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Because of their high cost, reducing the number of boards used to fill an 

order of dimension parts is an important goal in a lumber rough mill. FLCO 

(Fuzzy Logic Cutting Order) is a computer program that achieves this goal. 

Using the concepts of fuzzy logic control, FLCO provides a heuristic approach to 

this problem. FLCO incorporates a version of the CORY lumber cut-up software, 

and provides a model of a rough-mill system that is able to reduce the number of 

boards needed to fill a cutting order. FLCO allows different control methods to 

be used, including fuzzy logic control, dropping sizes from the cutting order as 

their demands are met, and no control. Because of the modularity of its design 

the FLCO code can easily incorporate other control methods. 

CORY lumber cut-up software provides sawing solutions for boards based 

on the values assigned to the sizes in a cutting order. After each board is sawn, 

the fuzzy logic controller adjusts the value of each size to achieve the objective 

of filling the demand for each size in a cutting order at about the same time. 
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These new values are subsequently used by CORY when finding a sawing 

solution for the next board to be processed. Upon completion, FLCO reports the 

number of boards required to fill the cutting order, the average percent area 

yield, and the number of each piece recovered. 

Three cutting orders, three lumber grades and two types of control 

provide a means of determining the effects of fuzzy logic control on reducing the 

number of boards used to fill a cutting order. Across all lumber grades and 

cutting orders, fuzzy logic control greatly reduces the number of boards as 

compared with dropping sizes. Fuzzy logic control slightly reduces the number 

of boards as compared with a more complicated method of control across all 

lumber grades and most cutting orders, but the difference is not statistically 

significant. In addition, the effect of fuzzy logic control on individual sizes is also 

examined. 
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FILLING A ROUGH-MILL CUTTING ORDER USING A FUZZY LOGIC  

CONTROLLER  

1. INTRODUCTION 

Cutting dimension parts from lumber is an important process in several 

industries, including molding and millwork production, pallet production and 

furniture manufacturing, to name a few. Although the details of the procedure 

vary from mill to mill, the raw material is always rough-sawn lumber that is sawn 

further by an assortment of ripcuts (which approximately parallel the grain of the 

wood) and crosscuts (which are perpendicular to the ripcuts). The rips and 

crosscuts partition each board into a set of rectangular portions and are 

considered either as waste or as pieces with some value to an end-user. A 

portion of each board is considered waste when its dimensions are not wanted, 

or when it contains natural features' that are unwanted for a particular 

application. Inversely, if a portion of a board has dimensions that are desirable 

and if its features are allowable by a user, that portion has some value 

associated with it and can be used by a customer in an application. The goal of 

rough-mill production is to obtain these valued pieces from the input raw 

material. 

Often these features are referred to as "defects." However, some 
features that are considered defects in one application may be allowable or even 
desired in another application. In this paper, the terms "feature" and 
"characteristic" are preferred over "defect." Portions of wood that are free from 
disallowable features are referred to as "clear areas." 
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1.1 Rough-Mill Sawing Processes 

Several procedural parameters characterize rough-mill sawing processes 

and are shown in Table 1. 

Table 1 Rough-mill procedural parameters 

Parameter I Options 

Board edging Amount of edging or unedged 

Type of first sawing operation Crosscut or rip 

Number of sawing stages Two or more 

Piece dimensions Fixed or random at each stage 

Kerf width Crosscut and rip at each stage 

Number of operations One or more at each stage 

Blade setup Blade movement limitations and 

elemental or non-elemental pieces 

1.1.1 Board edging, type of first sawing operation and number of stages 

Boards sawn into dimension parts may be edged or unedged. Edging 

removes some board material along its length, and is often done to remove bark 

or missing wood on its edge (Schott, 1995). The first type of sawing operation 

applied to each board in a mill is either a crosscut or a rip. Usually a board will 

undergo several crosscuts or several rips before a change of operation takes 

place. The set of operations between these changes is termed a stage 

(Anderson et al., 1992), and at least two sawing stages are applied to a board in 

any mill setup: crosscuts followed by rips or rips followed by crosscuts. Figure 1 

is a state diagram for a three-stage rip-first process. Boards are processed 
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sequentially, and at each stage some material from the board may go to waste. 

Other portions are either processed further, or considered finished parts. 

Rough-Sawn  
Lumber  

Dimension 
Parts 

Figure 1 State diagram for a three-stage rip-first sawing procedure 

1.1.2 Piece dimensions 

At each stage, the portions sawn may be of either fixed or random 

dimensions, depending on the particular process. In a three-stage rip-first 

scheme as illustrated in Figure 1, a common approach is to allow both fixed and 

random dimension lengths to be cut at the second stage. The fixed length 

pieces are usually of dimensions specified by some customer, while the random 

length pieces are finger-jointed together for some application where the 

appearance of joints in the material does not matter. 
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1.1.3 Kerf width 

Another parameter that is relevant in the rough-mill environment is the 

width of the saw kerfs, which is the board material removed by the saw blades. 

This parameter is closely related to the physical limitations of the blades, and is 

not easily changed by the mill operator. However, proper maintenance can 

decrease variability in kerf and improve the process (DeVor et al., 1992), which 

can lead to increased recovery (Rahardjo, 1992). 

1.1.4 Number of sawing operations and blade setup 

The number of sawing operations that can be done at each stage may 

depend on the type of equipment in place. For example, a first-stage rip saw will 

often have four to six circular blades mounted in parallel on a shaft, and in the 

first stage all of the rip operations on a board are done simultaneously. By 

comparison, a second-stage crosscut saw often has only a single blade 

perpendicularly mounted to the length of the board. The blade is lowered to 

make cuts as the wood is moved past it. Only a few physical constraints limit the 

number of possible crosscut operations. This is closely related to the blade 

setup, which describes the limitations in movement (if any) of the blades relative 

to the board, and whether or not the resulting pieces are required to be of a 

dimension specified by a customer. If all of the useful pieces produced at a 

given stage possess at least one dimension specified by a customer, they are 

called elemental pieces (Anderson et al., 1992). Non-elemental pieces are 

never produced by the last two stages of any rough-mill process; the last two 

stages provide the final opportunity for pieces to be cut to a dimension wanted 

by an end user. 
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1.2 Rough-Mill Input 

The parameters previously described relate to the actual processing of 

rough-sawn lumber. Board quality and cutting order are two more important 

limitations which can be considered separately because they relate more to the 

input to the rough-mill process than the processing itself. 

1.2.1 Boards and board quality 

The quality of the boards used in a mill will affect the ease with which 

obtaining the desired dimension parts is achieved. For example, obtaining large 

dimension pieces from low quality boards is more difficult than from high quality 

boards. Grades describe board quality. Grades, industry adopted standards, 

categorize boards mostly by minimum size requirements and by maximum 

frequency and size of certain features (WWPA, 1988), or by clear area size 

requirements (NHLA, 1986). A mill manager can somewhat determine the 

quality of boards being cut by choosing to use boards of a certain grade2. 

However, quality variation can occur within grades because a lumber grade is a 

discrete, not continuous, measurement of quality. Boards, with their natural 

variation, range from those that barely meet the requirements for one grade to 

those that barely fail the requirements for the next higher grade. The mill 

manager cannot control this within-grade variation (Carino and Le Noir, 1988). 

1.2.2 Cutting order 

In its simplest form, a cutting order is a list of piece sizes, the number of 

each piece required by a customer, and an associated value. Frequently a 

specification of allowable and disallowable features will also be associated with 

2 Limited availability of certain board grades or other constraints may 
influence the quality of the boards being cut as well. 



6 

each piece. A mill manager must produce the requested items in the cutting 

order. Like board quality, a cutting order is an external constraint imposed on 

the rough-mill process. Certain cutting bills are more constraining than others; 

generally those that contain many large sizes or have extremely high demands 

are more difficult to meet than those that do not. 

1.3 Problem Statement 

Corresponding to recent increases in the cost of lumber is an increase in 

the importance of extracting the most value from the lumber used by a mill. 

Carino and Foronda (1990) state that "on the average, lumber input cost 

constitutes about 40 to 60 percent of the total cost in producing hardwood 

furniture." Similar percentages are cited for cabinet production (Carino and 

Le Noir, 1988). If these industries reflect trends in other areas of lumber 

processing, then raw material is a dominating cost in the manufacture of 

dimension parts. Therefore, an important way to reduce the overall cost of 

producing dimensional material is to reduce the amount of lumber used. 

Using less lumber in mill production provides several other benefits. One 

of these is lower material handling cost. Another is that cutting orders are filled 

efficiently, allowing a mill to meet more customer orders. Further, less material 

goes either to waste or to low valued products such as chips. Finally, fewer cut 

trees are needed, saving an increasingly scarce natural resource. 

The problem for mill managers can be stated as follows: how can the 

cutting order be filled while using as few boards (or as few board feet) as 

possible? This is an instance of a two-dimensional cutting stock problem, 

subject to several constraints that should be noted. First, the stock material (ie. 

the boards) contains features that are not allowed in the final product, and 

whose location is not easily predicted. Second, the stock material's initial sizes 

are not known. Third, allowable cuts will be either parallel or perpendicular to 
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every other cut, and each will be guillotine cuts (Gilmore and Gomory, 1966). 

Fourth, because wood is an anisotropic material, piece orientation is important. 
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2. LITERATURE REVIEW  

Within the problem area considered here, two categories of optimization 

can be identified. Carino and Foronda (1990) call these local and global 

optimization. In this paper, local optimization involves cutting up boards in the 

best possible manner, while global optimization involves finding the least-cost 

solution to meeting the customer's cutting order (Dmitrovic et al., 1992). In the 

literature, most approaches concentrate on one or the other of these. 

Classifying some references either under the heading "Local Optimization" or 

under "Global Optimization" is somewhat artificial, but is helpful for identifying 

the features most relevant to this paper. Both local and global optimization can 

be considered under the general category of cutting and packing problems, 

which have been the subject of considerable research. 

