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THE RELATIONS AMONG THE MODES OF CONVERGENCE OF
SEQUENCES OF MEASURABLE FUNCTIONS

1. INTRODUCTION

This thesis studies the logical relations among nine definitions
of convergence (Section 2) of sequences of real almost-everywhere
finite-valued measurable functions {fn} defined on an abstract
measure space X provided with a non-negative measure g
defined on a o-algebra S of measurable subsets of X. All pos-
sible subsets of a set of ten auxiliary hypotheses (Section 3) are con-
sidered. The non-existence of the unproved theorems is established
by means of a collection of 25 counterexamples (Section 4).

Each of the next 36 sections (5-40) is devoted to one pair of the
nine modes of convergence.

The Appendix gives the results of some work done with two
slightly different modes of convergence.

The nine modes of convergence previously indicated with
abbreviations that are used in the diagrams are the following:

a, un, - almost uniform convergence
a. e, - convergence almost everywhere

meass = convergence in measure

unif. - uniform (Loo) convergence (except on a null set)
L - convergence in L. norm
p p
L1 - convergence in mean (L1 norm)
wk * Loo- weak * Loo convergence

wk Lp - weak Lp convergence

wk L1 - weak L1 convergence



The definitions given in Section 2 for these nine modes of
convergence are such that the limit function f is always unique
except on a set of measure zero. This is not true for the two modes
of convergence defined in the appendix.

The ten auxiliary hypotheses will now be listed together with
the numbers by which they will hereafter be identified. It is taken
for granted that the conditions may be violated by a finite number
of the functions of the sequence {fn} or by any of the functions on
a null subset of X.

1. Each member of the sequence of functions {fn} is

integrable.

2. The function f toward which the sequence of functions
converges in the specified manner is integrable.

3. The measure space is totally finite: p(X) < o,

4. The indefinite integrals of [fnl n=1,2,--«- are
uniformly absolutely continuous; that is given ¢> 0,
there exists & > 0 such that § l[f |du<e n=1,2,

g B
for measurable E for which p(E) <56 .

5. The indefinite integrals of |fn[ n=1,2,-'+ are equi-
continuous from above at 0; that is for every decreasing
sequence of sets {En} for which 1inrn En = ¢, and for
every ¢ > 0, there exists n, such that for nZnO

SE Ifmldp<e m=1,2,--.
n
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6. The sequence of functions {fn} is uniformly essentially
bounded.
7. There is an integrable function g such that Ifnl <g
., n=1,2,---.

a. e
| 8. lim 5 f du = § fdu. (It is assumed that lim y f du
n n n n

exists in the sense that it is finite, equal to , or
equal to -0.)

9. The sequence of functions {fn} is monotonic a. e.

10. The support of the functions E = \oj [x:f (x) # 0}
n=1 n
has o-finite measure.

The consideration of possible convergence of subsequences
in the event that we have no implication with a given set of hypotheses
gives a simple result. It turns out that in six instances (meas.=> a.un.,
meas.=a. e., L1 = a.un., L, Da.e., Lp=> a.un. . Lpéa.e. )
always have a convergent subsequence and in all other instances we
never have one.

In referring to previous results, a number such as 5. 2 will
specify the second theorem in Section 5. If we are referring to a
theorem in the same section, the section number will be omitted.

When no auxiliary hypotheses are assumed the following well-

known imnplications are valid:



Wk

[k b

WK L\

We now give 37 additional diagrams which summarize the
results of the thesis exclusive of the appendix. FEach of the dia-
grams 29 through 37 shows how one mode of convergence interacts
with the other 8. The arrows indicate implications and an arrow
which passes through a box containing sets of hypotheses indicates
that each set of hypotheses in the box completes the implication when
included in the antecedent.

Diagrams 1 through 28 each refer to 1, 2, or 3 sets of
auxiliary hypotheses as indicated in the following table. In each
case the additional implications so obtained are superimposed upon
the basic diagram given above. When more than one set of hypothe-
ses is listed after a diagram number, the same diagram is valid
for both. The hypotheses given in the list below are the only non-

redundant sets of hypotheses which alter the basic diagram.
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| 2. THE MODES OF CONVERGENCE AND BASIC THEOREMS

Below are given a group of definitions and theorems many of
which can be found in the book Measure Theory by Paul R. Halmos.
This list is not complete as the author assumes many concepts are
‘well known. Anynot givenhere maybe foundinHalmos. The functions

fn and f are assumed to be measurable and a. e. finite-valued.

1. Definition: A sequence of functions {fn} converges a.e. to

the function f if and only if given ¢€> 0, there exists nO(X, €)

such that for n>n_ (x,¢), |fn(x)—f(x)| < g

ot

2. Definition;, A sequence of functions {f_} converges in measure
n

to the function f if and only if u{x: {fn(x)-f(x)l >¢e}—0 as

n — for all > 0.

3. Definition: A sequence of functions {fn} converges uniformly
to the function f if and only if given &> 0, there exists no(e)
such that for n > no(s), |fn(x)—f(x)‘ <e¢ for all x except possibly

for a set of measure zero.

" 4. Definition: A sequence of functions converges almost uniformly
| to the function f if and only if given ¢> 0, there exists a meas-
urable set E such that p(E) <e and the sequence {fn} con-

verges to f uniformly on E°.
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5. Definition: A sequence of functions {f } converges to f in mean
n

(L;) if and only if lim |\ |f -f|du= 0.
1 n n

6. Definition: A sequence of functions {fn} Lp converges to f

if and only if lim §|fn-f|pdp =0 where 1<p< x .
n

7. Definition : A sequence of functions {fn} weak L1 converges

to f if and only if 1lim Sv(fn-f)dp =0 for measurable E
n
o

8. Definition: A sequence of functions {fn} weak Lp converges

to the function f if and only if

a) 1<p<® and
b) there exists N such that fn—fe Lp for n> N and

c) lim ~Y(f flgdp = 0 forall gelg (q= —2=).
n n 3 p—l

9. Definition: A sequence of functions {fn} weak ¥ Loo con-

verges to f if and only if

a) f has ¢ -finite support {x:f(x) # 0}  and
b) there exists N such that fn—fe Loo for n>N and

c) lim S‘(fn—f)gdp =0 for all geL1
n

10. Theorem: (Theorem H, p. 97 of Halmos) The indefinite inte-

gral of an integrable function is absolutely continuous.
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11. Theorem: (Theorem I, p. 98 of Halmos) The indefinite integral

of an integrable function is countably additive.

12. Corollary. The indefinite integral of a non-negative integrable

function is a finite measure.

13. Theorem: (Theorem F, p. 105 of Halmos) If f is an inte-

grable function, then the set N(f) = {x:f(x) 4 0 } has o -finite

measure.

14. Corollary: The union of the supports of a countable number of

integrable functions has o-finite measure.

15. Theorem:. (Lebesgue's bounded convergence theorem) If {fn}

is a sequence of measurable functions which converges in measure
to f [or else convergesto f a.e.], andif g is an integrable
function such that ffn{ <g a.e., n=1,2,---, then f s |

integrable and the sequence {fn} converges to f in mean.

16. Theorem: (Theorem D, p. 38 of Halmos) If p 1is a measure

on a ring R and if {En} is an increasing sequence of sets in R

for which lim E e¢R, then p(lim E ) =1lim p(E ) .
n n n o n n

17. Theorem: (Theorem E, p. 38 of Halmos) If pu is a measure

ona ring R and if {En} is a decreasing sequence of sets in R



of which at least one has finite measure and for which

th 11 E = 14 E .
en 1:1 n) 1:1|~L( n)

lim E
n

eR,
n

17
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3. IMPLICATIONS AMONG THE AUXILIARY HYPOTHESES

In order to shorten the length of many proofs we have proved

some implications among the ten hypotheses listed in the introduction.

Below the~re§u1ts are diagrammed where the numbers enclosed in
parentheses are hypotheses and the arrows indicate implications.
Sets of hypotheses involving hypotheses 2 and 8 were not originally
considered in this investigation since they make assertions about the
limit function which depends on the mode of convergence for its
definition. Three implications involving hypotheses 2 and 8 are
given in the diagram. These three are included in the diagram since
they were observed to be true regardless of the mode of convergence

assumed. Following the diagram, the results are stated and proved.

(3,5) (3, 6) (1,2,9)
(3, 4) (7)
(2, 8) (5,10) (6)

(3) (1) (2) (5)

N V

(10) (4)
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Theorem 1: If a sequence of functions {fn} is such that the

indefinite integrals of lfri n= 1,2, are equicontinuous from

8

above at 0, then the indefinite integrals of Ifn

are uniformly absolutely continuous.

Proof.

Without loss of generality assume each member of the sequence

is finite valued everywhere.

o0
Let E™ = {x:|f (x)| > m} andlet BT =  E.
n n n
n=1
m . . . m
{E""} 1is a decreasing sequence of sets such that lim E =¢.

m

£
By hypothesis, given -Z> 0, there exists an mO(S) such

€
that for mZmO(ﬁ) S‘lfnldp<é- n=1,2,""".
V Em
But for xe¢(E ), |fn|<:m0 for n=1,2,"

To have uniform absolute continuity we must exhibit for ¢ > 0

a &> 0 such that for any E for which p(E) <39,
< = :
‘S\E|fn]dp e, n=1,2,

€

Thus we have only to choose 6 = =——— and we have uniform
Zmo(e )

absolute continuity.

Theorem 2: If a sequence of functions {fn} is uniformly

essentially bounded, then the indefinite integrals of !fnl ,
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n=1,2,--+, are uniformly absolutely continuous.

Proof:

Suppose the uniform essential bound is K.
y |£ |du < ydeng(E).
E " E

¥ p(E)< %{, then §|fn'dp<€ for n=1,2,---.

To have uniform absolute continuity we must exhibit for € > 0,

a &> 0 such that for any E for which p(E) <38,
ylf ldp <¢ for n =1,2,""
g D

€

Thus choose 6 = I and we have shown uniform absolute

continuity.

Theorem 3: If there exists integrable g such that ]fn] <g

a.e. for n=1,2, -+, then each member of the sequence of

functions {fn} is integrable.

Proof:
Immediate result of Theorem A, p. 112 and Theorem C, p.

113 of Halmeos.

Theorem 4: If there exists integrable g such that [fnl <g

a.e. for n=1,2,---, then the indefinite integrals of Ifn!

n=1,2,---, are uniformly absolutely continuous.



Proof:

21

Theorem 2.10 tells us g is absolutely continuous.

‘Ylfn|dp§ S‘gdp. n=1,2,""-.
E

E

Theorem 5: If there exists integrable g such that lfnl <g

a.e. for n=1,2, -, then the indefinite integrals of |fn| ,
n=1,2,--+, are equicontinuous from above at 0.
Proof:

By Corollary 2.11, v (E) = 5 gdp is a finite measure.

E

Let {En} be a decreasing sequence of sets such that

. E - )
111'1m n ¢

By Theorem 2.17, lim v(E )
n n

v(li;n En) :,V(d’) =0

Given ¢ > 0 there exists an nO(e) such that for n_>_n0(s)

S‘gdp<s .

m

E

E
But ‘Ylf Id[J.< Svgdp for all n.
n =
E
n

n

Thus the indefinite integrals of

Ifnl n=1,2,--- are

equicontinuous from above at 0.

Theorem 6: If the sequence of functions {fn} is uniformly

essentially bounded and the measure

M

is totally finite, then each
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member of the sequence {fn} is integrable.

Proof;
Let K be the uniform essential bound.

On a totally finite measure space the constant function K is

integrable.

S|fn|dp < ngp.

A measurable function is integrable if and only if its absolute
value if integrable.

Thus each fn is integrable.

Theorem 7: If the indefinite integrals of |fn| n=1,2,--- are

uniformly absolutely continuous and the measure p is totally finite,
then the indefinite integrals of lfnl n=1,2,--- are equicontinuous

from above at 0.

Proqf:

Let {En} be a decreasing sequence of sets such that

im E =4¢.
b 76

By Theorem 2.17 lim p(E ) = p(lim E_) = u(¢) = 0 .
n n n n

Given ¢ > 0 we can, by hypothesis, finda &> 0 such that
for any E for which p(E) <38, g Ifn’dp < e
E

n=1,2,---.
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But since lim p(E ) = 0 we can find an n, such that for
i n n
> < .
n2n, pL(En) o
| Thus we have equicontinuity.
Theorem 8: If the sequence of functions {fn} is uniformly
essentially bounded and the measure p is totally finite, then the
indefinite integrals of ifng n=1,2,"++ are equicontinuous from

above at 0.

Proof:

It is a result of Theorems 2 and 7.

| Theorem 9: If the sequence of functions {fn} is uniformly

essentially bounded and the measure p is totally finite, then there

exists integrable g such that }fnl <g a.e., n=1,2,---.

Proof:

Let K Dbe the uniform essential bound.

Ifn|_<_K a.e., n=1,2, ---.

| S‘de < 0 since a constant function is integrable on a totally

finite measure space.

Theorem 10: If the indefinite integrals of |fn| n=1,2,--. are

uniformly absolutely continuous and the measure p 1is totally finite,

£

then each member of the sequence of functions {fn} is integrable.
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Proof:

Let fn be an arbitrary but fixed member of the sequence.

0
Without loss of generality assume that f is finite valued

"0

everywhere.
Let E = {x:|f |>m]}.

m g

Clearly {Em} is a decreasing sequence of sets and

IimE_ =46 .
m m

By Theorem 2.17, limp(E_) =p(limE_) = pu(e) = 0.
m m m M

By hypothesis, given ¢> 0, there exists a 65> 0 such that

for any E for which p(E) <5 glfnid,u< €
E

n=1,2,---.
Since lim w(E ) =0, there existsan m such that for
m m 0
> < .
m 2> mg, ‘LL(Em) )
S‘lf |ap = g | £ Idp.+§ |f  |dp <e + m p(X) <o .
n —
x "o E "o X-E_ O 0
™ Mo
Thus £ is integrable.
0
Theorem 11: If the indefinite integrals of Ifnl n=1,2,--- are

equicontinuous from above at 0 and the measure p is totally

finite, then each member of the sequence of functions {fn} is

integrable.
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Proof:

It is a result of Theorems 1 and 10.

Theorem 12: If each member of the sequence of functions {fn}

is integrable, then the support of the sequence {fn} has o-finite

measure.

Proof:

- Follows from 2. 14.

Theorem 13: If there exists integrable g such that Ifn! < g a.e.

n=1,2,*--, then the support of the sequence of functions {fn}

has o-finite measure.

Proof:

Follows from Theorems 3 and 12.

Theorem 14: If the measure p 1is totally finite, then the support

of the sequence of functions {fn} has o-finite measure.

Proof:

A set which has finite measure has o-finite measure.

Theorem 15: If the support of the sequence of functions {fn} has

o-finite measure and the indefinite integrals of Ifnl n=1,2,---
are equicontinuous from above at 0, then each member of the

sequence is integrable.
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Proof:

Without loss of generality assume the measure is totally o-finite
and each member of the sequence {fn} is finite valued
everywhere.

Then there exists a sequence {En} of sets such that

©
X= v E and p(E ) <o n=1,2,""".
ey B n

Iy
&
Hy
i
>
i
OB

E. and notice that {Fn} is a decreasing
1

sequence of sets such that lim Fn =dé.
n

By hypothesis, given € > 0 there exists an ng such that

for nzn0 g |fk|dp< e k=1,2,""

F
n
Let fk be an arbitrary but fixed member of the sequence
0
)
K = : > i h K i
Let m {x 'fk | > m} and notice that { m} is a

0
decreasing sequence of sets such that lim Km = ¢ .

m

By hypothesis, given ¢ > 0 there exists an m, such that

for rn_>_rn0 g Ifk |dp < e

K 0
m
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c c c c c
F AK F  AK F° A~ K
n, ' m, n, m n, m,
For xeK.& Ifk I _<_rnO
™o 0

Thus S‘Ifk ldp<mOH[Fc ~ KS ] 42 _<_mOH(FC )+ 2¢ .
X <0 o ™o "o

But w(F. ) <o .
%o

Thus g lfkldp.<00.
X 0

Since fk was an arbitrary member of the sequence, we
0

conclude that each member of the sequence is integrable.
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4. LIST OF COUNTEREXAMPLES

We now list a number of counterexamples. FEach counter-
example will have a sequence of functions {fn} and a limit function
f defined on a measure space (X,S,n). In each counterexample
we will indicate the measure space by specifying X, S, and p.
These counterexamples are used throughout the paper and will be

referred to by number.

1. X - any non-empty set.

S - {X, ¢}.

p - defined by p(X)= o, p{d) =0.

fn(x) = -11; f\or all x.

f(x) =0 for all x.

{fn} converges to f a.e., in measure, uniformly, almost
uniformly, in weak * Loo sense.

{fn} does not converge to f in mean, in Lp sense, in
weak L. sense, in weak Lp sense.

1
These hypotheses are satisfied: 2,4,5,6,9.

2. X - the interval [-1,1] on the real line.
S - the Lebesgue measurable sets on [ -1,1] .

L - Lebesgue measure on [ -1,1] .
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n if 0<x<l
— n
) 1
f(x)={-n if ~H_<_X§O

0 otherwise

f{x) =0 for all x.
{f } converges to f a.e., in measure, almost uniformly.

n

{f } does not converge to f uniformly, in mean, in L
n P
sense, in weak L1 sense, in weak I sense, in

weak % Loo sense.

These hypotheses are satisfied: 1,2,3,8,10.

X - the real line.
S - the Lebesgue measurable sets on the real line.

p - Lebesgue measure

1 if 0<x<n
n =

0 otherwise

f(x) =0 for all =x.
{fn} converges to f a.e., in measure, uniformly, almost
uniformly, in L sense, in weak L sense, in weak
P

* L. sense.
)

{fn} does not converge to f in mean, in weak L1 sense .
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These hypotheses are satisfied: 1,2,4,6,8,10.
4. X - the real line.

S - the Lebesgue measurablesets onthe real line.
p = Lebesgue measure

S — if x>0

[x]+1 -
f(x)= , [x] is the greatest integer < x.

0 otherwise

£ = €60 X [

{fn} converges to f a.e., in measure, uniformly, almost
uniformly, in L sense, in weak L _ sense, in
weak * Loo sense.

{fn} does not converge to { in mean, in weak L1 sense.

These hypotheses are satisfied: 1,4,6,8,9,10.

5. X - any non-empty set.
S - {X, ¢} .
i - defined by p(X) = o, u(¢) =0.
f (X):l—}' for all =x.
n n
f(x) =1 for all =x.
{fn} converges to f a.e., in measure, uniformly, almost
uniformly.

{fn} does not converge to f in mean, in L sense, in
p
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sense.

These hypotheses are satisfied: 4,5, 6,8, 9.

31
weak L. sense, in weak Lp sense, in weak * L,
X - the real line.
S - the Lebesgue measurable sets on the real line.
p - Lebesgue measure.
1
f (x) = — for all x.
n n
f(x) =0 for all =x.
{fn} converges to f a.e., inmeasure, uniformly, almost
uniformly, in weak * Loo sense.
{fn} does not converge to f in mean, in Lp sense, in

weak L1 sense, in weak L sense.
p

These hypotheses are satisfied:§2,4,6,9,10.

X - the interval [0,1] on the real line.
S - the Lebesgue measurable sets on [0,1].

p - Lebesgue measure.

For n=1,2,--+, let E =] , ]i=1,2,-+-,n.

Let X; be the characteristic function for Ell1

and consider the following sequence

1 1 2 1 2 3
{X]) Xg X0 X30 Xz X530 * 7 ,} . Let {f } be

this sequence.

f{(x) =0 for all =x.
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{f } converges to f 1in measure, in mean, in L_ sense,
n p

sls

in weak L1 sense, in weak L sense, in weak * L

o0

sense.
{fn} does not converge to f a.e., uniformly, almost
uniformly.

