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Abstract 
Steven J. Knapp 

Marker information in the new oilseed crop, meadowfoam, is limited. 

Molecular markers to facilitate meadowfoam breeding and cultivar 

improvement are not available. The knowledge of genetic relationships 

among recent germplasm is not known. The objectives of this study were (I) to 

gain an understanding of genetic diversity and relationship patterns among 

germplasm. (ii) to construct a genetic linkage map, and (iii) to map genes and 

QTLs (Quantitative Trait Loci) underlying erucic and dienoic acid 

concentrations in seed oils. We fingerprinted meadowfoam 41 accessions of 

section inflexae of family Limnanthaceae using 176 AFLP markers. 

Polymorphic information content (PlC) scores were high in 42.6% of the 

markers and ranged from 0.45 to 0.5. Genetic distance estimates ranged from 

0.14 to 0.55 with an average of 0.44. The clustering phenogram showed 

concordance with taxonomic classification. The first three principal component 

analyses accounted for 37% of the total variation of genetic distance 

estimated. We concluded that the genetic diversity of elite and exotic 

germplasm in section lnflexae was high. 

The AFLP genetic linkage map for meadowfoam was built using inter-

subspecific backcross progeny between OMF4O-1 I (Limnanthes. a/ba spp. 

a/ba) and 0MF64 (L. a/ba spp. versicolor). The map was comprised of 104 

loci in five linkage groups, with 14 to 28 loci per linkage group. The map 
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covered 698.3 cM with a mean ensity of 6.7 ØA. The lengths of the linkage 

groups varied from 110.3 to 168.0 cM. AFLP loci were randomly distributed 

throughout the genome with no centromelic clustering. Genetic maps of 

meadowfoam can be rapidly Constructed using a small number of AFLP primer 

combinations. 

We utilized the AFLP genetic linkage map to map genes and QTLs 

underlying erucic and dienoic acid concentrations in seed oils. The QTL 

analyses were performed using interval mapping. QTL affecting erucic and 

dienoic acids was mapped to linkage group four at the E locus, which 

controlled seed oil phenotypic differences between the two subspecies, a/ba 

and versico/or. The effect of E locus was plelotropic. QTLs with significant 

effects on content of erucic and dienoic acid other than the effects of E locus 

were not found in this backcross population. 
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DNA Fingerprinting and Genome Mapping in Meadowfoam 

CHAPTER 1 

INTRODUCTION 

Molecular breeding has dramatically changed the pace of genetic 

improvement of many plant species in the past few decades. It holds great 

potential for crop improvement, as it promises to expedite the time taken to 

produce crop varieties with desirable characters. A variety of molecular 

markers have been developed based on two main technological methods, 

hybridization-based and PCR-based methods (Rafalski et al. 1996). 

Hybridization-based marker is dominated by restriction fragment length 

polymorphism (RFLP) (Botstein et al. 1980). The advent of polymerase chain 

reaction (PCR) techniques (Mullis et al. 1986) accelerated and expanded the 

efficiency of new DNA marker systems. These include simple sequence 

repeat (SSR) (Morgante and Olivieri 1993), amplified fragment length 

polymorphism (AFLP) (Vos et al. 1995), and random amplified polymorphic 

DNA (RAPD) (Williams et al. 1990). The utility of these DNA markers depends 

on their unique properties such as abundance, reproducibility, multiplex ratio, 

information content, cost and convenience (Powell et al. I 996a, 1997; Russell 

et al. 1997a; Jones et at. 1997, Pejic et al. 1998). Molecular markers are 

powerful tools for constructing genetic linkage maps, DNA fingerprinting and 

germplasm identification, quantitative trait loci (QTL) analysis, genetic diversity 

analysis and germplasm organization, marker-assisted breeding, and map-

based cloning (Lee 1995; Staub et al. 1996, Mohan et al. 1997). 

Ideal DNA markers for plant breeding are simple, abundant, cost and 

time effective. Based on these criteria, amplified fragment length 

polymorphisms (AFLP5) are the prominent marker system for various 

applications in crop improvement. AFLP was developed by combining the 



strength of RFLP marker and the efficiency of PCR-based method (Zabeau 

and Vos 1993). AFLP is a bi-allelic and multilocus PCR-based marker, which 

uses selective amplification of restriction fragments. Polymorphisms are 

usually revealed as the presence or absence of amplified restriction 

fragments, and are therefore dominant. Outstanding features of AFLPs as 

valuable markers for plant genome analysis are that they are highly abundant, 

reproducible, relatively high multiplex ratio, small amount of DNA required, and 

extensive genome coverage (Vos et at. 1995; Powell et at. I 996b, 1997; Bai et 

al. 1999; Hansen et al. 1999; Knapp et at. 1999). Moreover, unlike simple 

sequence repeat (SSR), AFLP markers require no prior sequence information 

and a larger number of markers can be produced in a short period of time 

(Maughan et al. 1996; Hill et al. 1997; Zhu et at. 1998). 

Meadowfoam (Limnanthes spp) is a new oil seed crop native to Southern 

Oregon and Northern California (Mason 1952; Kahn 1971; Jam 1986). Seed 

oil of meadowfoam contains unique unsaturated very long-chain fatty acids 

(C20 and C22) with outstanding oxidative stability (Smith et al. 1960; Bagby et 

al. 1961; Miller et al. 1964; Knapp and Crane 1995, 1998; lsbell 1997). The 

market for this seed oil was successfully expanded owing to the specialty of its 

fatty acids (Knapp and Crane 1999). 

Marker information for meadowfoam is limited even though it is needed to 

assess the feasibility of conducting molecular breeding and genome mapping 

in this crop. The availability of markers in this crop was based on 

morphological traits and allozyme markers (Arroyo 1973, 1975; McNeill and 

Jam 1983; Kessili and Jam 1985). DNA markers are not yet developed in 

meadowfoam to speed up the efficiency of cultivar improvement. Our goals 

were to assess the genetic diversity and relationships pattern of elite and 

exotic germplasm accessions of section lnflexae, to construct a genetic 

linkage map of meadowfoam, and to increase our understanding of the 

genetics underlying economically important traits, particularly fatty acid profile 

differences in the very long-chain seeds oil. These can be accomplished more 



3 

efficiently by the use of molecular markers and AFLP was chosen as the 

marker of choice for this study. 

Knowledge of germplasm diversity and relationships among breeding 

germplam has a significant impact on cultivar improvement (Hallauer et al. 

1988). This information can be used for organizing germplasm, identification 

of cultivars, assisting the selection of parents for hybridization, identifying 

breeding bottlenecks and describing heterotic groups and patterns for crop 

species (Smith et al. 1990, 1992; Thormann et al. 1994; Mumm and Dudley 

1994). AFLPs are successfully used to study genetic diversity and 

relationships in many crop species, for instance soybean (Powell et al. 1996; 

Maughan et al. 1996), barley (Ellis et al. 1997; Pakniyat et al. 1997), rice (Zhu 

et al. 1998, Aggarwal et al. 1999), lettuce (Hill et al. 1997); sunflower 

(Hongtrakul et al. 1997);. and wheat (Barrett and Kidwell 1998). AFLP diversity 

and DNA fingerprinting are not described for meadowfoam. One of our aims 

was to gain an understanding of the pattern of genetic diversity and 

relationships among elite and exotic germplasm accessions of section lnflexae 

(chapter 2). AFLP markers were used to assess the genetic diversity of 41 

accessions including nine inbred lines, eight open pollinated cultivars, and 24 

wild populations of Limnanthes species. Polymorphic information content 

(PlC) was estimated for AFLP markers. Genetic distance between lines was 

estimated and subsequently used to construct a phenogram depicting the 

genetic relationships among meadowfoam germplam based on cluster 

analysis and principal component analysis. 

The demand for meadowfoam (Limnanthes a/ba Benth.) oil is 

dramatically increasing along with the demand for new cultivars to boost seed 

yield and profits. One of our aims is to increase the supply of meadowfoam oil 

by increasing seed yield and oil content and developing new cultivars. This 

process can be facilitated using molecular breeding tools. A genetic linkage 

map has been useful for identifying and localizing gene controlling both simple 

and complex traits. AFLP linkage maps have been constructed for many crop 



4 

species for example barley; rice, peach, lentil, melon, and eucalyptus. (Becker 

et al. 1995; Cho et al. 1996; Wang et al. 1997; Eujayl et al. 1998; Lu et al. 

1998; Marques et al. 1998). Due to high multiplex ratio, AFLPs, therefore 

have been widely used for rapidly increasing the density of map in many crop 

species (Becker et al. 1995; Keim et al. 1997; Cho et al. 1998; Nandi et 

al. 1997). A genetic linkage map for meadowfoam has not been developed. 

The second study (chapter 3) involves constructing genetic linkage map for 

meadowfoam (L. alba) using high throughput AFLP markers. A genetic 

linkage map was produced using inter-subspecific backcross progeny between 

L. a/ba spp. a/ba x L. a/ba spp. versicolor. The initial map described here 

promises to provide a framework for better understanding of the genome 

structure, to contribute a useful resource for genetic improvement, and to 

facilitate marker assisted selection in the meadowfoam breeding program. 

The use of molecular markers has greatly simplified the genetic 

analysis of quantitative traits. Marker-based methods applied to segregating 

populations provide a means to locate quantitative trait loci (QTL) to 

chromosome regions and to estimate the effects of QTL allele substitution 

(Lander and Botstein 1989; Tanksley et al. 1989; Xiao et al. 1996). QTL 

mapping leads to an increased understanding of genes involved in the 

inheritance of quantitative traits, and may improve genetic gain in breeding 

programs through marker-assisted selection (Edwards et al. 1987; Tankstey 

1993). The third study (chapter 4) involves mapping the E locus and QTL 

underlying fatty acid profile differences in meadowfoam seed oil. Since 

meadowfoam seed oil is of great industrial interest, knowledge of genes and 

QTLs underlying these fatty acids should facilitate cultivar improvement with 

desirable fatty acids fit to market need. L. a/ba subspecies have different wild 

type fatty acid profiles. L. a/ba, spp. versicolor produces significantly more 

erucic acid (22:1M3) and significantly less dienoic acid (22:2 iX5, M3) than L. 

a/ba spp. a/ba. The erucic and dienoic acid content differences between the 

subspecies are controlled by a dominant gene (E) (Knapp and Crane 1997). 



Erucic and dienoic acid concentration differences are found among accessions 

within subspecies (Knapp and Crane 1995). Furthermore, erucic and dienoic 

acid concentrations vary continuously among E_ and ee progeny in 

segregating populations. These differences could be caused by an allelic 

variant of the E locus or perhaps by quantitative trait loci (QTL). We used the 

genetic map of meadowfoam to map the E locus and search for quantitative 

loci (QTL) affecting erucic and dienoic acid content (chapter 4). The 

information about QTL detection in this study not only contributes to a better 

understanding of genetic control of very long-chain fatty acid profile 

differences in seed oils but also assists breeders in constructing allelic 

combinations for the development of superior genotypes for seed oil fatty acid 

in meadowfoam. 



CHAPTER 2
 

DNA Fingerprinting in Meadowfoam: Analysis of the Genetic Diversity of Elite 
and Exotic Germplasm Accessions of Section lnflexae Limnanthes 

Sureeporn Katengam, Jimmie M. Crane, and Steven J. Knapp 
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ABSTRACT
 

DNA fingerprinting is widely used in crop plants and wild relatives for 

phylogenetic and biodiversity analysis. Such analysis has not been conducted 

in meadowfoam (Limnanthés spp.) We utilized amplified fragment length 

polymorphism (AFLP) markers to assess the genetic diversity of 41 

meadowfoam accessions of lnflexae section of family Limnanthaceae 

including nine inbred lines, eight open-pollinated cultivars, and 24 wild 

populations and species. Our objectives were (1) to estimate polymorphic 

information content (PlC) for AFLP markers and genetic distance among 

germplasm, (2) to assess the pattern of genetic diversity of elite and exotic 

germplasm accessions using UPGMA cluster analysis and principal 

component analysis. Six AFLP primer pairs produced 176 polymorphic bands, 

with an average of 29.3 polymorphic bands per primer combination. The 

mean polymorphic information content (PlC) was 0.39. Forty-two percent of 

the markers showed high PIG scores between 0.45 and 0.5, indicating high 

diversity. Genetic distances estimated by Roger-W ranged from 0.14 to 0.55 

with an average of 0.44. The UPGMA (unweighted pair group method on the 

basis of arithmetic averages) clustering phenogram based on the genetic 

distance matrix had a high cophenetic value indicating a good fit of the 

performed cluster analysis. The first three principal component analyses 

accounted for 37% of the total variation of the estimated genetic distance. 

