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THE RELATIONS AMONG THE MODES OF CONVERGENCE OF
SEQUENCES OF MEASURABLE FUNCTIONS

1. INTRODUCTION

This thesis studies the logical relations among nine definitions

of convergence (Section 2) of sequences of real almost-everywhere

finite-valued measurable functions
{fn

} defined on an abstract

measure space X provided with a non-negative measure p.

defined on a (r-algebra S of measurable subsets of X. All pos-

sible subsets of a set of ten auxiliary hypotheses (Section 3) are con-

sidered. The non-existence of the unproved theorems is established

by means of a collection of 25 counterexamples (Section 4).

Each of the next 36 sections (5-40) is devoted to one pair of the

nine modes of convergence.

The Appendix gives the results of some work done with two

slightly different modes of convergence.

The nine modes of convergence previously indicated with

abbreviations that are used in the diagrams are the following:

a u - almost uniform convergence
a.e. - convergence almost everywhere
meas, - convergence in measure
unif. - uniform (L00) convergence (except on a null set)

L - convergence in L norm
L1 - convergence in mean

(L1
norm)

wk *L - weak *Loo convergence
oo

wk L - weak L convergence
wk L1 - weak L1 convergence
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The definitions given in Section 2 for these nine modes of

convergence are such that the limit function f is always unique

except on a set of measure zero. This is not true for the two modes

of convergence defined in the appendix.

The ten auxiliary hypotheses will now be listed together with

the numbers by which they will hereafter be identified. It is taken

for granted that the conditions may be violated by a finite number

of the functions of the sequence if n1 or by any of the functions on

a null subset of X.

Each member of the sequence of functions Ifril is

integrable.

The function f toward which the sequence of functions

converges in the specified manner is integrable.

The measure space is totally finite: p.(X) <

The indefinite integrals of Ifni n I, 2, are

uniformly absolutely continuous; that is given e > 0,

there exists 5 > 0 such that If kip.< s
E n

for measurable E for which p,(E) < 6 .

The indefinite integrals of fl 1, 2, are equi-

continuous from above at 0; that is for every decreasing

sequence of sets
{En}

for which lim En = cp., and for

every e > 0, there exists0 such that for n > n

fm
n

I c4L <
= 1, 2,
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The sequence of functions {fn} is uniformly essentially

bounded.

There is an integrable fulaction such that I

fn
g

a. e. , n 1, 2, .

linm fndp.
fdp.. (It is assumed that lirn

fndp.

exists in the sense that it is finite, equal to 00, or

equal to -00. )

The sequence of functions
Ifn is monotonic a. e.

The support of the functions E : fn(x) 0

n,1
has o--finite measure.

The consideration of possible convergence of subsequences

in the event that we have no implication with a given set of hypotheses

gives a simple result. It turns colt that in six instances (meas.=> a.un.,

meas.=?. e. ,
L1

=> a. un. , L=> a. e. , L => a. un. L => a. e. )

always have a convergent subsequence and in all other instances we

never have one.

In referring to previous results, a number such as 5. 2 will

specify the second theorem in Section 5. If we are referring to a

theorem in the same section, the section number will be omitted.

When no auxiliary hypotheses are assumed the following well-

known implications are valid:
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We now give 37 additional diagrams which summarize the

results of the thesis exclusive of the appendix. Each of the dia-

grams 29 through 37 shows how one mode of convergence interacts

with the other 8. The arrows indicate implications and an arrow

which passes through a box containing sets of hypotheses indicates

that each set of hypotheses in the box completes the implication when

included in the antecedent.

Diagrams 1 through 28 each refer to 1, 2, or 3 sets of

auxiliary hypotheses as indicated in the following table. In each

case the additional implications so obtained are superimposed upon

the basic diagram given above. When more than one set of hypothe-

ses is listed after a diagram number, the same diagram is valid

for both. The hypotheses given in the list below are the only non-

redundant sets of hypotheses which alter the basic diagram.
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Z. THE MODES OF CONVERGENCE AND BASIC THEOREMS

Below are given a group of definitions and theorems many of

which can be found in the book Measure Theory by Paul R. Halmos.

This list is not complete as the author assumes many concepts are

well known. Any not given.here maybe found inHalmos. The functions

fn and f are assumed to be measurable and a. e. finite-valued.

1. Definition: A sequence of functions {fn}
converges a. e. to

the function f if and only if given c> 0, there exists n0 (x, E)

such that for n n0(x' E I fn(x)-f(x) I <C

2-. Definition:, A sequence of functions {fn}
converges in measure

to the function f if and only if fn(x)-f(x)I > E 0 as

for all e > 0.

Definition: A sequence of functions {fn}
converges uniformly

to the function f if and only if given C> 0, there exists nO(E)

such that for n no(E), I fn(x)-f(x) I < for all x except possibly

for a set of measure zero.

Definition: A sequence of functions converges almost uniformly

to the function f if and only if given C> 0, there exists a meas-

urable set E such that p(E) < E and the sequence {fn}
con-

verges to f uniformly on EC.

14
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5. Definition: A sequence of functions {fn} converges to f in mean

(L ) if and only if Urn .111fn-fl dp. = 0 .

6. Definition: A sequence of functions {fn} Lp converges to f

if and only if lirn glfn-f I Pdp, = 0 where 1 <p < oo.

7. Definition: A sequence of functions {fn} weak L1 converges

to f if and only if lirn SI(fn-f)dp. = 0 for measurable E

8. Definition: A sequence of functions {fn} weak L converges

to the function f if and only if

1 < p < oo and

there exists N such that fn-fE L for n> N and

Urnwc(f -f)gdp. = 0 for all gEL (q - ) .
n n

9. Definition: A sequence of functions {fn} weak :'4( Loo con-

verges to f if and only if

f has cr -finite support {x:f(x) -7-- 0} and

there exists N such that fn-f e L for n> N and

Umn-f)gdp. = 0 for all gEL1 .

10. Theorem: (Theorem H, p. 97 of Halmos) The indefinite inte-

gral of an integrable function is absolutely continuous.
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1 1 . Theorem: (Theorem I, p. 98 of Halmos) The indefinite integral

of an integrable function is countably additive.

Corollary: The indefinite integral of a non-negative integrable

function is a finite measure.

Theorem: (Theorem F, p. 105 of Halmos) If f is an inte-

grable function, then the set N(f) {x: f(x) 0 } has CT -finite

measure.

Corollary: The union of the supports of a countable number of

integrable functions has a--finite measure.

Theorem: (Lebesgue's bounded convergence theorem) Ifn }

is a sequence of measurable functions which converges in measure

to f [or else converges to f a. e. , and if g is an integrable

function such that Ifni < g a. e. , n = 1,2, ° , then f is

integrable and the sequencen } converges to f in mean.

Theorem: (Theorem I), p. 38 of Halmos) If is a measure

on a ring R and if {En}
is an increasing sequence of sets in

for which lim En ER, then p.(lim En) = lim p.(En) .

Theorem: (Theorem E, p. 38 of Halmos ) If 11 is a measure

on a ring R and if {En}
is a decreasing sequence of sets in



of which at least one has finite measure and for which lim E ER,
n n

then 1.1.(lim ) = lirn p,(En) .

n

17



3. IMPLICATIONS AMONG THE AUXILIARY HYPOTHESES

In order to shorten the length of many proofs we have proved

some implications among the ten hypotheses listed in the introduction.

Below the results are diagrammed where the numbers enclosed in

parentheses are hypotheses and the arrows indicate implications.

Sets of hypotheses involving hypotheses 2 and 8 were not originally

considered in this investigation since they make assertions about the

limit function which depends on the mode of convergence for its

definition. Three implications involving hypotheses 2 and 8 are

given in the diagram. These three are included in the diagram since

they were observed to be true regardless of the mode of convergence

assumed. Following the diagram, the results are stated and proved.

(3,5) (3,6) (1, 2, 9)

(6)

18



Theorem 1: If a sequence of functions {fil} is such that the

indefinite integrals of If n= 1, 2, are equicontinuous from

above at 0, then the indefinite integrals of I fn I n = 1, 2, -

are uniformly absolutely continuous.

Proof:

Without loss of generality assume each member of the sequence

is finite valued everywi
co

Let Em = {x: If(x) > m } and let En
n=1

{ E} is a decreasing sequence of sets such that lim ErY1=d).

By hypothesis, given > 0, there exists an m0 ) such

that for m > m0 (E) fn,dp.<_2 n = 1, 2,

Em

But for XE (E 1 fn1 < m0 for n = 1, 2,

To have uniform absolute continuity we must exhibit for E > 0

a 8 > 0 such that for any E for which 11(E) < 5,

sc I fn I dN- < E n = 1, 2,

Thus we have only to choose 6 - and we have uniform
2m0 (E )

absolute continuity.

Theorem 2: If a sequence of functions {fn.} is uniformly

essentially bounded, then the indefinite integrals of I fl ,

19
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n = 1,2, are uniformly absolutely continuous.

Proof:

Suppose the uniform essential bound is K.

SE
s if idp. < Kdp, < Kp.( E ) .

E n

If p.(E) <, then Slfnidp. < E for n = 1,2,

To have uniform absolute continuity we must exhibit for E > 0,

a 5 > 0 such that for any E for which p.(E) < 5,

SElfniciP'E for n = 1,2,

Thus choose 5 = and we have shown uniform absolute

continuity.

Theorem 3: If there exists integrable g such that Ifni < g

a. e. for n = 1,2, then each member of the sequence of

functions fn} is integrable.

Proof:

Immediate result of Theorem A, p. 112 and Theorem C, p.

113 of Halmos.

Theorem 4: If there exists integrable g such that Ifni < g

a. e. for n = 1,2, , then the indefinite integrals of Ifni

n = 1,2, are uniformly absolutely continuous.



Proof:

Theorem 2.10 tells us g is absolutely continuous .

S' Ifni dp. < gdp, n = 1,2,

Theorem 5: If there exists integrable g such that Ifl < g

a.e. for n 1,2, - , then the indefinite integrals of

n = 1,2, are equicontinuous from above at 0.

Proof:

By Corollary 2.11, v (E) = gdp, is a finite measure.

Let {En}
be a decreasing sequence of sets such that

lirn En =

By Theorem 2.17, lim v (En) = v (lim E

Given E > 0 there exists an n0 (c ) such that for n > n (E)

gdp, <E .

Em

But
SiEifn I dP' -.5- g gdP'

for all n.

Enn

Thus the indefinite integrals of IfnI n = 1,2, - are

equicontinuous from above at 0.

Theorem 6: If the sequence of functions {fn} is uniformly

essentially bounded and the measure is totally finite, then each

21



member of the sequence is integrable.

Proof;

Let K be the uniform essential bound.

On a totally finite measure space the constant function K is

integrable.

Slfn 1 dp,

A measurable function is integrable if and only if its absolute

value if integrable.

Thus each fn is integrable.

Theorem 7: If the indefinite integrals of Ifn1 n = 1,2, are

uniformly absolutely continuous and the measure is totally finite,

then the indefinite integrals of Ifl n = 1,2, are equicontinuous

from above at 0.

Proof:

Let {En} be a decreasing sequence of sets such that

lirn E = (1) .n

By Theorem 2.17 lim p.(En) = p.(lim E) = p,(cb) = 0 .
n n

Given c > 0 we can, by hypothesis, find a 5 > 0 such that

for any E for which p.(E) < 5, 51 If 1 dp, < E
E n

n = 1,2, .

22



But since lirn p.(En) = 0 we can find an such that for
0

n > n0 p.(En) < 5 .

Thus we have equicontinuity.

Theorem 8: If the sequence of functions {fn} is uniformly

essentially bounded and the measure i. is totally finite, then the

indefinite integrals of I fnj n = 1,2, are equicontinuous from

above at 0.

Proof:

It is a result of Theorems 2 and 7.

Theorem 9: If the sequence of functions
ifn

is uniformly

essentially bounded and the measure p. is totally finite, then there

exists integrable g such that ifn1 < g a. e. , n = 1, 2,

Proof:

Let K be the uniform essential bound.

If I <K a. e. , n= 1,2,
n

SKdp. <00 since a constant function is integrable on a totally

finite measure space.

Theorem 10: If the indefinite integrals of Ifni
n = 1,2, are

uniformly absolutely continuous and the measure p. is totally finite,

23

then each member of the sequence of functions If, is integrable.



Proof:

Let f be an arbitrary but fixed member of the sequence.
no

Without loss of generality assume that fn
0

is finite valued

everywhere.

Ifn 1

0

>

Clearly {Ern} is a decreasing sequence of sets and

integrable.

Let E = { x :

lim E
171

1:1:'

By Theorem 2.17, lim p.(E ) E ) = p.(0)) = 0 .

m m m
By hypothesis, given c > 0, there exists a 5 > 0 such that

for any E for which p(E) < 5 g1 fnidP <

n = 1,2,

Since lim p.(E ) = 0, there exists anm0 such that for

m > m u.(E ) < .
0' ' m

S1 fn1 = 1 fn g 1fno 1dp- E moll(X) <
X 0 Em 0 X-Em

0 0

Thus fn is integrable.
0

Theorem 11: If the indefinite integrals of If
n1

n 1,2, are

equicontinuous from above at 0 and the measure .i is totally

finite, then each member of the sequence of functions Ifn} is

24



Proof:

It is a result of Theorems 1 and 10.

Theorem 12: If each member of the sequence of functions If
n1

is integrable, then the support of the sequence If n1 has o--finite

measure.

Proof:

Follows from 2.14.

Theorem 13: If there exists integrable g such that If! < g a.e.

n = 1, 2, then the support of the sequence of functions
{f n}

has a--finite measure.

Proof:

Follows from Theorems 3 and 12.

Theorem 14: If the measure p. is totally finite, then the support

of the sequence of functions

Proof:

A set which has finite measure has cr-finite measure.

Theorem 15: If the support of the sequence of functions {fn} has

o--finite measure and the indefinite integrals of If! n = 1, 2,

are equicontinuous from above at 0, then each member of the

sequence is integrable.

{fn}has o--finite measure.

25
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Proof:

Without loss of generality assume the measure is totally a--finite

and each member of the sequence } is finite valued

everywhere.

Then there exists a sequence {En}
of sets such that

oo

X = En and 1j(E) <00 n = 1, 2,
n=1

Let Fn = X - L) E. and notice that {Fn}
is a decreasing

= 1

sequence of sets such that lirn Fn

By hypothesis, given E > 0 there exists an n0
such that

for n > n S 1 fk 1 dp. < E k 1, 2,

Let fk
be an arbitrary but fixed member of the sequence

0

ifnl.

Let K = Ix: Ifk > and notice that {K } is a
0

decreasing sequence of sets such that lim Km
m

By hypothesis, given E > 0 there exists an m0 such that

for m mo I fk 1 dp. < E .

K 0



S Ifk I = Ifk I dl-L cThic I < I
fk Idp. + E

X 0 Fc 0Fn 0
Fc

0

no 0 no

< g I fko I d1J-
c cF r-, K
nO m0

For xEKc , I

fko
mo -

m0

Thus S Ifk
dp. < m p,{Fc KC + 2E <m p.(Fc ) + 2E .

0 no
X 0

0 n0 m0

But p.(Fc ) < oo .

no

Thus ifk < 00
0

Since fk
was an arbitrary member of the sequence, we

0

conclude that each member of the sequence is integrable.

27
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4. LIST OF COUNTEREXAMPLES

We now list a number of counterexamples. Each counter-

example will have a sequence of functions fn
and a limit function

f defined on a measure space (X,S,p.). In each counterexample

we will indicate the measure space by specifying X, S, and 1.L.

These counterexamples are used throughout the paper and will be

referred to by number.

X - any non-empty set.

S - { X, (1)}.

p. - defined by i(X) = 00, p,(4)) = 0

fn(x) = for all x.

f(x) = 0 for all x.

fn converges to f a. e. , in measure, uniformly, almost

uniformly, in weak * L sense.
00

{fn}does not converge to f in mean, in L sense, in

weak LI sense, in weak L sense.

These hypotheses are satisfied: 2, 4,5, 6, 9.

X - the interval [ -1,1] on the real line.

S - the Lebesgue measurable sets on [ -1,1] .

- Lebesgue measure on {-i,1] .

28
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if 0 < x <n
if --1 < x < 0n
otherwise .

f(x) = 0 for all x.

{fn}
converges to f a. e. , in measure, almost uniformly.

} does not converge to f uniformly, in mean, in L

sense, in weak Ll sense, in weak L sense, in

weak * Loo sense.

These hypotheses are satisfied: 1, 2, 3, 8, 10.

3. X - the real line.

S - the Lebesgue measurable sets on the real line.

p. - Lebesgue measure

1 if 0 < x < n

fr 1( X =
if -n < x < 0

otherwise .

f(x) = 0 for all x.

ff. converges to f a. e. , in measure, uniformly, almost

uniformly, in L sense, in weak L sense, in weak

* Lco sense.

ffnl does not converge to f in mean, in weak L1 sense .



These hypotheses are satisfied: I, 2, 4, 6, 8, 10.

4. X - the real line.

S - the Lebesgue measurable sets on the real line.

= Lebesgue measure

1 if x > 0
[x]-1-1

f(x)=

otherwise

fn(x) = f(x). [0,n]

30

, [x] is the greatest integer < x.

lc converges to f a. e. , in measure, uniformly, almost

uniformly, in L sense, in weak L sense, in

weak * Loo sense.

n} does not converge to f in mean, in weak LI sense.

These hypotheses are satisfied: 1, 4, 6, 8, 9,10.

5. X - any non-empty set.

S - {X, .

- defined by il(X) = 00,

fn(x) = 1 -
1 for all x.

f(x) = 1 for all x.

Ifi. converges to f a. e. , in measure, uniformly, almost
n

uniformly.

{fn}does not converge to f in mean, in L sense, in



weak L1 sense, in weak L sense, in weak * L
oo

sense.

These hypotheses are satisfied: 4,5,6,8,9.

X - the real line.

S - the Lebesgue measurable sets on the real line.

p. - Lebesgue measure.

f (x) =1 for all x.
n n

f(x) = 0 for all x.

Ifn} converges to f a. e. , in measure, uniformly, almost

uniformly, in weak * Loo sense.

Ifn
does not converge to f in mean, in L sense, in

weak Ll sense, in weak L sense.

These hypotheses are satisfied: 2,4,6,9,10.

X - the interval [0,1] on the real line.

S - the Lebesgue measurable sets on [0,1] .

p. - Lebesgue measure.

For n = 1,2, let Ei = i = 1,2, ,n.
n n

Let X n be the characteristic function for En

and consider the following sequence

1 1 2 1 2 3
1 X1, X2, X2, X3, X3, X3, °

this sequence.

f(x) = 0 for all x.

Let
{fn

I be
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in mean, in L sense, in weak LI

L sense, in weak * L sense.
oo

{f.} does not converge to f uniformly.

