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ABSTRACT 

 

Graphical methods for displaying uncertainty are often the most concise and informative 

way to communicate abstract concepts.  Presentation methods currently in use for the display and 

interpretation of scientific uncertainty are reviewed.  Numerous subjective and objective 

uncertainty display methods are presented, including qualitative assessments, node and arrow 

diagrams, standard statistical methods, box-and-whisker plots, robustness and opportunity 

functions, contribution indexes, probability density functions, cumulative distribution functions, 

and graphical likelihood functions. 
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INTRODUCTION 

 

Data analyses across the many fields of science and engineering often contain investigations into 

parametric uncertainty for specific modeling applications (Hamby 1993; Hunink 2005; Halpern et 

al. 2006; Gallagher and Doherty 2007; Neumann et al. 2007a; Neumann et al. 2007b; McMichael 

and Hope 2007; Vandenberghe et al. 2007; Monni et al. 2007).    Model sophistication varies from 

the mundane to the extremely complex.  The methods of uncertainty analysis in these models 

cover a wide range from simple one-at-a-time parametric studies (Hamby 1994) to the estimation 

of model structural uncertainty (van der Sluijs et al. 2003; Lindenschmidt et al. 2007). Many 

analyses include Monte Carlo estimates of uncertainty (Hunink 2005; Gallagher and Doherty 

2007; Neumann et al. 2007a; Monni et al. 2007; Lindenschmidt et al. 2007; Escuder-Gilabert et al. 

2007; Smith and Heath 2001), with several authors using Latin Hypercube Sampling (LHS) for 

enhanced statistical power (Hamby 1993; Harvey and Hamby 2001; Harvey et al. 2003; Halpern et 

al. 2006; Helton 2009; Vandenberghe et al. 2007; Gottschalk et al. 2007).  Uncertainty measures 

are of interest because they provide guidance on the allocation of limited resources, direct future 

research, or help build confidence in model-driven decisions. 

A variety of scientific fields use uncertainty analysis, varying from trauma imaging 

(Hunink 2005) to species occupancy (Nichols et al. 2007) to radiation dosimetry (Hamby 1993).  

Some of the approaches used to express confidence or uncertainty include probability, predictive 

domain, and reasoning (Doull et al. 2007).  The majority of uncertainty analyses used in these 

fields are straightforward and common in technique, but the presentation thereof varies 

considerably. 

The International Organization for Standardization (ISO) (1995) defines uncertainty as 

the “parameter associated with the result of a measurement that characterizes the dispersion of the 

values that could reasonably be attributed to the measurand.”  The parameter may be, for example, 

a multiple of the standard deviation, or the half-width of an interval having a stated level of 

confidence.  This parameter is typically presented either numerically (e.g. data tables, confidence 

intervals), graphically (e.g. box-and-whisker plots, error bars), or used to generate distributions to 

predict further outcomes (e.g. probability density functions, scatter plots).   

The ISO (1995) characterizes two types of uncertainties (A and B) based on the method 

used to evaluate them.  Type A uncertainty evaluations are carried out by the statistical analysis of 
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a series of observations, i.e., repeated measurements.  For example, in a Type A evaluation of 

normally distributed data, one would use the estimated standard deviation, equal to the positive 

square root of the estimated variance, as an expression of uncertainty.  Type B uncertainty is 

evaluated by means other than the statistical analysis of a series of observations, for example, 

scientific judgment, manufacturer’s specifications, or calibration data.  It has been recommended 

(Braudaway 2003) that uncertainty components from Type A sources can be combined with 

uncertainty components from Type B sources in quadrature. This recommendation caused 

considerable concern in some scientific and mathematical circles because it did not appear to 

follow common uncertainty combination approaches. However, this recommendation has been 

strongly supported by organizations (ISO 1995) as well as experimental measurements of various 

types (Braudaway 2003).   

A common misconception is that uncertainties from Types A and B sources are meant to 

be descriptors of random and systematic variability, respectively.  This is not true.  The uncertainty 

of a correction for a known systematic effect, for example, may in some cases be obtained by a 

Type A evaluation, while in other cases by a Type B evaluation (ISO 1995).   

Tung and Yen (2005) state that uncertainty, in general, can be attributed to information 

limits regarding problem definition and resolution.  They classify uncertainty in two main 

categories, objective uncertainties associated with any random process or deducible from 

statistical samples, and subjective uncertainties for which no quantitative factual information is 

available.  They also conclude that overall uncertainty in engineering can be the result of at least 

four different sub-categories of uncertainty, including: 

• model formulation uncertainty which reflects the inability of model or 

design procedures to represent true physical behavior; 

• parameter uncertainty resulting from our inability to quantify model inputs 

and parameters with accuracy; 

• data uncertainties which include measurement errors, inconsistency and 

non-homogeneity of data, data handling and transcription errors, and 

inadequate representation of data samples due to time and space limitations; 

and 

• operational uncertainty including that associated with construction, 

manufacture, procedure, deterioration, maintenance and human activities. 
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Mathematical modeling, in which probabilistic results are generated, requires that input data be 

parameterized in terms of probability functions (Fig. 1).  Once these data are generated, their 

visual presentation is paramount to the translation of uncertainties.  Stochastic input propagated 

through mathematical models result in probabilistic outputs, each of which could be described in 

various ways.  For example, scatter plots, impact matrices, probability density functions, 

complementary cumulative distribution functions, and coefficients of variation all provide the 

decision maker with a different representation of uncertainty as to the predictive power of a given 

model.  The decision maker may, in fact, come away with a different understanding of the data 

depending on its presentation. 

The effectiveness of predictive models can, in certain cases, be limited by an inability to 

adequately quantify prediction uncertainty, but more importantly by an inadequate evaluation or 

interpretation of those uncertainties.  Many studies over the past decade have sought to quantify 

uncertainty in various areas of human consequence following the release of hazardous substances 

(Bauer and Hamby 1991; Hamby 1993; Hamby and Benke 1999; Harvey et al. 2003; Harvey et al. 

2006).  Probabilistic estimation is generally carried out to provide the decision maker with a sense 

of the range of potential consequence, for identifying the strength of a particular point estimate, or 

for the sake of identifying sensitive parameters in a given model to aid in directing limited 

resources.  It is rare that probabilistic model results get compared to probabilistic consequence 

limits; rather, uncertainty output is often weighed against deterministic regulatory restrictions 

(radiation dose limits, for example). 

The literature in the area of judgment and decision making (Kahneman and Tversky 

1974) contains a multitude of examples of how individuals err when asked to incorporate and use 

probabilistic information (Dawes 1998; Kahneman et al. 1982).  Conversely, the social-judgment 

literature is sparse on recommendations of how uncertainty information should be presented for 

effective decision making.  There are exceptions (e,g. Gigerenzer and Hoffrage 1995; MacGregor 

and Slovic 1986; Wickens et al. 2000), but little related to consequence or risk analysis. 

