minimize the

number of piles of food stolen per unit time while satisfying its hunger. The

other more reasonable compromise would be to maximize a weighted sum of

piles guarded and piles eaten. Here the weights represent the importance of

each goal, maximizing the intake of food, and minimizing the amount of food

stolen. Both these cases present the need of vector-valued representations in

Reinforcement Learning. We consider the vector based reinforcement learning

techniques.

Consider the fact that these weights can vary with time. One day the don-

key may be famished and so its aim would be to eat as much as possible and

3

then guard the food. Other times, it could wait for sometime till it becomes

hungry and then could eat. So the importance of the criteria could vary in

an unpredicatble fashion. If the agent is going to learn from scratch for every

weight vector (a weight vector represents the importance of different criteria),

then learning would be too slow. Instead, the agent could use the best policy

learnt so far for that weight and could begin learning from it. The intuition is

that this would need lesser amount of learning as it already has a good policy.

Another idea is that after a certain number of policies the agent learns, it need

not learn any more policies. This is to say that though there can be an infinite

number of weight vectors, there are only a finite number of policies that the

agent needs to learn.

1.2 Organization of the thesis

Chapter 2 provides the background of this thesis. It introduces Reinforcement

Learning and Markov Decision Processes. It compares in brief the 3 different

optimization techniques: Total reward, discounted reward, and average reward

optimization techniques. It then gives an overview of model-based and model-

free Reinforcement Learning agents. It then presents the two already existing

average reward reinforcement learning techniques: R-Learning and H-Learning.

Chapter 3 begins with the motivation of the idea of vector based reinforce-

ment learning. The previous work is discussed, followed by the idea of learning

from prior polices. The multi-criteria reinforcement learning algorithm for learn-

ing from previous policies is presented. Then the model-based and model-free

versions of the algorithms are explained.

Chapter 4 presents the results of applying our algorithm to 2 domains: a toy

domain and a real-world domain. Initially, the modified version of Buridan's

problem is shown. Then the implementation details of the domain are provided.

Finally, the results of the implementation of the Multi-Criteria versions of R and

H learning algorithms are presented.

The second half of chapter 4 deals with the second domain: Network Rout-

ing. This section provides a background on network routing and an overview

of the hierarchy in OPNET and presents the three models that we created, the

network model, the node model and the process model. Then the implemen-

tation details are provided. As with the previous section, the results of the

implementation of the two algorithms are presented.

Chapter 5 concludes this thesis. It discusses the results and our contribution.

It then outlines some areas for future research.

5

CHAPTER 2

BACKGROUND

This chapter outlines the background of Reinforcement Learning and also

provides an insight into Markov Decision Processes. We also present in brief

the ideas of discounted and average reward reinforcement learning methods. We

then summarize the ideas of model-based and model-free reinforcement learning

methods.

2.1 Reinforcement Learning

Reinforcement Learning is learning what to do [16]. Reinforcement Learning

agents learn to act in an environment through trial and error. As can be seen

from Figure 2.1, an agent interacts with the world (environment) through ac-

tions and percepts and receives rewards or penalties (reinforcements) for the

same.

The reinforcement learning agents are not told which actions to take. They

would instead determine the best actions by executing them. For each action

that the agent executes, the environment responds by giving reinforcements (re-

wards and penalties). The agent, upon receiving the reinforcements, incremen-

tally learns value functions for states or state-action pairs. The value function

for a state action pair is the best long term "value" of taking that action in that

state.

0 Actions

Percepts

sena1ties

FIGURE 2.1: Interaction of an agent with the environment

Reinforcement learning is useful in domains where explicit supervision from

a teacher is unavailable [13]. For example, in many gaming environments, it is

virtually impossible for a teacher to provide accurate information about posi-

tions of other agents. So in these cases, the agent should know whether it has

won or not and use that to learn a function that gives a reasonable idea about

the chances of winning. In some cases, there can be an immediate feedback

that could let the agent know how it is doing without waiting till the end of the

game. This would help the agent learn the domain faster [13].

The goal of the reinforcement learning agent is then to determine a policy,

i.e., a mapping from states to actions, by executing actions and receiving rein-

forcements. This policy should aim to maximize the "returns" or some measure

of the returns that are accumulated over time. There are different ways of

measuring these returns which are explained in section 2.3.

7

2.2 Markov Decision Process

In reinforcement learning, during each step of interaction with the environment,

the agent perceives the current state of the environment. The decisions are made

as a function of the state. A state signal that retains all the relevant information

is said to satisfy the Markov property. A task that satisfies the Markov property

is called as Markov Decision Process (MDP). An MDP is described by:

. A set of discrete states S

. A set of actions A

. A reward function r2(u) that describes the reward of action u in state i

A state transition function Pij (u) that describes the transition probability

from state i to state j under action u

The state transition function specifies the next state as a function of the

current state and action. The set of actions that are applicable in a state are

called admissible actions. The actions are stochastic and Markovian, i.e., there

is a certain fixed probability pjj(U) that in state i, upon executing the action u,

the next state would be j. The state transitions are independent of the previous

environment states or actions. So these models are Markov models. Also the

reward function specifies the immediate reward as a function of the current state

and action.

Time is modeled as a discrete sequence of steps. A policy is defined as a

mapping from states to actions, i.e., a policy specifies what action to execute

in each state. A deterministic policy is one that prescribes the same action in

the same state. An optimal policy is one that maximizes the expected long-

term returns from every state. The value of a state under a particular policy

it is denoted by V(s), which is the expected returns starting from state s and

following the policy it.

In many versions of reinforcement learning, instead of learning the policy

directly, the agent learns the value function [4]. So for choosing the best action in

each state, the values of the next states are predicted using some value function.

An action that is chosen to maximize the value of the next state, as predicted

by the value function plus any expected immediate reward, is called a greedy

action. In addition to greedy actions, the agent also takes exploratory actions.

The need for the exploratory actions lies in the fact that they enable the agent

to learn new information that might improve its policy. If sufficient exploration

is allowed, then all the states would be visited and the agent would have a true

estimate of the values of the different states in the environment.

2.3 Optimization schemes

In this section, we provide a brief overview of three kinds of reward optimiza-

tions: total reward optimization, discounted reward optimization and average

reward optimization.

2.3.1 Total Reward Optimization

As the name indicates, the value of a state for a policy (Vr(S)) is the sum of

the rewards that would be received when starting from state s and executing

the policy it, i.e.,

R(s) kk)))

where Sk is the state at time k.

This approach would make sense in problems where there is a final state

or absorbing state, upon reaching which the agent remains there forever. But

this is not the case in many domains. There are a lot of cases when the agent's

interaction with the environment does not stop, but continues without any limit.

This is called as an infinite horizon MDP, where there is no terminal state and

the t in the above equation would approach oo. In such cases the values of

states also approach infinity and this criterion would not be appropriate.