These hypotheses are satisfied: 1, 2, 3, 4, 5, 6,7, 8, 9, 10.

9. X - the real line.

S - the Lebesgue measurable sets.

1.1 - Lebesgue measure

1 if < x < n

fn(x)=
otherwise.

sense, in weak
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ff. converges to f in measure, in mean, in L sense,

in weak L1 sense, in weak L sense, in weak * Loa

sense.

does not converge to f a. e., uniformly, almost

uniformly.

These hypotheses are satisfied: 1, 2, 3, 4, 5, 6, 7, 8, 10.

8. X - the interval [0,1] on the real line.

S - the Lebesgue measurable sets on [0,1]

- Lebesgue measure on [0,1] .

fn(x) = xri for all x.

f(x) = 0 for all x.

{f.} converges to f a. e. , in measure, almost uniformly,



f(x) = 0 for all x.

ffn/ converges to f a. e. , in measure, in mean, in L

sense, in weak L1 sense, in weak L sense, in

weak L00 sense.

} does not converge to f uniformly, almost uniformly.

These hypotheses are satisfied: 1, 2, 4, 5, 6, 8, 10.

X - the set of positive integers.

S - all subsets of the positive integers.

i. - defined by L(x) = 2-x, p.(E) =

X E E

2x for x > n

fn(x).=
0 otherwise

0 for all x.

converges to f a. e. , in measure, almost uniformly.

does not converge to f uniformly, in mean, in L

sense, in weak Ll sense, in weak L sense, in

weak * L sense.
Go

These hypotheses are satisfied: 2,3, 9,10.

X - the set of positive integers.

S - all subsets of the positive integers.

- defined by p.(x) = 2-x [1(E) =

X E E
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for x < n

f )=

f(x) = 2x for all x.

lc} converges to f a. e. , in measure, almost uniformly.

n} does not converge to f uniformly, in mean, in L

sense, in weak Ll sense, in weak L sense, in

weak * L sense.
co

These hypotheses are satisfied: 1,3, 8, 9, 10.

X - the real line.

S - the Lebesgue measurable sets.

p. - Lebesgue measure.

f(x)n = X [ n, co)

0 for all x.

} converges to f a. e. , in weak L00 sense.

n} does not converge to f in measure, uniformly, almost

0 otherwise

uniformly, in mean, in L sense, in weak L1 sense,

in weak L sense.

These hypotheses are satisfied: 2, 4, 6, 9, 10.

X - the real line.

S - the Lebesgue measurable sets.

p. - Lebesgue measure.
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f(x) X [ 0,n]

f(x) = X[ 00)

converges to f a. e. , in weak * L sense.
oo

does not converge to f in measure, uniformly, almost
lc
lc

Ifn

uniformly, in mean, in L sense, in weak L1 sense,

in weak L sense.

These hypotheses are satisfied: 1, 4, 6, 8, 9,10.

14. X - the real line.

S - the Lebesgue measurable sets.

p. - Lebesgue measure.

1 if n < x < n+1

fn(x)= -1 if -n-1 < x < -n

0 otherwise .

f(x) = 0 for all x.

converges to f a. e. , in weak L sense, in weak * L
oo

sense.

{f } does not converge to f in measure, uniformly,

almost uniformly, in mean, in L sense, in weak L1

sense.

These hypotheses are satisfied: 1, 2, 4, 6, 8,10.
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X - the interval [0,1] on the real line.

S - the Lebesgue measurable sets on [0,1] .

- Lebesgue measure.
f ) 11 for all x (1 < r < co ).

nx

f(x) = 0 for all x.

If converges to f a. e , in measure, almost uniformly,

in mean, in weak LI sense.

ffn
does not converge to f uniformly, in L sense, in

weak L sense, in weak * Loo sense.

These hypotheses are satisfied: 1, 2, 3, 4, 7, 8, 9, 10.

X - the real line.

S - the Lebesgue measurable sets.

- Lebesgue measure.

1 if 0 < x < nr

( )= if -nr < x < 0 (r is some positive constant> p).

otherwise.

f(x) = 0 for all x.

Ifn converges to f a. e. , in measure, uniformly, almost

uniformly, in weak * Loo sense.

{f } does not converge to f in mean, in L sense, in

weak LI sense, in weak L sense.



These hypotheses are satisfied: 1, 2, 4, 6, 8, 10.

17. X - the real line.

S - the Lebesgue measurable sets.

- Lebesgue measure

0 if x < 0

1 if 0 < x < 1

12.1 if 1 < x < 1 +2r

1+2r+3rif 1+2r < x <
3

f(x)=--

fn(x) f(x) X[ 0,111

} converges to f a. e. , in measure, uniformly, almost

uniformly, in weak * Loo sense.

does not converge to f in mean, in L sense, in

weak L1 sense, in weak L sense.

These hypotheses are satisfied: 1, 4, 6, 8, 9, 10.

18. X - the real line

S - the Lebesgue measurable sets.

- Lebesgue measure.

for x > n
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(r is a real number > p-1)

x] is the greatest integer < x).

1

3c] + 1

f (x)--=
ci-

0 otherwise
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f(x) = 0 for all x.

ff. converges to f a. e. , in measure, uniformly, almost

uniformly, in L sense, in weak L sense, in

weak * Loo sense.

} does not converge to f in mean, in weak L1 sense.

These hypotheses are satisfied: 2, 4, 6, 9,10.

19. X - the interval [0,1] on the real line.

S - the Lebesgue measurable sets on [0,1]

- Lebesgue measure on [0,1]

f (x) = sin (nx) for all x.

f( x) = 0 for all x.

ff. converges to f in weak L1 sense, in weak L sense,

in weak * Loo sense.

nj does not converge to f a. e. , in measure, uniformly,

almost uniformly, in mean, in L sense.

These hypotheses are satisfied: 1, 2, 3, 4, 5, 6,7, 8,10.

Show {fn}weak L converges to f:

Suppose gE L .

Show g E Li ; this is shown as follows:

Let Ei = Ix: I g I > 1 }, E2= : g <1 } .



Let g(x) =

Thus Him

I Sgdx1= S gdxl gdxI < igi qdx+ 1p.(E2)

El E2

By the theorem on p. 33 of Riesz-Nagy, given E > 0,

there exists a stepfunction s such that

SIg-sIdx< E.

I Si(fn-f)gdx -S.(fn-f)sdx I =I g sin (nx)(g-s)dx I

sin nx I I g-s I dx

< 51g -s I dx < E

,,.cBut

clearly urn sin nx s dx = 0 .

20. X - the real line.

S - the Lebesgue measurable sets.

- Lebesgue measure.

and choose the sequence of

m.
1+1numbersrn2

such that gdp. = 1 .

-f(x) = X X
n r -mn+1 ' rmn, Inn+11

1

-f)gdx = lim 51 sin nxg dx = 0 .

n 0
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SI gi qdx + 1 .



f(x) = 0 for all x.

{fn}
converges to f a. e. , in weak :--;c Loo sense.

n} does not converge to f in measure, uniformly,

almost uniformly, in mean, in L sense, in weak L1

sense, in weak L sense.

These hypotheses are satisfied: 1, 2, 4, 6, 8, 10.

21. X - the real line.

S - the Lebesgue measurable sets.

p. - Lebesgue measure.

Choose a sequence of natural numbers k k2' such that

r+1
1

> 1 and kr+l-kr is even r = 1, 2,

n=kr

Let h(x) =

integer < x).

f (x) =X[k , k h(x) .

n n+1

f(x) = 0 for all x.

ffnl converges to f a. e. , in weak * Loo sense.

{f} does not converge to f in measure, uniformly,

in weak L1 sense, almost uniformly, in mean,

in L sense, in weak L sense.

{xJ+1 . x> 0

otherwise

([x] is the greatest
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These hypotheses are satisfied: 1, 2, 4, 6, 8,10.

22. X- {1,2}.

S - 11,21, {1 }, {2}, .

p. - defined by p.11,21, = p.{1} = co, p. 2 1, p.(43) = 0.

f (x) =

f(x) = 0 for all x.

converges to f in weak Loo sense.

does not converge to f a. e. , in measure, uniformly,

almost uniformly, in mean, in L sense, in weak L1

sense, in weak L sense.

These hypotheses are satisfied: 2, 4, 5, 6, 9.

23. X - the set of positive integers.

S - all subsets of the positive integers.

p. - defined by p.(1) = 00, 1.1. (X) = 1 for x> 2.

1 if x = 1

f (x)=
11+. .

T.; x > 2

't
1 if x = 1

1 if x = 2 .
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Ifn 1 converges to f in weak * L00 sense.

Ifni.
does not converge to f a. e., in measure, uniformly,

almost uniformly, in mean, in L sense, in weak L1

sense, in weak L sense.

These hypotheses are satisfied: 4, 6, 8, 9 .

24. X - any non-empty set.

S - X, 4)

i. - 11(X) = cx), = 0

fn(x) = 1 for all x.

f(x) = 1 for all x.

n
converges to f a. e. , in measure, uniformly, almost

uniformly, in mean, in L sense, in weak LI sense,

in weak L sense.

n } does not converge to

These hypotheses are satisfied: 4, 5, 6, 8, 9.

25. X - the set of positive integers.

S -all subsets of the positive integers.

p, - defined by p,(x) = 2-x2, p.(E) = p.(x) .

X E E

2x if x > n

fn(x)=
0 otherwise.

f(x) = 0 for all x.

f in weak * L.0 sense.
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{fn}
converges to f a. e. , in measure, almost

uniformly, in mean, in L sense, in weak L1 sense,

in weak L sense.

n} does not converge to f in weak * L00 sense, uniformly.

These hypotheses are satisfied: 1, 2, 3, 4, 5, 7, 8, 9, 10.
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5. CONVERGENCE IN MEAN - CONVERGENCE IN MEASURE

First investigate the conditions under which convergence in

mean implies convergence in measure. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions {fn}
converges in mean

to the function f, then {f n} converges in measure to f.

Proof:

This is theorem A, p. 103 of Halmos.

Now investiagte the conditions under which convergence in

measure implies convergence in mean. Each set of hypotheses

listed below, together with convergence in measure, implies con-

vergence in mean. Following the list, the results are stated and

proved. Counterexamples 1, 2, 3, 4, 5, 6, 10, 11 show that these

are the only implications with a non-redundant set of hypotheses.

1cl

(2, 8, 9)

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions Ifn1 converges in measure to the function f, then

converges in mean to f.
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7 ) (3,4) (3,6) (1 , 2, 9)

(1,5) (3,5) (5, 10) (2, 5, 8)



Proof:

This is Theorem 2.15.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {f n} converges in measure to the function

f, then lc converges in mean to f.

Proof:

By 3.1 we may assume that we have hypothesis 4.

The conclusion is then that of Theorem C, p. 108 of Halmos.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the se-

quence of functions ifn} converges in measure to the function f,

then {f} converges in mean to f.

Proof:

3.10 tells us that we may assume hypothesis 1.

Choose > 0 .

Let Emn = Ix: Ifn-fm > 311c(X)
} and note that gEmn) 0

as m, n co.

Since we assume hypothesis 4, there exists m0 such that

45

for n, m > m
0

mn
Ifkldp. <-3 k = 1, 2, '



For rn,n mo ifn-fmidi/ = n-fmldp.
+S Ifn-fm1dp.

X X-E En

p,3p(X) (X-Ernn) + 1 dp.
.

Since e is arbitrary, lirn c If -1 Idp. 0 .

m, n X
n

Thus Ifn1
is a mean fundamental sequence of integrable

functions and according to Theorem B, p. 107 of

Halmos there is an integrable function g such that

lirn S I fn- gl = 0.

But then ffn } converges in measure to g.

fx:If-gl ?..e 1 C. Ix: I fn-f I Ifn-gl >41 .

Thus f = g a. e.

Thus Iful converges in mean to f.

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions Ifn
converges in measure to the function f,

then If 1 converges in mean to f.

Proof:

By 3.1 we may assume that we have hypothesis 4.

The conclusion then follows from Theorem

Emn

1 f m1dp.
e

mn
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Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions ffn
converges in measure to the function f,

then {f} in mean to f.

Proof:

Let C be the uniform essential bound for the sequence of

functions fn

On a totally finite measure space a constant function is

integrable.

The conclusion is a result of 2.15.

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If a

If I <n max(IfI,IfiI) which is integrable.

The conclusion is then a result of 2.15.
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sequence of functions {fn I
converges in measure to f, then

If converges in mean to f.

Proof:

Follows from 3.15 and Theorem 3.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions lc converges in measure to the function f,

then 1 fn converges in mean to f.

Proof:



Theorem 9: Suppose hypotheses 2,5 and 8 are satisfied. If the

sequence of functions If } converges in measure to the function

f, then fn} converges in mean to f.

Proof:

By hypothesis, urn f = fd4 and f is integrable.

Thus there exists n such that for n > n , f is
0 n

integrable.

Thus without loss of generality we may assume hypothesis
oo

Let E =fn(X) 0 ,

n=1
co

By 3.12, E has cr-finite measure; that is E = 1/4.) En
n=1

where 1.1.(En) <00 n = 1, 2, .

Let Em = E -
rn

E and notice that {Em}} is a de-
n=1

creasing sequence of sets such that lim Em = .

111

Choose C> 0.

Since we assume hypothesis 5, there exists m0 such that

for m > m0 Ifniclp.<i n = 1,2, °

Em

By 3.1 we may assume we have hypothesis 4.
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p.(Emn)
0 as m, n 00.

Since we have hypothesis 4, there exists N such that for

m, n> N 1k< k = 1, 2,

mn

For m, n > N

511 fn-fin1 = 1 fn-frn1 = 1 fn-frni + Ifn-fm1dp.
mo moE-E E

<SIfn-fm Idda+ 3<g Ifn-fmldp.
6

E-E 0 (E-Em0)-E

+ 1 fn-fm1 dp. + -3-
c

0(E-E ) E

mn

rnn

1.1.(E-E 0) + 1 fn 1 dp,

3(E-Em0) (E-Em0)rm E

1 fm1 d+ 3
m

(E-E0) EmnE SEE< 7+ z+ z+ = C.

mn
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Let Emn= fx: Ifn-fm1 >
} and notice that

3(E -E



Since e is arbitrary lim 511fn-fm = 0 .
n, m

With the same closing argument as that in Theorem 3 we

conclude {f n} converges in mean to f.

Theorem 10: Suppose hypotheses 2, 8 and 9 are satisfied. If the

sequence of functions lc converges in measure to the function f,

then {f n} converges in mean to f.

Proof:

By hypothesis, urnSfndp. = Sfdp. and f is integrable.

Thus there exists n such that for n > n f is
0 On

integrable.

Thus without loss of generality assume we have hypothesis 1.

1n' <max(1f1, 1f11) n = 1, 2,

The conclusion is then the result of 2. 15.
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6. ALMOST UNIFORM CONVERGENCE-CONVERGENCE IN MEASURE

First investigate the conditions under which almost uniform

convergence implies convergence in measure. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions { fn} converges almost

uniformly to the function f, then if } converges in measure ton

f.

Proof:

This is Theorem B, p. 92 of Halmos.

Now investigate the conditions under which convergence in

measure implies almost uniform convergence. In counterexample

7 If } converges in measure to f 0, hypotheses 1, 2, 3, 4, 5, 6,

7,8, 10 are satisfied, but {fn } does not converge almost uniformly

to f = 0. The one missing hypothesis gives a reault which is now

stated and proved. An interesting point is that convergence in

measure of {fn} to f implies the existence of a subsequence

that converges almost uniformly to f.

Theorem 2: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn } converges in measure to the function f, then

fn} converges almost uniformly to f.



Proof:
1

Let Ek = Ixdfn(x)-f(x) 1.
2I`

Notice that for each k, Ek decreases with n.

Choose E > 0 .
E

There exists
n1

such that for n > n1, p.(E1) < -2- .

For k = 2,3, ' , there exists nk > nk-1 such that for

n a nk, p.(En ) < .

oo

Let E= LIEk
k=1 nk

p.(E) = p. [ Ekn ] E )

k=1

<c .
nkk=1 k

oo co

Ec = [ E = (Th

k=1 nk k=1 nk

1Thus for all XEEc and n nk' I fn(x)-f(x) I <

Since this is true for every k, we have uniform convergence

on Ec.

Since is arbitrary, we have almost uniform convergence.
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7. CONVERGENCE IN MEAN - UNIFORM CONVERGENCE

First investigate the conditions under which convergence in

mean implies uniform convergence. In counterexample 8 Ifni-

converges in mean to f = 0 and all ten hypotheses are satisfied,

but If } does not converge uniformly to f = 0. Thus we get no

results with convergence in mean implying uniform convergence.

Now investigate the conditions under which uniform convergence

implies convergence in mean. Each set of hypotheses listed below,

together with uniform convergence, implies convergence in mean.

Following the list, the results are stated and proved. Counter-

examples 1, 3, 4, 5, 6 show that these are the only implications with

a non-redundant set of hypotheses.

(3) (1,5) (1, 2, 9) (2, 8,9)

(7) (5,10) (2, 5, 8)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions f. converges uniformly to the function f, then fn}

converges in mean to f.

Proof:

Given e > 0, there exists no(c) such that for n> no(e),

I fn(x)-f (x) I <
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On a totally finite measure space a constant function is

integrable and hence fn-f E L1
for n> n .

For no (C fn-f I d1-1- < 61-1(X)

Since c is arbitrary urn ac fn-ft = 0.

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions lc} converges uniformly to the function f, then
{fn}

converges in mean to f.

Proof:

Uniform convergence implies convergence in measure and so

Ifn} converges in measure to f.

Now the conclusion is a result of 5. 2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {f n} converges uniformly to the function f,

then { fn } converges in mean to f.

Proof:

Follows from 5.3 and the fact that uniform convergence implies

convergence in measure.

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. If the

54

sequence of functions {f n} converges uniformly to the function f,



then {fn} converges in mean to f.

Proof:

Follows from 5.7 and the fact that uniform convergence

implies convergence in measure.

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions fn}
converges uniformly to the function f,

then converges in mean to f.

Proof:

Follows from 5. 8 and the fact that uniform convergence implies

convergence in measure.

Theorem 6: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions ifrd converges uniformly to the function f,

then fri converges in mean to f.

Proof:

Follows from 5. 9 and the fact that uniform convergence implies

convergence in measure.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions converges uniformly to the function f,

then Ifn} converges in mean to f.

55



Proof:

Follows from 5.10 and the fact that uniform convergence

implies convergence in measure.
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8. CONVERGENCE IN MEAN - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which convergence in

mean implies almost uniform convergence. In counterexample 7

{ f} converges in mean to f = 0 and hypotheses 1, 2, 3, 4, 5, 6, 7,

8,10 are satisfied, but {fn}
does not converge almost uniformly

to f = 0. The one remaining hypothesis gives an implication which

is stated and proved below. An interesting fact is that convergence

in mean of a sequence of functions {fn} to the function f, implies

the existence of a subsequence which converges almost uniformly to

f.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} converges in mean to the function f, then Ifn

converges almost uniformly to f.