Cluster analysis and principal component analysis separated meadowfoam 

germplasm into three diverse clusters. One was primarily comprised of 

Limnanthes a/ba spp. alba, another was comprised of L. a/ba spp. versicolor, 

and the other was primarily comprised of L. floccosa accessions. The patterns 

of diversity were concordant with species, subspecies, geographic, and 

breeding origin. Our results suggested that genetic diversity patterns of elite 

and exotic germplasm in lnflexae section is very diverse. This information 
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provides a valuable framework for meadowfoam improvement for enhancing 

the productivity and performance of cultivated meadowfoam. 

INTRODUCTION 

Meadowfoam (Limnanthes spp.) is an annual oil seed crop, native to 

Southern Oregon and Northern California (Mason 1952; Kahn 1971; Jam 

1986). Meadowfoam seed oil contains unique unsaturated very long-chain 

fatty acids (C20 and C22) with outstanding oxidative stability (Smith et at. 1960; 

Bagby et al. 1961; Miller et al. 1964; Knapp and Crane 1995, 1998; Isbell 

1997). These unique characteristics of the seed oil are of industrial interest 

and have propelled the development of meadowfoam as an oilseed crop with 

successful marketing of a variety of specialty very long-chain fatty acids and 

triglycerides (Knapp and Crane 1999). 

The genus Limnanthes comprises nine species belonging to the family 

Limnanthaceae (McNeill and Jam 1983; Jam 1986). Mason (1952) divided the 

genus into two sections, lnflexae and Reflexae, based on the morphological 

character of petals folding inward or outward during seed maturation. A 

variety of breeding systems are found in this genus ranging from almost 

complete self-pollination due to cleistogamy to highly outcrossed due to 

protandry (Mason 1952; Jam 1978; McNeill and Jam 1983, Kesseli and Jam 

1985). All species are diploid (2x =2n = 10), hermaphroditic and self-

compatible but protandry varies among species, which probably enhances 

outcrossing in many members of this genus (Kessihi and Jam 1985). 

Cultivated meadowfoam is based on Limnanthes a/ba, which belongs to 

section lnflexae. This section comprises of 4 species, namely L. a/ba, L. 

floccosa, L. gracilis and L. montana. The primary gene pool of L. a/ba is 

composed of L. a/ba spp. alba and L. alba spp. versicolor, whereas L. 

floccosa, L. gracilis, and L. montana are identified as a secondary gene pool of 
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L. a/ba. Based on the fertility of inter-subspecific and inter-specific 

hybridization with L. a/ba, the species belonging to section Reflexae including 

L. bakeri, L. doug/ash, L. macounli, L. striata and L. vinculans are classified as 

the tertiary gene pool of L. a/ba (Knapp and Crane 1999). 

Meadowfoam has been cultivated since 1973 (Jam 1986). L. a/ba was 

evaluated as the most promising species in this genus for its lower moisture 

requirements, adaptation to a wide range of environments, and high seed yield 

(Gentry and Miller 1965). The first non- shattering cultivar, Foamore, 

developed for commercial production was released in 1974 (Calhoun and 

Crane 1975). Breeding and cultivar development is underway at Oregon State 

University with the goals of increasing productivity of meadowfoam through 

superior cultivars, discovering and developing novel phenotypes, and 

advancing understanding of the genetics of economically important traits 

(Knapp and Crane 1999). 

Genetic variation is the basis for crop improvement (Allard 1960). 

Knowledge of the genetic diversity and relationships among germplasm is 

essential to the improvement of crop plants (Hallauer et al. 1988). Genetic 

diversity of germplasm collections can be established from pedigree records, 

morphological traits, isozyme and DNA markers (Smith et al. 1990; Melchinger 

et al. 1994; Mumm and Dudley 1994). But the small number of polymorphic 

isozyme markers and unfavorable phenotypic expression of morphological 

traits due to environmental effects limit the utility of these markers (Smith et al. 

1990; Stuber 1992; Dudley 1993; Melchinger et al. 1994; Staub et al. 1996). 

The isozyme markers often fail in classification or identification of breeding 

genotypes because of poor genome coverage (Smith et al. 1990; Dudley 

1993; Melchinger et al. 1994; Bai et al. 1999). Pedigree records and DNA 

markers are successfully and widely used to classify germplasm and describe 

heterotic groups in many crop species (Smith and Smith 1991; Smith et al. 

1992; Mumm and Dudley 1994; Hongtrakul et al. 1997; Cheres and Knapp 

1998). The resulting information is useful in planning crosses for hybrids and 
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line development and in plant variety protection (Smith et al. 1990; Smith and 

Smith 1991; Graner et al. 1994 Kisha et al. 1998; Pejic et al. 1998). 

Nonetheless, pedigree data are usually biased since they do not account for 

the effects of selection, mutation and random genetic drift. Moreover, they are 

sometimes unavailable or erroneous (Smith and Smith 1991; Melchinger et al. 

1994). In contrast to pedigree data, molecular markers can provide accurate 

evaluation of genetic diversity since they not only allow direct comparison of 

genotypes at the DNA level but also provide a more complete sampling of 

genome coverage (Smith et al. 1990; Dudley 1993). DNA markers can reveal 

tremendous numbers of genetic loci which are phenotypically neutral and not 

subject to environmental effects. Polymorphic DNA markers are highly 

informative and superior to traditional estimation, such as morphological traits, 

in resolving genetic differences (Tanksley et al. 1989 and Stuber 1992). 

A variety of molecular markers are applied to cultivar improvement and 

germplasm management. Because a large number of marker loci can be 

developed in a short period of time, AFLP (Amplified fragment length 

polymorphism) is the leading DNA based-marker system (Vos et al. 1995; Hill 

et al 1997; Powell et al. 1996). AFLP is a bi-aHelic and multilocus PCR-based 

marker that uses selective amplification of restriction fragments. 

Polymorphisms are visualized as the presence or absence of amplified 

restriction fragments and are therefore dominant. Useful features of AFLP 

markers for plant genome analysis are (1) high marker abundance, (2) efficient 

genome coverage, (3) relatively high multiplex ratio (described as number of 

loci simultaneously analyzed per assay), (4) high reproducibility, (5) no 

requirement for prior sequence information, and (6) small amount of DNA 

required (Vos et al. 1995; Maughan et al. 1996; Powell et al. 1996; Hill et al. 

1997; Zhu et al. 1998; Bai et al. 1999; Knapp et al. 1999; Hansen et al. 1999). 

AFLPs are successfully utilized for DNA and RNA fingerprinting, genetic 

mapping, and marker assisted plant breeding (Cervera et al. 1996; Cho et al. 

1996,1998; Cnops et al. 1996; Mackill et al. 1996; Hill et al. 1997; Hongtrakul 
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et at. 1997; Nandi et al. 1997; Wang et at. 1997; Lu et at. 1998; Qi et at. 1998). 

Moreover, AFLPs are powerful tools for evaluating genetic diversity and 

determining the relationships within and among species in many plants such 

as soybean (Powell et at. 1996; Maughan et at. 1996), barley (Ellis et at. 1997; 

Pakniyat et al. 1997), rice (Zhu et al. 1998, Aggarwat et at. 1999), lettuce (Hill 

et at. 1997); sunflower (Hongtrakut et al. 1997), cassava (Roa et at. 1997), tea 

(Paul et al. 1997), yam (Mignouna et al. 1998), wheat (Barrett and Kidwell 

1998), tef (Bai et at. 1999), and otive (Angiolitto et at. 1999). Due to the large 

number of polymorphisms that can be screened per assay, AFLPs are the 

markers of choice for saturation of particular genomic regions necessary for 

map-based cloning of economically important genes (Thomas et al. 1995; 

Cnops et al. 1996; Cho et al. 1996). 

Biosystematic surveys of genetic resources and agronomic evaluation for 

domestication of meadowfoam were initiated in 1973. Genetic variability and 

differentiation among natural populations of meadowfoam including 

phytogenetic studies in the genus Limnantheswere determined using 

electrophoretic (attozyme), morphological, and hybrid fertility data (Ornduff and 

Crovello 1968; Ornduff 1971; Arroyo 1973,1975; Parker 1976; McNeill and 

Jam 1983). Nonetheless, the genetic diversity among elite and exotic 

germptasm accessions of section lnflexae has not been described. In the 

present study, we present the first report of DNA fingerprinting of elite and 

exotic germplasm in tnflexae section and evaluation of their genetic 

relationships using AFLP markers Our objectives were (1) to estimate the 

polymorphic information contentP1C) of AFLP markers and estimate genetic 

distance among inbred lines, open-pollinated cultivars, wild populations, and 

all genotypes, and (2) to assess the patterns of genetic diversity and 

relationships of elite and exotic germplasm using UPGMA cluster analysis and 

principal component analysis. 
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MATERIALS AND METHODS
 

Plant Materials 

One hundred and three samples representing 41 accessions including 

nine inbred lines, eight open-pollinated cultivars, and 24 wild populations of 

meadowfoam germplasm in lnflexae section were included in this diversity 

study (Table 2.1). Sampling strategies were employed differently among 

inbred lines and open-pollinated cultivars and wild populations. For each 

inbred line, ten plants were grown and approximately equal amounts of leaf 

tissue were bulked for DNA extraction. For open-pollinated cultivars and wild 

meadowfoam populations, several individuals were planted and three 

individuals were randomly chosen from each population. Leaf tissues from 

these three individuals were collected separately for DNA extraction. There 

were two accessions, P1 420137 and Mermaid, that had two samples. P1 

420137 had only two viable seeds. For Mermaid, out of three DNA samples, 

one was excluded since it was poorly amplified by AFLP primer combinations. 

Table 2.1 Meadowfoam germplasm (41 accessions) for AFLP fingerprinting 

Accession Description 
Type Source 

0MF63 S5 Self-pollinated inbred line Selected from 0MF159 
0MF64 S5 Self-pollinated inbred line Selected from OMFI6O 
0MF66 S5 Self-pollinated inbred line Selected from 0MF66 
OMFIO9-1 Self-pollinated inbred line Selected from Mermaid x 

0MF62/ 0MF64) 
OMFIO9-2 Self-pollinated inbred line Selected from Mermaid x 

0MF62/ 0MF64 
OMFIO9-3 Self-pollinated inbred line Selected from Mermaid x 

0MF62/ 0MF64) 
OMF4O-1 I Insect-pollinated L. a/ba spp. Selected from P1 283703 
(Mermaid S5) a/ba inbred line 
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Table 2.1 Continued 

Accession Description 
Type 

LAGI 09 F4 Self-pollinated inbred line 

LAGI 11 F4 Self-pollinated inbred line 

0MF66 Wild population 
(Redding) 
OMF 158 Wild population 

0MF159 Wild population 

OMFI 60 Wild population 

OMFI6I Wild population 

0MF57 Wild population 

0MF52 Wild population 

0MF53 Wild population 

P1 374792 Wild population 

P1 374793 Wild population 

P1 374794 Wild population 

P1 374795 Wild population 

P1 374796 Wild population 

P1 374797 Wild population 

P1 374798 Wild population 

P1 367900 Wild population 

Foamore Open-pollinated cultivar 
Mermaid Open-pollinated cultivar 

Source 

Mermaid x L. gracilis spp.
 
parishii
 
Mermaid x L. grad/is spp.
 
parishii
 
L. a/ba spp. versicolor 

L. a/ba spp. versicolor 
(Recollected P1 283705) 
L. a/ba spp. versicolor 
(Recollected P1 374791) 
L. a/ba spp. versicolor 
(Recollected P1 374801) 
L. a/ba spp. versicolor 
(Recollected P1 374802) 
L. a/ba spp. versicolor 
(UC328 or UC457) 
L. a/ba spp. a/ba 
(UC- Calaveras) 
L. alba spp. a/ba 
(UC-Sonoma) 
L. a/ba spp. a/ba 
(Shasta county) 
L. a/ba spp. a/ba 
(Placer county) 
L. a/ba spp. a/ba 
(Placer county) 
L. a/ba spp. a/ba 
(Placer county) 
L. a/ba spp. a/ba 
(Butte county) 
L. a/ba spp. alba
 
(Butte county)
 
L a/ba spp. a/ba
 
(Butte county)
 
L. a/ba spp. a/ba 
(Sacremento county) 
Selected from P1 283704 
Selected from P1 283703 
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Table 2.1 Continued 

Accession Description 
Type 

Floral Open-pollinated cultivar 

Knowles Open-pollinated cultivar 
(OM F69) 
0MF86 Open-pollinated cultivar 
0MF78 Open-pollinated cultivar 

