
AN ABSTRACT OF THE
DISSERTATION OF

Ozkan M. Erdem for the degree of

Doctor of Philosophy in

Electrical and Computer Engineering presented

on March 18, 2005.

Title: Efficient Key Management Protocols for Mobile Ad Hoc Networks

Abstract approved:

In this thesis, novel solutions are proposed for key management issues in

mobile ad hoc networks.

Presented Hierarchical Binary Tree (HBT) based model is distributed, self-

organizing, scalable and does not employ online key distribution authority or group

manager. Two different group authentication and group key establishment protocols

are proposed for the users who form an ad hoc group with distributed trust model.

Initially proposed protocols are based on public key cryptography and do not use

specific algorithm. However, members can establish the keys faster with proposed

customized hybrid scheme which combines elliptic curve cryptography, modular

squaring operations and secret key encryption algorithm. Proposed HBT based model

provides complete backward and forward security in case of modification in

membership and it has comparable efficiency to the other HBT based schemes which

employ real time key distribution authority.

Redacted for Privacy

Mutual authentication and link encryption can be achieved in wireless sensor

network only with public key cryptography if there are no pre-distributed keys.

However, constraints in resources make fully public key operations not affordable on

sensor. Three different authenticated key establishment protocols are proposed with an

objective of being respectful to constraints. Sensor needs to make only modular or

cyclic convolution multiplications, and expensive public key decryption operation is

executed at the data processing station side. Schemes require small size of code and

achieve the least sensor processing time in comparison with fully public key

cryptography based protocols.

© Copyright by Ozkan M. Erdem

March 18, 2005

All Rights Reserved

Efficient Key Management Protocols for Mobile Ad Hoc Networks

by
Ozkan M. Erdem

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented March 18, 2005
Commencement June 2005

Doctor of Philosophy dissertation of Ozkan M. Erdem presented on March 18. 2005.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Associate Director, School of Electrical Engineering and Computer Science

Dean of the Graduate

I understand that my dissertation will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

M. Erdem, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation and gratitude to Prof. Bella

Bose, my thesis advisor, for his guidance and encouragement. I have been fortunate in

being able to benefit from his experiences.

I am also thankful to my program committee members and to Dr. Erdal

Paksoy at Texas Instruments, Inc. for their valuable comments and support in

conducting this research and producing the papers which formed a basis for this thesis.

I am especially grateful to my wife, Marina, for her love and patience. She

provided all of the emotional support to help me when things seemed difficult. Also I

thank my parents for their encouragement, support and caring. Finally, I would like to

thank my daughter, Melissa, for cheerful moments during hard times of my research.

Ozkan M. Erdem

Dallas, TEXAS

March 2005

TABLE OF CONTENTS

GENERAL INTRODUCTION .1

1.1 Key Management in Centralized Trust Model ... 2

1.2 Key Management in Distributed Trust Model .. 3

1.3 Contributions .. 5

2 EDKM: EFFICIENT DISTRIBUTED KEY MANAGEMENT FOR

MOBILE AD HOC NETWORKS ... 9

2.1 Introduction .. 11

2.1.1 Related Work ... 12

2.2 Hierarchical Binary Tree Model ... 13

2.3 Group Formation and Operations ... 17

2.3.1 Member Join Algorithm ... 19

2.3.2 Member Leave Algorithm .. 21

2.4 Performance Comparisons ... 23

2.5 Security Analysis.. 25

2.6 Conclusions .. 26

2.7 References .. 27

3 EFFICIENT SELF-ORGANIZED KEY MANAGEMENT FOR MOBILE

AD HOC NETWORKS ..29

3.1 Introduction .. 31

3.1.1 Related Work ... 33

3.2 Hierarchical Binary Tree Model ... 34

3.3 Authenticated Hybrid Key Establishment Protocol 35

3.3.1 Authentication to Mobile Ad Hoc Group .. 36

TABLE OF CONTENTS (Continued)

3.3.2 Key Establishment with KSS Members ... 41

3.3.3 Member Leave Algorithm.. 43

3.4 Security Evaluation ..44

3.5 Performance Analysis ..46

3.6 Conclusion .. 49

3.7 References .. 50

4 LIGHTWEIGHT KEY ESTABLISHMENT PROTOCOLS FOR SELF-

ORGANIZING SENSOR NETWORKS ... 52

4.1 Introduction .. 54

4.1.1 Related Work ...56

4.1.2 Contributions ...58

4.2 Background of Fast Public Key Cryptography .. 59

4.3 Sensor Network Model ... 59

4.4 Authenticated Key Establishment Protocols .. 62

4.4.1 Modular Multiplication Based Key Establishment................................ 63

4.4.2 Lightweight Key Establishment Protocols... 69

4.5 Network Operations ...77

4.5.1 Sensor Addition/Eviction ... 77

4.5.2 Station Addition/Relocation/Eviction .. 77

4.6 Security Analysis.. 78

4.7 Performance Evaluation ... 81

4.7.1 Hardware Specifications ..81

4.7.2 Cryptographic Software Modules .. 81

TABLE OF CONTENTS (Continued)

4.7.3 Computational and Communication Complexity 82

4.7.4 Comparisons .. 84

4.8 Conclusion .. 85

4.9 References .. 86

4.10 Appendix A-NtruEncrypt public key encryption algorithm....................... 89

5 HIGH-SPEED ECC BASED KERBEROS AUTHENTICATION

PROTOCOL FOR WIRELESS APPLICATIONS 91

5.1 Introduction .. 93

5.2 Kerberos and Its Derivations .. 94

5.2.1 Public Key Cryptography Enabled Kerberos ... 94

5.3 Elliptic Curve Cryptography .. 96

5.4 ECC Enabled Kerberos .. 97

5.4.1 Client and KDC Initializations ... 98

5.4.2 Design of Proposed Protocol.. 99

5.5 Structural Implementation .. 101

5.5.1 Software and Hardware Specifications .. 102

5.6 Performance Analysis .. 103

5.7 Conclusions .. 106

5.8 Acknowledgement .. 107

5.9 References .. 107

6 GENERAL CONCLUSION .. 109

BIBLIOGRAPHY... 112

LIST OF FIGURES

Figure

2-I. Hierarchical one-way function binary tree model ... 15

2-2. Searching algorithm for members of Key Sharing Subgroup 16

2-3. Group authentication protocol ... 18

2-4. Single member (n8) joins the group ... 21

2-5. Single member (n2) leaves the group ... 22

3-I. Authentication to the mobile ad hoc group .. 40

3-2. Authenticated key establishment with KSS members .. 42

3-3. User n5 joins the group ... 43

4-1. Sensor network architecture with mobile stations ... 61

4-2. Certificate generation for the station T .. 65

4-3. Modular multiplication based key establishment protocol 68

4-4. Certificate generation for the station T .. 71

4-5. Modular multiplication-Light key establishment .. 72

4-6. Certificate generation for the station T .. 74

4-7. NtruEncrypt-Light key establishment.. 76

5-1. Protocol flow for PKINIT .. 95

5-2. Proposed protocol flow for key setup and certificate generation 99

5-3. Proposed ECC based Kerberos protocol .. 100

5-4. Performance measurement and test configuration ... 103

LIST OF TABLES

Table

2-1. Notation ... 17

2-2. Notation ... 23

2-3. Comparison of single and multiple join equations .. 24

2-4. Comparison of single and multiple leave equations .. 25

3-1. Comparisons of ECC based key establishment protocols 46

3-2. Comparisons of the costs for user join and leave operations 48

3-3. Notation ... 49

4-1. Example Challenge-Response list for the station .. 63

4-2. Notation ... 64

4-3. Example Challenge-Response-Signature list for the station 70

4-4. Comparison of public key based key establishment protocols 85

5-1. Notation ... 96

5-2. Memory heap size and code size of crypto library implementation 105

5-3. Extra service time required for protocol .. 106

To my wfe and my daughter,

EFFICIENT KEY MANAGEMENT PROTOCOLS FOR
MOBILE AD HOC NETWORKS

CHAPTER 1

GENERAL INTRODUCTION

The term of mobile ad hoc networking refers to technology which provides

communication between two or more mobile computers using standard network

protocols in wireless manner and free of constant network topology [6]. Devices move

and organize themselves arbitrarily. Networking functions are performed by the

devices in a self-organizing manner. They can communicate with all of the other

wireless enabled devices either directly or using hopping techniques. Dynamically

relocating nodes change the topology of the network rapidly.

Due to mobility of devices, traditional security models designed for fixed-network

topologies may not be fully applicable in ad-hoc networks [57]. Therefore, securing

mobile ad hoc networks has brought new challenges and opportunities in terms of

trust model, key management, and the standard security services such as

confidentiality, authentication and integrity.

Basically two trust models can be introduced to mobile ad hoc networks:

1. Centralized key management and trust model: In this model,

allocated base station or access point act as trusted key distribution authority

and provides security related services for mobile ad hoc network.

2. Distributed key management and trust model: This model does not

enforce any centralized key management over the network devices. Network

comprises of self-organizing devices which have no access to any online

2

central resource, server or to internet. Typical example of this type of

network is a setup of secure business meeting with the devices which have

no access to company's centralized security services.

Chapter 1.1 and Chapter 1.2 give more details on mentioned trust models and address

the common issues and open problems. Contributions done to the security of mobile

ad hoc networking are given in Chapter 1.3.

1.1 Key Management in Centralized Trust Model

In centralized trust model, central authority establishes the trust among devices and

manages the group keys [14, 39, 42 and 461. Kerberos authentication and key

management service is a well-known example of this model [14]. Kerberos key

distribution center (KDC) is an on-line available server which authenticates the

mobile device, accepts to the network and grants tickets to use the services of network.

However, in Kerberos authentication protocol previously established secret key

between user and KDC is password protected in user side and password can be easily

guessed with appropriately performed dictionary attacks [521. Besides, mutual

authentication between user and KDC cannot be provided by only secret-key

cryptographic algorithm. Many recent network authentication protocols support public

key cryptography which offers robust solutions for mutual authentication between

client and servers [521. However, public key crypto operations are relatively more

expensive than secret-key operations and consume more computational and bandwidth

resources. Due to computational, communication and memory constraints of battery-

powered mobile devices, it is crucial to find effective usage of public key

cryptographic methods to provide key freshness and mutual authentication features to

Kerberos.

Mobile ad hoc sensor network is a good example for mobile ad hoc networks which

has centralized trust model. Sensors are battery-powered computationally weak

devices and functionality of sensors is delivering the sensed data to the collection

stations. Sensor network consists of one central base station and hundreds of tiny

sensors. Operation control, surveillance, vehicle tracking, environment monitoring,

health care and maintenance of manufacturing systems are some of the applications

which can use sensor networks. The privacy and security in sensor networks become

essential when the security of deployment area cannot be provided. Encryption link

key establishment and mutual authentication between data collection station and

sensor are major building blocks of sensor network security. As alternative to using

fully secret-key cryptography, public key cryptography based schemes offer self-

organized trust establishment with the help of key certificates. Moreover, compromise

of any device does not pose a security risk to other sensors. However, sensors cannot

afford expensive public key operations with their extremely low computational power

and small-size memory. Therefore, very light-weight public-key based mutual

authentication and link key establishment protocols should be designed and carefully

adapted to the sensor network environment.

1.2 Key Management in Distributed Trust Model

In distributed trust model, security does not rely on any trusted authority or fixed

central server. Trust is totally decentralized, distributed among entities, and devices

establish self-organized trust relations [6, 7, 13, 21 and 57]. Model assumes that trust

relationships are unidirectional and taking place between two entities.

4

Key information can be distributed among devices prior to forming the group and

devices store link key tables. Each key in the table is used to encrypt the traffic

between only two devices and every table essentially has N-I distinct pairwise secret

keys, where N shows the total number of devices. Although this scheme is especially

suitable for computationally weak devices, there is a great effort in pre-distribution of

the pair-wise keys when there is no prior trust relationship. Besides, each device

should cany all the pair-wise keys for potential future communications. This

significantly decreases the memory and bandwidth efficiency of the scheme when the

number of interacted devices increases. To overcome this inefficiency, all pair-wise

link keys can be derived from one group master secret key which is stored in every

device [4]. However, in this method compromise of any device can also compromise

the whole network since the master secret key is revealed.

A good key management policy is crucial factor in establishment of trust model. In

both trust models group key management includes several procedures for

establishment and maintenance of group keys. Maintenance procedure contains group

key renewal due to modifications in group membership or due to expiration of the

group key. In distributed trust model group key establishment is also distributed. Two

possible group key establishment models are applicable to distributed trust model. In

first approach all group members can contribute for the group key generation.

Alternatively, in partially contribution approach selected group member(s) establish

the group keys and securely share with other members.

The use of public key techniques along with the key certificates can help to overcome

the difficulty of node-to-node key establishment. There are some recent proposals

based on modular exponentiation techniques for the management of encryption keys.

However, using modular exponential techniques may not be possible for the network

formed by resource constrained portable devices. Hierarchical binary tree (HBT) is

one of the previously studied techniques to manage the keys in distributed group

structure [7, 11, 12, 35 and 46]. Most of the relevant proposals involve a key

distribution authority which maintains a tree of keys and manages the group structure.

Key distribution authority provides the group key to members and initiates the key

update procedures by sending encrypted messages to members. However, in

distributed trust model it is not possible to employ an online key distribution server.

Devices should authenticate each other and establish the encryption link keys. A

recent research in [7] proposes choosing one of the group members as a group

manager and assigning all group key management functionalities to group manager.

Note that this scheme brings a single point of attack and failure in the group since all

keying material is managed centrally by the Group Manager.

As a conclusion, design of resource efficient group key management schemes stays as

an open problem in distributed trust model when there is no online trusted key

distribution authority.

1.3 Contributions

In Chapter 2, a practically secure protocol is proposed to build efficient hierarchical

binary tree trust model for mobile ad hoc networks which has no trusted third party to

maintain the keys. The proposal, which is called as EDKM protocol, employs a secure

distributed model based on secret-key encryption algorithm and one-way hash

function. The EDKM protocol also includes group keying and group membership

change operations for single join/eviction and multiple joins/evictions. For a balanced

tree associated to n users, each member holds (2K + I) log2 n + K keys. Group

multicast message size for each addition and leave operation is 2(log2 n I)(K + 1).

The scheme also addresses basic requirements of group key management security

which are listed in the following:

Backward Secrecy: In case ofjoin at the time of t=T, group secret keys should

be updated in such a way that added user should have no access to any key

used in the group at the time t<T.

Forward Secrecy: In case of eviction from the group at the time of t=T, group

secret keys known to the evicted user should be updated in such a way that

evicted user should have no access to any key used in the group at the time

t> T.

Collusion freedom: None of the evicted users or coalitions could generate the

current or future group keys from the keys used in the past.

Chapter 2 gives the core idea of hierarchical binary tree model, secure group

formation and key agreement protocols and performance evaluation and security

analysis of the proposed protocols, respectively.

The proposed hybrid authenticated key establishment protocol in Chapter 3 improves

the efficiency of the entity authentication and join process in EDKM. Hybrid

cryptography is a combination of elliptic curve cryptography (ECC), secret key

cryptography, modular squaring (as proposed in Modified Rabin's Signature scheme

[55]) and one-way hash functions. Using hybrid combination provides a significant

decrease in computational efforts and increased communication reliability with

decreased message bandwidth.

Encryption link key establishment and mutual authentication issues in wireless sensor

networks are addressed in Chapter 4. The proposed lightweight key establishment

protocols meet the following expectations of sensor networks:

Dynamically relocating stations: Proposed schemes establish distinct keys for

every session between any dynamically relocating data collecting station and

the sensor in the same system cluster.

Mutual authentication: Sensor and data collecting station mutually

authenticate each other before they initiate the secure data communication.

Lightweight operations on sensor side: Proposed protocols avoid using

expensive modular exponential or elliptic curve point multiplications. Sensor

needs to make only large or small modular multiplications, secret-key

encryption/decryption and hashing operations.

Power efficient key establishment: While strong security advantage of public

key cryptography is taken in proposed schemes, the minimum amount of

battery power is consumed.

The public key encryption and digital signature algorithms can be introduced to

Kerberos authentication protocol in several ways to prevent password-based attacks

and to provide mutual authentication [39]. Using Elliptic Curve Cryptography (ECC)

offers higher strength per key bit in comparison with other public key methods [21.

However without efficiently designed protocols elliptic curve operations take

excessive amount of time and require bigger code size than mobile platform can

usually offer. The major goals that the designed authentication protocol should meet

are given in following:

Preserve the main semantics of Kerberos.

Provide mutual authentication between client and KDC.

Provide non-repudiation of client to KDC.

Minimize the number of operations to be performed on mobile client.

Keep ability to use existing or developing public key management

infrastructures.

Chapter 5 provides brief background on public-key enabled Kerberos protocol and

proposes efficient ECC enabled Kerberos authentication protocol which meets

expectations given above. Chapter 5 also gives the details of high speed and scalable

implementation of the proposed protocols and specifications of used software and

hardware.

CHAPTER 2

EDKM: EFFICIENT DISTRIBUTED KEY MANAGEMENT
FOR MOBILE AD HOC NETWORKS

Ozkan M. Erdem

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97331

Proceedings of IEEE International Symposium of Computers & Communications

ISCC' 2004

Alexandria, Egypt, July 2004.

EIi

Abstract

Mobile ad hoc networks are dynamically reconfigured networks. Their major

properties are mobility of devices, lack of central control authority, and existence of

resource-constrained devices. Particularly, it is prudent to assume that there are no

shared secret keys distributed by key distribution authority at initialization of the

network. In this paper, we propose a new efficient hierarchical binary tree model

(EDKM) to form ad hoc group under such assumptions. Our trust model employs a

new key distribution scheme to bring an alien device to the group and to exchange a

secret key at that moment. EDKM is distributed, self-organizing, and can be deployed

incrementally in the network. Moreover, EDKM provides complete backward and

forward security in case of modification in membership and does not increase

processing or storage requirements in comparison with other HBT schemes.

The proposed group key management system is based on one-way hash function and

secret key cryptography, and therefore, EDKM is practical, efficient and respectful to

the constraints of mobile ad hoc networks.

2.1 Introduction

Ad hoc networks can be defined as the collection of devices where they do not have a

fixed network topology [2]. Devices are often mobile and networking functions are

performed by the devices in a self-organizing manner. Mobility causes ad hoc

networks to be formed, partitioned into separate networks or merged with other

networks. For this reason, traditional security models may not be fully applicable in

ad-hoc networks.

Introducing security to mobile networks can be accomplished in two different

methods. First method employs a single central authority which establishes the trust

among devices, issues and manages keys and (if necessary) certificates [7]. However,

major difference between ad-hoc networks and traditional networks is the lack of

central control over the network structure and on-line availability of this trusted

authority; therefore centralized security solution may not work for wireless ad hoc

networks [14]. In second and widely accepted method security does not rely on any

trusted authority or fixed central server; devices establish self-organized trust relation

[2, 6, 14].

Hierarchical binary tree (HBT) is one of the previously studied techniques to manage

the keys in distributed group structure [3, 4, 5, 8, 11]. Most of the relevant proposals

involve a key distribution authority which maintains a tree of keys and manages the

group structure. Each member of the tree holds its own key and corresponding

ancestor keys. In addition, all group members share the group key provided by KDC.

When the group structure changes, KDC initiates the key update procedures by

sending encrypted messages to members. At this point, current proposals either

suppose pre-established trust relation between KDC and members or employ public

key operations to encrypt the messages.

In this paper, we propose a practically secure protocol to build efficient hierarchical

binary tree trust model for mobile ad hoc networks which has no trusted third party to

maintain the keys. Our proposal, which we call it as EDKM protocol, employs a

secure distributed model based on secret-key encryption algorithm and one-way hash

function. The EDKM protocol also includes group keying and group membership

change operations (single join/leave, multiple join/leave). For a balanced tree

associated to n users, each member holds (2K + 1) log2 n + K keys. Group multicast

message size for each addition and leave operation is 2(log2 n - l)(K + I).

We focus in the core idea of hierarchical binary tree model in Chapter 2.2. Secure

group formation and key agreement protocols are presented in Chapter 2.3.