These hypotheses are satisfied: 1,2,3,4,5,6,7,8,10.

X - the interval [0,1] on the real line.

S - the Lebesgue measurable sets on [0,1].

u - Lebesgue measure on [0,1].

f (x) = " for all =x.

n

f(x) =0 for all x.

{fn} converges to f a.e., in measure, almost uniformly,

in mean, in L sense, in weak L1 sense, in weak

Lp sense, 1in weak * Lc>o sense.

{fn} does not converge to f uniformly.

These hypotheses are satisfied: 1, 2,3, 4,5, 6,7,8,9,10.

X - the real line.
S - the Lebesgue measurable sets.

p - Lebesgue measure

1 if n—-—1 <x<n
n —*=
fn(x)=

0 otherwise.
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11.

f(x) =0 forall =x.

{£ } converges to f a.e., in measure, in mean, in Lp
n

sense, in weak L1 sense, in weak Lp sense, in

weak * Loo sense.

{fn} does not converge to f uniformly, almost uniformly.

These hypotheses are satisfied: 1,2,4,5,6,8,10.

X - the set of positive integers.
S - all subsets of the positive integers.

pu - defined by pu(x) = 27%, w(E) = z p(x) .
xeE

f (x)=
n

0 otherwise
f(x) =0 for all =x.
{fn} converges to f a.e., in measure, almost uniformly.
{fn} does not converge to f wuniformly, in mean, in Lp
sense, in weak L1 sense, in weak L' sense, in

weak * L00 sense.

These hypotheses are satisfied: 2,3,9,10.

X - the set of positive integers.

S - all subsets of the positive integers.

b - defined by u(x) =2 W(E) = Z w(x) .
xeE

33
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0 otherwise .

f(x) = 2° for all x.

{fn} converges to f a.e., in measure, almost uniformly.
{fn} does not converge to f uniformly, in mean, in Lp
sense, in weak L1 sense, in weak L sense, in

weak ¥ Loo sense.

These hypotheses are satisfied: 1,3,8,9,10.

12. X - the real line.

S - the Lebesgue measurable sets.

p - Lebesgue measure.

f = .

f(x) = 0 for all =x.

{f } convergesto f a.e., inweak * L__sense.

n ©

{fn} does not converge to f in measure, uniformly, almost

uniformly, in mean, in Lp sense, in weak L1 sense,

in weak L  sense.
p

These hypotheses are satisfied: 2,4,6,9,10.

13. X - the real line.
S - the Lebesgue measurable sets.

i - Lebesgue measure.
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fn(x) - X[O,n] '
f(X) = X[O, w) .
{f } convergesto f a.e., inweak * L__sense.
n Q0
{fn} does not converge to f in measure, uniformly, almost
uniformly, in mean, in Lp sense, in weak L1 sense,

in weak Lp sense.

These hypotheses are satisfied: 1,4,6,8,9,10.

14. X - the real line.
S - the Lebesgue measurable sets.

p - Lebesgue measure.
1 if n<x<ntl
fn(x)= -1 if -n-1<x<-n

0 otherwise .

f(x) = 0 for all x.

{fn} converges tof a.e., in weak Lp sense, in weak * L _
sense.

{fn} does not converge to f in measure, uniformly,
almost uniformly, in mean, in Lp sense, 1n weak L1

sense.

These hypotheses are satisfied: 1,2, 4,6,8,10.
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16.
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X - the interval [0,1] on the real line.
S - the Lebesgue measurable sets on [0,1].
p - Lebesgue measure.

f(x)=—-l-— forall x (1< r <o),
n T

r
nx

f(x) =0 for all x.

{fn} converges to f a.e., in measure, almost uniformly,
in mean, in weak L1 sense.

{fn} does not converge to f uniformly, in L’p sense, in
weak L sense, in weak L sense.

These hypotheses are satisfied: 1,2,3,4,5,7,8,9,10.

X - the real line.
S - the Lebesgue measurable sets.
p - Lebesgue measure.

1 3 0<x<nf

n =

. r . L.
if -n" <x<0 (r is some positive constant> p).

1
n
0 otherwise.

f(x) =0 for all x.

{fn} converges to f a.e., in measure, uniformly, almost

uniformly, in weak Loo sense.

{f } does not converge to f in mean, in L_ sense, in
n

e

weak L1 sense, in weak L sense.
r
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18.
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These hypotheses are satisfied:1, 2, 4, 6, 8, 10.

X - the real line.

S - the Lebesgue measurable sets.

p - Lebesgue measure

(

0 if x<@0

1 if 0<x<1

1 u

-2- if 1 <x<1+2
f(x)= <

1

3

\.

fn(x) = f(x) 'X[O,n] .

{fn} converges to f

uniformly, in weak *

if 142" <x< 1427437

(r

is a real number\> p-1)

in measure, uniformly, almost

sense.

{f } does not converge to f in mean, in Lp sense, in
n

weak Ll sense, in weak L

sense.

These hypotheses are satisfied: 1, 4, 6, 8, 9, 10.

X - the real line

S - the Lebesgue measurable sets.

p - Lebesgue measure.

1

[-ETI for

f(x)=
n

0] otherwise

is the greatest integer < x).
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f(x) =0 forall =x.
{fn} converges to f a.e., in measure, uniformly, almost

uniformly, in L  sense, in weak Lp sense, in

weak * L _ sense.

0

{fn} does not converge to f in mean, in weak L1 sense.
These hypotheses are satisfied: 2,4, 6,9,10.

X - the interval [0,1] on the real line.

S - the Lebesgue measurable sets on [0,1] .

p - Lebesgue measure on [0,1].

fn(x) : sin (nx) for all =x.

f(x) =0 for all =x.

{fn} converges to f in weak L1 sense, in weak Lp sense,
in weak LoO sense.

{fn} does not converge to f a.e., in measure, uniformly,
almost uniformly, in mean, in Lp sense.

These hypotheses are satisfied: 1,2,3,4,5,6,7,8,10.

Show {fn} weak L  converges to f:
P

Suppose ge Lq.

Show geL this is shown as follows:

1 ;

Let E = (x:|gl > 1}, Ezz{legl <1l1}.
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| (eaxl =1 { gaxl+] | gaxl< {ll 9ax+ 10,
El EZ

< (lal%ax st

By the theorem on p. 33 of Riesz-Nagy, given ¢ > 0;

there exists a stepfunction s such that

Svlg—s!dx< €.

l“S"‘(fn—f)gdx —y(fn-f)sdx l =] S'sin (nx)(g-s)dx|
< \Sﬂl sin nx| Ig-sldx
ﬁglg-swx < e

But clearly lim gsin nxsdx = 0.
n

1

Thus lim 5(f -f)gdx = lim § sin nxgdx = 0.
n n n 0
20. X - the real line.
‘ S - the Lebesgue measurable sets.
\
|
| p - Lebesgue measure.
1
— for 1 <x<w
\ T
| Let g(x) = and choose the sequence of
0 otherwise m
i+l
numbers ml’mZ’ - -+  such that S‘ gdp =1 .
| m.

1

]

m ., ,-m_|] -X[m

fn(x) - X[ - m
n+l n n’ n+tl
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f(x) = 0 forall =x.

{fn} converges to f a.e., in weak * L_  sense.

{fn} does not converge to f in measure, uniformly,
almost uniformly, in mean, in Lp sense, in weak L1
sense, in weak Lp sense.

These hypotheses are satisfied: 1, 2,4, 6,8,10.

21. X - the real line.
S - the Lebesgue measurable sets.

p. - Lebesgue measure.

Choose a sequence of natural numbers kl’kZ’ -++  such that
k
r+1
Z '1—>1 and k -k is even r =1,2, "
n r+1 r
n=k
T
ColEHL e s o
Let h(x) = ([x] 1is the greatest
0 otherwise

integer < x).

fn(x) =X “h(x) .

[kn’ kn+1]
f(x) =0 forall x.

{fn} converges to f a.e., inweak * L_  sense.

{fn} does not converge to f in measure, uniformly,

in weak L1 sense, almost uniformly, in mean,

in L sense, in weak L sense.
o)
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23.
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These hypotheses are satisfied: 1,2,4,6,8,10.

X - {1,2}.
s - {12}, {1}, {2}, {¢}.
b - defined by w{l2}, =p{l} =, p{2} =1, p(s)=0.

1 if x-=1

H

fn(x) =

t
[AY]

1 if x

n

f(x) =0 for all x.

{fn} converges to f in weak * L_ sense.

{fn} does not converge to f a.e., in measure, uniformly,
almost uniformly, in mean, in Lp sense, in weak L1

sense, in weak L sense.
p

These hypotheses are satisfied: 2,4,5, 6, 9.

X - the set of positive integers.
S - all subsets of the positive integers.

p - defined by p(l) =0, p(x) =1 for x> 2.

1 if x=1
f (x)=
n 1

14— if x> 2

n Z

0 if x=1
f(x) =

1 if x>2
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25.
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{fn} converges to f inweak * L_ = sense.
{fn} does not converge to f a.e., in measure, uniformly,
almost uniformly, in mean, in Lp sense, in weak Ll
sense, in weak Lp sense.

These hypotheses are satisfied: 4,6,8,9 .

X - any non-empty set.

S-X, 6.

Lo w(X) =, w(é) =0,

f (x) =1 f{forall x.

n

f(x) =1 for all x.

{f } convergesto f a.e., in measure, uniformly, almost
uniformly, in mean, in Lp sense, in weak Ll sense,
in weak Lp sense.

{f } does not convergeto f inweak * L  sense.

n 0

These hypotheses are satisfied: 4,5, 6,8, 9.

X - the set of positive integers.
S - all subsets of the positive integers.

2
p - defined by p(x) = 2 =, w(E) = E M(x)
xeE

fn(x)=

0 otherwise.

f(x) =0 for all =x.
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{f } converges to f a. e., in measure, almost
n
uniformly, in mean, in L_ sense, in weak L1 sense,
in weak L sense.
p

{fn} does not converge to f in weak * L _~ sense, uniformly.

These hypotheses are satisfied: 1,2,3,4,5,7,8,9, 10.



S

5. CONVERGENCE IN MEAN - CONVERGENCE IN MEASURE

First investigate the conditions under which convergence in
mean implies convergence in measure. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions {fn} converges in mean

to the function f, then {fn} converges in measure to f.

Proof:

This is theorem A, p. 103 of Halmos.

Now investiagte the conditions under which convergence in
measure implies convergence in mean. Each set of hypotheses
listed below, together with convergence in measure, implies con-

vergence in mean. Following the list, the results are stated and

44

proved. Counterexamples 1, 2, 3, 4, 5, 6, 10, 11 show that these

are the only implications with a non-redundant set of hypotheses.

(7)  (3,4) (3, 6) (1,2,9) (2,8,9)

(1,5) (3,5) (5,10) (2,5, 8)

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges in measure to the function £, then

{fl:} converges in mean to f.
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Proof.

This is Theorem 2.15.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} converges in mean to f.

Proof:
By 3.1 we may assume that we have hypothesis 4.

The conclusion is then that of Theorem C, p. 108 of Halmos.

Theorem 4. Suppose hypotheses 3 and 4 are satisfied. I the se-
guence of functions {fn} converges in measure to the function f{,

then {fn} converges in mean to f.

Proof:
3.10 tells us that we may assume hypothesis 1.

Choose ¢> 0.

€
= : - > d note th E — 0
Let Emn {x |fn fm| 2 50 } and note that u( mn)

as m,n " 0,

Since we assume hypothesis 4, there exists m, such that

€

< _
for n,m>mg gE £ ldp <5 k=1,2,
mn



-

‘ For m,anO §X‘fn—fm|dp :S‘ lfn-fanH +5 Ifn—fm|dp

- E
XE__ mn

IS

€

< R H(X—Emn)nl- gE‘fnldp + L Ifmldp <eg.
mn ‘—Ir n

n

Since ¢ is arbitrary, lim g‘ !f -1 ’dp, = 0.
N n m
m,n X

Thus {fn} is a mean fundamental sequence of integrable
functions and according to Theorem B, p. 107 of

Halmos there is an integrable function g such that
lim S|fn—g|dp = 0.
But then {fn} converges in measure to g.

[x: |f-g| zs} 9 [x: !fn—f‘ Z%} o {x: lfn—gl ZEE

Thus f=g a.e.

Thus {fn} converges in mean to I.

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the
sequence of functions {fn} converges in measure to the function

then {fn} converges in mean to f.

Proof:

By 3.1 we may assume that we have hypothesis 4.

The conclusion then follows from Thecresa 4.

46
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Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

47

sequence of functions {f } converges in measure to the function f,
' n

then {fn} converges in mean to f.

Proof:
Let C be the uniform essential bound for the sequence of
functions {f_}.
n
On a totally finite measure space a constant function is
integrable.

The conclusion is a result of 2.15.

Theorem 7. Suppose hypotheses 5 and 10 are satisfied. If a

sequence of functions {f } converges in measure to f, then
n

{fn} converges in mean to f.

Proof:

Follows from 3.15 and Theorem 3.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

then {fn} converges in mean to f.

Proof:
|f | < max(|f],]|f.]|) which is integrable.
n' - 1

The conclusion is then a result of 2.15.
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Theorem 9: Suppose hypotheses 2,5 and 8 are satisfied. If the
sequence of functions {fn} converges in measure to the function

f, then {fn} converges in mean to f.

Proof:

By hypothesis, lim S‘fndp = S‘fdp and f 1is integrable.
n

Thus there exists n, such that for n_>_n0, fn is

integrable.

Thus without loss of generality we may assume hypothesis 1.

0
Let E = o {x:fn(x) £ 0 }.
n=1
0
By 3.12, E has o-finite measure; that is E = v En

n=1
where p(En)<oo n=1,2, """
m m . m, .
Let E =E - o E_ andnotice that {E "} is a de-
n=1

. . m
creasing sequence of sets such that lim E = ¢.
m

Choose ¢ > 0.

Since we assume hypothesis 5, there exists m, such that

€ .
for m > m, S‘ ‘fnldp<—g n=1,2,
g

By 3.1 we may assume we have hypothesis 4.
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let E = {x: |f -f | > ——————] and notice that
n m —

mn
3p(E-E )

p(Emn) — 0 as m,n — .

Since we have hypothesis 4, there exists N such that for

m,n > N, g lfk|d|.L< £ k=1,2," "

E
mn

For m,n>N

glfn-fm!dp = S‘lfn—fmldp = S lfn-fmldp + S |fn-£mtdp
X E mo mo
E-E E~E

€
< §|fn—fm|dp+ §<§ lfn—fm|d|.x
m m

E.E ° (E-E °)-E
mn
€
+ S‘}fn-fm|dp+ 3
o
(E-E )~ E
mn
£ mo
< : -E f
< my ME )+§| nrlndu
SwE-E ) (E-E OAE
mn
€
+ S‘ Ifm!dp+ 3
)
(E-E ) ~E
mn
€ € € €
< Tt+—-+=+= =¢.
3Tetet3s 7€
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Since ¢ is arbitrary lim glf -f jdu=0.
n m
n, m

With the same closing argument as that in Theorem 3 we

conclude {fn} converges in mean to f.

Theorem 10: Suppose hypotheses 2, 8 and 9 are satisfied. If the

sequence of functions {f_ } converges in measure to the function f,
n

then {fn} converges in mean to f.

| Proof:

By hypothesis, lim Svfndp. = Svfdp. and f 1is integrable.
n

Thus there exists ng such that for n > n, fn is
integrable.
Thus without loss of generality assume we have hypothesis 1.

|fn| _<_max(|fl, |f1|) n=1,2,"""

The conclusion is then the result of 2.15.
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6. ALMOST UNIFORM CONVERGENCE-CONVERGENCE IN MEASURE

First investigate the conditions under which almost uniform
convergence implies convergence in measure. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions {fn} converges almost

uniformly to the function £, then {fn} converges in measure to

f.

Proof:

This is Theorem B, p. 92 of Halmos.

Now investigate the conditions under which convergence in
measure implies almost uniform convergence. In counterexample
7 {fn} converges in measure to f = 0, hypotheses 1,2,3,4,5,6,
7,8, 10 are satisfied, but {fn} does not converge almost uniformly
to £ =0. The one missing hypothesis gives a reault which is now
stated and proved. An interesting point is that convergence in
measure of {fn} to f implies the existence of a subsequence

that converges almost uniformly to f.

Theorem 2: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} converges in measure to the function f, then

{fn} converges almost uniformly to f.



S

52

Proof:
Let EF = [x:f (0)-f(x)] > 52}
n Zk

. k .
Notice that for each k, En decreases with n.
Choose ¢ > 0.
1
There:-exists n such that for n>n,, p(E")< £
1 -1 n 2
For k=2,3,"'*, there exists nk > no_y such that for
k £
> <-£
nZ e RE) <
2
® x
let E= U E
k=1 "k
.
® x K
wE)=p[ v E_ ] ﬁZu(E ) <e
k=1 "k N
k=1
0 C Q0 C
c k k
E'=[ VE ] = ﬁ[En]
k=1 k k=1 k
xeEC and n>n | £ (x)—f(x)! <L .
- K’ n Zk

Thus for all

Since this is true for every Kk,

C

on E

Since ¢

we have uniform convergence

is arbitrary, we have almost uniform convergence.
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7. CONVERGENCE IN MEAN - UNIFORM CONVERGENCE

First investigate the conditions under which convergence in
mean implies uniform convergence. In counterexample 8 {fn}
converges in meanto f =0 and all ten hypotheses are satisfied,
but {fn} does not converge uniformly to f = 0. Thus we get no
results with convergence in mean implying uniform convergence.

Now investigate the conditions under which uniform convergence
implies convergence in mean. FEach set of hypotheses listed below,
together with uniform convergence, implies convergence in mean.
Following the list, the results are stated and proved. Counter-
examples 1, 3, 4, 5, 6 show that these are the only implications with

a non-redundant set of hypotheses.

(7) (5,10) (2,5,8)

Theorem 1. Suppose hypothesis 3 is satisfied. If the sequence of
functions {fn} converges uniformly to the function f, then {fn}

converges in mean to f.

Proof.
Given £ > 0, there exists no(s) such that for nzno(s),

|fn(x)—f(x)| < e.
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On a totally finite measure space a constant function is

integrable and hence fn—fe L1 for n> no(s) .

For nZnO(s), S‘|fn—f|dp < gp(X).

Since ¢ is arbitrary lim ylfn‘fldH = 0.
n

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges uniformly to the function £, then {fn}

converges in mean to f.

Proof:

Uniform convergence implies convergence in measure and so
{f } converges in measure to f.
n

Now the conclusion is a result of 5. 2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {f } converges in meanto f.
n

Proof:
Follows from 5.3 and the fact that uniform convergence implies

convergence in measure.

Theorem 4. Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,
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then {fn} converges in mean to f.

Proof:
Follows from 5.7 and the fact that uniform convergence

implies convergence in measure.

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} converges in mean to f.

Proof:
Follows from 5.8 and the fact that uniform convergence implies

convergence in measure.

Theorem 6. Suppose hypotheses 2, 5, and 8 are satisfied. I the

sequence of functions {fn} converges uniformly to the function f,

then {fn} converges in mean to f.

Proof:
Follows from 5. 9 and the fact that uniform convergence implies

convergence in measure.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} converges in mean to f.