0MF87 High oil open-pollinated 
population 

OM F62-29 High oil open-pollinated 
population 

P1 283724 Wild species 
P1 420137 Wild species 
P1 283720 Wild species 

P1 420133 Wild species 
P1 283719 Wild species 
OSU-LF-4 Wild species 
P1 283721 Wild species 
P1 283725 Wild species 

Source 

Mermaid x L. floccosa spp. 
grandiflora 
Selected from bulk of L. 
a/ba spp. a/ba 
Selected from Knowles 
Selected from intermating 
between L. a/ba spp. a/ba 
and spp. versicolo,) 
Selected from 0MF62 

L. a/ba spp. a/ba 

L. grad/is spp. parishii 
L. grad/is spp. grad/is 
L. f/occosa app. 
be//in geriana 
L. floccosa spp. grandiflora 
L. floccosa spp. floccosa 
L. floccosa spp. ca/ifomica 
L. floccosa spp. pumi/a 
L. montana 

Meadowfoam seeds were germinated at 4°C on moist blotter paper in 

covered 11- by 11- by 3- cm plastic boxes as described in Knapp and Crane 

(1998). Seedlings were transplanted to potting soil (pumice: peat moss: sandy 

loam) in 7.5 x 7.5 cM plastic pot and grown in a growth chamber (Model GEL 

37-14, Sherer-Gillett Go., Marshall, Ml) for 25 to 28 days at 15°C with 8 h of 

fluorescent light. These plants were subsequently grown in a greenhouse at 

22°C with 16 h fluorescent light for two weeks and then young leaves were 

harvested and frozen at -80°C prior to DNA extraction. 
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DNA Extraction 

Genomic DNA was extracted from frozen tissue according to Lodhi et 

al. (1994) with minor modification. One to two grams of frozen tissues were 

ground in the presence of liquid nitrogen and incubated with 2% CTAB 

(cityltrimetrylammonium bromide) extraction buffer for I h at 65°C. Chloroform 

extraction was carried out once and the aqueous phase was transferred and 

mixed with 0.5 volume of 5M NaCI, precipitated with 2 volumes of cold 95% 

ethanol and refrigerated at 4°C overnight. The DNA pellets were dissolved in 

TE (10mM Tris-HCI and 0.1 mM EDTA, pH 8.0) buffer. After dissolving, DNA 

was treated with Rnase (10 j.tg Itl) for I h at 37°C. 

AFLP Analysis 

AFLP analysis was carried out essentially as developed by Keygene 

Waeningen, NL) (Zabeau and Vos 1993) with minor modification that the 

selection of a subset of fragments on steptavidin beads was omitted Vos et al. 

1995). Genomic DNA samples (500 ng) were digested with 5 units of EcoRl 

(rare 6-base cutter) and 5 units. of Msel (frequent 4-base cutter) (New England 

Biolab, Schwalbach, Germany) in a reaction volume of 50 ml in restriction-

ligation (RL) buffer (10 mM Tris-acetate, 10 mM Mg acetate 50 mM K acetate, 

and 5 mM DTT, pH 7.5) (Pharmacia, Upsata, Sweden) for 3 h at 37°C. Ten 

microliters of ligation solution containing I jtl EcoRI adapter (5 pmol/ml), I 

Msel adapter (50 pmol/ml), 5U EcoRl, 5U Msel, 1.2 ml 10 mM ATP, I jl lOx 

RL buffer, and I U T4 DNA ligase (New England Biolabs) was added to the 

solution and incubated for 3 h at 37°C. Twelve j.ti of restriction ligation 

products were electrophoresed on a 1% agarose gel to ensure that the DNA 

had been completely digested. 

l 
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Two consecutive amplifications (preamplification and selective 

amplification) were performed in a PE-9600 DNA thermocycler (Perkin Elmer 

Corp., San Francisco, CA., USA). Preamplification utilized primers 

complementary to the adaptor-ligated DNA fragments with a single selective 

nucleotide added at the 3' end of the PCR primers, EcoRl+A and Msel+C 

(Table 2.2). Thirty cycles of 94°C for 30 s, 60°C for 30 s, and 72°C for 60 s 

were used. Twelve microliters of the total 50 d PCR products were 

electrophoresed on 1 % agarose gel to determine that DNA preamplification 

was successful. The preamplification products were then diluted ten-fold in 

0.1 % TE buffer to be used as template for the selective amplification with 

radioactive labeling. 

Selective PCR amplification was carried out with primers complementary to 

the adaptor-ligated DNA fragments and having three selective nucleotides 

added at the 3' end of the PCR primers (Table 2.2). EcoRl primers were end-

labeled with 7-33P using T4 polynucleotide kinase (New England Biolabs, Inc., 

Bervely, Mass.). A touch down cycle profile was performed with the first cycle 

at 94°C for 30 s, 65°C for 30 s and 72°C for 60 s, followed by 11 cycles in 

which the annealing temperature decreased 0.7°C per cycle, and finally 

followed by 24 cycles with the annealing temperature at 56°C. A total of six 

primer combinations were used in this study (Table 2.2). 

The selective radioactive PCR products were mixed with an equal volume 

of formamide dye (98% formamide, 10 mM EDTA pH 8.0, 0.025% bromo 

phenol blue and 0.025% xylene cyanol as tracking dye), denatured at 94°C for 

3 mm and then quickly cooled on ice. Eight microliters of each sample were 

loaded into pre-warmed 6% denaturing polyacrylamide gel and IX TBE 

running buffer. The gel was run at 60 Watts of constant power for 2 h, 

transferred to chromatography paper (3MM) (Fisher Scientific, Pittsburgh, PA, 

USA), dried on a gel dryer (Fisher Biotech, Fisher Scientific, Pittsburgh, PA) 

under vacuum for 2 h at 8O°C and then exposed to standard X-ray film for 3 to 

7 days. AFLP bands were visually scored from autoradiographs. 
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Table 2.2 Oligonucleotide adapters and AFLP primers used for meadowfoam 
DNA fingerprinting. 

Adaptors or Primers 

EcoRI Adaptors 

Msel Adaptors 

EcoRl +1 Primer 

Msel +1 Primer 

EcoRI +3 Primers 

Msel +3 Primers 

Data Analysis 

Name 

91M35 

91 M36 

92A18 

92A1 9 

92R1 I 

92H20 

92S05 

92G23 

92G24 

92G29 

92G30 

92F1 0 

92F4 I 

Sequence 

5'-CTCGTAGACTGCGTACC-3' 

3'-CTGACGCATGGTTAA-5' 

5'-GACGATGAGTCCTGAG-3' 

3'-TACTCAGGACTCAT-5' 

5'-AGACTGCGTACCAATTC/A-3' 

5'-GACGATGAGTCCTGAGTANC-3' 

5'-GACTGCGTACCAATTC/ACA-3' 

5'-GATGAGTCCTGAGTM/CAG-3' 

5'-GATGAGTCCTGAGTAA/CAT-3' 

5'-GATGAGTCCTGAGTAA/CTG-3' 

5'-GATGAGTCCTGAGTAAJCTC-3' 

5'-GATGAGTCCTGAGTANCAC-3' 

5'-GATGAGTCCTGAGTAAJCAA-3' 

Heterozygosities were used to refer to the relative value of each marker 

with respect to the degree of polymorphism exhibited for each polymorphic 

locus. Heterozygosities were estimated as: 

H = 1-1p 
where p is the frequency of ith allele and k is the number of alleles (Ott 1991). 

This heterozygosity value is essentially the same as polymorphic information 

content (PlC) which was described by Botstein et al. (1980). Due to a bi-allelic 
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feature, the PIG value for AFLP markers therefore ranges from 0.0 

(monomorphic) to 0.5 (polymorphic). 

Binary data representing the presence (I) and absence (0) of specific 

AFLP marker was generated. Only unambiguous polymorphic bands were 

scored and entered into a binary matrix as input for the genetic distance 

analysis. The genetic distance of Roger as modified by Wright (1978) was 

estimated among all genotypes using NTSYS-pc (Numerical taxonomy and 

Multivariate Analysis System), version 1.8 (Rohlf 1993). A phenogram was 

subsequently generated by cluster analysis based on the unweighted pair 

group method on the basis of arithmetic averages (UPGMA) using a genetic 

distance matrix (Sneath and Sokal 1973). Goodness of fit of a cluster analysis 

was tested using the cophenetic correlation (r) value (Mantel 1967) from 

MXCOMP program in NTSYS, which allows direct comparison between the 

original dissimilarity matrix that was clustered and the cophenetic value matrix. 

Principal component analysis based on genetic distance matrix was carried 

out using the PROC PRINCOMP procedure of SAS (1996) (SAS Institute, Inc., 

Gary, NC) to visualize the dispersion of individuals in relation to the first three 

principal axes of variation. 

RESULTS 

AFLP Fingerprinting 

The AFLP fingerprinting was performed using 6 primer combinations 

(Table 2.2) on the 103 meadowfoam samples of 41 accessions of lnflexae 

section including nine inbred lines, eight open-pollinated cultivars, and 24 wild 

population of four species (10 taxa) (Table 21). These primer combinations 

were chosen based on previous information of polymorphic rate from 

screening parents for an AFLP meadowfoam mapping study (Katengam et al. 



19 

1999). Each pair of primers produced a large number of polymorphic bands 

but only clear polymorphic markers across all accessions were included in this 

study. The six primer àombinations revealed 176 AFLP markers, which were 

polymorphic in at least two or more accessions across the 41 meadowfoam 

accessions (Table 2.3). The number of polymorphic markers varied from 18 to 

40 markers per primer pair with an average of 29.33 markers (Table 2.3). The 

size of markers ranged from 50 to 250 bp. Out of 176 AFLP markers, 142 

were polymorphic in at least two inbred lines, 138 in two open-pollinated 

cultivars, and 175 AFLP markers were polymorphic in at least two wild 

populations. 

Table 2.3 Total number of informative AFLP markers detected with six primer 
combinations (one EcoRl primer and six Msel primers) used in DNA 
fingerprinting of 41 meadowfoam accessions of lnflexae section. 

Primer combinations Total polymorphic AFLP markers 

EcoRl Msel 

ACA CTC 28 

ACA CAG 38 

ACA CTG 40 

ACA CAC 32 

ACA CAA 18 

ACA CAT 20 

Total 176 

Average 29.33 
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Genetic Diversity 

Estimation of genetic diversity in meadowfoam germplasm was 

represented by polymorphic information content (PlC) value. One individual 

from each accession of wild and cultivated meadowfoam populations was 

sampled, and PlC scores were calculated across 41 accessions. The PlC 

scores for 176 AFLP markers ranged from 0.0 to 0.5 (Fig. 2.1). Mean PlC 

scores were 0.31 for inbred tines (142 AFLP markers), 0.30 for open-pollinated 

cultivars (138 AFLP markers), 0.40 for wild populations (175 AFLP markers), 

and 0.39 for all genotypes (176 AFLP markers). Forty-two percent of the 

markers showed maximum PlC scores ranging from 0.45 to 0.50. 
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Figure 2.1 Distribution of polymorphic information content for 176 AFLP 
markers among 41 meadowfoarn accessions including nine inbred lines, eight 
open-pollinated cultivars, and 24 wild populations and species. 
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Distance Analysis 

Genetic distance among 41 accessions based on 176 AFLP markers was 

estimated using Rogers genetic distance as modified by Wright (1978), and 

ranged from 0.14 to 0.55, with an average of 0.44 (Table 2.4). P1 283719 (L. 

floccosa spp. floccosa) and OMFI 59 (L. a/ba spp. versicolor) were most 

distantly related while OMFIO9-1 and OMFIO9-3 were closely related. The 

distance estimated among nine inbred lines varied from 0.14 (between 

OMFIO9-1 and OMFIO9-3)to 0,47 (between LAGIO9F4 and OMFIO9-1, 

OMFI 09-2, and OMFI 09-3) with an average of 0.39 (Table 2.4). Among the 

eight open-pollinated cultivars the distance estimated varied from 0.34 to 0.46 

with an average of 0.40 (Table 2.4). The greatest distance was found 

between Foamore and 0MF62-29 (0.46), whereas the least distance (close 

relationship) was found between 0MF86 and Knowles (0.34) and 0MF86 and 

0MF78 (0.34). 

Among 24 wild meadowfoam populations including four species (L. a/ba, L. 

floccosa, L grad/is, and L. motana) and 10 taxa, the greatest distance (0.55) 

was found between 0MF159 (L. a/ba spp. versico/or) and P1 283719 (L. 

floccosa spp. floccosa). The least distance (0.32) was found between two wild 

populations of L. a/ba spp.versicolor(0MF66 and 0MF158) (Table 2.4). The 

average genetic distance among wild populations was 0.45, indicating high 

genetic diversity in these wild populations. 