Research on optimizing the presentation of uncertainty information for decision makers 

has usually focused on presenting probability data in different ways.  For example, researchers 

have tried presenting probability information as color variations, verbal expressions, frequencies, 

odds, visual objects with varying degrees of degradation, and graphical presentations (Schwartz 

and Howell 1985; Ibrekk and Morgan 1987; Kirschenbaum and Arruda 1994; Johnson and Slovic 
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1995; Wickens et al. 2000; Schapira et al. 2001).  Overall, such efforts have met with equivocal 

success, although certain trends have been uncovered.  For instance, line graphs lead to easier 

perception of trend whereas bar graphs facilitate perception of individual magnitudes or 

comparisons between magnitudes (Pinker, 1990). Research has also shown (Kirschenbaum and 

Arruda 1994; Stone et al. 1997) that graphical displays of uncertainty information are superior to 

verbal descriptions.  However, the use of displays and graphs often requires a relatively 

sophisticated understanding of how to interpret the information presented.   

Several methods of presenting uncertainty have emerged from different disciplines. An 

overview is presented of the various contemporary methods of quantifying subjective uncertainty, 

objective uncertainty, and uncertainty relating to modeling and sensitivity analysis.  

 

UNCERTAINTY PRESENTATION METHODS 

Subjective Uncertainty 

Qualitative Assessment.  A qualitative assessment, defined by Chen et al. (2007) as 

“non-quantitative”, only speaks to potential uncertainties of input parameters and how those 

uncertainties might propagate through a given model. Qualitative uncertainty assessments focus on 

the total uncertainty present and are based inherently on human judgment. Qualitative assessments 

are particularly useful when quantitative data are scarce, and experts are familiar with the behavior 

of the system. For example, the United States Environmental Protection Agency (EPA) requires a 

qualitative analysis of uncertainty for Superfund human health risk assessments.  In its National-

Scale Air Toxics Assessment (NATA 2007), the EPA notes that uncertainties in emission 

parameters cannot be estimated quantitatively, and so mandates the use of qualitative judgment, 

based on previous experience, to determine a level of confidence for each emission source.  

Uncertainty estimates for a variety of parameters necessary for the NATA assessment are given “a 

factor of” some value, i.e., the true value lies within a “factor of” the calculated value. In some 

instances, uncertainties are simply expressed as having a “higher,” “medium,” or “lower” 

confidence.   

Often, organizations like the EPA use impact matrices (Fig. 2) to portray a qualitative 

indication of risk perception. Environmental forces positioned on the matrix highlight the fact that 

not all forces are equally important or uncertain.  Of the “important” cells (top section of the 

matrix), the “low uncertainty” forces are the relative future certainties to prepare for, while the 
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“high uncertainty” forces are the potential shapers of entirely different futures and their 

corresponding preparations. 

 Another example is provided in a recent study by Napier et al. (2007) in which soil-to-

plant concentration ratios were determined for various plant, soil, and contaminant replicates at a 

number of sites across the United States.  A short, qualitative analysis of the uncertainties in 

concentration ratios determined that “variations of over a factor of 2 are not unusual.”  The authors 

also stated that “the variability may be reduced” when averaging over a large harvest area.  These 

qualitative statements rarely present uncertainty in detail, but can still be useful to provide a 

general indication of the precision of the presented data, or when presenting to a non-scientific 

audience. 

Radar and Kite Diagram.  A notational system known as NUSAP (Numeral Unit 

Spread Assessment Pedigree) was proposed by van der Sluijs et al. (2003) to increase the 

usefulness of both qualitative and quantitative uncertainty assessments for policy issues.   Using 

NUSAP, van der Sluijs et al. (2003) highlight key uncertainties in the TIMER (Targets Image 

Energy Regional) model, which is an energy model that was used in the development of the 2001 

greenhouse gas emission scenarios from the Intergovernmental Panel on Climate Change (IPCC). 

The NUSAP method combines expert judgment with radar (Fig. 3a) and kite (Fig. 3b) 

diagrams.  A group of experts rate their level of confidence about the numerical value of input 

variables and model components that were identified as most sensitive with regard to model output 

(projected CO2 emissions in the TIMER case).  Each variable is given its own axis and is rated on 

a scale of 0 to 4, 0 representing crude speculation, and 4 meaning that a large sample of direct 

measurements had gone into the estimate.  The center of the polygon is given a value of 0 and the 

corners have a value of 4.  In a radar diagram, the scores of the experts on each axis are connected 

with a line. The kite diagrams follow a traffic light analogy.  The minimum scores in each group 

span the green kite; the maximum scores span the amber kite.  The remaining area is red.  The 

width of the amber band represents expert disagreement on the scores.  This method is useful for 

parametric analyses and model assumption uncertainty (van der Sluijs et al. 2003).  It also gives 

the reader a more informative view of qualitative uncertainty. 

Node and Arrow Diagram.  In an effort to quantify the sources of uncertainty in a water 

quality management program, Chen et al. (2007) use a node and arrow diagram (Fig. 4).  Node and 

arrow diagrams are similar in theory to radar and kite diagrams, but attempt to show a pathway of 
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influence for each variable.  For example, a radar and kite diagram could be constructed from the 

six middle nodes in Fig. 4 (problem identification, source investigation, etc).   

Two tables accompany the diagram (not shown here).  The first table identifies each of 

the outermost nodes in the diagram and asks specific questions as to the experts’ confidence in 

their answer(s).  The second table contains a written description of how uncertain the experts are, 

along with their associated confidence value, a number between zero and one.  For example, if the 

expert feels he or she is 80% confident with the background data, that expert would assign a 

confidence value of 0.80 to that node and enter it in the second table.  Once confidence is decided 

for each node, the confidence values are summed and divided by the number of outer nodes.  Fig. 

4, for instance, shows fifteen outer nodes used to yield an average confidence value associated 

with the result of a total maximum daily loads (TMDL) program, which is used as a surrogate for 

water quality management.  If expert judgment indicates that one node should carry more weight 

than the others, then a weighted average can be used.  The main assumption in using this approach 

is that each node is independent of the others.  Node and arrow diagrams should be used when it is 

important to make each influencing factor explicit to the reader.  However, it does not yield a 

graphical display of uncertainty; rather, it displays the influential factors graphically and the 

uncertainty numerically. 

 
Objective Uncertainty 

Standard Statistical Methods.  With a given data set, one can use traditional descriptive 

statistical measures such as the mean, median, or standard deviation to communicate uncertainty.  

Typically, researchers will simply generate a table to display these values (Counil et al. 2005; 

Neumann et al. 2007b; Nichols et al. 2007).  However, occasionally these values can be 

misleading for non-normal distributions.  For example, a 95% confidence interval (discussed in the 

next section) for a log-normal distribution is σ1.96 instead of σ x 1.96.  If not specified, it is 

common for the reader to assume that a normal distribution is appropriate, although this 

assumption may not always be accurate.  When basic statistical measures are not sufficient, 

extensions of these derived values can lead to more enlightening displays. 