Proof:

Follows from 5.10 and the fact that uniform convergence

implies convergence in measure.
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8. CONVERGENCE IN MEAN - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which convergence in
mean implies almost uniform convergence. In counterexample 7
{fn} converges in meanto f =0 and hypotheses 1,2,3,4,5,6,7,
8,10 are satisfied, but {fn} does not converge almost uniformly
to f=0. The one remaining hypothesis gives an implication which
is stated and proved below. An interesting fact is that convergence
in mean of a sequence of functions {fn} to the function £, implies
the existence of a subsequence which converges almost uniformly to

f.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} converges in mean to the function f, then {fn}

converges almost uniformly to f{.

Proof:

Follows from 5.1 and 6. 2.

Now investigate the conditions under which almost uniform
convergence implies convergence in mean. Each set of hypothesis
listed below, together with almost uniform convergence, implies
convergence in mean. Following the list, the results are stated be-

cause we need them numbered for future use; the proofs are all
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consequences of the same numbered theorems in Section 5 and the
fact that almost uniform convergence implies convergence in meas-
ure. Counterexamples 1,2,3,4,5,6,10,11 show that there are no

other implications with a non-redundant set of hypotheses.

(7) (3,5) (1,2,9)
(1, 5) (3, 6) (2,5,8)
(3, 4) (5,10) (2,8,9)

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges almost uniformly to the function f,

then {fn'} converges in mean to f.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} converges in mean to f.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions {f } converges almost uniformly to the
n

function £, then {fn} converges in mean to f.

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} converges in mean to f.
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6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence

function

of functions {fn} converges almost uniformly to the

f, then {f } converges in meanto f.
n

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence

function

Theorem

of functions {fn} converges almost uniformly to the

f, then {fn} converges in mean to f.

8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence

function

Theorem

of functions {fn} converges almost uniformly to the

f, then {fn} converges in mean to f.

9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence

function

Theorem

of functions {f } converges almost uniformly to the
n

f, then {fn} converges in mean to f.

10: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence

function

of functions {fn} converges almost uniformly to the

f, ‘then {fn} converges in mean to f.
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9. ALMOST UNIFORM CONVERGENCE - CONVERGENCE a. e.

First investigate the conditions under which almost uniform
convergence implies convergence a.e. The following theorem

finishes this investigation.

Theorem 1. If a sequence of functions {fn} converges almost

uniformly to the function £, then {fn} converges a.e. to f.

Proof:

This is Theorem B, p. 89 of Halmos.

Now investigate the conditions under which convergence a.e.
implies almost uniform convergence. FEach set of hypotheses listed
below, together with convergence a.e., implies almost uniform
convergence. Following the list, the results are stated and proved.
Counterexamples 9, 12, 13 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (5,9) (2,8,9)

(7) (1,2,9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} converges a.e. to the function £, then {fn}

converges almost uniformly to f.




.

Proof:

Given on p. 88 of Halmos.

Theorem 3. Suppose hypothesis 7 is satisfied.

If the sequence

functions {fn} converges a.e. to the function £, then

converges almost uniformly to f.

Proof:
By hypothesis, there exists integrable
< = - ..
|fn|___g a.e. n=1,2, .

Clearly lflﬁg a.e.

Since we are trying to prove almost uniform convergence, we

can without loss of generality assume

pointwise to f everywhere.

Let E7T = [x:|f -£f] > —1—} and let AL
n n m i

g

such that

For each i, Ai has finite measure since

1

A
i

Since we assume convergence everywhere

. m
lim Ai = N
i i

5C 8

i

lim (A7) = p[ 1im A7) = p(e) = 0.
i i

m 1
= _ < < o0,
—na) g mdu_?-ggdu ©

(.}

{x: Ifn—fl > -;11— }= ¢ for all

of

61

{fn } converges
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Choose €¢> 0.

For each m, there exists an io(m) such that for 1> io(m),

m £
wlA) < T
2
0
m
Let F m\él Aio(m)

m=1 0
c ® m c g m ¢
F =[ u Ai(m)]:h[Ai(m)]
m=1 0 m=1 0
Thus for xe¢F° and n>i (m), If —fl < L
-0 n m

Since this must hold for each m, we have shown uniform
c
convergence on F .

Since ¢ 1is arbitrary, we have almost uniform convergence.

Theorem 4. Suppose hypotheses 5 and 9 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {f } converges almost uniformly to f.
n

Proof:
Without loss of generality assume {fn} converges to f
everywhere.
Let k be an arbitrary fixed positive integer.

Let EE = {x: Ifn-f| > —11; } and notice that the sequence of




 sets {EE} decreases with n and lim Eﬁ=¢-

n

Because of hypothesis 5, there exists no(k) such that
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5 lf.ldu<1 j=1,2, "
n (k) °
0
Ek
n, (k)
On the set Ek ,  hypotheses 1, 5, and 9 are satisfied and

of course {fn} converges pointwise to f{.

Theorem 10. 3 tells us {fn} converges in measure to f
Eno(k)
k
Theorem 5.3 tells us {fn} converges in meanto f on
n (k)
E , that is lim g |£.-f|dw = 0.
k . i
i no(k)
Ek
Thus there exists i, > n such that S‘ |t —fldp < o,
0 0 i
n. (k) 0
E 0
k
io no(k)
Since E =~ C E , Y £, -f|du < .
k — "k S0
i, 0
Ek
i0
Ek has finite measure since

1 0 1

—_ - = _ <

kp.(Ek) ‘y.kdp< ‘y 'fi fldp < .
1 i 0

0
Ek Ek

Thus lim u (EE) = u[lim EE] =u(9) =0 for all k.
n n

on




Choose ¢ > 0.

There exists n such that for nan, ;.L(Elll) < %
For k=2,3,---, there exists n, > no such that for
n €
> =
n2>mn, H(Ek) < T
2
0
P
Let F = w Ek .
k=1
© o0
n n
k k
pE)=p[ U E 1< ZH(Ek)<€
= k
k=1 k=1
0 o 0 n, c
c k k
Fo=[ v B 1 = 7 [E]]
k=1 k=1
Thus for xe¢FC and n>n , If (X)—f(X)| <l
-k n k
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Since the above statement is true for every k we have shown

. c
almost uniform convergence.on F .
Since € was arbitrary, we have shown almost uniform
Yy

convergence.

Theorem 5. Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {f } converges a.e. to the function f,
n

f converges almost uniformly to f.
n g

Proof:

We may assume we have hypothesis 7 since max] |f1v| 1 £]]
is integrable and Hn' < max| lfl I, 1£]] a.e.

n=1,2,3,---
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The conclusion is then a result of Theorem 3.

Theorem 6. Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges almost uniformly to f.

Proof.

Since we have hypothesis 8, lim S‘ fnd|.l. = Svfdp .
n

There exists an n, such that for n > n, fn is integrable.
Thus without loss of generality we may assume we have

hypothesis 1.

The conclusion is a result of Theorem 5.
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10. CONVERGENCE IN MEASURE - CONVERGENCE a.e.

First investigate the conditions under which convergence in
measure implies convergence a.e. In counterexample 7 {fn}
converges in measure to f = 0 and hypotheses 1, 2,3, 4,5,6,7,8,10
are satisfied, but {fn} does not converge a.e. to f = 0. The one
remaining hypothesis gives an implication which is stated and proved
below. Of interest here is the fact that a sequence of functions which
converges in measure to a particular function necessarily has a sub-

sequence which converges a.e. to that function.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} converges in measure to the function £, then

{fn} converges a.e. to f.

Proof:

Follows from 6.2 and 9.1.

Now investigate the conditions under which convergence a. e.
implies convergence in measure. Each set of hypotheses listed
below, together with convergence a.e. implies convergence in meas-
ure. Following the list, the results are stated and proved. Counter-
examples 12, 13, 14 show that these are the only implications with

a non-redundant set of hypotheses.
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(3) (7) (2,8,9)

(5) (1,2,9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} converge a.e. to the function £, then {fn} con-

verges in measure to f.

Proof:

Follows from 9.2 and 6.1.

Theorem 3. Suppose hypothesis 5 is satisfied. If the sequence of

functions {fn} converges a.e. to the function f, then {fn}

converges in measure to f.

Proof:
Let E 0= {x:|f -f|> ¢}.
n m n
o0
Let E®= o E™
n=m n
o0
Let A, = v ET
' m=i

Let A = lim Ai.
i

Clearly {Ai} is a decreasing sequence of sets and since we
assume convergence a.e., p(A) =20.

Lim (A,-A) = ¢ .
i
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Since we have hypothesis 5, there exists an io such that

S |f |[dp<1 n=1,2,--"
A, -A n

0
Thus on Ai -A each member of the sequence {fn} is

0
integrable.

)
Let F = o {x:f (x) # 0, xeAi A} .

n=1 " 0
(E' has o-finite measure, thatis F = o F where
n=1 n
WF )<, n=1,2"""
n
m
Let F'=F - w F_ and note that {Fm} is a decreasing
n=1 n
sequence of sets such that lim F o= ¢ .

m

Since we have hypothesis 5, given ¢ 1 > 0, there exists

€
1
> < — = e,
no(el) such that for m m, S'fn'dp 5 n 1,2,

o

S |fm-fn|dp= §F|fm-fnldp:§ mlfm-fn|dp+S rrlfm—fnldp.
AiO'A F.F ° FAF °
.2:-:1
< - P
§ 'frn fnldp ¥ 5
™o
F-F
™o
Since p(F-F )< ®, Theorem 2 tells us {fn} converges
m

in measureto f on F-F , and thus is
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m

fundamental in measure on F-F 0.
Thus lim p[Gr;l]=0 where
m,n
€ m
0
G = (x|t -f|>—————1———-, xeF-F }.
n m n m
5u(F-F )

Theorem 3.1 allows us to conclude that the indefinite integrals
of |f | n=1,2,--+ are uniformly absolutely
continuous.

Thus there exists N such that for m,n> N

€
1 .
§ lglaw< 5= =120
j 5
m

G
n

Thus for m,n >N

2€

| ]
- du < - I
§ |fm fn| " § m|fm fnldp.+ z
Ai -A F.F 0
0
2 €
< § lfm—fnldp+ § |fm—fn|dp+ 5
rnO m m m
(F-F )-G (F-F )AG
n n
€ m 4¢
1 0 1
F - = £
< rnO W(F-F ) 5 1
5u(F-F )

. . . . _ -0 .
Since ¢ is arbitrary, lim § lfm fnldp.

m,n A "A
)
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Note that for m,n>1i E:l_C_ A.1 -A except for a set of

0
measure zero,and so 0 = 1imSv £ -f |du> g [f -f |du
m ' "=J 'mmn

m’nAi -A E
0

0’

n
m
> sp.(En ) .

Thus p(E:l) -+ 0 as m,n — 0,
By Theorem E, p. 93 of Halmos, there exists a function g
such that {fn} converges in measure to g.

{x: |fn—g| > s}g{x: |fn-g| > %} v {x: |fm-g| > -Eé- }.

By Theorem D, p. 93 of Halmos and 9.1 we know there is a
subsequence of {fn} which converges a.e. to g.

Thus f =g a.e. and thus {fn} converges in measure to f.

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges a.e. to the function £, then {fn}

converges in measure to f.

Proof:

Follows from 9.3 and 6.1.

Theorem 5. Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges a.e. to the function £, then

{fn} converges in measure to f.




Proof:

Follows from 9.5 and 6. 1.

Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied.

If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in measure to f.

Proof:

Follows from 9. 6 and 6. 1.
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11. UNIFORM CONVERGENCE - CONVERGENCE a.e.

First investigate the conditions under which uniform con-
vergence implies convergence a.e. The following theorem finishes

this investigation.

Theorem 1: If a sequence of functions {fn} converges uniformly

to the function £, then {fn} converges a.e. to f.

Proof:

Obvious.

Now investigate the conditions under which convergence a. e.
implies uniform convergence. In counterexample 8 {fn} con-

verges a.e. to f =0 and all ten hypotheses are satisfied, but
{fn} does not converge uniformly to f = 0. Thus we get no

implications with convergence a.e. implying uniform convergence.
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12. UNIFORM CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which uniform conver-

gence implies almost uniform convergence. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions {fn} converges uniformly

to the function f, then {fn} converges almost uniformly to f.

Now investigate the conditions under which almost uniform

bconvergence implies uniform convergence. In counterexample 8
{fn} converges almost uniformly to f =0 and all ten hypotheses

are satisfied, but {fn} does not converge uniformly to f = 0.

Thus we have no results with almost uniform convergence implying

uniform convergence.
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13. UNIFORM CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which uniform conver-
gence implies convergence in measure. The following theorem

finishes this investigation.

Theorem 1: If a sequence of functions {fn} converges uniformly

to the function f, then {fn} converges in measure to f.

Proof:

Obvious.

Now investigate the conditions under which convergence in
measure implies uniform convergence. In counterexample 8,
{fn} converges in measure to f = 0 and all ten hypotheses are
satisfied, but {fn} does not converge uniformly to f =0. Thus
we get no implications with convergence in measure implying uniform

convergence.
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14. CONVERGENCE IN MEAN - CONVERGENCE a.e.

First investigate the conditions under which convergence in
mean implies convergence a.e. In counterexample 7 {fn} con-
verges in mean to = 0 and hypotheses 1,2,3,4,5,6,7,8,10 are
satisfied, but {fn} does not converge a.e. to f =0. The one
remainivr'ig hypothesis gives an implication which is stated and proved
below. Of interest here is the fact that a sequence of functions which
converges in mean to a particular function necessarily has a sub-

sequence which converges a.e. to that function.

Theorem l: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} converges in mean to the function £, then {fn}

converges a.e. to f.

Proof:

Follows from 9.1 and 10.1 .

Now investigate the conditions under which convergence a. e.
implies convergence in mean. FEach set of hypotheses listed below,
together with convergence a. e., implies convergence in mean. Fol-
lowing the list, thé results are stated and proved. Counterexamples
1,2,3,5,10,11,12,13 show that these are the only implications with

a non-redundant set of hypotheses.



(7) (3,5) (1,2,9)
(1"5) (3, 6) (2,5,8)
(3,4) (5,10) (2,8,9)

Theorem 2. Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges a.e. to the function f, then {fn}

converges in mean to f.

Proof:

Follows from 10.4 and 5. 2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in mean to f.

Proof:

Follows from 10.3 and 5. 3.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. I the

sequence of functions {fn} converges a.e. to the function f{,

then {fn} converges in mean to f.

Proof.

Follows from 3.7, 3.10 and Theorem 3.

76




Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in mean to f.

Proof:

Follows from 3.11 and Theorem 3.

Theorem 6. Suppose hypotheses 3 and 6 are satisfied. I the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in mean to f.

Proof:

Follows from 3.9 and Theorem 2.

Theorem 7: Suppose hypotheses 10 and 5 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in mean to f.

Proof:

Follows from 3.15 and Theorem 3.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in mean to f.

Proof:

Ifnlf max[|f1|,|f|] for n=1,2,-
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The conclusion is then a result of 2.15.

Theorem 9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} converges in mean to f.

Proof:
lim S‘fndp = S‘fdp .
n
There is an n, such that for nzno, fn is integrable.

Thus without loss of generality we may assume we have
hypothesis 1.

The conclusion is then a result of Theorem 3.

Theorem 10: Suppose hypotheses 2,8, and 9 are satisfied. I the

sequence of functions {fn} converges a.e. to the function f{,

then {fn} converges in mean to f.

Proof:
lim S‘fndp = S‘fdp.
n

There exists no such that for n > no, fn is integrable.
Thus without loss of generality assume we have hypothesis 1.

Ifnl < max[lfll, lf” for n=1,2," "

The conclusion is then a result of Theorem 2.
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15. CONVERGENCE IN MEAN - Lp CONVERGENCE

First investigate the conditions under which convergence in
mean implies Lp convergence. In counterexample 15, {fn}
converges in meanto f =0 and hypotheses 1,2,3,4,5,7,8,9,10
are satisfied, but {fn} does not Lp converge to f = 0. The
one missing hypothesis gives an implication which is now stated and

proved.

Theorem 1: Suppose hypothesis 6 is satisfied. If the sequence of

functions {fn} converges in mean to the function f, then {fn}

L converges to f.

Proof:

lim ylfn-fldp = 0.

n
Since we have hypothesis 6, there exists a constant ¢ such
that lfn|§c a.e. n=1,2,"""

Let E = {x:lfl >c+1}.

0 = lim ylfn-fldpz lim y Ifn-f|d|¢ > 1u(E) .
n n

E
Thus p(E) = 0 and we conclude that | £] <c+la.e.

glfn-flpdpﬁ[Z(c+l)] p-l ylfn—fldp — 0 as n — o,

Thus {fn}Lp converges to f.
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Now investigate the conditions under which Lp convergence
implies convergence in mean. FEach set of hypotheses listed below,
together with Lp convergence, implies convergence in mean.
Following the list, the results are stated and proved. Counter-
examples 3, 4,18 show that these are the only implications with a

non-redundant set of hypotheses.

(3) (7) (2,8,9)

(5) (1,2,9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} L.  converges to the function £, then {fn}
p

converges in mean to f.

Proof:
Since we assume L convergence, there exists an n,

such that for n>n Ifn-flp is integrable.

1

0,

Define q so that + =1.

1
P
Since the measure is totally finite, any constant is integrable.

For n>n Holder's inequality (p. 175 of Halmos) asserts

O,
that Ifn-fl is integrable and that

1 1
S‘Ifn-flduﬁ[ S dp 1% [ S|fn-f]p dp] P

Clearly the term on the right goesto 0 as n — .
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Lemma. Suppose hypotheses 1 and 5 are satisfied. If the sequence
of functions {fn} L.  converges to the function £, then {fn}
P

converges in mean to f.

Proof:

Let E Dbe the support of the functions fn n=1,2,""".

(oo}
E has o-finite measure; thatis E =  E where
n:

RE ) <o n=1,2-""

m
Let ET=E- o En and note that {Em} is a decreasing

n=1

sequence of setsand lim ™ = b .
m

Since we have hypothesis 5, given ¢ > 0 there exist m

such that for m > m, § |fn|dp< = n=1,2,""".

5
m

E
By 16.1 we know that {fn} converges in measure to f.

Let F™ = {x: lfn—f | > =—————— } and note that

=)

p(F;n)*O as n,m — .

By 3.1 we may assume we have hypothesis 4.

Thus there exists n such that for m,n>n

0 0

y Ifjldp< T o=z

Frn
n
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g[fn-fmldp = N’Sﬁlfn-fm'dp = S lfnvfm!dp + S Ifn~fm]dp,

E E-E 0 EA~E 0

2¢€
< g\lfndmldp + g £, -f ldp + =
. m .

0 ) m
(E-E )-F (E-E )AF
n n
m
3 4e
< - - —_— =
< = WE-E )+ 5 =
Su(BE-E )

Since € 1is arbitrary lim S‘If £ |du=0.
J' ' 'n m
n, m

By Theorem B, p. 107 of Halmos, there exists integrable g
such that {fn} converges in mean to g.
5.1 tells us that {fn} converges in measure to g.
But p {x: |[f-g| > ¢ }<p {x: £ -f] > = e {x: lf ~gl><}.
- n 2 n 2
Thus p {x:|f-g| > ¢ }=0.

Thus {fn} converges in mean to f.

Theorem 3:  Suppose hypothesis 5 is satisfied. If the sequence of

functions {fn} Lp converges to the function f, then {fn}

converges in mean to f.

Proof:

lim Slf £|Pdp = 0.
n n

Without loss of generality we may assume that fn-fe Lp for all n.
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ILet E be the support of the functions fn-f n=1,2,---.

00
E has o-finite measure; thatis E = En where
n=1

p.(En)<00 n=1,2," -

m
Let E"=E- o E and note that {Em} is a decreasing
n=1 " m
sequence of sets and limE =4¢.
m

Since we assume hypothesis 5, there exists m, such that

y Ifnldp<l n=1,2,--.
m

E 0
™o
Since p(E-E 7)< o, Theorem 2 tells us that {fn} con-
m
verges in meanto f on E-E and the preceding
m

lemma tells us the same on E 0.
Since the limit exists, the limit of the sum is the sum of the

limits.