Cluster Analysis 

Cluster analysis using UPGMA (Unweighted pair group method based on 

arithmetic mean) was performed to estimate the genetic relationships among 

meadowfoam germplasm. A phenogram was produced from the UPGMA 

cluster analysis of genetic distance matrix for 41 accessions (Fig. 2.2) based 



Table 2.4 Genetic distance matrix estimated by Roger-W from AFLP fingerprints of 41 meadowfoam accessions 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1. 0MF63S5 0 
2..0MF64S5 0.31 0 
3. 0MF6685 0.33 0.44 0 
4 OMFIO9-1 0.37 0.39 0.46 0 
5 OMFIO9-2 0.37 0.38 0.46 0.25 0 
6 OMFIO9-3 0.36 0.39 0.45 0.14 0.27 0 
7 OMF4O-1 1 0.35 0.43 0.42 0.42 0.43 0.43 0 
8 LAGIO9F4 0.41 0.44 0.45 0.47 0.47 0.47 0.38 0 
9 LAG1IIF4 0.35 042 0.40 0.44 0.44 0.44 0.42 0.30 0 
10 0MF66 0.31 0.41 0.32 0.42 0.43 0.43 0.41 0.45 0.42 0 
11 0MF158 0.30 0.38 0.35 0.42 0.42 0.42 0.41 0.43 0.38 0.32 0 
12 0MF159 0.33 0.41 0.39 0.42 0.42 0.42 0.40 0.47 0.41 0.37 0.35 0 
13 OMF16O 0.32 0.38 038 0.41 0.42 0.41 0.41 0.46 0.42 0.35 0.37 0.34 0 
14OMF16I 0.32 0.38 0.380.37 0.37 0.36 0.44 0.47 0.41 0.34 0.34 0.38 0.38 0 
150MF57 0.43 0.49 0.47 0.47 0.47 0.49 0.43 0.44 0.44 0.47 0.45 0.46 0.47 0.46 0 
16 0MF52 0.43 0.49 0.45 0.49 0.48. 0.50 0.42 0.47 0.44 0.47 0.47 0.48 0.48 0.48 0.42 0 
17 0MF53 0.38 0.44 0.43 0.46 0.46 0.46 0.40 0.47 0.44 0.42 0.43 0.44 0.42 0.43 0.47 0.44 0 
18 P1 374793 0.38 0.46 0.39 0.45 0.46 0.45 0.33 0.41 0.38 0.41 0.41 0.43 0.38 0.41 0.44 0.44 0.41 0 
19P1374794 0.39 0.49 0.39 0.45 0.44 0.46 0.42 0.47 0.43 0.41 0.43 0.45 0.43 0.43 0.47 0.44 0.44 0.36 0 
20 P1 374795 0.40 0.47 0.45 0.50 0.46 0.49 0.41 0.45 0.45 0.44 0.47 0.46 0.43 0.44 0.49 0.47 0.46 0.42 0.40 0 
21P1374796 0.38 0.46 0.41 0.47 0.45 0.48 0.41 0.46 0.42 0.40 0.41 0.43 0.41 0.43 0.45 0.48 0.46 0.34 0.38 0.39 
22P1374197 0.37 0.43 0.40 0.46 0.44 0.47 0.40 0.45 0.41 0.38 0.40 0.42 0.39 0.43 0.45 0.46 0.40 0.38 0.38 0.43 
23P1374798 0.37 0.40 0.4k 0.46 0.45 0.46 0.42 0.47 0.44 0.40 0.40 0.40 0.39 0.43 0.49 0.46 0.43 0.40 0.42 0.42 
24Pl367900 0.38 0.47 0.430.450.450.470.43 0.48 0.45 0.44 0.44 0.46 0.44 0.44 0.47 0.430.400.40 0.41 0.45 
25 P1 374792 0.38 0.42 0.40 0.42 0.43 0.42 0.41 0.46 0.42 0.40 0.38 0.36 0.37 0.39 0.46 0.43 0.43 0.41 0.41 0.47 
26 Foamore 0.37 0.45 0.40 0.46 0.46 0.45 0.43 0.49 0.43 0.44 0.41 0.41 0.38 0.45 0.49 0.44 0.44 0.38 0.40 0.42 
27Mermaid 0.40 0.46 0.43 0.49 0.48 0.49 0.37 0.48 0.42 0.46 0.43 0.44 0.42 0.46 0.46 0.45 0.43 0.40 0.41 0.44 
28 Floral 0.38 0.43 0.44 0.45 0.43 0.46 0.37 0.41 0.38 0.42 0.42 0.40 0.39 0.45 0.46 0.42 0.42 0.40 0.45 0.44 
29 Knowles 0.40 0.39 0.44 0.44 0.43 0.45 0.40 0.47 0.43 0.44 0.43 0.44 0.40 0.43 0.46 0.43 0.43 0.40 0.44 0.42 
30 0MF86 0.37 0.39 0.42 0.41 0.43 0.42 0.38 0.46 0.45 0.41 0.41 0.42 0.37 0.42 0.47 0.47 0.40 0.40 0.46 0.44 
31 0MF78 0.35 0.40 0.43 0.39 0.41 0.40 0.40 0.49 0.45 0.41 0.40 0.40 0.41 0.40 0.46 0.46 0.42 0.39 0.43 0.47 
32 0MF87 0.36 0.41 0.43 0.42 0.42 0.42 0.39 0.47 0.43 0.40 0.41 0.41 0.41 0.43 0.49 0.46 0.43 0.41 0.44 0.44 
33 P1 283724 0.47 0.51 0.49 0.49 0.48 0.50 0.47 0.46 0.44 0.52 0.48 0.49 0.50 0.49 0.45 0.48 0.45 0.47 0.47 0.51 
34 P1420137 0.38 0.47 0.44 0.46 0.47 0.46 0.41 0.45 0.41 0.46 0.43 0.42 0.43 0.43 0.49 0.47 0.44 0.38 0.46 0.44 
35 P1 283720 0.47 0.52 0.49 0.49 0.50 0.50 0.48 0.48 0.46 0.53 0.51 0.54 0.52 0.52 0.47 0.46 0.47 0.49 0.45 0.49 
36 P1420133 0.46 0.52 0.51 0.50 0.52 0.51 0.47 0.50 0.46 0.51 0.49 0.52 0.50 0.53 0.48 0.48 0.49 0.51 0.47 0.49 
37 P1 283719 0.46 0.52 0.51 0.50 0.51 0.49 0.49 0.46 0.45 0.49 0.49 0.55 0.51 0.52 0.48 0.48 0.50 0.49 0.47 0.49 
38 OSU-LF4 0.47 0.52 0.50 0.48 0.49 0.48 0.48 0.51 0.48 0.52 0.52 0.52 0.51 0.52 0.48 0.49 0.51 0.49 0.46 0.51 
39 P1 283721 0.45 0.49 0.46 0.46 0.46 0.46 0.46 0.49 0.45 0.47 0.46 0.49 0.47 0.47 0.47 0.45 0.51 0.48 0.45 0.49 
40 P1 283725 0.38 0.41 0.43 0.46 0.45 0.45 0.43 0.45 0.46 0.39 0.38 0.44 0.40 0.46 0.47 0.410.40 0.42 0.46 0.44 
41 0MF6229 0.39 0.42 0.44 0.43 0.42 0.44 0.39 0.45 0.42 0.46 0.47 0.45 0.45 0.46 0.47 0.44 0.44 0.45 0.45 0.47 



Table 2.4 Continued
 

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 

20 P1 374795 0 
21 P1 374796 0.39 0 
22 RI 374797 0.43 0.35 0 
23 P1 374798 0.42 0.37 0.39 0 
24 P1 367900 0.45 0.43 0.41 0.39 0 
25 P1 374792 0.47 042 0.41 0.40 0.40 0 
26 Foamore 0.42 0.40 0.40 0.35 0.40 0.40 0 
27 Metmaid 0.44 0.43 0.42 0.43 0.44 0.42 0.41 0 
28 Floral 0.44 0.43 0.42 0.41 0.42 0.42 0.41 0.41 0 
29 *ow1es 0.42 0.43 0.42 0.39 0.43 0.38 0.41 0.39 0.38 0 
30 0MF86 0.44 0.44 0.41 0.38 0.42 0.40 044 0.38 0.39 0.34 0 
31 0MF78 0.47 0:43 0.43 0.39 0.43 0.41 0.40 0.41 0.36 0.40 0.34 0 
32 0MF87 0.44 0.43 0.40 0.35 0.42 0.40 0.42 0.40 0.41 0.40 0.38 0.37 0 
33 P1283724 0.51 0.47 0.49 0.48 0.45 0.46 0.46 0.46 0.47 0.48 0.47 0.49 0.49 0 
34 P1 420137 0.44 0.43 0.43 0.39 0.42 0.42 0.38 0.41 0.42 0.40 0.43 0.41 0.40 0.47 0 
35 P1283720 0.49 0.51 0.49 0.49 0.46 0.49 0.52 0.49 0.51 0.50 0.48 0.52 0.50 0.44 0.49 0 
36 Pt $20133 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.45 0.50 0.51 0.50 0.51 0.48 0.48 0.50 0.40 0 
37 P1283719 0.49 0.50 0.48 0.51 0.51 0.50 0.51 0.48 0.52 0.51 0.50 0.51 0.49 0.48 0.51 0.32 0.41 0 
38 OSU-1F4 0.51 0.52 0.52 0.50 0.49 0.48 0.51 0.48 0.53 0.49 0.50 0.52 0.49 0.49 0.48 0.39 0.34 0.41 0 
39 Pt 283721 0.49 0.47 0.46 0.48 0.48 0.44 0.47 0.46 0.48 0.47 0.49 0.49 0.45 0.49 0.49 0.44 0.33 0.43 0.33 0 
40 P1283725 0.44 0.44 0.42 0.41 0.44 0.39 0.41 0.40 0.43 0.40 0.40 0.42 0.38 0.46 0.39 0.52 0.51 0.52 0.49 0.48 0 
41 0MF6229 0.47 0.49 0.46 0.45 0.46 0.44 0.46 0.44 0.41 0.42 0.43 0.42 0.40 0.47 0.47 0.49 0.49 0.49 0.47 0.45 0.43 0 
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on mean AFLP data from each accession and from genetic distance matrix of 

103 samples from 41 accessions (Fig. 2.3). There were three major diverse 

clusters. The largest cluster was primarily comprised of L. a/ba spp. a/ba, with 

two distinct subclusters. The first subcluster included wild populations of L. 

alba spp. a/ba and one inbred line of OMF4O-1 I (Mermaid S5), which was 

derived from L. a/ba spp. alba (P1 283703). The wild populations included P1 

374793, P1 374794, P1 374795, P1 374796, and P1 374797. They were 

collected from a geographically continuous area (Table 2.1). The second 

subcluster included all elite germplasm (open-pollinated cultivars) and three 

wild populations of L. a/ba spp. a/ba (P1 374798), L. grad/is spp. grad/is (P1 

420137), and L. montana (P1 283725). Even though these elite germplasm 

were grouped together, genetic distances between accessions was high, 

ranging from 0.34 to 0.42. All open-pollinated cultivars were derived from an 

L. a/ba spp. a/ba, except Floral which was derived from intersubspecific cross 

between L. a/ba spp. alba (Mermaid) and L. floccosa spp. grandiflora (Joliff 

1994). 

The second cluster was comprised of L. a/ba spp. versico/or. Wild 

populations of L. a/ba spp. versico/or as well as inbred lines derived from them 

tended to group together in this cluster. There were two distinct subgroups. 

Wild populations of L. a/ba spp. versicolor formed one subgroup, composed of 

0MF158, 0MF66, 0MF159, OMFI6O, and OMFI6I, in addition to two inbred 

lines, which were derived from L. a/ba spp. versicolor including 0MF63 S5 and 

0MF66 S5. P1 374792, identified as L. a/ba spp. a/ba, was included in this 

subgroup. The other subgroup consisted of four inbred lines. One was 

derived from L. alba spp. versicolor, 0MF64 S5, and the remainder were 

derived from inter- subspecific crosses between L. a/ba and L. versico/or 

including OMFIO9-1, OMFIO9-2, and OMFIO9-3. 