2.1 Problem Typology 

Sweeney and Paternoster (1991) found more than 400 papers, 

proceedings and theses on cutting and packing problems. Part of the reason for 

the interest in them lies in their wide range of applicability, including areas as 

diverse as bin packing, vehicle loading, partitioning problems, line balancing, 

multiprocessor scheduling, and even capital budgeting. This wide variety 

prompted Dyckhoff (1990) to propose a typology of cutting and packing 

problems based on four characteristics common to all: 

1. Dimensionality of stock objects 

(1) One-dimensional. 

(2) Two-dimensional. 

(3) Three-dimensional. 

(N) N-dimensional with N > 3. 



9 

2. Kind of assignment 

(B)	 All stock objects and a selection of items. 

(V)	 A selection of stock objects and all items. 

3. Assortment of large stock objects 

(0)	 One stock object. 

(I)	 Identical figure (ie. shape). 

(D)	 Different figures. 

4. Assortment of small items 

(F)	 Few items (of different figures). 

(M)	 Many items of many different figures. 

(R)	 Many items of relatively few different (non-congruent) 

figures. 

(C) Congruent figures. 

Under this typology, "items" refers to the pieces or products placed in or cut from 

the stock objects. The problem considered in this paper can be classified as 

2/B/D/M: a two-dimensional problem where all objects (boards) are assigned a 

selection of items (pieces), the objects are of different figures into which many 

items are to be placed. 

2.2	 Local Optimization 

While some references in this section discuss issues of global 

optimization, they are reported here because their emphasis is on local 

optimization. They are more concerned with placing pieces in a stock object 

than with the overall goal of obtaining the required number of pieces. 
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2.2.1 Placement problems 

Although the cutting stock problem was described much earlier, 

(Kantorovich, 1960; Eisemann, 1957) Gilmore and Gomory's work on cutting and 

packing problems from the 1960's (Gilmore and Gomory, 1961, 1963, 1965) 

provided practical solution techniques and a foundation for much of the research 

that has followed. Gilmore and Gomory (1965) briefly explain how to extend 

their techniques to account for character variations in the stock material. 

Hahn (1968) further develops Gilmore and Gomory's ideas, using 

dynamic programming to find optimal three-stage cutting solutions for two-

dimensional areas with disallowable features. Hahn simplifies the problem by 

allowing only guillotine cuts, and assumes that all items recovered at the third 

stage are the same size. The algorithm Hahn describes is not constrained by 

the number of pieces required, although she suggests that piece values should 

be set considering inventory and demand requirements. The computation time 

for the algorithm increases linearly with the number of defects, and more than 

quadratically with the number of sizes. This is not as serious of a problem today 

as then, but the large computation times have provided a motivation for the 

development of faster solution techniques (Pegels, 1967; Herz, 1972; 

Adamowicz and Albano, 1976). 

Pegels (1967) compares two heuristic models that solve a 2/B/I/R 

problem, where the stock material is without quality variations. Herz (1972) 

gives a recursive technique for solving 2/B/ / problems that is both fast and 

optimal. The technique assumes isotropic, stock material of uniform character. 

Christofides and Whitlock (1977) present a non-recursive method for the same 

class of problems as Herz. They use a depth-first branch and bound strategy, 

and limit the number of times a piece can appear in a single stock object. 

A method to optimize guillotine cutting of unedged boards with 

disallowable features is described by Scheithauer and Terno (1988). They 

improve on the computational efficiency of Hahn by eliminating some 
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unnecessary calculations, but like Hahn, they do not consider the demand for 

each piece. 

Brunner et al. (1990) revise the Gilmore and Gomory algorithms 

specifically for determining optimal sawing patterns for board clear areas. One 

simple change they make is to consider the thickness of kerf lines. More 

importantly however, they overcome some memory requirements of the 

algorithms by eliminating redundant solutions from consideration, and by using 

efficient data structures. Further, they take advantage of the fact that clear 

areas in boards that are both very long and very wide occur infrequently, and 

thus do not find solutions for them. By using this approach, they significantly 

reduce the computation time required. 

Carnieri et al. (1993) report a heuristic procedure for cutting lumber. 

They report that it provides optimal or near-optimal solutions. The procedure 

has limited applicability because it can only be used for lumber with a single 

disallowable feature. They claim it can be extended to include more features, 

but offer no hints on how to do so. 

Ronnqvist (1995) describes a method for single-stage crosscutting of 

wood strips into pieces with desired lengths and qualities. His approach 

addresses a situation which often arises in mills: different end-products often 

have different quality requirements. To satisfy the real-time constraints of the 

problem, he makes some simplifying approximations, but still arrives at solutions 

which are near-optimal. 

2.2.2 Lumber cut-up programs 

Several computer-based implementations of placement models exist. 

Those most relevant to this paper are those that model lumber cut-up 

operations. The earliest of these is Thomas' rough-end yield program (1962). 

Since then, many have been developed, including YIELD (Wodzinski and Hahm, 

1966), RIPYLD (Stern and McDonald, 1978), MULRIP (Hal lock and Giese, 
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1980), OPTYLD (Giese and McDonald, 1982), CROMAX (Giese and Danielson, 

1983), CORY (Brunner, 1984; Brunner et al., 1989), GR-1ST (Hoff et al., 1991), 

AGARIS (Thomas et al., 1994) and ROMI-RIP (Thomas, 1995b). These 

programs have several characteristics in common. They all solve 2/B/D/M 

problems with the additional constraints of guillotine cuts and disallowable 

features in the stock material. Any differences between these programs are 

primarily in their modeling of the rough-mill procedural parameters listed in 

Table 1 on page 2. 

2.3 Global Optimization 

While some references in this section discuss issues of local optimization, 

they are reported here because their emphasis is on global optimization. They 

are more concerned with the overall goal of obtaining the required number of 

items than with placing items in an object. 

2.3.1 Cutting stock problems 

Like Herz, (1972) Adamowicz and Albano (1976) also give a technique for 

2/B/ / problems. Their heuristic approach is similar to Herz's in that it assumes 

the stock material is of uniform character. It is different in that piece orientation 

is important, the number of pieces to be cut is limited, and the cuts are non-

guillotine. Albano and Orsini (1980) extend the approach to consider guillotine 

cuts, but still assume feature-free stock. 

Cheng and Pila (1977) use dynamic and integer programming to 

maximize the use of stock material, with a focus on lumber. They model a two-

stage crosscut-first system that allows random width pieces, and considers the 

presence of features in the stock. As they state it, their "objective is to cut a 

large number of boards to satisfy a cutting [order] with an overall gain that is to 
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be increased to a maximum." Their approach to the problem is to make sure that 

"the ratio between the number of pieces . . . to the original required quantity is 

approximately the same for each and all items." In other words, they attempt to 

meet the demand for all pieces at about the same time. They dynamically 

assign values to a piece based on the percent demand met for that piece at a 

given instant of production. Any piece with a percentage exceeding the average 

ratio for all pieces is not cut. 

A heuristic procedure for one-dimensional cutting of lumber stock is given 

by Azarm et al. (1991). Rather than evaluating their method with actual board 

data, they use Monte-Carlo simulation to generate the boards and the features 

they contain. They observe that longer pieces are more difficult to recover than 

shorter pieces, and to account for this they dynamically assign priorities, or 

values, to each piece based on how fast the piece is being recovered. 

Dmitrovic et al. (1992) develop a model for lumber cut up which considers 

both local and global optimization. They recognize that in an industrial setting, 

little is known about lumber quality before cutting, and argue that therefore 

homogeneous quality must be assumed. Therefore one cannot give a good 

reason to produce one piece in preference to another, and so they maintain "a 

relative constant proportion between all the pieces: at x% of production, it is 

required that x% of the quantities requested be complied with." Like Cheng and 

Pila, they attempt to meet the demand for all pieces at about the same time. 

Carnieri et al. (1994) report some algorithms for cutting dimension parts 

from lumber (anisotropic stock) or composite boards (isotropic stock). The 

procedure can be used for either crosscut or rip-first systems, and even 

determines the best first operation. Like Carino and Foronda's SELECT 

program (1990), their methods require detailed inventory information. 
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2.3.2 Cutting stock programs 

Cheng et al. (1977) use the methods described by Cheng and Pi la (1977) 

in a benchtop model of an automated lumber sawing system. The optimization 

routines dynamically allocate values to pieces in the cutting order to maximize 

the use of stock material. 

OPTIGRAMI (Martens and Nevel, 1985) is a lumber allocation model that 

determines least-cost grade mixes of lumber. It uses linear programming to fill a 

cutting order with a user-specified selection of graded lumber. OPTIGRAMI can 

consider any volume limitations for each grade being used. 

SELECT is another lumber allocation model, developed by Carino and 

Foronda (Carino and Foronda, 1990; Foronda and Carino, 1991), which 

accounts for quality variations in the stock material. Using both linear and 

nonlinear programming techniques, it requires that the length, width, grade and 

number of each board in inventory are known beforehand, a condition that is 

impractical. The objective of SELECT is to find the least-cost allocation of 

lumber required to fill the cutting order. 

Recognizing that a mill production environment is often changing, Voigt 

(1987) has developed software to solve the cutting order problem that allows for 

computer-aided, but human controlled cutting pattern generation. Voigt gives 

several realistic but problematic conditions most of which are not considered by 

programs like OPTIGRAMI and SELECT: 

fast changes in production programs 

short series of production 

discontinuous delivery of boards 

differences in quality and type of boards. 

Rather than trying to account for these conditions with software, Voigt's program 

can either assist a human operator in generating sawing patterns, or allow for 

human-generated solutions. 
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3. APPROACHES, OBJECTIVES AND SCOPE  

As indicated by the wealth of literature on the subject, many potential 

approaches to the problem of filling a cutting order in secondary lumber 

manufacturing exist. These can be roughly divided into two categories: heuristic 

and non-heuristic. 

