1	
2	Air quality and elemental enrichment factors of aerosol
3	particulate matter in Riyadh City, Saudi Arabia
4	
5	
6	
7	
8	Ahmed I. Rushdi ^{1,2*} , Khalid F. Al-Mutlaq ¹ , Mubarak Al-Otaibi ¹ , Aarif H. El-
9	Mubarak ¹ and Bernd R. T. Simoneit ^{1,3}
10	
11	
12	1. Chair of Green Energy Research, Department of Plant Protection, College of Food
13	and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451,
14	Saudi Arabia.
15	
16	2. Department of Geosciences, Oregon State University, Corvallis OR, 97331, U.S.A
17	
18	3. Department of Chemistry, Oregon State University, Corvallis, OR 97331, U.S.A.
19	
20	
21	
22	

^{*} Corresponding author: arushdi@ksu.edu.sa or airushdi@comcast.net

Abstract:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Air particulate matter (PM) samples were collected from June 2006 to May 2007 for determination chemical elements. PM samples were taken in two size fractions (PM_{2.5} and PM₁₀) with MiniVolume air samplers on rooftops of various buildings (15-25 m above ground) in the city of Riyadh. The samples were subjected to XRF analysis to measure major (Na, Mg, Al, K, Ca, Si, P, S and Fe) and trace elements (Mn, Ni, Cu, Zn, and Ba). The results showed that the PM concentrations were higher for PM₁₀ compared to PM_{2.5}, indicating that the major PM source was local dust. Also the spatial distribution with high PM concentrations was observed in the south and southeast of the city and the lowest levels were in the center and northeast of the city. This spatial distribution was attributed to different factors such as wind direction and velocity, emission from cement factories, presence of buildings, trees and paved streets that reduce the amount of dust resuspended into the atmosphere. The air quality of the city was found to range from good to hazardous based on $PM_{2.5}$ and from good to very hazardous based on PM₁₀. The element enrichment factors revealed two element groups according to their changing spatial behavior. The first group showed no significant spatial changes indicating they have the same common source. The second group (mainly S and Ni) exhibited significant changes as expected from anthropogenic inputs. The origin of S is possibly a combination of minerals (CaSO₄) and fossil fuel combustion. The source of Ni is probably from fossil fuel combustion.

22

23

Keywords: PM_{2.5}, PM₁₀, Riyadh, Air quality, Major and trace elements

2425

1. Introduction

1

2 The occurrence of aerosol particulate matter (PM) in the atmosphere is a result 3 of anthropogenic (e.g. traffic emissions, urban activities, construction activities, 4 industries, etc.) and natural (e.g. resuspension, wild fires and direct abrasion of agricultural soil) inputs and secondary PM formation by atmospheric chemical 5 6 reactions (e.g. ozonization) (Capri, 2004; Dunnivant and Anders, 2006; Fellenberg, 2000; Newton, 2004; Prospero et al., 2002; Seinfeld and Pandis, 1998; Sodhi, 2005). 7 8 Atmospheric transport of dust advected from desert and semi-arid regions is another 9 source of aerosol PM (Chiapello et al., 1995, 1997; Ellis and Merrill, 1995; 10 Koelemeijer et al., 2006; Mochida et al., 2003; Prospero et al., 1995, Simoneit and 11 Elias, 2000; Swap et al., 1992). Moreover, the atmospheric dust and fine particle 12 loadings often change rapidly over space and time (Prospero et al., 1996; Reid et al., 13 2005). During a desert storm event, dust and fine particle mass loadings can change 14 by orders-of-magnitude in a matter of hours (Reid et al., 2005; Tindale and Pease, 15 1999). The loading variations also change the chemical components of the dusts and 16 fine particles. These changes are due to the transit of the dust plumes over developed 17 regions, which can add pollutants and other atmospheric constituents (Ashbaugh et 18 al., 2003; El-Shobokshy and Al-Saedi, 1993; Hindy and Baghdady, 1996; Pilcher 19 1999; Reid et al., 2005; Sabba Rao and Al-Yamani, 1999; Savoie et al., 1987). 20 Transport of mineral dust and particulate matter from the Arabian Peninsula not only 21 affects climate change over a large region (El-Shobokshy and Al-Saedi, 1993; 22 Harrison et al., 2001; Prospero and Lamb, 2003; Prospero et al., 1996; Reid et al., 23 2005), but also biodiversity and human health (Barnard, 1998; Batjargal et al., 2006). 24 Epidemiological research indicates that there is an increase in human 25 morbidity and mortality with exposure to inhaled airborne PM (Brunekreef and