2.3.2 Discounted Total Reward Optimization

The problem with the earlier method was that the value functions could ap-

proach infinity. Discounted optimization is one way to make this value finite.

The discounted total reward of a state is given by

Rn(s) = (SkSk)))

where 'y < 1, is a discounting factor. As can be seen, the rewards that are

obtained immediately are given more importance when compared to rewards

that are obtained after a long time. The optimal value of a state is given by

the following Bellman equation,

V*(s) = maxa{rs(a) +"yP85'(a) V*(sI)}

where .s is the current state, a is the action to be executed in the current

state and r8(a) is the immediate reward obtained on executing the action a in

the current state.

10

As had been mentioned earlier, this method gives importance to immediate

rewards at the expense of future rewards. Unfortunately, this is not appropriate

or justified in most domains[9].

2.3.3 Average Reward Optimization

This method, as the name indicates, aims to optimize the average reward per

time step computed as t + oc. This approach would eliminate the problem of

giving undue importance to the immediate rewards and considers all the rewards

as important.

t-1
1

R(s) = lim >rSk(lr(sk))
t*oo t

k=O

where TSk refers to the reward obtained in state s at time k and R (s) is the

value of state s under policy r. Using the same notation as the previous section,

the Bellman equation for the optimal value of a state is

V*(s) = max{r8(a) + P,V(s')}
8'

A gain-optimal policy lr* is a stationary policy that maximizes the aver-

age reward for all the states. In this thesis, we consider the average-reward

optimization via reinforcement learning methods.

2.4 Model Based Vs Model Free methods

Model-Based Reinforcement Learning (shown in Figure 2.2) refers to learning

the transition probabilities and the reward models from experience and using

them to learn optimal policies [4]. Basically the agent believes that the models

that it learns are the true models. This is called "the certainty equivalence

Value
Function

Actions

Rewards

Agent

Models

reward and
action models

FIGURE 2.2: Schematic of Model based Learning

11

principle". However, it is easy to see that in the beginning, the models will

not even be close to the true model since they are based on limited experience.

So if the agent is going to follow some greedy policy, it might converge to a

sub-optimal policy and thus could settle for a local maximum. To overcome

this problem, exploration must be employed. Random exploration on the other
hand could be too inefficient as the agent may take exponentially longer time to

converge to a good policy. So, in most cases, an -greedy strategy is employed

[4]. The idea behind the -greedy strategy is that the agent would take an

exploratory action with a probability of , and would execute a greedy action
with a probability of 1 . The main advantage of the model-based agent is

the fact that, since it learns the transition probabilities, it can generalize more

rapidly and converge quickly.

The model-free learning agent is shown in Figure 2.3. This type of reinforce-

ment learning is primarily concerned with the goal of learning an optimal policy

12

Actions

Vue
Function

Rewards

Agent

FIGURE 2.3: Schematic of Model Free Learning

without the model knowledge which is mainly the transition probabilities and

the immediate reward function. Since the agent does not learn a model of the

environment, it learns the values of state-action pairs instead of just the values

of states. The idea is that when the values of the state-action pairs are nearly

converged to their optimal values, it is appropriate for the agent to take an

action with the highest value for each state[8]. Hence while updating the value

of an action in a state, the maximum value of the next state over all actions

admissible in that state is chosen to be the value of the next state. We will
discuss a model-free average-reward reinforcement learning method in the next

section.

2.5 Model Free Average Reward Reinforcement Learning - R Learn-
ing

Schwartz proposed R-Learning that uses the action-value representation [9]. It is

the average-reward version of Q-Learning. The action value R (s, a) represents

the value of executing an action a in state s and then following the policy it.

We have to associate values with state-action pairs as we do not learn the model

13

explicitly in this version of reinforcement learning.

If we consider starting from any state, the long run average reward remains

constant, but there is a transient [16]. What this means is that there are a few

states that yield better than the average reward for a brief period of time and

some states that may yield rewards less than the average reward for some time

[16]. This expected value of the difference between the total rewards starting

from different states, over the infinite horizon is called the bias of a state(or the

bias value of the state-action pair).

R(s,a) = lE{r$k(1r(sk)) 1f}
These values are essentially the relative values, since they are relative to the

average reward. Let us assume that the agent chooses action a in state s. Let

s' be the next state and rjmm be the immediate reward obtained. The Bellman

equation is:

V*(s) = maxa(rs(a) p + V*(s!))

and hence, the update equation for R-Learning is:

R(s, a) = R(s, a)(1 /3) + /3(rjmm p + maxa'R(s', a'))

The basic algorithm is shown in Table 2.1. As can be seen, in a particular

state, the agent chooses an action that has the maximum R-value for that

state action pair(or a random action) and executes it. It receives the immediate

reward and reaches the next state. Then it updates the R-values of the previous

state-action pair. Also, it updates the average reward if the action executed was

an optimal one.

In this algorithm, /3 is the learning rate for R-values and a is the learning

rate for p. This is basically used to control the speed of correction of the error.

As can be seen, a is updated only if the action is non-exploratory [15].

14

1'A13LI 2.1: k-Learn

Initialize the values and rewards

Repeat,

1. Let the current state be s

2. Choose an action a that has the maximum R(s, a) value or choose an ex-
ploratory action

3. Execute the action. Let the next state be s' and the reward be Tjmm.

4. R(s, a) R(s, a)(1 /3) + /3(imm p + maxa'R(s', a'))

5. If a is an optimal action,

p = p(l c) + c[rjmm + maxaiR(s', a') maxaR(s, a)]

6. a'+------;s'---s'a+1

15

There is no proof of convergence of R-Learning, but it is experimentally

found to converge to optimal policies on reasonably sized problems with suffi-

cient exploration.

2.6 Model Based Average Reward Reinforcement Learning - H Learn-
ing

H-Learning introduced by Tadepalli and Ok [17], is the model based version

of R-Learning. The models that are learnt are the transition probabilities and

the reward models. The reward model is the average immediate reward that is

obtained in a state s upon executing an action a and is represented by r8(a).
The transition probability Pss' (a) represents the probability that the next state

is s' given the current state is s and the action is a. This method also uses an
fgreedy method to explore the environment.

The bias of the state s here is similar to that of R-Learning and is the

expected long-term reward starting from state s over and above p - So the bias
must satisfy the equation [4],

h(s) maxa{rs(a) p+ I1p38'(a)h(s')}

The idea is that if the agent moves from the state s to the next state s'
by executing an action a, it has gained an immediate reward of r5(a) instead

of the average reward p. Once the program converges, the expected long-term

reward for being in state s relative to being in the next state s'is the difference

between r (a) and p. This forms the basis of the average reward reinforcement

learning methods. So the difference between the bias value of state s and the
expected bias value of the next state s' is r(a) p [17]. Setting the h-value

of an arbitrary reference state to 0 guarantees a unique solution for unichain

MDPs [4]. Since only the relative values matter, one method to satisfy the

above equations would be to set the h-value of an arbitrarily chosen state to 0

and the resulting equations can be solved. H-Learning estimates p from on-line

rewards [4].