3.1 Heuristic and Non-Heuristic Methods 

Generally, heuristic methods are those that approach a "good" solution to 

a problem without guaranteeing that the solution found is the "best." The true 

maximum (or minimum) may be too difficult or costly to obtain. Heuristics are 

methods that approach a maximum (or minimum) solution more easily or 

cheaply. 

The simplest example of a non-heuristic method to solve the problem 

stated in Chapter 1 is no control, which is the equivalent of cutting pieces for 

inventory. This strategy has the advantage of offering high yields, but has the 

disadvantage that many pieces may be cut for which there is no demand. Other 

non-heuristic methods that do apply some sort of control are usually based on a 

mathematical model of the problem. These methods do not have the 

disadvantage of no control, but they do have the disadvantage of being difficult 

or costly to carry out. 

An example of a heuristic method is that of dropping sizes from the cutting 

order as the demand for that size is filled. This has the advantage of simplicity, 

but has the disadvantage that no priority is given to pieces that may be difficult 

to obtain from the boards that are being cut. Smaller pieces that are easy to 

recover, or pieces with low demand will meet their demands very rapidly and be 

dropped from the cutting order. Larger pieces that are more difficult to obtain, or 

pieces with large demands will remain in the cutting order longer. This results in 
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there being progressively fewer pieces in the bill, while pieces that remain 

become harder to recover. Therefore yields will usually drop as cutting 

progresses. Other heuristic methods include dynamically changing piece values 

in response to factors such as piece sizes, demands and recovery rates. 

3.2 Justification for Using Fuzzy Logic Control 

Fuzzy Logic Control (FLC) is an example of a heuristic method that can 

be used to change piece values dynamically as cutting progresses, thus 

affecting the number of each piece recovered by a sawing system. While other 

methods of control may be used to provide reasonable solutions for the problem 

area under consideration, FLC is a suitable alternative. Cox (1992) gives four 

conditions under which using fuzzy logic for control is appropriate. First, FLC is 

appropriate when one or more of the control variables are continuous. This 

condition is satisfied for all of the control variables, as will be shown later (see 

discussion of control variables on page 25). 

Second, FLC is appropriate when a mathematical model of the process 

does not exist, or is too complex to be used in the controlled system under 

consideration. Presently there is no mathematical model of the process, but one 

is being developed (Hamilton, 1996). 
Third, FLC is appropriate when high ambient noise levels are present. In 

the rough mill environment, one factor contributing to the "noise" is variability of 

board quality; a board of any quality may be cut at any time (Carino and LeNoir, 

1988). In the most extreme case, this could mean that a board of the highest 

grade could be followed by a board of the lowest grade, or vice-versa. Most of 

the time though, a board's quality is probably similar to the quality of the boards 

around it. However, this noise factor is still present due to within-grade variation 

of board quality. 

Fourth, FLC is appropriate when expert knowledge is available to specify 

the rules underlying system behavior and the fuzzy sets that represent the 
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behavior of the variables. Here, expert knowledge is available in the person of 

the author, with seven years of experience with CORY (Brunner, 1984; Brunner 

et al., 1989) sawing model software. 

3.3 Project Objectives and Scope 

The purpose of this project is to solve the instance of the cutting stock 

problem that exists in the manufacture of dimension parts from boards. The 

primary objectives of this research were to: 

1) develop a Fuzzy Logic Controller to solve this problem, using the 

CORY software to generate sawing solutions; 

2) compare the performance of the FLC with other methods of control, 

noting especially their effect on lumber usage requirements. 

A secondary, but important objective was to develop software that provides a 

user interface and integrates the CORY and FLC modules. 

Some assumptions limit the scope of the project: 

1) the cost of stock material dominates all other costs to the 

manufacturer; 

2) boards are processed sequentially, and board quality is not known 

before sawing; 

3) piece sizes will not be added to the cutting order during board 

processing; 

4) all pieces cut will be of the same quality. 

The first assumption implies that other approaches to reducing mill costs are not 

considered here. The second assumption relates to the timing and mix of board 

grades and the third assumption to the timing and mix of cutting orders. Both of 

these timing and mixture problems have been explored elsewhere (Hafley and 

Hanson 1973; Chambers and Dyson, 1976; Martens and Nevel, 1985; Carino, 

1986; Carino and Le Noir, 1988; Carino and Foronda, 1990; Farley, 1990; 

Foronda and Carino, 1991), and are beyond the scope of this work. The fourth 
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assumption relates to the fact that mills will often specify pieces in terms of their 

quality as well as their size, value and demand. Quality variation in the pieces 

cut is explored by ROnnqvist (1995), and is also beyond the scope of this work. 
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FUZZY LOGIC CUTTING ORDER MODEL DEVELOPMENT4. 

Figure 2 shows the parts of a general control system. The subject of 

control might be a physical device such as a voltage regulator, or it may be more 

abstract, such as a set of prices. In either case, the state of the process is used 

as input for the decision making logic, and the output of the decision making 

logic is used to change the behavior of the controlled system. 

Controlled System,  
Process or Physical  

Device  

Mathematical Model orOutput InputKnowledge Base 

Decision Making Logic 

Figure 2 General control system 

The center and bottom boxes in Figure 2 illustrate that the decision making logic 

relies either on a mathematical model, or on another representation of 

information. These two boxes stand for the expert knowledge contained in the 

system. As the name implies, decision making logic tells the system what 

decisions to make - -what aspects or what variables of the controlled system need 

to be changed. Alongside this, the mathematical model or knowledge base tells 

the system how to make those decisions - -how much to change the variables of 
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the controlled system. The knowledge base also provides a means by which the 

process and the decision engine can exchange information that is meaningful to 

each another, for example by converting raw physical data into numerical 

measurements. 

A fuzzy control system can be represented very similarly as shown in 

Figure 3 (Lee, 1990a, 1990b; Cox, 1992; Mendel, 1995), which differs from a 

generalized control system primarily in the addition of fuzzification and 

defuzzification interfaces. The fuzzification interface converts state information 

about the controlled process into their fuzzy representations. Inversely, the 

defuzzification interface changes the fuzzy results of the decision making logic 

into crisp control values. Notice that all decisions are made using fuzzy 

information. This means that all of the decision making logic uses fuzzy sets 

and fuzzy rules of inference, which are explained in Appendix 2. 

Controlled System,
actual control process output andProcess or Physical 
values Device state variables 

Output Knowledge Base Input

N(crisp) (crisp) 
V 

Defuzzification (fi.4231K_ Decision Making _ (fuzzy) Fuzzificationill-- InterfaceInterface Logic 

Figure 3 Fuzzy control system 

Most of the boxes in Figure 3 correspond to some program module in a 

fuzzy logic controlled system. The knowledge base is an exception, and 
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includes knowledge about input and output to the FLC and knowledge about the 

appropriate fuzzy sets and fuzzy rules for a particular application. The 

knowledge base represents all of the expert knowledge embodied in the system 

and is not so easily modularized. 
As stated on page 17, the purpose of this project is to develop a Fuzzy 

Logic Controller to solve the problem of filling a cutting order in a modeled 

rough-mill environment. FLCO (Fuzzy Logic Cutting Order) is a software 

package designed to meet this goal. Figure 4 shows the major portions of the 

system. Global optimization, which here corresponds to obtaining the required 

r FLCO 

User interface and FLC4-'CORY communication 

r 
FLC CORY 

global local 
optimization optimization 

Figure 4 Major portions of FLCO software system 

numbers of dimension parts, is done by a fuzzy logic controller, developed 

specifically for this purpose. Local optimization, which here corresponds to 

finding sawing solutions for individual boards, is done by a version of CORY 

(Brunner, 1984; Brunner et al., 1989), a sawing process model. Since local 

optimization is not the focus of this project, a library of CORY routines provides a 

programmer interface via a few function calls. This library can easily be 

replaced by any other CORY sawing model, or by a different sawing algorithm 
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altogether. The local and global optimization modules are contained within the 

larger FLCO program that enables communication between them and provides a 

graphical user interface. 

To describe the FLCO system, this chapter is organized to reflect the 

schematic representation of a fuzzy logic controlled system in Figure 3 on page 

20. First is a description of the controlled process: the CORY sawing model. 

4.1 CORY Sawing Model 

The CORY family of programs model a variety of sawing processes, 

differentiated by the rough-mill procedural parameters3 they embody. A heuristic 

decision engine drives each of them, and determines the best placement of 

cuttings for individual boards. 

4.1.1 Description of the algorithm 

As input, CORY requires two items: board data and a cutting bill. A set of 

Cartesian coordinates and feature codes represent a board. The coordinates 

specify the board's boundaries and the location of any noteworthy features 

within the board. Feature codes detail the type of each feature, and the face of 

the board on which they appear. More details about board data requirements 

can be found in Brunner (1984). 

CORY finds a sawing solution for an individual board by choosing the kerf 

line locations that result in the highest value of parts recovered. Rather than 

examining all possible positions of kerf lines, CORY considers several positions 

that are likely to be among the most valuable. This provides a tremendous 

decrease in execution time with little reduction in recovery (Brunner and 

Anderson, 1991). 

3 Table 1, page 2. 
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To evaluate these kerf line locations, CORY considers each board as a 

collection of clear areas, where a clear area is a rectangular region within the 

board that is free of disallowable features. Once these clear areas are found, 

CORY assigns each the value of the most valuable cutting that can be placed 

within it. For example, consider a clear area of dimensions 41" x 2.25", and a 

cutting bill containing sizes 40" x 2" and 39" x 1.75", valued at 80 and 85 

respectively. The clear area is assigned a value of the smaller size, because 

CORY makes decisions based on cutting value, not area. 