1	roisberg, 2003, Dockery et al., 1993, Samet et al., 2000, Schwartz et al., 1990,
2	Sioutas et al., 2005). Inhaled PM (< $2.5\mu m$) can be deposited in the lung and migrate
3	from there by systemic circulation to the heart, as well as to more distal organs
4	(Nemmar et al., 2002). Coarser PM (< 10 μ m) has also been shown to be mutagenic
5	(Buschini et al., 2001; Pagano et al., 1996; Shi et al., 2006) and has been linked to
6	abnormal fluctuations in heart rate in older adults (Gong et al., 2004; Lipsett et al.,
7	2006). In addition, coarse PM generated from burning agricultural waste has been
8	associated with increases in respiratory problems in children and the elderly (Cançado
9	et al., 2006), as well as farmers (McCurdy et al., 1996). A recent investigation of
10	children living in Toronto revealed significantly elevated rates of hospitalizations
11	from respiratory infections associated with ambient $PM_{10-2.5}$ compared with any other
12	measured pollutant or meteorological condition (Lin et al., 2002). Similarly, the
13	strongest association between air pollutants and respiratory symptoms in school
14	children from cities in China was for levels of $PM_{10-2.5}$ (Zhang et al., 2002). In another
15	urban study, hospitalization rates for asthma in children 6-12 years old were
16	significantly associated with $PM_{10\text{-}2.5}$ after adjustment for confounders (Lin et al.,
17	2002).
18	Data on the distribution and chemical composition of both coarse (PM_{10}) and
19	fine $(PM_{2.5})$ aerosol particles generated from the same urban and rural areas and
20	within a specific geographic region is very limited. Therefore, the purpose of this
21	work is to investigate the levels, distribution and enrichment factors as indications for

2324**2. Methodology**

25 <u>2.1. Sampling</u>

22

the element sources of $PM_{2.5}$ and PM_{10} in the city of Riyadh, capital of Saudi Arabia.

- 1 Aerosol PM samples were collected in June 2006 and then every three months 2 from November 2006 to May 2007 on rooftops (approximately 15-25 m above 3 ground) of different buildings in Riyadh. MiniVol portable air samplers (Airmetrics, 4 Eugene, OR, USA), using the cascade impactor principle to collect two sizes (PM₁₀ 5 and PM_{2.5}) were employed to acquire the aerosol samples. The sampling sites were 6 selected to cover the entire area of the city as shown in Figure 1 and included the 7 northwest (sites AM and AQ), west (DR), southwest (OR), south (SH), North (AZ), 8 city center (AL), northeast (NZ), and southeast (JZ and MN). The descriptions of the 9 site locales are given in Table 1. The PM samples were collected on Teflon fiber film 10 filters (0.45 µm pore size for coarse particles and 0.22 µm pore size for fine particles) for this study. Sampling was performed at a total flow rate of 5L min⁻¹ for a 24 hour 11
- 13 <u>2.2. Analysis</u>

period.

12

17

21

- 14 The chemical analysis was performed by X-ray fluorescence (XRF) (XEPOS;
- 15 Spectro ED-XRF, Germany) to determine the major (Na, Mg, Al, K, Si, P, S, Ca and
- 16 Fe) and trace elements (Mn, Ni, Cu, Zn, Ba, Co, As, Se, Mo, Cd, Sn, and Sb).

18 **3. Results and Discussion**

- The concentration levels and the spatial and temporal variations of PM_{10} and
- 20 PM_{2.5} for June 2006 to May 2007 are given in Table 2 and shown in Figure 2.
- 22 <u>3.1. Concentration and distribution of aerosol PM_{2.5} and PM₁₀</u>
- The data show that the concentrations of PM_{2.5} were mostly lower than those of
- 24 PM₁₀ (Fig. 2), in agreement with other studies in the region (Kubilay et al., 2000;
- 25 Ganor et al., 2000, 2009; Saliba et al., 2007; Shaka' and Saliba, 2004). The