Proof:

Follows from 5.1 and 6. 2.

Now investigate the conditions under which almost uniform

convergence implies convergence in mean. Each set of hypothesis

listed below, together with almost uniform convergence, implies

convergence in mean. Following the list, the results are stated be-

cause we need them numbered for future use ; the proofs are all



Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions Ifn1 converges almost uniformly to the function f,

then {f} in mean to f.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions If 1 converges almost uniformly to the

function f, then Ifn1
converges in mean to f.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions ifn1
converges almost uniformly to the

function f, then Ifn1 converges in mean to f.

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions if n1 converges almost uniformly to the

function f, then ffn1
converges in mean to f.
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consequences of the same numbered theorems in Section 5 and the

fact that almost uniform convergence implies convergence in meas-

ure. Counterexamples 1, 2, 3, 4,5, 6,10,11 show that there are no

other implications with a non-redundant set of hypotheses.

(7) (3,5) (1, 2, 9)

(1,5) (3,6) (2, 5, 8)

(3,4) (5,10) (2, 8, 9)



Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {f.} converges almost uniformly to the

function f, then
{fn

} converges in mean to f.

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {f n} converges almost uniformly to the

function f, then {fn} converges in mean to f.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, thenn } converges in mean to f.

Theorem 9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions If } converges almost uniformly to the

function f, thenn } converges in mean to f.

Theorem 10: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn}
converges almost uniformly to the

function f, then
{fn

} converges in mean to f.
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9. ALMOST UNIFORM CONVERGENCE - CONVERGENCE a. e.

First investigate the conditions under which almost uniform

convergence implies convergence a. e. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions ffn} converges almost

uniformly to the function f, then {fn } converges a. e. to f .

Proof:

This is Theorem B, p. 89 of Halmos.

Now investigate the conditions under which convergence a. e.

implies almost uniform convergence. Each set of hypotheses listed

below, together with convergence a. e. , implies almost uniform

convergence. Following the list, the results are stated and proved.

Counterexamples 9, 12, 13 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (5,9) (2,8, 9)

(7) (1, 2, 9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions ffn
converges a. e. to the function f, then ffnl

converges almost uniformly to f.
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Proof:

Given on p. 88 of Halmos.

Theorem 3: Suppose hypothesis 7 is satisfied. If the sequence of

functions lc converges a. e. to the function f, then {f}

converges almost uniformly to f.

Proof:

By hypothesis, there exists integrable such that

Ifni g a. e. n = 1, 2,

Clearly IIIf' <g a. e.

Since we are trying to prove almost uniform convergence, we

can without loss of generality assume n } converges

pointwise to f everywhere.

oo

Em 1 1 m
LiLet En = Ix: Ifn-fi > and let A. = Em

m i nn=i

For each i, A' finite measure since

1
p. (Am. ) = g dp. < 2 ggdp. < co.

m 1 m
A.

1

Since we assume convergence everywhere

ooe".n-fl > 1= (I) for all m .lim A. =

i n=i

lim (Arni ) = 1.4 lim = 1.1,(.1)) = 0 .
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Co

Let F = %.../ A,
m=1 i0(m)

Co

(F) =L[ Am.
m=1 10(m)

co co

Fc = [ kJ Am. = [Am I.
m110(m) m1 i0

(m)
=

Thus for X E Fc and n > i0 (m) If < -11.71

Since this must hold for each m, we have shown uniform

convergence on Fc.

Since is arbitrary, we have almost uniform convergence.

Theorem 4: Suppose hypotheses 5 and 9 are satisfied. If the

sequence of functions Ifn
converges a. e. to the function f,

then
ffn

converges almost uniformly to f.

Proof:

Without loss of generality assume Ifn}
converges to

everywhere.

Let k be an arbitrary fixed positive integer.
1Let Ek = x: Ifn-fl >k } and notice that the sequence of

00

2M
c

IT1=1
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Choose c> 0

For each m, there exists an i0(m) such that for i > i (m)
'

F.L (Am. ) <
1 2m



n0 (k)
On the set Ek , hypotheses 1, 5, and 9 are satisfied and

of course{f} converges pointwise to f.n

Theorem 10.3 tells us
{fn

} converges in measure to f on

n0(k)Ek

Theorem 5.3 tells us ffn
converges in mean to f on

En0(k) that is 1 fimI f. - I dp. = 0

E

.

no(k)

Thus there exists i0 > n0 such that

Since

sets {E} decreases with n and lim Ek = (1).

Because of hypothesis 5, there exists no(k) such that

I fi I < 1

0(k)
Ek

j= 1, 2,

Ek0 has finite measure since

io) =dp. < f. -f I dp. < co.k k .k
E

0lo

n (k)

Ek0
fi -f I dp, < oo.

E0

f. -f I dp. < 00.

n0(k)E

Thus lim p. (E) =i4 lirn = ( cf)) = 0 for all k.
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Choose E > 0 .
n EThere exists

n1
such that for n n1, p.(Ei) < -2-

For k = 2,3, there exists

n nk, p.(E:) < .

2

co n
Let F = L.) Ekk.

k=1
00

p.(Enk ) < E .

k=1oo00 nk c
Fc = r En

ck]= [E
k=1 k=1

n
E k

p.(F) = p.[ ] <
k=1 k
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Thus for X E .t' and n nk' fn(x)-f(x) I < .117 .

Since the above statement is true for every k we have shown

almost uniform convergence on Fc.

Since was arbitrary, we have shown almost uniform

convergence.

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions lc converges a. e. to the function f,

then ffn converges almost uniformly to f.

Proof:

We may assume we have hypothesis 7 since max[ ifi , Ifl]

is integrable and I fn I < max[ f 1,Ifl] a. e.

n = 1, 2, 3, .

> nk- 1 such that for



The conclusion is then a result of Theorem 3.

Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied. If the

65

sequence of functions fn converges a. e. to the function f,

then lc converges almost uniformly to f.

Proof:

Since we have hypothesis 8, lirn fndp. = Sifdp. .

There exists an n such that for n > nf is integrable.
0 0 n

Thus without loss of generality we may assume we have

hypothesis 1.

The conclusion is a result of Theorem 5.



10. CONVERGENCE IN MEASURE - CONVERGENCE a. e.

First investigate the conditions under which convergence in

measure implies convergence a. e. In counterexample 7 {fn}

converges in measure to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,7, 8, 10

are satisfied, but ffn
does not converge a. e. to f = 0. The one

remaining hypothesis gives an implication which is stated and proved

below. Of interest here is the fact that a sequence of functions which

converges in measure to a particular function necessarily has a sub-

sequence which converges a. e. to that function.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions
{fn}

converges in measure to the function f, then

ifn} converges a. e. to f.

Proof:

Follows from 6.2 and 9.1.

Now investigate the conditions under which convergence a. e.

implies convergence in measure. Each set of hypotheses listed

below, together with convergence a. e. implies convergence in meas-

ure. Following the list, the results are stated and proved. Counter-

examples 12, 13, 14 show that these are the only implications with

a non-redundant set of hypotheses.
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(3) (7) (2, 8, 9)

(5) (1 , 2, 9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions
{fn}

converge a. e. to the function f, then {f} con-

verges in measure to f.

Proof:

Follows from 9.2 and 6.1.

Theorem 3: Suppose hypothesis 5 is satisfied. If the sequence of

functions {f} converges a. e. to the function f, then
{fn}

converges in measure to f.

Proof:

Let En = {x: ifm-fn > c

co ,mLet Em =
n=m

oo

Let A.= Em .
1 m=i

Let A = lim A..
. 1

Clearly {A.} is a decreasing sequence of sets and since we

assume convergence a. e. , 11,(A) = 0 .

urn (Ai-A) = .
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Since we have hypothesis 5, there exists an0 such that

Ifni < 1 n = 1, 2, .

A. -A
10

Thus on A. -A each member of the sequence
10

integrable.

oo

Let F = LI {x:fn(x) 0, xe.A.. -A} .
n=1 10

oo

/E has 0--finite measure, that is F = 1/4_) F where
n=1 n

n= 1, 2,

Let F = F - Fn and note that } is a decreasing
n=1

sequence of sets such that lirn F = --r

1
Since we have hypothesis 5, given E > 0, there exists

n (e,) such that for
0

m > m 0' Ifnicip,<=-n=1,2,
el

5
.

Frn

I fm-fn I I fm-fn 011f -f kip.= if-fnI dp.=m n m
0 0A. -A F-F Fr F

0

F-Fm0

p.(Fn) < 00,

Since p.(F-F°) < 00, Theorem 2 tells us
{fn}

converges
171

0in measure to f on F-F , and thus is
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< ifm-fnidp. +
2e

1

5

{fn}
is



fundamental in measure on F -F

Thus lim Gmn] = 0 where
m, n

61 m0
Gm = {x: Ifin-fni > , xEF-F }

5p.(F-Fmo)

Theorem 3.1 allows us to conclude that the indefinite integrals

of 'fill n = 1,2, are uniformly absolutely

continuous.

Thus there exists N such that for m,n > N

Gm
3

El j=1,2,°
n

Thus for m,n > N

Ifm-fnI
dp. < 5 If -f dp.

+2e51m nmA. -A F-F0
10

2
El

<ifm-fn + 5 If -f I dp.+
mm n 5

(F-Fm 0)-Gm (F -F 0) Gm

1 m0 4C1
11(F-F -

m
511(F -F0)

Since Li is arbitrary, urn Ifm-fnI dp. =
m, n A. -A

0

1
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m0



Thus 1.1.(Enm) 0 as m,n 00.

By Theorem E, p. 93 of Halmos, there exists a function

such that
{ft'

} converges in measure to g.

{x:Ifn-gl > c}C- {x: Ifn-gl > } lx: >
2

By Theorem D, p. 93 of Halmos and 9. 1 we know there is a

subsequence of
{fn}

which converges a. e. to g.

Thus f = g a. e. and thus {fn}
converges in measure to f.

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

converges in measure to f.

Proof:

Follows from 9.3 and 6.1.
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functions ifn converges a. e. to the function f, then if.

Note that for m, n> i ErnC. A. -A except for a set of0' n 10

measure zero, and so 0 = Em km-fn> fm-fn I

m,nA. -A Em
10

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions Ifni.
converges a. e. to the function f, then

lc converges in measure to f.



Proof:

Follows from 9. 5 and 6.1.

Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions ifn converges a. e. to the function f,

then {f}converges in measure to f.

Proof:

Follows from 9. 6 and 6.1.
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11. UNIFORM CONVERGENCE - CONVERGENCE a. e.

First investigate the conditions under which uniform con-

vergence implies convergence a. e. The following theorem finishes

this investigation.

Theorem 1: If a sequence of functions
{fn}

converges uniformly

to the function f, then Ifn
converges a. e. to f.

Proof:

Obvious.

Now investigate the conditions under which convergence a. e.

implies uniform convergence. In counterexample 8n con-

verges a. e. to f = 0 and all ten hypotheses are satisfied, but

{fn}
does not converge uniformly to f = 0. Thus we get no

implications with convergence a. e. implying uniform convergence.
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12. UNIFORM CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which uniform conver-

gence implies almost uniform convergence. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions converges uniformly

to the function f, then
{fn}

converges almost uniformly to f.

Now investigate the conditions under which almost uniform

convergence implies uniform convergence. In counterexample 8

{fn} converges almost uniformly to f = 0 and all ten hypotheses

are satisfied, but Ifni-
does not converge uniformly to f = 0.

Thus we have no results with almost uniform convergence implying

uniform convergence.



13. UNIFORM CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which uniform conver-

gence implies convergence in measure. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions
{fn}

converges uniformly

to the function f, then Ifn
converges in measure to f.

Proof:

Obvious.

Now investigate the conditions under which convergence in

measure implies uniform convergence. In counterexample 8,

{f} in measure to f = 0 and all ten hypotheses are

satisfied, but {f n} does not converge uniformly to f = 0. Thus

we get no implications with convergence in measure implying uniform

convergence.
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14. CONVERGENCE IN MEAN - CONVERGENCE a. e.

First investigate the conditions under which convergence in

mean implies convergence a. e. In counterexample 7 {fn} con-

verges in mean to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,7, 8,10 are

satisfied, but Ifni-
does not converge a. e. to f = 0. The one

remaining hypothesis gives an implication which is stated and proved

below. Of interest here is the fact that a sequence of functions which

converges in mean to a particular function necessarily has a sub-

sequence which converges a. e. to that function.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions ifn
converges in mean to the function f, then

converges a. e. to f.

Proof:

Follows from 9. 1 and 10.1 .

Now investigate the conditions under which convergence a. e.

implies convergence in mean. Each set of hypotheses listed below,

together with convergence a. e. , implies convergence in mean. Fol-

lowing the list, the results are stated and proved. Counterexamples

1, 2,3,5,10,11,12,13 show that these are the only implications with

a non-redundant set of hypotheses.
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Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {f} converges a. e. to the function f, then {f}

converges in mean to f.

Proof:

Follows from 10.4 and 5.2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions Ifn
converges a. e. to the function f,

then {f}converges in mean to f.

Proof:

Follows from 10.3 and 5.3.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions {f n} converges a. e. to the function f,

then lc converges in mean to f.

Proof:

Follows from 3.7, 3.10 and Theorem 3.
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Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions fn
converges a. e. to the function f,

then {f} converges in mean to f.

Proof:

Follows from 3.11 and Theorem 3.

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the
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sequence of functions Ifn
converges a. e. to the function f,

then fn converges in mean to f.

Proof:

Follows from 3. 9 and Theorem 2.

Theorem 7: Suppose hypotheses 10 and 5 are satisfied. If the

sequence of functions ffn
converges a. e. to the function f,

then ifnl converges in mean to f.

Proof:

Follows from 3.15 and Theorem 3.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions fn
converges a. e. to the function f,

then {f}converges in mean to f.

Proof:

1fn < max[ for n = 1, 2, ,



The conclusion is then a result of 2.15.

Theorem 9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions If. converges a. e. to the function f,

then
{fn

converges in mean to f.

Proof:

urn Sfndp. .

There is an n0 such that for n > n0' fn is integrable.

Thus without loss of generality we may assume we have

hypothesis 1.

The conclusion is then a result of Theorem 3.

Theorem 10: Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions lc converges a. e. to the function f,

then if converges

Ifn1 <

Proof:

lirn dp. Sfdp, .

There exists
0

such that for n > n0' fn is integrable.

Thus without loss of generality assume we have hypothesis 1.

in mean to f.

fl] for n = 1, 2,
I
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The conclusion is then a result of Theorem 2.



15. CONVERGENCE IN MEAN - L CONVERGENCE

First investigate the conditions under which convergence in

mean implies L convergence. In counterexample 15, ffnl

converges in mean to f = 0 and hypotheses 1, 2, 3, 4, 5, 7, 8, 9, 10

are satisfied, but {fn}does not L converge to f = 0. The

one missing hypothesis gives an implication which is now stated and

proved.

Theorem 1: Suppose hypothesis 6 is satisfied. If the sequence of

Thus {fn } Lp converges to f.
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functions
{fn}

converges in mean to the function f, then {fn}

L converges to f.

Proof:

lim S1f1dp. = 0.

Since we have hypothesis 6, there exists a constant c such

that Ifn Ic a. e. n = 1, 2,

Let E= {x:Ifl >c+1}.

0 = lirn S I fn-f I dp. > lim y I fn-f I dp. > 1i(E) .

n n E

Thus i(E) = 0 and we conclude that If I < c +1 a. e.

sifn-flPdp.< [2(c +1)] p-i sifn-ficlp.--.- 0 as oo.
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Now investigate the conditions under which L convergence

implies convergence in mean. Each set of hypotheses listed below,

together with L convergence, implies convergence in mean.

Following the list, the results are stated and proved. Counter-

examples 3,4,18 show that these are the only implications with a

non-redundant set of hypotheses.

(3) (7) (2,8,9)

(5) (1,2,9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {f } L converges to the function f, then
n p {f n}

converges in mean to f.

Proof:

Since we assume L convergence, there exists an n
P 0

such that for n > n0' If-fl' is integrable.
1 1Define q so that + = 1
P q

Since the measure is totally finite, any constant is integrable.

For n > n0 , Holder's inequality (p. 175 of Halmos) asserts

that I fn-f I is integrable and that

SI -fldp. < [ d [ I fn-f] P dp.] P

Clearly the term on the right goes to 0 as 00,



Lemma: Suppose hypotheses 1 and 5 are satisfied. If the sequence

of functions If 1 L converges to the function f, then
n p

converges in mean to f.

Proof:

Let E be the support of the functions fn
n 1, 2,

co

E has o--finite measure; that is E Li En where
n=1

< n = 1, 2,

Let Em = E - L.) En and note that {Em 1 is a decreasing
n=1

nnsequence of sets and 1m E = .

Since we have hypothesis 5, given c > 0 there exist m0

such that for m > m0 < -E-
n=1, 2, ' .

Em

By 1 6. 1 we know that Ifn1 converges in measure to f.

Let Fn = Ix: If -f >
n nn

5p,(E-Em0)

(Fm) 0 as n, m 00.

By 3.1 we may assume we have hypothesis 4.

Thus there existssuch that for m n > n
0 ' 0

if.ldp.< j1, 2,
Fm

1 and note that

ifn
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For n, m > n
0

,r I fn fm c 1-frill fn
-f I + fn-fmidp.

0 0
E-E ErmE

< clfn-frnIdp. + +

m0 m
(E-Em0)-Fm (E-E )(Th

m0 4E
p.(E-E ) + C.

5(E-E )

Since c is arbitrary lirn c I fn-fmld 0 .
n, m

By Theorem B, p. 107 of Halmos, there exists integrable

such that Ifni.
converges in mean to g.

5.1 tells us that {fn}
converges in measure to g.

But Ix: If-gI > {x: Ifn-fl > 1+ }

2,

Thus 11 Ix: > 1= 0.

Thus } converges in mean to f.

Theorem 3: Suppose hypothesis 5 is satisfied. If the sequence of

functionsn } Lp
converges to the function f, then {f n}

converges in mean to f.

Proof:
lim c I fn-f = .

2E

5
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Without loss of generality we may assume that fn-fE L for all n.



Let E be the support of the functions fn-f n = 1, 2,

oo

E has o--finite measure; that is E En where
n=1

11(En) < °° n = 1, 2,

Let Em = E- i
En

and note that {Em } is a decreasing
n=1

sequence of sets and lim E = 4)

Since we assume hypothesis 5, there exists m0 such that

SI dp. < 1 n = 1, 2,

Ern0

Since 1.1.(E-Emo) < co, Theorem 2 tells us that {f'n} con-

verges in mean to on E-Em0 and the preceding

m0lemma tells us the same on E

Since the limit exists, the limit of the sum is the sum of the

limits.