Performance evaluation and security analysis of protocols are given in Chapter 2.4

and in Chapter 2.5, respectively.

2.1.1 Related Work

Although majority of research on security of ad hoc networks emphasize the secure

routing protocols, there are some proposals on key generation and distribution issues.

Zhou and Haas addressed security issues in ad hoc networks, and proposed security

services based on public-key cryptography [14]. Another proposed protocol, called

CLIQUES, makes improvement in the system capability to distribute session keys for

dynamic groups [121. CLIQUES uses Diffie-Hellman key establishment algorithm

and group manager has to perform 0(n) exponentiations for each group addition and

eviction. Authors assume each device in network has sufficient resources to run

consecutive 0(n) public-key crypto operations.

The use of HBT (Hierarchical Binary Tree) in group key management has been

proposed several times. In the proposed protocol by Wallner et al, each internal node

13

has a secret key and when the group membership changes each updated key is

encrypted with each of its children's keys and multicast to children [131. McGrew and

Sherman made an improvement to the hierarchical binary tree approach in their OFT

protocol and used one-way function tree to update the group keys [8]. In OFT, each

node's key is blinded using one-way hash function and each node knows its ancestors'

keys together with the blinded version of each ancestor's sibling key. In case of

change in the group membership, manager encrypts the new value of node's blinded

key with the blinded key of its sibling device and then multicast to appropriate

members. Thus, messages for adding or evicting a member carry log2 n keys. Perrig et

al proposed another protocol, called ELK, which uses HBT and pseudo random

number functions [10]. In their approach KDC refreshes the root key and updates the

whole tree keys in every time interval using PRF function. Dondeti et al proposed a

distributed group key management scheme for secure many-to-many communications,

called DTKM [5]. In their approach, key associations are designed to delegate the task

of key distribution evenly among the group devices. Updated keys are encrypted by

ancestor keys and multicast to the other members by the members in key association.

CTKM is an alternative HBT based protocol proposed by Caronni et al [3]. Similarly,

this protocol uses one-way functions to form the keys in the group. However, in

CTKM, all keying material is managed centrally by the Group Manager where all

joining participants have to register and share the secret. Since Group Manager

controls all the group keys, this brings a single point of attack and failure in the group.

2.2 Hierarchical Binary Tree Model

Hierarchical binary tree (HBT) consists of root node which locates at the top of the

tree and leaf nodes locating at the lowest level d. Each node in the tree is either leaf

14

node or parent of two nodes (internal node) and each leaf node corresponds to one

group member. Internal nodes hold their own keys and do not represent any member.

We call the internal nodes in the path starting from member's parent up to the root as

ancestor nodes and the set of ancestor nodes as ancestor set. Each internal node's key

is derived from one of its children keys and each node contributes to generation of

their ancestor node keys as long as node gets a new sibling or its sibling leaves the

group. This also brings the contribution of sibling member to the group key which is

the calculated final key of the root node.

The depth of the balanced binary tree is d=log2 n where n is the number of group

members. We assume a balanced HBT throughout this paper since it gives us more

efficiency in number of computation and in size of messages required for member

addition and eviction from the group. We don't employ any key distribution authority

or group manager, so the members get together without shared secrets. Maintenance

of the keys is totally performed by the group members in self-organizing manner. This

feature separates our proposal from several other recent proposals based on HBT [2, 3,

7, 101.

Each node is assigned a unique binary identity Id, which is used for locating the node

in the group. The length of the Id shows the depth of node. We illustrate the example

HBT trust model among eight devices in Figure 2-1. The binary streams noted below

the devices and above the internal nodes are uniquely assigned identity numbers.

Key Sharing Subgroup (KSS) is designed to provide key exchange between its

members. The main purpose of using KSS is to provide peer-to-peer secure transfer of

blinded key which is originally held by the sibling of ancestor nodes. When any

member leaves the group, sibling uses blinded keys to encrypt new group keys before

sending to group. Leaving member has no knowledge of blinded keys in use by its

15

sibling. Thus, forward secrecy is perfectly preserved. KSS contains member itself,

sibling and one selected child/grandchild device of each ancestor's sibling.

Root

d=2

000 001 010 011 100 101 110 111

Figure 2-1 Hierarchical one-way function binary tree model

Blinded version of the original key k is simply the result of BK(k, i) = h(k i) where h

is a one-way hash function, ® is a normal xor operator and i is the random index value.

One way hash function hides the original value of k and i into BK(k, i) in such a way

that the knowledge of i and BKdoes not give the attacker any information about k.

We give the brief algorithm Generate_KSS() to find members of KSS for the member

n in Figure 2-2. Generate_KSS algorithm returns the Id number of every member

locating in its own KSS.

In EDKM, authentication is the first step for alien device to sign up the group. First,

alien device chooses a sibling which already is a group member. Having agreed

session encryption key, both devices begin to talk securely and alien device becomes

the member of the group.

Regarding the example in Figure 2-1, n7 (101) desires to join the group. When we

apply the algorithm to generate KSS for n7, we get the members n2 (100), n8 (111) and

16

n5 (001). Member n7 obtains blinded keys BK(k2, i2) = h(k2 ia), BK(k48, i48) = h(k48

i8) and BK(k16, i5) = h(k16 i) from these members respectively.

Generate_KSS (n):
i= 1;

while (i <= depth_of_node (n))
{ Id,=Id;
exor th bit of Id, with "1";
if Id, is leaf address then add Id1 to KSS (n);
else if Id, is internal address

while Id1 is not leaf address
shift Id1 one bit left;

addld, toKSS(n);}
else

while Id, is not leaf address
shift Id, one bit right;

addld, t0KSS(n);}
increment (i);

Figure 2-2. Searching algorithm for members of Key Sharing Subgroup

Index values i2, i8 and i5 should be sent separately in the messages. Since the message

traffic is encrypted with previously agreed session key, neither other members nor

intruders can access to blinded keys. Keys of ancestor nodes are generated by the

formula of k = h(h(. . .h(kjeaf))). Here kiea1 denotes the key which belongs to one

member under this ancestor. In our proposal, after each change in group membership,

sibling of added or evicted member renews its own key and updates its ancestor keys

using the formula above. Since hashed values of the keys are computed in the upward

direction, any member performing the calculation of k cannot retrieve the original

value of kleaf.

17

2.3 Group Formation and Operations

In this chapter, we define the protocols to authenticate the members to the group and

describe the basic algorithms for join and leave operations.

A traditional way is to use public key cryptography for secret message encryption key

establishment [2, 6, 7, 12]. We construct our group authentication protocols based on

public key cryptography. Based on load-balancing requirement, the difference

between the depth of the shallowest device and the depth of the deepest device should

not be greater than two. Members can hold dynamically changing depth information

of the shallowest device in the group as well as their own depth information. Thus,

each member evaluates its own position availability to accept new sibling. The

notation we used in this chapter is given in Table 2-1.

Table 2-1. Notation

Symbol Meaning

AuthReg Authentication request
AuthRes Authentication response
KeyReg Group key request
KeyRes Response to key request
P, Public key of the userj
K Secret key generation key of j
Id1 Network identification of userj
GK Group key
Cert, Public key certificate of userj
BK Blinded key
h(x y) One-way hash function output of x exor y
E [SK, M] CBC mode encryption of the message M under the key

SK
PuE [P,, K] Public key encryption of K with the userj's public key P,

Time-stamp value of the message transmitted from userj
PdK A key derived from group join password
MACIlK, MI Message authentication code of M generated with key K
SK Established secret encryption/decryption key between

two users

fls

18

Generate random number ra.
Send Certa, ra and MAC code generated with PdK.

AuthReq: M= (Cert0 , ra), MAC[PdK, MI
Receive.
If Cert or MAC is not verified, then quit.
Assign identity Ida.
Generate random 128 bit K and encrypt K, with public key Pa.
Add time-stamp t.
Generate MAC code of message using K.
Send.

AuthRes: M = (Ida, Ida, Cert, PuE [Pa, Ks], t, re), MAC tiK, MI

Receive.
if r does not match to sent ra, then quit.

Decrypt K using private key Sa.
If Cert. or MAC is not verified, then quit.

Generate random 128 bit Ka and encrypt with public key P.
Insert time-stamp ta to the message along with t.

Send.

KeyReq: M= (Ida, Ida, PuE [Pc, Ka], ta, ta), MAC[Ka, MI

Receive.
If t does not match to sent t, then quit.
Decrypt Ka using private key S..
If MAC is not verified, then quit.
Compute secret message encryption key; SK = h (Ka Ks).
Generate KeyRes message which consists of GK, BK, index i,
ancestor keys (AK) and previously received time-stamp ta.
Encrypt the message, generate MAC code with SK.

Send.

KeyRes: M = (E[SK, (GK, BK, i, AK, ta)]), MAC[SK, MI

Receive.
If ta does not match to sent ta, then quit.

Compute SK = h (Ka Ks).
If MAC is not verified, then quit.

Decrypt the keys and store.

Figure 2-3. Group authentication protocol

w

Each device has its own public-private key pair (P,, S.) stored on the device.

Authenticity and integrity of the identity information and public keys are preserved

with X.509 standard certificates signed by Certification Authorities who are known to

other group devices. These methods are out of scope of this paper and reader is

referred to [91 for details. We assume each legitimate user has the knowledge of group

password which is required for join and each user has public key certificate to prove

identity prior to join.

Alien device sends a multicast join request to the group. Each member responds this

message unless the difference between its own depth and the depth of the shallowest

member is greater than one. This process helps us to build a load-balanced group after

join. Alien device, a, picks one of the responded members, n, as its sibling. In

proposed four-way protocol, devices simply exchange their public keys and establish

secret message encryption key. Detailed group authentication protocol steps are

presented in Figure 2-3.

2.3.1 Member Join Algorithm

Single Member Join: When a single device joins to group, authenticator member

becomes sibling and moves one level down. Sibling also generates a new leaf and

inserts it to the tree as a parent of both nodes.

In Figure 2-4, we envisage a mobile ad hoc network example formed by seven

devices. When the device n8 joins the group, n4 becomes its sibling. Sibling n4

generates the leaf n48 as a parent. Joined device n8 finds out members of its KSS by

executing Generate_KSS. Following message encryption secret key establishment

with each KSS member respectively, n8 requests blinded version of ancestor's

'I,]

sibling's key from KSS members. Each KSS member generates distinct i index value,

computes h(kancestor i) and sends this hash value back to the joining device along i.

In our example, first KSS member n6 generates i6, computes h(k16 $ i) and sends this

value to n8 together with i6. Next KSS member n2 generates i2, computes h(k27 $ i2) and

sends this value to n8 together with i2.These blinded keys are encryption keys to be

used for eviction/leave process. Message traffic between n2, n6 and n8 should be

encrypted with previously established secret message encryption keys. Sibling (n4)

generates its own key k4 and computes the key k48= h(k4). Keys k28 and k8 are updated

(k28'=h(k48), k18'=h(k28)) by sibling, respectively. Updating the ancestor keys provides

the backward secrecy. In order to inform other group members about modified

ancestor keys, sibling sends modified keys encrypted with previously obtained blinded

keys. Each member gets their modified ancestor key and blinded version of ancestor's

sibling key with multicast messages. Multicast messages also include corresponding

index values in plaintext format. For our example; n4 multicasts E[BK(k27), (BK(k48),

i48, k8), i27 to children of n27 and multicasts EBK(k16), (BK(k28), i28, k18)], i16 to

grandchildren of n16.

The last duty of sibling is sending E[SK48, (BK(k4), i4, k8)j to new member n4. In

order to reduce the number of messaging, KeyRes message consists of this encrypted

transmission. Joining member calculates upper ancestor keys and group key by

consecutive hashing operations.

Multiple Member Join: We suppose that group has n members and multiple join

operation is the mass join of i devices such that i is between n/2 and n. During mass

join, sibling of each joined member individually updates its ancestor keys and

multicasts the blinded keys and ancestor keys to the group. Final values of ancestor

keys are computed exor values of received ancestor keys. New root key is assigned as

21

a group key. Since each sibling sends (d- 1) different blinded keys and ancestor keys to

the group, the number of required computations increases linearly with the number of

joining device.

n14
flI8

'22 fl7 n2 n-, '' '8

Figure 2-4. Single member (n8) joins the group

2.3.2 Member Leave Algorithm

Single Member Leave: Modification of the keys in member eviction is very similar

process to the modification in join. Key modifications are executed by the sibling of

leaving or evicted device. Sibling member removes the parent leaf and locates to

parent's place. To preserve the forward secrecy, sibling renews the ancestor keys and

so the group key.

As illustrated in Figure 2-5, n2 leaves the group and sibling n7 replaces its parent.

Member n7 generates k7 and updates ancestor keys; k78= h(k7) and k18'= h(k78). Since

other group members do not have the renewed keys, n-, multicasts E[BK(k48), (BK(k7),

i7, k78)I, i48 to the children of n48.

Member n7 also multicasts E[BK(k16), (BK(k78), i78, k8)J, i6 to the grandchildren of n16.

Each device computes the renewed upper ancestor keys by applying consecutive hash

operations to received ancestor key.

fl2 fl7 fl4 fl8

-A

fl'8

Figure 2-5. Single member (n2) leaves the group

fl4 fl8

22

In our example, children of n48 compute k,8 = h(k78). Blinded key of n7, BK(k7), is

used to inform n7 by the children of n48 about future key modifications in a secure way.

Moreover, members locating under n,6 use BK(k78) to inform members locating under

n78 for future key modifications securely.

Multiple Member Leave: In case of mass leave, stayed members modify all ancestor

keys in a similar manner. Suppose that n2 and n8 leave the group. Leaf n27 and its

sibling n48 are removed from the group. Leaves n28 and n18 are renamed to n74 and n,4,

respectively. Each sibling individually updates the ancestor keys k74 and k14. Final

values of k74 and k,4 are computed with very same process mentioned in multiple

member join; k74= k74 k74" and k,4= k14' k14' where k74' and k4' represent the keys

updated by n7. Moreover, the keys k74 and k4 represent the updated ancestor keys by

114. Multicast messages for blinded keys to other group members are transmitted as

specified in single leave algorithm.

23

2.4 Performance Comparisons

In this chapter we analyze the EDKM protocol in terms of computational time and

message size requirements. We have selected four different group key management

schemes for comparisons. The notation we used throughout the chapter is shown in

Table 2-2.

In Table 2-3, we present the total size of unicast messages, size of multicast messages,

required computation from KDC and from group members for single and multiple join

case. In multiple join, we consider the worst case scenario which is adding n new

users to the group with n users. This scenario is accomplished with adding new sibling

to every cunent member. In equations, d shows the depth of the tree before joining

process.

Table 2-2. Notation

Symbol Meaning

PE Public key encryption
PD Public key decryption
E Secret key encryption
D Secret key decryption
d Depth of the tree
I Size of index in bits
K Size of key in bits
H Hash function
G Key generation
X Xor operation
KS Key setup between member and group manager
n Number ofjoining or leaving devices

In Table 2-4 we summarize the case of single and multiple eviction from the group.

We focus on worst case eviction scenario. Group has originally 2n members and half

of the members leave the group. In other words, sibling of each member leaves the

group and so the depth of the tree decreases by 1.

24

Table 2-3. Comparison of single and multiple join equations

Message Size
Unicast Multicast

EDKM S.Join d(K+J)+K 2(d-1)(K1)
M. Join n: d(K + I) + K n: 2(d 1)(K + 1)

OFT S. Join (d+3)K+I (d+ l)K
M. Join n : (d + 1)K + I + 2K (2n 2)K

ELK S.Join (d+l)K+I
M.Join n:(d+l)K+I -

DTKM S.Join 2dK (d- 1)K
CTKM S.Join dK dl

Computation
KDC Members

EDKM S. Join - G+d(2E + 2H + X + D) + H E
M. Join nG+d(2E + D + 2H + X) + (2n

-d- 1)X+H-E
OFT S. Join G +(d+ 1)H+ d(X+ 3E) (d+ 3)D + 2d(H+X)

M. Join nG+(4n-2)(H+X)+
(dn + 5n l)E

(d+3)D+2d(H+X)

ELK S. Join G + (4n - 2)E + (d + 3)E (d + 1)D + 2dE + 2E
M. Join (8n 2)E + nG + n(d + 3)E (d + l)D + (2d + 2)E

DTKM S. Join 2d(PE + PD) + (d - 1)E + d(X
+H)

CTKM S. Join (GM): KS + E + dH KS + D

DTKM [51 and CTKM [3] are examples of schemes which do not require to use

trusted third party, whereas OFT [8] and ELK [101 require to have real time key

distribution authority. As seen in Table 2-3, EDKM requires approximately twice

more unicast messaging than OFT and ELK require for joining operations. That is

because each member sends d authentication unicast messages during join. However,

EDKM performs better as for the number of required computations than the total

computations in OFT and ELK. Table 2-4 shows us that EDKM loses out to OFT and

ELK in comparison of multicast message size for leaving operations. As an obvious

reason, sibling of every leaving member sends d-1 multicast messages to update the

keys in EDKM. Note that in the ELK protocol, we have chosen n1+n2 = K to provide

25

the same level security with other schemes. When it comes to the number of required

computations for leaving operations, EDKM again achieves better results than the

other protocols.

Table 2-4. Comparison of single and multiple leave equations

Message Size

Unicast Multicast
EDKM S. Leave 2(d- 1)(K+I)

M.Leave n:2(d-l)(K+I)
OFT S. Leave I+(d+1)K

M.Leave - nI+(3n-2)K
ELK S.Leave - I+d(ni+n2)

M.Leave nI+(n-l)(n1+n2)
DTKM S. Leave (d l)K (d - 1)K
CTKM S. Leave (2d- 1)K

Computation
KDC Members

EDKM S.Leave G+(d-l)(E+X+H)+dH
M.Leave nG+d(2H+E+X)-(E+H)+

(2nd- 2)X
OFT S. Leave D(E +H +) D + d(H + JO

M. Leave (2n 2)H + (n l)X + (3n
2)E

(d + l)D + d(H + JO

ELK S.Leave 8dE dD5dE
M. Leave (7n - 3)E dD + 5dE

DTKM S.Leave (d-l)(PD+PE+E+X+H)
CTKM S. Leave (GM): G+(2d- l)E -

2.5 Security Analysis

The security of the EDKJVI group key management protocol relies on random

selection of private key at user side and the cryptographic security of used hash

function. Although there is no successful attack on full SHA1 and MDS algorithms,

one-way hash functions are not theoretically secure [1]. However, since the best

method known to break full hash algorithm is brute-force attack we accept one-way

hash functions are computationally secure [9]. EDKM provides the following security

features:

26

(1) Backward secrecy: Sibling of joining member generates new private key and

modifies the keys of ancestors with consecutive hashing operations applied to new

private key. New keys of the branch are transmitted to the other members after

encryption by blinded keys of ancestor's siblings, respectively. Since group key and

all keys on the branch are modified, joining device cannot access to any key used in

the past.

Each blinded key is specifically generated for only one member of the group. Index

values should not be repeated for blinding the same key. The security of blinded key

relies on the strength of mixing function (exor) and one-way hash function.

(2) Forward secrecy: Evicted member does not have the knowledge of blinded keys

that its sibling holds. Since all ancestor keys are renewed by the sibling after eviction

process, evicted user cannot access to future group communication keys.

(3) Group confidentiality: Nonauthorized users do not have access to any key used in

group communications unless they prove their credentials and authenticate to group.

(4) Free of collusions: Previous keys are not used in derivation of new keys. So, any

cooperation of evicted users cannot recover the future keys from the keys used in the

past.

2.6 Conclusions

In this paper, we presented and analyzed a framework for group key management in

mobile ad hoc networks. This framework consists of hierarchical binary tree based

group key distribution.

Our efficient hierarchical binary tree protocol, called EDKM, uses one-way hash

function and simple xor operations. EDKM achieves comparable overall performance

with the proposals which use secret-key cryptography and employ key distribution

authority.

27

Consequently, EDKM offers practical distributed key management for resource

constrained systems which has lack of key distribution authority.

2.7 References

[I] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: A
survey. Technical Report 95-09, University of Wollongong, July 1995.

[2] S. Capkun, L. Bunyan, and J. Hubaux. Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2(l):52-64,
January-March, 2003.