1 concentrations of coarse particulate matter (PM₁₀) were approximately 1.0 to 4.0 2 (1.9±0.8) times higher than fine (PM_{2.5}) (Fig. 3a) indicating that the dominant PM 3 component was coarse. Two factors can be attributed to these spatial and seasonal 4 changes: (1) the seasonal wind direction and speed and (2) local development and human activities in the city. 5 The concentration of PM_{2.5} ranged from 55.6 to 219.5 µg m⁻³ with a mean 6 value of 104.0+61.4 µg m⁻³ in June 2006, where the lowest concentration was in the 7 8 northwest of the city (AM site) and the highest in the southeast (MN site). In November 2006, the average concentration (76.3+66.1 µg m⁻³) was lower than in June 9 2006, with the low (13.9 µg m⁻³) in the northwest (AM site) and high (226.7 µg m⁻³) 10 11 in the northwest (AQ site). In February 2007, the average concentration was 124.5+69.6 µg m⁻³ with the low (26.7 µg m⁻³) in the south (SH site) and high (213.3 12 μg m⁻³) again in the southeast (MN site). In May 2007, the average concentration was 13 higher (189.4+81.6 µg m⁻³) with minimum (110.7 µg m⁻³) in the northeast (AZ site) 14 and maximum (257.6 µg m⁻³) in the southwest (MN site). Apparently, the spatial and 15 16 seasonal variations in the PM concentrations were mainly due to changes in the wind direction and speed as well as the concurrent construction activities around the city 17 18 (Table 1). For PM₁₀, the average concentration was 180.1+124.8 µg m⁻³ in June 2006 19 with a minimum (58.0 μg m⁻³) in the city center (AM site) and maximum (478.2 μg 20 m⁻³) in the southwest (MN site). In November 2006, the average concentration 21 (146.0+112.1 µg m⁻³) was lower than in June also with a minimum (28.6 µg m⁻³) in 22 the northeast (AM site) and maximum (318.8 µg m⁻³) in the southwest (MN site). The 23 February average concentration was 268.1±164.6 µg m⁻³, with a low (62.0 and 56.3 24 µg m⁻³) in the northeast and southeast (AM and SH sites, respectively) and a high 25

1 (504.5 µg m⁻³) in the southwest (MN site). For May 2007, the mean value was

2 $312.2\pm146.8~\mu g~m^{-3}$ with a minimum (145.8 $\mu g~m^{-3}$) in northwest (AQ site) and

3 maximum (597.2 µg m⁻³) in the southeast (MN site). The results also show that the

PM levels were higher in 2007 than 2006 (Fig. 3b) likely due to an increase in local

5 construction activities around the city.

6

7

25

4

3.2. Air quality of aerosol PM_{2.5} and PM₁₀

To assess the temporal and spatial air quality of Riyadh we used the air quality 8 index (AQI) standard by EPA (1999). The cut-off-points of the AQI are: good (0-9 15.4 μ g m⁻³ for PM_{2.5}; 0-54 μ g m⁻³ for PM₁₀), moderate (15.5-40.4 μ g m⁻³ for PM_{2.5}; 10 55-154 μg m⁻³ for PM₁₀), unhealthy for sensitive groups (40.5-65.4 μg m⁻³ for PM_{2.5}; 11 155-254 $\mu g \text{ m}^{-3}$ for PM₁₀), unhealthy (65.5-150.4 $\mu g \text{ m}^{-3}$ for PM_{2.5}; 255-354 $\mu g \text{ m}^{-3}$ 12 for PM_{10}), very unhealthy (150.5-250.4 µg m⁻³ for $PM_{2.5}$; 355-424 µg m⁻³ for PM_{10}), 13 hazardous (250-350.4 μg m⁻³ for PM_{2.5}; 425-504 μg m⁻³ for PM₁₀), and very 14 hazardous (350.5-500.4 μ g m⁻³ for PM_{2.5}; 505-604 μ g m⁻³ for PM₁₀). Based on the 15 16 overall PM concentrations, the air quality of Riyadh ranged from good to hazardous for $PM_{2.5}$ and from good to very hazardous for PM_{10} (Figs. 4 and 5). In summer (June 17 18 2006) the air quality ranged from good to very unhealthy for both PM_{2.5} and PM₁₀; whereas in fall (November), it was good to very unhealthy for PM_{2.5} and good to 19 20 unhealthy for PM₁₀. In winter (February 2007), the AQI ranged from good to very 21 unhealthy for both PM_{2.5} and PM₁₀, and in spring (May 2007), good to hazardous for 22 PM_{2.5} and good to very hazardous for PM₁₀. 23 Regionally, the AQI was similar for most of the sectors of metropolitan 24 Riyadh. The northwest had AQI ranging from good to unhealthy, whereas the

northeast was slightly better with AQI of good to unhealthy for sensitive groups

2 southwest AQI varied from good to unhealthy (except in May it ranged from

(except in February it ranged from unhealthy to sensitive people to unhealthy). The

unhealthy to hazardous) and the southeast from moderate to very hazardous. The city

centre had AQIs from good to very unhealthy. These assessments cover both particle

5 size samples.