Thus {f n} converges in mean to f.

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions } L converges to the function f, then
n p

converges in mean to f.

Proof:

By 16. 1 we may assume {fn}
converges in measure to f.

Follows from 5. 2.
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ure, that is F = i F wherep.(Fn)< 00
n=1 n

rn

Let Fm = F - t.) F I'
n

and note that {m} is a decreasing
n=1

sequence of sets and lirn F = cf) .

rn

Because of hypothesis 9, .5'1 fn-fi dp. <si 1.41 dp. for all n.

Given E > 0, there exists m0 such that for m > m

n = 1, 2,

By 16.1 we know fin) converges in measure to f

Let En = Ix: Ifn-fl >
(F-Fm0)

p.(En) 0 as n

There exists0 such that for n > n

} and note that

En

84

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {f} L converges to the function f, then
n p

{fn}
converges in mean to f.

Proof:

Let F be the support of the functions fn-f n =

Since fn-f is integrable for all n, F has cr-finite meas-

n=1,2,.



For n > n
0

SI -f I =

S1fnId. + 3

(F -Fmo)-E (F -F (3) r\E

-114. + 5 If -414.
m0 m0F-F Ftm F

m
31,1(F -F0)

Since c is arbitrary, lim c fn -f = 0.

Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} L converges to the function f, then

Ifn
converges in mean to f.

Proof:

lim f dp., = Sfdp. .

Since f is integrable, there exists0 such that for

n> n0' fn is integrable.

Thus without loss of generality we may assume hypothesis

Follows from Theorem 5.

0 2E
11(F - F ) + = E
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16. L CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which L convergence

implies convergence in measure. The following theorem finishes

this investigation.

Theorem 1. If the sequence of functions ifn Lp converges to

the function f, then lc} converges in measure to f.

Proof:

Let E = {x: If-f! >

fn-f I Pd1.1
Ifn-f113d11

> PL(En)
X En

Since c and p are fixed, [1.(En) 0 as

Now investigate the conditions under which convergence in

measure implies L convergence. Each set of hypotheses listed

below, together with convergence in measure, implies L con-

vergence. Following the list, the results are stated and proved.

Counterexamples 1,5, 6,15,16,17 show that these are the only impli-

cations with a non-redundant set of hypotheses.

(5, 6,10)

(1,2, 6, 9)

(2, 5, 6,8)

(2, 6, 8, 9)
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Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the se-

quence of functions
Ifn

converges in measure to the function f,

then
{fn

}
Lip

converges to f.

Proof:

Follows from 5. 6 and 15.1.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the
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sequence of functions lc} converges in measure to the function

f, thenn} Lp converges to f.

Proof:

Follows from 5. 2 and 15.1.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. lithe

sequence of functions ffn
converges in measure to the function

f, then {f} Lp
converges to f.

Proof:

Follows from 5.3 and 15.1.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. lithe

sequence of functions {f.} converges in measure to the function f,

then } L converges to f.n p

Proof:

Follows from 5.7 and 15.1.



f, then

Proof:

Follows from 5.8 and 15.1.

Theorem 7: Suppose hypotheses 2, 5, 6, and 8 are satisfied. If

the sequence of functions lc converges in measure to the func-

tion f, then
{fn

} Lp converges to f.

Proof:

Follows from 5.9 and 15.1.

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. If

the sequence of functions {f n} converges in measure to the func-

tion f, thenn} Lp converges to f.

Proof:

Follows from 5.10 and 15.1.

ff Ln p converges to f.

8 8

Theorem 6: Suppose hypotheses 1, 2, 6, and 9 are satisfied. If the

sequence of functions ifn converges in measure to the function



17. L CONVERGENCE - UNIFORM CONVERGENCE

First investigate the conditions under which L convergence

implies uniform convergence. In counterexample 8, {fn
} L

converges to f = 0 and all ten hypotheses are satisfied, but {fn}

does not converge uniformly to f = 0. Thus we get no implications

with L convergence implying uniform convergence.

Now investigate the conditions under which uniform convergence

implies L convergence. Each set of hypotheses listed below,

together with uniform convergence, implies L convergence. Fol-

lowing the list, the results are stated and proved. Counterexamples

1,5, 6, 16, 17 show that these are the only implications with a non-

redundant set of hypotheses.

(3) (1,5) (1,2,9) (2,8,9)

(7) (5,10) (2,5,8)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn}
converges uniformly to the function f, then

} L converges to f.
n p

Proof:

Given 0< E < 1, there exists n0 (c) such that for n > n (c)
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On a totally finite measure space a constant function is

integrable; thus Ifn-fl is integrable for n > n .

For n > n , Si ifn-f I < E p.(X) .

Since c is arbitrary, lim sc1 fn-f I dp, = 0 .

For n no, .S1 I fn-f Pdp, < ylfn-f dp. .

Thus limIf-f(dL= 0 and we have L convergence.

Theorem : Suppose hypothesis 7 is satisfied. If the sequence of

} L converges to f.

Proof:

By 13.1 we may assume

By 2.15 we may assume

Given 0 < < 1, there

If-fl < E

For n > n ,

Thus lirn

Ifri

ffn

exists

fn-f Idp. < ..1.11fn-f dp. .

= 0 and we have L convergence.

converges in measure to f.

converges in mean to f.
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n>n (e)

functions ffn
converges uniformly to the function f, then

nO(c
such that for



Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

91

sequence of functions {f n} converges uniformly to the function f,

then
{fn

} Lp converges to f.

Proof:

By 13.1 we may assume ffnl converges in measure to f.

By 5.3 we may assume Ifni-
converges in mean to f.

The remainder of the argument is the same as that of the

theorem above.

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions
{fn}

converges uniformly to the function f,

then } L converges to f.n p

Proof:

Follows from 3.15 and Theorem 3.

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions
{fn}

converges uniformly to the function f,

then } L converges to f.
n p

Proof:

By 13.1 we may assume lc } converges in measure to f.

By 5.8 we may assume
Ifn 1

converges in mean to f.

The argument concludes exactly the same as that of Theorem 2.



Theorem 6: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions Ifn
converges uniformly to the function f,

then
{fn

} Lp converges to f.

Proof:

By 13.1 we may assume fin}
converges in measure to f.

By 5. 9 we may assume Ifn converges in mean to f.

The argument concludes exactly the same as that of Theorem 2.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the
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sequence of functions {f n} converges uniformly to the function f,

then } L converges to f.
n p

Proof:

lirn fndp. = fdp.

Since f is integrable, there exists0 such that for

n > n0' fn is integrable.

Thus without loss of generality we may assume we have

hypothesis 1.

Follows from Theorem 5.
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18. L CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which L convergence

implies almost uniform convergence. In counterexample 7,n} Lp

converges to f = 0 and hypotheses 1,2,3,4,5, 6, 7 , 8,10 are satis-

fied, but {c} does not converge almost uniformly to f = 0. The

one missing hypothesis gives a result which is stated and proved

below. Of interest here is the fact that a sequence of functions L

converging to a particular function, necessarily has a subsequence

which converges almost uniformly to that function.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions Lp converges to the function f, then if.
converges almost uniformly to f.

Proof:

Follows from 1 6. 1 and 6. 2.

Now investigate the conditions under which almost uniform

convergence implies L convergence. Each set of hypotheses

listed below, together with almost uniform convergence, implies

L convergence. Following the list, the results are stated and

proved. Counterexamples 1, 5, 6, 15,1 6,17 show that these are the

only implications with a non-redundant set of hypotheses.



(3,6) (1, 5, 6) (1, 2, 6,9) (2, 6, 8, 9)

(6,7) (5, 6,10) (2, 5, 6,8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the
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sequence of functions lc converges almost uniformly to the

sequence of functions n
converges almost uniformly to the

function f, then If } L converges to f.
n p

Proof:

Follows from 6.1 and 16.2.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn}
converges almost uniformly to the

function f, then
{fn

}
Lp

converges to f.

Proof:

Follows from 6.1 and 16.3.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions{f} converges almost uniformly to the
n

function f, then{c} L converges to f.
p

Proof:

Follows from 6.1 and 16.4.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the



function f, then {fn} L converges to f.

Proof:

Follows from 6.1 and 16.5.

Theorem 6: Suppose hypotheses 1,2, 6, and 9 are satisfied. If the

sequence of functions
{fn

} converges almost uniformly to the

function f, then
{fn

} Lp converges to f.

Proof:

Follows from 6.1 and 16. 6.

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If

the sequence of functions {f n} converges almost uniformly to the

function f, then {f} converges to f.

Proof:

Follows from 6.1 and 16.7.

Theorem 8: Suppose hypotheses 2, 6,8, and 9 are satisfied. If the

sequence of functions n
} converges almost uniformly to the

function f, then
{fn}

L converges to f.

Proof:

Follows from 6.1 and 16.8.
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19. L CONVERGENCE - CONVERGENCE a. e.

First investigate the conditions under which L convergence

implies convergence a. e. In counterexample 7, Ifni Lp con-

verges to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,7, 8, 10 are satisfied,

but Ifni. does not converge a. e. to f = 0. The one missing

hypothesis gives a result which is stated and proved below. Of

interest here is the fact that a sequence of functions L converging

to a particular function necessarily has a subsequence which con-

verges a. e. to that function.

Theorem : Suppose hypothesis 9 is satisfied. If the sequence of

functionsn} L converges to the function f, then {fn
}

converges a. e. to f.

Proof:

Follows from 16.1 and 10.1.

Now investigate the conditions under which convergence a. e.

implies L convergence. Each set of hypotheses listed below,

together with convergence a. e. , implies L convergence. Fol-

lowing the list, the results are stated and proved. Counterexamples

1,5, 6,15,16,17 show that these are the only implications with a

non-redundant set of hypotheses.
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sequence of functions converges a. e. to the function f,

(3, 6) (1,5, 6) (1, 2, 6, 9) (2, 6, 8, 9)

(6,7) (5, 6,10) (2, 5, 6, 8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn}
converges a. e. to the function f,

then If 1 L converges to f.
p

Proof:

Follows from 10.2 and 16.2.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {f.}
converges a. e. to the function f,

then If 1 L converges to f.
p

Proof:

Follows from 10.4 and 16.3.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions ifnl converges a. e. to the function f,

then If 1 L converges to f.
p

Proof:

Follows from 10. 4 and 16.4.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the



then If L converges to f.

Proof:

Follows from 10.3 and 16.5.

Theorem 6: Suppose hypotheses 1,2, 6, and 9 are satisfied. If

the sequence of functions {f n} converges a. e. to the function f,

then If } L converges to f.n p

Proof:

Follows from 10.5 and 16.6.

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If the

sequence of functions lc converges a. e. to the function f,

then
{fn

} Lp converges to f.

Proof:

Follows from 10.3 and 16.7.

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. If

the sequence of functions Sfn} converges a. e. to the function f,

then If } L converges to f.
n p

Proof:

Follows from 10. 6 and 16.8.
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20. WEAK
L1 CONVERGENCE CONVERGENCE a. e.

First investigate the conditions under which weak
LI

convergence implies convergence a. e. In counterexample 19,

{f.} weak Ll converges to f = 0 and hypotheses 1, 2, 3, 4, 5, 6, 7,

8,10 are satisfied, but {f.} does not converge a. e. to f = 0.

The one missing hypothesis gives a result which is now stated and

proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {f.} weak L1
converges to the function f, then

ff.} converges a. e. to f.

Proof:

lim (fn-f)dp.1 = 0.

But -f)du. I = I fn-f!dp. for each n.

Thusn } converges in mean to f.

The conclusion then follows from 14.1.

Now investigate the conditions under which convergence a. e.

implies weak
L1 convergence. Each set of hypotheses listed below,

together with convergence a. e. , implies weak L1 convergence.

Counterexamples 1, 2, 3, 4,5, 6, 10,11 show that these are the only
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implications with a non-redundant set of hypotheses.

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn}
converges a. e. to the function f, then {fn}

weak
L1

converges to f.

Proof:

By 14.2 we know
fn

converges in mean to f.

But I f -f)dp, s. Ifn-f I 41. for measurable E.

Thus urn (fn-f)dp, = 0 for measurable E.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {fn}
converges a. e. to the function f,

then {f } weak
L1

converges to f.

Proof:

By 14.3 we know {fn}
converges in mean to f.

But (f -f)dp.I < ifn-fl difor measurable E.

Thus lim (fn-f)dp, = 0 for measurable E.
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Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions Ifn1
converges a. e. to the function f,

then Ifn
weak Ll converges to f.

Proof:

By 14. 4 we know Ifn1
converges in mean to f.

But 1 S (fn-f)dp,1
< Ifn-fl dp, for measurable E.

Thus lim (fn-f)dp, = 0 for measurable E.
n E

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions fn
converges a. e. to the function f,

then If 1 weak Ll converges to f.

Proof:

By 14.5 we know Ifn1
converges in mean to f.

But (fn-f)dp,
< 1fn-f1dp.

for measurable E.

Thus lim (fn-f)
dp. = 0 for measurable E.

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions
fn

converges a. e. to the function f,

then {fn.} weak L1
converges to f.
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Proof:

By 14. 6 we know ffn1 converges in mean to

But

Thus lim (fn-f)dp, = 0 for measurable E.
n E

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {f n} converges a. e. to the function f,

then {f} weak
L1

converges to f.

Proof:

By 14.7 we know ffn1
converges in mean to f.

(fn-f)dii,
I < I fn-f I dp, for measurable E.

Thus urn(fn-f)dp. = 0 for measurable E.
n E

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions
{fn}

converges a. e. to the function f,

then ffn} weak Ll converges to f.

Proof:

By 14.8 we know ffn1
converges in mean to f.

But I (fn-f)dp.1
< If for measurable E.

E

f < fn-f I 41. for measurable E

But
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Thus lim (fn-f)dp. = 0 for measurable E.
n E

Theorem 9: Suppose hypotheses 2,5, and 8 are satisfied. If the

sequence of functions {fn} converges a. e. to the function f,

thenn } weak Ll converges to f.

Proof:

By 14.9 we know {fn
} converges in mean to f.

But f - I < Ifn-f I dp. for measurable E.

Thus lim (fn-f)dp. = 0 for measurable E.
n E

Theorem 10: Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions converges a. e. to the function f,

then
{fn

} weak
L1

converges to f.

Proof:

By 14.10 we know lc} converges in mean to f.

But I (fn-f)41 < Ifn-fl dia for measurable E.

Thus lim (fn-f)dp. = 0 for measurable E.
n E
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21. WEAK L CONVERGENCE - CONVERGENCE IN MEASURE
1

First investigate the conditions under which weak L1
con-

vergence implies convergence in measure. In counterexample 19,

lc weak LI converges to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,

7, 8, 10 are satisfied, but Ifni-
does not converge in measure to

f = 0. The one remaining hypothesis gives a result which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions lc weak Ll converges to the function f, then

converges in measure to f.

Proof:

lim (fn-f)41 = 0 .

X

But
I S Un-f)d[il= Ifn_flcip

Thus
{fn}

converges in mean to f.

The conclusion then follows from 5. I.

Now investigate the conditions under which convergence in

measure implies weak LI convergence. Each set of hypotheses

listed below, together with convergence in measure, implies weak

convergence. Following the list, the results are stated and proved.
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Counterexamples 1, 2, 3, 4, 5, 6, 10, 11 show that these are the only

implications with a non-redundant set of hypotheses.

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions
{fn

} converges in measure to the function f, then

{fn} weak L1 converges to f.

Proof:

By 5.2 we known} converges in mean to f.

The conclusion is then obvious.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions If. converges in measure to the function

f, then If. weak L1
converges to f.

Proof:

By 5. 3 we know f. converges in mean to f.

The conclusion is then obvious.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions {f n} converges in measure to the function

then Ifn weak
L1

converges to f.
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Proof:

By 5. 4 we known } converges in mean to f.

The conclusion is then obvious.

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions {f} converges in measure to the function f,

then ffn weak Ll converges to f.

Proof:

By 5.5 we know {fn}
converges in mean to f.

The conclusion is then obvious.

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn}
converges in measure to the function f,

then Ifni- weak L1 converges to f.

Proof:

By 5. 6 we know {fn}
converges in mean to f.

The conclusion is then obvious.

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the
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sequence of functions {f n} converges in measure to the function

f, then weak
L1

converges to f.

Proof:

By 5.7 we know that {fn}
converges in mean to f.



The conclusion is then obvious.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions if. converges in measure to the function

f, then If. weak
L1

converges to f.

Proof:

By 5. 8 we know that Ifnl converges in mean to f.

The conclusion is then obvious.

Theorem 9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions ffn
converges in measure to the function

f, then ifn weak
L1

converges to f.

Proof:

By 5.9 we know that
{fen}

converges in mean to f.

The conclusion is then obvious.

Theorem 10: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn } converges in measure to the function f,

then
{fn

} weak Ll converges to f.

Proof:

By 5.10 we know that {fn}
converges in mean to f.

The conclusion is then obvious.
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22. WEAK L1
CONVERGENCE - CONVERGENCE IN MEAN

First investigate the conditions under which weak
L1

convergence implies convergence in mean. In counterexample 19,

{f} weak L1 converges to f 0 and hypotheses 1, 2, 3, 4, 5, 6,

7,8,10 are satisfied, but
{fn

} does not converge in mean to f = 0.

The one missing hypothesis gives a result which is now stated and

proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

lim 51(f -f)dp.I 0 .

But 11(f -f)dpd = 511 fn-fl .

Now investigate the conditions under which convergence in mean

implies weak Ll convergence. The following theorem finishes

this investigation.

Theorem 2: If the sequence of function

to the function f, then Ifn

lc converges in mean

weak
L1

converges to f.
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lc converges in mean to f.

Proof:

functions fn weak L1
converges to the function f, then



Proof:

I 1(fn-f)dp,1 < g Ifn-f I dp, .
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23. WEAK
L1

CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which weak L1
con-

vergence implies almost uniform convergence. In counterexample

19, {fn } weak L1 converges to f = 0 and hypotheses 1, 2,3,

4,5, 6, 7, 8,10 are satisfied, but {fn}
does not converge almost

uniformly to f = 0. The one remaining hypothesis gives a result

which is now stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions ifnl weak L1 converges to the function f, then

ffn converges almost uniformly to f.

Proof:

Follows from 22.1 and 8.1.

Now investigate the conditions under which almost uniform

convergence implies weak L1
convergence. Each set of hypoth-

eses listed below, together with almost uniform convergence,

implies weak L1 convergence. Following the list the results are

stated and proved. Counterexamples 1, 2,3, 4, 5, 6, 10, 11 show that

these are the only implications with a non-redundant set of hypotheses.