Thus {fn} converges in mean to  f.

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} Lp converges to the function £, then {fn}

converges in mean to f.

Proof:
By 16.1 we may assume {fn} converges in measure to f.

Follows from 5. 2.
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Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} I.  converges to the function £, then
P

{fn} converges in meanto f.

Proof:
Let F be the support of the functions fn-f n=1,2,"""
Since fn-f is integrable for all n, F has o-finite meas-

0
ure, thatis F = o Fn where p(Fn)<oo n=1,2,"--.
n=1

m
Let Fl=F- U F_ and note that {Fm} is a decreasing

n=1

sequence of sets and lim F™ = ¢ .
m

Because of hypothesis 9, Slfn-fldp 5§|£l-f|dp for all n.

Given ¢ > 0, there exists m such that for m>m

0 0

S ffldu< = n=1,2,
Fm

By 16.1 we know {fn} converges in measure to f.

3

My
3u(F-F )

Let E = {x:lf -£| > } and note that
n n

p.(En) — 0 as n - o0,

There exists n

3
0 such that for ng_no 5|fl—f|dp<§-
E

n
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ylfn-fldp = £|fn—f|dp = § | £, -] dp + § £, -£] dp
m

m
F—FO Ff‘\FO

s§ | £-f]dp + § | £, -f]dp + -;—
m m

(F-F )-E (F-F O)AE
n n
€ m £
< p(F-F 0) + 2 . 3
- m 3
3W(F-F )

Since ¢ is arbitrary, lim §|fn-f|dp:0.
n .

Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} L converges to the function £, then
p

{fn} converges in mean to f.

Proof:
11 = .
im yfndp. Sfdp
n
Since f is integrable, there exists n, such that for
n2>mn;, fn is integrable.

Thus without loss of generality we may assume hypothesis 1.

Follows from Theorem 5.
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16. Lp CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which Lp convergence
implies convergence in measure. The following theorem finishes

this investigation.

Theorem 1. If the sequence of functions {fn} Lp converges to

the function f, then {f } converges in measure to f{.
n

Proof!
Let En: {x: |fn-f! > e }.
yxlfn—flpdu > § £ -fPap > e Pu(E)

E n
n

Since ¢ and p are fixed, p(En)—'O as n — .

Now investigate the conditions under which convergence in
measure implies Lp convergence. FEach set of hypotheses listed
below, together with convergence in measure, implies Lp con-
vergence. Following the list, the results are stated and proved.
Counterexamples 1,5, 6,15,16,17 show that these are the only impli-

cations with a non-redundant set of hypotheses.
(3, 6) (5,6,10) (2,6,8,9)

(6,7) (1,2,6,9)

(1,5, 6) (2,5,6,8)
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Theorem 2: - Suppose hypotheses 3 and 6 are satisfied. If the se-

quence of functions {fn} converges in measure to the function f,

th f t .
en {n} Lp converges to f

Proof:

Follows from 5. 6 and 15.1.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {f } L _ converges to f.
n P

Proof:

Follows from 5.2 and 15.1.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {f } L convergesto f.
n P

Proof:

Follows from 5.3 and 15.1.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions {fn} converges in measure to the function f,
then {f } L. convergesto f.
n P

Proof:

Follows from 5.7 and 15.1.
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Theorem 6: Suppose hypotheses 1,2, 6and 9 are satisfied. I the

sequence of functions {f } converges in measure to the function
n

f, then {f } I. convergesto f.
n P

Proof:

Follows from 5.8 and 15.1.

Theorem 7: Suppose hypotheses 2, 5, 6, and 8 are satisfied. I

the sequence of functions {fn} converges in measure to the func-

tion £, then {fn} Lp converges to f.

Proof:

Follows from 5.9 and 15. 1.

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. If

the sequence of functions {fn} converges in measure to the func-

tion f, then {fn} Lp converges to f.

Proof:

Follows from 5.10 and 15.1.
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17. Lp CONVERGENCE - UNIFORM CONVERGENCE

First investigate the conditions under which Lp convergence
implies uniform convergence. In counterexample 8, {fn} Lp
converges to f =0 and all ten hypotheses are satisfied, but {fn}
does not converge uniformly to f = 0. Thus we get no implications
with Lp convergence implying uniform convergence.

Now investigate the conditions under which uniform convergence
implies L convergence. KEach set of hypotheses listed below,
together with uniform convergence, implies Lp convergence. Fol-
lowing the list, the results are stated and proved. Counterexamples
1,5,6,16,17 show that these are the only implications with a non-

redundant set of hypotheses.

(3) (1,5) (1,2,9) (2,8,9)

(7) (5,10) (2,5,8)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} converges uniformly to the function £, then

f .
{n} Lp converges to f

Proof:
Given 0<e€ <1, there exists nO(E) such that for nzno(s)

|t -£| <
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On a totally finite measure space a constant function is

integrable; thus lfn—fl is integrable for =n > n, -
For n_>_no, glfn—fldHSEH(X).
Since ¢ is arbitrary, lim g |fn—f|dp =0.
n
-f|Pau < -
For n_>_no, Slfn fl dp < S‘!fn fldp..

Thus lim Slfn-flpdp:O and we have L'o convergence.

X

n

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges uniformly to the function ., f, then

f L t f.
{n} o converges to

Proof:
By 13.1 we may assume {fn} converges in measure to f.
By 2.15 we may assume {fn} converges in mean to f.
Given 0<e€ <1, there exists nO(E) such that for n_>_no(£)

|fn-f| <e
For n2>n, ylfn_f|Pdpﬁ §|fn—f|dp.

Thus 'lim Slfn—flpdp. = 0 and we have Lp convergence.
n




91

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {f } converges uniformly to the function f,
n .

th f L t f.
en {n} o converges to

Proof.
By 13.1 we may assume {fn} converges in measure to f.
By 5.3 we may assume {fn} converges in mean to f.
The remainder of the argument is the same as that of the

theorem above.

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {f } L. converges to f.
n- p

Proof:

Follows from 3.15 and Theorem 3.

Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {f } L  converges to f.
n P

Proof:
By 13.1 we may assume {fn} converges in measure to f.
By 5.8 we may assume {fn} converges in mean to f.

The argument concludes exactly the same as that of Theorem 2.
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Theorem 6: - Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} Lp converges to f.

Proof:
By 13.1 we may assume {fn} converges in measure to f.
By 5.9 we may assume {fn} converges in mean to f.

The argument concludes exactly the same as that of Theorem 2.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {f } converges uniformly to the function f,
n

f .
then {n} Lp converges to f

Proof:
lim g fndp = g fdp .
n
Since f 1is integrable, there exists n, such that for
nZnO, fn is integrable.

Thus without loss of generality we may assume we have
hypothesis 1.

Follows from Theorem 5.
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18. Lp CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which Lp convergence
implies almost uniform convergence. In counterexample 7, {fn} Lp
converges to f =0 and hypotheses 1,2,3,4,5, 6,7,8, 10 are satis-
fied, but {fn} does not converge almost upiformly to f=0. The
one missing hypothesis gives a result which is stated and proved
below. Of interest here is the fact that a sequence of functions Lp

converging to a particular function, necessarily has a subsequence

which converges almost uniformly to that function.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} Lp converges to the function £, then {fn}

converges almost uniformly to f.

Proof:

Follows from 16.1 and 6. 2.

Now investigate the conditions under which almost uniform
convergence implies Lp convergence. FEach set of hypotheses
listed below, together with almost uniform convergence, implies
Lp convergence. Following the list, the results are stated and
proved. Counterexamples 1,5, 6,15,16,17 show that these are the

only implications with a non-redundant set of hypotheses.
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(3, 6) (1,5, 6) (1,2,6,9) (2,6,8,9)

(6’7) (5’6’10) (2,5’6, 8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16. 2.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16.3.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16. 4.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the
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function £, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16. 5.

Theorem 6: Suppose hypotheses 1,2, 6, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16. 6.

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If

the sequence of functions {fn} converges almost uniformly to the

function f, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16.7.

Theorem 8: Suppose hypotheses 2, 6,8, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} Lp converges to f.

Proof:

Follows from 6.1 and 16. 8.
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19. Lp CONVERGENCE - CONVERGENCE a.e.

First investigate the conditions under which Lp convergence
implies convergence a.e. In counterexample 7, {fn} Lp con-
verges to f =0 and hypotheses 1,2,3,4,5, 6,7,8,10 are satisfied,
but {fn} does not converge a.e. to f = 0. The one missing
hypothesis gives a result which is stated and proved below. Of
interest here is the fact that a sequence of functions Lp converging
to a pérticular function necessarily has a subsequence which con-

verges a.e. to that function.

Theorem 1: Suppose hypothesis 9 is satisfied. I the sequence of

functions {fn} Lp' converges to the function f, then {fn}

converges a.e. to f.

Proof:

Follows from 16.1 and 10.1,

Now investigate the conditions under which convergence a. e.
implies Lp convergence. Each set of hypotheses listed below,
together with convergence a.e., implies Lp convergence. Fol-
lowing the list, the results are stated and proved. Counterexamples
1,5,6,15,16,17 show that these are the only implications with a

non-redundant set of hypotheses.
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(3, 6) (1,5, 6) (1,2,6,9) (2,6,8,9)

(6,7) (5,6,10) (2,5, 6,8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {f } L  convergesto f.
n p

Proof:

Follows from 10.2 and 16. 2.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

h f f.
then {n} Lp converges to

Proof:

Follows from 10.4 and 16. 3.

Theorem 4: Suppose hypotheses 1,5, and 6 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} Lp converges to f.

Proof:

Follows from 10.4 and 16. 4.

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,
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then {f } L_  convergesto f.
n P

Proof:

Follows from 10.3 and 16. 5.

Theorem 6: Suppose hypotheses 1,2, 6, and 9 are satisfied. I

the sequence of functions {fn} converges a.e. to the function f,

then {fn} Lp converges to f.

Proof:

Follows from 10.5 and 16. 6.

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} Lp converges to f.

Proof:

Follows from 10.3 and 16.7.

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. I

the sequence of functions {fn} converges a.e. to the function f,

then {f } L _ convergesto f.
n P

Proof:

Follows from 10. 6 and 16. 8.
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20. WEAK Ll CONVERGENCE - CONVERGENCE a.e.

First investigate the conditions under which weak Ll

convergence implies convergence a.e. In counterexample 19,

{fn} weak L. convergesto f =0 andhypotheses 1,2,3,4,5,6,7,

1
8,10 are satisfied, but {fn} does not converge a.e. to f = 0.

The one missing hypothesis gives a result which is now stated and

proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak L. converges tothe function f, then

1

f converges a.e. to f.
n g

Proof:

lim | S‘(fn—f)dpl = 0.
n

But | S‘(f -f)dul = ‘Ylf -fl|dp  for each n.
n n

Thus {f } converges in mean to f.
n

The conclusion then follows from 14.1.

Now investigate the conditions under which convergence a. e.

implies weak L convergence. FEach set of hypotheses listed below,

1

together with convergence a.e., implies weak L convergence.

1

Counterexamples 1,2,3,4,5,6,10,11 show that these are the only



S

100

implications with a non-redundant set of hypotheses.

(7) (3,5) (1,2,9)
(1,5) (3,6) (2,5,8)
(3,4) (5,10) (2,8,9)

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges a.e. to the function £, then {fn}

weak L1 converges to f.

Proof:

By 14.2 we know {fn} converges in mean to f.
But I S‘ (f -f)dpi< S‘ |f -fldu for measurable E.
E " Y 7

Thus lim (fn-f)dp = 0 for measurable E.
n E

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak L, converges to f.

Proof:
By 14.3 we know {fn} converges in mean to f.
| But | Sj (f -f)du| < S‘ |f -f|du for measurable E.
| Jp n —Jg m

Thus lim (fn-f)dp = 0 for measurable E.
n E
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Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions {f } converges a.e. to the function f,
n

then {fn} weak L, converges to f.

Proof:

By 14.4 we know {fn} converges in mean to f.

But | g (fn-f)dpul < S. lfn-f|dpu for measurable E.
E E

Thus lim (fn—f)dp = 0 for measurable E.
n E

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions {f } converges a.e. to the function f,
n

then {fn} weak L. converges to f.

1

Proof:

By 14.5 we know {fn} converges in mean to f.

But |S. (fn-f)dp]gy lfn—fldpu for measurable E.
E E

Thus lim (fn—f) dp = 0 for measurable E.
n E

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {f } converges a.e. to the function f,
n

then {f } weak L. convergesto f.
n

1
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Proof:

By 14. 6 we know {fn} converges in mean to f.

But IS (f -f)dp| < S |f -f|dy for measurable E.
E E "

Thus lim S' (fn—f)dp = 0 for measurable E.
n E

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak L. converges to f.

1

Proof:

By 14.7 we know {fn} converges in mean to f.

But | g (£ -f)dp| < S'If -f|dy for measurable E.
E " E "

Thus lim (fn—f)dp = 0 for measurable E.
n E

Theorem 8: Suppose hypotheses 1,2, and 9 are satisfied. I the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak L. converges to f.

1

Proof:

By 14. 8 we know {fn} converges in mean to f.

But | S (£ -f)dpu] < S' |f -fldp for measurable E.
E " E ©
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Thus 1lim g (f -f)dp = 0 for measurable E.
n E -

Theorem 9: Suppose hypotheses 2,5, and 8 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak L. converges to f.

1

Proof:

By 14. 9 we know {fn} converges in mean to f.

But | g (f -f)dp| < g | £ -f|dp for measurable E.
E " ~ Y "

Thus lim L(fn-f)dp = 0 for measurable E.
n

Theorem 10: Suppose hypotheses 2,8, and 9 are satisfied. If the
sequence of functions {fn} converges a.e. to the function f,

then {fn} weak L1 converges to f.

Proof:

- By 14.10 we know {fn} converges in mean to f.

But | g (f -fdp| < g |f -f{dy for measurable E.
E " ~YE "

Thus lim (fn—f)dp = 0 for measurable E.
n E
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21, WEAK L1 CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which weak L1 con-

vergence implies convergence in measure. In counterexample 19,

{fn} weak L converges to f =0 and hypotheses 1,2,3,4,5, 6,

1
7,8,10 are satisfied, but {fn} does not converge in measure to

f = 0. The one remaining hypothesis gives a result which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak L1 converges to the function f, then

{f } converges in measure to f.
n

Proof:

lim | \ (£ -f)du| =0 .
n X n

But | g(f -f)dp|= g | -f|dp .
x M x 7

Thus {fn} converges in mean to f.

The conclusion then follows from 5.1.

Now investigate the conditions under which convergence in
measure implies weak L1 convergence. KEach set of hypotheses

listed below, together with convergence in measure, implies weak L‘i

convergence. Following the list, the results are stated and proved.
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Counterexamples 1,2,3,4,5,6,10,11 show that these are the only

implications with a non-redundant set of hypotheses.

(7) (3,5) (1,2,9)
(1,5) (3, 6) (2,5,8)
(3, 4) (5,10) (2,8,9)

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges in measure to the function £, then

{fn} weak L., converges to f.

1

Proof:
By 5. 2 we know {fn} converges in mean to f.

The conclusion is then obvious.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak L1 converges to f.

Proof:
By 5.3 we know {fn} converges in mean to f.

The conclusion is then obvious.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions {f } converges in measure to the function f,
n

then {fn} weak L. converges to f.

1



106

Proof:
By 5. 4 we know {fn} converges in mean to f.

The conclusion is then obvious.

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the

sequence of functions {f } converges in measure to the function f,
n

then {fn} weak L converges to f.

1

Proof:
By 5.5 we know {fn} converges in mean to f.

The conclusion is then obvious.

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function f,
n

converges to f.

then {fn} weak L,

Proof:
By 5. 6 we know {fn} converges in mean to f.

The conclusion is then obvious.

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn}weak L. converges to f.

1

Proof:

By 5.7 we know that {fn} converges in mean to f.
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The conclusion is then obvious.

Theorem 8: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges in measure to the function

f, then {fn} weak L converges to f.

1

Proof:
By 5. 8 we know that {fn} converges in mean to f{.

The conclusion is then obvious.

Theorem 9: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

converges to f.

f, then {fn} weak L1

Proof:
By 5.9 we know that {fn} converges in mean to f.

The conclusion is then obvious.

Theorem 10: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {f } converges in measure to the function f,
n

then {fn} weak L. converges to f.

1

Proof:
By 5.10 we know that {fn} converges in mean to f.

The conclusion is then obvious.
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22. WEAK L1 CONVERGENCE - CONVERGENCE IN MEAN

First investigate the conditions under which weak L1
convergence implies convergence in mean. In counterexample 19,
{fn} weak L1 converges to f =0 and hypotheses 1,2,3,4,5, 6,
7,8,10 are satisfied, but {fn} does not converge in meanto f = 0.

The one missing hypothesis gives a result which is now stated and

proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak L converges to the function f, then

1

{fn} converges in mean to f.

Proof.

11:1 | g(fn-f)dpl =0 .

But | y(fn—f)dpl = 5|fn-f|dp.

Now investigate the conditions under which convergence in mean
implies weak L convergence. The following theorem finishes

1

this investigation.

Theorem 2: If the sequence of function {fn} converges in mean

to the function £, then {fn} weak L. converges to f.

1
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Proof:

| ‘g(fn-f)dpl < §|fn—f[dp.
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23. WEAK L1 CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which weak L1 con-

vergence implies almost uniform convergence. In counterexample

19, {fn} weak L. convergesto f =0 andhypotheses 1,2,3,

1
4,5,6,7,8,10 are satisfied, but {fn} does not converge almost

uniformly to f = 0. The one remaining hypothesis gives a result

which is now stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak L. converges to the function £, then

1

{fn} converges almost uniformly to f.

Proof:

Follows from 22.1 and 8. 1.

Now investigate the conditions under which almost uniform

convergence implies weak L convergence. KEach set of hypoth-

1

eses listed below, together with almost uniform convergence,

implies weak L., convergence. Following the list the results are

1
stated and proved. Counterexamples 1,2,3,4,5, 6,10,11 show that

these are the only implications with a non-redundant set of hypotheses.
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(7) (3,5) (1,2,9)
(1,5) (3, 6) (2,5,8)
(3,4) (5,10) (2,8,9)

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges almost uniformly to the function f,

then {fn} weak L. converges to f.

1

Proof:

Follows from 8.2 and 22. 2.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the
sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak L. converges to f.

1

Proof:

Follows from 8.3 and 22. 2.

Theorem 4: Suppose hypotheses 3 and 4 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

. function f, then {fn} weak L converges to f.

1

Proof:

Follows from 8.4 and 22. 2

Theorem 5: Suppose hypotheses 3 and 5 are satisfied. If the
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sequence of functions {f } converges almost uniformly to f,
. n

then {fn} weak Ll converges to f.

Proof:

Follows from 8.5 and 22. 2.

Theorem 6: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak L. converges to f.

1

Proof:

Follows from 8. 6 and 22. 2.

Theorem 7: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak L converges to f.

1

Proof:

Follows from 8.7 and 22. 2.

Theorem 8: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak L. converges to f.

1

Proof:

Follows from 8.8 and 22. 2.
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Theorem 9: Suppose hypotheses 2, 5and 8 are satisfied. If the

sequence of functions {f } converges almost uniformly to the
n

function f, then {fn} weak L converges to f.

1

Proof:

Follows from 8. 9 and 22. 2.

Theorem 10:  Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak L converges to f.