Aside from measurements of mean, median, and standard deviation, the statistical 

descriptors of central tendency, dispersion, asymmetry, and peakedness are common (Tung and 

Yen 2005).  These four statistical product-moments are often used to describe the distributions of 
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random variables, and, as an extension thereof, may be useful in describing or comparing 

uncertainties of probabilistic model output (discussed later). 

Confidence Intervals.  A confidence interval (CI) expresses a range (percentiles) about 

an estimated mean of an observed quantity (i.e., calculated from observations) used to produce 

numeric or graphical representations of possible alternatives.  In other words, if a researcher uses a 

95% confidence interval, he is saying that if the same population were randomly sampled in a new 

experiment, there is a 95% chance that the true mean lies within the confidence interval around the 

estimated mean. 

 One of the more common confidence intervals includes the 5th and 95th percentiles, as 

displayed by Vandenberghe et al. (2007) (Fig. 5).  This figure displays a 90% confidence interval, 

as there is 5% of the data not represented on either end. Vandenberghe et al. use CIs to show the 

uncertainty in the time prediction of NO3 exceeding 3 mg L–1 from upstream to the mouth of the 

Dender River in seven Belgian cities. 

 Confidence intervals have the advantage of being very versatile, in that they can be 

applied in diverse disciplines.  For example, Jones and Kay (2007) provided uncertainty analysis 

in the form of the variances of two errors: a rainfall-catchment calibration error and a 

generalization error, one that accounts for random variations from the “true” model parameter 

values.  These uncertainties are presented as bounds, at the 90th, 95th, and 99th percentiles.  Clough 

et al. (2005) illustrated uncertainty in their results with a CI while determining the methylmercury 

mass fraction.  Su et al. (2007) used CIs to demonstrate the accuracy of radiation dose delivered to 

the prostate during brachytherapy.  Conclusions were then made regarding the number of 

radioactive seeds necessary, their strength, their placement, and the prostate volume. 

Confidence intervals are not always represented graphically.  McMichael and Hope 

(2007) use a Generalized Likelihood Uncertainty Estimation (GLUE) which is a Bayesian Monte 

Carlo-based approach.  This approach computes 5% and 95% CIs that capture the uncertainty in 

model predictions arising from uncertainties in model parameterization.  In a study on the 

emissions of CH4 and NO2 from farm animals in Finland, Monni et al. (2007) use CIs for several 

input parameters.  They also use confidence intervals for conclusions based on statistical 

distributions stating that, for example, “a horse emits 18 kg of CH4 per year, ± 50% based on a 

normal distribution.” 



10 

While confidence intervals are very enlightening in the case of normal distributions, they 

can lack power when used with other distributions.  For example, typical confidence intervals 

would not be appropriate for displaying binomial data.  Another drawback is the lack of density 

information. For example, the estimated mean of three data points expressed with a confidence 

interval could look identical to the estimated mean and interval of three-hundred data points 

distributed in a similar fashion.  For the same reason, clusters of points are also impossible to 

discern.   

Standard Error Bars. Similar to confidence intervals, standard error bars are a simple 

way to represent statistical variability in a mean estimate.  They generally provide an estimate of 

the standard deviation of data, or some multiple thereof.  Chao et al. (2007) use standard error bars 

(Fig. 6) to depict the standard deviation of time relative to radioactive dating of plant species.  This 

predicted uncertainty in time is a function of radiological detection methods, specifically, counting 

time and amount of radioactivity present in the sample.   

Standard errors are often used as a quick indication of uncertainty because they can easily 

be generated in most statistical processing programs.  For normal distributions, standard error bars 

correspond to a 68% confidence interval.  A rule of thumb when hypothesis testing the difference 

in two estimated means of normally distributed data is if the standard errors overlap, the difference 

in means is not significant.  

Authors will occasionally use multiples of standard error.  For example, one author could 

use error bars to illustrate two standard deviations (~95% for a normal distribution), while others 

may use them to denote one (~68%), or three (~99%). When interpreting standard error bars, it is 

commonplace to assume one standard deviation unless otherwise noted. 

Standard error bars have similar shortcomings to error bars:  lack of density and 

distribution information.  Standard error bars also may interfere with data legibility if the data 

points are too close together as Pliel et al. (2007) showed in modeling pharmacokinetics for 

inhalation exposure to methyl tertiary butyl ether. 

Box-and-Whisker Plots.  Box-and-whisker plots, often referred to simply as “box plots,” 

are generated to provide a visual indication of the amount of variability in deterministic output, 

describing the variability as mean, median, 25th, 75th, and sometimes 95th or 99th percentiles.  The 

edges of the box are usually defined as the upper and lower quartile; the middle line in the box is 

the median.  Often there is a cross or dot in the center to indicate the mean.  The “whiskers” of the 
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box show the largest and smallest values of no more than 1.5 box-lengths from the upper and 

lower quartile, although they are sometimes used to express the 95% confidence intervals 

(Makinson 2009), or minimum and maximum values (Whyatt et al. 2007). If the 1.5 box-length 

whiskers are used, there could also be extreme points denoted that lie more than 1.5 box-lengths 

from the upper and lower quartile (Ramsey and Shafer 2002).  Whyatt et al. (2007) use box-and-

whisker plots overlain on maps of the UK to demonstrate uncertainty in modeled concentrations of 

sulfate- and ammonium-containing aerosols (Fig. 7).  These figures allow the reader to quickly 

assess regional uncertainty.  Gottschalk et al. (2007) use a form of the box-and-whisker plot to 

visualize measurement uncertainty and global uncertainty (standard deviation), relative to 

deterministic estimates of grassland net ecosystem exchange.   

Box plots are one of the simplest and most informative uncertainty display methods, 

which explains their relative frequency in the literature.  And, although box plots do a better job at 

describing the distribution shape than confidence intervals and standard error bars, their greatest 

drawback is their lack of density information.   

 Scatter Plots.  A generally straightforward way to demonstrate the variability associated 

with an output parameter is with scatter plots.  Often, scatter plots are generated from a Monte 

Carlo analysis; for example, Gallagher and Doherty (2007) use scatter plots to illustrate 

uncertainty in estimating watershed model parameters using a random-sampling approach.  Storlie 

and Helton (2006) use scatter plots to show the uncertainty in a quadratic regression model for a 

sensitivity analysis (Fig. 8).  Notice how easy it is to detect the cluster of points between 10–11.5 

and 10–11.0 m2 that would otherwise go unnoticed with box plots, confidence intervals, or standard 

error bars.  When multiple groups of data are represented, research shows (Lewandowsky and 

Spence 1989) scatter plots that vary groups by color perform better than those using different 

symbols, especially when perceivers are under time pressure. 