To evaluate the overall PM air quality in Riyadh we categorized the AQI into 7 numerical levels (i.e., 1 = good, 2 = moderate, 3 = unhealthy for sensitive groups, 4 = unhealthy, 5 = very unhealthy, 6 = hazardous, and 7 = very hazardous) following the same concentration cut-offs given by the EPA (1999). Then we used Figures 4 and 5 to estimate the air quality levels (AQL) in the city. The AQLs for Riyadh are given in Table 3 and illustrated in Figure 6. During the sampling period, the average AQLs were higher for PM_{2.5} than for PM₁₀ at all sites except MN. The best air quality was found in the city center (AL site) as moderate (standard range) and the worst condition was in the southeast (MN site) at very unhealthy. The AQLs were higher in 2007 than in 2006 and the minimum value was found in November 2006.

3.3. Concentrations and enrichment factors of elements

The major and trace elements in the PM were determined for the sites in Riyadh, and the spatial and temporal variations of the concentrations and the enrichment factor of each element can be examined. Co, As, Se, Mo, Cd, Sn and Sb were below the detection limits of the instrument. The major elements showed similar variations, and it was assumed that similar element behavior indicates a similar source of origin (Bellis et al., 2001; Chester et al., 1999; Furuta et al., 2005; Saliba et al., 2007). The element concentrations for this study are summarized in Table 4. Spatial variations of elemental concentrations were observed around the city with the highest

1 concentrations in the outskirts away from the center (AQ, NZ, MN Sites; Fig. 7). The

2 total concentrations of the elements were higher in the coarser particulate matter as

3 summarized in Figure 7. The elevated concentrations of major and trace elements in

the city center (site AL) in February 2007 were mainly due to the building and road

5 construction activity in the area. Based on these results, the major and trace elements

were classified into two groups according to the similarity of their temporal and

spatial variation, where Group 1 includes Na, Mg, Al, K, Ca, Si, P and Fe and Group

2 S and Ni. The concentration of Ni was high in the city center and lower in the

perimeter, while S had high concentrations for all sites.

The enrichment factor, EF, is an approach to characterize the chemical

composition of airborne particulate matter. It relates the concentration of an element

(X) to that of a crustal element (such as Al, Ti or Fe) in the air, normalized to the ratio

of these elements in the average continental crust (Hoffmann et al., 1972; Wedepohl,

14 1971; Zoller et al., 1983):

15

4

6

7

8

9

11

12

13

16
$$EF = (X/Al)_{(air)}/(X/Al)_{(crust)}$$

17

19

20

21

23

24

25

18 Therefore, an EF of about unity indicates that the dominant source is natural crustal

PM and an EF value > 1 indicates an anthropogenic input to the PM. Al was used as

the normalizing crustal element in calculating the EFs, assuming that its

anthropogenic input was minor and negligible.

Generally, an element is assumed to originate from natural sources when its

enrichment factor is less than 10 (Chester et al., 1999; Finlayson-Pitts and Pitts, 2000;

Saliba et al., 2007; Torfs and Van Grieken, 1997). The mean enrichment factors of the

major and trace elements found at high levels in both coarse (PM₁₀) and fine particles

26 (PM_{2.5}) are listed in Table 4. The enrichment factors of most elements were < 5 for