Theorem : Suppose hypothesis 7 is satisfied. If the sequence of

functions
{fn

} converges almost uniformly to the function f,

thenn 1 weak L1 converges to f.

Proof:

Follows from 8.2 and 22.2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functionsn } converges almost uniformly to the

function f, then
Ifn1

weak Ll converges to f.

Proof:

Follows from 8.3 and 22.2.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions ifn1 converges almost uniformly to the

function f, then {fn} weak L1
converges to f.

Proof:

Follows from 8.4 and 22.2

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the
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sequence of functions Ifn1 converges almost uniformly to f,

then {f} weak
L1

converges to f.

Proof:

Follows from 8.5 and 22.2.

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions Ifn1 converges almost uniformly to the

function f, then Ifni- weak Ll converges to f.

Proof:

Follows from 8. 6 and 22. 2.

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions If n1 converges almost uniformly to the

function f, then {f} weak Ll converges to f.

Proof:

Follows from 8.7 and 22.2.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions Ifn
converges almost uniformly to the

function f, then Ifn1 weak L1
converges to f.

Proof:

Follows from 8. 8 and 22. 2.
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Theorem 9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions Ifn}
converges almost uniformly to the

function f, then {f} converges to f.

Proof:

Follows from 8. 9 and 22. 2.

Theorem 10: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then
{fn

} weak L1
converges to f.

Proof:

Follows from 8.10 and 22.2.
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24. WEAK
L1

CONVERGENCE - UNIFORM CONVERGENCE

First investigate the conditions under which weak
L1

convergence implies uniform convergence. In counterexample 8,

{fil} weak L1 converges to f = 0 and all ten hypotheses are

satisfied, but Ifn1 does not converge uniformly to f = 0. Thus

we get no implications with weak Ll convergence implying uniform

convergence.

Now investigate the conditions under which uniform convergence

implies weak
L1

convergence. Each set of hypotheses listed

below, together with uniform convergence, implies weak L1

convergence. Following the list, the results are stated and proved.

Counterexamples 1,3,4,5, 6 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (1,5) (1, 2, 9) (2,8,9)

(7) (5,10) (2, 5, 8)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions Ifn1 converges uniformly to the function f, then

}
weak

L1
converges to f.

Proof:

Follows from 7.1 and 22.2.
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Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions lc converges uniformly to the function f, then

lc weak
L1

converges to f.

Proof:

Follows from 7.2 and 22.2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions Ifn
converges uniformly to the function f,

then Ifn weak Ll converges to f.

Proof:

Follows from 7.3 and 22.2.

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions Ifn1
converges uniformly to the function f,

then Ifn1
weak

L1
converges to f.

Proof:

Follows from 7.4 and 22.2.

Theorem 5: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions Ifn
converges uniformly to the function f,

then Ifn1
weak

L1
converges to f.

Proof:

Follows from 7.5 and 22.2.
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Theorem 6: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions
{fn}

converge uniformly to the function f,

then lc} weak L1
converges to f.

Proof:

Follows from 7. 6 and 22.2.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

thenn } weak
L1

converges to f.

Proof:

Follows from 7.7 and 22.2.



25. WEAK L CONVERGENCE - L CONVERGENCE
1

First investigate the conditions under which weak L1

convergence implies L convergence. There is only one result

which is stated and proved below. Counterexamples 15 and 19

show that this is the only implication with a non-redundant set of

hypotheses.

Theorem 1: Suppose hypotheses 6 and 9 are satisfied. If the

sequence of functions weak
L1

converges to the function

f, then If } L converges to f.
n p

Proof:

Follows from 22.1 and 15.1.

Now investigate the conditions under which L convergence

implies weak
L1

convergence. Each set of hypotheses listed

below, together with L convergence, implies weak
L1

con-

vergence. Following the list, the results are stated and proved.

Counterexamples 3, 4, 18 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (7) (2, 8, 9)

(5) (1, 2, 9)
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functions {f } L converges to the function f, then
n p

L1
converges to f.

Proof:

Follows from 15.3 and 22.2.

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions {f } L converges to the function f, then
n p

L1
converges to f.

Proof:

Follows from 15.4 and 22.2.

Theorem 5: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions
{fn

} L converges to the function f,

then {f} weak
L1

converges to f.

Proof:

Follows from 15.5 and 22.2.
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Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn}L converges to the function f, then {f.} weak

L1
converges to f.

Proof:

Follows from 15.2 and 22.2.

Theorem 3: Suppose hypothesis 5 is satisfied. If the sequence of

ff.} weak

{f.} weak
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Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn
} L converges to the function f,

then {f} weak L1 converges to f.

Proof:

Follows from 15. 6 and 22.2.



26. WEAK L CONVERGENCE - CONVERGENCE a. e.

First investigate the conditions under which weak L con-
.")

vergence implies convergence a. e. In counterexample 19, {fn}

weak L converges to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,7, 8, 10

are satisfied, butn } does not converge a. e. to f = 0. The one

remaining hypothesis gives an implication which is now stated and

proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

120

functions weak L converges to the function f, then

{fn}
converges a. e. to f.

Proof:

lim ,c(f -f)gdp. = 0 for g E L .

n n

Let E be the support of the functions fn-f n=1,2,

Without loss of generality we may assume fn-fE Lp for all n.

co

E has cr-finite measure; that is E E where
n=1

I-L(En
<00 n 1, 2,

It suffices to show pointwise convergence on En for
0

0

arbitrary but fixed.

xE clearly belongs to L for EC E .n0



Thus lim (f = 0 for E C- E .

n E n no

Since fn-f has the same sign for each n

I 51
(fn-f)dp,I=

The result then follows from 14.1.

Now investigate the conditions under which weak L con-

vergence implies convergence a. e. Each set of hypotheses listed

below, together with convergence a. e. , implies weak L con-

vergence. Following the list, the results are stated and proved.

Counterexamples 1,5, 6,15,17,31 show that there are no other

implications with a non-redundant set of hypotheses.

(3, 6) (1, 5, 6) (1,2,6, 9) (2, 6, 8, 9)

(6,7) (5, 6,10) (2, 5, 6,8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions lc converges a. e. to the function f,

then If 1 weak L converges to f.

Proof:

There exists a constant c such that I fnI < c a.e for all .n.

From 2.15 we know Ifn1
converges in mean to f.

From 15.1 we know Ifn1 Lp
converges to f.

-f I dp. for EE .
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-f)gdpi < II f-f II IIp gIIn q
.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {f n} converges a. e. to the function f,

then If } weak L converges to f.

Proof:

From 2.15 we known } converges in mean to f.

From 15.1 we know
{fn

}
Lp

converges to f.

I can-ogdill Ilfn-f IIp II gll

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions {f n} converges a. e. to the function f,

then
{fn

} weak L converges to f.

Proof:

From 19.4 we know {f} Lp converges to f.

I S(fn-f)gdp,I lifn-flip Vag

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions {fn}
converges a. e. to the function f,

then
{fn

} weak L converges to f.
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Proof:

From 19.5 we know Ifn1 Lp converges to f.

I S(f -f)gdf-L fn p-fll g q

Theorem 6: Suppose hypotheses 1, 2, 6, and 9 are satisfied. lithe

sequence of functions {fn} converges a. e. to the function f,

then {f n}weak L converges to f.

Proof:

From 19. 6 we know ffn1 Lp
converges to f.

S(f -f)gdy. I < II fn-f p g q

Theorem 7: Suppose hypotheses 2, 5, 6, and 8 are satisfied. If the

sequence of functions Ifn
converges a. e. to the function f,

thenn} weak L converges to f.

Proof:

From 19.7 we know Ifnl Lp converges to f.

Cj (fn-f)gdP. -f g II

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. If the

sequence of functions ifn
converges a. e. to the function f,

then If 1 weak L converges to f.
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Proof:

From 19. 8 we know
{fn

} Lp
converges to f.

(f -f)gdp.I <II fn-f p gIIq
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27. WEAK L CONVERGENCE -CONVERGENCE IN MEASURE

First investigate the conditions under which weak L con-

vergence implies convergence in measure. In counterexample 19,

ffn weak L converges to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,

7,8,10 are satisfied, but {fn}
does not converge in measure to

I = 0. The one reamining hypothesis gives a result which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions
{fn}

weak L converges to the function f, then

n} converges in measure to f.

Proof:

Let E be the support of the functions fn-f, n = 1,2,

Since {f-f} eventually belongs to L, we may without

loss of generality assume that fn-fEL for all n.

co

E has cr-finite measure; that is E = Li En where
n=1

ti(En) < oo, n = 1, 2, '

and note that {Ern} iErn = E - ELet s a decreasing
n=1

sequence of sets and lirn E = (i)

f -f -f I for all n and so SI f1-f I Pdp.> fn-f Pdp.



for all n.

Given E > 0, there exists m such that for m > m ,

gf1-fi Pdp, < .

Em

Let Fn = fn-fl > ( )13 }

m3p,(E-E0)
is a decreasing sequence and lirn Fn = ci) (or a set

of measure zero).

There existsn0 such that for n > n0 g If1-flPd1-1- <

For n > n0'
1

Slf -f rd1-1-< glfn-f IPdP. g fn-f Ip d1-1 < ifn-f 'Pc* E3

rn0E-Ein0 E
0E-E

<n-flPdp, + S Ifn-flPdp. +

(E-E 0)-Fn (E-EM
)(Th F

O n

and note that {Fn

Since E is arbitrary,

m0)3p,(E-E

The result then follows from 16.1.

rn
0 2cp,(E-E ) +--=c.

urn fn-f PdP- = -

n
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Now investigate the conditions under which convergence in

measure implies weak L convergence. Each set of hypotheses

listed below, together with convergence in measure, implies weak L

convergence. Following the list, the results are stated and proved.

Counterexamples 1,5, 6,15,16,17 show that these are the only impli-

cations with a non-redundant set of hypotheses.

(3,6) (1, 5, 6) (1, 2, 6, 9) (2, 6, 8, 9)

(6,7) (5, 6, 10) (2, 5, 6, 8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions ffnl converges in measure to the function

f, then
{fn

} weak L converges to f.

Proof:

There exists a constant c such that I fn1 < c a.e. n=1, 2,",

By 2.15 we know Ifni-
converges in mean to f.

By 15.1 we know {fn} Lp converges to f.

S(fn-f)gd111 _< II
lip11 p

11g11q

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions Ifnl converges in measure to the function

f, then
{fn

weak L converges to f.
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Proof:

There exists integrable h such that I f < h a. e. n=1,2,- .

By 2.15 we know Ifn1
converges in mean to f.

By 15.1 we know Ifn1 Lp
converges to f.

S(fn-Ogdp.1 < fn-f II g

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions Ifn1 converges in measure to the function

f, then {fn} weak L converges to f.

Proof:

By 16.4 we know Ifn1 L converges to f.

S(fn-f)gdu I <fn-f pII gll .

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions If n1 converges in measure to the function

f, then
{fn

1 weak L converges to f.

Proof:
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By 16.5 we know If n1 Lp converges to f.

5(fn-f)gdp. I II fn p
II g

q



g(f -f)gdp. <

129

Theorem 6: Suppose hypotheses 1,2, 6, and 9 are satisfied. lithe

sequence of functions Ifn
converges in measure to the function

f, then Ifn weak L converges to f.

Proof:

By 16. 6 we know Ifn 1 L converges to f.

Theorem : Suppose hypotheses 2,5, 6, and 8 are satisfied. If the

sequence of functions { fn converges in measure to the function

f, then lc weak L converges to f.

Proof:

By 16.7 we know Ifn1 L converges to f.

S(f-f)gd I
< fn-f g .

Theorem 8: Suppose hypotheses 2, 6,8, and 9 are satisfied. If the

sequence of functions ffn
converges in measure to the function

f, then If. weak L converges to f.

Proof:

By 16.8 we know Ifn}L converges to f.

tcl(f -f)gdp.I < 1k -flIItglIci
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28. WEAK L CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which weak L con-

vergence implies almost uniform convergence. In counterexample

19,
{fn

1 weak L converges to f = 0 and hypotheses 1, 2, 3, 4, 5,

6, 7 , 8,10 are satisfied, but Ifn1
does not converge almost uniformly

to f = 0. The one remaining hypothesis gives a result which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions Ifn 1 weak L converges to the function f, then

ffn converges almost uniformly to f.

Proof:

Follows from 27.1 and 6.2.

Now investigate the conditions under which almost uniform

convergence implies weak L convergence. Each set of hypotheses

listed below, together with almost uniform convergence, implies

weak L convergence. Counterexamples 1, 5, 6, 15, 16, 17 show

that these are the only implications with a non-redundant set of

hypotheses.

(3,6) (1, 5, 6) (1, 2, 6, 9) (2, 6, 8, 9)

(6,7) (5, 6,10) (2,5, 6,8)



Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions converges almost uniformly to the

function f, then Ifn weak L converges to f.

Proof:

Follows from 6.1 and 27. 2.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn}
converges almost uniformly to the

function f, then
{fn

} weak L converges to f.

Proof:

Follows from 6.1 and 27.3.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then
{fn

} weak L converges to f.

Proof:

Follows from 6.1 and 27. 4.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions ffnl converges almost uniformly to the
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function f, then Ifn } weak L converges to f.



Proof:

Follows from 6.1 and 27. 5.

Theorem 6: Suppose hypotheses 1, 2, 6, and 9 are satisfied. If the

sequence of functions If n1 converges almost uniformly to the

function f, then
ffn

weak L converges to f.

Proof:

Follows from 6.1 and 27. 6.

Theorem 7: Suppose hypotheses 2, 5, 6, and 8 are satisfied. If the

sequence of functions fn converges almost uniformly to the

function f, then
Ifn

weak L- converges to f.

Proof:

Follows from 6.1 and 27.7.

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. If

the sequence of functions fn
converges almost uniformly to the

function f, then fn weak L converges to f.

Proof:

Follows from 6.1 and 27. 8.
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29. WEAK L CONVERGENCE - UNIFORM CONVERGENCE

First investigate the conditions under which weak L con-

vergence implies uniform convergence. In counterexample 8,

{fn } weak L converges to f = 0 and all ten hypotheses are

satisfied, but {fn}
does not converge uniformly to f = 0. Thus

we get no results where weak L convergence implies uniform

convergence.

Now investigate the conditions under which uniform conver-

gence implies weak L convergence. Each set of hypotheses

listed below, together with uniform convergence, implies weak L

convergence. Following the list, the results are stated and proved.

Counterexamples 1,5, 6,16,17 show that these are the only implica-

tions with a non-redundant set of hypotheses.

(3) (1,5) (1, 2, 9) (2, 8, 9)

(7) (5,10) (2, 5, 8)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {f n} converges uniformly to the function f, then

{f n}
weak L converges to f.

Proof:

By 17.1 we know Ifni. Lp converges to f.



-f)gdp.I < fn-fl p g
q

.

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions ffn
converges uniformly to the function f, then

If. weak L converges to f.

Proof:

By 17.2 we know that Ifn1 Lp
converges to f.

I S(fn-f)gdP' I _< II fn-f p II g II q

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions Ifn
converges uniformly to the function f,

then fn weak L converges to f.

Proof:

By 17.3 we know {fn} Lp converges to f.

S(fn Mgdll fn-f p g q

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. If the

By 17.4 we know If 1 L converges to f.
n p
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sequence of functions fn
converges uniformly to the function f,

then If } weak L converges to f.

Proof:



y(fn-f)gdp. I < II

p
g II

q

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

By 17.5 we know lc } Lp converges to f.

n-f)gdP-I < fn-f II IIp g II q

Theorem 6: Suppose hypothes 2, 5, and 8 are satisfied. If the

sequence of functions {c} converges uniformly to the function

then {fn}weak L converges to f.

Proof:

By 17. 6 we know {f} Lip converges to f.

Sffn-f_gdP.I < II f -fll IIIIq.p

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {f n} converges uniformly to the function

then {fn} weak L converges to f.

Proof:

By 17.7 we know {fn} Lp converges to f.

5(ff)gdI g
P
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sequence of functions {c} converges uniformly to the function f,

then {fn} weak L converges to f.

Proof:



30. WEAK L CONVERGENCE - CONVERGENCE IN MEAN

First investigate the conditions under which weak L con-
')

vergence implies convergence in mean. Each set of hypotheses

listed below, together with weak L convergence, implies con-

vergence in mean. Following the list, the results are stated and

proved. Counterexamples 4, 18, 19 show that these are the only

implications with a non-redundant set of hypotheses.

(3,9) (7,9) (2, 8, 9)

(5,9) (1, 2, 9)

Theorem 1: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions lc} weak L converges to the function

f, then lc} converges in mean to f.

Proof:

lirn 1 s (fn-f)gdp.1 = 0 for g L .

Since we have hypothesis 3, g = 1 belongs to L .

Thus 0 = lim (fn-f)dpl = lirn fn-fl dp. .

Theorem 2: Suppose hypotheses 5 and 9 are satisfied. If the
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sequence of functions
{f n}

weak L converges to the function



f, then
{fn

} converges in mean to f.

Proof:

lim -f)gdu = 0 for g e L .

Since fn-f eventually belongs to L, we may assume

without loss of generality that fn-f E L for all n.

Let E be the support of the functions fn-f n = 1,2,

00

E has o- -finite measure; that is E = k._./ En where
n=1

1.1.(En) < oo n = 1,2, -

Let F be the support of the functions fn-fm n, m = 1,2,

F C. E. This is proved as follows:

Let Em

Suppose x0 /E.

Then fn(x0) - f(x0) = 0 for all n.

Thus fn(x0) = frn(x0) for all m, n.

Thus x0 / F

E - En and note that
n=1

sequence of sets and lira Em =

Given c > 0, there exists m0 such that for m > m
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} is a decreasing



I fn-fm I dp.

Er\ Em0

< 51fn-fmI di... + Ifn-fm +

rn n
(E-E0)-G (E-E 0) G

m0 4Ep.(E-E ) + = E

5p,(E-E °)

Since C is arbitraryn-fmI dP. = 0.
n, m

From 3.15 we know each fn is integrable on E.
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SI n-fmI dp. = Ifn-fm 1d = .11 Ifn-fml dp.

E-E 0

gifnid,.< n = 1, 2,

By 26.1 we know Ifn
converges a. e. to f.

00
E

Let Gn = L.) Ix : I fn-fm I > } and note thatm
m=n

511(E-E0)

{Gn} is a decreasing sequence of sets and urn Gn =

(or a set of measure zero).

There exists n0
such that for n no, sifmidp.<

Gn
m = 1,2,

For n, m > n
0



{x: ih-fl > e } {x: If-hi > } + Ix: If-fl

Thus II {x: Ih-fl > c } = 0.

Since is arbitrary f = h a. e.

Thus Ifni.
converges in mean to f.

>

Theorem 3: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions
Ifn

weak L converges to the function

f, then ci converges in mean to f.