Scatter plots are particularly useful in showing the difference between predicted and 

measured values.  For example, Neal et al. (2007) use this method to show the difference between 

predicted and measured values in flood simulation.  Neumann et al. (2007b) use scatter plots to 

show the strength of their model by displaying the difference between modeled and measured 

values of ozone concentration.  Scatter plots are useful when there are more data points than can 

be easily viewed numerically.  Usually in scatter plots, the exact position of each point in the plot 

is not as important as the general trend(s) and clustering indicated by the data.   
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Scatter plots are also used in regression analysis to detect departures from normality 

(normal quartile-quartile (Q-Q) plots), high leverage or influential outliers (Cook’s Distances), and 

to validate equal variance assumptions (residuals vs fitted values) (Ramsey and Schafer 2002).  

Unlike box plots, confidence intervals, and error bars, scatter plots do show density.  However, 

sometimes trends are difficult to detect without further statistical tools such as t-tests, chi-square 

tests, or other measures of goodness of fit. 

Probability Density Functions (PDF).  Probability density functions (Fig. 9), sometimes 

called density functions, or for discrete cases, probability mass functions (PMFs), provide 

quantitative output measures that indicate the most likely events, bounding events, or the relative 

likelihood of intermediate events.  Probability density functions illustrate the density of data in a 

particular data range (sometimes called a bin).  When normalized, the density becomes the 

probability of a randomly selected data point falling in a particular bin.  Wackerly et al. (2002) 

define PDFs by two characteristics, stating that ( )f y is a probability density function if: 

( ) 0f y ≥  for any value of y; and (1) 

 ) dy( 1yf
∞

−∞
=∫ , or )( 1f yi

∞

−∞
=∑  for discrete cases.   (2) 

In other words, PDFs are always positive and after normalization, have probabilities 

which add to unity. 

As with confidence intervals, standard error bars, and boxplots, PDFs are used across 

many disciplines of research.  In a study on the exposure of various organisms to ozone, PDFs are 

used to determine how many organisms are expected to remain active after a given dose of ozone 

(Neumann et al. 2007a).  Neumann et. al. (2007b) also use PDFs to show the variability of a rate 

constant while predicting performance of water treatment techniques. 

Because of the overall readability of PDFs, they are generally preferred as the illustration 

of choice for methods involving Monte Carlo predictions.  For example, Gallagher and Doherty 

(2007) use PDFs to illustrate probability and uncertainty in watershed model parameters while 

using a Monte Carlo analysis.  Likewise, An et al. (2007) use PDFs from Monte Carlo simulations 

for microbial risk of E. coli exposure.  In addition to using confidence intervals to report 

contamination variability in food with ochratoxin A, Counil et. al. (2005) use a three-dimensional 

PDF to show variability of exposures in the population, with parameters estimated through a 

Monte Carlo simulation. 
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Probability density functions are also relevant to Bayesian analysis. In Bayes’ Theorem, 

the posterior probability, or the probability of a true hypothesis for a given data set is (after 

normalization) a probability density function.  Graphical presentation of the posterior distribution 

can be used to help interpret the distribution, as in Fig. 9.  In addition, Bayesian PDFs can include 

information on the Highest Density Region (HDR), also known as a Baysian confidence interval.  

A 95% HDR denotes the area containing 95% of the highest posterior density.  

PDFs are not without their shortcomings, Ibrekk and Morgan (1987) showed that when 

subjects were asked to estimate the mean from a PDF, most subjects incorrectly chose the mode.  

PDFs can be deceiving because unless otherwise specified, the mean is not displayed.  An easy 

work-around is to simply place a dot at the mean, as shown later in Fig.11. 

Cumulative Distribution Function.  The cumulative distribution function (CDF), also 

called the distribution function, or cumulative probability plot, displays the probability of a 

randomly chosen data point being less than a particular value.  The CDF is often thought of as the 

integral of the PDF.  However, most statisticians prefer to instead define the PDF as the derivative 

of the CDF.    Wackerly et al. (2002) define the CDF using three properties. A CDF, ( )F y , is a 

function in which:  

 ( ) lim 0( )yF F y
→ −∞

−∞ = = ; (3) 

 
( ) lim 1( )

y
F F y

→ ∞
∞ = = ; and (4) 

( )F y is a non-decreasing function of y. 

In a study of marine reserve spacing, Halpern et. al. (2006) use CDFs to show the 

persistence criterion, q, at four possible reserve spacing distances, d (km) (Fig. 10). The 

persistence criterion is approximately equal to the annual persistence probability (or the annual 

probability of a species avoiding extinction) of spatially separated, single-species populations.   

While the persistence criterion is empirically derived and not identical to the probability of 

persistence, maximizing the persistence criterion will approximately maximize the probability of 

persistence.  The cumulative probability shows the chance that the persistence criterion will have a 

value up to that specified on the horizontal axis.  Conservative attitudes to risk (risk-averse) 

operate at the lower end of the CDFs, while optimistic (risk-taking) operate at the upper end. A q-

value of at least 0.95 is guaranteed for all q-values due to the lower bounds of the dispersal 

distances.  It is easy to see that there is no distance which consistently maximizes the q-value.  If 
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read from left to right (conservative to optimistic risk attitudes), it is observed, from the values on 

the right axis of Fig. 10 that the there is an 18% chance that d=25 km results in the highest q-

value, 25% chance at d=50 km, 29% chance at d=100 km, and 28% chance at d=200 km. 

McCarthy et al. (2005) use CDFs to show optimal reserve configurations for habitat 

persistence, and earlier they (McCarthy et al. 1996) illustrated the risk of quasi-extinction as a 

function of threshold population.  The probability of illness relative to mean countertop storage 

time after cooking is demonstrated using CDFs by Mokhtari et al. (2006).  Gallagher and Doherty 

(2007) present both the PDF and CDF next to each other to illustrate the interrelation of the 

functions.  The CDF is sometimes preferred over the PDF because it can lead to greater legibility 

when applied to larger amounts of information.   

 Unfortunately, CDFs are just as unreliable at communicating the mean as PDFs. Ibrekk 

and Morgan (1987) commented that “many subjects incorrectly chose the maximum” when asked 

to identify the mean.  The CDF was shown to be the second most effective (behind error bars) at 

communicating a confidence interval, as the information can be directly read from the display. 

Consequently, they suggest that CDFs and PDFs be presented simultaneously with the mean 

clearly marked on each (Fig. 11). 

Complementary Cumulative Distribution Function.  The complementary cumulative 

distribution function (CCDF) is essentially the mathematical opposite of the CDF, or the 

probability of a randomly chosen data point being greater than a particular value.  Thus, if ( )cF y  

is the CCDF and ( )F y  is the CDF, then:  

( ) 1 ( )cF y F y= − . (5) 

 The CCDF has similar properties as the CDF except that it is a non-increasing function.  