The third cluster was composed of five taxa of L. f/occosa including 

subspecies belllngeriana, floccosa, grandiflora, ca/ifomica and pumila (P1 
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Figure 2.2 A phenogram produced by UPGMA clustering of Roger-W genetic 
distance matrix estimated from AFLP fingerprints (176 markers) among 41 
meadowfoam accessions of Inflexae section. 
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Figure 2.3 A phenogram produced by UPGMA clustering of Roger-W genetic 
distance matrix estimated from AFLP fingerprints (176 markers) among 103 
samples from 41 meadowfoam accessions of lnflexae section. 
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283720, P1 283719, P1 420133, OSU-LF4, and P1 283721, respectively). The 

simplified phenogram from 41 accessions showed concordance with the 

phenogram from 103 samples (Fig. 2.3). The three individuals within 

genotypes were grouped together, even though some were dispersed. This 

may be because meadowfoam populations are heterogeneous and variation 

within populations might account for this dispersion. L. graci/is spp. parishii 

(P1 283724) was grouped to L. f/occosa species in the simplified phenogram 

(Fig. 2.2). Our studies showed that subspecies floccosa and be//in geriana of 

L. f/occosa have a close genetic relationship (0.32) (Table 2.4.), and they were 

subgrouped together. 

Three inbred lines (0MF62-29, LAGIO9-F4 and LAGI 11-F4) separately 

formed a small cluster far from the others. 0MF62-29 is high-oil germplasm 

derived from L. a/ba spp. a/ba, while LAGIO9-F4 and LAGI 11-F4 were inbred 

lines derived from an interspecific cross between L. a/ba spp. a/ba (Mermaid) 

and L. graci/is spp. paris/ill. These two inbred lines fell between Mermaid and 

L. gracilis spp. parishii in this phenogram, indicating that they were almost 

equally related to their parents. The remaining two small clusters consisted of 

two wild populations of L. a/ba spp. a/ba, 0MF53 and Pt 367900 and two wild 

populations of L. a/ba a/ba (0MF52) and L. a/ba versicolor (0MF57). The 

latter were distantly related to their groups (Fig. 2.2). 

The goodness of fit of this UPGMA cluster analysis was performed based 

on the cophenetic correlation (r) value between the cophenetic value matrix 

and the original distance matrix. The cophenetic correlation was high (r=0.85), 

indicating a good fit of the UPGMA cluster analysis performed. 

Principal Component Analysis (PCA) 

A two dimensional presentation of genetic distance produced by principal 

component analysis is shown in Fig. 2.4. The first three principal coordinates 
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Figure 2.4 Plot of the principal scores for the first and second (panel A), first 
and third (panel B) principal components estimated from a genetic distance 
matrix estimated from AFLP fingerprints (176 markers) of 41 meadowfoam 
accessions. 



I

30 

accounted for 37% of the total variation in AFLP-based genetic distance (the 

first, second, and the third elgénvalues were 0.22, 0.09, and 0.06, 

respectively). The first ançl the second as well as the first and the third 

coordinate clearly separated the wild populations of L. f/occosa from the other 

populations. Within wild populations of L. a/ba, L. a/ba spp. versicolor 

populations were clustered and: separated from the L. a/ba spp. a/ba 

populations. 0MF57 (L. a/ba spp.versico/or) was separated from its group. 

Both of the coordinates I and 2 and coordinates I and 3 placed L. grad/is 

spp. grad/is and L. montana in L. a/ba spp. a/ba cluster, however, L. grad/is 

spp. parishii was placed close to L. f/occosa. 

DISCUSSION 

Abundance of AFLP markers provides an efficient means to evaluate the 

pattern of genetic diversity and relationships of meadowfoam germplasm. We 

fingerprinted 41 meadowfoam accessions of lnflexae section gene pool using 

AFLP markers. Genetic variation in Limnanthes spp. was reported using 

allozyme markers, however, only 11 to 18 loci were found to be polymorphic 

and employed to establish phylogenetic analysis (Brown and Jam 1979; 

McNeill and Jam 1983; Kessili and Jam 1985; Ritland and Jam 1984). AFLP is 

a bi-allelic marker and it was shown to have less polymorphic information 

content than SSRs (Simple Sequence Repeats) and RFLPs (Restriction 

Fragment Length Polymorphisms). The maximum PlC score for either SSR or 

RFLP marker is 1.0. Several studies have reported that SSRs revealed the 

highest polymorphic information content (Powell et al. 1996, Russell et al. 

1997; Smith et al. 1997; Pejic et al. 1998). The maximum PIG scores for an 

AFLP marker is 0.5, however, AFLP has the highest multiplex ratio as 

compared to RFLPs or SSRs. This outstanding feature of AFLP is useful for 

many applications in genome analysis, for instance genome mapping, genetic 
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diversity and marker assisted selection (Powell et al. 1996; Russell et al.1997; 

Pejic et al. 1998). 

The section lnflexae gene pool was diverse. The phenogram showed that 

there was only one cluster with a genetic distance below 0.3, comprised of 

three self-pollinated inbred lines (the OMFIO9 series) developed from the 

same L. a/ba spp. alba x L a/ba spp. versico/or cross (Mermaid x 0MF62/ 

0MF64). OMFIO9-2 was selected for L. a/ba spp.versico/or fatty acid profile 

with a high dienoic (22:2 A5, M3) and low erucic acid (22:1M3) content while 

OMF 109-3 was selected based on L. a/ba spp. a/ba fatty acid profile with a 

high erucic acid but low dienoic acid content. OMFI 09-1 was selected based 

on heterozygous progeny, with fatty acid profiles between these two 

subspecies. 

The pattern of diversity as illustrated in the phenogram resulting from 

cluster analysis was concordant with species, subspecies, geographic and 

breeding origin. The principal component analysis provided a three-

dimensional presentation of estimated genetic distance and supported the 

results of the UPGMA cluster analysis. L. floccosa subspecies were distinctly 

separated from the other species. Two subgroups were clearly distinguished 

within L. floccosa in which L. floccosa subspecies floccosa and be/llngenana 

were closely related, while the other members of this species, grandiflora, 

ca/ifomica, and pumila formed more distantly related groups. Our result was 

in agreement with morphological and taxonomical classification of this species 

as described by Mason (1952) and Arroyo (1973). The subspecies floccosa 

and be//in geriana were grouped and classified as fully autogamous, producing 

cleistogamous flowers, while the remaining three subspecies, grandiflora, 

califomica, and pumi/a, were grouped together and assigned as semi­

autogamous due to relatively more chasmogamous flowers and the presence 

of a small degree of protandry. 

L. grad/is appeared closely related to L. a/ba (Ornduff and Crovello 1968; 

Ornduff 1971; McNeill and Jam 1983). Two subspecies, graci/is and parishii 
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(P1 420137 and P1 283724), were separated far from each other in our study 

(Fig. 2.2 and 2.4). Two members of L. grad/is are found in different 

geographical areas (Mason 1952). L. gracilis spp. grad/is was found in the 

Kiamath Mountain region of southwestern Oregon while L. grad/is spp. parish!! 

is found only in a few sites in San Diego County, California. L. montana (P1 

283725) was closer to L. grad/is spp. grad/is than to L. grad/is spp. parishii 

(Table 2.4). L. montana is distributed intermediate in the range of these two 

subspecies of L. gracilis, from Mariposa County, Sierra Nevada southward to 

Tulare County California. Our results showed that two subspecies of L. 

grad/is were distantly related (D0.47, Table 2.4) from each other, but were 

closely related to L. montana. Only L. grad/is spp. grad/is was grouped 

together with L. a/ba spp. a/ba and L. montana was also included in this 

cluster. This agrees with a numerical taxonomic study using morphological 

traits (Ornduff and Crovello 1968) and an artificial hybridization study (Ornduff 

1971). Hybrids between L. a/ba and L. gracilis spp. parish!! have relatively 

sterile pollen whereas those of L. grad/is spp. grad/is and L. a/ba spp. a/ba 

have highly viable pollen. L. montana and L. grad/is are so morphologically 

similar that some populations of the two species are barely separable, but they 

are consistently separated by sterility barriers (Ornduff 1971). Moreover, our 

results support the hypothesis described by Mason (1952) that L. montana 

might be the remnant of these two populations of L. grad/is. Once these two 

populations were continuously distributed, and climatic and geographical 

changes along with the extinction of many Limnanthes populations caused 

subdivision and subsequent isolation of these two subspecies. However, this 

disagrees with the conclusion of McNeill and Jam (1983) that the two 

subspecies of L. grad/is are closely related to each other but distantly related 

to L. montana. The inconsistency may have occurred because of the 

heterogeneous nature of meadowfoam populations. 

Limnanthes species in tnflexae section contain a wide range of mating 

systems from cleistogamy involving full autogamy in L. floccosa through 
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intermediate stages in L. graci/is spp. parishii, L. graclilis spp. grad/is, and L. 

montana, to L. a/ba with dominantly protandous, showy, insect-pollinated 

flower and with the lowest autofertility (Mason 1952; Arroyo 1973; McNeill 

1983). L. alba was cultivated in 1971, and several open-pollinated cultivars 

were developed for commercial production. Our results revealed two distinct 

clusters in L. a/ba. One was primarily comprised of L. alba spp. a/ba and the 

other was primarily comprised of L. a/ba spp versicolor. Each cluster included 

wild populations and inbred lines derived from their wild populations. 

Commercial open-pollinated cultivars formed a subgroup within L.a/ba spp. 

a/ba cluster. Foamore was the first meadowfoam cultivar developed (Calhoun 

and Crane, 1975), followed by Mermaid and Floral (Calhoun and Crane 1984; 

Joliff 1986, 1994). All of these cultivars were developed by mass selection. 

Knowles and 0MF86 were closely related since they were derived from 

0MF58 by one and two cycles of recurrent half-sib family selection (Knapp 

and Crane 1999). 0MF78 was developed by one cycle of recurrent half-sib 

family selection in OMF59 (Knapp and Crane 1999). Even though these three 

cuftivars showed close relationships the genetic distance among them was 

more than 0.3. 

L. a/ba was addressed asan outcrossing species and primarily consisted 

of two subspecies, a/ba and versico/or (Mason 1952; Arroyo 1973; Brown et 

al. 1979). The mating systems L. alba and the other species in section 

lnflexae are widely investigated (Arroyo 1975; Brown 1977; Brown and Jam 

1979; McNeill 1983; McNeill and Jam 1983). Several studies report the 

presence of self-pollinated progeny in wild populations of L. a/ba (Arroyo 1975; 

Brown 1977; McNeill 1983). Knapp and Crane (1997) screened 26 accessions 

of L. a/ba for self-pollinated phenotypes and found that six populations of L. 

a/ba spp. versico/or produced seed in a high percentage of flowers, indicating 

allelic diversity for self-pollination among these geographically isolated 

populations. L. alba spp. versicolor is distributed from -37° to 41 °N and ­
120° to 123 ow in central and Northern California (Mason 1952; Brown et al. 
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1979, McNeill and Jam 1985). Self pollination seems to be concentrated in 

populations originating near Redding California (40.5 °N, 122.4 °W) and 

0MF66 (Redding) is a source of self-pollinated phenotypes (Knapp and Crane 

1997). Self-pollinated inbred lines were developed from 0MF66 and two other 

wild populations of L. a/ba spp. veiico/or(OMF159 and OMFI6O) (Table 2.1). 

The self-pollinated inbred lines (Table 2.1) developed from these species 

provided useful resources for developing elite meadowfoam cultivars. 

In conclusion, AFLP fingerprinting was useful technique for evaluating 

genetic diversity in add itiori to constructing a genetic linkage map in 

meadowfoam (Katengam et al. 1999). AFLPs revealed great diversity among 

elite and exotic meadowfoam germplasm in the lnflexae section. L. a/ba spp. 

a/ba gene pool seems to be more diverse than the other gene pools in the 

section. The history of meadowfoam is so short that the breeding bottlenecks 

have not yet arisen in this elite gene pool. 
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ABSTRACT
 

Meadowfoam (Limnanthes a/ba Benth.) is a diploid (x = 5), winter annual 

native to vernal pools in California and the Pacific Northwestern US. This 

oilseed crop produces novel long-chain seed oils (C20 and C22) with low 

concentrations of saturated fatty acids (typically less than 2%) and outstanding 

oxidative stability. DNA markers and genetic maps have not been developed 

for meadowfoam. Our aims were to (i) screen two genetically diverse inbred 

lines (OMF4O-1 I and 0MF64) for amplified fragment length polymorphisms 

(AFLP5) and (ii) develop a genetic map comprised of AFLPs. OMF4O-1 I and 

0MF64 were screened for AFLP5 using 16 primer combinations with three 

selective nucleotides each. These primers produced 1,376 monomorphic and 

425 polymorphic bands between the two lines. One hundred [(OMF4O-1 I x 

0MF64) x 0MF64] BC, progeny were screened for AFLP5 using nine primer 

combinations. One hundred and eight segregating AFLPs were scored and 

mapped. The genetic map was comprised of 104 loci in five linkage groups, 

one per haploid chromosome (x = 5), with 14 to 28 loci per linkage group, a 

total length of 698.3 cM, and a mean density of 6.7 cM. The lengths of the 

linkage groups varied from 110.3 to 168.0 cM. AFLP loci were randomly 

distributed throughout the genome with no centromeric clustering, a finding 

contrary to that in several other plant species. There was an excess of 

0MF64 or OMF4O-1 1 alleles in three telomeric regions and one non-telomeric 

region, but recombinants were recovered throughout the genome. Genetic 

maps of meadowfoam can be rapidly constructed using a small number of 

AFLP primer combinations. AFLPs should have tremendous utility for 

molecular breeding, especially marker-assisted backcross breeding, in 

meadowfoam. 
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INTRODUCTION 

Meadowfoam (Limnanthes a/ba Benth.) is a diploid, (2n=2x=10) winter 

annual native to vernal pools in California and the Pacific Northwestern US. It 

belongs to the lnflexae section of the family Limnanthaceae (Mason 1952) and 

is grown mainly for seed oil and to some extent for seed meal. This oilseed 

crop produces novel long-chain seed oils (C20 and C22) with low 

concentrations of saturated fatty acids (typically less than 2%) and outstanding 

oxidative stability owing to its A5 bond, long chain fatty acid in nature, and the 

lack of polyenoic fatty acids (Smith et al. 1960; Bagby et al. 1961, Isbell 1997). 