Proof:

Follows from 3.5 and Theorem 2.

Theorem 4: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions
ffn 1

weak L converges to the function
P

f, then {f} converges in mean to f.

Proof:

Let h(x) = max[ I f (x) I , I f1(x)I}

h( is integrable and I fn(x) I < h(x) n= 1,2,

Follows then from Theorem 3.
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By Theorem B, p. 107 of Halmos we know there exists integra-

ble h such that Ifn
converges in mean to h.

By 27.1 we know that fn
converges in measure to f.

By 5.1 we know that lc converges in measure to h.



Theorem 5: Suppose hypotheses 2,8, and 9 are satisfied. If the

Proof:

140

sequence of functions ffn weak
Lp

converges to the function

f, then fn converges in mean to f.

Proof:

lim f = Sfdp. .

Since f is integrable, there exists0 such that for

n> nf is integrable.0 n
Thus without loss of generality we may assume we have

hypothesis 1.

The result then follows from Theorem 4.

Now investigate the conditions under which convergence in

mean implies weak L convergence. In counterexample 15,

n } converges in mean to f = 0, hypotheses 1, 2, 3, 4, 5,7, 8, 9,10

are satisfied, but
{fn}

does not weak L converge to f = 0.

The one remaining hypothesis gives us a result which is now stated

and proved.

Theorem 6: Suppose hypothesis 6 is satisfied. If the sequence of

functions {f}converges in mean to the function f, then ffn

weak L converges to f.



By 15.1 we know ffnl Lp converges to f.

S(fn-f)gdp., I < II fn-fllp II g II
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31. WEAK L CONVERGENCE - L CONVERGENCE

First investigate the conditions under which weak L con-

vergence implies L convergence. In counterexample 19,

{c} weak LP converges to f = 0 and hypotheses 1, 2, 3, 4, 5, 6,

7, 8, 10 are satisfied, but {f}does not L converge to f0.
The one remaining hypothesis gives us an implication which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions
Ifn 1

weak L converges to the function f, then
P

{fn } Lp converges to f.

Proof:

lim s(f -f)gdp. = 0 for g e L .

Without loss of generality we may assume fn-fELp for all n.

Let E be the support of the functions fn-f n = 1,2,

oo

E has o--finite measure ; that is E = L.) En where
n=1

n) <0° n= 1, 2,

m,Let Em = E - L./ En and note that 1E t is a de-
n=1

creasing sequence of sets and urn Em = .
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Since we have hypothesis 9, S If <Si -fiPdN

n = 1, 2,

Given e > 0, there exists mo such that for m > m

s Ifn < 3

Ern

n = 1, 2,

Let Fn= >

3p.(E-E)

From 27.1 we know {F} is a decreasing sequence of sets

and lirn Fn = (13. (or a set of measure zero).

p. EThere exists such that for n> nn0 0' I f
1
-fPd <

3

For n > n

51fn-flPdp. = ykn-flPdp. = Ifn-flPdp.+ Ifn-flPdp,

Em0
m

-E E
0

ip
Ifn-fl +

m m(E-Eo)-F 0))r, Fn

rn
0 2E

11(E -E ) T = E .

m3p,(E-E0)

Since c is arbitrary, lirn S fn411)4. =
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Now investigate the conditions under which L convergence

implies weak L convergence. The following theorem finishes

this investigation.

Theorem 2: If the sequence of functions {fn} L converges to

the function f, then {fn}

Proof:

Ic -f)gdp. I <f -f g q

weak L converges to f.
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32. WEAK LI CONVERGENCE - WEAK L CONVERGENCE

First consider the conditions under which weak LI conver-

gence implies weak L convergence. In counterexample 15

{fn} weak L1
converges to f = 0 and hypotheses 1, 2, 3, 4, 5, 7,

8, 9, 10 are satisfied, butff does not weak L converge to
n

f = O. The one remaining hypothesis gives a result which is stated

and proved below. First we state and prove a lemma which will be

used in the proof of the theorem.

Lemma: Suppose the space X is totally ff-finite, fn-f is

integrable for all n and there exists K such that I fn-f I K

a. e. for all n. If lim g (f -f)dp. = 0 for measurable E,
n F11

then there exists C such that s I fn-f I dp. <C n = 1, 2, '

Proof:

The proof will be accomplished by using the contrapositive;

that is assume that
yifn

c11-1 is not bounded and

show that there exists a measurable set E such

that lim (fn-f)dp.
0 .

oo

X = i Fn where p,(Fn) < 00 n = 1, 2,
n=1



Let Fm= LI F.
n=1

There exists n1 such thatn410111> 4

Since f -f is integrableeither .11(fn14)+4'1 >
or2

n1

s(fn-f)-d+ > 2 ; for the sake of argument assume

that the first inequality is true.

There exists m1
such that (f -f)+dp. > 1 and

1

-4

1

m I
1X-F

ml
n1 nlLet G = Ix: (f f)+

0 (Th F .

There exists n2 >
n1

such that

1f,, 241 dp. > 2Kp.(F 1) + 4 ...
m1

(F )

ml
Either (fn -f)+dp. > Kp.(F ) + 2 or

2

(Fm1)c

(fnif) dp. > K(F1) + 2 for the sake of argument
rni

(F f
assume that the first inequality is true.

if
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There existsm2 such that

andfn -f I dp, <
4

m2 2

X-F

m m
Let G { x : (f-f)+ O} (F 2-F 1)

n2 n2

m2There exists n3 > n2 such that S'(f3y, > 2Kp.(F )+ 4 .-
m2 c

(F )

Either (fn3-f)+dp. > Kp.(F 2) + 2 or

m2(F )

(fn3-f)-dp, > Kp.(F 2) + 2; for the sake of argu-

ment assume the first inequality is true.

There exists m3 such that (fn3 > Kp.(F 2) + 1

and fn3 -11 dp. <

3X-F

m
Let G = { x: (f f)+

0 } r, (F 3-F 2)
n3 n3

.

Continuing in this manner we get a subsequence Ifnk-f }

and a sequence of sets {Gn } such that for all
co

where H = G
kSan-f)d111> where

nk

grn(2fn2

-f)+dp. > Kp.(F 1) + 1
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1

4



Thus lim Se (fn-f)dp.4 0 .

Theorem 1: Suppose hypothesis 6 is satisfied. If the sequence of

functions
{fn

} weak L1 converges to f, then Ifn weak L

converges to f.

Proof:

urn (fn-f)dp, = 0 for measurable E.
n E

Let K be the uniform essential bound for the fn n=1,2,-.

K+1 is an essential bound for f.

Without loss of generality we may assume fn-f is integra-

ble for all n.

fn-f E Lp for all n since S I fn-f I Pdp. < 2(K+1) fn4141-

Let F be the support of the functions fn-f n = 1, 2,

co

F = Fn where p.(Fn) <00 n = 1, 2,
n=1

Let F = F - Fn .

n=1

Let gEL .

By the above lemma we know that there exists a constant C

such that g Ifn-f I dp. < C for all n.

Given c > 0, there exists n such that for m > m
0 0

148



g cldp. <(S I

Fm [2(K+1)]P-1C

g(fn-f)gdp.I <I 5 (fn-f)gdy.I + I g (fn-f)gdp.I

Fm0 F -F m0

Ifn-f II c 1g I cidN- i 5 (fn-f)gc14
I

PFMO 0F -F

< E + I S(fn-f)g dp.I .

0F-F

g E L .

F -Fm0
1

Thus there exists an integrable simple function s such that

ESigXm -S I <
2(K+1)

-F0
(fn-f)g x dp. - -f)scl[i. < 2(K+1) SIgx -s dp.<e.

F-F 0 F-Fm0

But clearly lirn 1-*(f -f)sdp. = 0 .

n n

Thus lim S(fn-f)g.x d 0 .

F -F m0

Thus lim sup I S(fn-f)gdp.l< E .

Since is arbitrary, lim 5(fn-f)gdp. = 0

Now consider the conditions under which weak L conver -p

gence implies weak L1 convergence. Each set of hypotheses
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listed below, together with weak L convergence, implies weak L1

convergence. Following the list, the results are stated and proved.

Counterexamples 3, 4,18 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (7) (2,8,9)

(5) (1, 2,9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions
{fn

} weak L converges to the function f, then

nj weak
L1

converges to f.

Proof:

limn-f)gdp. = 0 for g E L .

But xE E Lq for measurable E.

Thus lim (f -f)dy. = 0 for measurable E.
n E n

Theorem 3: Suppose hypothesis 5 is satisfied. If the sequence of

functions Ifn

Ifn
weak L

1

Proof:

weak L converges to the function f, then

converges to f.

urn g(f -f)gdp. = 0 for gE L .

Without loss of generality we may assume fn-f EL for all n.

Let E be the support of the functions fn-f n = 1, 2,

E has o--finite measure; that is E = Lei En where
n=1

p.(En) < 00 n = 1, 2,
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m > m n > n

c
S' I fk di-I<
Fc

k = 1,2,

Note X EL .

0(E-E )c-\F
n0

0f is integrable on (E-E )r- F

I d 1-1 < -2- and
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Let E = E L.) En and note that {E } is a decreasing
n=1

sequence of sets and lirn E =

Let Fn= {x: If' } and note that {F:} is a decreasing

sequence of sets and lina Fc =

Given E > 0, there exists m0 and n0 such that for

and urn (fn-f)dp, = 0
nO m(E-E °)tmF

n0

m0Thus eventually all of the fn are integrable on (E-E ),-Fno

For n sufficiently large



f < I fndul +IS fndul
E n

0 E-E0

< +
fndp. fnclp.

(E-E °)r,F (E-E 0)r, Fc
no

m0
e L

FrTh (E-E)

0 as n, m 00.

nO

+15 f dp. I

mOn(E-E ) F
no

Without loss of generality we may assume fn is integrable

on E for all n.

lim S(fn-fm)gdp. = 0 for g E Lq since
n, m

I SI (fn-fm)gdp. I <I 5(fn-f)gdp.1+1 51(f -fm)gdp. .

For measurable F E

I S. fn41. - fmdp. I <I S (fn-fm)dy. I +
I (fn-fm)dp.

I

F(Th (E-Em0) F rThEm0

15(fn-fm)X dp.I.
m0(E-E)

00
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the last term on the right approachesSince X



Thus lirn sup I fndp. - 51 f dp. < Emn,m

Since c is arbitrary lim
fndp,

exists and is finite

for measurable F E .

Let H1= {x: f > 0, xEE} H2= fx: f <0, xeEl .

Clearly lirn S f dp. = S fdp, .

m m
H1

H1 ,Th (E-E )

But for each m f is integrable on H1 cm (E-Em) and

lim
.5.1 fndp, 5'

f dp,
n m

H1
(E-E ) H1r, (E-Em)

Thus lirn fndp. = fdp, .

1 1

Since lim fndp.
exists and is finite, f is integrable on

H1

Similarly we conclude f is integrable on H2

Thus f is integrable on E.

There exists m1
such that for m m1

ifldp. e -2
and IfnIdp. < --2-

Em Em
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For measurable F,

Is
(1r1-f)dp.1

< I 5 (fn-Odul +

FE

lim Y(fn-f )X di = 0
ml(E-E)

Thus U I g(fn-f)dill <m sup c for measurable F.
n F

Since is arbitrary lirn S
(fn

= 0 for measurable F.
n F

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions {f.} weak L converges to the function f, then

{f.} weak LI converges to f.

Proof:

Follows from 3.5 and Theorem 3.

Theorem 5: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions ifnl weak L converges to the function

f, then {fil} weak
L1

converges to f.

Proof:

Follows from 30.4 and 22.2.

I n -f) X du Im
FrN (E-El)

I 5 (fn-f)d1+Im
F 1r-E-E )
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Theorem 6; Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions f. weak L converges to the function

f, then f. weak
L1

converges to f.

Proof:

Follows from 30.5 and 22.2.
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33. WEAK * L - CONVERGENCE a. e.

First investigate the conditions under which weak * L00

convergence implies convergence a. e. Each set of hypotheses listed

below, together with weak * Loo convergence, implies convergence

a. e. Following the list, the results are stated and proved. Counter-

examples 19, 22, 23 show that these are the only implications with a

non-redundant set of hypotheses.

(9, 10) (3,9) (2, 8,9)

(1,9) (7,9) (5, 8, 9)

Theorem 1: Suppose hypotheses 9 and 10 are satisfied. If the

sequence of functions {fn} weak * Loo converges to the function

f, then {f} a. e. to f.

Proof:

lim 1(fn-f)gdp, = 0 for g e L1.1 .

Recall that the support of f has cr-finite measure.

Let E be the support of the functions f and fn n=1,

co

E has (r-finite measure; that is E = En where
n=1

p.(En) < 00 n = 1, 2,

It suffices to show pointwise convergence on E for nno 0
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arbitrary but fixed.

xE E LI and hence lim S (fn-f)dy. = 0.

n0
n Eno

But (fn-f)dp.
I

En
0

Thus If 1 converges in mean to f on En n0

The conclusion then follows from 14.1.

Theorem 2: Suppose hypotheses 1 and 9 are satisfied. If the

sequence of functions Ifn1
weak * L converges to the function

oo

f, then lc 1 converges a. e. to f.

Proof:

Follows from 3.12 and Theorem 1.

Theorem 3: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions Ifn1 weak * Loo converges to the function

f, then if. converges a. e. to f.

Proof:

Follows from 3.3. and Theorem 2.

Theorem 4: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions Ifn weak Loo converges to the function
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f, then Ifn
converges a. e. to f.



Proof:

Follows from 3.3 and Theorem 2.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisifed. If the

sequence of functions
{fn

} weak * L to the function

f, then {c} converges a. e. to f.

Proof:

lim fndp, = fdi and f is integrable.

Thus, without loss of generality, we may assume that we have

hypothesis 1.

The conclusion then follows from Theorem 2.

Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the
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sequence of functions ifn weak * Loo converges to the function

f, then converges a. e. to f.

Proof:

lim fn-f)gdp, = 0 for gEL1
.

Let E be the support of the function f.

oo

E has o--finite measure; that is E L.,/ En where
n=1

p(E)n < 00 n = 1, 2,

Let Em =EE - En .

n=1



Given c > 0, there exists m such that for m > m
0 0,

f dp, < n = 1,2,
n

Em
2

Let Fn = Ix: If I < n, xEE-Emol .

There exists n such that for n > n' SI I fnal dp, < E
0 2m

m= 1,2, (E-E 0),- F:

XF E L1
and hence lim 11 (fn-f)dp. = 0 .

110
n Fn

0

But on Fn f is integrable and hence Um fkdp, = fdp,.
0 no no

There exist ko
such that for k > k0' fk

Fnno

Thus for k >k fn is integrable on E.

0 = lirn Sb Un-f)dp, = urn 51 fn-f dp, .

0 0E-E E-E

Thus lirn Ifn-fm I =
n,m

0E-E

For n,m > k

.5.11fn-frnIdy.41fn-fmIdy. + Ifn-fm

Em0Ern() -E

< E + Ifn_fm I
m0E-E

is integrable on
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Since the last term on the right approaches 0 as n, m 00

lina sup .cffn-fm. I dp, < E .

n, m E

Since £ is arbitrary, lirn. g I f -f I dp. ,-- 0 .n mn, m E

Thus limS
fndp.,

exists and is finite.
n E

By Theorem B, p. 107 of Halmos we know that there exists an

integrable function h such that lim fn-hi = 0.

It follows from 8.1 and Theorem B, p. 89 of Halmos that

there is a subsequence of
{fn

} which converges a. e.

to h on E.

Theorem 1 tells us that {fn}
converges a. e. to f on E.

Thus Ifn
converges in mean to f on E and hence

lim f = fdp. .

n E

Thus f is integrable.

The conclusion then follows from Theorem 5.

Now investigate the conditions under which convergence a. e.

implies weak * Loo. Each set of hypotheses listed below, together

with convergence a. e. , implies weak * Leo convergence. Follow-

ing the list, the results are stated and proved. Counterexamples 5

and 15 show that these are the only implications with a non-redundant

set of hypotheses.
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(6,10) (2,6) (6,7)

(1, 6) (3,6)

Theorem 7: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {fn}
converges a. e. to the function f, then

If/ weak * L converges to f.
n 00

Proof:

urn fn(x) = f(x).

Let K be the uniform essential bound for the fn n=1, 2,

K is an essential bound for f.

Clearly fn-f E Lac for n 1, 2,

Hypothesis 10, together with pointwise convergence of
{f n}

to f tells us that f has cr-finite support.

Let E be the support of f.
oo

Since E has cr-finite measure, E = En where
n=1

ii(En) < 00 n = 1, 2,

Let g E

Let E = E - Li En .
n=1

Given c > 0, there exists m0 such that for m> m
0

S'
gldp. < .

Ern



then

Let Fn=n-fl >

For n > no
0

{fn} W

3 Sig I clp.

111
0

XE E-E

m
Since p.,(E-Eo) <CO3 10. 2 tells us that p.(Fn)

n 00.

There exists n0 such that for n > n0'
I g <

F
-CR

S(fn-f)gdp.I = I Y (fn-ngdp,
(fn-f ) gdi.t. I+ I g(fn-f)gdill

E m
0 m

E 0E-E

2K SI gl dp. + I c (fn-f) gdp. I+ I g(fn-f)gdy, I

(E-Eo) F (E-Em0)-FEm
m

0

3
+ 2K g IgI

M. 3 SI g 41.
(E-E ),Th F

-3
+ + =

Since E is arbitrary lim (fn_ogd,J. = 0 .

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions If n1 converges a. e, to the function f,

as

eak L to f.
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Proof:

Follows from 3.12 and Theorem 7.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {fn} converges a. e. to the function f,

then ffn weak * L converges to f.
co

Proof:

Let ge L1
oo

Let Fn= {x:Ifn-fl > } and let Fm = Fn
2 clgld1-1

n=m

Note that {Fm} is a decreasing sequence of sets and

lim F = cp (or a set of measure zero).
rn

There exists m such that for m> m
'0

gldp.<

where K is the uniform essential bound for the f
Ii

n = 1,2,

For m>m
0

Ii(fri-f)gdp. I <I .c (fn-f)gdp.I+ I,c (fn-f)gdp.r

[F jc

<y S gl

2g1g I dp.

Since E is arbitrary, lim 5(fn-f)gdp. = 0 .
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It is obvious that f has cr-finite support and clearly fn-fE Loo



for all n.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the se-

quence of functions {f n} converges a. e. to the function f, then

{f n}
weak * L00 converges to f.

Proof:

Follows from 3.14 and Theorem 7.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn}
converges a. e. to the function f,

then {f.} weak * Loo converges to f.

Proof:

Follows from 3.13 and Theorem 7.
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34. WEAK * Loo CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which weak * Loo

convergence implies convergence in measure. Each set of hypothe-

ses listed below, together with weak * Loo convergence, implies

convergence in measure. Following the list, the results are stated

and proved. Counterexamples 12,13,19, 22 show that these are the

only implications with a non-redundant set of hypotheses.