The complementary cumulative distribution function is the preferred uncertainty representation in 

risk analyses because it provides an answer to the question, “How likely is it to be this bad or 

worse?” (Helton et. al. 2006).   Complementary CDFs can be used to present both uncertainty and 

acceptability in a single plot (Fig. 12), where the CCPF is the complementary cumulative 

plausibility function, and CCBF is the complementary cumulative belief function, which can be 

viewed as the upper and lower bounds of possible probabilities. If the CCDF overlaps the CCPF or 

CCBF, the possibility then exists for events to occur that may lead to regulatory limits being 

exceeded or potential consequences being deemed unacceptable.  
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Graphical Likelihood Functions.  A graphical likelihood function (GLF) is a two- or 

three-dimensional plot where color gradation is used to indicate confidence levels.  Bourennane et. 

al. (2007) generated spatial uncertainty estimates (Fig. 13) used to compare the spread of standard 

deviation achieved by a soil water content simulation.  In this case, standard deviation was 

represented by a light-to-dark gradient of a single color.  Color GLFs printed in gray scale can be 

difficult to interpret without modification.  Rodi (2007) modified his figures appropriately in the 

error analysis of seismic event location (Fig. 14).  He used likelihood functions to estimate 

epicenter regions, bounded by colored bands indicating confidence levels.  The black circle marks 

the maximum-likelihood estimate for the event location, and the white circle marks the measured 

location. 

 Color graphics appear to have some benefits for decision makers, especially with regards 

to speeding decision performance (Benbasat, Dexter, and Todd, 1986) and increased recall 

(Gremillion and Jenkins, 1981).  Color information displays are especially beneficial to decision 

making when the decision maker is under time pressure (Benbasat and Dexter, 1986).  Choice of 

color can also have an impact on the effectiveness of the graph.  Graphs which use colors that vary 

in brightness lead to quicker perception of the differences portrayed in the graph whereas graphs 

that use colors that vary in hue, saturation, and brightness tend to lead to more accurate 

perceptions (Spence, Kutlesa, and Rose, 1999).  

 

Modeling and Sensitivity Analysis 

Accuracy Plots.  Accuracy plots are computed as a measure of simulation algorithm 

accuracy.  The accuracy plot indicates an algorithm’s performance by comparison of its modeled 

probability interval with the proportion of results that lie in that interval.  Points above the one-to-

one bisector indicate an accuracy of model prediction uncertainty; points below indicate where the 

model prediction uncertainty is inaccurate.  The goodness statistics (G and D) are average 

numerical indicators of accuracy.  A smaller G-value denotes larger deviations from model 

predictions.  A G-value of 1 indicates perfect model-data agreement. Likewise, the value of D is a 

measure of accuracy of model prediction uncertainty, but gives equal weight to accurate and 

inaccurate information.   

Bourennane et al. (2007) use accuracy plots (Fig. 15) to compare simulations from two 

predictive models of soil water content in soil cores from 10 hectare areas in the Picardie region, 
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France.  Later, they (Bourennane et al. 2010) mapped enrichment factors (the normalized ratio 

between concentrations in topsoil versus deep horizon soil) of anthropogenic trace elements (e.g., 

bismuth, cadmium, copper, zinc, lead, and others) by sampling numerous sites in the Nord-Pas de 

Calasis region, France.  Accuracy plots successfully demonstrated model accuracy of enrichment 

factors at unsampled locations by comparing predicted enrichment factors with sampled factors. In 

a similar fashion, Peters et al. (2009) use accuracy plots to verify spatial model accuracy while 

modeling species and vegetation distributions in Doodle Bemde, Belgium. 

Accuracy plots are somewhat similar in appearance and utility to normal quantile-quantile 

(Q-Q) plots.  Respectively, they tell the user how closely a model fits the data, as opposed to how 

closely a normal distribution fits the data.  Accuracy plots, assisted by the goodness statistics, 

allow the reader to quickly and easily assess model-data agreement. 

Sensitivity Analysis.  Sensitivity analysis techniques are quite similar to parametric 

uncertainty methods.  The technique determines the amount of influence each input parameter has 

on model output.  Parameters that are ‘sensitive’ are those that result in the greatest amount of 

uncertainty in their own value propagated through the model to the uncertainty of the output.  

Sensitivity is not only a function of input uncertainty, but is also quite dependent on model 

structure and complexity. 

A thorough sensitivity analysis can provide useful information when estimating overall 

uncertainty or determining one’s level-of-confidence in parametric assessments (Bauer and Hamby 

1991; Hamby and Tarantola 1999; Hamby 2002; van der Sluijs et al. 2003).  However, sensitive 

parameters do not necessarily translate to increased output uncertainty unless the parameter is 

under-characterized (Hamby 1994; Saltelli 2000).  Under-characterization in sensitivity analysis is 

expressed as the lack of knowledge about a particular parameter.  For example, if only a range was 

known for a particular parameter, then one would define a uniform distribution about the range 

instead of a single value.  If one knew a range and a most likely value, a triangular distribution 

would be used.  However, if one knew more about the parameter, for example, the mean, median, 

mode, distribution type, etc… then the parameter would be well-characterized.   

Investigators (van der Sluijs et al. 2003) have used sensitivity data in a number of 

different ways, primarily with the intent of demonstrating how model input variability leads to 

output variability.  Fig. 16 is a diagnostic diagram adapted from key uncertainties in the TIMER 

(Targets Image Energy Regional) model (van der Sluijs et al. 2003). The sensitivity axis measures 
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normalized importance of quantitative parameter uncertainty.  The strength axis displays the 

normalized average pedigree scores from a group of experts.  Error bars indicate one standard 

deviation about the average expert value, to reflect disagreement of scores.  The strength axis has 1 

at the origin and zero on the right.  This way, the more “dangerous” variables lie in the top right 

quadrant of the plot (high sensitivity, low strength).  In Fig. 16, the most dangerous variables 

would be structural change, population scenario, and Autonomous Energy Efficiency 

Improvement (AEEI).  These parameters can then be targeted for further research in an effort to 

reduce overall model uncertainty. 

Contribution Index.  A contribution index, proposed by Vose (2000), is expressed as the 

normalized percentage change in standard deviation with respect to the standard deviation of 

global uncertainty.  In other words, it is an importance measurement of each factor in the overall 

model output uncertainty.  The contribution index is calculated by running a Monte Carlo 

simulation to sample input factors from predefined distributions based on known information 

(such as bounds, or most likely values) about the factors.  The parametric effect of uncertainty is 

determined by two separate simulations: one with the parameter defined precisely, and one with 

the parameter defined as a distribution; in both cases, all other factors are allowed to vary within 

their defined range.  The difference in model uncertainty between the two simulations represents 

the effect of that parameter on total uncertainty.  The simulation is then repeated for the number of 

assessed input factors, using the pair of simulations described above.  The ratio of the individual 

contribution to the total uncertainty is expressed as a percentage.  These can be positive or 

negative, but by definition, the sum of all contributions is 100%.  A positive contribution indicates 

an increase in global uncertainty when the factor is varied; a negative value indicates a decrease in 

global uncertainty.  The contribution index, ci is calculated using: 
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where ci is the contribution index in percent of factor i, imax is the total number of model input 

factors considered, i is the specific input factor of interest at a time, σg is the standard deviation of 

the global uncertainty, and σi is the standard deviation of the simulations while setting factor i to 

its default value.  Smith and Heath (2001) use the contribution index to examine uncertainties in 

forest carbon budget model (FORCARB) estimates of carbon levels within discrete pools.  The 
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individual estimates of carbon pools were summed to determine total forest carbon level per unit 

area, with associated parametric uncertainty expressed as a contribution index. 