The unique characteristics of this seed oil promoted the development of 

meadowfoam as a special oilseed crop with a great opportunity of industrial 

markets. 

The use of genetic markers in meadowfoam is documented in several 

studies. Morphological characters such as floral and nutlet morphology and 

allozyme markers are utilized to study biosystematic and genetic relationships, 

to examine basic genetic variation underlying breeding systems, and to 

investigate an outcrossing rate among Limnanthes populations (Ornduff and 

Crovello 1968; Arroyo 1975; Jam 1978; Brown and Jam 1979; Brown et al. 

1979; McNeill and Jam 1983; Kesseli and Jam 1985). The small number of 

polymorphic markers obtained from allozyme markers (-11- 18 polymorphic 

marker loci) and unfavorable phenotype expressions of morphological traits 

due to environmental effects have limited the utility of these markers. DNA 

markers overcome these limitations since polymorphisms revealed at the DNA 

level are much more abundant than those identified at the protein and 

morphological levels. Moreover, they are phenotypically neutral, independent 

of environmental influences, lack of deleterious effects, and are able to detect 

DNA from all living tissues at all stages of development (Tanksley et al. 1989; 

Stuber 1992). Polymorphisms based on DNA markers are highly informative 
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and superior to markers revealed by traditional methods in resolving genetic 

differences. 

Genetic maps are potentially important in plant breeding and are a 

powerful tool for localizing and isolating genes underlying both simple and 

complex traits. The DNA markers greatly facilitate and enhance the efficiency 

for constructing genetic maps in several plant species. Ideal genetic markers 

for plant breeding are simple and abundant as well as cost and time effective. 

Amplified fragment length polymorphism (AFLP) has been developed (Zabeau 

and Vos 1993; Vos et al. 1995) by combining the strength of restriction 

fragment length polymorphism (RFLP) and polymerase chain reaction (PCR). 

Polymorphisms are usually revealed as presence or absence of an amplified 

restriction fragment, and are therefore dominant. AFLPs provide efficient high 

throughput markers for various applications in crop improvement since a large 

number of markers can be generated per assay in a short period of time. 

AFLP markers have several useful features including high abundance, 

reproducibility, relatively high effective multiplex ratio, and extensive genome 

coverage (Powell et al. 1996a, 1996b; Keim et al. 1997; Qi et al. 1998; Knapp 

et al. 1999: Ridout and Donini 1999). AFLPs are widely used for constructing 

framework genetic maps (Wang et al. 1997; Lu et al. 1998) as well as high 

density linkage maps (Becker et al.1995; Keim et al. 1997; Cho et al. 1998; Qi 

etal.1998), identification of crop variety (Ellis etal. 1997), evaluation of 

genetic diversity and relationships.(Maughan et al. 1996; Hill et al. 1997; 

Hongtrakul et al. 1997; Zhu et aL 1998) and position cloning of genes of 

interest (Thomas et al 1995, Cho et al 1996) 

DNA markers and genetic maps are not available for meadowfoam. We 

employed AFLP marker technology to develop a framework genetic map for 

meadowfoam using inter- subspecies backcross progeny from a cross 

between a self-pollinated inbred line, 0MF64 (Limnanthes alba ssp. versicolor) 

and a cross pollinated inbred line, OMF4O-1 I (L. alba ssp. alba). As no 

genetic linkage map of meadowfoam exist at this point, the initial map will 
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provide a framework to understanding the genome structure, contribute a 

useful resource for genetic improvement, and facilitate marker assisted 

selection in meadowfoam breeding program. 

MATERIALS AND METHODS 

Plant Materials 

Seeds of inbred lines and crosses were produced on greenhouse grown 

plants. Seeds were germinated at 4°C in the dark on moistened blotter paper 

in 11 x 11 x 3 cm clear plastic boxes. Seedlings were transplanted to potting 

soil (pumice: peat moss: sandy loam) in 7.5 x 7.5 cm plastic pots and grown in 

growth chamber (Model GEL 37-14, Sherer-Gillett Co., Marshall, Ml) at 15°C 

for 25 to 28 days with 8 h of fluorescent light per day. The plants were 

transferred to a greenhouse and grown to maturity with 16 h of light per day. 

Daily temperatures ranged from 18°C (night) to 25°C (day) in the greenhouse. 

The inbred line OMF4O-1 I was developed from the open-pollinated cultivar 

Mermaid by randomly selecting and manually selfing one individual per 

generation. Several OMF4O-1 I plants were emasculated and crossed to 

0MF64, a self pollinated inbred line (Knap, and Crane, 1997). OMF4O-1 I 

originated from L. a/ba ssp. a/ba germplasm, while 0MF64 originated from L. 

a/ba ssp. versicolorgermplasm. 

Several OMF4O-1 I x 0MF64 plants were emasculated and backcrossed to 

0MF64. One hundred BC1 seeds were latitudinally dissected to produce half 

seed samples. The embryonic halves were germinated on blotter paper and 

grown in the greenhouse as described earlier. Leaves were harvested from 

50 to 55 day-old plants and immediately stored at -80°C. 
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AFLP Marker Analyses 

Genomic DNA was extracted from frozen leaves using the protocol 

described by Lodhi et al. (1994) with a few minor changes. One to two grams 

of leaf tissue were ground in liquid nitrogen and incubated with 2% CTAB 

(Cetyltrimetylammonium bromide) extraction buffer for I h at 65°C. The DNA 

was chloroform extracted once. The aqueous phase was mixed with a half 

volume of 5M NaCI, precipitated with two volumes of cold 95% ethanol, and 

refrigerated at 4°C overnight. The DNA pellets were dissolved in TE (10 mM 

Tris HCI and 0.1 mM EDTA, pH 8.0) buffer. The dissolved DNA samples were 

treated with Rnase (10 mg/mI) for I h at 37°C. 

AFLP marker assays were performed using the original protoco's 

described by Zabeau and Vos (1993) without using streptavidin beads to 

eliminate a subset of fragments (Vos et al. 1995). Genomic DNA samples (0.5 

j.Lg) were digested with 5 units of EcoRl and 5 units of Msel (New England 

Biolab, Schwalbach, Germany) in a reaction volume of 50 ml in restriction-

ligation (RL) buffer (10 mM Tris-acetate, 10 mM Mg acetate 50 mM K acetate, 

and 5 mM DTT, pH 7.5) (Pharmacia, Upsala, Sweden) for 3 h at 37°C. Ten d 

of ligation solution containing. I d EcoRl adapter (5 pmol/ml), I .tl Msel 

adapter (50 pmol/ml), 5U EcoRI, 5U Msel 1.2 ml 10 mM ATP, I lOx RLtl
 

buffer, and I U T4 DNA ligase (New England Biolabs) was added to the 

solution and incubated for 3 h at 37°C. Twelve of restriction ligation 

products were electrophoresed on a 1% agarose gel to verify that the DNA 

had been completely digested. 

Restriction fragments were selectively amplified from adaptor-ligated DNA 

samples in two steps First, fragments were PCR amplified using one 

selective nucleotide (+1) on each oligonucleotide primer (EcoRl +A and Msel 

+C) (Table 3.1). The PCRs were performed for 30 cycles at 94°C for 30 s, 

60°C for 30 s, and 72°C for 60 s on a Perkin Elmer 9600 DNA thermal cycler 

(San Francisco, CA). Twelve 1ii of each PCR product were electrophoresed 
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on I % agarose to check for PCR products. The PCR products were diluted 

ten-fold in 0.1% TE buffer and stored at -20°C. 

Second, fragments were PCR amplified from the diluted +1 PCR products 

using three selective nucleotides (+3) on each oligonucleotide primer (Table 

3.1). Msel +3 primers were unlabelled, while EcoRl +3 primers were end-

labeled with ['y-33P]-ATP using a T4 polynucleotide kinase (New England 

Biolabs, Beverly, MA). Touchdown PCRs were performed with the first cycle 

at 94°C for 3 s, 65°C for 30 s, and 72°C for 60 s, 11 cycles with the annealing 

temperature reduced 0.7°C per cycle, and 24 cycles with an annealing 

temperature of 56°C (Zabeau and Vos 1993; Vos et al. 1995). 

Table 3.1 Oligonucleotide adapters and primers used for analyses of 
amplified fragment length polymorphisms (AFLPs) in meadowfoam 
(Limnanthes a/ba). 

Adaptors or Primers 

EcoRl Adaptors 

Msel Adaptors 

EcoRl +1 Primer 
Msel +1 Primer 
EcoRl +3 Primers 

Msel +3 Primers 

Name
 

91M35 
91 M36 
92A18 
92A1 9 
92R1 I 
92H20 
92S05 

92G23 
92G24 
92G28 
92G29 
92G30 
92G31 
92F1 0 
92F4 I 

Sequence 

5'-CTCGTAGACTGCGTACC-3' 
3'-CTGACGCATGGTTAA-5' 
5'-GACGATGAGTCCTGAG-3' 
3'-TACTCAGGACTCAT-5' 
5'-AGACTGCGTACCAATrC/A-3' 
5'-GACGATGAGTCCTGAGTANC-3' 
5'-GACTGCGTACC,AATTC/ACA-3' 
5'-GACTGCGTACCAATrC/ACG-3' 
5'-GATGAGTCCTGAGTANCAG-3' 
5'-GATGAGTCCTGAGTAA/CAT-3' 
5'-GATGAGTCCTGAGTMICTA-3' 
5'-GATGAGTCCTGAGTANCTG-3' 
5'-GATGAGTCCTGAGTANCTC-3' 
5'-GATGAGTCCTGAGTANCTr-3' 
5'-GATGAGTCCTGAGTANCAC-3' 
5'-GATGAGTCCTGAGTMICAA-3' 
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The PCR products were mixed with an equal volume of loading buffer 

(98% formamide, 10 mM EDTA(pH 8.0), 0.025% xylene cyanol, and 0.025% 

bromophenol blue as tracking dye). These solutions were heated at 94°C for 

3 m and rapidly cooled on ice. Eight .d were loaded into pre-warmed 6% 

denaturing polyacrylamide gels and lx TBE running buffer (0.045 M Tris 

borate and 0.001 M EDTA, pH 8.0). Gels were run at constant 60 watts for 2 

h, transferred to chromatographic paper (3 MM) (Fisher Scientific, Pittsburgh, 

PA, USA), dried on a gel-dryer under vacuum at 80°C for 2 h, and exposed to 

X-ray film (Bioworld, Dublin, OH, USA) at room temperature for 3 to 5 days. 

AFLP assays were performed on OMF4O-1 I and 0MF64 using 16 primer 

combinations (two EcoRl +3 and eight.Me -3 oligonucleotide primers) (Table 

3.1) and on 100 backcross progeny using nine primer combinations. The 

autoradiographs were manually scored for the presence or absence of bands. 

Locus names were developed using the selective nucleotide sequences of the 

EcoRl and Msel +3 oligonucleotide primers in order, and estimated length of 

the fragment, e.g., the locus name for a 250 bp fragment amplified with EcoRl-

ACG and Msel-CAA primers is ACG_CAA_250. Fragment lengths were 

visually estimated using the Sequenase DNA sequencing ladder from 

Amersham Life Science (Arlington Heights, IL). 