H-Learning converges faster than the discounted methods due to an impor-

tant factor. In H-learning while updating the h-value of a state, three values

are used: immediate reward, the h-values possible for the next state, and the

average reward of the current greedy policy p[4]. The discounted methods use

only two of these: immediate reward and the values of possible next states. For

states without any immediate reward, the discounted methods will have to wait

for back-propagation of values, while H-Learning would use the average reward

and update the h-values. Using p for updates makes the algorithm converge

faster.

When the algorithm runs for a large number of steps, it will accurately

learn the values of p3 (a) by visiting all the states and executing all the actions

admissible in those states. The estimation of the average reward in H-Learning

is similar to that of R-Learning. H-Learning was found to perform better than

R-Learning and other RL methods such as Q-learning and ARTDP in many

domains [17].

H-Learning is presented in table 2.2. The agent chooses an action a that

maximizes the sum of the reward obtained and the h-value of the next state s'

(or a random action) and executes the action. It then obtains the immediate

reward and reaches the next states'. It updates the models i.e., the transition

and the reward models based on the rewards and s'. It also updates the average

reward if the action chosen is optimal. Finally, it updates the h-value of the

state.

17

1AHLF 2.2: II-

Initialize the values and rewards

Repeat,

1. Let the current state be s

2. Choose an action a such that

a = argrnax{r(a) +p8,8'(a)h(s')}

or choose an exploratory action

3. Execute the action. Let the next state be s' and the reward is rjmm.

4. N(s, a) +- N(s, a) + 1; N(s, a, s') +- N(s, a, s') + 1

5. p58i(a) +- N(s, a, s')/N(s, a)

6. r(a) r(a) + (Timm r5(a))/N(s, a)

7. If a is a greedy action,

. p p(l a) + cxfr8(a) h(s) + h(s'))

S a

8. h(s) 4- maxa(rs(a) + p8,3'(a)h(s')) p

I3

CHAPTER 3

MULTI-CRITERIA REINFORCEMENT LEARNING

In the previous chapter, the basics of Reinforcement Learning were pre-

sented. Also the average-reward and the discounted methods were discussed.

We also introduced the idea of model-based and model-free methods. In this

section, we explain the idea of Multi-Criteria Reinforcement learning as well as

introduce the model-free and model-based multi-criteria average-reward rein-

forcement learning algorithms.

3.1 Decomposition of values and rewards

Reinforcement Learning (RL) algorithms that we have seen so far utilize scalar

valued reinforcements. In many real world situations, it is not possible to express

the optimization criteria as maximizing a single scalar-based reinforcement value

function. The rewards that are obtained also may not be scalar. One example

would be the product delivery domain. There is a warehouse that has to service

a few shops. Trucks are used to deliver the products to the shops from the

warehouses. Here the goals could be: to make sure that the shops' inventory

levels do not become empty and to minimize the transportation costs of the

trucks. A government may have to decide between how much to spend on

national defense vs stimulating the economy. Also, in a manufacturing plant,

there are competing goals: increase the production and reduce the costs.

19

As another example, consider a modified version of the Buridan's ass problem

discussed in Gabor et.al [6] (Figure 3.1). In this example, there is a 3x3 grid.

The animal is placed in the center square. Food is present at the two diagonally

opposite squares as indicated in the figure. So the animal is equi-distant from

the two piles of food. It is hungry, and so it feels like moving towards one of the

food piles. But the problem is that if it moves towards one of the piles, the food

in the other pile can be stolen. One of the goals is to make sure that the food

is not stolen. So it has to somehow compromise between the two goals that are

competing with each other.

S
food

donkey

food

FIGURE 3.1: Buridan's ass problem in a 3 x 3 grid

One reasonable solution would be to do constrained optimization: minimize

20

the number of piles stolen per unit time while satisfying its hunger [6]. But

consider the case where it is famished. Here the priority changes. It has to eat

without worrying about the food in the other pile. If the animal is full, then

it need not eat and can guard the food. Basically, there are two criteria, one

is to satisfy the hunger and the other is to protect the food from being stolen.

We introduced the third criterion, which is walking. The animal does not want

to spend its energy unnecessarily and seeks to minimize the number of steps it

walks.

Since the decision should be based on the amount of food eaten, the amount

of food stolen, and the number of steps that the animal has walked, a scalar

representation of value functions and rewards is not sufficient. This requires a

vector-valued representation of the values, V = (E,S,W). Here E refers to the

hunger component, S to the stolen component, and W to the walk component.

The idea is that if the immediate reward is a vector, then the long-term

average rewards are also vectors. As explained by Gabor et.al, now the compar-

ison of policies becomes problematic [6]. We must be able to compare any pair

of policies, and also we need a reflexive and transitive comparison operator. An

optimal policy can now be defined as a policy that compares favorably with any

policy.

Gabor, Kalmar and Szepesvari presented a framework based on abstract dy-

namic programming models [6] and suggested an approach based on the notion

of reinforcement-propagating operators. These operators act on function spaces

defined over an abstract return space with a given ordering [6]. So, in essence,

they consider these problems as constrained problems with lexicographic crite-

ria. But it is not clear how to use this idea when the importance of the different

criteria change.

21

We can also individually compare each component of the reward vector to

determine the best policy for that criterion. And now to compare the policies,

one way is to sum the two components of the rewards of each policy and compare

them. This was proposed by Russell and Zimdars [14]. Their idea was that the

overall reward function can be additively decomposed into separate rewards for

each sub-agent. In their implementation, the assumption was that there are

different sub-agents that aim to solve different goals and there is an arbitrator

that combines the sub-agents' recommendations. The combination is done by

adding the rewards obtained by each sub-agent. The sum of the different value

components is used to determine the best action for a given state. A similar

idea is proposed by Guestrin, Koller, and Parr in their paper on Multiagent

planning [3]. They view the multiagent system as a single, large MDP, which

they represent in a factored way. The action space of the resulting MDP is the

joint action space of the entire set of agents [3]. The factored value functions

are then solved by a simple linear program.

This approach is similar to Parr's earlier work on policy caches [11]. His idea

is to decompose a large stochastic decision problem into smaller pieces. He then

proposes two methods: One to build a cache of policies for each sub-problem

and then combine the pieces, the other to make the sub-problems communicate

with one another. For the former case, he uses a value space search algorithm

that is inspired by treating the policies as linear functions, the maximum over

which forms a convex surface [7]. All the methods described earlier for solving

the multi-criterion problem assume that all the criteria are equally important,

which may not always be true. A more general method is to include some

weights for computing the weighted average reward for that policy.