Gottschalk et al. (2007) use polar plots of the contribution index, also referred to as “radar 

plots” (Fig. 17), to show the importance of input variables, relative to output (global) uncertainty, 

for a simulation of grassland Net Ecosystem Exchange (NEE).  The effect of measurement 

uncertainties in the main input factors for climate, atmospheric CO2 concentration, soil 

characteristics, and management on output uncertainty of NEE prediction was displayed using 

these plots. The contribution index is particularly useful for establishing quantitative uncertainty 

estimates for deterministic models scarce in initial information.  More generally, the contribution 

index is used to quantitatively illustrate the percentage contribution of each input parameter on 

global uncertainty.   

Multiple PDFs.  In complex probabilistic assessments, researchers may have an interest 

in evaluating the impact or sensitivity of assumptions made about parameter uncertainty.  This 

evaluation can take place by varying input uncertainty measures such that output uncertainty is 

generated many times to produce multiple probability density functions.  Then, the variability 

between individual PDFs can be observed, rather than investigating the performance of one 

particular PDF.  Plots of multiple PDFs are sometimes referred to as spaghetti plots, cobweb plots, 

or multiple epistemically uncertain curves.  Halpern et. al. (2006) use multiple PDFs to show 

possible minimum and maximum distances for marine reserve spacings.  Neal et. al. (2007) use 

multiple PDFs to show the variability in depth of water as modeled by a Monte Carlo analysis of 

flood probability. 

Helton (2009) uses multiple PDFs to illustrate solutions to the first 50 elements of a Latin 

hypercube model (Fig. 18a).  One can observe the density and spread of the curves to obtain the 

same information as a singular PDF at a specific time (e.g., 0.10 sec). As shown in Fig. 18b, a 

summary plot is often provided to help digest the data with 5th and 95th percentiles, mean 

(expected value), and median.  Storlie and Helton (2006) also generate spaghetti plots to illustrate 

time dependent two-phase fluid flow results during a sensitivity analysis.  Hamby and Tarantola 

(1999) use cobwebs plots for parameter sensitivity analysis.  The density of a group of lines in 

spaghetti or cobweb plots, as well as the overall trend of the data, is more meaningful than the 

paths of individual lines. 
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The biggest advantage of these plots is the virtually limitless variation of input 

parameters.  However, this advantage also comes at a cost: too much variation leads to a lack of 

legibility. 

Bivariate Plots.  A bivariate plot (Fig. 19) is used by Escuder-Gilabert et al. (2007) to 

assess whether uncertainty intervals for the bias (E±U(E)) and intermediate precision 

(RSDi±U(RSDi) are included within prefixed limits.  The authors start by fixing Nr replicate 

analyses during Ns runs to decide on an experiment design.  A preliminary simulation is run (by 

varying Nr and Ns) to determine the optimal values of Nr and Ns that provide the greatest precision 

and accuracy.  This method is intended for validating accuracy of results when only a single 

method-validation experiment was conducted. The researcher is left with a single estimate of bias 

and precision (respectively, relative error, 0

0

100%E x
µ µ
µ
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µ is the measured mean, and relative standard deviation, ( )0.52 2
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RSDr is the relative standard deviation under repeatability conditions and RSDrun is the relative 

standard deviation from random run effects),  but no estimate of their variability if more validation 

experiments were conducted.  The authors suggest the use of Monte Carlo methods for quantifying 

uncertainty about the relative standard deviation and error as opposed to simply checking whether 

E or RSDi estimates are below limiting values.  If regulatory limits are exceeded for a given value 

of Nr or Ns, the authors recommend simulating whether more duplicate analysis (larger Ns values) 

can solve the problem.  If this does not help, the laboratory must consider further method 

development.   Fig. 19 was adapted from a case study involving the accuracy assessment of a 

particular method for monitoring nitrate levels in drinking water.  The authors assert that this plot 

“facilitates visual interpretation even for unqualified laboratory staff.”  

This approach is similar in philosophy to interval hypothesis testing, except that 

uncertainty intervals (rather than statistical confidence intervals) are estimated from Monte Carlo 

simulations. Bivariate plots are useful for simultaneously presenting bias assessment and 

intermediate precision, enabling the reader an overall view of accuracy.  

Information-Gap Decision Analysis.  Information-gap (info-gap) decision analysis is 

useful in situations of severe uncertainty, where sensitive parameters are not well characterized, 

such as in system modeling. Robustness and opportunity functions are used by Ben-Haim (2004) 

as part of an info-gap analysis to demonstrate the uncertainty severity degree.   These functions 
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provide decision makers with a tool to assess modeling uncertainty and its impact on the decision 

making process.   

The critical stability parameter, rc, also known as the critical level of decision-error, 

shown as the horizontal axis in Fig. 20, is defined as the “decision maker’s minimal requirement 

for stability of the algorithm.”  The windfall aspiration parameter rw, also displayed on the 

horizontal axis, represents a small level of decision fluctuation (much smaller than rc) that is not 

essential, but would be a highly desirable windfall.  D(x) represents a decision based on data “x.” 

D(x) may be continuous and real-valued (to represent a choice of time, location, etc…) or integer-

valued to represent distinct options (such as act, don’t act; options a, b, or c, etc…).   

The robustness info-gap function, denoted by ˆ ( , )cD rα , describes the “immunity to 

failure.” A larger α̂  implies that the data can vary significantly without unacceptably influencing 

the decision.  A larger value of α̂  is better than a smaller value: a large α̂  implies that the data 

can vary significantly without exceeding the critical stability parameter; conversely, a smaller α̂  

implies the data are dangerously unstable. The monotonic increase of α̂ , shown in Fig. 20, 

expresses the trade-off between instability and significant immunity to failure. 

The opportunity info-gap function, denoted )ˆ ( , wD rβ , describes the “immunity to 

windfall” (i.e., robustness to failure) of decision stability.  In other words, the opportunity function 

assesses the degree of propitious variability of the initial data, with respect to the decision maker’s 

windfall aspiration, rw.  A small opportunity function implies the decision algorithm is opportune, 

i.e, windfall is an immediate possibility, although the windfall will also be small in this case. A 

small opportunity function is desirable because small variations from the estimated value result in 

windfall. The monotonic decrease of β̂  as shown in Fig. 20 illustrates the trade-off between great 

aspiration and certainty of windfall.  