[31 G. Caronni, M. Waldvogel, D. Sun, and B. Plattner. Efficient security for large and
dynamic multicast groups. Proceedings of the Seventh Workshop on Enabling
Technologies (WET ICE'98), IEEE Computer Society Press, 1998.

[4] R. Di Pietro, L. V. Mancini, and S. Jajodia. Efficient and secure keys management
for wireless mobile communications. Proceedings of POMC'02, ACM, Toulouse,
France, October 2002.

[5] L. R. Dondeti, S. Mukherjee, and A. Samal. A distributed group key management
scheme for secure many-to-many communication. Technical Report PINTL-TR-207-
99, Department of Computer Science, University of Maryland, 1999.

[6] 5. Gokhale and P. Dasgupta. Distributed authentication for peer-to-peer networks.
International Symposium on Applications and the Internet (SAINT) 2003, pages 347-
353, Orlando, FL.

[7] A. Khalili, J. Katz, and W. Arbaugh. Toward secure key distribution in truly ad-
hoc networks. International Symposium on Applications and the Internet (SAINT)

2003, pages 342-346, Orlando, FL, 2003.

[8] D. A. McGrew and A.T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical Report No.0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May 1998.

[9] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied cryptography.
CRC Press series on discrete mathematics and its applications. CRC Press, 1997.

[101 A. Perrig, D. Song, and J. D. Tygar. ELK, a new protocol for efficient large-
group key distribution. IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2001.

[11] S. Rafaeli, L. Mathy, and D. Hutchison. EHBT: An efficient protocol for group
key management. Proceedings of the Third International C0ST264 Workshop (NGC
2001), Springer-Verlag, LNCS 2233, pages 159-17 1, London, UK, November 2001.

28

[121 M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group
key agreement. Technical Report RZ 2984, IBM Research, December 1997.

[131 D. Waliner, E. Harder, and R. Agee. Key management for multicast: Issues and
architectures. RFC 2627, June 1999.

[141 L. Zhou and Z. Haas. Securing ad hoc networks. IEEE Network Magazine, 13(6),
November-December 1999.

29

CHAPTER 3

EFFICIENT SELF-ORGANIZED KEY MANAGEMENT
FOR MOBILE AD HOC NETWORKS

Ozkan M. Erdem

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97331

Proceedings of IEEE Global Telecommunications Conference

Globecom' 2004 Security and Network Management Symposium

Dallas, TX, USA, December 2004.

30

Abstract

In mobile ad hoc networks, authentication of users and management of group keys

require more specialized solutions than traditional security protocols. Mobility of the

users and unavailability of trusted central servers are major known issues for mobile

networks. In this paper, an efficient and practical solution has been proposed for group

key management problem. Members authenticate each other with fast and efficient

hybrid key establishment scheme which combines elliptic curve cryptography,

modular squaring operations and secret key encryption algorithm. The proposed group

key management model is based on hierarchical binary trees. Users exchange the

group secret keys and form an ad hoc group in distributed and self-organizing manner

with no central control. This paper also discusses the total backward and forward

security in case of modification in membership. Finally, the proposed group key

management system is scalable and respectful to the constraints of ad hoc networks. It

also has comparable efficiency to the other HBT based key management protocols

which employ real time key distribution authority.

31

3.1 Introduction

Ad hoc network devices are usually mobile and the devices perform networking

functions in a self-organizing manner. Mobility changes the topology of the network

frequently; nodes can relocate often, leave one ad-hoc group and join to another group

rapidly. Due to mobility of devices, traditional security models designed for fixed-

network topologies may not be fully applicable in ad-hoc networks. Securing mobile

ad hoc networks has brought new challenges and opportunities in terms of trust model,

key management, and the standard security services such as confidentiality,

authentication and integrity.

The problems of securing the communication between mobile devices and

management of group confidentiality keys are studied in this paper. Recent studies

introduce three different general key management schemes to mobile networks. The

trusted central authority scheme employs single or multiple servers to establish the

trust among devices and to manage the keys [3, 101. Kerberos is a well-known

example of this method [7]. However, because of on-line availability issue of this

trusted server and lack of central control over the mobile network structure,

centralized security solution may not work for ad hoc networks [15]. In second type of

scheme, key information is distributed among devices prior to forming the group. This

scheme is especially suitable for computationally weak devices. However, pre-

distribution of keys can be performed only if devices have prior trust relationship.

Besides, memory and bandwidth efficiency in this scheme significantly decreases

when the number of devices increases. In a third and widely accepted method, security

does not rely on any trusted authority or fixed central server; devices establish self-

organized trust relations using asymmetric cryptography [4, 15]. The use of public key

techniques along with the key certificates can help to overcome the difficulty of peer-

32

to-peer key establishment. Also, compromise of any device does not pose a security

risk to traffic between other devices. There are some recent proposals based on

modular exponentiation techniques for the management of encryption keys. However,

portable devices usually have constraints in computational capability, bandwidth and

battery power to afford computationally expensive operations. Using modular

exponential techniques may not be possible for the network formed by resource

constrained portable devices.

In this paper, hybrid authenticated key establishment protocols and practically secure

and reliable group key management scheme are proposed. Hybrid cryptography is a

combination of elliptic curve cryptography (ECC), secret key cryptography, modular

squaring (as proposed in Modified Rabin's Signature scheme 1141) and one-way hash

functions. Using hybrid combination provides a significant decrease in computational

efforts required to encrypt/decrypt messages and increased communication reliability

with decreased message bandwidth.

The proposed group key management scheme builds hierarchical binary tree trust

model to form the group, which has no trusted authority to maintain the keys. The

proposed scheme also includes group re-keying operations in case of modifications in

membership (member join and member leave). Basic confidentiality services provided

by the scheme are listed in the following:

Backward and Forward Secrecy: In case of join at the time of t=T, group secret keys

should be updated in such a way that added user should have no access to any key

used in the group at the time t<T. In case of eviction from the group at the time of t=T,

group secret keys known to the evicted user should be updated in such a way that

evicted user should have no access to any key used in the group at the time t>T.

33

Collusion freedom: None of the evicted users or coalitions could generate the current

or future group keys from the keys used in the past.

3.1.1 Related Work

Usage of ECC has been proposed several times in wireless key agreement protocols.

ECMQV protocol with implicit certificates [5], the Elliptic Curve Diffie-Heliman

Ephemeral (ECDHE) protocol 11121 and Aydos-Y-K key agreement protocol [11 are

major ECC based key agreement schemes. However, all of the schemes mentioned

above require at least three expensive point multiplication operations on each side if

entity and key authentication are provided.

Hierarchical binary tree (HBT) is one of the previously studied techniques to manage

the keys in distributed group structure [4, 6, 8, 111. Most of the relevant proposals

involve a key distribution center (KDC), which maintains a tree of keys and manages

the group structure. McGrew and Sherman used one-way function tree to update the

group keys in OFT protocol [8]. In OFT, each node's key is blinded using one-way

hash function. In case of change in the group membership, manager encrypts the new

value of node's blinded key with the blinded key of its sibling node and then multicast

to appropriate members. Perrig et a! proposed another protocol, called ELK, which

uses HBT and pseudo random number functions [10]. In their approach KDC

refreshes the root key and updates the whole tree keys in every time interval using

PRF function.

Dondeti et al proposed a distributed group key management scheme for secure many-

to-many communications, called DTKM [61. DTKM protocol exchanges the keys

between members of a key association group using public key cryptography. Updated

keys are encrypted by ancestor keys and multicast inside of the key association group.

34

CTKM is an alternative HBT based protocol proposed by Caronni et al [41. However,

in CTKM, the Group Manager manages all keying material centrally where all joining

participants have to register and share the secret. GM (Group Manager) controls all

the group keys, and this makes GM a single point of attack in the group.

3.2 Hierarchical Binary Tree Model

Hierarchical binary tree (HBT) consists of a root node, internal nodes and leaf nodes

at the lowest level d. Each leaf node corresponds to one group member and carries a

personal secret key. Internal nodes do not represent any user. Internal nodes in the

path starting from leaf (member)'s parent up to the root are called as ancestor nodes

and the set of ancestor nodes is called as ancestor set.

In case of modification in membership, a selected member becomes a sibling of

joining or leaving member. Sibling renews its own personal secret key and applies

consecutive hashing operations to renewed key in upward direction to refresh ancestor

keys. Calculated root key becomes a new group encryption key.

The depth of the balanced binary tree is d = log2 n, where n is the number of group

members. A balanced HBT is assumed throughout this paper since it gives more

efficiency in terms of required computations and required message bandwidth for

member addition and eviction from the group. The proposed scheme does not employ

any key distribution authority or group manager; members get together without shared

secrets. Maintenance of the keys is totally performed by the group members in self-

organizing manner. This feature separates the proposed scheme from several other

schemes based on HBT.

35

3.3 Authenticated Hybrid Key Establishment Protocol

Authenticated hybrid key establishment protocol uses hybrid cryptography which

comprises modular squaring, elliptic curve point multiplication, one-way hash

function and secret key cryptographic algorithm. Using elliptic curve cryptography

has advantages of smaller key lengths, faster processing speed and less

communication overhead which exactly fit to requirements of mobile network formed

by low-powered devices. Every user chooses a public-private key pair and has the

public key certified by any certification authority before joining the mobile ad hoc

group. Verification of implicitly certified key consumes less bandwidth and

computational power. Therefore, public keys are implicitly certified by certification

authorities in one-time off-line process.

Users select and share an elliptic curve E defined over GF(,p), a base point P and large

order s. Certification authority CA chooses rn-bit random prime numbers f and g,

which provide the condition off 3 (mod 8) and g 7 (mod 8). CA's public key

modulus for the Modified Rabin's Signature algorithm SflCA = fg and private key is

dcA = (ncAfg+ 5)18.

Each user U chooses a random private key d E [2, s 2] and computes the public key

Qu = du x P. User U provides Idu and Qu to CA. This out-of-band communication

should be performed securely. Following the verification of user identity, CA

generates a time-stamp value tu and computes the hash values of Id and t,

respectively. Next, CA computes the xor of (Y = h(Id) II h(t)) and (Qu = Qu.x II

Qu.y), where h shows one-way hash function. Previously identified redundancy

function R is applied to the result of (Qu Ye). This step is crucial in Rabin's scheme

to prevent existential forgery attacks. Thereafter, CA encrypts the output of R(Qu

36

Y) with its private key dcA and gets the public key constructor Pu of user U; (Pu = (R

IQ\\dCAU + 1U)) mouncA

CA finalizes the certification process by sending (Ida, Pu, tu) back to the user U.

Having certification response message, U computes Y = h(Id) II h(tu) and decrypts

Pu by squaring Pu modulo flCA (Su = Pu
2 mod flCA). After applying reverse

redundancy function K' to S, U accepts the received implicitly certified public key

only if the result of (R'(Su) Yu) is equal to its own public key Qu.

3.3.1 Authentication to Mobile Ad Hoc Group

Every joining user has to prove its identity and the knowledge of group password to a

selected group member, called Authenticator. Process begins with multicast join

request message sent to the group. Based on load-balancing requirement, each

member in HBT responds this message unless the difference between its own depth

and the depth of the shallowest member is greater than one. Members can hold

dynamically changing depth information of the shallowest node in the group as well

as their own depth information. Joining user picks one of the responded members as

Authenticator and initiates the authenticated key establishment algorithm.

Definition 1: Blinded version of the key k is the result of BK(k, i) = h(k ® i) where h

is a one-way hash function, ' is a normal xor operator and i is the random index value.

One way hash function hides the original value of k and i into BK(k, i) in such a way

that the attacker cannot recover k with the knowledge of i and BK.

Each group member knows a personal secret key, blinded sibling key, original

ancestor keys and blinded ancestors' sibling keys.

37

Definition 2: A Key Sharing Subgroup (KSS) of member U is a subset of group

members in which every member establishes secret session keys and shares blinded

keys with the user U.

Authenticator sends the list of its own KSS members along with their public keys to

joining user during authentication.

The main purpose of using KSS is peer-to-peer secure transfer of blinded keys. When

any member leaves the group, sibling encrypts new group keys using previously

obtained blinded keys before sending out. Leaving member has no knowledge of

blinded keys that sibling holds. Thus, forward secrecy is perfectly preserved.

Mutual authentication and hybrid key establishment algorithm between new user U

and authenticator A is illustrated in Figure 3-1. The protocol steps are executed as in

follows:

i. User U generates Authentication Request (AuthReq) message which

contains M = (Ida II Pu II tu) and MAC value of M which is generated by group

password Pwd.

ii. A checks the validity of time-stamp t; if tis not valid, then A aborts

the protocol. A also verifies the MAC value of M by using group password Pwd as a

MAC key. If MAC value is not valid, then A aborts the protocol. Next, A decrypts P

and extract the hidden public key Q of U. Decryption is a simple operation which is

squaring Pu modulo nCA and then applying inverse redundancy function to the output

5u A computes (Qu = Y) to extract the public key Qu. The protocol assumes

that both users make equal contributions to session encryption keys. A generates

random k-bit number r as its own contribution. Thereafter, A sends its own identity

IdA, public key constructor PA, time-stamp tA and generated rA back to U in

Authentication Response (AuthRes) message.

iii. U checks the validity of tA which is received in AuthRes and aborts

the protocol in case of failure in verification. Then, U recovers the hidden public key

of A; applies inverse redundancy function to decrypted PA and then computes QA = SA

Y where YA = h(IdA) II h(tA).

iv. Both users derive the shared key as in follows: User U performs an

elliptic curve point multiplication G = d x QA = d x dA x P, where user A performs a

similar type of multiplication by using its own private key dA and Qu; G = dA X Qu =

dA x d x P. Shared key Gx is the most significant 128 bits in x coordinate of point G.

v. User U generates a random k-bit number ru as its own contribution to

the session encryption key. This contribution value is concatenated to r and

encrypted using secret key encryption algorithm and the shared key Gx. Encrypted

message is sent back to A in Key Confirmation Request (KeyConfReq) message.

vi. A decrypts the received message using secret key decryption

algorithm and the key Gx. Next, A verifies the value of rA and recovers ru in the

decrypted message. If verification of rA fails, then A aborts the protocol.

vii. Hybrid key establishment protocol proposes to generate two different

keys, each in 128 bits length. Session link key (SKey) is used to encrypt the session

communication and MacKey is used to provide message authentication code along

with MAC algorithm. Both parties derive SKey by concatenating the most significant

64 bits of each shared value, and hashing the output as seen in the formula; h(MSB

(Ta) II MSB64 (Gx) II MSB64 (rA)). The most significant 128 bits of the hash result form

the SKey. MacKey is generated by slightly different technique; both users concatenate

the least significant 64 bits of each shared number and hash the result as given in the

following formula; h(LSBM (ru) II LSB (Gx) II LSB64 (TA)). Here, the most significant

128 bits of hash output form the MacKey.

39

viii. Authenticator A moves one level down in tree and becomes the

sibling of new member U. New node is generated and inserted to the tree as their

parent. For the sake of backward secrecy, all ancestor keys and group key must be

changed. A renews its k-bit personal secret key kA and computes its ancestor keys with

consecutive hashing operations applied to kA in upward direction. For instance, parent

node's key is computed as kAu = h(kA). Grandparent's key is calculated as h(h(kA)),

and so on. Computed root key is used as a new group key GK. A also generates

blinded kA with randomly chosen is-bit length index

ix. A encrypts (KSS(A) II BK(kA, 'A) II II kAu) by SKey and computes the

MAC value by using MacKey. Then, A sends encrypted and authenticated message

back to the user U. KSS(A) contains (Id II P It) information for each former sibling of

A. Thus, each new user gets d-1 different (Id II P lIt) entries for d-I members of KSS,

where d denotes the depth of tree after new join.

x. After successful verification of MAC value, U decrypts the encrypted

message and obtains KSS(A), BK(kA , 'A), A and parent key kAu. Then, it generates a

random k-bit personal secret key k and computes the ancestor keys and group key

GK by applying consecutive hashing operations to kAu. U also adds the entry of (IdA II

PA II tA) to KSS(A) and stores the new list as KSS(U). Authenticator A adds the entry of

(Ida II Pu II t) to KSS(A) and stores.

40

User (U) Authenticator (A)
Size k, index size is, modulus PiCA and password Pwd are shared.

SendAuthReq:{M=(Id II P H ta), MAC[Pwd,MI}

Receive

If t, is not valid, then abort.
Compute YA = h(IdA) II h(tA)
SA = PA2 mod flCA. SA = R' (SA)
Compute QA = SA YA

Compute G = d X QA
Gx = MSB128(G.x)
Generate random k-bit ru.

Receive

If tu is not valid, then abort.
If MAC is not valid, then abort.

Compute Yu = h(Idu) II h(tu)
sj = PU RCA. S = R -1

(Se)
Compute Qu = Su Yu

Generate random k-bit r.
AuthRes: { Id,, PA, tA, rA

Send AuthRes
Compute G = dA X Qu

Gx = MSB128(G.x)

Send KeyConJReq: c=E [Gx, ru II rA]
Receive

D Gx, c] = r0 II r
If r,. is not present, then abort.

SKey = MSB128 (h(MSB ru II MSBM Gx II MSBM rA))
MacKey = MSB128 (h(LSB64 ru II LSB64 Gx II LSB TA))

Generate a new k-bit kA and random is-bit index A

Compute Ancestor Keys and GK
ms= E[SKey, KSS(A) ii BK(kA , i) II ku]

KeyConfRes: {ms, mv=MAC[MacKey, ms] }
Send Key Co nfRes

Receive

Compute my = MACMacKey, msl
If my my, then abort.
D[SKey, msl= KSS(A) 1 BK(kA LA) II A II kAu

Generate a new k-bit k
KSS(U) = KSS(A) II (Id, 1 A 'I tA) KSS(A) = KSS(A) II (IdLi II P II t)

Figure 3-1. Authentication to the mobile ad hoc group

3.3.2 Key Establishment with KSS Members

After the completed sign up process, new user U recovers the public key Qv of every

user V locating in its KSS. The method to recover Qv is the same method used for

recovering the public key QA of authenticator A. Then, user U initiates a simplified

authenticated key establishment protocol with each user V in KSS(U). This simplified

protocol is shorter than the protocol given in previous chapter.

As illustrated in Figure 3-2, protocol assumes that user U has already recovered the

Qv and starts by sending its public key constructor. Thus, the real-time

communication consumes less message bandwidth and requires smaller number of

computations. This is especially beneficial when the protocol has to repeat d-1 times

to establish secret keys with d-1 different users. After completion of each secret key

establishment protocol, user U securely gets blinded key of ancestor's sibling and

corresponding blinder index from each KSS member.

The last phase in user join is informing other group members about modified keys. In

order to do this, authenticator multicasts the modified keys in encrypted format.

Encryptions are performed using blinded keys, which were obtained when

authenticator joined to group. Each member gets modified ancestor keys and blinded

ancestor's sibling key with multicast messages. Multicast messages also include

corresponding index values in plaintext format.

42

User (U) User (V)
Size k and modulus TiCA are shared. Qv is recovered by U.

Compute G = x Qv
Gx = MSB128(G.x)
Generate random k-bit ru.
Send KeyAgReq: { Id II P II tjj, E [Gx, rul

Receive
If tj is not valid, then abort.

Compute Yu = h(Idu) II h(tu)
SU=PU2modnCA .S = R' (So)

Compute Qu = Su Yu

Compute G = d x Qu
Gx = MSB128(G.x)

Generate random k-bit rv.
C E[Gx,rvllrul
Send KeyAgRes: Cv

Receive
D ILGx, cvI = rv II ru
If r is not present, then abort.

SKey = MSB128 (h(MSBM ru II MSB64 Gx II MSB64 rv))
MacKey = MSB128 (h(LSBM ru II LSB64 Gx II LSB64 rv))

Send KeyConfRes: my = MAC[MacKey, rvl

Receive
Compute my = MAC{MacKey, rvj

If mv my, then abort.