1 both PM sizes, and are termed Group 1 with a likely origin from natural sources. The 2 EFs of Group 2 are relatively higher (> 5) and include sulfur and nickel. The EFs at 3 different seasons for S ranged from 91 ± 40 to 279 ± 203 for PM_{2.5} and from 125 ± 45 to 4 441 ± 391 for PM₁₀. The EFs at different seasons for Ni ranged from 7 ± 6 to 14 ± 9 for 5 $PM_{2.5}$ and from 10 ± 4 to 35 ± 62 for PM_{10} (Table 4 and Fig. 8). Both S and Ni have 6 higher values for PM₁₀ than PM_{2.5} and their enrichment factors are higher for coarse 7 PM. The high EFs for S of 91-441 indicate that the atmosphere is heavily polluted by 8 S, probably from anthropogenic sources such as construction dust (e.g. gypsum) and 9 fugitive SO₂ emissions. The high EFs for Ni indicate release from the combustion of 10 fossil fuel (e.g. traffic). 11 The computed EF values in Riyadh were lower than those reported in other 12 cities in the region (Chen et al., 2008; Herut et al., 2001; Kubilay and Saydam, 1995), 13 suggesting that regional and local crustal sources influence the element/Al ratios in 14 the EF calculation. The general EF variation for the major elements in Riyadh was 15 observed to be similar to the variation trend in other regional areas (Chen et al., 2008; 16 Saliba et al., 2007), indicating that the local surface crust is the major source of these 17 elements in aerosol dust. Obviously, the estimation of the EF is affected by the 18 regional and local crustal components, thus it is more precise to utilize regional crust

20

21

22

23

24

25

19

4. Conclusion

in estimating the EF values.

This monitoring program of atmospheric PM in metropolitan Riyadh revealed several facts. It was found that PM_{10} was more abundant than $PM_{2.5}$ in the city. PM was at higher concentrations in 2007 than 2006, probably as a result of increased development activities in the city. The highest PM levels occur in the southeast sector

1 where industrial activities, mainly cement, ceramic and stone cutting factories, are the 2 major local dust sources for the region. The lowest PM concentrations were in the city 3 center, where only traffic and limited resuspension of soil dust are the major source of 4 PM. The air quality of the city ranged from good to hazardous for PM_{2.5} and from 5 good to very hazardous for PM₁₀. The enrichment factors (EFs) of each element 6 showed spatial variations, where each group of elements is likely to have similar 7 sources. The EFs of the elements over the crustal means showed that only sulfur and 8 nickel were enriched in both PM_{2.5} and PM₁₀, indicating that they are from 9 anthropogenic sources. It is apparent that the atmosphere of Riyadh was seriously 10 polluted by sulfur.

11

12

13

14

15

16

5. Acknowledgments

The authors acknowledge the technical support of the King Abdulaziz City for Science and Technology for performing the chemical analysis of the major and trace elements. The preparation of this paper benefited from a grant to BRTS from the Distinguished Scientist Fellowship Program at King Saud University, Riyadh.

17

18

6. References

- 19 Ashbaugh, L.L., Carvacho, O.F., Brown, M.S., Chow, J.C., Watson, J.G., Magliano,
- 20 K.C., 2003. Soil sample collection and analysis for the fugitive dust
- 21 characterization study. Atmospheric Environment 37, 1163-1173.
- 22 Barnard, P., 1998. Biological diversity in Namibia: a clash of sea and land, fog and
- dust. Biodiversity and Conservation 7, 415-417.

- 1 Batjargal, Z., Dulam J., Chung, Y.S., 2006. Dust storms are an indication of an
- 2 unhealthy environment in East Asia. Environmental Monitoring and
- 3 Assessment 114, 447-460.
- 4 Bellis, D., Cox, A.J., Staton, I., McLeod, C.W., Satake, K., 2001. Mapping airborne
- 5 lead contamination near a metals smelter in Derbyshire, UK: spatial variation
- of Pb concentration and 'enrichment factor' for tree bark. Journal of
- 7 Environmental Monitoring 3, 512-514.
- 8 Brunekreef, B., Forsberg, B., 2005. Epidemiological evidence of effects of coarse
- 9 airborne particles on health. European Respiratory Journal 26, 309-318.
- 10 Buschini, A., Cassoni, F., Anceschi, E., Pasini, L., Poli, P., Rossi, C., 2001. Urban
- airborne particulate: genotoxicity evaluation of different size fractions by
- mutagenesis tests on microorganisms and comet assay. Chemosphere 44,
- 13 1723-1736.
- 14 Cançado, J.E.D., Saldiva, P.H.N., Pereira, L.A.A., Lara, L.B.L.S., Artaxo, P.,
- Martinelli, L.A., Arbex, M.A., Zanobetti, A., Braga, A.L.F., 2006. The impact
- of sugar cane-burning emissions on the respiratory system of children and the
- elderly. Environmental Health Perspectives 114, 725-729.
- 18 Capri, A., 2004. Mercury from combustion sources: A review of the chemical species
- 19 emitted and their transport in atmosphere. Water, Air & Soil Pollution 98,
- 20 245-254.
- 21 Chen, Y., Paytan, A., Chase, Z., Measures, C., Beck, A.J., Sañudo-Wilhelmy, S.A.,
- Post A.F., 2008. Sources and fluxes of atmospheric trace elements to the Gulf
- of Aqaba, Red Sea, Journal of Geophysical Research 113, D05306,
- 24 doi:10.1029/2007JD009110.