1

Proof:

Follows from 8.10 and 22. 2.




114

24. WEAK L1 CONVERGENCE - UNIFORM CONVERGENCE

First investigate the conditions under which weak L1
convergence implies uniform convergence. In counterexample 8,

{fn} weak L converges to f =0 and all ten hypotheses are

1
satisfied, but {fn} does not converge uniformly to f = 0. Thus

we get no implications with weak L convergence implying uniform

1
convergence.
Now investigate the conditions under which uniform convergence

implies weak L convergence. KEach set of hypotheses listed

1
below, together with uniform convergence, implies weak L1
convergence. Following the list, the results are stated and proved.

Counterexamples 1, 3,4,5, 6 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (1,5) (1,2,9) (2,8,9)

(7) (5,10) (2,5, 8)

Theorem 1: Suppose hypothesis 3 is satisfied. I the sequence of

functions {fn} converges uniformly to the function £, then

{fn} weak L. converges to f.

1

Proof:

Follows from 7.1 and 22. 2.
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Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges uniformly to the function f, then

{f } weak L1 converges to f.
n

Proof:

Follows from 7.2 and 22. 2.

Theorem 3:  Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak L., convergesto f.

1

Proof:

Follows from 7.3 and 22. 2.

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. I the

sequence of functions {f } converges uniformly to the function f,
n

then {fn} weak L., converges to f.

1

Proof:

Follows from 7.4 and 22. 2.

Theorem 5: Suppose hypotheses 1,2, and 9 are satisfied. I the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak L, converges to f.

Proof:

Follows from 7.5 and 22. 2.
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Theorem 6: Suppose hypotheses 2, 5, and 8 are satisfied. If the

sequence of functions {fn} converge uniformly to the function f,

then {fn} weak L. converges to f.

1

Proof:

Follows from 7. 6 and 22. 2.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak L, convergesto f.

Proof:

Follows from 7.7 and 22. 2.
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25. WEAK L1 CONVERGENCE - Lp CONVERGENCE

First investigate the conditions under which weak L1
convergence implies Lp convergence. There is only one result
which is stated and proved below. Counterexamples 15 and 19

show that this is the only implication with a non-redundant set of

hypotheses.

Theorem 1: Suppose hypotheses 6 and 9 are satisfied. If the

sequence of functions {fn} weak L. converges to the function

1

f, then {f } L  converges to f.
n P

Proof:

Follows from 22.1 and 15.1.

Now investigate the conditions under which Lp convergence

implies weak L convergence. FEach set of hypotheses listed

1

below, together with Lp convergence, implies weak L1 con-
vergence. Following the list, the results are stated and proved.

Counterexamples 3, 4, 18 show that these are the only implications

with a non-redundant set of hypotheses.

(3) (7) (2,8,9)

(5) (1,2,9)
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Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} Lp converges to the function £, then {fn} weak

L1 converges to f.

Proof:

Follows from 15.2 and 22. 2.

Theorem 3: Suppose hypothesis 5 is satisfied. If the sequence of

functions {fn} Lp converges to the function £, then {fn} weak

L1 converges to f.
Proof:

Follows from 15.3 and 22. 2.

Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} Lp converges to the function £, then {fn} weak

L1 cdnverges to f.
Proof:
Follows from 15.4 and 22. 2.

Theorem 5: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {fn} Lp converges to the function f,

then {fn} weak L. converges to f.

1
Proof:

Follows from 15.5 and 22. 2.




119

Theorem 6: Suppose hypotheses 2, 8, and 9 are satisfied. I the

sequence of functions {fn} Lp converges to the function f,

then {fn} weak L. converges to f.

1

Proof:

Follows from 15. 6 and 22. 2.
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26. WEAK Lp CONVERGENCE - CONVERGENCE a.e.

First investigate the conditions under which weak Lp con-
vergence implies convergence a.e. In counterexample 19, {fn}
weak Lp converges to f = 0 and hypotheses 1,2,3,4,5,6,7,8,10
are satisfied, but {fn} does not converge a.e. to f = 0. The one
remaining hypothesis gives an implication which is now stated and

proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{fn} converges a.e. to f.

Proof:

lim S(f -f)gdw = 0 for e L
T -edu gel,

Let E ©be the support of the functions fn-f n=1,2,---.

Without loss of generality we may assume fn—feLp for all n.

0
E has o-finite measure; thatis E = o E where
n=1 n
< - a s o .
H(En) © n=1,2,

It suffices to show pointwise convergence on En for n,
arbitrary but fixed.

Xg clearly belongs to Lq for EC Eno.
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Thus lim S‘(f -f)dp =0 for ECE
n Jp n — 1,

Since fn-f has the same sign for each n
-f = f - E E
!gE(fn Y §E| fldp for EC -

The result then follows from 14.1.

Now investigate the conditions under which weak Lp con-
vergence implies convergence a.e. Each set of hypotheses listed
below, together with convergence a.e., implies weak Lp con -
vergence. Following the list, the results are stated and proved.
Counterexamples 1,5,6,15,17,31 show that there are no other

implications with a non-redundant set of hypotheses.

(3, 6) (1,5, 6) (1,2,6,9) (2,6,8,9)

(6,7) (5,6,10) (2,5, 6,8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the
sequence of functions {fn} converges a.e. to the function f,

then {fn} weak Lp converges to f.

Proof:
There exists a constant c¢ such that Ifn| < ¢ a.e. forall n.
From 2.15 we know {fn} converges in mean to f.

From 15.1 we know {fn} Lp converges to f.
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| § e omanl < lle -5l Nell

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {f } converges a.e. to the function f,
n

then {fn} weak L  converges to f.
P

Proof:
From 2.15 we know {fn} converges in mean to f.

From 15.1 we know {fn} Lp converges to f.

| §a -omael < lie 2l el -

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak L converges to f.
P

Proof:

From 19.4 we know {fn} Lp converges to f.

e nsanl < e el Nl

Theorem 5: Suppose hypotheses 5, 6,and 10 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak Lp converges to f.
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Proof:

From 19.5 we know {fn} Lp converges to f.

| §e oeanl < el lel -

Theorem 6: Suppose hypotheses 1,2, 6, and 9 are satisfied. Ifthe

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak Lp converges to f.

Proof:

From 19. 6 we know {fn} Lp converges to f.

e nsan | < e 2l Nl

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak Lp converges to f.

Proof:

From 19.7 we know {fn} Lp converges to f.

| e -0man 1< De ol lel -

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {fn} weak Lp converges to f.



Proof:

From 19.8 we know {f } L
n P

| §enmanl < le el Tl

\
converges to

f.
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27. WEAK Lp CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which weak Lp con-
vergence implies convergence in measure. In counterexample 19,
{fn} weak Lp converges to f =0 and hypotheses 1,2,3,4,5,6,
7,8,10 are satisfied, but {fn} does not converge in measure to
f = 0. The one reamining hypothesis gives a result which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{f } converges in measure to f.
n

Proof:
Let E Dbe the support of the functions fn—f, n=1,2," "
Since {fn—f} eventually belongs to Lp , we may without

loss of generality assume that fn—fe I. for all n.

0
E has o-finite measure; thatis E = En where
n=1
< = e
w(E)<w, n=1,2,
m

m m . .

let E =E-  E andnote that {E "} is a decreasing

n=1 n

sequence of sets and lim E™ = ¢ .
n

|f1-f|3|fn-f| for all n and so §|f1-f|pdpz§|fn-f|pdp
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for all n.

Given € > 0, there exists m such that for m_>_m0,
_¢|P < &
gr‘il £ 7 < 3
E
1
. P
Let F = R > hat F
e n {x Inf| ( mo) } and note tha {n}
3W(E-E )

is a decreasing sequence and lim F = ¢ (or a set
n
n
of measure zero).

€

There exists n such that for n>n glf —f|pdp < =
0 -0 F 1 3

n

>
For n>ng,

-\ P p P p £
§|f£f|dp§S]fn—f| dp+§ Ifn-f| dp < g |fn-f| dp + 3
m m

m
E-E 0 E 0 E-E 0

P 13 £
< §|fn-f| dp + g |fn—f| de + 3
m

(E-E 0)-F (E-E_ )~F
n m n

0

I A
=
o
=1

2¢€

Since € is arbitrary, lim S‘If —f|pdp =0.
n
n

The result then follows from 16. 1.
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Now investigate the conditions under which convergence in
measure implies weak L convergence. FEach set of hypotheses
listed below, together with convergence in measure, implies weak Lb
convergence. Following the list, the results are stated and proved.

Counterexamples 1,5,6,15,16,17 show that these are the only impli-

cations with a non-redundant set of hypotheses.

(3, 6) (1,5, 6) (1,2,6,9) (2,6,8,9)

(6,7) (5,6,10) (2,5, 6,8)

Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak Lp converges to f.

Proof:
There exists a constant ¢ such that ]fnl <c a.e. n=1,2,.
By 2.15 we know {fn} converges in mean to f.

By 15.1 we know {fn} Lp converges to f.

| §e nsanl < Nl lel

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak Lp converges to f.
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Proof:
There exists integrable h such that ‘fn‘ <h a.e. n=1,2,---.
By 2.15 we know {fn} converges in mean to f.

By 15.1 we know {fn} Lp converges to f.

| e ngaul < el el

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak Lp converges to f.

Proof:

By 16. 4 we know {fn} L.  converges to f.
P

RN R

Theorem 5: Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions {f_} converges in measure to the function
n

f, then {fn} weak Lp converges to f.

Proof:

By 16.5 we know {fn} Lp converges to f.

| e nean | <l £l el
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Theorem 6: Suppose hypotheses 1,2, 6,and 9 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak Lp converges to f.

Proof:

By 16. 6 we know {fn} L. converges to f.
P

| e nsan | < leel ) Tl

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak Lp converges to f.

Proof:

By 16.7 we know {fn} L. converges to f.
P

| (e -oman | < el el

Theorem 8. Suppose hypotheses 2, 6,8, and 9 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {fn} weak Lp converges to f.

Proof:

By 16. 8 we know {fn} 1. converges to f.
P

| e -0ganl < N2l Hel -
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28. WEAK Lp CONVERGENCE - ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which weak Lp con-
vergence implies almost uniform convergence. In counterexample
19, {fn} weak Lp converges to f =0 and hypotheses 1,2,3,4,5,
6,7,8,10 are satisfied, but {fn} does not converge almost uniformly
to f=0. The one remaining hypothesis gives a result which is now

stated and proved.

Theorem 1: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{fn} converges almost uniformly to f.

Proof:

Follows from 27.1 and 6. 2.

Now investigate the conditions under which almost uniform
convergence implies weak L convergence. FEach set of hypotheses
listed below, together with almost uniform convergence, implies
weak Lp convergence. Counterexamples 1,5,6,15,16,17 show
that these are the only implications with a non-redundant set of

hypotheses.

(3, 6) (1,5, 6) (1,2,6,9) (2,6,8,9)

(6,7) (5,6,10) (2,5, 6, 8)
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Theorem 2: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} weak L  converges to f.
P

Proof:

Follows from 6.1 and 27. 2.

Theorem 3: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {f } converges almost uniformly to the
n

function £, then {fn} weak Lp converges to f{.

Proof:

Follows from 6.1 and 27. 3.

Theorem 4: Suppose hypotheses 1, 5, and 6 are satisfied. I the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak Lp converges to f.

Proof:

Follows from 6.1 and 27. 4.

Theorem 5. Suppose hypotheses 5, 6, and 10 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} weak L converges to f.
P
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Proof:

Follows from 6.1 and 27. 5.

Theorem 6: Suppose hypotheses 1,2,6, and 9 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} weak L converges to f.
P

Proof:

Follows from 6.1 and 27. 6.

Theorem 7: Suppose hypotheses 2,5, 6, and 8 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} weak LiD converges to f.

Proof:

Follows from 6.1 and 27.7.

Theorem 8: Suppose hypotheses 2, 6, 8, and 9 are satisfied. I

the sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak L  converges to f.
P

Proof:

Follows from 6.1 and 27. 8.
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29. WEAK L CONVERGENCE - UNIFORM CONVERGENCE
P

First investigate the conditions under which weak Lp con-
vergence implies uniform convergence. In counterexample 8,
{fn} weak Lp converges to f =0 and all ten hypotheses are
satisfied, but {fn} does not converge uniformly to f = 0. Thus
we get no results where weak Lp convergence implies uniform

convergence.

Now investigate the conditions under which uniform conver-
gence implies weak L convergence. Each set of hypotheses
listed below, together with uniform convergence, implies weak Lp
convergence. Following the list, the results are stated and proved.
Counterexambles 1,5,6,16,17 show th;t these are the only implica-

tions with a non-redundant set of hypotheses.

(3) (1,5) (1,2,9) (2,8,9)

(7) (5,10) (2,5, 8)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} converges uniformly to the function £, then

{fn} weak Lp converges to f.

Proof:

By 17.1 we know {fn} LP converges to f.
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| e neanl < le 2l Nl

Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges uniformly to the function £, then

{fn} weak L  converges to f.
P

Proof:

By 17. 2 we know that {fn} Lp converges to f.

| §e-nean | < lie 2l Tl

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. I the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak L  converges to f.
P

Proof:

By 17.3 we know {fn} Lp converges to f.

| §eogan 1< le ol lel,

Theorem 4: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak Lp converges to f.

Proof:

By 17. 4 we know {fn} Lp converges to f.
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| § e, -nean | < el el

| Theorem 5: Suppose hypotheses 1, 2, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak LP converges to f.

Proof:

By 17.5 we know {fn} Lp converges to f.

| §ensaul < le el Nl

Theorem 6: Suppose hypothes 2, 5, and 8 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak LP converges to f.

Proof:

By 17. 6 we know {fn} LP converges to f.
| §etmanl <l Nel, -

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} converges uniformly to the function f,

then {fn} weak Lp converges to f.

Proof:

By 17.7 we know {fn} LP converges to f.

| §egosanl <leg-el sl -
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30. WEAK Lp CONVERGENCE - CONVERGENCE IN MEAN

First investigate the conditions under which weak Lp con-
vergence implies convergence in mean. FEach set of hypotheses
listed below, together with weak Lp convergence, implies con-
vergence in mean. Following the list, the results are stated and

proved. Counterexamples 4, 18, 19 show that these are the only

implications with a non-redundant set of hypotheses.

(3,9) (7,9) (2,8,9)

(5,9) (1,2,9)

Theorem 1: Suppose hypotheses 3 and 9 are satisfied. I the

sequence of functions {fn} weak Lp converges to the function

f, then {fn} converges in mean to f,

Proof:.

lim | g(fn-f)gdp| =0 for gelL

n q

Since we have hypothesis 3, g =1 Dbelongsto L .
q

Thus O = 11:1 | g(fn-f)dpl = 11::1 glfn—fl dp .

Theorem 2: Suppose hypotheses 5 and 9 are satisfied. If the

sequence of functions {fn} weak Lp converges to the function
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f, then {fn} converges in mean to f.

Proof:

lim g(fn—f)gdp =0 for gelL
n

q
Since fn-f eventually belongs to Lp, we may assume

without loss of generality that fn—fe Lp for all n.

Let E be the support of the functions fn-f n=1,2,"-.

[e o]
E has o -finite measure; that is E = v En where
n=1

’J.(En)<00 n=1,2,-""

Let F be the support of the functions f -f nm=1,2,-

FC E. This is proved as follows:

Suppose X, / E.

Then fn(xo) - f(xo) =0 for all n.
Thus fn(xo) = fm(xo) for all m,n.
Thus xo/ F .

m
Let E = E- v E and note that {Em} is a decreasing
n=1

sequence of sets and lim E™ = o .
n

Given ¢ > 0, there exists m_  such that for m>m

0 0
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. €
S‘lfnldp, <z mn=12-"
Em

By 26.1 we know {fn} converges a.e. to f.

00
Let Go = W) {x:|f -f |>
n m m

m=n 0

5u(E-E )

} and note that

{Gn} is a decreasing sequence of sets and lim G" = )
n

(or a set of measure zero).

. €
There exists n, such that for n > ng, S‘IfmI dp < z
Gn

Slfn—fmldp = g |fn—fm|d|¢ = S Ifn—fmldp
E m

E-E 0

o tenet Lo
m

EAE 0

2¢
< glfn—fmldp + g |fn—fm|d|¢ e
m n

0 m, n
(E-E )-G (E-E )~ G
m
< £ - w(E-E O) +:L_e_: €
- m, 5
5u(E-E )

Since € 1is arbitrary lim §|f -f |dp = 0.
n m
n, m

From 3.15 we know each f, is integrable on E.
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By Theorem B, p. 107 of Halmos we know there exists integra-
ble h such that {fn} converges in meanto h.
By 27.1 we know that {fn} converges in measure to f.
By 5.1 we know that {fn} converges in measure to h.
p,{x:lh-fl>e}<p.{x'|f-h|>£}+p,{x:‘f—f1>E}.
- "''n 2 n 2
Thus p {x:|h-f| > ¢ } =0.
Since ¢ is arbitrary f=h a.e.

Thus {fn} converges in mean to f.

Theorem 3: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions {f } weak Lp converges to the function
n

f, then {fn} converges in mean to f.

Proof:

Follows from 3.5 and Theorem 2.

Theorem 4: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {fn} weak L converges to the function

f, then {fn} converges in mean to f.

Proof:
Let h(x) = max[ |f(x)], lfl(x)|] :
h(x) 1is integrable and Ifn(x)l <h(x) n=1,2,---.

Follows then from Theorem 3.
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Theorem 5: Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions {fn} weak Lp converges to the function

f, then {fn} converges in mean to f.

Proof:
lim 5 fndp = Sfdp .
n

Since f 1is integrable, there exists n, such that for
nzno, fn is integrable.
Thus without loss of generality we may assume we have

hypothesis 1.

The result then follows from Theorem 4.

Now investigate the conditions under which convergence in
mean implies weak Lp convergence. In counterexample 15,
{fn} converges in meanto f =0, hypotheses 1,2,3,4,5,7,8,9,10
are satisfied, but {fn} does not weak Lp converge to f = 0.
The one remaining hypothesis gives us a result which is now stated

and proved.

Theorem 6: Suppose hypothesis 6 is satisfied. If the sequence of

functions {fn} converges in mean to the function f, then {fn}

weak Lp converges to f.

Proof:



141

By 15.1 we know {fn} L converges to f.
P

| §p-neanl < lieol Tl
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31. WEAK Lp CONVERGENCE - Lp CONVERGENCE

First investigate the conditions under which weak Lp con-
vergence implies Lp convergence. In counterexample 19,
{fn} weak LP convergesto f =0 andhypotheses 1,2,3,4,5,6,
7,8,10 are satisfied, but {fn} does not Lp converge to f=0.
The one remaining hypothesis gives us an implication which is now

stated and proved.

Theorem l: Suppose hypothesis 9 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{fn} Lp converges to f.

Proof:

11:1 S'(fn-f)gdpzo for geLq

Without loss of generality we may assume fn-fe Lp for all n.

Let E be the support of the functions fn-f n=1,2,""".

0
E has o-finite measure; thatis E = o En where
n=1

BE ) <o n=1,2,.

m
Let E"=E- o E_ and note that (E™} is a de-

n=1

. . m
creasing sequence of sets and lim E  =4¢.
n
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Since we have hypothesis 9, S‘|fn-f|pdp < ~Sﬂlfl -flpdp.

n=1,2,"""

Given ¢ > 0, there exists m such that for m>m

0 0’

P £ .
§|fn-f| dp< % n=1,2
Ern

€

Let F_={x:|f -f|>
n n

™o
3p(E-E )

From 27.1 we know {Fn} is a decreasing sequence of sets

and lim Fn = ¢ (or a set of measure zero).
n

There exists n such that for nZnO, S‘|f1 -flpdp, < -§3-
F

0
n
For nz_no,
Py, - Py, - p _¢|P
S‘lfn-f| dp—S|fn—f| dp = Sn!fn-fl dp+§m|fn £]Fdu
E E-E ° g °
P p £
< S £ -|Pay + S 2 -£[Pay +
m m

(E-E 0)-F (E-E O)A~ F
n n

m
£ . w(E-E °)+53€—=s.