(3,9) (1,2,9) (2, 8,9) (5, 9, 10)

(7,9) (1, 5, 9) (5, 8, 9)

Theorem 1: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions lc weak * L converges to the function
oo

f, then lc converges in measure to f.

Proof:

Follows from 33.3 and 10.2.

Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions ffn
weak * Loo converges to the function

f, then lc converges in measure to f.

Proof:

Follows from 33.4 and 10.4.



Theorem 3: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions Ifn
weak * L00 converges to the function

f, then lc converges in measure to f.

Proof:

Follows from 33.2 and 10.5.

Theorem 4: Suppose hypotheses 1, 5, and 9 are satisfied. If the

sequence of functions Ifn
weak * L00 converges to the function

f, then ffn
converges in measure to f.

Proof:

Follows from 33.2 and 10.3.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisifed. If the

sequence of functions f. weak * L00 converges to the function

f, then fn
converges in measure to f.

Proof:

Follows from 33.5 and 10. 6.

Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

sequence of functions weak * Loo converges to the function

f, then ffn
converges in measure to f.

Proof:

Follows from 33. 6 and 10.3.
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Theorem 7: Suppose hypotheses 5, 9, and 10 are satisifed. If

the sequence of functions Ifn1 weak * L00 converges to the func-

tion f, then Ifn
converges in measure to f.

Proof:

Follows from 33.1 and 10.3.

Now investigate the conditions under which convergence in

measure implies weak * Loo convergence. Each set of hypotheses

listed below, together with convergence in measure implies weak

Loo convergence. Following the list, the results are stated and

proved. Counterexamples 5 and 15 show that these are the only

implications with a non-redundant set of hypotheses.

(6, 10) (2,6) (6,7)

(1,6) (3,6)

Theorem 8: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions converges in measure to the function

f, then Ifn1 weak * Loo converges to f.

Proof:

Let K be the uniform essential bound for the fn n=1,2, "

K+1 is an essential bound for f.

Let E be the support of the functions fn
n = 1, 2,



,DC

E has o--finite measure; that En where
r,

u.(En) < 00 n 1, 2,

11{x: Ifn-fl> E} - 0 as n-- and. hence

tx: if I > c , xeEJ

Since E is arbitrary f has c-finite support.
rn

Let E _

ri=1

Let g E .

There exists m such that for rn MO I g < 6(<+1) '-Ern

Let Fn = fx: Ifn-f I

3 g du

For n > n

There exists n

0

0
such that for n > n 0' g < 6(K+1)

Fn

g(fn-f)gdu = f -f)gdu

3
(fn-f)gdfil

TY1

(E-E o)N Fn

Since E is arbitrary, urn

Clearly fn-f E Loo for all n.

m0

-f)gdp. ==. 0 .

fn-f)gdp.1 I f)gdul

m0E-E

(fn-f)gdp,

(E-Em0)-F

1 g 1 dp,
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Theorem 9: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {f converges in measure to the functionn

2 Sig! dp.

There exists0 such that for n> n

For n > n

2 sc I g dp.

ST'
I dp. <

Fn

169

E

4(K+1)

I S(fn-f)gdp.I <I 5)Fn(f -f)gdp.I +I S (fn-f)gdp.l< 2(K+1) I g dp.

n
cFn

+ 5IgIdp,<-2+-2 =c .E E

f, then lc weak * Loo converges to f.

Proof:

Follows from 3.12 and Theorem 9.

Theorem 10: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions lc converges in measure to the function

f, then If } weak Loo converges to f.

Proof:

Since f is integrable, the support of f has cr -finite

measure.

Let K be the uniform essential bound for the fn n=1, 2,

Clearly K+1 is an essential bound for f.

Let g E LI .

Let Fn = Ix: Ifn-fl >



sequence of functions

Since c is arbitrary, lim S(fn-f)gdp, = 0.

Clearly f -fEL for all n.
n 00

Theorem 11: Suppose hypotheses 3 and 6 are satisfied. If the

If }ix
converges in measure to the function
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f, then
{f n}

weak * L00 converges to f.

Proof:

Follows from 3.14 and Theorem 9.

Theorem 12: Suppose hypotheses 6 and 7 are satisffed. If the

sequence of functions lc converges in measure to the function f,

then lc weak * Loo converges to f.

Proof:

Follows from 3.13 and Theorem 9.



35. WEAK * Lo000NVERGENCE-ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which weak * Loo

convergence implies almost uniform convergence. Each set of

hypotheses listed below, together with weak * Loo convergence,

implies almost uniform convergence. Following the list, the results

are stated and proved. Counterexamples 12,13,19, 22 show that these

are the only implications with a non-redundant set of hypotheses.

(5, 9,10)

Theorem 1: Suppose hypotheses 3 and 9 are satisifed. If the

sequence of functions
{fn

} weak * Loo converges to the function

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34.1 and 6. 2.

Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions
{f n}

weak * Loo converges to the function

f, then Ifn
converges almost uniformly to f.

Proof:

Follows from 34. 2 and 6. 2.
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(3,9) (1, 2, 9) (2, 8, 9)

(7, 9) (1,5, 9) (5, 8, 9)



Theorem 3: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions
{fn

} weak * L to the function

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34.3 and 6. 2.

Theorem 4: Suppose hypotheses 1,5, and 9 are satisfied. If the

sequence of functions {fn}weak * L converges to the function
00

sequence of functiions

sequence of functions

{fn
} weak * L converges to the function

co

Ifn}
weak * L converges to the function

oo
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f, then {f n} converges almost uniformly to f.

Proof:

Follows from 34. 4 and 6. 2.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisfied. If the

f, then ffn converges almost uniformly to f.

Proof:

Follows from 34.5 and 6.2.

Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

f, then ffnl converges almost uniformly to f.

Proof:

Follows from 34. 6 and 6. 2.
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Theorem 7: Suppose hypotheses 5, 9, and 10 are satisfied. If the

sequence of functions weak "-Ic Leo converges to the function

f, then If. I
converges almost uniformly to f.

Proof:

Follows from 34.7 and 6.2.

Now investigate the conditions under which almost uniform

convergence implies weak * L Each set of hypothe-

ses listed below, together with almost uniform convergence, implies

weak * L Following the list, the results are stated

and proved. Counterexamples 5 and 15 show that these are the only

implications with a non-redundant set of hypotheses.

(1, 6) (3,6) (6,10)

(2,6) (6,10)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then
{fn

} weak * L converges to f.
00

Proof:

Follows from 6.1 and 34. 9.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions ifn
converges almost uniformly to the



function f, then Ifn1 weak * L00 converges to f.

Proof:

Follows from 6.1 and 34.10.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn}
converges almost uniformly to the

function f, thenn weak L converges to f.
Co

Proof:

Follows from 6.1 and 34.11.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, thenfn1 weak * L00 converges to f.

Proof:

Follows from 6.1 and 34.12.

Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions If 1 converges almost uniformly to the

function f, then Ifn1
weak * Leo converges to f.

Proof:

Follows from 6.1 and 34. 8.
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36. WEAK * L CONVERGENCE - UNIFORM CONVERGENCE
co

First investigate the conditions under which weak * L00

convergence implies uniform convergence. In counterexample 8,

{fn} weak * L converges to the function f = 0 and all ten
00

hypotheses are satisfied, but Ifn1
does not converge uniformly

to f = 0. Thus we get no results with weak * Loo convergence

implying uniform convergence.

Now investigate the conditions under which uniform conver-

gence implies weak * Loo convergence. Each set of hypotheses

listed below, together with uniform convergence, implies weak

* Lco convergence. Following the list, the results are stated and

proved. Counterexample 5 shows that these are the only implications

with a non-redundant set of hypotheses.

(3) (10)

(7)

Theorem 1: Suppose hypothesis 1 is satisfied. If the sequence of

functions If 1 converges uniformly to the function f, then If n1

weak * L converges to f.
co

Proof:

Clearly f has IT -f in it e support.



Let gEL1 .

Given E > 0, there existssuch that for n > n
0 0,

fn(x)-f(x) I < for all x.

IgId

I SFor n> n0,
0' (fn-f)gdp.I <

Since is arbitrary, lim
1-'(fn-f)gdp.

0

Clearly f-f eventually belongs to L
n 00

Theorem 2: Suppose hypothesis 2 is satisfied. If the sequence of

functionsn} converges uniformly to the function f, then
{f n}

weak * L. converges to f.
oo

Proof:

Since f is integrable, f has CY -finite support.

The proof is now the same as that of Theorem 1.

Theorem 3: Suppose hypothesis 3 is satisfied. If the sequence

of functions {f}converges uniformly to the function f, then

weak * Loo converges to f.

Proof:

Clearly f has o- -finite support.

The proof is now the same as that of Theorem 1.

gldp. = e
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Theorem Suppose hypothesis 7 is satisfied. If the sequence of

177

functions lc converges uniformly to the function f, then
{f n}

weak * L00 converges to f.

Proof:

Follows from 3.3 and Theorem 1.

Theorem Suppose hypothesis 10 is satisfied. If the sequence of

functions lc converges uniformly to the function f, then

weak * L00 converges to f.

Proof:

Clearly the support of f has Cr -finite measure.

The proof is now the same as that of Theorem 1.



37. WEAK * L - CONVERGENCE IN MEAN

First investigate the conditions under which weak * Loo

convergence implies convergence in mean. Each set of hypotheses

listed below, together with weak * Loo convergence, implies con-

vergence in mean. Following the list, the results are stated and

proved. Counterexamples 1, 4, 6,19 show that these are the only

implications with a non-redundant set of hypotheses.

Theorem 1: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions {f n}
weak * Loo converges to the function

f, then Ifn } converges in mean to f.

Proof:

lim -f)gdp. = 0 for gE L1 .

But g = 1 belongs to Ll and so Em S(fn-f)dp, = 0

Since we have hypotheses 9, (fn-f)du I = Ifn-fldp.

Thus lim S(fn-f)dp. = 0 .

(2, 8, 9) (5, 9, 10)

(5, 8,9)
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(3,9) (1, 2, 9)

(7,9) (1, 5, 9)



Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions {f.} weak * Loo converges to the function

f, then {f.} converges in mean to f.

Proof:

Follows from 34.2 and 5. 2.

Theorem 3: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functionslc weak * Loo converges to the function

f, thenlc converges in mean to f.

Proof:

Follows from 34. 3 and 5. 8.

Theorem 4: Suppose hypotheses 1, 5, and 9 are satisfied. If the

sequence of functions
{fn

} weak * L converges to the function
co
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f, then {f.} converges in mean to f.

Proof:

Follows from 34. 4 and 5.3.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions weak * Loo converges to the function

f, then converges in mean to f.
n

Proof:

Follows from 34.5 and 5.10.
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Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

sequence of functions {f,} weak * L converges to the function

f, then
{fn}

converges in mean to f.

Proof:

The same argument as that in 33.6 shows that f is integrable.

The conclusion then follows from Theorem 5.

Theorem 7: Suppose hypotheses 5, 9, and 10 are satisifed. If the

sequence of functions ffn
weak

oo
converges to the function

f, then lc converges in mean to f.

Proof:

Follows from 34.7 and 5.7.

Now investigate the conditions under which convergence in

mean implies weak * Loo convergence. Each set of hypotheses

listed below, together with convergence in mean implies weak * Loo

convergence. Counterexamples 15 and 24 show that these are the

only implications with a non-redundant set of hypotheses.

6) (3,6) (6,10)

6) (6,7)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {f n} converges in mean to the function f,



then Ifn1 weak * Loo converges to f.

Proof:

Follows from 5.1 and 34. 9.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions Ifn1 converges in mean to the function f,

then Ifn1 weak * Loo converges to f.

Proof:

Follows from 5.1 and 34.10.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions ffn1 converges in mean to the function f,

weak * L converges to f.
oo

Proof:

Follows from 5.1 and 34.11.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions Ifn1 converges in mean to the function f,

then Ifn weak * Loo converges to f.

Proof:

Follows from 5.1 and 34.12.
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then
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Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {fn}
converges in mean to the function f,

then Ifn
weak * L converges to f.

00

Proof:

Follows from 5.1 and 34. 8.



38. WEAK * Loo
CONVERGENCE - L CONVERGENCE

First investigate the conditions under which weak * Loo

convergence implies L convergence. Each set of hypotheses

listed below, together with weak * Loo convergence, implies

convergence. Following the list, the results are stated and

proved. Counterexamples 1, 6, 13,19 show that these are the only

implications with a non-redundant set of hypotheses.

(3,9) (1, 2, 9) (2, 8, 9) (5, 9,10)

(7,9) (1,5, 9) (5, 8, 9)

Theorem 1: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions ifn weak * L00 converges to the function

f, then If } L converges to f.n p

Proof:

urn -f)gdp., = 0 for g E Li

But g = 1 belongs to
L1

and hence lim g(fn-f)dp, = 0.

Since we have hypotheses 9, g(fn-f)dill Pfn-fldp. and

hence Ifni-
converges in mean to f.

af-fE L ' 11 the essential bound K.
1 00

fn -f _< 1f1 -f I for all n. ( See 14.1)
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sequence of functions
{f n}

f, then ffnl
LP

converges to f.

Proof:

Without loss of generality we may assume fn-f EL00 for all n.

Let K be the essential bound for fl-f.

By 37,3 we know that {fn} converges in mean to f.

weak * L converges to the function
00

184

SIfn-flPdp,< 5)f as n 00

Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions
{f n}

eak Loo converges to the function

f, then
Ifni-

Lb converges to f.

Proof:

lim 51(fn-f)gdp 0 for g E L .

1

By 37.2 we know that
{fn}

converges in mean to f.

Without loss of generality we may assume that fn-fL00 for

all n.

Let K be the essential bound for
f1

f.

Ifn-fl < If1-fl for all n and hence K is a uniform essen-

tial bound for fn-f n = 1,2, (See 14.1)

scb If fldL < K1
n

as nP Ifn-f I dp. 0- 00

Theorem 3: Suppose hypotheses 1,2, and 9 are satisfied. If the
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for all n. (See 14.1)

SI fn-f I Pdp, < K' 0 as OC

Theorem 4: Suppose hypotheses 1, 5, and 9 are satisfied. If the

sequence of functions
{fn

} weak * L00 converges to the function

f, then
{fn

}
Lp converges to

Proof:

Without loss of generality we may assume fn-fEL00 for all n.

Let K be the essential bound for fl-f .

By 37.4 we know that {fn} converges in mean to f.

I fn.41 fl -fl for all n. (See 14.1)

fn-f Pdp. < KP -1 Si I f-fId 0 as n 00

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisifed. If the

sequence of functions {fn} weak * L00 converges to the function

f, then If L converges to f.n p

Proof:

lim Sfndp, = gfdp. and f is integrable.

Thus without loss of generality we may assume hypothesis 1.

The conclusion then follows from Theorem 3.



Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

sequence of functions

f, then If } L converges to f.
n p

Proof:

Without loss of generality we may assume that fn-f E Loo for

all n.

Let K be the essential bound for

By 37. 6 we know that ffn converges in mean to f.

Ifn-fI If1-fi for all n. (See 14.1)

Sif < KP-1 5lfn414. 0 as

Theorem 7: Suppose hypotheses 5, 9, and 10 are satisfied. If the

sequence of functions
ffn

weak * Loo converges to the function

f, then {f } L converges to f.n p

Proof:

Follows from 3.15 and Theorem 4.

Now investigate the conditions under which L convergence

implies weak 4, L Each set of hypotheses listed

below, together with L convergence, implies weak * L con-

vergence. Following the list, the results are stated and proved.

If, weak * L converges to the function
oo

186

Counterexamples 24 and 25 show that these are the only implications



with a non-redundant set of hypotheses.

(1, 6) (3,6) (6,10)

(2,6) (6,7)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} Lp converges to the function f, then

Ifn
weak * L to f.

Proof:

Follows from 16.1 and 34. 9.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions
{fn

}
Lp

converges to the function f, then

Ifn
weak * L to f.

Proof:

Follows from 16.1 and 34.10.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions If 1n 13

187

converges to the function f, then

{f n} weak * L00 converges to f.

Proof:

Follows from 16.1 and 34.11.



Theorem 11: Suppose hypotheses 6 and 7 are satisifed. If the

sequence of functions {fn}L converges to the function f, then

weak * L00 converges to f.
ffn

Proof:

Follows from 16.1 and 34. 12.

Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions
{fn

}
Lp

converges to the function f, then

weak * L00 converges to f.

Proof:

Follows from 16.1 and 34.8.
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39. WEAK * Loo CONVERGENCE - WEAK L1 CONVERGENCE

First investigate the conditions under which weak * Leo

convergence implies weak L1 convergence. Each set of

hypotheses listed below, together with weak * L00 convergence,

implies weak L1 convergence. Following the list, the results

are stated and proved. Counterexamples 1,3,4,6 show that these

are the only implications with a non-redundant set of hypotheses.

(3) (1,5) (5,10) (2,8,9)

(7) (5,8) (1,2,9)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} weak * L00 converges to the function f, then

if 1 weak L1 converges to f.

Proof:

haln-f)gdp, = 0 for gE L .
1

But xEe LI for measurable E and so lirn 5(ff)dL = 0
n E

for measurable E.

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} weak * Loo converges to the function f, then

{f.} weak L1 converges to f.



Proof:

lirn -f)gdy. = 0 for gE L1 .

n-frn)gdpi < I,c(fn-f)gdy.1 + S(f-fm)gdpI and so

lirn S(fn-fm)gdp. = 0 for g E Li .
n, m

Let E be the support of the functions f and fn n=1,2,
oo

E has 0- -finite measure; that is E = LI En where
11=1

11(En) < 00 n = 1, 2,

Let E'= E E .

n=1

Given c > 0, there exists m such that for m> m
0 0

If dp, < n = 1, 2,
2

Em

Sfndp. -m < c(fn-frn)dp. (fn-fm)dp.I

0 E-Em0

< E I 5(fn-fm) X dpI .

0E-E

The last term on the right approaches 0 as n,m 00

since X E L .m
E-E0

1

Since E is arbitrary, lirn
fndp,

exists and is finite.

Let F1 = {x: f > 0 } and F2 = { x: f < 0 } .
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Clearly urn f gfdti .

m m F
(E-E

But p.[(E-Ern)r F1] < co for each m and hence by Theorem

1 we have lirn s. Indp, = g fdi for each m.
n

(E-Em)rm F1 (E-Em)(m F1

Thus lim fndp. = fdy. and hence f is integrable on
n Fl F1

F1.
1

Similarly we can show f is integrable on F

Thus f is integrable.