Assigning a value to a clear area based on a single cutting is not the 

usual approach used by the CORY family of sawing models. Usually, the 

optimal pattern of cuttings that will fit in a clear area defines its value (Brunner 

et al., 1990). This clear area optimization represents a third level of optimization 

in addition to the local and global optimization already discussed. To avoid too 

many complicating factors in the development of the FLC, the CORY sawing 

model used for this project is modified to assign the value of a single cutting to 

each clear area, not the value of an optimal cutting pattern. 

After all clear areas have been given a value, CORY determines the 

worth of each kerf line location by the total value of the clear areas that can be 

recovered once the board is sawn at that location. The board is then "sawn" 

along the most valuable kerf line, and repeats the entire process on the resulting 

portions until the entire board is reduced either to waste or to dimension parts. 

4.1.2 Description of procedural parameters modeled 

For this project, the version of CORY used closely models a sawing 

system that is commonly used in the Pacific Northwest for producing molding 

and millwork--a three-stage rip-first system. Either edged or unedged boards 

may be used, and only fixed dimension pieces are recovered at each stage. In a 

mill setting, it is more common to cut both fixed and random length pieces during 

the second stage. However, since random length pieces are glued up into 
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finger-joint material, they do not have a specific demand count associated with 

them as fixed length pieces do. They are generally cut to inventory, and the 

problem addressed in this paper does not apply to them. Further, fixed length 

pieces are preferred to similar sized random length pieces because they are 

usually more valuable. Random length pieces are often recovered from the 

clear areas that are "left over" in a board after the fixed length pieces have been 

recovered. For these reasons, and without loss of generality, the CORY sawing 

model used here does not consider random length pieces. 

Constraints on the primary ripsaw operations model the mechanical 

limitations of an actual ripsaw produced by an Oregon company. The ripsaw 

has six movable blades, each of which has a maximum range of movement of 8 

and 13/16 inches, and can be positioned accurately to the nearest 1/1000 of an 

inch. Primary rip blades cannot be positioned closer than 7/8 inches to any 

other primary blade. All strips resulting from the primary ripsaw operation are 

either waste, or widths that are present in the cutting order. Because of the 

limited number of blades, up to six rip operations can be made at the first stage. 

Any number of second stage crosscuts can be made on each strip, and at the 

third stage saw, at most one re-rip can be made on each section. All kerf widths 

are 1/8 inches. Table 2 summarizes the procedural parameters modeled by 

CORY in the FLCO application. 

4.2 Fuzzy Logic Controller 

For more detail about the operation of the FLC, please refer to Appendix 

2. Referring again to Figure 3, one can see that the controlled system, CORY, 

needs to be given some information to control its behavior, and needs to provide 

some information to describe its state. CORY's output becomes the input for the 

FLC, and the FLC's output becomes the input for CORY. In this way, after each 

board is processed, the FLC assesses the current state of CORY's performance 

and how well CORY is approaching the overall goal. The FLC uses this 
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information to make changes to some of CORY's input parameters, thus 

changing CORY's performance on subsequent boards. Any parameters used as 

input to or output from an FLC system are known as its control variables. 

Table 2 CORY model procedural parameters 

Parameter Setting 

Board edging Unspecified 

Type of first sawing operation Rip 

Number of sawing stages Three 

Piece dimensions Fixed dimensions at all stages 

Kerf width All kerfs 1/8 inch 

Number of operations at each stage First stage - up to six 

Second stage - no limit 

Third stage - zero or one 

Blade setup Up to 8 and 13/16 inches movement 

for each primary rip blade. No 

limitations on any other blade. 

Elemental pieces only at each stage. 

4.2.1 Control variables: FLC output and input 

Since CORY makes sawing decisions based on the values of the sizes in 

the cutting order, changes to those values will cause changes in CORY's sawing 

decisions. Therefore, changes in size values are used as output from the FLC. 

Since the goal of the FLC is to meet the demand for each size in the 

cutting order with as few boards as possible, the input to the FLC is the number 

of cuttings of each size recovered from every board CORY processes. CORY 

can provide recovery information aggregated over all boards it processes. 
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However, to minimize its interface with the FLC, only a list of sizes recovered is 

returned for each board processed. The supporting FLCO software has the 

responsibility to keep track of the total number of boards processed and the total 

number of pieces recovered of all sizes. A list of cutting sizes is the most 

rudimentary form of recovery information, and from it the FLC gathers what it 

needs to make control decisions. To do this, it needs an objective. 

4.2.2 FLC objective 

In a control application, the purpose of the controller is to keep the 

controlled process operating within some reasonable boundaries. Usually a 

specific control value exists for every parameter that is being managed. This is 

true for most FLC's as well. In the case of the FLCO application, the FLC 

attempts to meet the demand for all of the sizes in the cutting order at about the 

same time. As Dmitrovic et al. (1992) state, "without a priori knowledge of the 

quality of the raw material to be processed, the ideal would be to apportion 

production of the pieces equally over the entire production in view." 

For the FLCO application, the FLC needs a specific numeric control value 

(or objective). The control value to which the FLC aspires is the average 

expected number of boards required to fill the cutting order. If the expected 

number of boards required to meet the demand for an individual size is larger 

than the average, that size's recovery is slower than most other pieces in the 

cutting order. Similarly, if the expected number of boards required to meet the 

demand for a size is smaller than average, it's recovery is faster than most. By 

increasing the value of the former sizes, and decreasing the value of the latter, 

the FLC can influence CORY's recovery of them and distribute their production 

more evenly. 

After processing each board, FLCO calculates the expected number of 

boards needed to meet demand for each size in the cutting order and averages 

them to find the value of the control objective. This control value is averaged 
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with the control value calculated for the previous board to keep the FLC from 

taking too drastic control actions. Consider the following variables: 

index of sizes in cutting order, i = 1 , 2, . . . , n; 

index of boards cut, j = 1, 2, . , m; 

n number of sizes in cutting order 

m number of boards cut 

si im size in cutting order; 

Bj jth board cut; 

di demand of si; 

qij quantity of si recovered after cutting j boards; 

rij qij / j; rate of production (in pieces per board) of s, after cutting j 

boards; 

eij di / rij; expected number of boards required to meet demand for si 

after cutting j boards; 

Aj average expected number of boards required to meet demand for 

all sizes after cutting j boards; 

G; weighted average expected number of boards required to meet 

demand for all sizes after cutting j boards. 

Aj is calculated by the following: 

E  (1) 
n 

Upon receiving a sawing solution from the CORY software, FLCO calculates the 

expected number of boards required to meet demand for every size in the cutting 

order. Aj is the arithmetic average of those expectations. G; is recursively 

defined by: 

+ G 
G.	 where Gi = Al. (2) 

2 
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FLCO calculates G; after each board is sawn, and is the objective value to which 

the FLC aspires. It is the current value of A; averaged with the objective value 

found after sawing the previous board. By averaging these two, FLCO prevents 

the objective value from changing too drastically in response to drastic changes 

in quality between subsequent boards. 

Usually, the FLC increases the value of every size i for which eij is greater 

than and decreases the value of every size i for which eii is less than This 

is described in more detail under the section on decision making logic. The net 

effect of this method is that demands for all sizes in the cutting order are filled at 

approximately the same time. Dmitrovic et al. (1992), Cheng and Pi la (1977) 

and Azarm et al. (1991) also use this heuristic approach to reduce the number of 

boards needed to fill a cutting order. 

Behind this method is the intuitive idea that a cutting order with many 

sizes allows for more efficient use of individual boards than a cutting order with 

few sizes. This idea is sensible because not all boards possess large enough 

clear areas to accommodate all sizes in a cutting order. By keeping the number 

of cutting sizes as large as possible, the likelihood that a board will contain a 

clear area large enough to accomodate one of them is increased, thus improving 

board usage. If individual boards are used efficiently, then a cutting order can 

potentially be filled with fewer boards than if individual boards are used 

inefficiently. 

G; is recalculated after each board is processed, and is a moving 

average. This is an important characteristic of the control value in FLCO 

because of the assumption that board quality is not known before sawing. A 

moving control value provides two benefits. First, by regularly updating the 

FLC can adjust size values in response to any sustained rises or drops in board 

quality. Second, the FLC is guaranteed a goal that can be reached, enabling it 

always to make a useful control action. In contrast, consider an unrealistic goal, 

say that of filling a nonempty cutting order with zero boards. This goal would 

cause the FLC to increase all size values by some large amount, and the control 
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action would have no effect in changing relative rates of recovery for sizes in the 

cutting order. 
Ai, the average expected number of boards required to fill the cutting 

order is averaged with the value of Go to prevent the recovered parts of any 

single board from changing the control value too abruptly. On one hand, nothing 

in the rough-mill environment exists to prevent a board from being followed by 

another of notably higher or lower quality. On the other hand, the quality of a 

particular board is not completely independent of the quality of the boards 

processed before or after it. With respect to their quality, boards are randomly, 

but not uniformly distributed (Brunner, 1996). Therefore including Go in 

calculating G; is important. 

An FLC is commonly designed to make control decisions based on some 

values that measure error and change in error in a controlled system. Error 

describes how far a control parameter is from the goal, and change in error 

describes how fast it is approaching or departing from the goal. For example, if 

a control variable is close to the goal and approaching it very rapidly, the FLC 

uses this information to avoid overshooting the goal. FLCO measures error for 

some size i by e;; -G;, and measures change in error by (e;; -G;) - (eio-Go). 

So far, all of the parameters mentioned are crisp: each of them can be 

represented by some real number. Before applying fuzzy reasoning methods4 to 

them, FLCO must "fuzzify," or convert to a corresponding fuzzy number, the 

crisp input parameters. This is the responsibility of the fuzzification interface. 

4 See Appendix 2 for a brief overview of fuzzy logic and fuzzy logic 
control. 
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4.2.3 Fuzzification interface 

A fuzzifier maps a crisp point into a fuzzy set by a membership function 

(Mendel, 1995). In FLC applications, triangular membership functions are 

common because they are easy to understand and apply. Figure 5 shows the 

membership functions that FLCO uses to fuzzify error and change in error. 