Each criterion thus has a weight associated with it that represents the im-

22

portance of that criterion. For example, if the hunger criteria has a weight of

1' while the other two have a weight of '0', it means that the animal does not

have to care about the other two and can concentrate only on eating. So the

weights are also vectors =(W, W2, W3). Since the rewards are also vectors,

the weighted reward can be used for comparing policies. This is more general

than assuming that all the criteria are equally important. The optimization cri-

terion would then be a dot product of the weight and reward function vectors.

Hence the main idea of Multi-criteria RL are

The reward and value functions are vectors

Weights represent the relative importance of different criteria

The objective function is expressed as a weighted sum of multiple sub-

value functions, i.e., V

We consider the case where the weights themselves are changing. For in-

stance, at 1 PM the animal may be hungry, and so the main objective would

be to eat. But at 2 PM, it may be full, and so the goal would be to guard the

food. Now the problem becomes a slightly different one. Now there are not only

different criteria, but the criteria themselves change. How do we adapt to these

changes? Do we learn from scratch for each weight vector? Doesn't that mean

that the learning process is redundant and wasteful?

3.2 Learning from prior policies

As has been explained in the previous section, vector representations are im-

perative for handling multiple criteria. Now the focus is on changing criteria.

23

As has been pointed out, this is true in many real-world situations. The main

question now is: how do we adapt to the changes?

Weighted Re

FIGURE 3.2: A few policies for a weight vector with 2 components. The dark
lines represent the best policies for any weight.

One solution is to learn the best policy from scratch. Obviously, this is

inefficient and does not take advantage of the structure of the problem. Another

solution is to learn a policy for a particular weight and use it for all new weights.

This is a bad idea, as the two weights may have contrasting goals. For instance,

in our grid domain, one weight vector could be (1, 0, 0) and the new one could

be (0, 1, 0). If we are to use the same policy, then it may not be optimal for

atleast one of the weights.

A third solution could be to store all the policies learnt so far with their

24

rewards obtained and to use one of them (or use the one with the highest

average reward). Once again, there is a very good chance that the policy that

has the highest average reward may not be the best for the new weight vector.

Hence this is not a good solution either.

This problem can be solved by understanding the role of policies in weight

space. Let us for simplicity consider a weight vector (0) with 2 components

such that the sum of the individual components would be 1. So one component

is enough to describe the weight. Every policy would then have an average

reward vector () which would also have 2 components. Now if we plot the

value of 0. against one component of 0, it would be a straight line. So

each policy would generate a line in this weight space (Figure 3.2).

When the weight consists of three components, it can be described by two

values (by the simplex constraint, which requires the individual values to sum

to 1). Now the weight space can be seen as a triangle in two-space with ver-

tices (0,0),(0,1) and (1,0). Now the 0. is a plane in three space, and the

global optimal policy is a bowl-shaped one. The optimal policy (global) is high-

lighted in black in the Figure 3.2 and is convex and piecewise linear. This would

correspondingly be a convex bowl shaped piecewise planar surface in three di-

mensions'.

Thus if a new weight is considered, then we could start learning from the

best policy (which is a point in the highlighted convex function in Figure3.2).

The bold piecewise linear and complex function in the figure represents the best

reward possible for each weight. This will assure that the agent would learn a

1 The reasoning provided here is similar to that of policies over belief states in POMDPs [7].

25

policy that is atleast as good as the best policy that it has already learnt. Note

that while evaluating a policy, we consider the WI and not just the average

reward 75k.

Hence we propose to search the space of policies that have been learnt so

far for the best policy corresponding to the new weight. We start from the

value function of this policy and continue improving it through reinforcement

learning. The process of selecting the best policy for the current weight is by

obtaining the dot product of the weight vector and the average reward vector

that was obtained for that policy. Hence

7r0 = Argmax{h

where 7r0 is the optimal policy for the weight vector is the average

reward vector for a particular policy it.

Once the current best policy for the new weight vector is obtained, we can

initialize the values of the states to the values corresponding to the best policy.

Then we can learn starting from these values.

This initialization of the values and rewards to the best policy would guar-

antee that we would find a policy that is at least as good as the best policy from

the set of policies that we have. Since we are learning using an old policy, we

might be able to find a better policy for the current weight through reinforce-

ment learning. If the policy learnt is better than the one that we started out

with, then we add the new policy to the set of policies that we have.2

The algorithm for learning from prior policies is presented in Table 3.1. As

can be seen, we search the space of policies already learnt for the best policy

2 Note that our policies are implicitly represented through the corresponding value function
vectors.

26

IAHLE 3.1: Algorithm for learning from Drior nolicies

1. Obtain the current weight

2. For the current weight compute, 'ir = argmax,(.) from the current set

of policies.

(a) Initialize the value vectors of the states to the values corresponding to

71opt

(b) Initialize the average reward vectors to the average rewards corresponding

to 71pt

(c) Learn the new policy 71 through reinforcement learning beginning from

these values and rewards

3. If (.) > ,add ir' to the set of stored policies.

4. Goto step 1.

27

corresponding to the current weight and then learn beginning from this best

policy. We store the new policy learnt if it is atleast 6 better than the one we

started out with. By doing so, we can reduce the number of policies that are

needed to be stored. The idea is that for similar weight vectors, the polices

would not differ much and hence need not be duplicated. So though there are

infinite number of weight vectors, the number of policies that need to be stored

may be quite low. We verify this result empirically.

3.3 Multi-Criteria Model-free Average Reward Reinforcement Learn-
ing

The algorithm that we present here is a vector-based version of the algorithm

proposed by Schwartz [15]. R-learning, as explained earlier, is an off-policy

control method[16]. Here the goal is to maximize the reward obtained per time

step. When we are operating in a multi-criteria domain, the goal is going to be

to maximize the weighted reward per time step.

The algorithm for Multi-Criteria R-Learning is shown in Table 3.2. As

explained earlier, the agent learns the state-action values instead of the state

values, as this is a model-free setting. In our algorithm, the agent receives a

set of weights. If it is the first weight, then the state value vectors and the
reward vectors are set to (step 2a). If it is not the first weight, then the list

of policies that have already been learnt is searched to find the best policy for

the current weight vector (), by taking the dot product of the average reward

vector and the current weight vector for all the policies and selecting the one

with the maximum value(step 2b).