Figure 3-2. Authenticated key establishment with KSS members

As an example, n5 joins the group in Figure 3-3. First, authenticator n2 renews its own

key k2 and refreshes the ancestor keys: k25=h(k2), k24=h(k25) and k14=h(k24). Then, it

sends new parent key k25, blinded k2 and index i2 to n5 encrypted by established secret

key. Later, n5 computes k24'=h(k25) and k14=h(k24). It also establishes distinct secret

keys with n1 and n4, which are the members of KSS(n5). Finally, n5 securely gets

blinded k13 from n, and blinded k4 from n4.

fl'4

flu fl3 fl2 fl4

flu4

fl5

Figure 3-3. User n5 joins the group

43

Since KSS(n2) contains n1 and n4, blinded keys obtained from these users should be

used to encrypt multicast messages. Thus, n2 sends E[BK(k4, i4), k24' II BK(k25, i2) II i2

with index i4 to 114 and multicasts EBK(k,3, i,), k,4 II BK(k24, i2) li2] with index i, to

children of fl1, where E[k, MI refers to secret key encryption of M using the key k.

Other members simply use index came along with message to find the corresponding

blinded key and to decrypt the message. Since each message carries only one

modified ancestor key, rest of ancestor keys in upward direction and root (group) key

are computed by applying consecutive hashing operations to the received ancestor key.

Back in the example; 114 needs to apply hash function to k24' to find the new value of

group key, k,4.

3.3.3 Member Leave Algorithm

In case of member leave, sibling of the leaving user removes the parent node and

locates to parent's place. However, since the leaving member knows the group key

and its ancestor set keys, it can easily read the future group messages. Forward

44

secrecy is preserved by changing all the keys that leaving user knows. As in join

algorithm, sibling of leaving user manages all necessary key modifications.

When n2 leaves the group, n5 replaces its parent and renews its own key k5. It also

refreshes ancestor keys using hash functions; k54 = h(k5) and k14' = h(k54). Later, it

provides modified keys to other members in a secure way. Blinded keys, which are

obtained during join of sibling, are used to encrypt the modified keys before

transmission. First, n5 generates the blinded versions of its new key k5 and parent key

k54 using randomly generated index i5. Then, it sends E[BK(k4, i4), k54 II BK(k5, i5) H i5]

with index i4 to n4, and the message E[BK(k13, i1), k14' II BK(k54, i5) li5] with index i1

to the children of n13. As in join algorithm, each member decrypts messages using

index values and computes the refreshed ancestor keys in upward direction by

applying consecutive hash operations to received ancestor key. In the example, n4

computes k14 = h(k54). As a last step, every group member who has the entry of (Id2 II

II t2) in its KSS, replaces it with (Id5 II P,5 II t5).

3.4 Security Evaluation

Authentication of user is accomplished by using implicit certificate which binds the

public key of user to the unique identity. Note that, public keys can be calculated only

by using authentic public modulus rZCA. Therefore, man-in-the-middle type attacks are

mostly prevented. Moreover, implicit key confirmation is provided in protocol by

added KeyConfReq and KeyConfRes messages. The final established keys are derived

by equal contribution from each user. Thus, no single user has the entire control on

derivation of secret keys.

Since the security of overall scheme also relies on secret-key encryption, encryption

algorithm must be properly implemented. In case of using ECB encryption mode for

45

KeyConfReq, attacker is able to perform modification attack by concatenating

fabricated value of E[Gx, ru] to the true value of E[Gx, rA] and resending back to A as

if it is originally coming from U. Cipher Block Chaining (CBC) mode of encryption

can be used to prevent this type of modification attacks. Existential forgery is possible

with inappropriate choice of a redundancy function R in modular squaring. For

instance, in case of R(m) = m, an adversary can select any integer a E ZnCA* and

squares it to get m = a2mod n. Then, a is a valid signature for fabricated mwithout

the knowledge of private key. It is strongly recommended to use the redundancy

function R as specified in ISO/IEC 9796 digital signature standard. Also, using

Modified Rabin's Signature scheme [141 for modular squaring overcomes the problem

of finding square root in signing process.

The security of proposed group key management scheme relies on random selection

of personal secret key at user side and the cryptographic security of used hash

function. SHAI and MD5 hash algorithms are not theoretically secure. However,

there is no successful attack on full round algorithms other than brute-force [2].

Proposed group key management mechanism provides the following security features:

(1) Backward and forward secrecy: Sibling of joined member generates a new

personal secret key and modifies the keys of ancestors with consecutive hashing

operations applied to new key in upward direction. New keys of the branch are

encrypted by blinded keys of ancestor's siblings before transmission to group. Since

all keys on the branch are modified, new member cannot access to any key used in the

past. Evicted user does not have the knowledge of the blinded keys that its sibling

holds. Since all ancestor keys are renewed by the sibling after eviction process,

evicted user cannot access to future group encryption keys.

46

(2) Free of collusions: Previous keys are not used in derivation of new keys. So, any

cooperation of evicted users cannot recover the future keys from the keys used in past.

3.5 Performance Analysis

The proposed key establishment protocols are simulated on highly integrated RISC

processor, ARM920T, which is widely used microprocessor in wireless handheld

devices and mobile phones. Simulated device has 133 MHz clock rate and uses 32-bit

ARM instruction set. Practical and efficient elliptic curve cryptography library has

been designed over GFp), where p is prime modulus.

Modular arithmetic module performs an improved version of Montgomery

multiplication algorithm with modulus p for ECC operations and with 1024 bits

modulus for modular squaring [91.

Table 3-1. Comparisons of ECC based key establishment protocols

Algorithm
Comparison

Random
Point
Mult.

Fixed
Point
Mult.

Modular
Multip.

Comm.
Complexity

ECDHE 2 3 1796 bits
ECMQV implicit 2 1.5 1478 bits
Aydos-Y-K 1 2 1730 bits
Proposed 1 - 1 1632 bits

The scalable point arithmetic module is implemented only in 28 KB of code size for

160 bits key-length ECC curve. Jacobian coordinates have been used to represent

points in the most time-efficient way. AES secret key encryption algorithm is selected

with 128 bits key length, 128 bits block length and CBC (Cipher Block Chaining)

mode of operation. SHA-1 hash algorithm is selected for hashing operations, which is

implemented as standardized in FIPS 180-1.

47

Key establishment with KSS members repeats d-1 times in user join, where d shows

the depth of tree after join. Comparison results are given in Table 3-1 for several ECC

based key establishment protocols. The "Proposed" refers to the protocol for

authenticated key establishment with KSS members, since this protocol is the most

computationally intensive part of join process. Table 3-1 also compares the

communication complexities in terms of total message size.

Real-time execution of key establishment with KSS members has three exchanged

messages. Each user performs four hashing operations, one elliptic curve random

point multiplication, one modular multiplication (squaring) with 1024 bits modulus,

one symmetric key operation (encryption or decryption), one xor operation, one MAC

computation and one random number generation. Random point multiplication takes

45.1 ms for the 160 bits ECC curve and squaring with 1024 bits modulus takes only

1.2 ms. Hashing and symmetric encryption/decryption are much less time consuming

operations than expensive elliptic curve multiplications. Therefore, timings for these

operations are ignorable. Efficiency of the proposed protocol lies in reduced number

of expensive point multiplications.

As seen in Table 3-1, proposed protocol has comparable bandwidth efficiency and

requires less computation than other ECC based key establishment protocols.

Communication complexity is calculated as choosing k = 128, 64 bits Id, 32 bits time-

stamp (t) and 1024 bits modulus.

48

Table 3-2. Comparisons of the costs for user join and leave operations

Message Size Required Computation
Unicast Multicast Key Members

Distribution
Center

Proposed Join d(k+is)+k 2(d- l)(k + G+d(2E+2h + X
is) +D)+hE

Leave 2(d- 1)(k+ G+(d- l)(E+X+
is) h)+dh

OFT Join (d+3)k+is (d+1)k G+(d+1)h+ (d+3)D+ 2d(h+
d(X+3E) X)

Leave is+(d+ l)k d(E+h+X) D+d(h+X)
ELK Join (d + 1)k + is G + (4n - 2)E (d + l)D + 2dE +

+(d+3)E 2E
Leave is + d(ni + 8dE dD + 5dE

fl2)

DTKM Join 2dk (d I)k 2d(PE + PD) + (d
l)E+d(X+h)

Leave (d- l)k (d- 1)k (d l)(PD + PE +
E+X+ h)

CTKM Join Dk d.is (Group Man): KS + D
KS + E + dh

Leave (2d 1)k (Group Man):
G+(2d- l)E

Each user should contact to d=log2 n member to complete the join process, where n

refers to number of members. The performance results of the proposed group key

management scheme and selected HBT based schemes are compared. Evaluation is

based on the number of required unicast and multicast messages and computation

overload for each join and eviction. Table 3-2 presents the cost of re-keying for each

join and leave process to the group in terms of total message size and computations

required. The notation used throughout the tables is given in Table 3-3.

Table 3-2 shows that KDC employing schemes require smaller number of

computations for members. However, these schemes transfer the major part of the

computational load to KDCs. Although DTKM does not employ any KDC, group re-

keying with public key cryptography makes DTKM slower than the proposed scheme.

49

The number of unicast messages is comparable to other schemes. However, sibling

sends Out additional d-1 multicast messages for each join and eviction. Thus, proposed

scheme uses more bandwidth than other schemes for multicasting. Note that, n1 + n2 =

K is chosen for the ELK protocol to provide same level security with other schemes.

Finally, every member in the proposed scheme holds (2d + 1) keys, d indexes and d

entries of (id II P11 t) for the group key management.

Table 3-3. Notation

Symbol Meaning

d Depth of the tree
E Secret key encryption operation
K Size of secret key in bits
D Secret key decryption operation
Is Size of index in bits
PE Public key encryption operation
n Number of group members
PD Public key decryption operation
G Key generation
X Xor operation
h Hash function
KS Key setup process between member and group

manager

3.6 Conclusion

In this paper, a practical and efficient group key management framework is presented

for resource constrained mobile ad hoc networks. The proposed HBT based model

does not require any central key management authority or group manager, and

achieves comparable performance with the models which use secret key cryptography

and employ key distribution authority. Customized hybrid authenticated key

establishment protocols are presented for more efficiency in membership modification.

50

According to the comparisons, proposed hybrid protocols achieve comparable results

in terms of bandwidth efficiency and better results in terms of processing time.

3.7 References

liii M. Aydos, T. Yanik and C. Koc. An high-speed ECC-based wireless
authentication protocol on an ARM Microprocessor. Proceedings of ACSAC'2000,
New Orleans, LA, December 2000.

[2] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: A
survey. Technical Report 95-09, University of Wollongong, July 1995.

[3] S. Capkun, L. Buttyan, and J. Hubaux. Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):52-64,
January-March, 2003.

[4] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner. Efficient security for large and
dynamic multicast groups. Proceedings of the Seventh Workshop on Enabling
Technologies (WET ICE'98), IEEE Computer Society Press, 1998.

[5] Certicom Research, Standard for efficient cryptography, SEC 1: Elliptic Curve
Cryptography, Version 1.0, September 2000.

[6] L. R. Dondeti, S. Mukherjee, and A. Samal. A distributed group key management
scheme for secure many-to-many communication. Technical Report PINTL-TR-207-
99, Department of Computer Science, University of Maryland, 1999.

[7] 0. M. Erdem. High-speed ECC based Kerberos authentication protocol for
wireless application. IEEE GLOBECOM'2003 Communication Security Symposium,
San Francisco, CA, December 2003.

[8] D. A. McGrew and A.T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical Report No.0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May 1998.

[9] P. L. Montgomery. Modular multiplication without trail division. Mathematics of
Computation, Vol. 44, No. 170, pg. 5 19-521, 1985.

[10] A. Perrig, D. Song, and J. D. Tygar. ELK, a new protocol for efficient large-
group key distribution. IEEE Symposium on Security and Privacy, Oakland, CA, May
2001.

[11] S. Rafaeli, L. Mathy, and D. Hutchison. EHBT: An efficient protocol for group
key management. Proceedings of the Third International C0ST264 Workshop (NGC
2001), Springer-Verlag, LNCS 2233, pages 159-171, London, UK, November 2001.

51

[121 SECG, Elliptic Curve Cryptography, Standards for Efficient Cryptography Group,
2000. Available from http://www.secg. org/collateral/sec 1 .pdf.

[131 M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group
key agreement. Technical Report RZ 2984, IBM Research, December 1997.

[141 H. C. Williams. A modification of the RSA public-key encryption procedure.
IEEE Transactions on Information Theory, 26 (1980), 726-729.

[151 L. Zhou and Z. Haas. Securing ad hoc networks. IEEE Network Magazine, 13(6),
November-December 1999.

52

CHAPTER 4

LIGHTWEIGHT KEY ESTABLISHMENT PROTOCOLS
FOR SELF-ORGANIZING SENSOR NETWORKS

Ozkan M. Erdem

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97331

To be submitted to IEEE 2 Annual Communication Society Conference on

Sensor and Ad Hoc Communications and Networks, SECON'OS

Santa Clara, CA, USA, September 2005.

53

Abstract

Introducing mutual authentication and link encryption to the communication between

sensor and data processing station requires more specialized approaches since sensors

have constraints in battery power, communication and computational capabilities.

Public key cryptography based schemes offer self-organized trust establishment.

However, constraints in resources make fully public key operations not affordable on

sensor networks. This paper presents three different authenticated key establishment

protocols which combine public-key cryptography, secret-key cryptography and one-

way hash functions. Objective of the proposed protocols is to avoid using expensive

modular exponential and elliptic curve point multiplications. Sensor needs to make

only modular or cyclic convolution multiplications, and expensive public key

decryption operation is executed at the station side. Proposed schemes mutually

authenticate the sensor and station before they initiate the secure data communication

and establish distinct keys for every session. The proposed schemes are also

implemented on Texas Instruments MSP43O microcontroller with small code size and

achieved the least sensor processing time and the lowest battery power consumption in

comparison with fully public key cryptography based protocols.

54

4.1 Introduction

Wireless sensor networks offer economical real-time data processing solutions to wide

variety of applications in dynamic and complex environments. Deployment of

inexpensive sensor networks became more feasible with continuous technological

improvements in ad hoc networking protocols, embedded systems and low-cost

wireless communication. Sensor node is a battery powered microprocessor integrated

with sensor equipment and short-range radio communications. In near future,

hundreds or thousands of sensor nodes are expected in every sensor networks.

Potentially, sensor networks serve to both civilian and military applications, including

operation control, surveillance, vehicle tracking, environment monitoring, health care

and maintenance of manufacturing systems.

The privacy and security in wireless sensor networks become essential when the

security of deployment area cannot be provided. Primarily, each sensor behaves as a

potential point of several physical and logical attacks. Attackers can capture and

reprogram individual sensor nOdes. Due to wireless nature of sensor network,

transmission between nodes can easily be monitored and private sensed data or

control information can be disclosed. Finally, adversaries induce battery exhaustion,

prevent the functionality of network or maliciously use the subset of nodes for illegal

purposes.

Tamper resistant hardware solutions could make reprogram of captured node

infeasible. However, sensor nodes are inexpensive, low powered devices with limited

computational and communication resources. Production of tamper resistant and

robust nodes may not be economically viable option. Therefore, one must rely on

software based security solutions against possible attacks and assume that subset of

nodes is compromised. Encryption of communication between nodes and node-to-

55

node authentication are crucial building blocks of sensor network security. Node-to-

node authentication provides several advantages, such as initial link key establishment

between nodes and revocation of malicious nodes. However, design of light-weight

authentication and link key establishment protocols is a rich research field and stays as

an open problem.

Key establishment schemes can be classified into three different categories. The

trusted central authority scheme employs a single or multiple servers to establish the

trust among nodes and to manage the keys, e.g. Kerberos [201. Self-organizing sensor

networks usually do not have trusted infrastructure, so this type of centralized security

solution does not work [8].

In second type of scheme key information is distributed among nodes prior to forming

the group. Pre-distribution of the keys can be managed in two basic ways. In first

approach, each sensor carries pairwise secret link key table. Each key table has N-i

distinct pairwise secret keys, N is the total number of sensors. Each key on the table is

shared by only two sensors and used to encrypt the traffic between these two sensors.

This scheme is especially suitable for computationally weak sensors. However,

bandwidth and memory efficiency significantly decreases when the number of sensors

increases. Besides, link keys for the sensors which will join to the network in future

cannot be pre-installed to other sensors. Alternatively, each sensor carries group

master secret key and uses this key to derive distinct pairwise link keys [41. This

method is quite useful for large-scaled sensor networks. However, method is very

insecure; compromise of one of the sensors can reveal the master secret key, and so

the entire network can be compromised.

Public key cryptography based schemes offer self-organized trust establishment

between sensors with the help of key certificates. Compromise of any device does not

56

pose a security risk to other sensors. However, constraints in computational capability,

bandwidth and battery power make solely public key operations not affordable on

sensor networks. On the other hand, security protocols based on hybrid cryptographic

operations would be more respectful to resources of sensors and provide strong

security and authentication features of public key cryptography.

4.1.1 Related Work

Although majority of research on security of wireless sensor networks emphasize the

secure routing protocols, there are some proposals on authentication and key

management issues.

Due to computationally heavy operations in public key cryptography, most of sensor

network security protocols are based on secret-key cryptosystems. Perrig et al.

addressed security issues in wireless sensor networks, and proposed SPINS security

protocol which is solely based on secret-key cryptography [211. SPINS employs an

online trusted base station and sensors have master keys established with trusted

station. However network needs to have more than one station in self-organizing

dynamic environment. Then, a new problem arises in SPINS which is how to embed

all future master keys into sensors. Du et al. proposed a key pre-distribution scheme,

which substantially improves the resilience of wireless sensor networks [81. In

proposed scheme each node establishes pair-wise secret key with other node even if

they are in different key spaces. When nodes have different key spaces, pair-wise

secret key is transmitted from one node to another through key-sharing graph.

However, using key-sharing graph exposes pair-wise secret keys to other sensors in

group. So, this makes scheme not applicable for the networks which is deployed in a

hostile environment and sensors are vulnerable to compromise.

57

Cam et al. proposed an energy-efficient security protocol for sensor networks. This

scheme uses dynamically changing session keys and code-hopping techniques [5]. In

[161, Jolly et al. presents a key management protocol which is based on Identity-Based

Symmetric Keying (IBSK) scheme. Key pre-distribution problem is solved as

embedding two keys to each sensor in pre-deployment phase. Sensor shares one key

with a static gateway and shares another key is with the command node. However,

this scheme cannot be useful when gateways are dynamically relocating from one

sensor cluster to another cluster. Besides, scheme forces deployment of gateways in

secured environment since compromise of a gateway compromises all sensor keys in

the same cluster.

There are also recently proposed public-key cryptosystem based schemes in securing

sensor networks. Wang and Chan proposed two key exchange protocols; the server-

specific MAKFP and the linear MAKEP [28]. In these schemes, the client has to

perform expensive modular exponential operations that are not viable for

computationally constrained sensors.

Usage of ECC has been proposed several times in wireless key agreement protocols.

ECC based protocols use smaller key lengths to provide strong security. Huang et al.

introduced an authenticated key establishment protocol for self-organizing sensor

networks [14]. They combined ECC with secret-key cryptography, namely Hybrid,

and also presented MSR-combined version of their key establishment. While they

focus on reducing the computational load in sensor side, sensor still needs to perform

several expensive point multiplications which are not affordable. ECMQV protocol

with implicit certificates [6], ECDSA authenticated key exchange protocol [2], the

Elliptic Curve Diffie-Heilman Ephemeral (ECDHE) protocol [25] and Aydos-Yanik-

Koc key agreement protocol [2] are other ECC based wireless key agreement schemes.

58

Similarly, all of ECC based schemes mentioned above require at least three expensive

point multiplication operations at sensor side if entity and key authentication are

provided.

4.1.2 Contributions

Dynamically relocating stations: While sensors stay static in the sensor network, data

collecting stations can relocate dynamically and move from one sensor cluster to

another cluster. Proposed schemes establish distinct keys for every session between

any data collecting station and any sensor in the system as long as they are in the same

cluster at that moment.

Mutual authentication: Sensor and data collecting station mutually authenticate each

other before they initiate the secure data communication.

Lightweight operations on sensor side: Main objective is introducing public key

cryptography to the sensor-station key establishment. However, proposed protocols

avoid using expensive modular exponential or elliptic curve point multiplications.