These fuzzy sets conform to two design guidelines recommended by Cox (1992). 

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 

Error and Change in Error, (boards) 

Figure 5 Fuzzy sets for error and change in error 

First, the ideal value for error and change in error provides a center point for the 

fuzzy sets. Second, the density of the fuzzy sets decreases the further from the 

ideal control value they are, reflecting the decrease in certainty that the system 

is on target. Equation 3 defines the membership function for each of the fuzzy 

sets: 

Y = -Ix hlm k (3) 

where 

m absolute value of the slope of the triangle's sides; 

h x-coordinate of the triangle's vertex; 

k height of the triangle; 
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and is defined for all x such that y A-J. Each of the fuzzy sets has a name 

associated with it that gives a description of the set. Table 3 gives these names, 

their abbreviations and their values for m, h and k. 

Table 3 Fuzzy set parameters for error and change in error 

Name Abbreviation m h I k  

Negative Large NL 1/9 -14 1  

Negative Small NS 1/6 -6 1  

Zero ZE 1/3 0 1  

Positive Small PS 1/6 6 1  

Positive Large PL 1/9 14 1  

Exploratory tests which varied the values for m and h gave evidence that 

the values in Table 3 enabled the FLC to more effectively reduce the number of 

boards used to fill the cutting order than other values for m and h. The values in 

Table 3 can be interpreted as follows: if the expected number of boards needed 

to meet the demand for a given size is fourteen or more than the expected 

number of boards averaged over all sizes, that difference is large and an 

appropriate control action should be taken. Similarly, if the difference is about 

six, that difference is small and a different control action should be taken. 

Fuzzy sets NL and PL are trapezoidal, not triangular. Any error or 

change in error less than or equal to -14 will have a membership in NL of 1.0. 

Similarly, any error or change in error greater than or equal to 14 will have a 

membership in PL of 1.0. This reflects the knowledge that any number less than 

-14 is definitely a large magnitude negative number, and any number greater 

than 14 is definitely a large magnitude positive number. 
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4.2.4 Decision making logic 

Once the crisp measurements of error and change in error have been 

fuzzified, the fuzzy rules use them to determine a fuzzy change in value for the 

appropriate size. Lee (1990a) observes that a FLC "should always be able to 

infer a proper control action for every state of process," a condition he calls 

"completeness." For FLCO, this means that there should be a fuzzy rule for 

every combination of fuzzy error and fuzzy change in error. Since there are five 

possible fuzzy values for both error and change in error respectively, the rule 

base contains twenty-five rules. Figure 6 shows the fuzzy membership functions 

used for the consequents of each of the rules, and Table 4 gives the names and 

their values for m, h and k. In order to insure that the domain of these fuzzy sets 

is appropriate for any cutting order, FLCO normalizes the original size values to 

range between 100 and 1100. These values are unitless, and only serve to 

describe relative priorities between sizes. Like the fuzzy sets used for error and 

change in error, exploratory tests gave evidence that these values for m and h 

offer better performance than any others tested. 

PVLNVL AttA titA
-240 -200 -90 -120 40 -40 0 40 80 120 100 200 240 

Change in Size Value (value units) 

Figure 6 Fuzzy sets for change in size value 
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Table 4 Fuzzy set parameters for change in value 

Name Abbreviation m h k  

Negative Very Large NVL 1/100 -240 1  

Negative Large NL 1/80 -140 1  

Negative Medium NM 1/60 -70 1  

Negative Small NS 1/40 -30 1  

Zero ZE 1/20 0 1  

Positive Small PS 1/40 30 1  

Positive Medium PM 1/60 70 1  

Positive Large PL 1/80 140 1  

Positive Very Large PVL 1/100 240 1  

When the recovery rate of a size is high in relation to the average 

recovery rate, the error will be positive. When it is low, the error will be 

negative. So the fuzzy rules decrease the value of sizes with large positive 

errors, and increase the value of sizes with large negative errors. For large 

errors, the corresponding changes in value will be large, and for small errors, the 

corresponding changes in value will be small. In addition, the rules also 

consider change in error. By doing so, they reduce the chance that the system 

will overshoot the ideal control value, and reduce the time required to reach the 

control value. Table 5 shows the complete fuzzy rule matrix. 
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Table 5 Fuzzy rule matrix for change in value 

Change Error 
in Error NL NS ZE PS PL 

NL NVL NL NM NS ZE 

NS NL NM NS ZE PS 

ZE NM NS ZE PS PM 

PS NS ZE PS PM PL 

PL ZE PS PM PL PVL 

As an example, suppose a size has an error the FLC labels "positive 

large", and a change in error also labelled "positive large". Table 5 shows that 

the change in value for that size is "positive very large." In other words, the size 

under consideration is overshooting the goal by a large amount (error), and what 

is more, the overshoot is increasing rapidly (change in error). This can happen 

when the size is not being recovered as fast as the others in the cutting order. 

To correct the situation, the FLC increases the size's value by a very large 

amount. An increase in the size's value changes its relative priority in the 

cutting order, resulting in a subsequent increase in recovery. 

4.2.5 Defuzzification interface 

For each size in the cutting order, FLCO finds a fuzzy set which describes 

the best control action to take. Having done so, it generates a crisp change in 

value for each size by taking the center of gravity of the fuzzy set. Once the 

crisp change in value is found, FLCO adds it to the corresponding size value. 

The new size values are then passed to CORY, which uses them to find the 

sawing solution for the next board. If the demand for a particular size is met, 

that size is dropped from the cutting order. 
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4.2.6 An example of FLC 

Consider a simple cutting order with three sizes, shown in Table 6. Table 

6 also shows the number of pieces of each size recovered and the current value 

of each size after 100 boards have been sawn. The following example illustrates 

the FLC process that takes place after the 101st board has been sawn. 

Table 6 Example cutting order and system state 

Length x Demand: Pieces Value of Pieces recov-
Width d, recovered size ered from the 
(in.): s, after 100 after 100 101st board: 

boards: %Ix) boards goo, quo 
Size 1 18.0 x 1.00 1000 99 1660 6 

Size 2 33.0 x 2.25 250 29 1370 2 

Size 3 75.0 x 2.00 500 46 8101 0 

The rightmost column of Table 6 shows the number of pieces of each size 

recovered from the 101st board sawn. Recall from page 27 the variables the 

FLC uses to determine an objective value. For each size, the FLC calculates the 

expected number of boards required to meet demand: 

e1,101 = 1000 / (105 / 101) = 961.91. 

= 250 / (31 / 101) = 814.52e2,101 

e3.101 = 500 / (46 / 101) = 1097.83. 

A101, the average expected number of boards required to meet demand for all 

sizes after cutting 101 boards is 958.09. A101 is averaged with the objective 

value the FLC found after the 100th board: for illustrative purposes, suppose 

G1 equals 968.78. Then G101, the weighted average expected number of 

boards required to meet demand for all sizes after cutting 101 boards equals 
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963.44. In other words after 101 boards are sawn, the FLC will aim to set size 

values so that the cutting order is filled when about 964 boards are sawn. For 

Size 1, the FLC finds a control action (ie. the amount to adjust its value) as 

follows. The error for Size 1 equals e1.101 - G101, or -1.53. The change in error 

for Size 1 equals (e1,101 - G101) - (e1,100 - G100), or -42.85. With these values, the 

FLC evaluates each rule in the rule base. 

In this example, only two of the 25 rules have any effect. The top row of 

fuzzy sets in Figure 7 represent the fuzzy sets for the rule "if the error is Zero 

and the change in error is Negative Large, then the change in value is Negative 

Medium." The bottom row of fuzzy sets represents the rule "if the error is 

Negative Small and the change in error is Negative Large, then the change in 

value is Negative Large." In the top row, the error of -1.53 has a value in the 

fuzzy set ZE of 0.49, and the change in error of -42.85 has a value in the fuzzy 

set NL of 1.0. To find the firing strength of the rule, the FLC takes the minimum 

of these two values. The change-in-value fuzzy set is multiplied by 0.49 to 

obtain a result. A similar process occurs for the rule represented in the second 

row of Figure 7. The final fuzzy set from which a control value is obtained is the 

union of all fuzzy set results, represented by the rightmost fuzzy set in Figure 7. 

Error Change in Error Change in Value 

NL  

_3 -1.53 _45 -42.85 

1 

AIL -220 -98 -10 

0  
_45 -42.85 -60-12 -1.53 0 -5 -220 

Figure 7 Example of fuzzy rule evaluation 
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The FLC finds the center of gravity of this fuzzy set which is about -98. Ninety-

eight is subtracted from 1660 making the value of Size 1 after 100 boards are 

sawn 1562. This process of fuzzy inference and value adjustment is repeated 

for each of the sizes in the cutting order. After finding a change in value for 

each size, the FLC returns control to the FLCO software, which then executes 

CORY with the adjusted size values. CORY finds a sawing solution for the next 

board, and the entire process is repeated. 

4.3 Software Implementation 

FLCO is written in C++ and requires a Microsoft Windows 3.1 (or 

compatible) operating system (Microsoft, 1992). The CORY routines were 

originally written for a DOS operating system, but with only minor modifications 

have been incorporated into the Windows-based FLCO program. 

FLCO allows the user to enter filenames for a cutting order, a board data 

file, and an output file. If no cutting order file exists, the user can create one by 

entering the length, width, demand and starting value for the sizes in the cutting 

order. FLCO enables the user to edit and save this list for future use. To create 

a board data file, the user can use any ASCII text editor. Three control 

strategies are available at run-time: FLC, drop sizes as demand is met, and cut 

to inventory. After the user has chosen one of these control strategies and run 

the controller, FLCO reports whether the cutting order was filled, and then 

provides a summary of the results. The results include number of boards 

processed, average percent area yield, average board processing time, and 

number of pieces recovered for each size in the cutting order. 