Genetic Mapping 

Genetic maps were constructed using MAPMAKER (Lander et al. 1987) 

and G-MEN DEL (Holloway and Knapp 1993). Log-likelihood ratio (G) tests for 

segregation distortion were performed for each locus. The observed ratio was 

significantly different from the expected ratio (1:1) when G > X21,o.oi, where G 

is a log-likelihood ratio test statistic and 2i,o,o, is a random variable from the x2 

distribution with one degree of freedom. Tests for linkage between loci were 

performed using likelihood odds ratios. Loci were grouped using a likelihood 

http:X21,o.oi
http:eight.Me
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odds (LOD) threshold of 7.0 and a recombination frequency threshold of 0.25. 

Loci were ordered using the MAP function of MAPMAKER (Lander et at. 1987) 

and the ORDER function of G-MENDEL (Holloway and Knapp 1993). MAP 

estimates orders by comparing multipoint likelihoods, whereas ORDER 

estimates orders by comparing map lengths (sums of adjacent recombination 

frequencies, SAR). Multipoint likelihood was used to select the final locus 

order estimate for each linkage group. If the likelihood for the locus order 

produced by MAPMAKER was greater than the likelihood of the locus order 

produced by G-MENDEL, then the order produced by MAPMAKER was 

selected. Similarly, if the likelihood for a locus order produced by G-MENDEL 

was greater than the likelihood of the locus order produced by MAPMAKER, 

then the ORDER estimated by G-MENDEt. was selected. 

Monte Carlo analyses of locus orders were performed using the MONTE 

function of G- MENDEL (Holloway and Knapp 1993). This function produces n 

locus order estimates from n repeat runs of the locus ordering algorithm. We 

assessed the consistency or similarity of 100 locus order estimates per linkage 

group using the Kendall coefficient of concordance (Kendall and Gibbons, 

1990). Concordance was estimated by 

n(k+1)]2

12[S1
 

n2(k3 -k)
 

where S1 is the sum of the ranks (rank sum) for the ith locus, n is the number of 

rankings (locus order estimates), and k is the number of loci. Wvaries from 0 

to 1. The concordance between locus order estimates is perfect when W = I 

and random when W= 0. Wvaries from 0 to I (rather than from -Ito I as for 

a rank correlation) because the agreement and disagreement between ranks 

are not "symmetrical opposites" when the number of ranks is greater than two 

(n> 2)- a set of ranks can completely agree, but they cannot completely 
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disagree (Kendall and Gibbons1 1990). Wis conceptually analogous to a 

mean correlation among the n orders. There are (n!/2) possible correlations 

among n orders. W estimates the sum cf squared deviations of rank sums 

from the rank mean (Kendall and Gibbons 1990). 

The statistical significance of W was tested using the x2 -distribution 

(Kendall and Gibbons 1990). The null hypothesis was that the n locus orders 

were independent. There are (kU2) possible sets of ranks for k loci, rather 

than (k1), because each locus order has a mirror image. The test statistic C = 

n (ic - 1) W is approximately distributed as a x2 -variable with v = k - 1 degrees 

of freedom when k> 7 (Kendall and Gibbons 1990). The null hypothesis was 

rejected with a probability of a when C >Z2v: 

RESULTS 

Sixteen AFLP primer combinations produced 1,376 monomorphic and 425 

polymorphic bands between OMF4O-1 I and 0MF64 (Table 3.2). The number 

of polymorphic bands varied from 19 for the EcoRl-ACG/Msel-CAG primer pair 

to 34 each for the EcoRl-ACG/Msel-CAA and EcoRl-ACG/Msel-CAT primer 

pairs. The percentage of polymorphic bands ranged from - 6 to 19 % with a 

mean of 12%. 

The number of polymorphic bands and distribution of null alleles between 

OMF4O-1 I and 0MF64 were used to select nine primer pairs (EcoRl-

ACGIMseI-CAA, CAC, CAT, CTA, and CAG and EcoRl-ACAIMseI-CAC, CTG, 

CTC, and CAG) for analysis in the backcross population. Only AFLPs with 

null alleles in 0MF64 segregated in the backcross, so roughly half of the 

polymorphisms between OMF4O-I I and 0MF64 could not be mapped 

(Fig.3.1). The selected primer pairs produced a total of 971 bands (98 to 120 

bands per primer pair). Of these, 128 were polymorphic among the backcross 
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Backcross Population
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Figure 3.1 Autoradiograph showing AFLP markers derived from selective 
amplification of restriction fragments by EcoRl+ACA and Msel+CTC. The 
first two lanes from the left and the right are parents OMF4O-1 1 (F1) and 
0MF64 (F2), respectively, the remaining lanes are [(OMF4O-1 1 x 0MF64) 
x 0MF64] BC1 progeny. 
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Table 3.2. The number of polymorphic bands and percentage of polymorphic 
bands produced between two inbred lines(CMF4O-1 I and 0MF64) of 
meadowfoam (Limnanthes a/ba) by 16 amplified fragment length 
polymorphism primer pairs with three selective nucleotides each. 

Selective Nucleotides Number of Bands 

EcoRl Msel 

ACG CAA 
CAC 
CAT 
CTA 
CAG 
CTG 
CTC 
CU 

ACA CAC 
CTG 
CTC 
GAG 
CAT 
CTA 
CU 
CAA 

Total 

Total 

100 
98 
113 
106 
99 
77 
85 
98 
114 
120 
107 
114 
133 
134 
160 
143 
1801 

Polymorphic 

34 
22 
34 
23 
19 
22 
20 
26 
31 
26 
25 
32 
28 
26 
21 
26 
425 

Polymorphic 
Bands (%) 

19.0 
10.2 
16.8 
11.3 
12.1 
13.0 
10.6 
9.2 
14.9 
13.3 
12.1 
14.9 
9.8 
6.7 
8.1 
9.8 
23.6 

progeny. The polymorphic fragments ranged in length from 47 to 490 base 

pairs (bp), however, 60% of the polymorphic fragments ranged in length from 

100 to 250 bp. Twenty-one AFLPs were difficult to score and were not 

genotyped. 

Segregation ratios for 25 loci (23.2 %) were distorted (p 0.01). Twenty-

one loci had an excess of 0MF64 alleles, while only four had an excess of 

OMF4O-1 I alleles. Most of the allele frequency changes were systematic and 

were undoubtedly caused by gametic selection. Despite this, recombinants 

were recovered throughout the genome (Fig. 3.2). Clusters of telomeric or 
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Figure 32. Amplified fragment length polymorphism allele percentages 
among [(OMF4O-1 I x 0MF64) x 0MF64] BC1 progeny of meadowfoam 
(Limnanthes a/ba) across linkage groups 1, 2, 3, 4, and 5. 
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near-telomeric loci on linkage groups 1, 4, and 5 had distorted segregation 

ratios (Fig. 3.2). One cluster of non-telomeric loci on linkage group I had 

distorted segregation ratios (Fig. 3.2). 

The genetic map was comprised of five linkage groups, one per haploid 

chromosome (Fig. 3.3). The map was comprised of 104 loci with 14 to 28 loci 

per linkage group (Table 3.3). Four loci (ACGCAC2O5, ACACTCI 84, 

ACACACI5O and ACACTGI73) segregated independently. Locus orders 

estimated from multipoint likelihoods and map lengths were nearly identical 

and only varied locally. Concordance estimates for the five linkage groups (in 

order) were 0.99, 0.99, 0.99, 0.99, and 0.98; thus, the locus orders estimated 

from these data were highly reproducible. Lower concordance estimates are 

often indicative of genotyping or random sampling errors. 

Table 3.3 Number of markers and map distance in each linkage group, and 
average distance per marker interval of an AFLP genetic linkage map for 
meadowfoam (Limnanthes alba) 

Linkage group	 Number Total distance Average distance per 
of markers (cM)* marker interval (cM) 

1 19 110.3 5.8
 
2 20 144.6 7.2
 
3 28 168.0 6.0
 
4 14 118.8 8.5
 
5 23 156.6 6.8
 
Total 104 698.3 6.7
 

*cM = centi Morgan 

The longest gap between markers was 36.3 cM on linkage group 4. The 

longest gaps on the other four linkage groups were 25.9, 18.9, 16.9, and 26.1. 

The map was 698.3 cM long With a mean density of 6.7 cM. The lengths of 

the linkage groups varied from 110.3 to 168.0 cM (Table 3.3). Although the 
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Figure 3.3 A genetic map ofmeadowfoam(Umnanthes alba) comprised of 
103 AFLP loci and one phenotypic marker (E. The map was built using 100 
[(OMF4O-1 I x 0MF64) x OMl64J BC1 progeny. 
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distances between the most distal markers and the telomeres are not known 

the telomeres have not been mapped) and four markers did not map, the 

number of linkage groups and length of the map led us to conclude that a 

significant fraction of the genome was covered. 

DISCUSSION 

AFLP analysis provides efficient, high throughput markers for building 

genetic linkage maps. The utility of AFLPs is greatest where scoring as a 

dominant marker is sufficient, for instance mapping in backcross progeny 

(Knapp et al. 1999). Even though only half of the polymorphisms between the 

two inbred parents, OMF4O-1 I and 0MF64, were mapped in this study; nine 

combinations of AFLP primers provided sufficient AFLP markers for building a 

meadowfoam map. As compared to several plant species such as sunflower 

and barley, a large number of AFLP primer combinations are required for 

constructing those genetic maps. Sunflower genetic linkage map requires 

approximately 25 AFLP primer combinations (Gedil et al. 1999), similar to that 

in barley (Qi et al. 1998). This may be attributed the large genome sizes of 

sunflower (IC = 3.0 x io bp) and barley (IC = 5.1 x lO9bp, Bennett and 

Leitch 1995) which contain relatively high proportions of repetitive DNA 

sequences. We conclude that meadowfoam has a small genome size with 

relatively few repetitive DNA sequences. 

The excess of 0MF64 or OMF4O-1 I alleles in three telomeric regions and 

one non-telomeric region indicated occurrence of gametic selection between 

this intra-subspecific cross resulting in skewed markers. These skewed 

markers did not affect recombination frequency estimates, locus grouping or 

locus ordering statistics. A stringent LOD score (7.0) was used to construct 

this framework meadowfoam genetic map which increased the efficiency of 

detecting true linkage and minimizing false positives in assigning markers to 
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linkage groups (Type I errors). The concordance estimated from repeat runs 

of the G-MENDEL locus ordering algorithm were close to 1.0 for all five 

linkage groups, confirming true locus order estimation. The locus orders 

produced by MAPMAKER and G-MENDEL were nearly identical and only 

varied locally. 

Skewed markers are commonly found in inter and intraspecific crosses, for 

example in rice (McCouch et al. 1988, Causse et al. 1994), barley (Graner et 

al. 1991), and Medicago (Jenczewski et at. 1997); and tend to increase with 

the level of divergence among the parents (Zamir and Tadmor 1986). The 

distortion of markers could be due to several factors such as linkage to either 

incompatible loci or a lethal allele in gametes (Wricke and Wehling 1985; 

Pillen et at. 1992), chromosome rearrangement (Faure et al. 1993; Jenczewski 

et al. 1997), competition among gametes, or abortion of the gamete or zygote 

(Lyttle 1991; Harushima et al. 1996). 

The markers were fairly evenly distributed among the five linkage groups, 

in contrast to AFLP maps in several crops such as tomato, rice and sunflower, 

in which AFLP markers tend to cluster in some regions, particularly around 

centromeric areas (Tanksley et at. 1992; Becker et at. 1995; Qi et at. 1997, 

1998; Gedil et at. 1999). The suppression of recombination in centromeric 

areas may result from both a centromere effect and (or) lower levels of 

recombination in heterochromatin around the centromeres (Tanksley et al. 

1992). The level of recombination in heterochromatin is less than that in 

euchromatin presumably due to. the more condensed state of heterochromatin 

during melosis at the time of crossing over (Roberts 1965). 

The meadowfoam genetic map covers 698.3 cM, assigned to five linkage 

groups corresponding to the number of hapload chromosomes (x = 5) The 

linkage groups themselves indicated the degree of genome coverage. The 

total map distance was around one and a half fold longer than that of 

Arabidopsis (500 cM, Meinke et at. 1998).. Our results showed that this map 

had excellent genome coverage. Knowing the position of telomeric sequences 
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on genetic map provides the confirmation that genome is covered. Telomeres 

are terminal sequences of linear chromosomes that play a role both in the 

stability and replication of chromosome ends (Burr et al. 1992; Wu and 

Tanksley 1993). The first plant telomere sequences were isolated from 

Arabidopsis thaliana (Richards and Ausubel 1988) and these sequences were 

used as heterologous probes for identifying telomere sequences in several 

plant species such as tomato (Ganal et al. 1991, 1992), barley (Kilian and 

Kleinhofs, 1992; Roder et al. 1993), maize (Burr et al. 1992), and rice (Wu and 

Tanksley 1993). Mapping telomeres would help us to define the boundaries of 

this genetic map and estimate the total genetic distance and potential genetic 

distance expansion for each chromosome. Telomere sequences are 

investigated by means of pulse field gel electrophoresis (PFGE) and in situ 

hybridization. Mapping the telomere sequences is performed by monitoring 

their segregation using PFGE (Ganal et al. 1991, 1992; Roder et al. 1993; Wu 

and Tanksley 1993). 