71opt = argrnax{

IABLE 3.2: Multi-(Jriteria K

1. Obtain the current weight vector 0
2. Initialize the values and rewards:

(a) If the current weight is the first weight,
Set=

-4Set u(s,a) = OVs,a
(b) Else,

Find the best policy (1rt) for the current policy from the set of current
policies '1r0t = argm r{0
Set =
Set l(s,a) = I,0(s,a) Vs,a

3. Learn the best policy for the current weight:

(a) Let the initial state be s
(b) Choose an action a such that a = argmax(O.I(s, a)) or choose an ex-

ploratory action
(c) Execute the action. Let the next state be s' and the reward is
(d) (s,a) = (s,a)(1 _3) +/3(Timm +maxa'[O.l(s',a')])
(e) If a is an optimal action,

= (1 c) + + l(s', a') T(s, a)) where,

a = argrnax[O . l(s,a)] and a' = argmax[O.

(f) s = s'. goto step(b).

4. If (0 . 0) > 6, where r' and r are the new policy and the old policy
respectively, add it' to the set of policies.

Once the best policy is determined, the (s, a) values and the p vectors for the

new weight vector are set to the corresponding values of the best policy. The

agent then begins to optimize the policy for the new weight vector (step 3). The

R-value vectors are updated using the immediate reward and the action a' that

maximizes the value c:s', a') (step 3d). The value of the average reward

vector () is updated only if the action executed in a state is a non-exploratory

one (step 3e). The learning rate for the value vector /, is generally higher than

that of the learning rate a for the average reward vector. After it has converged

on the correct policy for the given weight, it stores the new policy if it is a better

policy than the one the agent started out with (step 4).

Since the agent starts learning using the best among the old policies for the

new weight vector, it is expected to start from a reasonably good policy and

converge quickly on the optimal policy. This new optimal policy is expected to

be atleast as good as the current best policy. Thus the agent learns a better

policy in a shorter time.

3.4 Multi-Criteria Model-based Average Reward Reinforcement Learn-
ing

In the previous chapter, the Model-Based Average-Reward Reinforcement Learn-

ing was introduced. The algorithm that we now describe is a multi-criteria

adaptation of the H-Learning algorithm proposed by Tadepalli and Ok [17].

As in the case with the Multi-Criteria R Learning, the values and rewards are

vectors. H-Learning learns the models by maximum likelihood estimation.

The algorithm for the model-based average-reward multi-criteria reinforce-

ment learning is shown in Table 3.3. As mentioned before, the r(s, a), h(s) and p

values are turned into vectors,(s, a), (s) and , in this method. Similar to

iIi1

1AbLt 3.i: IViulti-Uriteria 1-1

1. Obtain the current weight vector

2. Initialize the values and rewards:

(a) If the current weight is first weight,
-4Set 0- -4Set r(s,a) = 0 Vs,a

-4 -4Set h (s) = 0 Vs
N(s,a,s') 1;Vs,a,s'
N(s,a) n;Vs,a
Ps,s1(a) = 1/n; Vs, a, s'

(b) Else,
Find the best policy(irt) for the current policy from the set of current
policies lropt = Argmax,{ø. ir}
Set
Set (s,a) - Vs,a

-4 -4Set h(s) = h
3. Learn the best policy for the current weight:

(a) Let the initial state be s
(b) Choose an action a such that a = maxa(((s,a) + 1p3,5i(a)7(s')))

or choose an exploratory action
(c) Execute the action. Let the next state be s' and the reward is imm

(d) N(s, a) - N(s, a) + 1; N(s, a, s') +- N(s, a, s') + 1
(e) Ps,s' (a) +- N(s, a, s')/N(s, a)
(f) s,a) +- s,a) + (jmm F(s,a))/N(s,a)
(g) If a is a greedy action,

' (1) + (s, a) (s) +
c f-

(h) 7t(5) maxa{ (T(s,a) + , 1p5i(a)7t(s')}
(i) s = s'. goto step(b).

4. If () > S ,where it' and it are the new policy learnt and the old policy
respectively, add it' to the set of policies.

31

the model-free case, we initialize the value vectors and average reward vectors

to zero (step 2a). In addition, we also initialize the transition model values.

Once again, we check for the policy that maximizes the {. } value and use

this policy to bootstrap learning (step 2b).

Instead of the state-action pairs, we associate values with states and the

rewards with state-action pairs. The corresponding vectors are initialized to

those of the best policy. Then the agent learns starting from that policy.

Note that the model is not re-learnt for each weight (steps 3d, 3e). It con-

tinues to update the model that it has learnt. So in some sense, while it receives

a new weight, it already has a good model of the environment which further

speeds up the learning beyond the model-free method. The agent would be ex-

pected to converge on the optimal policy faster as it starts from the best policy

currently available for that weight and learns from it. We verify this empiri-

cally in the next section. It updates its T(s, a) values based on the immediate

reward (step 3f). Also if the executed action is a greedy one, it updates the

average reward vector values and the h-value vectors else it just updates the

h-value vectors (steps 3g, 3h). The idea of storing the policies is same as that

of the model-free case (step 4).

32

CHAPTER 4

IMPLEMENTATION AND RESULTS

Having proposed the algorithm for Multi-Criteria RL, we provide the em-

pirical verification of our hypotheses. This chapter deals with the two domains

that we tested our algorithms on the modified version of Buridan's ass problem

and the network routing domain. We explain the experimental set up and the

implementation details. We also outline the results that were obtained for the

Multi-Criteria versions of R and H learning.

4.1 Grid world domain

This modified version of the grid world domain is shown in Figure 3.1. As can

be seen, the donkey is in the center square of the 3 x 3 grid. There are food piles

on the diagonally opposite squares. The food is visible only from the adjacent

squares, i.e., the squares that are next to it in the eight directions. If the donkey

moves away from the adjacent square of a food pile, there is a certain probability

Pstolen with which the food will be stolen. Food is regenerated once every Naear

time-steps.

The donkey is a glutton. It has to eat atleast once in ten time-steps. 0th-

erwise it is penalized with a hunger penalty. Also the donkey is greedy in the

sense that it doesn't want to lose the food. So it is trying to minimize the

amount of food being stolen per unit time. Every time a food pile is stolen, the

33

donkey is penalized. The other quality of the donkey is that it is lazy. Hence it

wants to minimize the number of steps it walks per unit time. For every step it

takes, the donkey is penalized with a walking penalty.

Basically the donkey has to strike a compromise between optimizing the

three different criteria: hunger, food being stolen, and walking.

4.1.1 ExperimentaL Setup

A state is a tuple (s, f, t), where s stands for square, f for food and t, time.

s can take 9 values between 0 and 8 corresponding to the square in which the

donkey is currently in. f can take 4 values corresponding to whether food is

present in both piles or absent in both or present in one of them. t is the time

counter, which basically takes 10 values (0-9) to determine whether the donkey

is hungry. Once the donkey eats the food, t will be reset to 0. If t reaches 9 and

the donkey hasn't eaten the food, t is not incremented or reset. Instead until it

eats, t stays at 9 and the donkey is penalized with 1 per time step until it eats

the food. The actions are move up, down, left, right, and stay. It is assumed

that if the donkey chooses to stay at a square with food, then it eats the food.