AN

m
WE-E )

Since ¢ is arbitrary, lim S |fn-f|pdp. =0 .
n
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Now investigate the conditions under which Lp convergence

implies weak L  convergence. The following theorem finishes

this investigation.

Theorem 2: If the sequence of functions {fn} Lp converges to

the function £, then {fn} weak LI“) converges to f.

Proof:

| e -oeanl <le ol el -
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32. WEAK L1 CONVERGENCE - WEAK Lp CONVERGENCE

First consider the conditions under which weak L1 conver-
gence implies weak L convergence. In counterexample 15

{fn} weak L converges to f = 0 and hypotheses 1, 2,3, 4, 5,7,

1
8,9,10 are satisfied, but {fn} does not weak Lp converge to
f =0. The one remaining hypothesis gives a result which is stated

and proved below. First we state and prove a lemma which will be

used in the proof of the theorem.

Lemma: Suppose the space X is totally o-finite, fn-f is
integrable for all n and there exists K such that Ifn-fl <K

a.e. forall n. I lim g (f -f)dp =0 for measurable E,
n n
E
then there exists C such that S]fn—fldp <C n=1,2,"""

Proof:
The proof will be accomplished by using the contrapositive;
that is assume that §|fn-f| dp  is not bounded and

show that there exists a measurable set E such
that lim g(f -f)dp# 0.
n g 2
)
X= o F where p(Fn)<°° n=1,2, "

n=1 n
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m
let F = v F .
n
n=1

There exists n, such that §|fn—f|dp > 4
1
Since f_-f is integrable either g(f —f)+dp > 2 or
™ ™

y(fn—f)-d+ > 2 ; for the sake of argument assume

that the first inequality is true.

There exists m, such that g (fnl-f)+dp > 1 and
™
1 F
g Ifnl-f| dp < 7
1
X-F

¥ !
Let G = {x:(f_-f) #0} A F .
n, n,

There exists n2 > n1 such that

™

§|fn2-f|dp> 2Ku(F ") + 4.
m

]_C
F )

m
Either § (£, —f)+dp. > Kp(F 1) +2 or
m, CZ
(F )
m

g (fnz—f)—dp > Kp(F 1) + 2 ; for the sake of argument

mlc,

F )

assume that the first inequality is true.
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There exists m such that Y(f -f) dp > Kp(F ) + 1
2 . ns
M2
F
and g £ f|dp <2
n 4
m, 2
X-F
m m
Let G ={x:(f -0 £ 0}~ F “F Y.
n n
2 2
M2
There exists n, > n, such that g(fn3—f)dp> 2Kp(F )+ 4.
“m
2C
F )
t "2
Either S' (fn3—f) dp > Kp(F 7)+2 or
m
2
F )
- m,
S‘ (fn -f) dp > Kp(F ) + 2; for the sake of argu-
mzc 3
F )
ment assume the first inequality is true.
¥ i
‘There exists m, such that § (fn -f) dp > Ku(F )+ 1
m, 3
1 F
and § |fn3~f‘d|.x< 2
™3
X-F
m m
Let G = {x:(f —f)+7é0}m(F 3—F 2).
n n
3 3
Continuing in this manner we get a subsequence {fn -f}
| k
| and a sequence of sets {G_ } such that for all
1 Tk
3 o0
k, | y(f ~f)dy| > < where H:= G
M n=1 "k

H
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Thus lim g(f -f)du# 0.
n o n

Theorem 1: Suppose hypothesis 6 is satisfied. If the sequence of

functions {fn} weak L. converges to f, then {fn} weak Lp

1

converges to f.

Proof:

lirnSv (f -f)dp = 0 for measurable E.
n Vg I

Let K ©be the uniform essential bound for the fn n=1,2,""

K+1 1is an essential bound for f.
Without loss of generality we may assume fn-f is integra-

ble for all n.

f -fel. forall n since S\If -£]Pdp < 2(K+1§)-15\lf £|d
n P n - n 1eH

let F Dbe the support of the functions fn—f n=1,2,--

o
F= v F where p(F ) <o n=1,2,---.
n n

n=1
m m
Let F =F - o F
n
n=1
Let el

By the above lemma we know that there exists a constant C

such that S.Ifn-fldpﬁc for all n.

Given ¢ > 0, there exists n, such that for m > m,
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Nol ke

£
ylglqdu < T
- [2(k+1)]P 7 C

I f(fn-f)gdul < fm (t_-fgdu| + | fmun-f)gdul

FO F—FO

aq
<l § rels | {0 -ogaul

P " m m
0 1:,*14_,0

F
<e + | S‘(fn—f)g-x o del
F-F ©

Thus there exists an integrable simple function s such that
glg-x ~sldp < sy
m 2(K+1)

f -f)g- - f - < 2(K . -8 |[dp<e.
lf(n fex  p, de y(n f)sdu| < 2( +1)§Ig X mos' p<e
F-F FF

But clearly lim g‘(f -f)sdp = 0.
n v I
h i -f)g - =0.
Thus llnmj‘(fn flg - X m dp
F-F

Thus lim sup I S‘(f —f)gdp‘< £ .
n n -
Since ¢ 1is arbitrary, lim S‘(fn—f)gdp =0.
n

Now consider the conditions under which weak Lp conver -

| convergence. Fach set of hypotheses
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listed below, together with weak Lp convergence, implies weak L1
convergence. Following the list, the results are stated and proved.
Counterexamples 3, 4, 18 show that these are the only implications
‘with a non-redundant set of hypotheses.

(3) (7) (2,8,9)
(5) (1,2,9)

Theorem 2: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{fn} weak L. converges to f.

1
Proof:

1im§(f ~f)gdp = 0 for gel
5 o~ Dedp gel,

But erLq for measurable E.

Thus lim S. (f -f)dp = 0 for measurable E.
n B

Theorem 3: Suppose hypothesis 5 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{fn} weak L. converges to f.

1

Proof:
lim S.(fn—f)gdp, =0 for geLq .
n

Without loss of generality we may assume fn—feLp for all n.

Let E be the support of the functions fn-f n=1,2,-"".

E has o-finite measure; that is E = En where

WE)<® n=1,2,"".
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m
Let BV = E- v En and note that {Em} is a decreasing

n=1

‘ ) m
sequence of sets and lim E = =¢ .
n

Let Fn = {x: | £] <n } and note that {F;} is a decreasing

. c
sequence of sets and lim Fn =¢ .
n

Given € > 0, there exists m, and n, such that for

€
< —
m>m0, n_>_n0, g‘ lfkldp. > and
Em

glfkldp«;- k=1,2,""".
I',C
n

Note X el .
m q
(E-E )~ F
n
0
Mo
f 1is integrable on (E-E ')A F and lim § (fn—f)dp. =0.
T n mo
(E-E ) F
n
0
Mo
Thus eventually all of the fn are integrable on (E-E )r‘\Fn .
0

For n sufficiently large
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1§ sl <1 anl el
E mg m,
E E-E

€
5—2—+|S £dp |+ iy £ dp |
mO m
(E-E (E-E

0
T 3 )~ F;
0 0
< .
< e 4 fS fode | <o
)
(E-E )~ F
)

Without loss of generality we may assume fn is integrable

on E for all n.

1 } _ .
im g(fn fm)gdp. 0 for ge Lq since
n, m

1§ tmanl < 1§ -ngaulsl (e aaul

For measurable F < E

- < - -
IS £ dp yfmdul <| jﬂ (£ -f_)du| + | 5 (f_-f_)dul
F F m,, m
F~(E-E ) FAAE
< - .
< e 4 IS(fn £ X - d
F~A(E-E )
Since ¥ m eLq the last term on the right approaches
FA(E-E )

0 as n,m— o0,
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T i -
hus lim sup | fndp 5 fmdp | <e.
n, m F ¥

Since ¢ is arbitrary lim S‘ fndp exists and is finite
n F

for measurable Fg E .

Let H = {x:£>0, xeE} H, = {x:f<0, xeE} .

1 2 =
Clearly lim S' f dp = § fdp
m m H

HnN(E-E )

But for each m f 1is integrable on H r\(E~Em) and

1

lim § f dp = § fdp
n n m

H A E-E ) Hn (E-E™)

Since lim 5 f dp exists and is finite, f is integrable on
n H, "
1
H, .
1
Similarly we conclude f is integrable on H2 .
Thus f is integrable on E.

There exists m such that for m >m

1 1

glf[dp <3 and glfn[dp < n=1,2.
g™ ™
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For measurable F,

IS (f_-f)du| < | S (£ -f)du| + | 5 (f_-f)dp|
F rn1 m,
FAE FA~(E-E )
< e 4 S‘(fn-f)x - dp.] -
F~A(E-E )
11;n S(fn-f)x m dp = 0 since X m, € Lq .
FA(E-E ) FA(E-E 7)

Thus lim sup | S(fn-f)dp.| < ¢ for measurable F.
" F
Since € is arbitrary lim S(fn—f)dp = 0 for measurable F.
n F

Theorem 4. Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} weak Lp converges to the function £, then

{fn} weak L, convergesto f.

Proof:

Follows from 3.5 and Theorem 3.

Theorem 5: Suppose hypotheses 1,2, and 9 are satisfied. If the

‘sequence of functions {fn} weak L  converges to the function
P

f, then {:fn} weak L. converges to f.

1

Proof:

Follows from 30.4 and 22. 2.



155

Theorem 6: Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions {fn} weak Lp converges to the function

f, then {fn} weak L. convergesto f.

1

Proof:

Follows from 30.5 and 22.2.
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33. WEAK * Loo CONVERGENCE - CONVERGENCE a.e.

First investigate the conditions under which weak * L |
convergence implies convergence a.e. Each set of hypotheses listed
below, together with weak * L = convergence, implies convergence
a.e. Following the list, the results are stated and proved. Counter-

examples 19, 22, 23 show that these are the only implications with a

non-redundant set of hypotheses.

(9,10) _ (3,9) (2,8,9)

(1,9 (7,9) (5,8,9)

Theorem 1: Suppose hypotheses 9 and 10 are satisfied. If the
sequence of functions {fn} weak * L ' converges to the function
f, then {fn} converges a.e. to f.
Proof:

lim ‘S.(fn-f)gdp =0 for geL1 .

n

Recall that the support of f has o-finite measure.

Let E be the support of the functions f and f n=1,2,--.

n
0
E has o-finite measure; that is E = En where
n=1
E < 00 = 1’ 2’ e,
B n) n
It suffices to show pointwise convergence on E for n
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arbitrary but fixed.

E
n n
0
)

But | S‘E (fn-f)dpl = S;Ifn-fldp.
%o %o

X e L and hence 1lim (f -f)dp = 0.
1 E n

Thus {f } converges in meanto f on E
n n
O
The conclusion then follows from 14.1.

Theorem 2: Suppose hypotheses 1 and 9 are satisfied. If the

sequence of functions {fn} weak * L~ converges to the function

f, then {fn} converges a.e. to f.

Proof:

Follows from 3.12 and Theorem 1.

Theorem 3: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions {fn} weak * L_~ converges to the function

f, then {fn} converges a.e. to f.

Proof:

Follows from 3.3. and Theorem 2.

Theorem 4: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions {fn} weak * L - converges to the function

f, then {fn} converges a.e. to f.
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Proof:

Follows from 3.3 and Theorem 2.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisifed. I the

sequence of functions {f } weak * L, converges to the function
n

f, then {fn} converges a.e. to f.

Proof:

lim S‘fndp = S‘fdp and f 1is integrable.
n

Thus, without loss of generality, we may assume that we have
hypothesis 1.

The conclusion then follows from Theorem 2.

Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

J

sequence of functions {f_ } weak * L converges to the function
n

f, then {fn} converges a.e. to f.

Proof:

lim S‘ (fn—f)gdp =0 for geLl .
n
Let E be the support of the function f.

E has o-finite measure; that is E =

BC 8

E where
n

p(E ) <o n=1,2,".
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Given ¢ > 0, there exists m, such that for m__>_m0,

lf |[dp< £ n=1,2,""".
. n 2
Em

™o
Let Fn:{x:|fl_<_n, xeE-E "} .

There exists nO such that for n>n

£
0’ 5‘ |fmldp< 2

m=1,2, . (E-E )AF.

X
F 1
F
m, n n,

el and hence lim S (fn—f)dp =0 .

But on F f is integrable and hence lim i_f dp = Lfdp.
n, Kk k

T T

There exist kO such that for k Zko, fk is integrable on

F .
)

Thus for k> kO, fn is integrable on E.

0 = lim | 5 (fn-f)dp| = lim g |fn—f|dp.
n m m

E-E 0 E-E 0

Thus lim 5‘ |fn—fm|dp = 0.

n,m m
E-E 0

For n,m >_k0

5‘E|fn-fm|dp§§1lin—fmldp+ 5 |fn—fmldp
g O

m

E-E

My

< e+ S‘ | £n-fldu .
E-E
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Since the last term on the right approaches 0 as n,m — X

lim sup !fn-fm(dp < €.
n, m E

Since ¢ is arbitrary, lim y |f -f |du=0.
n m
n, m E

Thus lim fndp exists and is finite.
n E

By Theorem B, p. 107 of Halmos we know that there exists an

integrable function h such that Iim S;: ]fn—hldp =0.
n

It follows from 8.1 and Theorem B, p. 89 of Halmos that
there is a subsequence of {fn} which converges a.e.
to h on E.

Theorem 1 tells us that {fn} converges a.e. to f on E.

Thus {fn} converges in meanto f on E and hence
limgfdpzyfdp.
n E"

Thus f 1is integrable.

The conclusion then follows from Theorem 5.

Now investigate the conditions under which convergence a. e.

implies weak * L _. Each set of hypotheses listed below, together

with convergence a.e., implies weak * Loo convergence. Follow-

ing the list, the results are stated and proved. Counterexamples 5

and 15 show that these are the only implications with a non-redundant

‘set of hypotheses.



(6,10) (2, 6) (6,7)

(1,6) (3, 6)
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Theorem 7: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

{f } weak * L_ converges to f.
n 0

Proof:

lim fn(x) = f(x).
n

‘Let K be the uniform essential bound for the fn n=1
K is an essential bound for f.
Clearly f -feLL for n =1,2,"""
n 00
Hypothesis 10, together with pointwise convergence of
to f tells us that f has o-finite support.

Let E Dbe the support of f.

0
Since E has o-finite measure, E= v E where
n
n=1

B(E) <o n=1,2,

then

’2,....

{f_}

Let geLl.
m
Let E"=E- o E_.
n
n=1
Given ¢ > 0, there exists m such that for mZmO

§ igidu<€{<-

Em



There exists n

162

lLet F = {x:lfn—f| > — , xeE-E 0 } .

n
5 {1l an

m
0
Since R(E-E ") <o, 10.2 tells us that p(Fn) — 0 as

n —>x,

€
such that for nzno, §|g|dp< TR

0
F
n
For n_>__n0
| S‘(fn-f)gdpl = | f (¢ -f)gdu| < | y(fn—f)gdp|+|§(fn—f)gdp|
E m,, m
E g O
< 2K §|g|dp+|§<fn-f>gdu|+u g(fn—f)gdul
m ) m m,
E (E-E )~ F (E-E ")-F
n n
<§+2K §|g|dp +——f——§|g|dp
m 3 \lgldp
(E-E )~ F
n
3 T3 T3t

Since € is arbitrary lim g(fn-f)gdp =0.
n

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

{f } weak * L_ converges to f.
n 0
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Proof:
Follows from 3.12 and Theorem 7.
Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the
sequence of functions {fn} converges a.e. to the function f,
then {f } weak * L_ converges to f.
n 0
Proof:
Let ge L1 .
0
m
Let F_= {x:|f -f] > ———— let F o = F
e n {xlnl } and le ntjmn
2 S‘|g|d+JL

Note that {Fm} is a decreasing sequence of sets and

. m
lim F " = ¢ (or a set of measure zero).
m

3
. <-£
There exists m, such that for m > m, S‘ rn' g | dp IR

where K is the uniform essential bound for the fr
L

n=1,2,---.
For m>m Eg(f fgdu| <] g(f -f)gd |+|§(f -f)gdu|
>m | jE-flgdu] < o Pedp n-flgdp
m m
F [r J°
< St §|g|du=€

2§l gldp

Since € 1is arbitrary, lim y(fn—f)gdp =0.
n

It is obvious that f has o-finite support and clearly fn-fe L,
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for all n.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the se-

quence of functions {f } converges a.e. to the function £, then
n

{f } weak * L _ convergesto f.
n o0

Proof:

Follows from 3.14 and Theorem 7.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} converges a.e. to the function f,

then {f } weak * L_ converges to f.
. n 0

Proof:

Follows from 3.13 and Theorem 7.
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34. WEAK #* Loo CONVERGENCE - CONVERGENCE IN MEASURE

First investigate the conditions under which weak * L |
convergence implies convergence in measure. Each set of hypothe-
ses listed below, together with weak * L ' convergence, implies

convergence in measure. Following the list, the results are stated

and proved. Counterexamples 12,13,19, 22 show that these are the

only implications with a non-redundant set of hypotheses.

(3,9 (1,2,9) (2,8,9) (5,9,10)

(7,9) (1,5,9) (5,8,9)

Theorem 1. Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions {fn} weak ¥ Loo converges to the function

f, then {fn} converges in measure to f.

Proof:

Follows from 33.3 and 10.2.

Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

Y.

sequence of functions {f } weak * L converges to the function
n

f, then {fn} converges in measure to f.

Proof:

Follows from 33.4 and 10, 4.
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Theorem 3: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {fn} weak * L _  converges to the function

f, then {fn} converges in measure to f.

Proof:

Follows from 33.2 and 10.5.

Theorem 4. Suppose hypotheses 1, 5, and 9 are satisfied. If the

sequence of functions {fn} weak * L_ converges to the function

f, then {fn} converges in measure to f.

Proof:

Follows from 33.2 and 10. 3.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisifed. If the

sequence of functions {fn} weak * L = converges to the function

f, then {f } converges in measure to f.
n

Proof:

Follows from 33.5 and 10. 6.

Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. K the

sequence of functions {fn} weak * L~ converges to the function

f, then {fn} converges in measure to f.

Proof:

Follows from 33. 6 and 10. 3.
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Theorem 7: Suppose hypotheses 5, 9, and 10 are satisifed. If

the sequence of functions {fn} weak * L ' converges to the func-

tion £, then {fn} converges in measure to f.

Proof:

Follows from 33.1 and 10. 3.

Now investigate the conditions under which convergence in
measure implies weak ¥ Loo convergence. Each set of hypotheses
listed below, togefher with convergence in measure implies weak
* L convergence. Following the list, the results are stated and

proved. Counterexamples 5 and 15 show that these are the only

‘implications with a non-redundant set of hypotheses.

(6,10) (2, 6) (6,7)

(1,6) (3, 6)

Theorem 8: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {f } weak * L_ converges to f.
n [e]

Proof:
Let K ©be the uniform essential bound for the fn n=1,2, """
K+1 is an essential bound for f.

Let E be the support of the functions fn n=1,2,""



E has o-finite rneasure; that iz £ - o E where
p.(En)<oo n=1,2,---

wix: |f —fl> e} — 0 as n->® and hence
n

C .

pix: £l > e, xem} = 0.