A simple example will help.  For the sake of this example, we assume linear robustness 

and opportunity functions, although this is not always the case.   Say, a new intern was told by his 

company that they would pay for his travelling expenses; the company, however, did not specify 

exactly how much they are willing to pay.  The intern thinks that around 100 dollars would be 

reasonable.  However, if the company only pays him 40 dollars, he will not be able to afford rent 

when he arrives.  Forty dollars is defined as the critical value, or rc.  This means that the robustness 

function, α̂ , is 60 dollars.  In other words, the actual amount he is paid can vary by 60 dollars 
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from his best estimate and he will still be able to afford rent.  However, if the company pays him 

130 dollars, he will be able to not only afford rent, but can also pay for an oil change.  130 dollars 

is the windfall aspiration parameter, rw.  A 30 dollar increase from the estimate is now defined as 

the opportunity function, or β̂ . 

 Fig. 20 uses info-gaps to represent the propagation of uncertainty in the Sandia Algebraic 

Challenge Problem from the 2002 Epistemic Uncertainty Workshop. If a decision maker’s 

minimum requirement for stability, rc is 0.28, the fractional error must be less than 0.28; then by 

observing the non-linear robustness of the data, α̂ , is less than 0.5.  If the requirement is less 

demanding, the data fluctuation is not problematic because the robustness far exceeds the observed 

variation of the data.  However, if the decision maker aspires to a much lower prediction error, the 

data are not robust and unable to accommodate decisions with this level of prediction error.  A 

similar reasoning can be applied to the opportunity function, β̂ . Fig. 20 illustrates that windfall 

performance is possible, though not guaranteed over the rw range evaluated. For example, if the 

decision maker aspires to a prediction error of 0.05, it is possible with an opportunity function of 

0.22. 

One engineering application is the vibration analysis of a cracked beam (Wang 2004), 

where the influential factors to vibration dynamics such as location, size, shape, and orientation of 

the crack are not well characterized.  Info-gap analysis allows one to determine the robustness 

degree of outputs (e.g., vibration amplitude, natural frequencies, and natural modes of vibration) to 

the uncertain influential parameters. Halpern et. al. (2006) use info-gap analysis to assist in 

deciding optimal marine reserve spacing.  Troffaes and Gosling (2011) compare info-gap analysis 

to imprecise probability theory for the detection of exotic infectious diseases in animal herds. They 

surprisingly conclude that the set of maximal options can be inferred partly, and sometimes 

entirely, from an info-gap analysis. 

Ben-Haim proposed that info-gap theory should be used in situations of severe 

uncertainty. However, Sniedovich (2007) criticized info-gap theory for this very reason.  

Sniedovich argued that under severe uncertainty, one should not start from a point estimate, 

because by definition, it is assumed to be seriously flawed. Instead, one should consider the whole 

universe of possibilities, not subsets thereof (i.e., under severe uncertainty, one should use global 

decision theory instead of local decision theory). In general, however, any modeling that considers 

only a subset of the entire range of possibilities will be susceptible to low probability, high impact 
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outcomes.  Even as models become increasingly complex, it is naïve to expect models to predict 

every possible outcome.  Therefore, all modeling deserves this criticism to some degree.  When 

sensitive parameters are not well characterized, one can make insights about the robustness of the 

data that might otherwise go unnoticed without info-gap analysis.  

 

SUMMARY AND DISCUSSION 

Probabilistic estimation is generally carried out to provide the end-user with a sense of 

the range of potential consequences for identifying the strength of a particular point estimate, or 

for the sake of identifying sensitive parameters in a given model to help direct limited resources.  

The presentation of uncertainty can be important to decision makers to assist in directing future 

research or for building confidence in model-driven decisions. This assistance is the primary 

reason for the development of techniques to present uncertainty.   

However, the various techniques do not convey the message equally well in all situations. 

Displaying confidence intervals and standard error bars are appropriate when the density and 

distribution shape are not as important as a quick indication of the median or mean value 

combined with a display of the variability.  For those seeking more information about the shape of 

the data, such as how it divides into quartiles, box-and-whisker plots are more appropriate.  When 

mean and median values are not as valuable, scatter plots do an excellent job of visually conveying 

both distribution shape and density information for two parameters.  However, if the user was 

interested in the same information (i.e., highlighting density and distribution shape, but not median 

and mean) about only one parameter, PDFs, CDFs, and CCDFs display this information optimally. 

To decide between using PDFs, CDFs, or CCDFs, one simply needs to identify the question being 

asked.  If it is most beneficial to show distribution shape, a PDF should be used; if the question 

regards the probability of a point being less or more than a particular value, CDFs or CCDFs, 

respectively, are suitable.  However, the user should not feel limited to displaying PDFs, CDFs, or 

CCDFs.  Often, PDFs are presented side-by-side with either CDFs or CCDFs to increase legibility 

of the data.  When uncertainty measures about more than two parameters are needed, two-, or 

three-dimensional GLFs are often the only way to effectively communicate these assessments. 

Graphical likelihood functions are also often used to illustrate spatial uncertainties.   

Uncertainty estimates are also regularly displayed visually during mathematical modeling 

and sensitivity analysis.  Accuracy plots show how an algorithm agrees with theory or 
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experimental results. Sensitivity analysis illustrates how the variation of input parameters leads to 

output uncertainty. Diagnostic diagrams are often a valuable tool for displaying many and quickly 

identifying sensitive parameters.  If it is beneficial to display fewer input parameters in greater 

detail, one could use contribution index radar plots.    Furthermore, if the distribution shape of one 

particular sensitive parameter was of interest, a multiple PDF could be generated to show more 

precisely the shape of the variation.  In cases of deficient information, such as when only a single 

method-validation experiment was conducted, bivariate plots can be generated to show if 

uncertainties are within predetermined limits. In cases of even more highly deficient information, 

such as when multiple sensitive parameters are not well characterized, info-gap analysis can be 

used.  Robustness and opportunity functions are displayed as a decision making tool to illustrate 

the robustness of the data for aspired levels of prediction error.   

  Although increased information helps to give a more complete picture of the data, it also 

can make interpretation of the presented material more cognitively difficult for the reader and 

thereby increase the potential for confusion and interpretational error.  These problems are 

magnified under conditions that limit decision makers’ ability to think effortfully about the 

material.  Such conditions include time pressure, environmental distraction, multitasking, and 

stress.  Therefore, for a given decision, it is prudent to choose a method that minimizes the number 

of parameters displayed, leaving only the information pertinent to the decision at hand.  Displays 

showing fewer parameters demand less cognitive effort for the decision maker and are less likely 

to be affected by conditions that limit effortful thought.  In addition, it is possible that the amount 

of experience that a decision maker has with a given display type can affect how cognitively 

tasking the method is for the person to use, and thus the likelihood of interpretational errors.  