Sensor needs to make only large or small modular multiplications, secret-key

encryption/decryption and hashing operations.

Power efficient key establishment: Maximization of life-time of sensor is possible only

with using power efficient key establishment protocols. Although the strong security

advantage of public key cryptography is taken, proposed schemes consume only 15-

28 mW of battery power.

59

4.2 Background of Fast Public Key Cryptography

Similar to RSA public key encryption algorithm [24], Rabin's scheme [23] is based on

the factorization problem of large modulus. Key encryption and signature verification

processes in Rabin's scheme are extremely fast and this makes scheme suitable for

low power and resource constrained devices. Rabin's scheme requires one modular

multiplication for encryption in which ciphertext is c = in (m + b) mod n, for the

message in. In other words, the encryption process requires only one squaring if b is

fixed to 0. Protocols are constructed in such a way that sensor does not need to

perform computationally expensive decryption operation. More details of the Rabin's

encryption scheme can be found in [23, 291.

NtruEncrypt is a highly efficient and relatively new public key cryptosystem.

Underlying Ntru is a hard mathematical problem of finding short and/or close vectors

in a certain class of lattices or Ntru lattices [11, 12, 13]. Simplicity of its underlying

arithmetic makes NtruEncrypt algorithm especially suitable for sensor networks and

RFID tags.

Despite the shorter history in public literature, resistance of Ntru algorithms to

cryptanalysis is claimed to be comparable to RSA and ECC algorithms.

Brief key generation, encryption and decryption steps for NtruEncrypt algorithm are

presented in Appendix A. More details on NtruEncrypt can be found in [11].

4.3 Sensor Network Model

Sensor network can be formed in various different models according to the desired

application. Envisage a military scenario such that sensor network is deployed in a

hostile environment and sensors are used to track the movements of enemy. In the

proposed model, a sensor network consists of a large number of sensors, multiple data

processing stations and command base. The hierarchical components of the network

are defined as in the following;

Sensors: Sensors are smallest elements of the network and randomly deployed in a

certain geographical location. Sensors are assumed to stay static. Each sensor

determines its location by GPS system during bootstrapping and location information

is recorded by command base and stations. Sensor provides one-way data

transmission to the stations. Prior to data transmission it establishes the session key

with the station and encrypts the data traffic.

Stations: Stations are intermediate elements between sensors and command base.

They collect the data from sensors in the same cluster and forward to command base.

Stations have higher computational capabilities and larger memory than sensors. Each

station has the ability to establish a secure direct connection with other stations to

make key or data exchanges. Different from other proposed models in [5, 9, 161,

stations can relocate dynamically in proposed approach. This reflects the following

situations in sensor network:

i. Sensors and stations are in hostile environment. Stations are static but open

to compromise and compromised station needs to be evicted from the network.

Another station is assigned by command base for the same task.

ii. Sensors and stations are in hostile environment. Mobile station collects the

data off-line for the specified time interval and moves to another sensor cluster.

Command base: The command base, which is called as CB throughout this paper,

behaves as central management and certification authority. CB is assumed to be

locating in secure environment. Command base manages the clustering the network,

assigning/evicting sensors and assigning/evicting the stations, as well. Various

61

security protocols can be used to encrypt the traffic between the command base and

stations.

Cluster I

t=tl

T4

ister 2

Cluster 3

'k
Oi.--

- 0 Cluster 2

1 - - - V T

Command 0 0
Base

Cluster 3
t=t2

Figure 4-1. Sensor network architecture with mobile stations

Figure 4-1 illustrates the possible sensor network scenario in which sensors

continuously establish connections with several stations. In t=t1 moment, scenario

uses T1 for Cluster 1, T2 for Cluster 2 and T3 for Cluster 3. However in t=t2 moment

62

the structure of network changes and T3 becomes unavailable. T4 controls the Cluster 1,

T1 relocates and collects data from Cluster 2 sensors, T2 relocates and collects data

from Cluster 3.

Next chapter focuses on certification of stations and session key establishment models

between station and sensor.

4.4 Authenticated Key Establishment Protocols

In proposed key establishment protocols, sensors can communicate only with the

stations which have valid certificate issued by command base. In other words, sensors

authenticate the station before transmission of sensed data and establish a session key

to encrypt the data. In this chapter, three different authenticated key establishment

protocols are given. First proposed protocol is based on modular multiplication which

loads the majority of work to the station side. Second proposed protocol uses

simplified version of previous protocol. Third protocol improves the computational

efficiency by employing NtruEncrypt encryption algorithm [101.

Sensors prove their identities with the knowledge of their private response generation

key which is common method for both protocols. Every sensor carries a unique secret

key which is embedded to sensor prior to placed in the network. Sensor also shares

this response generation key with the command base.

Challenge-Response list is proposed for each station. Challenge-Response list, in short

CR list, uniquely identifies the associated response value for each possible challenge

value which must be expected from the sensor to authenticate the sensor to the station.

Distinct CR lists are provided to each station when they obtain their public key

certificates from CB. Table 4-1 illustrates an example CR list which is provided to

one of the stations in the network by CB. First, CB determines the sensors with which

63

the station has the authorization to make data transfer. Then, CB generates a new CR

list specific to the station and inserts the identities of sensors, random challenge (Ch)

and the response (Rs) values.

Table 4-1. Example Challenge-Response list for the station

Sensor Id Challenge
(Ch)

Response
(Rs)

S00001 Ch500001 Rss0000j

S00017 Ch500017 Rssoc)çjl7

S04521 Ch04521 Rsso4521

4.4.1 Modular Multiplication Based Key Establishment

Modular multiplication based authenticated key establishment protocol comprise of

Rabin's scheme to encrypt the sensor's contribution to session key and put the

computational burden in station side. Implicit certification is used to verify the

identity and public key of station. As a definition, public-key certificate bonds the

identity of the device to the public key information and digitally signed by the CB. CB

stores the certificate verification public key of station. Implicit certificate in modular

multiplication based scheme is defined as encrypted value of concatenation of identity

information, public key constructor and expiration date of the certificate. Encryption

is performed by command base. Verification of implicitly certified key consumes less

bandwidth and computational power in comparison with explicit certification.

Pre-assumption: Command base (CR) selects rn-bit random prime numbers f and g,

which provide the condition of f 3 (mod 8) and g 7 (mod 8). CR's public key

modulus for the Modified Rabin's Signature algorithm is flCB = fg and private key is

d8 = (flCB -f--- g + 5)18. CB assigns 32-bit unique identification number Id for each

sensor and station in the network. This identity string can include the name of device

in the network and the location information. Public key of CB is published to stations

and stored in sensor devices.

All certification protocols introduced in this paper are one time protocols and

performed off-line. Transmission of messages is executed in secure way. The notation

used in this chapter is specified in Table 4-2.

Table 4-2. Notation

Symbol Meaning
CERTreg Request message for certification
CERTres Response message for certification

KeyAgReg Key agreement request
KeyAgRes Key agreement response
KeyConfReg Key confirmation request
KeyConfRes Key confirmation response
Id, Network identification information of

sensor or station i

Certr Certificate of station T
H(x) One-way hash function output of x
R(m) Redundancy function applied to m
R'(m) Inverse redundancy function applied to m
E [K, M] Secret-key encryption (CBC mode) of the

message M under the key K
D [K, M] Secret-key decryption (CBC mode) of the

message M under the key K
MAC [K, M] Message authentication code of the

message M under the key K
CR Challenge-Response table for station T
CRST Challenge-Response-Signature table for

station T
II Concatenation
msb (M) The most significant x-bit of M
lsb (Al) The least significant x-bit of M

The detailed protocol steps are shown in Figure 4-2 and given in the following:

65

i. Station T selects n-bit random numbers p and q and computes the public key

modulus nT = p.q. Certification request (CERTreq) message is sent to CB. Message

contains the IdT and the public key flT. Station T securely stores the private key (p, q).

ii. CB checks the validity of IdT and verifies the status of T in the network.

Following verification, CB generates a time-stamp value t and computes YT= H (Id)

II H (tT). Then, CB applies previously identified redundancy function R to the exor of

YT and the public key nT. Redundancy addition is crucial in Rabin's scheme to prevent

existential forgery attacks.

Station (T) Command Base (CB)

Select n bit random primes p and q
Compute T = p.q
Ts public key is flT and private key is (p, q)
Send CERTreq: {Id, flT}

Receive CERTreq
Check validity of IdT.

If IdT is not valid, then abort.
Generate time-stamp tT

Compute yr= H(IdT) IIH(tT)
Compute 'T = (R(nT YT)) mod cB

Prepare the Challenge-Response list CRT.
CertT= {IdT, tT, PT}

Send CERTres: CertT, CRT.

Receive CERTres
Compute PT= PT

2

flcfi.

Compute YT = H (IdT) II H (tT)

Compute nr' = R1(P) YT

If nT T, then abort.
Store CertT and CRT.

Figure 4-2. Certificate generation for the station T

Thereafter, CB encrypts the output of R (flT YT) with its private key d8 and gets the

public key constructor PT. Certificate of T is simply concatenation of IdT, tT and PT.

iii. GB identifies the sensors that are in the list of T to collect data, generates

unique i-bit challenge Ch value for each sensor, and then computes associated

response Rs for each Ch by using response generation key e of each sensor;

Rs = H (Ch e). Certification Response (CERTres) message containing certificate

and Challenge-Response list (CRT) is sent back to the station T.

iv. Having certification response message, T computes YT = H (IdT) II H (tT)

and decrypts PT by squaring modulo CB (PT = P mod flCB). After applying reverse

redundancy function K' to PT, T accepts the received implicitly certified public key

only if the result of (R'(PT) YT) is equal to its own public key flT. Otherwise T

rejects the certificate and aborts the protocol.

Authenticated session key establishment protocol is executed between station and

sensor for every data transmission session. The details of protocol are given in below

and steps are illustrated in Figure 4-3.

i. To initiate the key establishment protocol, station T picks challenge value

Ch for sensor S from CRT and sends key agreement request (KeyAgReq) message

which contains CertTand Ch.

ii. Having received key agreement request, sensor S computes public key of T.

To achieve this, S takes square of PT and applies inverse redundancy function K' to

the result. Public modulus T is calculated as

= K'(P 2mod flCB) (H (Id) Ii H (tT)).

iii. S computes associated response value to Ch by using its response

generation key es; Zs = H (Ch5 es). The response z should be sent back to T to

prove identity. However, message has to be encrypted to prevent impersonation

attacks. S also chooses k-bit random number r5 to be used as sensor's contribution to

session and MAC keys. S encrypts the message of (x II rs ii Zs) by simply squaring it

67

modulo T prior to sending key agreement response KeyAgRes. Here x shows the

random binary string used in padding.

iv. Station T takes square root of received number q in modulo flT to decrypt.

Using Modified Rabin's algorithm guarantees to find square root m successfully. Then

T removes the padding and picks the least significant k + 160 bit of m. First k-bit of

selected part is taken as sensor's contribution rs and the last 160 bit Zs is compared

with Rss. If comparison fails, then T does not authenticate the sensor and terminates

the protocol. Otherwise, T generates k-bit random number rT as its own contribution to

session key SK and message authentication code (MAC) key MK.

v. Key confirmation request message KeyConfReq is sent back to S encrypted

with rs (KeyConfl?eq: c = E [rs, rT II IdTID. Sensor decrypts the received c and

obtains rr II IdT. Verification of existing IdT in the decrypted message confirms that

station has received and decrypted rs successfully. If IdT is not correct, then S

terminates the protocol.

vi. Sensor S and station T compute the 128-bit SK and 128-bit MK with the

following formulas:

SK = msb128 (H(msb[i,j2j (rs)lI msbLk,2J (rT) H msb32 (Zs))),

MK = msb128 (H (lsbJ2J (rs)Il lsb[kJ2j (rT) II 1sb32 (Zs))),

where lsb (y) denotes the least significant x bit of y, and msb (y) denotes the most

significant x bit of y.

68

Station (T)

Pick Ch for the sensor S from the list CRT.
Send KeyAgReq: CertT, Ch

Receive KeyAgRes
Compute m = /mod T

The least significant (k + 160)
bits of m = rsIl z

If Zs Rs5, then abort.
Choose k-bit random number rT.
KeyConfReq: c = E [rs, rT II Id]
Send KeyConfReq

Sensor (S)

Receive KeyAgReq
If t is not valid, then abort.
Compute PT= PT 2

Compute YT = H (Id) II H (tT)

Compute = R'(PT) Yr
Compute zs = H (Ch5 e)

Choose k-bit random number rs.
Compute q = (xli rail z.)2 mod flT

Send KeyAgRes: q

Receive KeyConffieq
c'= D rs, cJ = rrli IdT

If IdT is not valid, then abort.

SK = msb128 (H (msbLj (rs)II msb[J (rr) ii msb32 (Zs)))

MK = msb128 (H (lsb[j (TS)II 1sbLj (rT) li/sb32 (Zs)))

KeyConfRes: w = MAC [MK, 1d51
Send KeyConfRes

Receive KeyConfRes
Compute w = MAC IIMK, Ida]
If w w, then abort.

Figure 4-3. Modular multiplication based key establishment protocol

vii. Last step in key establishment protocol is confirming the keys are

established correctly. The method is having sensor S to send back generated MAC

code of Id5. Station gets this message and compares with the output which it gets

using MK. If MAC codes match, then session key establishment protocol is completed.

Otherwise, T repeats the protocol.

4.4.2 Lightweight Key Establishment Protocols

In this chapter computational efficiency of modular multiplication based protocol is

improved and two different lightweight key establishment protocols are proposed.

Similarly, these protocols puts the cryptographic burden on station and less workload

on sensor. First scheme uses modular multiplication for encryption of sensor's

contribution to session keys whereas in the second scheme NtruEncrypt encryption

operation is replaced with modular multiplication. Unlike the proposed protocol in

previous chapter, sensor and station authenticate each other using only hash functions

and secret-key encryption algorithms.

Pre-assumption: CB assigns 32-bit unique identification number Id for each sensor

and station in the network. Identity string can include the name of device in the

network and the location information. In both schemes, sensors carry the same

response generation i-bit response generation key es and a unique i-bit MAC

verification key US. This key is assigned by command base to every sensor and used in

verification of the public key of station. The concept of CRS (Challenge-Response-

Signature) list is introduced here. This list is replaced by CR list on the station and it

contains the Ch, Rs and Sg values. Command base generates the MAC value of

station's public key using associated sensor's MAC verification key U5 and assigns the

70

result to Sg. Thus, when the station is certified it gets different Sg value for every

sensor in CRS list. Example CRS list is shown in Table 4-3.

Table 4-3. Example Challenge-Response-Signature list for the station

Sensor
Id

Challenge
(Ch)

Response
(Rs)

Signature
(Sg)

S00001 Ch00001 Rssooi Sgsc1
S00017 Ch00017 Rss000i7 Sgs000i7

S0452 I Ch04521 Rs504521 SgSO452I

4.4.2.1 Modular Multiplication-Light Scheme

Two-way certification protocol steps between station and sensor for Modular

multiplication-Light scheme are given in the following and illustrated in Figure 4-4:

i. Similar to multiplication based protocol, station T computes iir = p.q and

sends Certification request (CERTreq) message to CB.

ii. Following verification of IdT, CB generates a time-stamp value t and

CertT = (IdT II n ItT), identifies the sensors that are in the list of T to collect data,

generates unique i-bit challenge Ch value for each sensor and finally computes

associated response Rs for each Ch by using response generation key e of each sensor;

Rs = H(Ch e). Next, CB computes MAC values of CertT= (IdTlI flT1' t) using one

of the sensor's US for each time (Sgs = MAC IIUS, CertT]). Challenge-Response-

Signature list for this station (CRST) is generated and sent along with Certr back to the

station.

iii. T receives CERTres message, stores the CertT and CRS.

71

Station (T) Command Base (CB)

Select n bit random primes p and q
Compute T = p.q
Ts public key is nr and private key is (p, q)
Send CERTreq: {IdT, flT}

Receive CERTreq
Check validity of ldT.

If Id- is not valid, then abort.
Generate time-stamp tT

Compute Certr= (Id II n ItT)
Generate Sgs = MAC [US, Certr]

for every sensor S in the list
Generate the CRS list CRST
Send CERTres: CertT, CRS

Receive CERTres
Store CertT and CRST

Figure 4-4. Certificate generation for the station T

Station and sensor execute the authenticated session key establishment protocol before

every data transmission. The details of protocol are given in below and shown in

Figure 4-5.

i. Station T initiates the protocol, picks the challenge Ch5 and Sgs for sensor S

from CRST and sends key agreement request (KeyAgReq) message which contains

CertT, C/i5, and Sg5.

ii. Sensor S receives KeyAgReq, validates the time-stamp tT and computes the

MAC of public key certificate CertT using secret MAC verification key u5. If the

MAC result is equal to received Sg5 then sensor completes authenticating the station

72

and guarantees that MAC value has been generated by command base specifically for

sensor S. Otherwise, S terminates the protocol.

Station (T)

Pick Ch5 and Sgs
for the sensor S from the list CRST.
Send KeyAgReq: CertT, Ch5, Sg5

Receive KeyAgRes
Compute m = Jmod T

The least significant (k + 160)
bits of m = r5 ii zs

If zs Rs, then abort.
Choose k-bit random number rT.
KeyConfReq: c = E [rs, r7 ii IdTl
Send KeyConfReq

Sensor (S)

Receive KeyAgReq
If tT is not valid, then abort.

Compute Sg5= MAC [US, CertTl

If Sgs Sg5, then abort.
Compute Zs = H (C/is es)

Choose k-bit random number r5.

Compute q = (xli riI ZS)2 mod rz
Send KeyAgRes: q

Receive KeyConfReq
c'= D [rs, Cl = rTll IdT

If IdT is not valid, then abort.

SK = msb128 (H(msb[j (rs)II msb[j (rr) ii msb32 (Zs)))

MK = msb128 (H (lsb[j (rs)I I lsb[J (IT) II 1sb32 (Zs)))

KeyConfRes: w= MAC [MK, Id5]

Send KeyConfRes
Receive KeyConfRes
Compute w = MAC [MK, Id5]
If w w, then abort.

Figure 4-5. Modular multiplication-Light key establishment

73

The rest of the protocol is completed as executing the steps iii, iv, v, vi, and vii in

modular multiplication based authenticated key establishment protocol.

4.4.2.2 NtruEncrypt-Light Scheme

As all proposed schemes NtruEncrypt-Light scheme has also two-way certification

protocol which is securely executed one-time between station and command base.

One major difference of the scheme is that stations use public-private key pair for

NtruEncrypt algorithm instead of using key pair for Rabin's algorithm. The brief

certification protocol is given in the following and illustrated in

Figure 4-6:

i. Station T chooses random polynomials F and g from the ring R; both

polynomials should have small coefficients, then T computes the private keyf = 1 +

pF, and inverse off,f' (mod q). Encryption public key of station T is coefficients of

h g ®f' (mod q), which is denoted as hT. Certification request (CERTreq) message

is generated by T and sent to GB; message contains identity of T, IdT, and public key

hT.

ii. GB checks the validity of IdT, verifies the status of T and generates a time-

stamp value tT and Certr = (Id II hT II tT). Similar to Modular multiplication-Light

scheme GB identifies the sensors that are in the list of T, generates unique i-bit

challenge Gh value for each sensor and computes associated response Rs for each Ch;

Rs = H (Gh e). Later, GB computes MAC values of GertT= (IdTII hT II t) with the

very same method as introduced in Modular multiplication-Light scheme. Challenge-

Response-Signature list for this station (GRST) is generated and sent along with GertT

back to the station.

iii. T receives GERTres message, stores the GertT and GRST.