J

Since ¢ is arbitrary { has ¢-finite support.

m m
Let E =L -  E |,
n
n=]
Let geLl
I
ist hat for m — .
There exists m, such that for g‘ lg{dp 6+ 1)

Let F_={x:|f f] > —vu"}
n n 5

33?%!@

i > dy < _._..__;__._
There exists n, such tkhat for n2ng, S‘F{g[qp 60+ 1)

n
For n>n

-0
if(f -fgdp| = 15 (t,- adwfu wf>gdu{+ij -Dgdu]
EE °
<5+ l§ p-Dedp| + | § fn-f)zdp|
Yno
. (B-E )~F_ - )—Fn
<Ly - Y leldp -«

Since ¢ is arbitrary, lim g‘(fn—f)gdu =
n -

Clearly f -feL for all n.
n o0
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Theorem 9: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {f } weak * L_ converges to f.
n 0

Proof:

Follows from 3.12 and Theorem 9.

Theorem 10: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {f } weak * L  converges to f.
n [e]

Proof:
Since f is integrable, the support of f has ¢ -finite
measure.
Let K be the uniform essential bound for the fn n=1,2,: -
Clearly K+1 is an essential bound for f.
Let geL1 .
Let F = {x:|f -f] > —F— 1}.

n n
ZSIgldu

. > < —5E—
There exists n, such that for n > ny ,§ Ig‘dH 4(K+1)

F
n
For n_>_n0
| S(fn—f)gdul < § (fn-f)gdul+l§ (fn-f)gduliz(K“)j;g’dH
F c
n F, n
€ £ L& _
+ -§|g|dp<2+z—s.

ZSIgldu
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Since € 1is arbitrary, lim S‘(fn—f)gdp =0.
n

Clearly f -felL for all n.
n 0

Theorem 11: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {f } converges in measure to the function
n

f, then {f } weak * L__ converges to f.
n 0

Proof:

Follows from 3.14 and Theorem 9.

Theorem 12: Suppose hypotheses 6 and 7 are satisifed. If the

sequence of functions {f_} converges in measure to the function f,
n

then {f } weak * L_ converges to f.
n Q0 .

Proof:

Follows from 3.13 and Theorem 9.
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35. WEAK * LOOCONVERGENCE—ALMOST UNIFORM CONVERGENCE

First investigate the conditions under which weak * Loo
convergence implies almost uniform convergence. Each set of
hypotheses listed below, together with weak * L_ convergence,
implies almost uniform convergence. Following the list, the results
are stated and proved. Counterexamples 12,13,19, 22 show that these

are the only implications with a non-redundant set of hypotheses.

(3,9 (1,2,9) (2,8,9) (5,9,10)

(7,9) (1,5,9) (5,8,9

Theorem l: Suppose hypotheses 3 and 9 are satisifed. If the

sequence of functions {fn} weak * L = converges to the function

f, then {fn} converges almost uniformly to {.

Proof:

Follows from 34.1 and 6. 2.

Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions {fn} weak * L = converges to the function

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34. 2 and 6. 2.



172
Theorem 3: Suppose hypotheses 1,2, and 9 are satisfied. If the

)

sequence of functions {fn} weak ¥ Loo converges to the function

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34.3 and 6. 2.

Theorem 4. Suppose hypotheses 1,5, and 9 are satisfied. If the

sequence of functions {fn} weak * L~ converges to the function

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34.4 and 6. 2.

Theorem 5: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functiions {f } weak * Loo converges to the function
n

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34.5 and 6. 2.

Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

sequence of functions {f } weak * L, converges to the function
n

f, then {fn} converges almost uniformly to f.

Proof:

Follows from 34. 6 and 6. 2.
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Theorem 7: Suppose hypotheses 5,9, and 10 are satisfied. If the

sequence of functions {fn} weak * L - converges to the function

f, then {fn} converges almost uniformly to f£.

Proof:

Follows from 34.7 and 6. 2.

Now investigate the conditions under which almost uniform
convergence implies weak * L_~ convergence. Each set of hypothe-
ses listed below, together with almost uniform convergence, implies
weak * L, convergence. Following the list, the results are stated

and proved. Counterexamples 5 and 15 show that these are the only

implications with a non-redundant set of hypotheses.

(1, 6) (3, 6) (6,10)

(2, 6) (6,10)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the

function £, then {fn} weak * L ' converges to f.

Proof:

Follows from 6.1 and 34. 9.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {fn} converges almost uniformly to the
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function f, then {f } weak * L converges to f.
n

Proof:

Follows from 6.1 and 34.10.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. I the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} weak * L_ converges to f.

Proof:

Follows from 6.1 and 34.11.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. I the

sequence of functions {fn} converges almost uniformly to the

function f, then {fn} weak ¥ Loo converges to f.

Proof:

Follows from 6.1 and 34.12.

Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {f } converges almost uniformly to the
n

function f, then {f } weak * L_ converges to f.
n [o0]

Proof:

Follows from 6.1 and 34. 8.
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36. WEAK * Loo CONVERGENCE - UNIFORM CONVERGENCE

First investigate the conditions under which weak * Loo
convergence implies uniform convergence. In counterexample 8,
{fn} weak * L ' converges to the function f =0 and allten
hypotheses are satisfied, but {fn} does not converge uniformly
to f =0. Thus we get no results with weak * Loo convergence
implying uniform convergence.

Now investigate the conditions under which uniform conver-
gence implies weak * L, convergence. Each set of hypothesés
listed below, together with uniform convergence, implies weak
* Loo convergence. Following the list, the results are stated and

proved. Counterexample 5 shows that these are the only implications

with a non-redundant set of hypotheses.

(1) (3) (10)
(2) (7)

Theorem 1. Suppose hypothesis 1 is satisfied. If the sequence of

functions {fn} converges uniformly to the function £, then {fn}

weak * Loo converges to f.

Proof:

Clearly f has o -finite support.
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Let geLl.

Given € > 0, there exists ng such that for nzno,

3
|fn(x)—f(x)| < ——— for all x.
|gldn
3
For n>ney |§(fn—f)gdp.|<-—-————————. |gldp = ¢
| gl an

Since € is arbitrary, lim 5(fn-f)gdp =0.
n

Clearly fn—f eventually belongs to Loo

Theorem 2: Suppose hypothesis 2 is satisfied. If the sequence of

functions {fn} converges uniformly to the function f, then {fn}

weak * L ' converges to f.

Proof:
Since f 1is integrable, f has o -finite support.

The proof is now the same as that of Theorem 1.

Theorem 3: Suppose hypothesis 3 is satisfied. If the sequence

of functions {fn} converges uniformly to the function £, then {fn}

weak * L ' converges to f.

Proof:
Clearly f has o -finite support.

The proof is now the same as that of Theorem 1.
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Theorem 4: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} converges uniformly to the function f, then {fn}

weak % Loo converges to f.

Proof:

Follows from 3.3 and Theorem 1.

Theorem 5: Suppose hypothesis 10 is satisfied. If the sequence of

functions {fn} converges uniformly to the function £, then {fn}

weak * L, converges to f.

Proof:
Clearly the support of f has ¢ -finite measure.

The proof is now the same as that of Theorem 1.
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37. WEAK * Loo CONVERGENCE - CONVERGENCE IN MEAN

First investigate the conditions under which weak * L |
convergence implies convergence in mean. KEach set of hypotheses
listed below, together with weak * L_ convergence, implies con-
vergence in mean. Following the list, the results are stated and
proved. Counterexamples 1,4, 6,19 show that these are the only

implications with a non-redundant set of hypotheses.

(3,9 (1,2,9) (2,8,9) (5,9,10)

(7,9) (1,5, 9) (5,8,9)

Theorem 1l: Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions {fn} weak * L ' converges to the function

f, then {fn} converges in mean to f.

Proof:

lim S'(fn—f)gdp. =0 for geL1 .
n

But g =1 belongs to L1 and so lim S'(fn—f)dp =0.
n

Since we have hypotheses 9, l S'(fn_f)dp'l = S'[fndldp. .

Thus lim g(fn—f)dp =0 .
n
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Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions {f } weak * Loo converges to the function
n

f, then {fn} converges in mean to f.

Proof:

Follows from 34. 2 and 5. 2.

Theorem 3: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {f } weak * L, converges to the function
n

f, then {fn} converges in mean to f.

Proof:

Follows from 34.3 and 5. 8.

Theorem 4: Suppose hypotheses 1, 5, and 9 are satisfied. If the

sequence of functions {f } weak * Loo converges to the function
n

f, then {fn} converges in mean to f.

Proof:

Follows from 34.4 and 5. 3.

Theorem 5:  Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} weak L, converges to the function

f, then {f } converges in meanto f.
n

Proof:

Follows from 34.5 and 5.10.
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Theorem 6: Suppose hypotheses 5, 8, and 9 are satisfied. If the

sequence of functions {fr} weak * L converges to the function
) o

f, then {fn} converges in mean to f.

Proof:
The same argument as thatin 33.6shows that f 1is integrable.

The conclusion then follows from Theorem 5.

Theorem 7. Suppose hypotheses 5, 9, and 10 are satisifed. If the

sequence of functions {fn} weak ¥ LOO converges to the function

f, then {fn} converges in mean to f.

Proof:

Follows from 34.7 and 5. 7.

Now investigate the conditions under which convergence in
mean implies weak * I, convergence. Each set of hypotheses
listed below, together with convergence in mean implies weak * Loo

convergence. Counterexamples 15 and 24 show that these are the

only implications with a non-redundant set of hypotheses.

(1, 6) (3,6) (6,10)

(2, 6) (6,7)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} converges in mean to the function f,
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then {f } weak * L_ converges to f.
n [e]

Proof:

Follows from 5.1 and 34. 9.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {fn} converges in mean to the function f,

then {f } weak * L_ converges to f.
n [e]

Proof:

Follows from 5.1 and 34.10.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} converges in mean to the function f,

then {f } weak * L_ converges to f.
‘n 0

Proof:

Follows from 5.1 and 34.11.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} converges in mean to the function {,

then {f } weak % L_ converges to f.
n 0

Proof:

Follows from 5.1 and 34.12.
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Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {fn} converges in mean to the function f,

then {f } weak * L _ converges to f.
n o0

Proof:

Follows from 5.1 and 34. 8.
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38. WEAK * Loo CONVERGENCE - Lp CONVERGENCE

First investigate the conditions under which weak * L |
convergence implies Lp convergence. FEach set of hypotheses
listed below, together with weak * Loo convergence, implies

L. convergence. Following the list, the results are stated and

proved. Counterexamples 1, 6,13,19 show that these are the only

implications with a non-redundant set of hypotheses.

(3,9) (1,2,9) (2,8,9) (5,9,10)

(7,9) (1,5,9) (5,8,9)

Theorem 1. Suppose hypotheses 3 and 9 are satisfied. If the

sequence of functions {fn} weak * L = converges to the function

f, then {f } L_  converges to f.
n P

Proof:

lim S(fn-f)gdp. =0 for geL1 .
n

But g =1 Dbelongs to L1 and hence lim ‘g(fn~f)dp =0.
n

Since we have hypotheses 9, | ‘g(fn-f)dpl = ‘glfn—fldp and
hence {fn} converges in mean to f.

fl—fe Loo; call the essential bound K.

'fn'fl _<_]f1-f| for all n. ( See 14.1 )
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§lfn-f|Pdp5Kp"15|fn-fldp~o as n — © .

Theorem 2: Suppose hypotheses 7 and 9 are satisfied. If the

sequence of functions {f } weak =* L converges to the function
n

f, th f t f.
en {n} L? converges to

Proof:

lim S‘(fnvf)gdp, =0 for gel
n

L

By 37.2 we know that {f.n} converges in mean to f{.

Without loss of generality we may assume that fn-fe L00 for
all n.

Let K ©be the essential bound for f1 - 1.

|fn-f| < ‘fl -f| for all n and hence K is a uniform essen-

tial bound for fn-f n=1,2,"-. (See 14.1)

§|fn-f|pdp~ < gP ylfn—fldp*O as n-— .

Theorem 3: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {f } weak LQ0 converges to the function
n

f, then {fn} Lp converges to f.

Proof:
Without loss of generality we may assume fn~fe L. for all n.
Let K be the essential bound for f1 -f.

By 37. 3 we know that {fn} converges in mean to f.
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Ifn-flf_lfl—fl for all n. (See 14.1)

§|fn-f]pdp < P! g]fn—f]dp»O as n— .

Theorem 4: Suppose hypotheses 1, 5, and 9 are satisfied. If the

sequence of functions {f"l} weak ¥ Loo converges to the function

f, th f L T oY s to f.
en {n} . onverges to

Proof:

Without loss of generality we may assume fn-f.e L, for all n.

Let K be the essential bound for fl~f .

By 37. 4 we know that {fn} converges in mean to f.

Ifn-f| < |f1—£| for all n. (See 14.1)

| £ —fde<Kp“1 If -fldp—0 as n-— o,
n - I n

Theorem 5:  Suppose hypotheses 2, 8, and 9 are satisifed. If the

sequence of functions {fn} weak * L = converges to the function

f, then {f }L' converges to f.
n P

Proof:

lim andp = Sfdp and f is integrable.
n

Thus without loss of generality we may assume hypothesis 1.

The conclusion then follows from Theorem 3.
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Theorem 6. Suppose hypotheses 5, 8, and 9 are satisfied. If the

sequence of functions {fr} weak * Lm converges to the function

f, then {f } L convergesto f.
n P

Proof:
Without loss of generality we may assume that fn-f eLOO for
all n.
Let K Dbe the essential bound for f1 -f,

By 37. 6 we know that {.fn } converges in mean to f.

Ifn-fl > lfl-fi for all n. (See 14.1)

5|fn—f|pdp < val Slfr{fldp—* 6 as n — 0.

Theorem 7. Suppose hypotheses 5, 9, and 10 are satisfied. If the

sequence of functions {fn} weak % LOO converges to the function

f, then {f } L. convergesto f.
n P

Proof:

Follows from 3.15 and Theorem 4.

Now investigate the conditions under which Lp convergence
implies weak * Loo convergence. FEach set of hypotheses listed
below, together with Lp convergence, implies weak * Loo con-
vergence. Following the list, the results are stated and proved.

Counterexamples 24 and 25 show that these are the only implications
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with a non-redundant set of hypotheses.

(1, 6) (3, 6) (6,10)

(2, 6) (6,7)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} Lp converges to the function f, then

f } weak * L_ converges to f.
00 g
n

Proof:

Follows from 16.1 and 34.9.

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {fn} Lp converges to the function £, then

f weak * L converges to f.
g
n )

Proof:

Follows from 16.1 and 34.10.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} L‘p converges to the function £, then

{f } weak * L _ converges to f.
n o0

Proof:

Follows from 16.1 and 34.11.
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Theorem 11: Suppose hypotheses 6 and 7 are satisifed. If the

sequence of functions {fn} L converges to the function £, then

{f } weak * L_ converges to f.
n ©

Proof:

Follows from 16.1 and 34.12.

Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {fn} L converges to the function £, then
P

{fn} weak * L - converges to f.

Proof:

Follows from 16.1 and 34. 8.
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39. WEAK * Loo CONVERGENCE - WEAK L1 CONVERGENCE

First investigate the conditions under which weak * L.

convergence implies weak L. convergence. Each set of

1
hypotheses listed below, together with weak * Loo convergence,

implies weak L. convergence. Following the list, the results

1
are stated and proved. Counterexamples 1,3,4, 6 show that these

are the only implications with a non-redundant set of hypotheses.

(3) (1,5) (5,10) (2,8,9)

(7) (5, 8) (1,2,9)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {fn} weak * Loo converges to the function f, then

{fn} weak L, convergesto f.

Proof:

lim g(fn-f)gdp =0 for ge L1 .
n

But XEe L

for measurable E and so lim g(f -f)dp =0
1 n E n

for measurable E.

Theorem 2. Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} weak % Loo converges to the function f, then

{fn} weak L. converges to f.

1



Proof:

1

lim g(fn—f)gdp 0 for geLl.
n
[§ et manl <1 (e eanl + 1 (e sl andso

lim g(fn—fm)gdp =0 for geLl.

n, m
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Let E Dbe the support of the functions f and fn n=1,2,"""

[e o]
E has o -finite measure; thatis E = v En where
n=1
E )< =
p(E ) <® n=1,2,
m
Let E®=E- o E
n
n=1
Given ¢ > 0, there exists mO such that for mZmO
Sllf lde< = n=1,2,---.
mn 2 b H
E
- duf <
I §fndu Sfm wl <

| Y(fn-fmmwl § (f0 -]
Y m m
E 0 0

E-E

< e+ | y(fn—fm) X modp,l .
E-E

The last term on the right approaches 0 as n,m —™ ©

since ¥ m eL1 .

E-E 0

Since ¢ is arbitrary, lim Sf dp  exists and is finite.
n
n

Let F, = {x:f>0} and F, = {x:£<0}.
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Clearly lim g‘fdp = gfdp
m Y m F

(E-E ),f\Fl !

But [ (E—Em)m Fl] < o for each m and hence by Theorem

1 we have lim jrfndp = 5 fdu for each m.
n
)

m m
(E-E mFl (E-E )A F

1

Thus lim § f dp = g fdp and hence f is integrable on
n
? Fl F1

F
1

Similarly we can show f 1is integrable on F2 .
Thus { 1is integrable.

There exists m, such that for mzml, ‘g' [f|dp < % and
M

~flfnldu< >, n=1,2,
Em

For measurable G, )S}f -f)dp| < |§(fn_f)dp|+] g(fn-f)dp |
* Gn m m

GnE 1 GN(E-E 1)
< et | S(fn—f)x mldul-
GN(E-E 7)

From Theorem 1 we know that the last term on the right
approaches 0 as n — o,
Since ¢ is arbitrary, lim Sﬂ (fn-f)dp = 0 for measurable
G

G.
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192

sequence of functions {fn} weak * L - converges to the function

f,

then {fn} weak L. convergesto f.

Proof:

lim y(f -f)gdp = 0 for geL. .
n n 1

Let E ©be the support of the functions f and fn n=1,2,---

0
E has o -finite measure; thatis E = En where
n=1
E )<w =1,2,---.
B n) n
m m
Let E =E - w E
n
. n=1
Given ¢ > 0, there exists m such that for m>m

0
Slfnldp<% n=1,2,"-.
Em

| S‘(fn—fm)gdpl < §(fn-f)gdpl +] y(f-fm)gdp] and hence

O,

lim S‘(fn-fm)gdp =0 for ge L1 .

n,m

|5fndu - §fmdp| < f(fn-fm)dul + § (£ -£_)dpl
m m

EO E—EO

< e +| g(fn-fm) X - du| .
E-E

The last term on the right approaches 0 as n —-® since
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Since € is arbitrary, lim S'fndp, exists and is finite.
n
The proof is completed in the same way as that of Theorem 2.

Theorem 4: Suppose hypotheses 5 and 8 are satisfied. If the

sequence of functions {f } weak %* L, converges to the function
n

f, then {fn} weak L, converges to f.

Proof:

lim y(f -f)gdp = 0 for all gelL. .
n n !

Let E Dbe the support of the function f.

&

o0
E has o -finite measure; that is E = En where
n=1
E < ® =1,2,"-"-.
w(E ) n , 2,

m
Let E™= E- U E
n
n=1
There exists m such that for m_>_m0, S'!fn!d|¢<1
n = ]_’Z’..._ Em
™o

],

such that for n > ng, y IfmldH <1

Let Fn: {x:lfl <n, xe¢E-E

There exists nO
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Since f is integrable on ¥ , lim 5‘ f dp = S‘ fdu .
"0 n YF © F

"o "o

Thus there exists n]L such that for n > nl, fn is

integrable on F
0

Thus fn is integrable for nzn1 .
Without loss of generality we may assume that fn is integrable

for all n.