The probability of food being stolen(pstoien) S 0.9. Nappear, the number of

time steps when the food would reappear is 10. The number of time-steps that

the donkey is allowed to stay without eating is 10. When the donkey becomes

hungry, it is penalized with 1 every time step until it once again eats. Also,

when each food pile is stolen the donkey is penalized with a negative reward of

0.5 per pile. For every step it walks, it is penalized with a penalty of 1.

The R-Learning and the H-Learning versions presented in the previous chap-

ters were implemented. The weights were generated at random and the three

34

components were normalized so that they add up to 1. These were then stored

in an array. For each weight, the programs were run for 100,000 time-steps. The

program was allowed to run for 1000 time steps and the policy was evaluated

for the next 1000 time-steps to determine the convergence. While the agent was

learning, an f-greedy policy was followed, and during evaluation, the agent was

allowed to choose only greedy actions and accumulate the rewards. As stated

earlier, we predicted that after a certain number of weights, the agent need not

learn for a new weight vector, and instead use an already existing policy. What

this means is that after a certain number of weights, the agent must converge to

a correct policy in 1000 time steps. This is due to the fact that we are evaluating

the policy once every 1000 time-steps.

The correctness of the policies learnt by both the agents were verified manu-

ally. The extreme cases of weights were verified. For instance, the weight vector

contains the following components: (Whunger, Wstoien, Wwalking). So if the weight

vector = (1, 0,0), it means that hunger is the most important criterion. So

the donkey would then walk to one of the food piles and stand there. Whenever

the food is re-generated, the donkey would eat it. For the vector (0, 1, 0), the

donkey would not move out of the square.

The set of policies learnt for different weights are presented in 4.1.

4.1.2 MuLti- Criteria R Learning

The R-learning algorithm was presented in the previous chapter. The a value

was set to .01 and /3 was set to .05.

We have presented two graphs: One showing the learning curve for a few

weights(Figure 4.2) and the other showing the number of steps required for

35

Weights Policy
H S w

1 0 0 Go to one of the plates and stay there

o i o Stay at the eciler square

.5 0 .5 Go to one of the plates and stay there

o .5 .5 Stay at the cctcr square

.33 .33 .33 Go to one of the plates and stay there

o 0 1 Stay at some square(ccnter/food)

.5 .5 0 Alternate b/w food plates and cat

FIGURE 4.1: Policies for R and H Learning corresponding to different weights

02

C
C,

-0.4

C,

-0.6

C,

-0 8

-1

_1 0

Convergence Graph for A-Learning

* Weight Vectorl
+ Weight Vector2

Weight Vector3

10 20 30 40 50 60 70 80 90
Time Steps(1 000)

FIGURE 4.2: Learning curves for 3 weights using R-Learning

36

convergence vs the number of weights(Figure 4.3). The three weight vectors

in Figure 4.2 are (1,0, 0),(0, 1, 0) and (.33, .33, .33). It can be seen that the
weighted average reward{. } converges to zero in the first two cases. In the

third case, the agent chooses to guard one food pile and keeps eating it. The

agent cannot alternate between piles, as it obtains a penalty of 1 for every
step that it walks.

10000

9000

6000

7000

a
6000

0

5000
z

4000

3000

2000

1000

Multi-Criteria A-Learning

0 10 20 30 40 50 60 70 50 90 100
Number of Weight Vectors

FIGURE 4.3: Convergence graph for R-Learning

The second graph for R-learning is the one that shows the number of time-

steps required to converge to the correct policy against the number of weight

vectors. The policies were verified manually for a few weights(eg. Figure 4.1).

This is presented in Figure 4.3. The agent was allowed to learn for 15 different

37

runs, each of 100 weight vectors. For each weight vector, we obtain the number

of steps required for convergence of each run and calculate the average number

of steps. The graph is then plotted with the average number of steps required

for convergence of the algorithm against the number of weight vectors. As

can be observed, the agent settles for one of the learnt policies after about 50

weight vectors. The number of peaks that are high in the first half of the graph

indicates that the agent is learning a policy that is different from the one it

started out with. The total number of polices that are stored was between 15

and 20. Thus the agent used about 20 different policies for 100 weight vectors.

4.1.3 Multi- Criteria H Learning

0

0.2

V
Co

Ca
-04

0

-0.6
0C

08

-1

Convergence graph for H-Learning

* Weight Vectorl
+ Weight Vector2

Weight Vector3

0 10 20 30 40 50 60 70 80 90 100
Time steps(1000)

FIGURE 4.4: Learning curves for 3 weights using H-Learning

Chapter 3 described the Model-Based Multi-Criteria Average-Reward RL algo-

rithm in detail which is a Multi-Criteria version of H-Learning. We present 2

graphs similar to those of R-Learning. One is the learning curve for 3 weights

and the other is the graph showing the number of steps required for conver-

gence. The learning curve is presented in Figure 4.4. The weights are (1, 0, 0),

(0, 1, 0) and (.33, .33, .33). The agent converges pretty quickly in all the cases.

a
a)
(0

.0
E

z

x00

00

000

00

000

000

1000

1000

000

Multi-Criteria H-Learning

Number of Weight Vectors

FIGURE 4.5: Convergence graph for H-Learning

The graph for the convergence of H-Learning in the grid world domain is

shown in Figure 4.5. The program was run for 15 different sets of 100 weights

each that were generated at random. The weighted average (.) was ob-

tained for each weight. Then the average number of steps were plotted against

39

the number of weights. The results are similar to that of R-Learning. Initially

the agent took sometime to learn the model and then after some number of

weight vectors, uses the model and the prior policies learnt to operate in the

domain for new sets of weight vectors. So the graphs have a few peaks in the

initial stages and later settles down to around 1000 time-steps. The number of

policies learnt is also similar to that of R-Learning.

4.2 Network Routing Domain

The other domain in which we tested our algorithm was the network routing

domain. In order to transfer packets from a source host to a destination host,

the network layer must determine the path or route that the packets are to

follow [5]. At the heart of any routing protocol is the routing algorithm that

determines the path of a packet from the source to the destination [5].

In network routing there are three main criteria:

. end-to-end delay - Time required for a packet to travel from the source

to the destination. This includes the propagation delay, the transmission

delay, and the processing delay

packet loss - The loss of packet due to congestion or router/link failure

power - The power level associated with a node

The multiple objectives have some weights associated with them, and the

weights change frequently. For instance, during war scenarios in mobile net-

works, power is the main concern while in some other situations, packet loss or

delay would be the main issue. So in all the cases, apart from optimizing the

main parameter which could be end-to-end delay or packet loss or the power, it

would be desirable to optimize the other parameters as well.