Station (T)

74

Choose a small random polynomial
F from R and from the set {O, 1
Computef= 1 +pF
Choose a random polynomial g from R
Computef (mod q)
Compute h = g ®f' (mod q)
Public key of T is coefficients of h: hT
Send CERTreq: {IdT, hT}

Receive CERTres
Store CertT and CRST

Command base (GB)

Receive CERTreq
Check validity of Id

If IdT is not valid, then abort.
Generate time-stamp t

Compute CertT = (IdT II h ItT)
Generate Sgs = MAC [US, Certrj

for every sensor S in the list
Generate the CRS list CRST

Send CERTres: CertT, CRST

Figure 4-6. Certificate generation for the station T

Station and sensor authenticate each other and establish the session key prior to the

every data communication as in other proposed schemes. Sensor verifies the public

key certificate of station and sends its contribution to the session keys. Similarly

station completes authentication of the sensor by sending pre-set challenge value and

expecting to get correct response. Protocol steps are shown in Figure 4-7 and the

details are given in the following:

75

1. Station T sends key agreement request (KeyAgReq) message which consists

of CertT, Ch5 and MAC value of CertT; Sgs.

ii. Sensor S receives KeyAgReq and validates the time-stamp t. Protocol

continues only if tTS valid. Then, S computes the MAC of CertT by using its secret

MAC verification key US. If the MAC result is equal to received Sg then sensor

completes authenticating the station. Otherwise, S terminates the protocol. Calculation

of response Z5 = H(Ch5 $ es) is very same process as introduced in other schemes. S

also selects k-bit random rs, which is used as a contribution to session keys. Selected

binary string is concatenated to the response z and result is padded with random x.

Final text is assumed as plaintext m and encrypted with the following formula:

c = (p.cP ® hT) + m (mod q)

As seen above, sensor makes one star multiplication to encrypt m, where cI is a

random polynomial from R. Ciphertext is sent to T as key agreement response

(KeyAgRes).

iii. Station T decrypts c by making two consecutive star multiplications.

Computation of m = (c ® f (mod q)) (mod p) gives m ®f (mod p), and to extract

plaintext T multiplies the result with f1 and takes residue in modulo p. The least

significant k + 160 bit of m is picked. Sensor's contribution rs is the first k-bit of

selected part, and the last 160 bit z5 is compared with Rs5. If they are not equal, then T

aborts the protocol. If equality is satisfied, T generates k-bit random rr as its own

contribution to create session key SK and message authentication code (MAC) key

MK.

The rest of the protocol is completed as executing the steps v, vi, and vii in modular

multiplication based authenticated key establishment protocol.

76

Station (T) Sensor (5)

Pick C/i5 and Sg5
for the sensor S from the list CRST.

Send KeyAgReq: CertT, Ch, Sgs

Receive KeyAgReq
If tT is not valid, then abort.

Compute Sg5= MAC [us, Certr]
If Sgs Sg5, then abort.

Computezs = H(Ch5 es)
Choose k-bit random number rs.

m = (x rs I Z)
Choose a random polynomial Ji from R

Compute c = (p.cP 0 h) + m (mod q)
Send KeyAgRes: c

Receive KeyAgRes
Compute m' = (c Of (mod q)) (modp)
Compute m = m ®f1 (modp)
The least significant (k + 160)

bits ofm = rs H

If z5 Rss, then abort.
Choose k-bit random number rr.
KeyConfReq: w = E [rs, rT I IdT]
Send KeyConfReq

Receive KeyConJReq
w= D [rs, w] = rr I 1d

If IdT is not valid, then abort.

SK = msb128 (H (msbij,v2j (rs)I msb,2j (rT) I msb32 (Zs)))
MK = msb128 (H (lsb[,,2J (rs) I lsk,/2j (rT) I lsb3 (zs)))

KeyConfRes: b = MAC [MK, IdsI
Send KeyConfRes

Receive KeyConfRes
Compute b = MAC [MK, Id5]
If b pb', then abort.

Figure 4-7. NtruEncrypt-Light key establishment

77

4.5 Network Operations

4.5.1 Sensor Addition/Eviction

Prior to deployment of new sensor, public key of command base and private response

generation key of the sensor are embedded in the sensor. This enables establishment

of secure communication between sensor and stations.

Due to vulnerable nature of sensor networks, sensors can be out of battery, out of

network access or compromised. In proposed model the responsibility of reporting

these situations are given to the stations. This is because station is the closest entity to

the sensor and has direct communication link with command base in particular

geographical area. Since the station has the list of the sensors in that area it identifies

unreachable sensor and reports sensor's identity to the command base. Command base

automatically removes the sensor from the communication list and adds it to the

revoked sensors list.

4.5.2 Station Addition/Relocation/Eviction

Stations can be added anytime to the network as it is required. Command base

registers the new station to the system, certifies its public key and gives the location

information in which station collects data. Every relocated station receives the new

CR list from command base for the new geographic area. In case of lack in

communication between relocating station and command base, station makes multi-

hopping and use other stations to establish a path to the command base. Principally,

command base does not allow two or more stations to collect data from the same

sensor cluster unless each station contacts to different sensors in the cluster. If duty of

the station requires obtaining data from other clusters to process its own data, then

78

station establishes a session key with each of other necessary stations by using its

certificate and transfers the data securely.

Although stations are less vulnerable than sensors, they can be evicted from the

network by command base in case of unavaliability or malfunctioning. Command

base can use intrusion detection systems to detect compromised stations. New station

is assigned instead of evicted one by command base, if necessary.

4.6 Security Analysis

Public key cryptography is introduced to provide key and entity authentication for the

station in modular multiplication based key establishment scheme. Authentication of

station is accomplished by using implicit certificate which binds the public key of

device to the unique identity. Note that, public key T can be calculated only by using

authentic public modulus flCB so that man-in-the middle type attacks are mostly

prevented. In Light protocols public key certificate of station is authenticated by each

individual sensor using MAC verification key U5. Compromise of any sensor does not

pose a security risk to the other sensors. Because command base provides different

MAC value to every station for the same public key certificate.

Since security also relies on secret-key cryptography, encryption algorithm must be

properly implemented. Encrypting (rT II Id) with ECB mode at KeyConfReq can lead

modification attacks. Adversary can concatenate fabricated value ofE [rs, Id] to the

true value of E Irs, rT] and send it to S as if it is originally coming from T. Cipher

Block Chaining (CBC) mode of encryption can be used to prevent this type of

modification attacks. Existential forgery is possible with inappropriate choice of a

redundancy function R in modular squaring. For example, for R(m) = m an adversary

can select any integer a E Z, and squares it to get m = a2mod n. Then, a is a valid

79

signature for fabricated m without the knowledge of private key. Using the

redundancy function R as specified in ISO/IEC 9796 digital signature standard is

strongly recommended [15]. Another problem can occur with finding square root in

signing process. Using Modified Rabin's scheme [29] for modular squaring

overcomes the difficulty of finding square root.

Challenge-response based authentication guarantees that sensor has the correct and

valid es to prove its identity. Only one sensor in the network can response correctly to

the challenge sent by station. Exor function combines the bit characteristics of eswith

Ch5 and one-way hash algorithm produces the digest value so that it is not feasible to

guess e5 from the digest value. Although, SHAI and MD5 hash algorithms are not

theoretically secure, there is no successful attack on full round algorithms other than

brute-force [3]. For this reason, one-way hash functions are accepted computationally

secure. Also i= 128 is used as the bit length of es, which is large enough to prevent

brute force attacks to guess e5 for the immediate future.

Due to vulnerable nature of sensors compromise of subset of sensors in an unfriendly

environment is tolerable. Backward secrecy is preserved if the sensor is compromised

and private response generation key e5 is revealed. Attacker cannot recover the

previously used link and MAC keys from e5. Security of previously used keys also

depend on the length of used rs and padding string x. The minimum bit length of rs

and rr should be k = 128 which is also important issue for generating distinct session

link and MAC keys.

Backward secrecy in station-sensor communications can fail when the station is

compromised. Since KeyAgRes message is encrypted with the station's public key,

adversary can decrypt the earlier messages with revealed private key and can obtain rs

and rT to find the session keys. However, forward secrecy for the sensors is still

preserved in this case. Although adversary obtains zsfor a specific sensor, it cannot be

used to impersonate the sensor. Because command base sends unique CR list to every

station so that sensor's response Z is essentially different for every station. Backward

secrecy in case of compromise of station may be possible by certification of sensor

and sending KeyAgReq message encrypted with public key of sensor. This means

sensor needs to do expensive public key decryption operation, which is against our

purpose to minimize the workload of sensor.

After receiving KeyAgReq message sensor validates the certificate and verifies that

station is true owner of the message. KeyAgRes message verifies the possession of the

private sensor key to the station. Key confirmation is implicitly provided by added

KeyConfReq and KeyConfRes messages. The final established keys are derived by

equal contribution from each party. Thus, no single party has the entire control on

derivation of session keys.

In generation of SK and MK session keys, random rs, random rT and digest value zs

are used. Since Zs cannot be counted as random number, only 32 bits of it is used in

key generation while usage of rs and r- is maximized. Most significant bits of

numbers are used to generate SK and the least significant bits of numbers are used to

generate MK. Thus, we obtain totally different SK and MK in every session.

Additionally, using hash function uniformly distributes the bit characteristics of

random numbers into the digest value which is used as final SK or MK.

4.7 Performance Evaluation

4.7.1 Hardware Specifications

The proposed protocols are implemented and measurement results are obtained on

MSP43O ultra low power microcontroller [26, 27] with 10 MHz clock rate which is

specifically designed for sensor systems by Texas Instruments Incorporated. The

architecture, combined with five low power modes is optimized to achieve extended

battery life in portable measurement applications. The device features a powerful 16-

bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum

code efficiency. Selected device has flash memory, 1 KB RAM and consumes low

power (400 jtA at 1 MHz) in active mode. Integrated hardware multiplier performs a

multiplication operation of two 16 bits operands only in 8 instruction cycles which is

especially suitable for the proposed modular multiplication based protocol.

4.7.2 Cryptographic Software Modules

Implemented cryptographic software in C language contains modular arithmetic

module, cyclic convolution product (star multiplication) module, secret-key

encryptionldecryption and hashing modules. We assume that we have a good source

of random bits available for generation of random numbers rs, r and random J

polynomial. Aspect of random number generation is outside of scope of this paper.

Practical and efficient modular arithmetic module performs modular addition and

improved version of Montgomery multiplication algorithm for modulus p [19]. The

distinct feature of proposed NtruEncrypt-Light protocol is performing star

multiplication operation in the ring R which is a cyclic convolution of two

82

polynomials of the same degree N. To achieve this, star multiplication library is

implemented efficiently in code size.

AES is the preferred secret-key crypto algorithm in the library 1171. Block and

encryption key lengths are fixed to 128-bits and CBC (Cipher Block Chaining) mode

of operation is used for AES. One-way hashing operations have been executed using

SHA-1 hash algorithm, which is implemented as standardized in FIPS 180-1.

Since we focus on the efficiency in memory usage and computation on sensor side,

the software modules are grouped for each proposed protocol and the total size of

code space is minimized. Modular multiplication based protocol and Modular

multiplication-Light protocol libraries consist of Montgomery modular multiplication,

SHA-1 and AES modules. Implemented code library is a total size of approximately

10 KB, including 5.5 KB for modular multiplication, 2.5 KB for SHA-1 and 2 KB for

AES module. NtruEncrypt-Light key establishment protocol library is a total size of

5.5 KB, including 1 KB for star multiplication. MSP43O microcontroller authenticates

the flash memory code before bootstrapping [271, so the code library can be kept in

flash memory. We also need total size of 144 bytes of memory to store public key of

command base, flcB, and private response generation key es. For Light protocols, we

need total size of only 32 bytes of memory for storage of es and Us.

4.7.3 Computational and Communication Complexity

In this chapter, real-time executions of proposed protocols are analyzed individually.

Selected operand size for modular multiplication is 1024 bits, which provides a

security level of around 80 bits [17]. Sensor needs to make two modular squaring with

1024 bit modulus, five hashing operations, one decryption process, one MAC

83

generation, one random number generation and two exor operations for the modular

multiplication based protocol.

The computational complexity of Montgomery product algorithm 141 with 1024-bit

operand is approximately 2187 16-bit multiplications and 30719 16-bit additions.

Implementation performs squaring with modulus only in 34.5 msec. The result is

obtained with assistance of hardware multiplier for 16-bit multiplications. SHA-1

hashing algorithm takes approximately 1.0 msec. AES algorithm performs key

scheduling in 1.1 msec and decrypts 256-bit ciphertext only in 2.5 msec in CBC mode.

AES algorithm is also used for generation of message authentication code (MAC).

Random number generation can be achieved by hashing hardware or system specific

time-variant numbers. Using SHA-1 for the random number generation costs

additional 1.0 msec. Exor operations take significantly small amount of time and we

ignore the time taken for two exor operations.

Total processing time of modular multiplication based protocol on the MSP43O is

only 82.3 msec and power consumption is approximately 28.6 mW. Total

communication complexity of the scheme is 2656 bits.

In Modular multiplication-Light key establishment protocol sensor needs to make one

modular squaring with 1024 bit modulus, four hashing operations, one decryption

process, two MAC generations and one exor operation. Thus, sensor processing time

for this scheme is 48.9 msec and power consumption is 17.0 mW while total

communication complexity is 2784 bits. In the NtruEncrypt-Light protocol,

(N, q, p) = (263, 128, 3) is chosen as NtruEncrypt parameters to provide the same

security level with 1024 bit modular multiplication [121. To encrypt m = (x II is II Zs),

sensor needs to make 69169 small integer multiplications modulo q. Reducing the

final polynomial modulo q is only discarding the least significant log2 q = 7 bits of

each coefficient. Thus, we can ignore the time elapsed for reduction modulo q.

Implementation takes only 29.8 msec to complete the star multiplication.

NtruEncrypt-Light scheme is slightly more efficient than other proposed schemes in

terms of sensor processing time, but it looses out in terms of message size. Overall

protocol takes approximately 45.2 msec on the MSP43O and consumes only 14.8 mW

of battery power. However, total communication complexity of NtruEncrypt-Light

key establishment protocol stays highest among others with 4418 bits.

4.7.4 Comparisons

In this chapter, the proposed protocols are compared with other public key based

authenticated key establishment protocols in terms of computation and

communication complexities.

Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) protocol 11251, Aydos-Yanik-Koc

protocol [2], and MSR-Hybrid protocol [14] are specifically selected because of their

fast processing speeds and small message sizes in comparison with modular

exponention based techniques. Note that these schemes are fully public key

cryptography based and they use public key certificates for both sensor and station.

Comparison results are given in Table 4-4. All of given elliptic curve based protocols

execute random point (RP) multiplications and/or fixed point (EP) multiplications.

Choosing 160-bit key length ECC curve, one random point multiplication can be

performed with 123832 16-bit multiplications and 1749704 16-bit additions [14].

Fixed point multiplication can be executed with much less work; 24143 16-bit

multiplications and 341145 16-bit additions. As seen in Table 4-4, elliptic curve

based protocols need much more processing time, computational capability and

battery power than proposed modular multiplication based protocol. However, smaller

85

key sizes make elliptic curve based protocols more advantageous. We need minimum

1024-bit key length for Rabin's protocol and 1841-bit public key length for

NtruEncrypt to meet the same security level with 160-bit ECC based protocols.

Although NtruEncrypt-Light scheme has less processing time on sensor, the scheme

may not be viable option with its large messaging size. One solution to decrease the

messaging traffic can be embedding the public key of station to the sensor. However,

in dynamic environment sensor may need to store several public keys which cannot be

memory efficient solution.

Table 4-4. Comparison of public key based key establishment protocols

Small Large Elliptic Sensor Message
modular modular curve processing size (bits)
mult. mult. point time (msec)

mult.
ECDHE - - 2 RP + 3 1350 1796

PP
MSR-Hybrid 1 3 PP 455 3682
Aydos- - 1 RP + 2 741 1730
Yanik-Koc FP
Mod Mult - 2 82.3 2656
based________
Mod Mult- I 48.9 2784
Light________
NtruEncrypt- 69169 - 45.2 4418

4.8 Conclusion

Introducing security to the communication between sensor and data processing station

requires more specialized approaches since sensors have constraints in battery power,

communication and computational capabilities. Expensive public-key operations such

86

as modular exponentiation and elliptic curve point multiplication consume significant

amount of sensor resources.

In this paper, three different authenticated key establishment protocols are proposed,

combining public-key cryptography, secret-key cryptography and one-way hash

functions. Modular multiplication based protocol uses only two modular

multiplications at the sensor side and expensive public key decryption operation is

executed at the station side.

Stations are implicitly certified to decrease the communication complexity. Proposed

Modular multiplication-Light protocol improves the computational efficiency, and

sensor needs to make only one modular multiplication. One of the modular

multiplications which is used for verification of implicit certificate is replaced with

inexpensive secret-key encryption. NtruEncrypt-Light protocol gives more efficiency

in computation and battery consumption. It employs NtruEncrypt algorithm and

replaces modular multiplication with one cyclic convolution product of two

polynomials and polynomial addition. As a conclusion, proposed key establishment

schemes provide strong security feature of public key cryptography with low battery

power consumption and moderate level protocol communication.

4.9 References

[11 I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8): 102-114, August 2002.

[21 M. Aydos, T. Yanik, and C. Koc. An high-speed ECC-based wireless
authentication protocol on an ARM Microprocessor. Proceedings of ACSAC'2000,
New Orleans, LA, December 2000.

[3] 5. Bakhtiari, R.Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: A
survey. Technical Report 95-09, University of Wollongong, July 1995.

87

[4] 5. Basagni, K. Herrin, B. Rosti, and D. Bruschi. Secure pebblenets. Proceedings of
ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2001), 2001.

1151 H. Cam, S. Ozdemir, D. Muthuavinashiappan, and P. Nair. Energy-efficient
security protocol for wireless sensor networks. Proceedings of IEEE Conference on
VTC, 2003.

[61 Certicom Research, Standard for efficient cryptography, SEC 1: Elliptic Curve
Cryptography, Version 1.0, September 2000.

[71 J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES algorithm submission,
Sep 1999, at http://www.nist.gov/aes.

[8] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key pre-distribution scheme
for wireless sensor networks. ACM CCS'03, October 2003, Washington, DC, USA.

[9] L. Eschenauer and V.D. Gligor. A key-management scheme for distributed sensor
networks. Proceedings of the ACM conference on Computer and communications
security, November 2002.

[10] G. Gaubatz, J. Kaps, and B. Sunar. Public key cryptography in sensor networks-
revisited. Proceedings of] European Workshop on Security in Ad-Hoc and Sensor
Networks (ESAS'2004), 2004.

[11] J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A ring-based public key
cryptosystem. Algorithmic Number Theory (ANTS III). Volume 1423 of LNCS.,
Pg.267-288, Berlin, Springer-Verlag, 1998.

[12] J. Hoffstein, J. Silverman, and W. Whyte. NTRU report 012, version 2. Estimated
breaking times for NTRU lattices. Technical Report 12, NTRU Cryptosystems, Inc.,
Burlington, MA, USA, 2003.

[13] J. Hoffstein and J. H. Silverman. Optimizations for NTRU. Proceedings ofPublic
Key Cryptography and Computational Number Theory, de Gruyter, Warsaw, 2000.

[14] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang. Fast authenticated key
establishment protocols for self-organizing sensor networks. Proceedings of ACM
WSNA '03, September 2003, San Diego, CA, USA.

[15] ISO/IEC 9796. Information technology Security techniques Digital signature
scheme giving message recovery, International Organization for Standardization,
Geneva, Switzerland, 1991.

[16] G. Jolly, M. C. Kuscu, P. Kokate, and M. Younis. A low-energy key management
protocol for wireless sensor networks. Eighth IEEE International Symposium on
Computers and Communications (ISCC' 03), 2003.

[171 A. K. Lenstra and E .R. Verheul. Selecting cryptographic key sizes. Journal of
Cryptology. The Journal of the International Association for Cryptologic Research 14,
Pg. 255-293, 2001.

[18] A. J. Menezes, P. C. Van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press Inc., 1997.

[19] P. L. Montgomery. Modular multiplication without trail division. Mathematics of
Computation, Vol. 44, No. 170, pg. 5 19-521, 1985.

[20] B. C. Neuman and T. Tso. Kerberos: An authentication service for computer
networks. IEEE Communications, 32 (9). Pg.33-38, September, 1994.