Figure 8 shows the general flow of control in FLCO. After initialization 

and input, FLCO begins processing. While boards are available for cutting and 

while the cutting order is not yet filled, FLCO retrieves the data for the next 

available board and CORY finds a sawing solution for it. For each size in the 

cutting order, FLCO calculates how far the size deviates from the current 
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objective value (error) and how fast it is approaching or departing from the 

current objective (change in error). With this information, FLCO can perform 

fuzzy logic control, calculating new values for CORY to use when sawing 

subsequent boards. 

Figure 9 shows the general flow of control in the FLC. For every size in 

the cutting order, every rule in the rule base needs to be evaluated, requiring the 

nested loop structure shown in Figure 9. The outer loop represents the FLC's 

iteration through every size in the cutting order, and the inner loop represents 

the FLC's iteration through every rule in the rule base. The inner loop fuzzifies 

the crisp error and change in error, and finds a resultant fuzzy set for every rule 

in the rule base. In other words, every rule in the rule base is instantiated and 

fired. However, many rule firings will result in an empty fuzzy set, so they will 

not affect the change in value for the size under consideration. The union of the 

resultant fuzzy sets is returned to the outer loop. The outer loop finds a crisp 

change in value from these fuzzy sets and adjusts the value of the current size 

before considering the next size in the cutting order. This process is repeated 

until a change in value is found for every size. 
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5. FLCO PERFORMANCE EVALUATION  

Implemented according to the design described in the preceding chapter, 

the FLCO software meets the goals stated in Chapter 4. However, merely 

meeting those goals leaves at least two important questions unanswered. First, 

how does FLCO perform across a variety of lumber grades and cutting orders? 

Second, how well does it perform compared with other solution methods? To 

answer these questions, a series of tests was conducted which included three 

cutting bills, three lumber grades and two other solution methods. 

5.1 Cutting Orders 

These FLCO performance evaluations use three cutting bills, each of 

which is from a mill in the northwestern United States. The demands are 

randomly associated with each size, and range between 10 pieces and 110 

pieces, in increments of 20. This range was chosen because of the number of 

boards in the data sets: a higher range could result in a cutting order that is 

impossible to fill with the available boards. Table 7 briefly summarizes each of 

the cutting orders. Size values are unitless; they represent relative size 

priorities. 
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Table 7 Cutting order summary 

Length Width Value 
Range Range Range 

Cutting Order 1 minimum 10.5 in. 1.925 in. 4 

(40 sizes) maximum 65.0 in. 5.562 in. 314 

Cutting Order 2 minimum 10.562 in. 1.875 in. 162 

(50 sizes) maximum 84.062 in. 5.625 in. 3897 

Cutting Order 3 minimum 25.0 in. 2.125 in. 90 

(26 sizes) maximum 84.0 in. 4.875 in. 853 

Cutting Order 2 originally contained fifty-one sizes, but the largest size, 

84.062 inches by 4.875 inches, was removed because its demand could not be 

met with the lowest grade of boards. Similarly, Cutting Order 3 originally 

contained thirty sizes, but the four largest sizes were removed because their 

demands could not be met with the lowest grade boards. In a rough mill, these 

exceptionally large pieces are usually not treated as the other pieces in the 

cutting order. Because they are so valuable and so rare, a ripsaw operator will 

sacrifice recovery of every other piece to recover one of these large ones. To 

consider this exceptional condition, FLCO would need to contain program logic 

separate from the FLC. By removing these pieces from the cutting orders, 

sawing decisions are based on values assigned solely by the FLC, and not by 

any extraneous logic. 

5.2 Board Data 

Molding and millwork manufacturers in the western United States 

commonly use Ponderosa Pine as their stock material. Because the cutting 

orders described in the previous section are from mills in this region, these 
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FLCO performance evaluations use Ponderosa Pine data as input. The United 

States Department of Agriculture's Forest Products Laboratory in Madison, 

Wisconsin provided the original board data. McDonald et al. (1981) used these 

same data to develop 5/4 Ponderosa Pine yield tables, and they include three 

lumber grades: No. 1, No. 2, and No. 3 Shop. Table 8 shows the number of 

boards and number of board feet in each grade. 

Table 8 5/4 ponderosa pine shop sample information 

Grade Number of Boards Board Feet 

No. 1 386 8534 

No. 2 1537 26797 

No. 3 1361 17985 

The original data records board information in 0.2500 inch Cartesian 

coordinate units, while the CORY libraries FLCO uses expect board data to be in 

0.0001 inch units. Like Rahardjo (1992), the board data was transformed using 

a pseudo-random number generator and a uniform distribution function, in this 

case to create board and defect coordinates of 0.0001 inches. This procedure 

assumes that board and defect dimensions are uniformly distributed within their 

original 0.2500 inch coordinates. This is a reasonable assumption because 

defect dimensions are continuous and the original measurements were inclusive 

of defects (McDonald et al., 1981). 
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5.3	 Other Solution Methods 

Besides fuzzy logic control, two other heuristic control methods were 

examined. One of these is a very simple approach, and provides a sort of 

baseline comparison, while the other is more complicated. 

5.3.1	 Dropping sizes from the cutting order 

This first approach is simply to drop sizes from the cutting order as their 

demands are met. Once the demand for a size is filled, it will not be considered 

for cutting in any subsequent boards. The absolute value for each size in the 

cutting order remains constant throughout processing. However, the relative 

value for each size will change as pieces are removed from the cutting order. 

For example, consider a cutting order with three sizes, A, B and C, with values 5, 

10 and 20, respectively. At the start of processing, the value of size A is only 25 

percent that of the largest size in the cutting order. Suppose that some time 

during processing, the demand for size C is met, and it is dropped from the 

cutting order. Now the value of size A is 50 percent that of the largest size in the 

cutting order. This is a significant increase in the relative priority of size A, and 

CORY would correspondingly attempt to recover more pieces of size A than it 

had previously. This drop sizes approach can be chosen at runtime by the user. 

5.3.2 Complex dynamic exponential prioritization 

Thomas (1995a) presents a prioritization function that he calls a Complex 

Dynamic Exponential (CDE) strategy. Its dynamic qualities lie in its 

responsiveness to the demand for a cutting size, and to the number of pieces of 

that size recovered. As boards are processed, piece values are assigned 

according to Equation 5, with values for WFLength and WFwiath assigned by 

Equation 4. 
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WF = 1/In(demand * max(1, (35-count)) * 15) * MF + 1.0 (4) 

WFValue = Length WFLength * Width "th (5) 

For WFLgth, MF = 0.14, and for WFwidth, MF = 0.07. Count represents the 

number of pieces recovered of the size for which WF is being calculated. 

By design, FLCO can easily accommodate any method of assigning 

values to pieces. For these tests, the CDE formulas are substituted for the FLC 

routines, and the FLCO program is recompiled. 
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6. RESULTS AND DISCUSSION 

Tables 9, 10 and 11 show the results of running FLCO with the various 

cutting orders, lumber grades and control strategies described in the previous 

chapter. When using the strategy of dropping sizes from the cutting order, 

FLCO could not fill Cutting Order 3 with the available No. 3 Shop board data. 

Therefore Tables 9, 10 and 11 do not contain results for this combination of 

cutting order and lumber grade. 

Table 9 FLC performance results (number of boards, average percent area 
yield) 

Cutting Order 1 Cutting Order 2 Cutting Order 3 

No. 1 Shop 161 203 202 
61.61 60.27 51.57 

No. 2 Shop 227 262 289 
50.66 51.10 39.33 

No. 3 Shop 373 404 
35.40 38.66 

Similar patterns exist in each table. First, each control strategy uses 

fewer high grade boards to fill a given cutting order than low grade boards. 

Second, each strategy fills Cutting Order 1 with fewer boards than the other two 

cutting orders for all lumber grades. The single exception to this is the drop 

sizes strategy, which used eleven more boards to fill Cutting Order 1 than 

Cutting Order 2 when sawing No. 3 Shop lumber. Third, the CDE strategy 

produces higher yields than FLC, and FLC produces higher yields than dropping 

sizes. One reason for CDE's high yields is that it will continue to recover pieces 

of a size even after the demand for that size has been met. 
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Table 10 Drop sizes performance results (number of boards, average percent 
area yield) 

Cutting Order 1 Cutting Order 2 Cutting Order 3 

No. 1 Shop 178 199 203 
56.31 58.80 50.62 

No. 2 Shop 253 276 302 
46.19 48.69 38.56 

No. 3 Shop 456 445 
29.31 34.88 

Table 11 Complex dynamic exponential prioritization performance results 
(number of boards, average percent area yield) 

Cutting Order 1 Cutting Order 2 Cutting Order 3  

No. 1 Shop 159 213 200  
64.40 63.68 54.10  

No. 2 Shop 232 270 285  
57.42 57.08 42.44  

No. 3 Shop 378 417  
48.42 48.24 

Before comparing FLC's performance with other control strategies and 

before examining its effects across different cutting orders and lumber grades, it 

is interesting to examine some behaviors of the FLC to find out if it is behaving 

as it was designed. In particular, by examining error and change in error for 

each size - -the variables on which the FLC makes control decisions - -one can see 

whether the FLC is properly controlling piece recovery. 
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6.1 Piece Error and Change in Error 

Rather than examining error and change in error for every combination of 

size, cutting order and lumber grade, three typical examples are shown here. 

These examples are from FLCO processing of No. 1 Shop lumber to fill Cutting 

Order 1, and represent a variety of sizes and demands. 

Figure 10 shows the expected number of boards required to recover 

ninety 13.5 x 1.925 inch pieces. This size is one of the smallest in the cutting 

order, and has relatively large demand. While processing the first twenty or 

thirty boards, the average expected number of boards is in a transient period. 