4.2.1 Experimental Setup

Optimized Network Engineering Tools (OPNET) is a comprehensive engineering

system capable of simulating large scale communications networks [1]. OPNET

features include: graphical specification of models; a dynamic, event-scheduled

simulation kernel; integrated data analysis tools; and hierarchical, object-based

modeling. It is specially suited to our environment, as it provides a hierarchi-

cal modeling structure that enables the development of distributed algorithms

easily.

We used OPNET to design and implement our algorithm on the network

domain. It has been chosen as a modeling environment for this work due to

its modular architecture and flexibility. In addition, it provides an impressive

library of protocols and devices to facilitate the study and development of net-

works at any level.

OPNET has a three-tired Network Hierarchy:

. Network Model Specifies the overall network topology

. Node Model Specifies the object in the network model

. Process Model - Specifies the object in the node model

4.2.2 Network Model

The network that we used to test our algorithms is shown in Figure 4.6

41

C C
0

cc
0 R

/
/ I _

/
IA

FIGURE 4.6: Network Model

The network model in OPNET consists of nodes, links, and subnets. We

have created our own node model which we would describe in the next section

and used the point-point duplex link provided by the OPNET. The data rate

for the link was set at 9600bps. Basically each node has a probability (Pdr) of

dropping the packet. The packets that are received from the other nodes are the

ones that could be dropped. A node does not drop the packet that it creates. A

special packet format was created. These packets had the destination, source,

packet number and a table field.

4.2.3 Node Model

Figure 4.7 shows the node model for a node of degree 3. We also have nodes of

degree 2, that have one receiver and one transmitter fewer than this model. As

42

FIGURE 4.7: Node Model for a node of degree 3

can be seen from the figure, each node has a source that generates the packet

at a constant rate. This distribution can be changed in OPNET. Also each

node has transmitters and corresponding receivers. While creating the network

model, the receivers and the corresponding transmitters are attached to the

link. Each node has a processor that has incoming links from the receivers and

outgoing links to the transmitters. Upon receiving a packet from either the

source or the receivers, the processor decides what to do with the packet. The

process model of the processor is discussed in the next section.

4.2.4 Process Model

The process model of the processor in the node is shown in Figure 4.8. There

are 4 states in the model. The mit state contains the code to be executed in

43

the beginning of the simulation. In our case, we initialized the data structures

and read the weights from the file into an array. The next state is the idle
state. This state is the default state of a processor. There are two transitions

from the idle state. These are the "PKARRVL" and "SRCARRVL" events

corresponding to the packet arriving from the receiver and the source. The
corresponding states that are reached are receive and recvsource. Basically if

a packet is received from the source, its information is entered into a list. Then

it is routed accordingly. If a packet is received from a receiver, then it has to be

checked for the destination. If a node receives its packet from a neighbor, then

it processes the packet. If the packet is for another destination then it is routed

accordingly.

-

FIGURE 4.8: Process Model for the processor of a node

4.2.5 Implementation details

The network that was shown in Figure 4.6 was used for testing our algorithms.

The weights were generated initially at random and were written to a file. When

the simulation was started, the weights were read into an array by individual
nodes. Then the data structures were initialized accordingly. The lists for the
reward and value functions were created. Then the idle state is reached where
it waits until an event happens. Since OPNET is an event-driven simulator, the
time gets updated only if an event occurs.

If a node is in the idle state and a packet arrives from the source, it enters
the recvsource state. Here it appends the source and destination addresses

to the packet and then routes the packet. It stores the details of the packet
in a list. It also sends a table packet that contains the value functions to its
neighbors once every Ttable seconds. When a packet is received from a neighbor,

it checks for the destination. If the destination is its own address, it processes

the packet. If it is a data packet, it sends an acknowledgment to the source. If

it is an acknowledgment, then it updates the values and rewards.

The node also stops exploring after every Tiearn seconds and then evaluates

its policy for the next Tevajuat seconds. Also, each node would send the infor-
mation about its power to its neighbors every seconds. The power level

of each node decreases with the increase in the number of packets it processes.

This power value is reset once a new weight vector arrives.

The "state" in this domain basically consists of the destination of the cur-

rent packet and the current node. The action to be executed in a state is the
neighbor to which the packet has to be sent. The value function is represented

in a distributed way, in that each node stores its value function for each destina-

tion node (Rcurr node(destination, neighbor)). There is a global reward function

45

(average reward function in our case) that all the nodes are trying to maximize.

The immediate reward components were: Tete, r1, corresponding to the

end-to-end delay, packet loss and power respectively. The immediate reward

values were between 0 and 1. The end-to-end delay was brought between 1

and 0 by a linear transformation of the simulation time. Also for every packet

that is lost, the immediate reward was 1. Basically a node would wait for a

certain time period to determine if the packet is lost. The power value that

was received from the neighbor was used as the immediate reward for the action

that chooses that neighbor.

As stated earlier, each node would generate some packets for random des-

tinations. Once the acknowledgment is received from a destination, it updates

the value functions corresponding to that destination. The end-to-end delay

and the power level of the neighbors are used as the different immediate re-

ward components. Then the current packet details are removed from the list of

packets sent. Also, the list of packets sent is searched for determining if some

packets are lost and the value functions of the corresponding neighbor is up-

dated with the packet loss penalty. The R-Learning and the H-Learning agents

were allowed to run for 10,000 seconds for each weight.

4.2.6 R-Learning

Ttable was set to 400, while Tiearn and Tevajuate were both set to 500. Each node

had a (s, a) vector for each state-action pair. The set of actions is the set

of neighbors to choose from. All the nodes accessed the global reward using

mutual exclusion constraints and updated them. The agent learnt for 10,000

seconds of simulation time and then would read in a new weight vector.

- 0

w

cv -0.4

><-0.6

-0.8

-1.2

Convergence of R-Learning in the Network
Routing Domain

Time Steps *1 000

-'- Weighti
Weight2
Weight3

FIGURE 4.9: Learning curves for 3 weights in the Network Routing domain
using R-Learning

FIGURE 4.10: Convergence graph for R-Learning in the Network Routing Do-
main

47

The learnings curve for 3 random weights are presented in Figure 4.9. The

results were obtained after every 1000 seconds, when the agent was allowed to

learn for the first 500 seconds using an -greedy strategy with set to 0.1 and

then was evaluated for the next 500 seconds. As can be seen, the system learns

the policy in a very short period of time. We verified the policies manually for

a few weights.

The convergence graph for R-Learning is presented in Figure 4.10. As we

had predicted, the agent takes some time to learn a bunch of policies and then

uses them later to initialize learning. Hence for the initial set of weights, the

program takes some time to converge, while it converges very quickly after a

certain number of weights. The data were collected from 15 runs and averaged

over them. For each run, the program was executed for 10 days of simulation

time. The statistics were collected for 86 weights. The convergence curve was

plotted for these 86 weight vectors. As can be observed, the program would

settle for a learnt policy around 60 weight vectors.