There exists m1 such that for m > m

191

G.

gifnIdp,< '
n = 1,2,

Em

For measurable G, 1(fn-f)dp.1 < fn-f)dp,I +I g(fn-f)dp. I

GrThEm1
1Grm(E-E )

< £+ I S(fn-f) x dl.m
Gn(E-El)

From Theorem 1 we know that the last term on the right

approaches 0 as n

Since is arbitrary, lim (f -f)dp. =0 for measurable
n

2

2
and

Em
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Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions
{fn

} weak * L00 converges to the function

f, then ffnl weak
L1

converges to f.

Proof:

lim (fn-f)gdp, = 0 for gE L .
1

Let E be the support of the functions f and fn n=1,2, .

00

E has o- -finite measure; that is E = v En where
n=1

P.(En) < n = 1, 2,

Let Em = E - v En .
n=1

Given c > 0, there existssuch that for m > mm0 0'

n -= 1, 2,

Em

(fn-frn)gdp, < I S(f -f)gdia I + I S(f-frn)gdp. I and hence

urn 11(f -f )gdp. = 0 for g E Ln mn, 1

Sfnd1-1- - $fmd111 < I

Sinfn-fm
+ I)d[11 Sn-fm

0 0E-E

E +n-fm) x dp.I .

E-Em0

The last term on the right approaches 0 as n co since



EL.x m
E-E0

I

Since is arbitrary,ndp, exists and is finite.

The proof is completed in the same way as that of Theorem 2.

Theorem 4: Suppose hypotheses 5 and 8 are satisfied. If the

sequence of functions
ffn weak * Loo converges to the function

f, then
fn weak

L1
converges to f.

Proof:

limg(f-f)g4L = 0 for all g E Ll .

Let E be the support of the function f.

co

E has cr -finite measure; that is E = L.) En where
n=1

p,(En) < co n = 1, 2,

Let Em E- Li En .
n=1

There exists0 such that for m > mcc ,c1
fn I < 1

n= Em1, 2,

Let Fn= fx:Ifi <n, xEE-E 0

There exists n such that for n > n
0

m= 1, 2,

X F E L1 and so lurn(fn-f)dp. = 0 .

no Fnno

SI fn."! < 1

Fc
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Since f is integrable on F, urn fnd4 = .

0 n F
no

0

Thus there exists
n1

such that for n > nl' fn is

integrable on Fn .no

Thus fn is integrable for n > n .

Without loss of generality we may assume that fn is integrable

for all n.

The conclusion then follows from Theorem 3.

Theorem 5: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions
n } weak * Loo converges to the function

f, then lc weak
L1

converges to f.

Proof:

Follows from 3.15 and Theorem 3.

Theorem 6: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions ffn} weak * Loo converges to the function

f, then {f n} weak L1 converges to f.

Proof:

Follows from 37.3 and 22.2.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions
{fn

} weak * L converges to the function
00
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f, then
Ifni. weak

L1
converges to f.

Proof:

urn fdLn = gfdu and f is integrable.

Thus, without loss of generality, we may assume that we have

hypothesis 1.

The conclusion then follows from Theorem 6.

Now investigate the conditions under which weak
L1 conver-

gence implies weak * Lco convergence. Each set of hypotheses

listed below, together with weak L1 convergence, implies weak *L

convergence. Following the list, the results are stated and proved.

Counterexamples 15 and 24 show that these are the only implications

with a non-redundant set of hypotheses.

(1, 6) (3,6) (6,10)

(2,6) (6,7)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions Ifn } weak L1 converges to the function f,

then {fn} weak * L converges to f.
co

Proof:

lim -f)du = 0 for measurable E.
n E n

Clearly f has o--finite support.
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then

sequence of functions {f n} weak L1 converges to the function f,

then lc weak * Loo converges to f.

Proof:

Since f is integrable, f has U. -finite support.

The proof is now completed in the same manner as that of

Theorem 8.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} weak L1 converges to the function f,

weak * L converges to f.
00

Proof:

Obviously f has Cr --finite support.

196

Let K be the uniform essential bound for the fn n= 1,2,

Clearly K+1 is an essential bound for f.

Let g E Li .

Given E > 0, there exists an integrable simple function s

such that g I g-s I dp. < 2(K+1)

S(fn-f)gdp, - Si(fn-f)sdp,i < 2(K+ 1 ) I g-s I dp, <

But clearly lim -f)sdp, = 0 .

n n

Since E is arbitrary, lim Si(fn-f)gdp,
0 for gE L1 .

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the



The proof is now completed in the same way as that of

Theorem 8.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} weak
L1

converges to the function f,

then ff. weak * Loo converges to f.

Proof:

Follows from 3.3 and Theorem 8.

Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions ifnl weak L1 converges to the function f,

then {fn} weak * Loo converges to f.

Proof:

Let E be the support of the functions fn n = 1, 2,

glirn.

(fn-f)dy. = 0 for measurable F.
n F

Thus fdy. = 0 for measurable F C- Ec

Thus f = 0 a. e. on Ec

Since E has o- -finite measure, the support of f has o--finite

measure.

The proof is then completed in the same way as that of Theorem

8.
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40. WEAK * Loo CONVERGENCE - WEAK L CONVERGENCE

First investigate the conditions under which weak * L00 con-

vergence implies weak L convergence. Each set of hypotheses

listed below, together with weak * Loo convergence, implies

weak L convergence. Following the list, the results are stated

and proved. Counterexamples 1, 6,13, 20 show that these are the

only implications with a non-redundant set of hypotheses.

(3) (1,5) (5,10) (2, 8, 9)

(7) (5,8) (1 , 2, 9)

Theorem 1: Suppose hypothesiis 3 is satisfied. If the sequence of

functions {f } weak * L converges to the function f, then
00 ffn

weak L converges to f.

Proof:

lim -f)gdp, = 0 for g E Li .

Without loss of generality we may assume
fn-f E L00

for all n.

Since we have hypothesis 3,
fn-f ELP

for all n.

Let
hELq

and let F1= ix: !hi <11, F2 = {x: Ihi > 1 }

Slhidil< S Ihldp.+S IhIdp,<IJ.(Fi)+S IhIcidp..
F1 F2 F2

Thus h E L and hence lim Sb(fri-f)hdp, = 0 for h E L .
1 qn
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Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} weak * Loo converges to the function f, then

weak Lp converges to f.

Proof:

By 39. 2 we know that weak L1 converges to f.

Since we have hypothesis 7, we know that urn f dp. = fdp,
n F n

for measurable F.

Thus f is integrable.

Let K be the essential bound for f -f

Slfn-flPdp,< (Kn)p-1 SIfn-fldu < co .

Thus each fn-f belongs to L

Let E be the support of the functions f and fn n=1,2,'

oo

E has cr-finite measure; that is E = E where
n

n=1
I-1(En) < co n = 1, 2,

111

Let Em = E - En .
n=1

Given E > 0, there exists m such that for m > m
0 0'

Ifl dp. <
2 and 5 Ifn I d< n= 1, 2,

Em Em

Let he L and let G1 = {x: Ihi < 1 } , G2 = {x: 11).1 > 1 } .



Since

-f)hdp.! < f
n

-f)hdp.I +
(fn-f)hdp,I

G
1 (-32

< I S (fn-f)hdp, + (fn-f)hdp. I + I 54 -f)h*X G 24- I

m0
G1

E
G1

(E-Em0)

< E 5 (fn-f)hdp,I +
I S (fn-f)h- x G24.1m

G1 rm (E-E °)

mSince 4G1rm (E-E 0)] < 00, Theorem 1 tells us that

lim IS
(fn-f)hdp.I = 0 .

n m

G1
(E-E 0)

Since h- xG E L1, the last term on the right approaches 0
2

as n 00

Thus urn sup I S(fn-f)hdp,I <

E is arbitrary, lim (f -f)hdp. = 0 for hE L .n

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions
{fn

} weak * L00 converges to the function

f, then
Ifn weak L converges to f.

Proof:

By 39.3 we know that {fn} weak
L1

converges to f.

Thus there exists n such that for n > n0' fn-f is
0 0

integrable.



n = 1,2, .

Let F {x: If! <n, XE E-E } .
m0

There exists n
0

such that for n > n 0' 11 I <

Fcn = 1,2, - .

By 39.4 we know that {fn } weak L1 converges to f.

But on Fn f is integrable and hence lim fndp.= f
0

Fn0 no
Thus there exists

n1
such that for n > nl' f is integrable.

Without loss of generality we may assume that we have hypothesis 1.

The conclusion then follows from Theorem 3.

Theorem 5: Suppose hypotheses 5 and 10 are satisfied. If the

201

The proof is now completed in the same way as that of Theorem 2.

Theorem 4: Suppose hypotheses 5 and 8 are satisfied. If the

sequence of functionsff weak * L to the functionn

f, thenweak L converges to f.ffn

Proof:

Let E be the support of the function f.

oo

E has cr-finite measure; that is E L) En where (En)<
oo

n=1
n = 1,2, .

oo

Let Em = E - Li En .
n=1

There exists
0

such that for m > m 0' fill < 1
Em

sequence of functions ff.} weak * Loo converges to the function



f, then
{fn

} weak L converges to f.

Proof:

Follows from 3.15 and Theorem 3.

Theorem 6: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions
ifn weak * Loo converges to the function f,

then
{fn

} weak L converges to f.

Proof:

Follows from 38.3 and 31.2.

Theorem 7: Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions ffn weak "lc Loo converges to the function

f, then {fn}weak L converges to f.

Proof:

Follows from 38.5 and 31.2.

Now investigate the conditions under which weak L conver-
P

gence implies weak * L Each set of hypotheses

listed below, together with weak L convergence implies weak * Lc°

convergence. Following the list, the results are stated and proved.

Counterexamples 24 and 25 show that these are the only implications

with a non-redundant set of hypotheses.
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(6, 10) (2,6) (6,7)

(1, 6) (3, 6)

Theorem 8: Suppose hypotheses 6 and 10 are satisfied. 1.f the

sequence of functions
n

} weak L converges to the function f,

then {fn}weak * L converges to f.
00

Proof:

Without loss of generality we may assume fn-f EL for all n,

Let E be the support of the functions fn and fn-f,

n = 1, 2,

co

E has cr-finite measure; that is E E where
n=1

p. (En) < co, n 1, 2,

Clearly f has cr-finite support.

Let K be the uniform essential bound for the fn n=1, 2,

Let F1 { x: f > K+1 }, F2 = {x: f < -K-1 } .

Show p.(Fi) = p.(1-2) = 0 as follows:

Assume this is not so; that is p(F1) > 0.

There existsnO such that II(F1 n En ) > 0
0

Let Hm = {x: Ifl < m, XEF r
1 En } and note that

1 0
,

1

,

} is an increasing sequence of sets and

oo

Fl n En = H
rn

except for perhaps a set
0 m--,--1

of measure zero.



There exists m such that I.J.[F (Th E > 0.
0 1 n0 m0

By 32.2 we know that {fn } weak
L1

converges to

on F E H
1 n0 m0

Since f is integrable on F1r-\ E H
mon0

lim g fn dp. = f dp.

F rTh E (-NH F (Th E rTh Hm1 no mo 1
nO 0

But
1

51 fn dp. I < Kp.[ F n E H
m01

and
nO

F rTh E rThH
1 n0 MO

I S f dp,
1

Fl em Eo rm H
n mo

This is a contradiction and so p.(Fi) = 0 .

In a similar way we can show that p.(F2) = 0 .

Thus K+1 is an essential bound for f.

Clearly each f-f E L
CO

.

Let g E .

Given E > 0, there exists m0 such that for m > m

IgIC114 < 2(K+1)
Em

51(f X-f)gdid<1.r
m
(fn-f)gdp.1+1,. (fn-f)gdp,I<E+15b(fn-f)g .

E0 E-Em0

> (K+1)p.[Fi E_ H
nO MO
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Show lirn IS(fnif)g-x di = 0 as follows:
0E-E

By 32.2 we know that {f} L1 converges to

f on E-EmO.

Given
El

> 0, there exists an integrable simple

function s such that SI x -siclp.<2(K+4

igu
E-EmodS(fn-f)sdl-d<

2(K+1),S-Igx
mo-s

I <e
E-E

But clearly lim g(fn-f)sdkL =0 .

Sinceis arbitrary, lim c(fn-f)g. X = 0 .
61 n. m

E -E0
Thus lim sup I(fn-f)gdp, I < E .

n

Since c is arbitrary, lirn ,S1(fn-f)gdp. = 0
n

Theorem 9: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions
{fn

} weak L converges to the function f,

then
{fn

} weak Loo converges to f.

Proof:

Follows from 3.12 and Theorem 8.

Theorem 10: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {fil} weakL converges to the function f,
P
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then weak * Loo converges to f.

Proof:

Clearly f has o--finite support.

Without loss of generality we may assume that fn-f E L for

all n.

Thus we may assume that we have hypothesis 10.

The conclusion then follows from Theorem 8.

Theorem 11: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} weak L converges to the function f,

then
Ifn weak * Loo converges to f.

Proof:

Follows from 3.14 and Theorem 8.

Theorem 12: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions Ifn1 weak L converges to the function f,

then Ifn1 weak * Loo converges to f.

Proof:

Follows from 3.13 and Theorem 8.
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APPENDIX

When the work on convergence relations was first being investi-

gated, the definitions of weak
L1

and weak * Loo convergences

were replaced respectively by these two kinds of convergence:

Definition: A sequence of functions {fil} weak converges to

the function f if lina fdp. fdp, for every measurable set
n En `JE

E.

Definition: A sequence of functions {fn} weak * Loo converges to

the function f if lim g(fn-f)gdp. 0 for gE L .
1

The disadvantage of these two definitions is the fact when Ifn
converges in either of the two ways to f, f is not necessarily

unique. The non-uniqueness of these limit functions occurs when we

have a measure space with atoms of infinite measure. Non-uniqueness

of the limit functions seemed undesirable and so the definitions were

altered so as to make the limit functions unique. A question that is of

interest when one of the above convergences are involved is described

as follows:

Suppose we have selected two types of convergence, call

them type I and type II. If {fn} converges in the type I

208



sense to f and there is a subsequence
{fnk}

which

converges in the type II sense to u, is f = u a. e. ?

The answers to this question, along with the questions pre-

viously considered are given in the tables and diagrams below.

About half of the work with weak L/ convergence relied heavily on
1

one theorem which is now stated and proved.

Theorem: Suppose hypothesis 10 is satisfied. If the sequence of

functions {f}weak
L1

converges to the function f and con-

verges a. e. to the function u, then f = u a. e.

Proof:

lirn fndp. = fdp, for measurable E.

Let F be the support of the functions fn n = 1,2,

0 = lim fndp. = fdp. for measurable EC_ Fc .

n E

Upon applying Theorem E, p. 105 of Halmos we see f = 0

a. e. on Fc.

Thus f = u a. e. on Fc.
oo

By hypothesis, F has Cr -finite measure; that is F = F
n=1

where p.(Fn) < co n= 1,2, .

It suffices to show f u a. e. on each Fn.

Thus without loss of generality we may assume that the measure
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space is totally finite.

Letxhn(x)= sup {f.( x) : i = n, n+1, - and

xgn(x)

= inf {f.( ): i = n, n+1, } ; by Theorem A,

84 of Halmos these functions are measurable.

Clearly {gn} and Did converge a. e. to u.

oo

Let En {x I u(x) I < n} and note that X = En except
n=1

for a set of measure zero.

It suffices to show f = u a. e. on E for no arbitrary
n0

but fixed.

10.2 tells us that given c> 0, p.{x: I gn-ul > XE En } 0

as n co .

Let an
0

oo

increasing sequence of sets and En
= L.) Z. .

0 i=1

It suffices to show f u a. e. on Z. for i arbitrary but
0

fixed.

< n +E for XE Z and n> i 2.15 tells us0
i0

'

converges in mean to u in z.
10

fdp, = lim f dp. > lirn .51 g dp. = udp. for measurable
n C n n C n

C C- Z. .
10

{gn}
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Thus u a. e. on Z. which is proved as follows:
10

If not, f < u on A C.. Z such that p. (A) > 0 .
10

u-f is non-negative on A.

Either u-f is integrable or u-f is not integrable on A.

Part 1: Assume u-f is integrable on A.

cb(u-f)dp. > 0 .

By Theorem B, p. 104 of Halmos -f)dp. = 0
A

if and only if u-f = 0 a. e. on A.

Since f < u, fdp. < udp. .

A

This is a contradiction since fdp, > udp, .

'A A

Part 2: Assume u-f is not integrable on

Let B = {x:u-f <m, x E A} and note that

{Bm} is an increasing sequence of

CO

sets and A =
m=1

lim p.(Bm) = Bm] > 0 .
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S(u-f)dia, > 0 .

Bm0

= 0 if and only if u-f = 0 a. e.

Bm0

Since f < u fdp, < udp, .

0 0

This is a contradiction since fdp, >

m0
B Bm0

With the above argument modified by replacing gn by hn,

u-f by f-u and reversing some of the inequalities

we can conclude that f < u a. e. on Z. .
1

Thus f = u a. e. on z. hence on E and hence on E.
1 n

0 0

We now give two digarams which treat the questions considered

throughout the thesis. Tables are then given which answer the

question posed in this appendix.

The diagram given below indicates how weak * L/ interacts
oo

with the other eight modes of convergence. The arrows indicate

cases where we have an implication. The numbers in parentheses

are sets of hypotheses. If an arrow goes to a box containing sets of

hypotheses, this indicates that at least one set of hypotheses is

0
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needed for the implication. As an illustration: Weak *Lool con-

vergence implies weak L convergence if hypothesis 3 is satisfied.

Notice that any of the other nine sets of hypotheses in the box also

give this implication.

kkrtk , tr\to.s, ts,

to_$,
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L6)ct)s)\-())
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0,5 \t)

(15)
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seis)to)

unkC.
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The diagram given below is read in the same way as the one

above except that it shows how weak Li; interacts with seven modes

of convergence. (The interaction with weak '4= L09 was shown in the

last diagram.)

wk
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The table below answers the question posed earlier in this

appendix when weak * LI convergence is one of the two types of
co

convergence under consideration. We now illustrate how the table

is read and what information it yields.

Choose any one of the eight modes of convergence listed along

the top of the table; suppose mean convergence is chosen. Now pick

one of the sets of hypotheses listed along the left side of the table;

suppose (7,8f) is selected. At the intersection of the column con-

taining mean convergence and the row containing (7,8f) we see there

is an X This indicates that the following theorem is true.

Theorem: Suppose hypothesis 2 is satisfied and hypothesis 8

is satisfied with f. If
{fn

} weak * Loo converges to f

and converges in mean to u, then f = u a. e.

If there had been a 0 at the intersection we would have

gotten no theorem.

Notice that this theorem answers the question posed earlier in

this appendix regardless of the roles taken by weak * L00 and mean

convergence.
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L

0 n
The following table is read in the same was as the one above

except that weak L1 convergence is treated instead of weak *L L.
eo
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