- 1 Chester, R., Nimmo, M., Preston, M.R., 1999. The trace metal chemistry of
- 2 atmospheric dry deposition samples collected at Cap Ferrat: a coastal site in
- 3 the Western Mediterranean. Marine Chemistry 68, 15–30.
- 4 Chiapello, I., Bergametti, G., Gomes, L., Chatenet, B., Dulac, F., Pimenta, J., Suares,
- 5 E.S., 1995. An additional low layer transport of Sahelian and Saharan dust
- 6 over the north-eastern tropical Atlantic. Geophysical Research Letters 22,
- 7 3191-3194. (dx.doi.org10.1029/95GL03313).
- 8 Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., Santos Soares, E.,
- 9 1997. Origins of African dust transported over the northeastern tropical
- Atlantic. Journal of Geophysical Research 102, 13701-13709.
- Dockery, D.W., Pope, C.A. III, Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris,
- B.G. Jr., Speizer, F.E., 1993. An association between air pollution and
- mortality in six U.S. cities. New England Journal of Medicine 329, 1753-1759.
- 14 Dunnivant, F.M., Anders, E., 2006. A Basic Introduction to Pollutant Fate and
- 15 Transport. An Interpreted Approach with Chemistry, Modeling, Risk
- Assessment and Environmental Legislation. Wiley and Sons, NY, 480pp.
- 17 Ellis, E.G., Jr., Merrill, J.T., 1995. Trajectories for Saharan dust transported to
- Barbados using Stoke's law to describe gravitational settling. Journal of
- 19 Applied Meteorology 34, 1716-1726.
- 20 El-Shobokshy, M.S, Al-Saedi, Y.G., 1993. The impact of the Gulf War on the
- 21 Arabian environment. I. Particulate pollution and reduction of solar irradiance.
- Atmospheric Environment 27A, 95-108.
- 23 EPA (Environmental Protection Agency, USA), 1999. Guideline for reporting of daily
- 24 Air-Quality Index (AQI). Office of Air Quality Planning and Standards, EPA
- 25 454/R99-010.

- Fellenberg, G., 2000. The Chemistry of Pollution. Wiley and Sons, NY, 192pp.
- 2 Finlayson-Pitts, B.J., Pitts, J.N.J., 2000. Chemistry of the Upper and Lower
- 3 Atmosphere. Academic Press, San Diego.
- 4 Furuta, N., Iijima, A., Kambe, A., Sakai, K., Sato K., 2005. Concentrations,
- 5 enrichment and predominant sources of Sb and other trace elements in size
- 6 classified airborne particulate matter collected in Tokyo from 1995 to 2004.
- 7 Journal of Environmental Monitoring 7, 1155-1161.
- 8 Ganor, E., Foner, H.A., Bingemer, H.G., Udisti, R., Setter, I., 2000. Biogenic sulphate
- 9 generation in the Mediterranean Sea and its contribution to the sulphate
- anomaly in the aerosol over Israel and the Eastern Mediterranean.
- Atmospheric Environment 34, 3453–3462.
- Ganor, E., Stupp, A., Pinhas, A., 2009. A method to determine the effect of mineral
- dust aerosols on air quality. Atmospheric Environment 43, 5463-5468.
- Gong, H. Jr., Linn, S.W., Terrell, S.L., Clark, K.W., Geller, M.D., Anderson, K.R.,
- 15 Cascio, W.E., Sioutas, C., 2004. Altered heart-rate variability in asthmatic and
- healthy volunteers exposed to concentrated ambient coarse particles.
- 17 Inhalation Toxicology 16, 335-343.
- Harrison, S.P., Kohfeld, K.E., Roelandt, C., Claquin, T., 2001. The role of dust in
- climate changes today, at the last glacial maximum and in the future. Earth-
- 20 Science Reviews 54, 43–80.
- Herut, B., Nimmo, M., Medway, A., Chester, R., Krom, M.D., 2001. Dry atmospheric
- inputs of trace metals at the Mediterranean coast of Israel (SE Mediterranean):
- Sources and fluxes. Atmospheric Environment 35, 803–813.