The conclusion then follows from Theorem 3.

Theorem 5: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {fn} weak * L = converges to the function

f, then {fn} weak L. converges to f.

1

Proof:

Follows from 3.15 and Theorem 3.

Theorem 6: Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {fn} weak ¥ Loo converges to the function

f, then {fn} weak L. converges to f.

1

Proof:

Follows from 37.3 and 22. 2.

Theorem 7: Suppose hypotheses 2, 8, and 9 are satisfied. If the

sequence of functions {fn} weak * L - converges to the function
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f, then {fn} weak L1 converges to f.

Proof:

lim §fndp zgfdp and f 1is integrable.
n

Thus, without loss of generality, we may assume that we have
hypothesis 1.

The conclusion then follows from Theorem 6.

Now investigate the conditions under which weak L conver-

1

gence implies weak * Loo convergence. FEach set of hypotheses

listed below, together with weak L] convergence, implies weak * L,

convergence. Following the list, the results are stated and proved.
Counterexamples 15 and 24 show that these are the only implications

with a non-redundant set of hypotheses.

(1, 6) (3, 6) (6,10)

(2, 6) (6,7)

Theorem 8: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {fn} weak L1 converges to the function f,

then {f } weak * L_ converges to f.
n 0

Proof:

lim S'(f -f)dp. = 0 for measurable E.
n ED

Clearly f has o-finite support.
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L.et K Dbe the uniform essential bound for the fn n=1,2,---
Clearly K+1 1is an essential bound for f.
Let geL1 .
Given € > 0, there exists an integrable simple function s
such that glg-sldp < -E—(—I-z-_‘—_—l—)-—
| g(fn-f)gdp - y(fn-f)sdp] < 2(K+1) glg-sldp <e.

But clearly lim S"(f -f)sdp = 0 .
n v B

Since € is arbitrary, lim S‘(fn-f)gdp =0 for geLl.
n

Theorem 9: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {fn} weak L. converges to the function f,

1

then {f } weak * L_ converges to f.
n o0

Proof:
Since f 1is integrable, f has o -finite support.
The proof is now completed in the same manner as that of

Theorem 8.

Theorem 10: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {fn} weak L converges to the function f,

1

then {f } weak * L_ converges to f.
n o0

Proof:

Obviously f has o -finite support.
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The proof is now completed in the same way as that of

Theorem 8.

Theorem 11: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} weak L. converges to the function f,

1

then {f } weak * L_ converges to f.
n o0

Proof:

Follows from 3.3 and Theorem 8.

Theorem 12: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {fn} weak Ll converges to the function f,

then {f } weak * L _ converges to f.
n o

Proof:
Let E be the support of the functions fn n=1,2,"""

lim g (fn—f)dp = 0 for measurable F.
n F

Thus Sfdp = 0 for measurable F & EC .

0 a.e. on Ec

1l

Thus f
Since E has o -finite measure, the support of f has o-finite
measure.

The proof is then completed in the same way as that of Theorem

8.
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40. WEAK * Loo CONVERGENCE - WEAK Lp CONVERGENCE

First investigate the conditions under which weak #* L, con-
vergence implies weak Lp convergence. FEach set of hypotheses
listed below, together with weak * Loo convergence, implies
weak Lp convergence. Following the list, the results are stated
and proved. Counterexamples 1, 6,13, 20 show that these are the

only implications with a non-redundant set of hypotheses.

(3) (1,5) (5,10) (2,8,9)

(7) (5, 8) (1,2,9)

Theorem 1: Suppose hypothesis 3 is satisfied. If the sequence of

functions {f } weak * L, converges to the function f, then {f }
n n

weak Lp converges to f.

Proof:

lim y(f -f)gdp = 0 for gel. .
n n 1

Without loss of generality we may assume fn—fe Loo for all n.
Since we have hypothesis 3, fn—fe Lp for all n.

Let heLq and let FIZ{X’Ihlfl}’ FZ:{X:lh,>1}.

(infae s (inlaps (nlaw <) (fnjta.

F Fa Fa

Thus hel., and hence lim 5(f -f)adp = 0 for hel. .
1 n n q
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Theorem 2: Suppose hypothesis 7 is satisfied. If the sequence of

functions {fn} weak ¥ L, converges to the function f, then

{f } weak L_ converges to f.
n P

Proof:
By 39.2 we know that {fn} weak Ll converges to f.
Since we have hypothesis 7, we know that lim § f dp :y fdp
n n
¥ F
for measurable F.

Thus f is integrable.

Let Kn be the essential bound for fn—f .

P p-ly
- < - < .
flfn £ Pdp < (K ) £ -fldp <
Thus each f -f belongs to L
n P

Let E be the support of the functions f and fn n=1,2,"""

0
E has o-finite measure; thatis E = _ E where
n=1 n
E )< =1,2, "-.
k(E ) n

m
Let E*=E-  E
n
n=1
Given ¢ > 0, there exists mo such that for m_>_m0,
S.'fldp<i and ~glfldp<§- n=1,2,""
2 n 2 !
B™ E™

{x:|n] >1 }.

Let heL —and let Gl:{le‘hlgl}, G,
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If(fn-ﬂhdul < ‘S;(fn-f)hdu’ + !§C<fn-f)hdul
1 2

< Ig(fn-f)hdp|+| § (fn—f)hdptl+|§‘(fn-f)h-xG dp.|
mo m 2
G AE G~ (E-E )

< e + | 5 (f —f)hdpl lgf -flh X ul :

G1 r\(E—E )

m

Since p[Glm (E-E 0)] <, Theorem ! tells us that

lim ly (f -f)hdp| = 0.
n
n m
G, N (E-E )

Xg ¢ Ll’ the last term on the right approaches 0
2

as n —> o0,

Since h-

Thus lim sup | y(f -f)hdp| < €.
n n -

Since ¢ is arbitrary, lim g‘(fn-f)hd” =0 for heLq
n n.

Theorem 3: Suppose hypotheses 1 and 5 are satisfied. If the

sequence of functions {f } weak * Loo converges to the function
n

f, then {fn} weak Lp converges to f.

Proof:

By 39.3 we know that {fn} weak L converges to f.

1
Thus there exists n, such that for n > ng, fn-f is

integrable.
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The proof is now completedinthe same way as that of Theorem 2.

Theorem 4. Suppose hypotheses 5 and 8 are satisfied. If the

sequence of functions {fn} weak Loo converges to the function

f, then {fn} weak L  converges to f.
P

Proof:

Let E Dbe the support of the function f.

o0
E has o-finite measure; that is E = En where p(En)< 0

n=1
n=1,2,"""-.
)
Let E"=E-u E_.
n
n=1
There exists m, such that for mzmo, § |fn|dp<1
m
E
n=1,2,"""-.
™o
Let Fn: {x:]|f] <n, xeE-E "} .
There exists n such that for n>n_, glf |dp<1
0 -0 m
Fe
n

n=1,2,"
By 39.4 we know that {fn} weak Ll converges to f.

But on Fn f is integrable and hence lim 5 fndp: gfdp .

0 Fno ng
Thus there exists n, such that for n > n, f 1is integrable.
Without loss of generality we may assume that wehave hypothesis 1.

The conclusion then follows from Theorem 3.

Theorem 5: Suppose hypotheses 5 and 10 are satisfied. If the

sequence of functions {f } weak * L, converges to the function
n
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f, then {fn} weak L  converges to f.
P

Proof:

Follows from 3.15 and Theorem 3.

Theorem 6. Suppose hypotheses 1,2, and 9 are satisfied. If the

sequence of functions {fn} weak * Loo converges to the function f,

then {fn} weak L converges to f.
P

Proof:

Follows from 38.3 and 31. 2.

Theorem 7: Suppose hypotheses 2,8, and 9 are satisfied. If the

sequence of functions {fn} weak * L = converges to the function

f, then {fn} weak Lp converges to f.

. Proof:

Follows from 38.5 and 31. 2.

Now investigate the conditions under which weak Lp conver -
gence implies weak * Loo convergence. FEach set of hypotheses
listed below, together with weak Lp convergence implies weak * Loo
convergence. Following the list, the results are stated and proved.

Counterexamples 24 and 25 show that these are the only implications

with a non-redundant set of hypotheses.
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(6,10) (2,6) (6,7)

(1,6) (3, 6)

Theorem 8: Suppose hypotheses 6 and 10 are satisfied. If the

sequence of functions {f } weak L  converges to the function f{,
n

then {fn} weak * L_ convergesto f.

Proof:
Without loss of generality we may assume fn«fe Lp for all =n.
Let E be the support of the functions fn and f_ -f,

n=1,2,"

0
E has o-finite measure; that is E = En where
n=
E < OO, - 1, 2’ P
p( n) n
Clearly f has o-finite support.

Let K Dbe the uniform essential bound for the fn n=1,2,---

Let F = {x:f>Ktl}, F, = {xf<-K-1}.

Show p(Fl) = p(FZ) = 0 as follows:

Assume this is not so; that is H(Fl) > 0.

There exists n

b > .
0 such that p(Fl ~ En )> 0

0

Let H = {x:|f| <m, xeF_. ~ E_} and note that
m - 1 n

{H } 1is an increasing sequence of sets and
m

0

Fl I En = W Hm except for perhaps a set
0 m=1

of measure zero.
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There exists m, such that p[Flf-\ E ~H ]> o

0 n0 mo

By 32.2 we know that {fn} weak L1 converges to

f on FlmE ~ H
o My

Since { 1is integrableon F . ~E ~H ,
1 n, m,,

lim § = g f dp

FmE r\H FlmE ~ H
5 ™My I My

But IY fndp IiKp[Flr\EnnHm] and

0
F f‘\E r'\H 0
0
Ig | Z(K-H)p[Flr'\ Enor\ Hmo]
Flf'\E ~ H
) )

This is a contradiction and so p(Fl) =0.

In a similar way we can show that MFZ) =0.

Thus K+1 1is an essential bound for f.

Clearly each f -felL
n o0

Let geL1
Given £ > 0, there exists m, such that for mZmO,

PT——

o 2(K+1)
E
- < - - < f - : .
!f(fn f)gdul_lg(fn f)gdu|+!§(fn £)gdp| e+|§( g X mod“'
mq g E-E

E E-E
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Sh 11 . = :
ow lim Iy(fn{)gx mdp| 0 as follows

n
E-E 0

By 32.2 we know that {fn} weak L1 converges to
™0
f on E-E .

Given € > 0, there exists an integrable simple

€
i h . - < .
function s such that S' g X m s|dp K+

E-E 0
- . - - < . - <g.
|§(fn f)g-x modu f(fn f)sdu!_zmﬂ)ﬂg X m s | dp <e
E-E E-E
But clearly 1lim S'(f -f)sdp =0 .
n n
Since €, is arbitrary, lim gv(f -f)g x du =0
n L n O
E-E

Thus lim sup Igv(f “f)gdp | < €.
n J n -

Since ¢ is arbitrary, lim §(fn-f)gdp =0.
n

Theorem 9: Suppose hypotheses 1 and 6 are satisfied. If the

sequence of functions {f } weak Lp converges to the function f,
n

then {f } weak * L _ converges to f.
n 0

Proof:

Follows from 3.12 and Theorem 8.

Theorem 10: Suppose hypotheses 2 and 6 are satisfied. If the

sequence of functions {f,} weak Lp converges to the function f,




then {f } weak * L _ converges to f.
n o)

Proof:
Clearly f has o-finite support.
Without loss of generality we may assume that fn-feL
all n.
Thus we may assume that we have hypothesis 10.

The conclusion then follows from Theorem 8.

Theorem 11: Suppose hypotheses 3 and 6 are satisfied. If the

sequence of functions {f } weak L converges to the function
n

then {f } weak * L _converges to f.
n 0

Proof:

Follows from 3.14 and Theorem 8.

Theorem 12: Suppose hypotheses 6 and 7 are satisfied. If the

sequence of functions {fn} weak Lp converges to the function

then {fn} weak * L_ converges to f.

Proof:

Follows from 3.13 and Theorem 8.

206

for

f,

f,
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APPENDIX

When the work on convergence relations was first being investi-
gated, the definitions of weak L1 and weak * L convergences

[>¢]

were replaced respectively by these two kinds of convergence:

Definition: A sequence of functions {fn} weak Lf converges to
the function f if lim ‘S‘ f dp = C fdp.  for every measurable set
n E® v

E
E.

converges to

Definition: A sequence of functions {f } weak * L;
—_— n

the function f if lim S'(fn-f)gdp =0 for geLl .
n
The disadvantage of these two definitions is the fact when {fn}
converges in either of the two ways to f, f is not necessarily

unique. The non-uniqueness of these limit functions occurs when we

have a measure space with atoms of infinite measure. Non-uniqueness

of the limit functions seemed undesirable and so the definitions were
altered so as to make the limit functions unique. A question that is of
interest when one of the above convergences are involved is described

as follows:

Suppose we have selected two types of convergence, call

them type I and type II. If {fn} converges in the type I
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sense to f and there is a subsequence {fn }  which
k
converges in the type Il senseto u, is f=u a.e. ?

The answers to this question, along with the questions pre-
viously considered are given in the tables and diagrams below.
About half of the work with weak L/ convergence relied heavily on

1

one theorem which is now stated and proved.

Theorem: Suppose hypothesis 10 is satisfied. If the sequence of
functions {fn} weak L{ converges to the function f and con-

verges a.e. to the function u, then f=u a.e.

Proof:

lim S‘ f du = S‘fdp for measurable E.
n v ¢ E
Let F ©be the support of the functions fn n=1,2,--

0 = lim S‘ f dp = S‘ fdn for measurable EC F© .
n Yg" E

Upon applying Theorem E, p. 105 of Halmos we see f =0

a.e. on Fc
c
Thus f=u a.e. on F .

0
By hypothesis, F has ¢ -finite measure; that is F =

n=1
where p(Fn) <o n=1,2,"""

It suffices to show f=u a.e. oneach F
n

Thus without loss of generality we may assume that the measure
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space is totally finite.
Let hn(x) = sup {fi(x) :i=n,n+l,---} and

gn(x) = inf {fi(x)i i=n, ntl, - }; by Theorem A, p.

84 of Halmos these functions are measurable.

Clearly {gn} and {hn} converge a.e. to u.

00
Let E = {x:]|u(x)] <n} andnotethat X = w E_ except
n n=] O
for a set of measure zero.
It suffices to show f=u a.e. on E for n, arbitrary
n
0

but fixed.

10. 2 tells us that given e> 0, p{x: lgn—u| > g, ern } - 0
0

as n—o .

Let z, = {x: lgi-ul <g, xe En } and note that {Zi} is an
0

o0
increasing sequence of sets and En = Zi
0 i=1

[

It suffices to show f=u a.e. on Zi for io arbitrary but
0
fixed.

Since |g |<n0+€ for .xeZ, and n>1i
n = i -

2.15 tells us  {g_}
0 n

07

cohverges in meanto u in Z, .
"0
S'fdp = lim S'f dp > lim S'gndp = yudp for measurable
C n ‘c" n “C @

cc oz,
0
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Thus f=u a.e. on Z which is proved as follows:
i
0

Ifnot, £f<u on Ag_zi such that p(A)> 0.
0

u-f 1is non-negative on A.

Either u-f 1is integrable or wu-f 1is not integrable on A.

Part 1: Assume u-f is integrable on A.

g\(u-f)dp > 0.

By Theorem B, p. 104 of Halmos y(u-f)dp =0
A
if and only if u-f =0 a.e. on A.

Since f < u, gvfdp < yudp.
YA A

This is a contradiction since g’ fdu 2§ udp .
YA A

Part 2: Assume u-f 1is not integrable on A.

Let Bm: {x:u-f <m, xeA} and note that

{B"'} is an increasing sequence of

o0
m
sets .and A = v B

m=1

lim p(B™) = u[lim B™] > 0
m m
m

0
Thus there exists m such that p(B )> 0.

0
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g (u-f)dp =0 if and only if u-f=0 a.e.

0 My

Since f<u 5‘ fdp < S‘ udp .
m
B B

This is a contradiction since g fdp > gudp.
m m
0
B B 0

With the above argument modified by replacing g, by hn,
u-f by f-u and reversing some of the inequalities

we can conclude that f <u a.e. on Zi

. .

Thus f=u a.e. on z,1 , hence on En and hence on E.

0 0

We now give two digarams which treat the questions considered
throughout the thesis. Tables are then given which answer the
cﬁuestion posed in this appendix.

The diagram given below indicates how weak 3* Lo/o interacts
with the other eight modes of convergence. The arrows indicate
cases where we have an implication. The numbers in parentheses
are sets of hypotheses. If an arrow goes to a box containing sets of

hypotheses, this indicates that at least one set of hypotheses is
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needed for the implication. As an illustration: Weak * Lo: con-
vergence implies weak I. convergence if hypothesis 3 is satisfied.

Notice that any of the other nine sets of hypotheses in the box also

give this implication.

unuf, o.e | | wmees || aun, [ L, Lo | |wrip| |wky!
(L)
\
W Q.(lk % Lw / \
’ s
/ \ AN
\ QBB
(37,0 (3 32) 1,8) 1,25) 0ays) U d)
ALY G TE MR E-TRTOT I TR A ) 0 s Rs5,2D
(5iR,4,\0) GIWOEHN | | aSI0G%A)
(15,%, ) (1,5 ) B3,10) (514,\0)
\\‘§ ‘
uni & L, Lo | (wkblgf |wkl!
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The diagram given below is read in the same way as the one

above except that it shows how weak L; interacts with seven modes

of convergence. ( The interaction with weak * L:o was shown in the

last diagram. )

\m\Q._I GC [ ] Neas, (\.\m./ L, Le ||wkle
L A | ] sy
L2 (D | {3 | L\ (M U3) (1h5)
3,0 () B\OY | QB W) 0a) Gy
La) (1 ER) (%) D | @® B3
G 5,2 (335 4)
\
\ VIR S §
weak Ly
/o \
/ l A \
L— —— | B, A) @1 ey
WO B [BATAY Jend ]| (ha) | luse wso
('&;Q\ Q) L\ \\ﬂ) }\_\3\0\\ (54 )\03 (5 \O\j = ;43\0\‘) “ B\c\\ (S \03
(41\0) /|\~ K'33L,f\) U)‘é\!a\a\) ‘ =L
\ LB\HG‘ )\0\)
\ z /
\ v
wn§, || ae, |]meas | o]\ Lo ||wklg
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The table below answers the question posed earlier in this
appendix when weak * Log convergence is one of the two types of
convergence under consideration. We now illustrate how the table
is read and what information it yields.

Choose any one of the eight modes of convergence listed along
the top of the table; suppose mean convergence is chosen. Now pick
one of the sets of hypotheses listed along the left side of the table;
suppose (7, 8f) is selected. At the intersection of the column con-
taining mean convergence and the row containing (7, 8f) we see there

is an X This indicates that the following theorem is true.

Theorem: Suppose hypothesis 2 is satisfied and hypothesis 8
is satisfied with f. If {fn} weak * LZO converges to f

and converges in meanto u, then f=u a.e.

If there had beena O at the intersection we would have
gotten no theorem.
Notice that this theorem answers the question posed earlier in
. . . /
this appendix regardless of the roles taken by weak * Loo and mean

convergence.
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The following table is read in the same was as the one above

s s
except that weak Ll convergence is treated instead of weak * L.

a.c. |mess.| b Q\‘;;Qn L w\«L&
(0 XX I X X IX X X
@Y IX X X XX XX
@ o la o o X IX|IX
(3) X AIX I X X IX I XX
(7) XX X IX I X IX X
(10 X IX I X I X |IX I XX
RN XXX X[ XX X