During this transient period the expected number of boards required to meet the 

300 
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Objective Value:  
Error:  II-
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ax 

tu 
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Figure 10 Expected number of boards to recover ninety 13.5 x 1.925 inch pieces 
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demand for this size is large, alternately larger and smaller than the objective 

value. Between boards forty and fifty-five, the decreasing trend in error seems 

to reflect an overcompensation by the FLC. A run of positive error preceding 

this causes the FLC to increase the size's value repeatedly. Then, when a 

change in board quality occurs allowing for greater recovery of that size, the 

error drops sharply. From about board seventy onward, the FLC maintains 

control over this size's recovery, keeping it close to the objective. 

Figure 11 shows the expected number of boards required to meet 

demand for ten 51.0 x 2.425 inch pieces, one of the larger sizes in the cutting 

order. Because its demand is very small, whenever a piece of this size is 

recovered, the error decreases sharply. The FLC attempts to compensate by 

300 
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250 --sError: 
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Figure 11 Expected number of boards to recover ten 51.0 x 2.425 inch pieces 
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lowering the value of the size, but because the FLC does not assign values less 

than one, whenever a clear area can contain a piece of just this size, CORY will 

recover it. This happens within the first fifty-three boards. The demand for the 

size is met and it is dropped from the cutting order. 

Figure 11 also shows a clear upward trend of the expected number of 

boards required to fill the cutting order beginning around board sixty. One 

possible explanation for this is that the FLC makes changes in size values that 

cause CORY to make poor sawing decisions. However, this does not seem to 

be the case. The average percent area yield for the first sixty boards is 62.49, 

while the average percent area yield for the remaining boards is 61.08, a 

difference slightly less than 1.5 percent. Another possible explanation is that a 

decrease in board quality begins around board sixty. The average clear area 

size for the first sixty boards is 291.39 square inches, while the average clear 

area size for the remaining boards is 270.51 square inches. This difference of 

20.88 square inches is about 21 percent of the average size in the cutting order, 

and is most likely the cause of the increase in the objective value. 

As a final example, Figure 12 shows the expected number of boards 

required to recover thirty 63.0 x 3.425 inch pieces. During the objective value's 

transient period, the error for this size becomes very large. However, the FLC 

compensates and adjusts the value of the size so that its rate of recovery is 

increased. Notice the "saw-tooth" behavior of the error, also seen in Figure 11: 

sharp decreases in error followed by slow increases. Recall that error is defined 

by 

Demand (6)
Rate 

and rate in turn is defined by 

Number of Pieces Recovered 
(7)Number of Boards Processed* 
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Figure 12 Expected number of boards to recover thirty 63.0 x 3.425 inch pieces 

When the number of boards processed is small, a unit of change in the 

numerator of Equation 7 makes a greater difference than a unit of change in the 

denominator. So Figure 12 shows a sharp decrease when even a single piece is 

recovered, while the subsequent slow increase is due to changes in the number 

of boards processed. 
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6.2 Effect of FLC Across Lumber Grades 

As indicated in the previous chapter, one of the simplest heuristic 

approaches to filling a cutting order is to drop sizes from the order as their 

demands are met. While this strategy is probably never used by itself in a mill, it 

provides a baseline by which to compare the behavior of the FLC. From Tables 

9 and 10, one can find the difference in number of boards required to fill the 

cutting order between the FLC and drop sizes control strategies. For all lumber 

grades and all cutting orders, the observed mean percent difference in the 

number of boards used between FLC and dropping sizes is 6.89. The two-sided 

p-value of 0.0181 indicates that there is a significant difference between the two 

control strategies. 

Averaged over the three cutting orders, FLCO met demands with 2.68 

percent fewer No. 1 Shop boards using FLC as a control strategy than by 

dropping sizes as a control strategy. Similarly, using FLC requires an average 

of 6.55 percent and 13.71 percent fewer No. 2 Shop and No. 3 Shop boards, 

respectively, than dropping sizes does. This implies that FLC is more effective 

for low grade boards than high grade boards. By definition, high grade boards 

will have more large clear areas than low grade boards, providing more 

opportunities to recover pieces regardless of their size. Thus the consequences 

of poor sawing decisions are not severe when cutting high grade lumber. 

However, when cutting low grade material, judicious use of the few large clear 

areas that are available becomes more important. FLC enables CORY to make 

good sawing decisions for improved use of low grade boards. 

Even though the reductions observed for the No. 1 Shop boards are 

smaller than those for No. 2 and No. 3 Shop boards, they may have economic 

significance. On average, high grade lumber has a greater monetary value per 

board than low grade lumber. This implies that the monetary savings realized 

from using one less No. 1 Shop board is greater than the savings realized from 

using one less No. 3 Shop board. 
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6.3 Effect of FLC Across Cutting Order 

Averaged over the three lumber grades, FLCO filled Cutting Order 1 with 

12.68 percent fewer boards using FLC as a control strategy than by dropping 

sizes as a control strategy. Similarly, using FLC requires an average of 4.09 

percent and 2.40 percent fewer boards than dropping sizes for Cutting Orders 2 

and 3, respectively. Based on the number of large sizes it contains, Cutting 

Order 3 appears to be the most "difficult" of the three orders to fill. Together 

these observations seem to imply that FLC is more effective when filling cutting 

orders that are relatively easy to satisfy than when filling difficult cutting orders. 

Some additional tests provide further support that this is the case. 

Cutting Order 1 was modified so that two sizes, 23.0 x 2.237 inches and 

23.0 x 2.425 inches, have demands of 500 pieces each. Because of the 

increased demands, this modified cutting order should be more difficult to fill 

than the original Cutting Order 1. Averaged over the three lumber grades, FLCO 

filled the modified cutting order with 8.34 percent fewer boards by using FLC as 

a control strategy than by dropping boards. This percentage is smaller than the 

12.68 percent observed when processing the unmodified Cutting Order 1, 

suggesting that a more difficult cutting order decreases the effectiveness of FLC. 

As the next section explains, the CDE prioritization strategy does not have this 

problem, so it is likely that the FLC is simply not responsive enough to handle 

difficult cutting orders as effectively as simpler cutting orders. 

6.4 FLC Versus Complex Dynamic Exponential Prioritization 

From Tables 11 and 10, one can find the difference in number of boards 

required to fill the cutting order between the CDE and drop sizes control 

strategies. Averaged over the three lumber grades, FLCO filled Cutting Order 1 

with 12.03 percent fewer boards using CDE as a control strategy than by 

dropping sizes as a control strategy. Similarly, using CDE requires an average 
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of 1.43 percent and 3.55 percent fewer boards than dropping sizes for Cutting 

Orders 2 and 3, respectively. 
Comparing these percentages with those resulting from FLC, it appears 

that FLC is only slightly more effective than CDE control for Cutting Order 1 and 

about 2.5 percent more effective for Cutting Order 2. For Cutting Order 3, the 

most difficult cutting order, FLC is about 1 percent less effective than CDE. 

Because FLC does not set size values but only increases or decreases them, 

some "rise time" is always present when the system behavior is approaching, but 

does not match, the desired behavior. Figures 10, 11 and 12 show this. CDE 

on the other hand sets size values directly, and can more quickly control the 

behavior of the system. During the rise time, FLC may miss opportunities to 

recover some sizes in the cutting order. When a cutting order contains sizes 

that are difficult to obtain, more boards need to be processed to make up for the 

lost opportunities. 
Averaged over the three cutting orders, FLCO used 1.71 percent fewer 

No. 1 Shop boards using CDE as a control strategy than by dropping sizes as a 

control strategy. Similarly, CDE used an average of 5.37 percent fewer No. 2 

Shop and 11.70 percent fewer No. 3 Shop boards than dropping sizes for 

Cutting Orders 2 and 3, respectively. Compared with the difference in number of 

boards between FLC and dropping sizes, these percentages are about 1 percent 

less for both No. 1 Shop and No. 2 Shop boards, and about 2 percent less for 

No. 3 Shop boards. These percentages suggest that FLC is slightly more 

effective than CDE at reducing the number of boards required to meet a cutting 

order for a variety of grades. 
While these results are suggestive of a difference between the two control 

strategies, that conclusion is not supported by statistical analysis. For all lumber 

grades and all cutting orders, the observed mean percent difference in the 

number of boards used between FLC and CDE is 1.32. The two-sided p-value 

of 0.1494 indicates that there is not a significant percent difference between the 

two groups. 
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One difference between the two strategies is the source of the starting 

values for sizes in a cutting order: CDE generates its own, while FLC accepts 

user-supplied values. User-supplied values may be poorly chosen, requiring 

FLC to cut more boards than if the values were well chosen. To test whether the 

starting values made a difference between the two control strategies, the cutting 

orders were modified so that the starting size values were equal to the size 

values generated by CDE. The three modified cutting orders were then filled 

with boards from the three lumber grades as before. The statistical analysis 

shows that the mean percent difference in the number of boards used to fill the 

modified cutting orders and the original cutting orders is 0.14, with a two-sided 

p-value of 0.9469. This suggests that starting values do not affect the 

performance of FLC relative to CDE. 
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7. CONCLUSIONS  

In an attempt to reduce the number of boards needed to fill cutting orders 

in the secondary manufacture of lumber, FLCO offers one possible approach. 

Embodying the ideas of FLC, it considerably reduced the number of boards 

required compared with a very simple control method, and showed little 

difference in reducing the number of boards required compared with a more 

complicated control method. 

FLCO incorporates CORY lumber cut-up software, and offers an 

analytical tool to study the effects of various control methods on lumber use. 

The C++ code in which FLCO is written has a highly modular structure allowing 

for easy exchange of coded control methods. In addition, the interface between 

FLCO and CORY is very small, allowing a different version of CORY to be used 

or even a different lumber cut-up software package altogether. 