- 1 Hindy, K.T, Baghdady, A.R., 1996. Risk-source definition of air pollution by a
- dustfall study in the Gulf area: an example from the United Arab Emirates. In:
- Richardson, M.L. (ed.), Risk Reduction, pp. 303-328.
- 4 Hoffmann, G.L., Duce, R.A., Hoffman, E.J., 1972. Trace metals in the Hawaiian
- 5 atmosphere. Journal of Geophysical Research Atmos. 77, 5322-5329.
- 6 Koelemeijer, R.B.A., Homan, C.D., Matthijsen, J., 2006. Comparison of spatial and
- 7 temporal variations of aerosol optical thickness and particulate matter over
- 8 Europe. Atmospheric Environment 40, 5304-5315.
- 9 Kubilay, N.N., Saydam, C., 1995. Trace elements in atmospheric particulates over the
- 10 eastern Mediterranean: Concentrations, sources, and temporal variability.
- 11 Atmospheric Environment 29, 2289–2300.
- 12 Kubilay, N., Nickovic, S., Moulin, C., Dulac, F., 2000. An illustration of the transport
- and deposition of mineral dust onto the Eastern Mediterranean. Atmospheric
- 14 Environment 34, 1293–1303.
- Lin, M., Chen, Y., Burnett, R.T., Villeneuve, P.J., Krewski, D., 2002. The influence
- of ambient coarse particulate matter on asthma hospitalization in children:
- 17 case-crossover and time-series analysis. Environmental Health Perspectives
- 18 110, 575-581.
- 19 Lipsett, M.J., Tsai, F.C., Roger, L., Woo, M., Ostro, B.D., 2006. Coarse particles and
- 20 heart rate variability among older adults with coronary artery disease in the
- 21 Coachella Valley, California. Environmental Health Perspectives 114, 1215-
- 22 1220.
- 23 McCurdy, S.A., Ferguson, T.J., Goldsmith, D.F., Parker, J.E., Schenker, M.B., 1996.
- 24 Respiratory health of California rice farmers. American Journal of Respiratory
- and Critical Care Medicine 153, 1553-1559.

- 1 Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., Yamazaki, K., 2003.
- 2 Seasonal variation and origins of dicarboxylic acids in the marine atmosphere
- over the western North Pacific. Journal of Geophysical Research 108, D6,
- 4 4193. (doi:10.1029/2002JD002355).
- 5 Nemmar, A., Hoet, P.H.M., Vanquickenborne, B., Dinsdale, D., Thomeer, M.,
- 6 Hoylaerts, M.F., Vanbilloen, H., Mortelmans, L., Nemery, B., 2002. Passage
- of inhaled particles into the blood circulation in humans. Circulation 105, 411-
- 8 414.
- 9 Newton, D., 2004. Environmental Chemistry, Walch Publishing, Portland, ME, 216
- 10 pp.
- 11 Pagano, P., de Zaiacomo, T., Scarcella, E., Bruni, S., Calamosca, M., 1996.
- Mutagenic activity of total and particle-sized fractions of urban particulate
- matter. Environmental Science and Technology 30, 3512-3516.
- 14 Pilcher, N.J., 1999. Cement dust pollution as a cause of sea turtle hatchling mortality
- at Ras Baridi, Saudi Arabia. Marine Pollution Bulletin 38, 966-969.
- 16 Prospero, J.M., Lamb, P.J., 2003. African droughts and dust transport to the
- 17 Caribbean: Climate change implications. Science 302, 1024-1027.
- 18 Prospero, J.M., Schmitt, R., Cuevas, E., Savoie, D.L., Graustein, W.C., Turekian,
- 19 K.K., Volz-Thomas, A., Díaz, A., Oltmans, S.J., Levy, H. II., 1995. Temporal
- variability of summer-time ozone and aerosols in the free troposphere over the
- 21 eastern North Atlantic. Geophysical Research Letters 22, 2925-2928.
- 22 Prospero, J.M., Barrett, K., Church, T., Dentener, F., Duce, R.A., Galloway, J.N.,
- Levy, H.II, Moody, J., Quinn, P. 1996. Atmospheric deposition of nutrients to
- the north Atlantic Basin. Biogeochemistry 35, 27-73.