[21] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS: Security
protocols for sensor networks. Wireless Networks 8, Pg. 521-534, The Netherlands,
2002.
[22] R. D. Pietro, L. V. Manchini, and A. Mei. Random key-assignment for secure
wireless sensor networks. Proceedings of the F' ACM Workshop Security of Ad Hoc
and Sensor Networks, VA, USA, 2003.

[23] M.O. Rabin. Digitalized signatures and public key functions as intractable as
factorization. Mit/lcs/tr-212, MIT, 1979.

[24] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, vol. 21, 120-126, 1978.

[25] SECG, Elliptic Curve Cryptography, Standards for Efficient Cryptography Group,
2000. Available from http:llwww.secg. org/collateral/sec 1 .pdf.

[26] Texas Instruments, Inc. MSP43Ox4xx Family User's Guide, 2004. At
http://www-s.ti.com/sc/psheets/slazOO8/ slazOO8 .pdf.

[27] Texas Instruments, Inc. MSP43OF42x Mixed Signal Controller, 2004. At
http://www-s.ti.comlsc/ds/ msp430f427.pdf.

[28] D. S. Wang and A.H. Chan. Mutual authentication and key exchange for low
power wireless communications. Proceedings of IEEE MILCOM'2001, 2001.

[29] H. C. Williams. A modification of the RSA public-key encryption procedure.
IEEE Transactions on Information Theory 26, Pg.726-729, 1980.

4.10 Appendix A - NtruEncrypt Public Key Encryption

Algorithm

An NTRU cryptosystem depends on three integer parameters (N, p, q) and four sets U,

Ug, Lqj, Urn of polynomials of degree N-i with integer coefficients, where N is prime.

The assumption is p and q are relatively prime numbers and q is considerably larger

than p. NtruEncrypt is based on arithmetic in a polynomial ring R = Z(x) / ((xNl), q).

Multiplication in the ring R is also called as "Star Multiplication" and denoted with

the operator symbol '®'. Star multiplication is defined as cyclic convolution product

of two vectorsj(x) and g(x) in the following case:

h(x)='J(x) ® g(x) with,

hk t.gk + 1;.gN+k = .g1

1J i=k+I i+jJ4modV)

Following the convolution product, each coefficient hk is reduced with modulus p or q

according to selection of encryption or decryption process.

Key Generation: Entity A chooses N, p, q, and generates its own private and public

keys.

1. Choose random polynomials F(x) and g(x) from the ring R; both polynomials

should have small coefficients.

2. Compute the private keyj(x) = 1 +pF(x), and inverse ofj(x),f'(x) (mod q).

3. Compute the public key h(x) g(x) ®f1(x) (mod q).

Encryption: Entity B encrypts the message m for A.

1. Encode the message into a polynomial m(x) with binary or ternary coefficients.

2. Choose a random polynomial (x) from the ring R.

3. Compute the ciphertext c(x) pJi(x) 0 h(x) +m(x) (mod q).

Deciyption: Entity A decrypts the ciphertext message c(x).

1. Compute the polynomial m '(x) c(x) ®j(x) (mod q).

2. Compute the plaintext, m(x) m '(x) ®f'(x) (modp).

91

CHAPTER 5

HIGH-SPEED ECC BASED KERBEROS
AUTHENTICATION PROTOCOL FOR WIRELESS

APPLICATIONS

Ozkan M. Erdeni

School of Electrical Engineering and Computer Science

Oregon State University

Corvallis, OR 97331

Proceedings of IEEE Global Telecommunications Conference

Globecom' 2003 Communication Security Symposium

San Francisco, CA, December 2003.

92

Abstract

We improved Kerberos authentication protocol for wireless communication using

elliptic curve cryptographic operations. Proposed protocol offers the strength of public

key cryptography and costs only 68.7 ms extra load to standard Kerberos without

using pre-computation tables for 160-bit curve and scalable architecture, whereas with

customized curve library it costs 57.3 ms extra load for the same key length. Using

pre-computation tables reduces these timings to 55.8 ms and 51.6 ms respectively.

Proposed protocol requires less bandwidth than other public key cryptography enabled

Kerberos solutions. Results were obtained using 32-bit StrongARMi processor runs

206 MHz. Due to its bandwidth efficiency and fast execution performance ECC

supported Kerberos protocol can be an important option among other user

authentication protocols for wireless networks.

93

5.1 Introduction

Today many network authentication protocols support public key

cryptography to provide authentication between client and servers and to establish

trusted connections. The documented 1ETF draft PKIN1T proposed the usage of

public key encryption and digital signature algorithms in Kerberos protocol to provide

confidentiality, integrity and availability [10]. However, in wireless communication

context although public key cryptography offers robust solutions to many security and

authentication problems, the excessive amount of required computational resources

and unacceptable performance characteristics remarkably limit the usage of public key

cryptography. Public key cryptography can be integrated into Kerberos in a number of

ways. Using Elliptic Curve Cryptography offers higher strength per key bit in

comparison with other public key methods [1]. It has been claimed that computational

power required to break 1024-bit of RSA is approximately equal to computational

power to break 139-bit ECC [7]. Smaller bandwidth requirements and smaller

certificate sizes due to shorter key sizes are other advantages of using ECC. However

without efficient and optimized implementations, elliptic curve operations take

excessive amount of time and require bigger code size than mobile platform can

usually offer.

Chapter 5.2 provides brief background on Kerberos protocol and public key

enabled version whereas Chapter 5.3 gives details of elliptic curve cryptography. In

Chapter 5.4 we propose efficient protocol, which enables Kerberos to use elliptic

curve operations. Chapter 5.5 gives details of our high speed and scalable

implementation and specifications of used software and hardware. Following the

development of test-bed, we analyze the performance characteristics for 32-bit

94

StrongARM I processor based mobile devices and for Pentium-Ill servers in Chapter

5.6. Chapter 5.7 summarizes the conclusions of this study.

5.2 Kerberos and Its Derivations

Originated by MIT Project Athena, Kerberos is the distributed authentication service

that provides data integrity and encryption services in specified networks. Standard

protocol employs key distribution center (KDC), client and application server(s). As a

default feature, protocol assumes both parties client and trusted server share the same

secret key at the beginning of the protocol. Although basic purpose is verifying the

identity of client for the application server, Kerberos also includes options for mutual

authentication and establishment of additional secret key between parties. The detailed

transaction flows of standard Kerberos vS can be found in [101.

5.2.1 Public Key Cryptography Enabled Kerberos

Like in many security infrastructures, usage of public-key cryptography has been

proposed in Kerberos protocol to provide confidentiality, integrity and availability.

One of these proposals is documented in IETF draft, namely PKIN1T [13]. PKINIT

provides client authentication to KDC using public-key cryptography and digital

signature algorithms. The main approach is to avoid using shared session key between

client and KDC. Client signs his initial authentication service request with his private

signing key and sends to KDC. KDC verifies the client and sends generated session

key back to client after encrypting it with the public key of client. Public-private key

pairs can be distributed with PKI supported environment to the clients. Adaptation of

PKINIT to mobile users is also possible. However this adaptation has some important

95

drawbacks. Majority of mobile platforms have constraints in processing power in

comparison with wired platforms. Communication restrictions such as bandwidth

problem can be counted as other constraint of using public key cryptography in

wireless devices. Using proxy servers however can decrease the processing load on

mobile devices. Also in PM enabled environment certificate chain can be cached by

the proxy so that possible communication overhead with storing and forwarding

certificate in proxy node could be mitigated. Figure 5-1 shows the transaction flow of

PKINIT protocol.

In {3j Harbitter and Menasce implemented the mobile adaptation of PKIN1T.

However this implementation has one difference regarding to generation of session

key. Implementation employs clients to generate session key before sending

authentication service request to KDC instead of waiting KDC to generate session key.

This modification accommodates the operation of PKJIN1T in situations where the

client only possesses a signing key, but can also be used with RSA that allows both

signing and encryption with the same key and algorithm. The main reason for this

swap is having mobile platform to do public key operation since private key operation

requires more power resources for RSA type algorithms. Since session key is

generated by mobile device, authors suppose to have one major potential risk in

generation of strong secure session key.

1: Client - KDC: ASreq (signed by client)
2: Client f- KDC: ASres (encrypted by KDC with the

public key of the client)
3: Client -4 KDC: TGSreq
4: Client E- KDC: TGSres
5: Client -) Server: AASreq
6: Client f- Server: AASres

Figure 5-1. Protocol flow for PKINIT

Table 5-1. Notation

Symbol Meaning Symbol Meaning
dS
QSc

Client's private and public
key pair for sign/verify

Cert Certificate

dE
QEc

Client's private and public
key pair for
encryption/decryption

dKDC

QKDC

Private and public key
pair for KDC

E(k, m) Secret-key encryption of m
under the key k Is

Identity information

k, k Selected random values Nc, NKDC Nonce values
msb128(m) Most significant 128 bits of m Sign(m) ECDSA signature of m

under the key x
Expiration time for certificate L Lifetime value

(rc, SC) ECDSA signature pair QCKDC Key agreement key
H(m) Hashing output of m KKDCC Encryption session key
Sk Session key Authc Authenticator
x ECC point multiplication

operation
TK5 Ticket for server S

5.3 Elliptic Curve Cryptography

Cryptographic operations on elliptic curves have two major advantages in comparison

to other public-key cryptographic methods; high speed in operations with shorter key

sizes and so less memory and bandwidth requirements in mobile platforms. The IEEE

standard [5] proposes the use of the GF (p) and GF (2") fields for modular arithmetic

on curves. Here GF (p) shows Galois field of prime modulus p and GF (2") shows

Galois field of composite number, which is power of 2. The security of curve

operation requires at least 100 bits for key size, preferably 160 bits and more for

stronger keys.

Elliptic Curve Digital Signature Algorithm (ECDSA) is the analogue of Digital

Signature Algorithm utilizes the arithmetic of points, which are elements of the set of

solutions of an elliptic curve equation defined over a finite field, [51. After definition

of elliptic curve E over GF (p) with large group of order n and selection of a point P

97

of this large order, each party performs individual public-private key pair generation

steps. The selected point P is the public information to all users. The primitives

generated during finite field and base point selection process are the primitives of

signature and verification operations as well.

5.4 ECC Enabled Kerberos

The main goal of using public key cryptography in Kerberos is to provide

non-repudiation and mutual authentication services for client-KDC communications.

PK1N1T utilizes Diffie-Hellman key exchange in combination with RSA keys as the

primary to provide non-repudiation and mutual authentication. Note that public and

private key operations performed in factorization or in discrete logarithm based

algorithms consume a significant amount of processing resources and time, naturally

this causes negative effects on performance and response time of communicating

parties. On the contrary, using elliptic curve operations not only reduces the amount of

resources required by public-private key operations but also uses communication

channel more effectively with the shorter key sizes 1,81. Proposed authentication

protocol defines elliptic curve E over GF (p) with large group of order n and utilizes

ECDSA algorithm and point arithmetic on E. However our design targets to have

some major goals;

Preserve the main semantics of Kerberos.

Provide mutual authentication between client and KDC.

Provide non-repudiation of client to KDC.

Minimize the number of operations to be performed on mobile client.

Keep ability to use existing or developing public key management

infrastructures.

98

Our proposal assumes using certificates to identify and authenticate parties,

although this does not oblige to have existing public key infrastructure. Since KDC is

the trusted party, storage of public key and certificates by KDC is sufficient solution

to manage keys.

5.4.1 Client and KDC Initializations

Initialization between KDC and client is one-time off-line process to be performed

before using authentication protocol. First, as a trusted server KDC produces his

private and public key pair for key agreement purposes and publishes to all clients as

in follows:

One-time Setup for KDC:

1. Select an elliptic curve E over GF(p) with a group of order n, choose a point P

of this order.

2. Select a random integer dKDC E [2, n-2].

3. Compute QKDC= dKDC x P.

4. The public and private keys of KDC are (E, P, n, QKDC) and dKDC respectively.

Public key of KDC will be published to all clients.

The next step is two-way certificate initialization for each client. Client chooses

private signature generation key dS, private key agreement key dEe, and initially set

identity information I. After computing signature verification key QSc and public key

agreement key QEc client generates certificate request message and sends to KDC.

Key setup and certificate generation are illustrated briefly in Figure 5-2.

KDC stores client's public key agreement key, signs the certificate including signature

verification key, identity information and the expire date of certificate tc and sends

certificate back to client. Here rc is the x coordinate of the elliptic curve point R, and

H is the hash function. The application server repeats the same process to acquire its

certificate like shown in Figure 5-2.

1: Client: Select dS E [2, n-2J. Compute QSc = dS X P.

Select dE [2, n-2j. Compute QEc = dE x P.
2: Client KDC: CERTreq: (Ic, QSc, QEc}.
3: KDC: Select k E [2, n-21.

Compute Rc = x P.
Compute m = {Ic I QSc.x I tc }.
Use ECDSA to sign m, compute

= Rc.x,
SC = kc'.(H(m)+dKDc .rc)

Certc = {m, t, (rc, SC)}
4: Client f KDC: CERTres: Certc
5: Client: Store the Certc after verification of its signature by using ECDSA

algorithm with public key of KDC.
If not verified go to 1.
Compute and store public key agreement key.

QC-KDC = dE x QKDC
Store dS as a signature generation key and dEc as a private key

agreement key.
6: KDC: Store identity of client I and QEc as

the public key agreement key of client.
Store the Certc.

Figure 5-2. Proposed protocol flow for key setup and certificate generation

5.4.2 Design of Proposed Protocol

One of our goals is preserving Kerberos semantics so that proposed protocol would be

used with existing standard Kerberos KDC and application server implementations.

Protocol starts with the request for authentication and ticket service (ASreq- TGSreq)

signed by client using private key dSc with ECDSA algorithm. Standard Kerberos v5

message contains a PA-PK-AS-SIGN pre-authentication field, which includes sub

fields the "userCert" and "encSignedRandomKeyPack". These sub fields can be used

100

for signature and certificate delivery to KDC. After verification of the client's

signature KDC generates encryption key agreement key QCKDC shared between client

and KDC. For this, KDC performs point multiplication operation using dKDC and QEc.

Result gives QCKDC shared by both parties whereas client already did the same

operation during initialization.

1: Client: Compute m = {Ic I I N }.
2: Client KDC: ASreq-TGSreq: {m I Signds (H(m))}.

3: KDC: One-time setup: TK5 = E(KKDCS, k I 1c1 L)
4: KDC: Verify the signature of ASreq-TGSreq using Certc.
If verified;

QC-KDC = dKDC X QEc

KKDCC = msbl28(H(QCKDC I Nc I NKDC))

E(KKDCC, kINCINKDCILIIS)

5: Client f- KDC: ASres-TGSres:
(TK I E(KKDCC, k INCINKDC IL I Is))

6: Client: Check N, Generate
KKDCC = msbl28(H(QCKDC Nc I NKDC))
Auth = E(k, 'c I I Sk)

7: Client Server: AASreq: TKs I Auth
8: Server: Decrypt TK5, retrieve k

Decrypt Authc.
Check 1c and L.
Authentication successful.

9: Client E- Server: AASres: E(k, tcl (optional) Sk5).
(optional) Key agreement with Sk and Sk5.

Figure 5-3. Proposed ECC based Kerberos protocol

One-time encryption session key is derived from the digest of the concatenation of

key agreement key (QCKDC), nonce generated by client (Ne) and nonce generated by

KDC (NKDC). Since the recent symmetric encryption algorithm standards assume using

101

minimum 128 bits key size we suggest using the most significant 128 or more bits of

digest as symmetric encryption session key KKDCC. Authentication and ticket granting

service response message (ASres-TGSres) has additional NKDC field. Finally client

uses this nonce value to compute session encryption key. The rest of protocol will be

very same as specified in standard Kerberos v5.

The additional computational cost of protocol on the mobile user side is just one

signature generation and two hashing operations where signature generation means a

point multiplication on the curve, one hashing and one modular inverse calculation.

Note that client should store the seed key (QCKDC) safely inside of device and use it in

every new transaction. In next chapter we briefly talk about the structure of

implementation to test our proposed protocol, the scalability and the timing figures.

Figure 5-3 gives details on the protocol.

5.5 Structural Implementation

Implemented configuration consists of simple conimunication entities in Kerberos

protocol; Key distribution center, application server and mobile client. Two different

Ethernet based LANs have been used to simplify the performance evaluation. The

configuration also includes three client workstations locating on each individual LAN

to load the KDC in Ethernet LAN1 and application server in Ethernet LAN2 by

performing large number of authentication transactions. Since usually the link

between KDC and Application server runs on wide area network we simulated WAN

connection between two LANs. However high scoped systems employ most likely

more powerful computing resources and processors in KDC and application server

than the one we used in the configuration. Mobile client uses Windows CE operating

system as the majority of the handheld computer and PDA devices support. The KDC

102

and application server run Windows 2000 server operating system whereas client

workstations use Windows 2000 professional OS. In our configuration we don't see

the necessity of using proxy server. The simplified transactions of mobile client and

the efficiency of point multiplication and signature generation processes in ECC can

be counted as the reasons for not to employ proxy server. Structure of the performance

evaluation and test configuration briefly figured in Figure 5-4.

5.5.1 Software and Hardware Specifications

Elliptic point addition, doubling, point multiplication and ECDSA algorithm have

been implemented as standardized in the IEEE P1363 and ANSI X9.62. We preferred

to use DES, 3DES and AES as secret-key crypto algorithms. We also have used SHA-

I message digest algorithm to hash the message blocks. All these algorithms have

been implemented as specified in FIPS [46-3, 81], FIPS [46-31, FIPS [197] and FIPS

[180-1] standards, respectively.

Implemented modular and point arithmetic module performs modular operations, such

as addition, subtraction, multiplication, inversion operations for modulus p, as well as

point addition, doubling and point multiplication on the elliptic curve. This small

sized module is implemented in only 28 kilobytes of code size for random curve

selections and in 44 kilobytes of code size for customized NIST curve (256 bit key

length). It optionally uses a small amount of extra memory and provides speed-up in

operations. Module supports all standard ECC fields, random base points, random

curve parameters and works for different elliptic curves with various key lengths from

160 bits up to 256 bits.

103

Key
Distribution

Application
[Lii Server

Center Mobile

wS-1
Client

WS-1

WS-2
WS-2

WS-3 A
WS-3

Ethernet LAN 1 Ethernet LAN2

Figure 5-4. Performance measurement and test configuration

Implemented ECDSA module performs elliptic curve parameter and key generation as

well as it generates signature of hashed messages and verifies the signature obtained.

Today there are plenty of pocket PC and handheld PC currently employ Intel SA- 1110

processor. In our configuration we used a highly integrated 32-bit Intel StrongARM

206 MHz processor that incorporates Intel design and process technology along with

the power efficiency of the ARM architecture, [6, 14]. As KDC and application server

we used two servers running 850 MHz Pentium Ill processors. All Pentium processors

used are little endian.

5.6 Performance Analysis

In this chapter we analyze the service time measurements for the proposed protocol.

As an initial step we obtained the performance results for ECC operations including

elliptic curve point multiplication, ECDSA signature generation and signature

verification. Firstly selected three curves are random NIST curves with the key length

104

160, 192 and 256 bits. These curves use our general-purpose implemented code

library that provides simultaneous support at runtime for each of these curves.

Secondly selected three curves use specifically optimized different code libraries.

Field multiplication, modulo reduction and other curve-specific parts have been

optimized for these customized curves whereas the core of ECC library has been kept

as is. Since the code size and memory heap usage are major criteria in mobile devices,

we briefly give the code sizes of the library and runtime memory usage in Table 5-2

for each curves and algorithms. For each curve in the table, code sizes and memory

usage are provided without using pre-computation and with using pre-computation

options as well. Pre-computation option generates "pre-computation tables" and stores

them in the memory during curve initialization phase to speed-up the point

multiplication and signature generation operation for the specified curve. Note that

using pre-computation tables causes to increase in code size about 4 KB and four to

seven times bigger memory heap usage in runtime. Protocol transaction steps have

been grouped to two main segments to analyze the service time clearly:

Pre-Auth: Measured time for initialization of the mobile device and transmission of

ASreq-TGSreq to KDC prior to authentication.