4.2.7 H-Learning

The models were learnt from scratch for the first weight and the learnt model

was updated for the later weights. The table time and the exploration strategy

were the same as that of R-Learning. This method followed an f-greedy strategy

for exploration as did the R-Learning with = 0.10. The results are presented

in Figures 4.11 and 4.12. Similar to the previous domain, the results are pretty

similar to that of the R-Learning.

The learning curve in Figure 4.11 shows that the program converges very

quickly to the optimal policy. Three random weights were used, and the learning

0.2

0

-0.2

-0.4

-0.6

-0.8

-1.2

Convergence Graph for H-Learning In the Network Routing
Domain

Time in seconds *1000

FIGURE 4.11: Learning curves for 3 weights in the Network Routing domain
using H-Learning

curves were plotted after the agent learns on those weights. As was the case with

R-Learning, the agent was allowed to learn for about 500 seconds of simulation

time, and then it was evaluated for the next 500 seconds, and the results are
presented. They are very similar to those of R-Learning.

The convergence graph is shown in Figure 4.12. Once again, the agent learns
a set of policies when it receives the first set of weights (in this case around 55

weights). Then it uses the model learnt and also the best policy from the set of
policies to learn the best policy for a new weight vector. Like R-Learning, the

program was executed for 10 days of simulation time and the average number

of steps required for convergence was collected for 86 weight vectors. The data

were averaged over 15 runs. As predicted, the algorithm converges very quickly

2500

2000
U
C
C
a
I,

1500

0
C
a

1000

500

Mufti.Cñtenfl H Le&zung

49

FIGURE 4.12: Convergence graph for H-Learning in the Network Routing do-
main

for later weight vectors.

50

CHAPTER 5

CONCLUSION

The basic premise of the thesis is that many real-world problems have mul-

tiple goals to be achieved. In such cases, the normal scalar based reinforcement

learning techniques may not suffice. It becomes imperative that the value func-

tions and rewards are decomposed. Also the weights governing the criteria may

change, and the agent must be able to adapt to this change efficiently.

We motivated the idea of vector based reinforcement learning with an ex-

ample. We discussed the Q-value decomposition of Russell et.al[14}. and Multi-

Criteria Reinforcement Learning technique of Gabor et.al[6]. We explained the

need of using weights for representing the importance of different criteria.

We presented an average-reward multi-criteria reinforcement learning algo-

rithm that improved starting from the policies that it has learnt previously. We

showed that the agent initially learns a set of policies for different weights and

after a few weights was able to use the learned policies and converge quickly.

We empirically verified that a small number of policies can cover most of

the weight space. This directly means that after a certain number of policies

are learnt, the agent could use the learned policies there resulting in a huge

decrease in the learning time.

We demonstrated this idea with experimentation in both a toy domain and

a network routing domain. We showed that with a network of about 20 nodes,

the agent would converge to a correct policy in the first evaluation phase.

51

We have not presented a theoretical proof for the convergence of the policies

after a few weight vectors. This in turn depends on the convergence proofs of

Average-Reward RL methods. The number of distinct optimal policies depends

on the structure of the MDPs and needs to be better understood. Also, we

haven't explored the idea of using function approximation. In our domains,

the state space is not huge, and so we did not use any function approximation

techniques.

Another interesting problem is when the user is unable to provide weights

but simply controls the agent. For example, he could just route the packets in

the network. The question is then: How do we learn the weights that he has in

mind? How do we obtain the rewards given the policy? Russell and Ng called

this problem as "Inverse Reinforcement Learning" [10]. Koller et.al use the past

decisions of the agent to predicts its future decisions [18]. More recently, Ng

et.al address this problem as apprenticeship learning [12]. Boutilier studies the

problem as Preference Elicitation [21. Basically, the agent has to recommend

courses of actions for a specific user. This requires the knowledge of the user's

preferences or the utility function. These functions can vary widely from user

to user. He formulates this problem as a POMDP and describes methods that

exploit the structure of the preferences and then uses gradient techniques for

optimization [2}. It would be interesting to see if and how these ideas can be

used to elicit the importance weights from observed behavior in Multi-Criteria

Reinforcement Learning.

52

BIBLIOGRAPHY

[1] OPNET reference manual, www.opnet.com.

[2] Craig Boutilier. A POMDP formulation of preference elicitation problems.
In Proceedings of the Eighteenth National Conference on Artificial Intelli-
gence (AAAI-2002), Edmonton, AB, pp.239-26 (2002), 2002.

[3] Ronald Parr Carlos Guestrin, Daphne Koller. Multiagent planning with
factored mdps. In Advances in Neural Information Processing Systems
NIPS-L, 2001.

[4] DoKyeongOk. A Study of Model-based Average Reward Reinforcement
Learning. Ph.D dissertation, Oregon State University, 1996.

[5] James F.Kurose and Keith W.Ross. Computer Networking A Top-Down
Approach Featuring the Internet. Pearson Education, second edition, 2003.

[6] Zs. Kalmar Gabor, Zoltan and Cs. Szepesvari. Multi-criteria Reinforce-
ment Learning. In In Proc. ICML-98, 1998.

[7] Michael L. Littman Leslie Pack Kaelbling and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Al Journal,
1998.

[8] Michael L. Littman Leslie Pack Kaelbling and Andrew W. Moore. Rein-
forcement learning: A survey. Journal of Al Research, 1996.

[9] Sridhar Mahadevan. Average reward reinforcement learning: Foundations,
algorithms, and empirical results. Machine Learning, 1996.

[10] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement
learning. In Proceedings of the Seventeenth International Conference on
Machine Learning, 2000.

[11] Ronald Parr. Flexible decomposition algorithms for weakly coupled markov
decision problems. In UAI, 1998.

[12] Andrew Y. Ng Pieter Abbeel. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the Twenty-First International Conference
on Machine Learning (ICML), 2004.

[13] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, first edition.

53

[14] Stuart Russell and Andrew L. Zimdars. Q-decomposition for reinforcement
learning agents. In In Proc. ICML-O3, 2003.

[15] Anton Schwartz. A reinforcement learning method for maximizing undis-
counted rewards. In In Proc. ICML -1993, 1993.

[16] Richard S.Sutton and Andrew G.Barto. Reinforcement Learning An In-
troduction. MIT Press, London, England, first edition, 1998.

[17] Prasad Tadepalli and DoKyeongOk. Model-based average reward reinforce-
ment learning. Al Journal, 2000.

[18] Dirk Ormoneit Urszula Chajewska, Daphne Koller. Learning an agent's
utility function by observing behavior. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML), 2001.

[19] Wei-Men-Shen. Autonomous Learning From the Environment. Computer
Science Press, 1994.