- 1 Prospero, J.M., Ginoux, P., Torres, O., Nicholson, S.E., Gill, T.E., 2002.
- 2 Environmental characterization of global sources of atmospheric soil dust
- 3 identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS)
- 4 absorbing aerosol product. Reviews of Geophysics 40, (2002 03 01): 2-1 2-
- 5 31.
- 6 Reid, J.S., Piketh, S.J., Kahn, R., Bruintjes, R.T., Holben, B., 2005. A summary of
- 7 first year activities of the United Arab Emirates, Unified Aerosol experiment:
- 8 UAE2. Naval Research Laboratory, NRL/MR/7534—05-8899.
- 9 Sabba Rao, D.V., Al-Yamani, F. 1999. Analysis of the relationship between
- phytoplankton biomass and the euphotic layer off Kuwait, Arabian Gulf.
- Indian Journal of Marine Sciences (Coastal and estuarine processes around
- 12 India) 28, 416-423.
- 13 Saliba, N.A., Kouyoumdjian, H., Roumie, M., 2007. Effect of local and long-range
- transport emissions on the elemental composition of PM10-2.5 and PM2.5 in
- Beirut. Atmospheric Environment 41, 6497-6509.
- 16 Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I., Zeger, S.L., 2000. Fine
- particulate air pollution and mortality in 20 U.S. cities. 1987-1994. The New
- England Journal of Medicine 343, 1742-1749.
- 19 Savoie, D.L., Prospero, J.M., Nees, R.T., 1987. Frequency distribution of dust
- 20 concentration in Barbados as a function of averaging time. Atmospheric
- 21 Environment 21, 1659-1663.
- 22 Schwartz, J., Dockery, D.W., Neas, L.M., 1996. Is daily mortality associated
- specifically with fine particles? Journal of the Air and Waste Management
- 24 Association 46, 927-939.

- 1 Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics: From Air
- Pollution to Climate Change. John Wiley & Sons, New York, 1326 pp.
- 3 Shaka', H., Saliba, N.A., 2004. Concentration measurements and chemical
- 4 composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon.
- 5 Atmospheric Environment 38, 523–531.
- 6 Shi, T., Duffin, R., Borm, P.J.A., Li, H., Weishaupt, C., Schins, R.P.F., 2006.
- 7 Hydroxyl-radical-dependent DNA damage by ambient particulate matter from
- 8 contrasting sampling locations. Environmental Research 101, 18-24.
- 9 Simoneit, B.R.T., Elias, V.O., 2000. Organic tracers from biomass burning in
- atmospheric particulate matter over the ocean. Marine Chemistry 69, 301-312.
- Sioutas, C., Delfino, R.J., Singh M., 2005. Exposure assessment for atmospheric ultra
- fine particles (UFPs) and implication in epidemiological research.
- Environmental Health Perspectives 113, 947-955.
- 14 Sodhi, G.S., 2005. Fundamental Concepts of Environmental Chemistry. 2nd Edition,
- 15 Alpha Science International Ltd., Harrow, U.K., 537pp.
- Swap, R., Garstang, M., Greco, S., Talbot, R., Kallberg, P., 1992. Saharan dust in the
- 17 Amazon Basin. Tellus Ser. B44, 133-149.
- 18 Tindale N.W., Pease, P.P., 1999. Aerosols over the Arabian Sea: Atmospheric
- transport pathways and concentrations of dust and sea salt. Deep-Sea Research
- 20 II. Tropical Studies in Oceanography 46, 1577-1595.
- 21 Torfs, K., Van Grieken, R., 1997. Chemical relations between atmospheric aerosols,
- deposition and stone decay layers on historic buildings at the Mediterranean
- coast. Atmospheric Environment 31, 2179–2192.
- Wedepohl K.H., 1971, Geochemistry, Holt Rinehard and Winston Inc., New York, p.
- 25 65.

- 1 Zhang, J., Wei, H., Fusheng, W., Wu, G., Korn, L.R., Chapman, R.S., 2002.
- 2 Children's respiratory morbidity prevalence in relation to air pollution in four
- 3 Chinese cities. Environmental Health Perspectives 110, 961-967.
- 4 Zoller, W.H., Parrington, J.R., Phelankotra, J.M., 1983. Iridium enrichment in
- 5 airborne particles from Kilauea Volcano: January 1983. Science 222, 1118-
- 6 1121.