Three cutting orders from actual rough mills and data sets containing 

boards representing three grades of lumber provided the test data for the FLC. 

The FLC behaves as it was designed to, properly adjusting the values of cutting 

sizes to reduce the number of boards required to fill a cutting order. Two other 

control methods--dropping sizes and CDE prioritization--provided external 

standards by which FLC was compared. Overall, FLC considerably reduces the 

number of boards required to meet a cutting order when the cutting order is not 

very difficult to fill, or when the lumber quality is low. FLC offers smaller 

reductions for difficult cutting orders or when the lumber quality is high. CDE 

prioritization offers reductions similar to those of FLC. 

FLC and CDE gave large reductions in two cases: when cutting low grade 

boards, and when filling cutting orders containing no exceptionally large sizes 

and no exceptionally large demands. This indicates the importance of using 

some form of intelligent control when cutting low grade lumber and when filling 

simple cutting orders. The smaller reductions observed when cutting high grade 
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lumber may be important because of its high cost. Further study is needed to 

determine whether these small reductions have an economic benefit. Because 

FLC and CDE offer such similar results, it is not clear if one of the two control 

methods is more desirable to use than the other. 

A solution to the diminished effects of FLC for difficult cutting orders may 

lie in further refinement of the fuzzy sets. A more thorough exploration of fuzzy 

sets over a wider variety of cutting orders may improve the performance of the 

FLC. Also, the performance might be improved if the knowledge base contained 

different fuzzy sets depending on the difficulty of the cutting order. Fuzzy sets 

that allow for larger changes in size values would enable the FLC to bring sizes 

to their desired values more quickly. 
In addition, more work is required to refine the realism of the system 

FLCO models. Currently FLCO assumes that sizes will not be added to the 

cutting order during processing. In reality, a mill manager may try to fill cutting 

orders from several customers at a time. Rather than fill one customer's order 

before beginning to cut for another order, a mill manager would likely begin 

cutting the second customer's order before completion of the first customer's 

order. The FLC was not designed to consider this situation and more work is 

required to find out how its performance would be affected by sizes added to the 

cutting order during processing. 
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Appendix 1 - Glossary of Selected Terms 

cutting 

a rectangular portion of a board obtained by a series of crosscut (across 

the width of a board) and rip (along the length of a board) sawing 

operations; a cutting is distinguished from waste in that its dimensions 

and features are desired and/or allowed by some customer. 

cutting bill 

a list of piece sizes and a value for each. 

cutting order 

a cutting bill in which each size has an associated demand. 

demand 

the number of pieces that need to be obtained from the input boards to 

satisfy a customer's requirements. 

FLC 

acronym for "fuzzy logic control" or "fuzzy logic controller," depending on 

the context. 

FLCO 

acronym for "fuzzy logic control/cutting order," the name of the software 

developed for this thesis. 

order 

see "cutting order." 

piece 

a cutting from a board; described in terms of its size. 

rough mill 

the area of fabrication that involves cutting boards into rough size lengths 

and widths (Azarm et al., 1991) 

size 

the length and width of a piece. 
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Appendix 2 - A Brief Overview of Fuzzy Logic 

Fuzzy Logic was originally developed by Lotfi Zadeh in the 1960's as a 

means to capture the vagueness inherent in natural language (Kantrowitz, 1995; 

Zadeh, 1965). Mamdani (1974) did the first research into fuzzy logic control, 

based on Zadeh's prior work. Since then, Zadeh's original ideas have been 

developed further (eg. Dubois and Prade, 1980), and the concepts of Fuzzy 

Logic Control (FLC) have been the subject of far too many publications to 

mention. Rather than explaining ideas explained elsewhere, this paper contains 

little explanation of fuzzy logic and FLC. For more information, Sugeno (1985), 

Lee (1990a, 1990b), Mendel (1995) and Kantrowitz (1995) are good introductory 

sources. What follows is a very brief overview of fuzzy logic and FLC, given as 

a convenience to the reader, so that he or she does not have to refer to too 

many other outside sources to understand how the Fuzzy Logic Cutting Order 

(FLCO) program works. 

Before explaining fuzzy logic, the concept of fuzzy sets must be 

introduced. Any discussion of sets assumes a "universe of discourse," which is 

simply a collection of objects. In ordinary set theory, an item from a universe of 

discourse, U, is either an element of a given set, or it is not. Therefore, the 

membership function of the set takes only two values, {0,1}, where 0 indicates 

nonmembership, and 1 indicates membership. A fuzzy set, by comparison, can 

be viewed as a generalization of this concept. A fuzzy set has a membership 

function that takes values in the interval [0,11 and any item u in U can be said to 

have some "degree of membership" in the set (Lee, 1990a). 
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A2.1 Fuzzy Set Defined 

The following several definitions are taken primarily from Lee (1990a, 

1990b), Dubois (1980) and Mendel (1995). A fuzzy set F in a universe of 

discourse U may be represented by a set of ordered pairs of an element, u, and 

its degree of membership function, p. (u): 

F = { (u, il(u)) lueU }. 
U may be either discrete or continuous, and an example can be viewed 

graphically as in Figure 13 (here U is continuous). 

0 0 
PF(u) 

0 
U 

Figure 13 Example of a fuzzy membership function 

As an example, consider a universe of discourse of "all people," and the set of 

"short" people. The membership function for an ordinary set, "short" might 

assign a value of 1 for all people strictly less than six feet in height, and 0 for all 

people greater than or equal to six feet in height. That is, all people less than 

six feet are members of the set "short," and everybody else is not. For most 

practical purposes however, little important difference exists between a person 

who is 5.99 feet in height and a person who is 6.01 feet in height. The problem 

is that "shorr is not a sharply defined termthere are different degrees of 

shortness. Here, fuzzy sets prove useful because they provide a "basis for a 
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systematic way for the manipulation of vague and imprecise concepts" (Lee, 

1990a). 

In comparison, consider a fuzzy set "short" whose membership function is 

defined as follows: 

u s 4 

4<u<6ilshodu) = -1/Cu + 3' 

0, u 6 

Here, a person who is 6.01 feet in height is not a member of the set "short," and 

a person who is 5.99 feet in height has a degree of membership of only -1/2(5.99) 

+ 3, or 0.005. In other words, the person does not possess very much of the 

quality of shortness, but the fact that the person is shorter than the person who 

is 6.01 feet tall is reflected in their relative degrees of membership. 

A2.2 Union and Intersection of Fuzzy Sets 

If A and B are two fuzzy sets in U with membership functions µA(u) and 

1.113(u) respectively (where u e U), then the membership function of the union of 

sets A and B is pointwise defined for all u as: 

AzAuB = max{ /A(u), AB(u) } (8) 

Graphically, an example of this can be viewed as in Figure 14a, where the bold 

line represents the union of the two fuzzy sets A and B. The membership 

function of the intersection of sets A and B is pointwise defined for all u as: 

,uA,B = min{ ,uA(u), /18(u) }. (9) 

http:1/2(5.99
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An example is shown graphically in Figure 14b, and the bold line represents the 

intersection of fuzzy sets A and B. 

a) 

UU 
Figure 14a, b Examples of fuzzy union and fuzzy intersection 

A2.3 Fuzzy Control Rules and Fuzzy Reasoning 

As in traditional logic, a fuzzy logic conditional statement is of the form 

IF (condition) THEN (consequence), 

the difference being the condition and consequence rely on fuzzy sets. A fuzzy 

control rule (or simply "fuzzy rule") is a fuzzy conditional statement in which the 

premises are conditions in some controlled system, and the consequence is a 

control action in that system. 

To see how fuzzy reasoning works in a control application, suppose an 

FLC system contains two fuzzy rules 

Ri: if x is Ai and y is Bi then z is Ci; 

R2: if x is A2 and y is B2 then z is C2. 

Here x and y represent elements in the domains of some non-fuzzy inputs, z is 

an element in the domain of a non-fuzzy output and Ai, Bi and Ci (i = 1, 2) are 

fuzzy variables. The process of FLC takes place usually in four steps. 
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In the first step, fuzzification, the weights, or firing str the of each rule 

are calculated by either intersection (Sugeno, 1985; Mendel, 1995) 

= 11131(11°), 

w2 = IAA2(x°) ^ 1-432(A, 

or multiplication 

wt = 1-Lfro(x°) x gBi(Y°), 

w2 = 11A2(x0) x 11,82(Y0) 

Figure 15 is an illustration of fuzzy reasoning using the former. (Sugeno, 1985; 

Mendel, 1995) The top row of the figure represents Ri for some fuzzy sets Al, 

Bi and Cl, while the bottom row represents R2 for fuzzy sets A2, B2 and C2. 

Since the rule premises are connected by an "and" they are combined by taking 

the minimum as shown in Equation (8), (9) on page 68. 

W1-

0 

Pc. 

µc2(Z) 

W2Pc2(Z) 

oX yo 

Figure 15 Example of fuzzy reasoning with two rules 

In the second step, inferencing, the conclusions are weighted according 

to the firing strength of the premises, where: 

(wi mci)(z) = wi x pc,(z), 

2)(z) = w2 x pc2(2)(w2 
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This is an example of product inferencing. In minimum inferencing, go would be 

truncated so that /../.0(z) s wi, vz. 

In the third step, composition, these conclusions are combined to form a 

fuzzy set C* from which a control action is obtained: 

C* = wiCi u w2C2. 

While this example uses only two control rules, often many control rules are 

applied to the input, and in general C* = UwiCi, 

In the fourth step, defuzzification, a crisp control action z° is found. Two 

methods of defuzzification include finding the point at which the value of gv(z) is 

maximized, and taking the center of area of gc.(z): 

Ac.(z) zdz 
z (10)

fp.c(z) dz 

The first method is sensitive to those rules that generate the largest degree of 

membership in the final fuzzy region, while the second method is sensitive to the 

height and breadth of the fuzzy region, and is the most widely used. 