Auth: Measured time for KDC computations and transmission of ASres-TGSres back

to the mobile device, additionally the measured time for mobile device processing

time of ASres-TGSres and completing the authentication with application server. The

performance of each component in our simulation might show the variance from real

time mobile computing environment. As a transmission speed on LAN we figured

10Mbps that is average speed of Ethernet LAN. We used 9600 bits per second

wireless network rate to represent 2G network performances [12]. Table 5-3

summarizes the additional service time for standard Kerberos to complete the protocol.

105

Table 5-2. Memory heap size and code size of crypto library implementation

Curves
vs.
Sizes (KB)

ECC
160 bit

ECC
192 bit

ECC
256 bit

wop/wp wop/wp wop/wp
Code Size 28.0/32.0 28.0/32.0 28.0/32.0
Memory
Usage__________

2.2/8.7 2.2/11.5 2.8/20.0

Curves
vs.
Sizes (KB)

NIST
160 bit

NIST
192 bit

NIST
256 bit

wop/wp wop/wp wop/wp
Code Size 32.0/40.0 36.0/40.0 44.0/48.0
Memory
Usage

2.5/8.5 2.8/11.5 3.6/20.0

DES TDES AES
Code Size 14.0 14.0 27.0

Results have been obtained separately with using pre-computation tables (wp) and

without using pre-computation tables (wop) on the code library. As seen in Table 5-3,

using pre-computation improves the performance of ECC enabled Kerberos service

timings. However extra load in memory of mobile device is a drawback of using pre-

computation.

Several speed optimizations on the library can be done easily with machine level

coding. In our implementation we obtained approximately twenty percent speed-up in

point multiplication and so in signature generation/verification by coding in ARM

assembly machine language. These optimizations mainly performed in low-level field

multiplication that is taking majority of processing time in point multiplication. We

expect our server capacity to multiply with a factor of ten over the PCs that we used in

our test-bed since today most of high-end servers employ much powerful CPUs.

Another improvement on protocol service time can be increasing the network

throughput to 3G speeds.

106

Table 5-3. Extra service time required for protocol

Protocol
Extra Load
(ms)

ECC
160 bit

ECC
192 bit

ECC
256 bit

wop/wp wop/wp wop/wp
Pre-Auth. 53.0/41.6 71.7/51.2 124.3/79.8
Auth. 15.7/14.2 17.2/14.9 21.3/16.3
Total 68.7/55.8 88.9/66.1 145.6/96.1

NIST
l6Obit

NIST
l92bit

NIST
256bit

wop/wp wop/wp wop/wp
Pre-Auth. 42.9/37.6 55.2/46.5 88.8/66.9
Auth. 14.4/14.0 14.8/14.2 17.7/15.1
Total 57.3/51.6 70.0/60.7 106.5/82.0

5.7 Conclusions

In this paper we briefly explained how we provide ECC support to Kerberos

authentication protocol.

Preserve the main semantics ofKerberos. In our proposal we have minor additions to

standard Kerberos protocol. Mobile device can use pre-authentication fields for

signature and certificate delivery to KDC.

Provide mutual authentication between client and KDC & Provide non-repudiation of

client to KDC: Signature of ASreq-TGSreq proves the origin and integrity of the

message to KDC. Authentication of the server is provided with the previously agreed

key between KDC and client to derive the session key.

Minimize the number of operations to be performed on mobile client: PKINIT

requires one RSA signature generation and one RSA decryption operation in client

side during authentication process. We reduced the operations for preparation of AS-

TGS request messages in client side. Only with one ECDSA signature generation

mobile device completes the client side of mutual authentication process.

107

Keep ability to use existing or developing public key management infrastructures:

Proposed protocol fully supports to use of certificates. Extension fields defined in

Kerberos v5 can be used to transmit the certificates while the current IETF draft for

PKIN1T allows the KDC to store client private keys.

The measurements show that ECC enabled Kerberos offers very reasonable timings

for mobile environment. Proposed protocol costs only 68.7 ms extra load to standard

Kerberos without using pre-computation tables for 160-bit curve and scalable

architecture, whereas with customized curve library it costs 57.3 ms extra load for the

same key length. Using pre-computation tables reduces these values to 55.8 ms and

51.6 ms respectively. Wireless network speed has been presumed as 9600 bps as it is

default speed in G2 networks. Finally, due to its bandwidth efficiency and fast

execution performance ECC-supported Kerberos protocol can be an important option

among other authentication protocols for wireless networks.

5.8 Acknowledgement

This research has been supported by ICEsoft Technologies.

5.9 References

[1J M. Aydos, T. Yanik, and C.K. Koc. High speed implementation of an ECC-based
wireless authentication protocol on an ARM microprocessor. lEE Proceedings:
Communications, 148(5): 273-279, October 2001.

1121 A. Fox, and S.D. Gribble. Security on the move: Indirect authentication using
Kerberos. MOBICOM'96. Rye, NY, 1996.

[3] A. Harbitter, and D.A. Menasce. The performance of public key-enabled Kerberos
authentication in mobile computing applications. ACM, CCS'Ol, Philadelphia, PA,
November 2001, pp.78-85.

[4] M. Hur, et al. Public key cryptography for cross-realm authentication in Kerberos.
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pkcross-06.txt, 2000.

[5] IEEE P1363: Standard Specifications for Public-key Cryptography, Draft version
13, November 1999.

[6] Intel Corp., Intel StrongARM SA-1 110 Microprocessor: Brief Datasheet, Santa
Clara, California, 2001.

[71 A.K. Lenstra, and E.R. Verheul. Selecting cryptographic key sizes. The 3rd

Workshop on Elliptic Curve Cryptography (ECC '99), November 1999, Waterloo,
Canada, pp. 1-3.

[8] A.J. Menezes. Elliptic Curve Cryptosystems. Kluwer Academic Publishers,
Boston, MA, 1993.

[9] V. Miller. Uses of elliptic curves modulo large primes. Advances in Cryptology,
CRYPTO'85, Lecture Notes in Computer Science, Springer-Verlag, 1986, pp.417-426.

[10] MIT, Kerberos: The Network Authentication Protocol, 1998,
http://web.mit.edu/kerberos/www/.

[11] P. L. Montgomery. Modular multiplication without trivial division. Mathematics
ofComputations, April 1985, 44, (170), pp. 519-521.

[12] Personal Communications Industry Association. Market Demand Forecast for
Terrestrial Third Generation (IMT-2000) Service for the PCIA, 1998.

[13] B. Tung, et al. Public Key Cryptography for Initial Authentication in Kerberos.
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-init- I 2.txt, 2001.

[14] R. Witek and J. Montanaro. StrongARM: A high performance ARM processor.
Proceedings of the COMPCON Spring '96-4F' IEEE International Computer
Conference, Digital Equipment Corp., USA, 1996.

CHAPTER 6

GENERAL CONCLUSION

In this thesis three different open problems in mobile ad hoc network key management

area are studied and novel solutions are proposed. Distributed trust model for mobile

ad hoc networks does not employ an online key distribution server and devices do not

have trust relations prior to forming the group. Self-organizing devices have to

authenticate each other and establish the encryption link keys. A practical and

efficient group key management framework is presented for resource constrained

mobile ad hoc network to solve this problem. The proposed Hierarchical Binary Tree

based model does not require any central key management authority or group manager,

and uses one-way hash function and simple xor operations to generate the group

meeting key. Every device has the same level of trust in the group and establishes the

trust with other devices which locate in the same Key Sharing Subgroup. To complete

the authentication, each user contacts to d=log2 n member in join process, where n

shows the number of members. Then, sibling member of the joining or leaving

member in the tree generates the seed key which will be used in refreshing group key.

Group key is the key of the root node which is result of consecutive hash functions

applied to the seed key in upward direction. Distribution of group keys to other

members is performed after encrypting the keys with previously negotiated blinded

keys and index values. Every member holds (2d + 1) keys, d indexes and d public

keys for the group key management. Chapter 2 and Chapter 3 present two different

methods to establish Key Sharing Subgroups. The group authentication and group

key establishment protocols proposed in Chapter 2 employs any type of public key

algorithms to complete the device authentication process while Chapter 3 presents a

110

customized ECC and Rabin's scheme based group authentication and key

establishment protocol. Thus, more efficiency in the group key management is

achieved during modifications in memberships. According to the comparisons,

proposed customized protocols achieve better results than other recently proposed

ECC based authenticated key establishment protocols in terms of processing time.

Since there are d=Iog2 n number of key establishment process for each joining device,

minimizing total processing time significantly improves the efficiency of proposed

group key management system.

It has also been proven that proposed group key management system satisfies the

security requirements of common group philosophy, such as backward secrecy,

forward secrecy, group confidentiality and key freshness. Consequently, proposed

Hierarchical Binary Tree based system offers practical distributed key management

for resource constrained systems which has lack of key distribution authority and

achieves comparable performance with the models which use secret key cryptography

and employ centralized authorities.

Chapter 4 addresses the problem of introducing public key cryptography to the

communication between sensor and data processing station. Using expensive public-

key operations such as modular exponentiation and elliptic curve point multiplications

should be avoided since sensors have strict constraints in computational capabilities,

energy and memory. Three different authenticated hybrid key establishment protocols

are presented. Proposed modular multiplication based protocol uses only two modular

multiplications at the sensor side and expensive public key decryption operation is

executed at the station side. On the other hand, proposed Modular multiplication-Light

protocol improves the computational efficiency, and sensor needs to make only one

modular multiplication. Next proposed protocol NtruEncrypt-Light gives more

111

efficiency in computation and battery consumption. It employs NtruEncrypt algorithm

and replaces modular multiplication with one cyclic convolution product of two

polynomials and polynomial addition. Chapter 4 also gives the performance

comparisons between proposed hybrid protocols and fully public key based protocols.

In summary, hybrid authenticated key establishment protocols provide strong security

feature of public key cryptography with significantly reduced processing time, low

battery power consumption and comparable message size.

Chapter 5 briefly explains how to provide ECC support to Kerberos authentication

protocol to solve the mutual authentication and to prevent password guessing attacks.

Proposed certification and authentication protocols have only minor additions to

standard Kerberos protocol and so standard semantics of Kerberos is preserved. Non-

repudiation of client and authentication between client and Key Distribution Center

are provided and freshness of session keys is guaranteed. While PKINIT [52] requires

one RSA signature generation and one RSA decryption operation in client side during

authentication, in proposed authentication protocol mobile device completes the client

side of the process only with one ECDSA signature generation. The measurements

show that ECC enabled Kerberos offers very reasonable message bandwidth and fast

execution performance for mobile environment. As a result, ECC supported Kerberos

protocol can be an important option among other authentication protocols for mobile

ad hoc networks which prefer to use centralized trust model.

112

BIBLIOGRAPHY

[I]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102-114, August 2002.

[2] M. Aydos, T. Yanik, and C. Koc. An high-speed ECC-based wireless
authentication protocol on an ARM Microprocessor. Proceedings of ACSAC'2000,
New Orleans, LA, December 2000.

[3] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic hash functions: A
survey. Technical Report 95-09, University of Wollongong, July 1995.

[4] S. Basagni, K. Hen-in, E. Rosti, and D. Bruschi. Secure pebblenets. Proceedings of
ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2001), 2001.

[5] H. Cam, S. Ozdemir, D. Muthuavinashiappan, and P. Nair. Energy-efficient
security protocol for wireless sensor networks. Proceedings of IEEE Conference on
VTC, 2003.

[61 S. Capkun, L. Buttyan, and J. Hubaux. Self-organized public-key management for
mobile ad hoc networks. IEEE Transactions on Mobile Computing, 2(1):52-64,
January-March, 2003.

[71 G. Caronni, M. Waldvogel, D. Sun, and B. Plattner. Efficient security for large and
dynamic multicast groups. Proceedings of the Seventh Workshop on Enabling
Technologies (WET ICE'98), IEEE Computer Society Press, 1998.

[8] J. Daemen and V. Rijmen. AES Proposal: Rijndael. AES algorithm submission,
Sep 1999. http://www.nist.gov/aes.

[91 Certicom Research, Standard for efficient cryptography, SEC 1: Elliptic Curve
Cryptography, Version 1.0, September 2000.

[10] R. Di Pietro, L. V. Mancini, and S. Jajodia. Efficient and secure keys
management for wireless mobile communications. Proceedings of POMC'02, ACM,
Toulouse, France, October 2002.

[111 R. Di Pietro, L. V. Manchini, and A. Mei. Random key-assignment for secure
wireless sensor networks. Proceedings of the 1 ACM Workshop Security of Ad Hoc
and Sensor Networks, VA, USA, 2003.

[12] L. R. Dondeti, S. Mukherjee, and A. Samal. A distributed group key management
scheme for secure many-to-many communication. Technical Report PINTL-TR-207-
99, Department of Computer Science, University of Maryland, 1999.

113

[13] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key pre-distribution
scheme for wireless sensor networks. ACM CCS'03, October 2003, Washington, DC,
USA.

[14] 0. M. Erdem. High-speed ECC based Kerberos authentication protocol for
wireless application. Proceedings of IEEE GLOBECOM'2003 Communication
Security Symposium, San Francisco, CA, December 2003.

[15] 0. M. Erdem. EDKM: Efficient distributed key management for mobile ad hoc
networks. Proceedings of IEEE International Symposium on Computers and
Communications, ISCC'04, Alexandria, Egypt, July 2004.

116] 0. M. Erdem. Efficient self-organized key management for mobile ad hoc
networks. Proceedings of IEEE GLOBECOM'2004 Network and Security
Management Symposium, Dallas, TX, December 2004.

[17] 0. M. Erdem. Lightweight key establishment protocols for self-organizing sensor
networks. To be submitted to iEEE 2nd Annual Communication Society Conference on
Sensor and Ad Hoc Communications and Networks, SECON'05, Santa Clara, CA,
September 2005.

[18] L. Eschenauer and V.D. Gligor. A key-management scheme for distributed
sensor networks. Proceedings of the 9th ACM conference on Computer and
communications security, November 2002.

[19] A. Fox and S.D. Gribble. Security on the move: Indirect authentication using
Kerberos. MOBICOM'96. Rye, NY, 1996.

[201 G. Gaubatz, J. Kaps, and B. Sunar. Public key cryptography in sensor networks-
revisited. Proceedings of I European Workshop on Security in Ad-Hoc and Sensor
Networks (ESAS'2004), 2004.

[211 S. Gokhale and P. Dasgupta. Distributed authentication for peer-to-peer networks.
International Symposium on Applications and the Internet (SAINT) 2003, Pg. 347-353,
Orlando, FL.

[22] A. Harbitter and D.A. Menasce.The performance of public key-enabled Kerberos
authentication in mobile computing applications. ACM, CCS'Ol, Philadelphia, PA,
November 2001, Pg. 78-85.

[23] J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A ring-based public key
cryptosystem. Algorithmic Number Theory (ANTS III). Volume 1423 of LNCS., Pg.
267-288, Berlin, Springer-Verlag, 1998.

[24] J. Hoffstein, J. Silverman, and W. Whyte. NTRU report 012, version 2. Estimated
breaking times for NTRU lattices. Technical Report 12. NTRU Cryptosystems, Inc.,
Burlington, MA, USA, 2003.

114

[251 J. Hoffstein and J. H. Silverman. Optimizations for NTRU. Proceedings of Public
Key Cryptography and Computational Number Theory, de Gruyter, Warsaw, 2000.

[261 Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang. Fast authenticated key
establishment protocols for self-organizing sensor networks. Proceedings of ACM
WSNA '03, September 2003, San Diego, CA, USA.

[271 M. Hur, et al. Public key cryptography for cross-realm authentication in Kerberos.
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pkcross-06.txt, 2000.

[28] IEEE P1363: Standard Specifications for Public-key Cryptography, Draft version
13, November 1999.

[291 ISO/IEC 9796. Information technology Security techniques Digital signature
scheme giving message recovery, International Organization for Standardization,
Geneva, Switzerland, 1991.

[30] Intel Corp., Intel StrongARM SA-Il 10 Microprocessor: Brief Datasheet, Santa
Clara, California, 2001.

[311 G. Jolly, M. C. Kuscu, P. Kokate, and M. Younis. A low-energy key management
protocol for wireless sensor networks. Eighth IEEE International Symposium on
Computers and Communications (ISCC'03), 2003.

[321 A. Khalili, J. Katz, and W. Arbaugh. Toward secure key distribution in truly ad-
hoc networks. International Symposium on Applications and the Internet (SAINT)
2003, Pg. 342-346, Orlando, FL, 2003.

[331 A. K. Lenstra and E .R. Verheul. Selecting cryptographic key sizes. Journal of
Cryptology. The Journal of the International Association for Cryptologic Research 14,
Pg. 255-293, 2001.

[34] A.K. Lenstra and E.R. Verheul. Selecting cryptographic key sizes. The
Workshop on Elliptic Curve Cryptography (ECC'99), November 1999, Waterloo,
Canada, Pg. 1-3.

[35] D. A. McGrew and A.T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical Report No.0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May 1998.

[36] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of applied
cryptography. CRC Press series on discrete mathematics and its applications. CRC
Press, 1997.

[371 A.J. Menezes. Elliptic Curve Cryptosystems. Kluwer Academic Publishers,
Boston, MA, 1993.

115

[38] V. Miller. Uses of elliptic curves modulo large primes. Advances in Cryptology,
CRYPTO'85, Lecture Notes in Computer Science, Springer-Verlag, 1986, Pg. 417-
426.

[391 MIT, Kerberos: The Network Authentication Protocol, 1998.

http://web.mit.edulkerberos/www/.

[401 P. L. Montgomery. Modular multiplication without trail division. Mathematics of
Computation, Vol. 44, No. 170, Pg. 5 19-521, 1985.

[411 B. C. Neuman and T. Tso. Kerberos: An authentication service for computer
networks. IEEE Communications, 32 (9). Pg. 33-38, September, 1994.

[42] A. Perrig, D. Song, and J. D. Tygar. ELK, a new protocol for efficient large-
group key distribution. iEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2001.

[431 A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS: Security
protocols for sensor networks. Wireless Networks 8, Pg. 521-534, The Netherlands,
2002.

[44] Personal Communications Industry Association, Market Demand Forecast for
Terrestrial Third Generation (IMT-2000) Service for the PCIA, 1998.

[45] M. 0. Rabin. Digitalized signatures and public key functions as intractable as
factorization. Mit/lcs/tr-212, MIT, 1979.

[46] S. Rafaeli, L. Mathy, and D. Hutchison. EHBT: An efficient protocol for group
key management. Proceedings of the Third International C0ST264 Workshop (NGC
2001), Springer-Verlag, LNCS 2233, Pg. 159-171, London, UK, November 2001.

[47] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems, Communications of the ACM, Vol. 21, Pg. 120-126,
1978.

[48] SECG, Elliptic Curve Cryptography, Standards for Efficient Cryptography Group,
2000. Available from http://www.secg. org/collateral/sec I .pdf.

[49] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group
key agreement. Technical Report RZ 2984, IBM Research, December 1997.

[50] Texas Instruments, Inc. MSP43Ox4xx Family User's Guide, 2004. At
http://www-s.ti.com/sc/psheets/slazOO8/slaz008.pdf.

[51] Texas Instruments, Inc. MSP43OF42x Mixed Signal Controller, 2004. At
http://www-s.ti.com/sc/ds/msp430f427.pdf.

[52] B. Tung, et al. Public Key Cryptography for Initial Authentication in Kerberos,
2001. http:llwww.ietf. org/intemet-drafts/draft-ietf-cat-kerberos-pk-init- I 2.txt.

116

[53J D. Waliner, B. Harder, and R. Agee. Key management for multicast: Issues and
architectures. RFC 2627, June 1999.

[541 D. S. Wang and A.H. Chan. Mutual authentication and key exchange for low
power wireless communications. Proceedings of IEEE MILCOM'2001, 2001.

[551 H. C. Williams. A modification of the RSA public-key encryption procedure.
IEEE Transactions on Information Theory, 26 (1980), Pg. 726-729.

[56] R. Witek and J. Montanaro. StrongARM: A high performance ARM processor.
Proceedings of the COMPCON Spring 9641st IEEE International Computer
Conference, Digital Equipment Corp., USA, 1996.

[57] L. Zhou and Z. Haas. Securing ad hoc networks. IEEE Network Magazine, 13(6),
November-December 1999.