Novice users will need to have enough detailed information and attentional capacity to understand 

the logic of the display, and thus may be especially affected by conditions that make it difficult for 

effective understanding.  Expert users, on the other hand, may have automatized the cognitive 

process underlying perception of the graph through repeated exposure, rendering them relatively 

immune to conditions that hinder effortful cognition.  Therefore, the choice of display method will 

depend on both the type of end user and the conditions under which the end user is likely to use 

the display.  Ultimately, it is the user’s responsibility, assisted by the above discussion, to decide 

which information and display method are appropriate for a given decision. 
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Fig. 1 Schematic representation of model inputs/outputs in probabilistic assessments. 

X1, X2, X3, represent distributions of probabilistic inputs for  mathematical 

models (f(x)) resulting in probabilistic outputs  (Used with permission from 

Vertex 42, LLC. 

http://www.vertex42.com/ExcelArticles/mc/Images/ScreenCaptures/MonteCar

loAnalysis.gif) 

Fig. 2 A matrix of uncertainty vs. impact.  Visual categorizations are provided for 

low impacts, high impacts with low uncertainty, and high impacts with high 

uncertainty. Used with permission from the University of North Carolina 

(http://horizon.unc.edu/projects/CSM/figures/uncertainty.gif) 

 Fig. 3 a: A radar diagram of a gas depletion multiplier assessed by experts.  b:  Fig. 

3a coded as a kite diagram.  G=green, L=light green, A=amber, R=red (used 

with permission from van der Sluijs et al. 2003) 

 Fig. 4 Node and arrow diagram for 15 causes of uncertainty in a total maximum daily 

loads (TMDL) program used as a surrogate for water quality management 

(used with permission from Chen et al. 2006) 

Fig. 5 Fifth and 95th percentile confidence intervals to show the uncertainty in the 

time prediction of NO3 exceeding 3 mg L–1 from upstream to the mouth of the 

Dender River in seven Belgian cities (used with permission from 

Vandenberghe et al. 2007) 

Fig. 6 Standard error bars used to depict the standard deviation of time relative to 

radioactive dating of plant species for an accumulation rate (R) of 1 Bq kg-1 y-1 

for 20 years of growth (used with permission from Chao et al. 2007) 

Fig. 7 Box-and-whisker plots overlain on a map of the UK to demonstrate uncertainty 

in modeled concentrations of sulfate- and ammonium-containing aerosols 

(used with permission from Whyatt 2007) 

Fig. 8 Performance assessment for a radioactive waste disposal facility.  Quadratic 

regression of nonlinear and non-monotonic relationship of borehole 

permeability (BHPRM) expressed as a scatter plot.  (used with permission 
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from Storlie and Helton 2006) 

Fig. 9 In probability density functions, the Highest [Posterior] Density Regions 

(HDR’s), also known as Bayesian confidence or credible intervals, are 

intervals containing a specified posterior probability. A β(α,β) density function 

is illustrated, where the mean (µ) is defined as: α
α β+

 and variance (σ2) is: 

( ) ( )2 1
αβ

α β α β+ + +
 (used with permission from Gill 2002; Romney 1999) 

Fig. 10 Cumulative distribution functions of the persistence probability (q) at four 

possible marine reserve spacing values (d in km).  Percentages on the right-

hand side indicate the amount of cumulative probability in that interval (used 

with permission from Halpern et al. 2006) 

Fig. 11 A CDF and PDF presented simultaneously with the same y-axis to assist 

readability; the mean is indicated by a dot (used with permission from Ibrekk 

and Morgan 1987) 

Fig. 12 An illustration of how CCDFs can be easily incorporated into a diagram with 

upper and lower bounds, Complementary Cumulative Plausibility Functions 

(CCPFs), and Complementary Cumulative Belief Functions (CCBFs), 

respectively, in risk analysis.  The vertical axis is the probability of the 

plausibility, belief, and probability being greater than the corresponding pF-

value on the horizontal axis, or the probability of loss of assured safety (used 

with permission from Helton et. al. 2006) 

Fig. 13 Graphical likelihood function used to represent spatial uncertainties in soil-

water content modeling.  Standard deviation is expressed as a light-to-dark 

gradient of a single color (used with permission from Bourennane et. al. 2007) 

Fig. 14 Likelihood function and confidence regions for ground based nuclear 

explosion monitoring at the Pahute Mesa testing area. Epicenter confidence 

regions determined from the likelihood function.  Confidence regions are 

shown for 90, 95 and 98% confidence (blue (B), green (G), and red (R), 

respectively).  The black circle marks the maximum-likelihood estimate for the 

event location, and the white circle marks the measurement, or “ground truth” 
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(GT0), or measured location  (used with permission from Rodi 2007) 

Fig. 15 Accuracy plot and goodness statistics (G and D) from a predictive algorithm 

demonstrate model accuracy by comparison of the portion of results that lie in 

the interval predicted by the model (above the line) to results that lie outside 

the predicted interval (below the line) (used with permission from Bourennane 

et al. 2007) 

Fig. 16 Diagnostic diagram used in sensitivity analysis for key uncertainties in model 

parameters of the Targets Image Energy Regional model. The sensitivity axis 

measures normalized importance of quantitative parameter uncertainty.  The 

strength axis displays the normalized average pedigree scores from a group of 

experts  (used with permission from van der Sluijs et al. 2003) 

Fig. 17 Polar plots of contribution index used to show the importance of input 

variables, relative to output global uncertainty, for thirteen parameters.  A 

positive value indicates an increase in global uncertainty when the factor is 

varied; a negative value indicates a decrease in global uncertainty  (used with 

permission from Gottschalk et al. 2007) 

Fig. 18 a: The variability of the first 50 Latin hypercube modeling solutions, 

illustrated as a multiple PDF. Q is the electrical charge (coulombs) at time, t 

(seconds) given a realization of uncertain inputs: a (aleatory) and eM 

(epistemic) 

b: An extrapolation of the 95 quantile, expected value, median, and 5th quantile 

(from Helton 2009) 

Fig. 19 Bivariate plot from a study involving the accuracy assessment of a particular 

method for monitoring nitrate levels in drinking water. The cross-hairs 

extending from the solid dot (representing the mean) indicate 2.5% and 97.5% 

of the relative standard deviation (RSDi) and 5% and 95% of the relative error 

(E) generated from 104 simulations.   Acceptation criteria limits are shown as 

solid lines (used with permission from Escuder-Gilabert et al. 2007) 

Fig. 20 Robustness and opportunity functions used as part of an information-gap 

analysis to demonstrate the uncertainty severity degree. D(x) represents a 

decision based on data x,  the critical stability parameter, rc, is defined as the 
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decision maker’s minimal requirement for stability of the algorithm, and the 

windfall aspiration parameter rw, represents a very small level of decision 

fluctuation that is not essential, but would be a highly desirable windfall (used 

with permission from Ben-Haim 2004) 
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