Although most loci were evenly distributed throughout the meadowfoam 

genome there were some gaps between pairs of markers (Fig 3 3) The gaps 

were probably caused by a lack of polymorphic markers in the genome 

regions, representing areas of high recombination (Becker et al. 1995; Berry et 

al. 1995; Keim et al. 1997). These gaps could be filled as more polymorphic 

markers are identified and added to the map. Saturating this meadowfoam 

map with a variety of codominant markers such as simple sequence repeat 

(SSR) and intron fragment length polymorphism (IFLP) markers will provide 

the opportunity and flexibilityfor utilization of this genetic map for different 

purposes particularly marker-assisted selection (MAS) and map-based 

cloning. The development of SSR and IFLP markers for meadowfoam is 

underway in our laboratory. This will provide opportunities not only to anchor 

the locus specific markers to each linkage group and also to saturate the 

existing meadowfoam map with multi-allelic, highly polymorphic SSR and 

gene-specific IFLP markers. SSR markers are highly polymorphic and can be 
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multiplexed and automated for high throughput genotyping. Moreover, primer 

information is convenient to exchange between laboratories (Powell et al. 

1996a, 1996b; Senior et al. 1996). IFLPs are gene-specific markers, which 

are developed from unique sequences flanking the introns of specific genes 

(Slabaugh et al. 1997; Hongtrakul et al. 1998). Polymorphisms are caused by 

intron fragment length differences. IFLP markers for fatty acid gene families, 

for example FatB (thioesterases) and SAD (t9-stearoyl ACP desaturase) 

genes are developed for meadowfoam (unpublished data). These PCR-based 

markers are useful for genome mapping as well as synteny mapping and 

candidate gene analysis. 

We report here the framework of a genetic linkage map for meadowfoam. 

This map will be an important tool in meadowfoam breeding programs for 

identifying the genomic regions controlling economically important traits as 

well as for marker-assisted selection. 

ACKNOWLEDGMENTS 

This research was funded by the Paul C. Berger Endowment and USDA 
(#58-5114-8-1021 and #58-3620-8-107). 

REFERENCES 

Arroyo MTK (1975) Electrophoretic studies of genetic variation in natural 
populations of attogamous Limnanthes alba and autogamous 
Limnanthes floccosa (Limnanthaceae). Heredity 35(2): 153-164 

Bagby MO, Smith CR, Miwa TK, Lohniar RL, Wolff LA (1961) A unique fatty 
acid from Limnanthes goui!assi seed oil: the C22 diene. J Org Chem 
6: 1261-1265 

Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of 
AFLP and RFLP markers in barley. Mol Gen Genet 249:65-73 



62 

Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 
76:113-176 

Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes SR, Rufener 
GK, Lee M, Caligari PDS (1995) Molecular marker analysis of 
Helianthus annuus L. 2. Consfruction of an RFLP linkage map for 
cultivated sunflower. Theor AppI Genet 91: 195-199 

Brown CR, Hauptli H, Jam SK (1979) Variation in Limnanthes a/ba: A 
biosystematic survey of germ plasm resources. Eco Bot 33:267-274 

Brown CR, Jam SK (1979) Reproductive system and pattern of genetic 
variation in two Limnanthes species. Theor Appl Genet 54:181-190 

Burr B, Burr FA, Matz E, Romero-Severson j (1992) Pinning down loose ends: 
Mapping telomeres and factors affecting their length. The Plant Cell 
4:953-960 

Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu 
ZR PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) 
Saturated molecular map of rice genome based on an interspecific 
backcross population. Genetics 138:1251-1274 

Cho Y, Blair MW, Panaud 0, McCouch SR (1996) Cloning and mapping of 
variety-specific rice genomic DNA sequences: amplified fragment 
length polymorphisms (AFLP) from silver- stained polyacrylamide gels. 
Genome 39:373-378 

Cho YG, McCouch SR, Kuiper M, Kang M-R, Pot J, Groenen JTM, Eun MY 
(1998) Integrated map of AFLP, SSLP and RFLP markers using a 
recombinant inbred population of rice (0,yza sativa L.). Theor AppI 
Genet 97:370-380 

Ellis RP, McNicol JW, Baird E, Booth A, Lawrence P, Thomas B, Powell W 
(1997) The use of AFLP to examine genetic relatedness in barley. Mol 
breeding 3:359-369 

Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gonzalez de Leon D (1993) 
A molecular marker-based linkage map of diploid banana (Musa 
acuminata). Theor AppI Genet 87:517- 526 

Ganal MW, Broun P, TanksleySD (1992) Genetic mapping of tandemly 
repeated telomeric DNA sequences in tomato (Lycopersicon 
esculentum). Genomics 14:444-448 



63 

Ganal MW, Lapitan NLV, Tanksley SD (1991) Macrostructure of the tomato 
telomeres. Cell 3:87-94 

Gedil MA, Berry S, Jones R, Leon A, Wye C, Peleman J, Knapp SJ (1999) An 
integrated RFLP-AFLP linkage map for cultivated sunflower. Genome 
(submitted) 

Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeek G, 
Wenzel G, Herrmann RG (1991) Construction of RFLP map of barley. 
Theor AppI Genet 83:250-256 

Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, 
Nakagahra M (1996) Detection of segregation distortions in an indica­
japonica rice cross using a high-resolution molecular map. Theor AppI 
Genet 92:145-1 50 

Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1997) PCR-
based fingerprinting usingAFLPs as a tool for studying genetic 
relationships in Lactuca spp. TheorAppl Genet 93:1202-1210 

Holloway JL, Knapp SJ (1993) GMENDEL 3.0 users guide. Department of 
Crop and Soil Science, Oregon State University, Corvallis, OR, USA. 

Hongtrakul V, Huestis GM, Knapp SJ (1997) Amplified fragment length 
polymorphisms as a tool for DNA fingerprinting sunflower germplasm 
genetic diversity among oilseed inbred tines. Theor Appl Genet 95:400­
407 

Hongtrakul V, Slabaugh MB, Knapp SJ (1998) DFLP, SSCP, and SSR 
markers for A9 stearoyl- acyl carrier protein desaturases strongly 
expressed in developing seeds of sunflower: intron lengths are 
hypervariable among elite inbred lines. Mol. Breed. 4:195-203 

Isbell TA (1997) Development of meadowfoam as industrial crop through novel 
fatty acid derivatives. Lipid Technol. 9:140-144 

Jam S (1978) Breeding system in Limnanthes a/ba: several alternative 
measures. Amer J Bot 65(3):272-275 

Jenczewski E, Gherardi M, Bonnin L, Prosperi JM, Olivieri I, Huguet T (1997) 
Insight on segregation distortions in two intraspecific crosses between 
annual species of Medicago (Leguminosae). Theor AppI Genet 94:682­
691 



64 

Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Liang S, Ferreira A, Webb 
DM (1997) A high- density soybean genetic map based on AFLP 
markers. Crop Sci. 37:537-543 

Kendall M, Gibbons JD (1990) Rank correlation methods. pp.1-260. Oxford 
Univ. Press, New York 

Kesseli RV, Jam SK (1985) Breeding systems and population structure in 
Limnanthes. Theor AppI Genet 71:292-299 

Kilian A, Kleinhofs A (1992) Cloning and mapping of telomere-associated 
sequences from Hordeum vulgare L. Mol Gen Genet 235:153-156 

Knapp SJ, Crane JM (1997) The development of self-pollinated inbred lines of 
meadowfoam by direct selection in open-pollinated. Crop Sci 37:1770­
1775 

Knapp SJ, Berry ST, Rieseberg LH (1999) Genetic mapping in sunflowers. (in 
press) In R.L. Phillips and l.K. Vasil (ed.) DNA markers in plants. 
Kluwer, Dordrecht, Netherlands. 

Lander ES, Green P, Abraharnson J, Barlow A, Daly MJ, Lincoln SE, Newburg 
L (1987) MAPMAKEft an interactive computer package for 
constructing primary genetic linkage maps of experimental and natural 
populations. Genomics 1:174-181 

Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient 
method for DNA extraction from grapevine cultivars and Vitis species. 
Plant Mol Biol Rep 12(1):1994 

Lu Z-X, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of 
a genetic linkage map and identification of AFLP markers for resistance 
to root-knot nematode in peach rootstocks. Genome 41:199-207 

Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511-557 

Mason CT (1952) A systematic study of the genus Limnanthes. Bot PubI 
25:455-512 

Maughan PJ, Saghai Maroof MA, Buss GR, Huestis GM (1996) Amplified 
fragment length polymorphism (AFLP) in soybean: species, diversity, 
inheritance, and near-isogeriic line analysis. Theor Appl Genet 93:392­
401 



65 

McCouch SR, Kochert G, Vu ZH, Wang ZY, Khush GS, Coffman WR, 
Tanksley SD (1988) Molecular mapping of rice chromosome. Theor 
Appi Genet 76:815-829 

McNeill Cl, Jam SK (1983) Genetic differentiation studies and phylogenetic 
inference in the plant genus Limnanthes (section lnflexae). Theor AppI 
Genet 66:257-269 

Meinke DW, Cherry MC, Dean C, Rounsley SD, Koornneef M (1998) 
Arabidopsis thaliana: A model plant for genome analysis. Sci 282:662­
682 

Omduff R, Croveflo TJ. 1968. Numerical taxonomy of Limnanthaceae. Amer J 
Bot55:173-182 

Pillen K, Steinrucken G, Wricke G, Hermann RG, Jung C (1992) A linkage 
map of sugar beet (Beta vUlgans L.). Theor AppI Genet 84:129-135 

Powell W, Morgante M,Andre C, Hanafey M, Vogel J, Tingey S, Rafaiski A 
(1 996a) The comparison of RFLP, RAPD, AFLP and SSR 
(microsatellite) markers for germplasm analysis. Mol Breed 2:225-238 

Powell W, Machray GC, Provan J (1996b) Polymorphism revealed by simple 
sequence repeats. Trends Plant Sci I :215-fl2 

Qi X, Lindhout P (1997) Development of AFLP markers in barley. Mol Gen 
Genet 254:330-336 

Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to 
construct a high-density molecular map in barley. Theor Appi Genet 
96:376-384 

Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from 
Arabidopsis thaliana. Cell 53:127-136 

Ridout ML, Donini P (1999) Use of AFLP in cereals research. Trends in Plant 
Sci 4:76-79 

Roberts PA (1965) Difference in the behavior of eu- and hetero-chromatin: 
crossing over. Nature 205:725-726 

Roder MS, Lapitan NLV, Sorrells ME, Tanksley SD (1993) Genetic and 
physical mapping of barley telomeres. Mol Gen Genet 238:294-303 



66 

Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW (1996) Simple sequence 
repeat markers developed from maize sequences found in the 
GENBANK database: Map construction. Crop Sci 36:1676-1683 

Slabaugh MB, Huestis GM, Leonard J, Holloway JL, Rosato C, Hongtrakul V, 
Martini N, Toepfer R, Voetz M, Schell J, Knapp SJ (1997) Sequence-
based genetic markers for genes and gene families: Single-strand 
conformational polymorphisms for the fatty acid synthesis genes of 
Cuphea. Theor Appi Genet 94: 400-408 

Smith CR, Bagby MO, Miwa TK, Lohmar RL, Wolff IA (1960) Unique fatty 
acids from Limnanthes douglasii seed oil: the C20- and C22-monoenes. J 
Org Chem 25:1770- 1774 

Stuber CW (1992). Biochemical and molecular markers in plant breeding.
 
Plant Breed Rev 9:37-62
 

Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping 
in plant breeding: new tools in an old science. Bio/tech 7:257-264 

Tanksley SD, Ganal MW, Price JP, De Vicente MC, Bonierbale MW, Broun P, 
Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller 
JC, Miller L, Peterson AH, Pineda 0, Roder MS, Wing RA, Wu W, 
Young ND (1992) High density molecular linkage maps of the tomato 
and potato genomes. Genetics 132:1141-1160 

Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, Jones 
JDG (1995) Identification of amplified fragment length polymorphism 
(AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to 
Cladosporium fulvum. Plant J 8(5):785-794 

Vos P, Hoger R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, 
Pot J, Peleman J, Kuiper M Zabeau M (1995) AFLP: a new technique 
for DNA fingerprinting. Nucleic Acids Res 23:4407-4414 

Wang Y-H, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis 
melo L.) based on amplified fragment length polymorphism (AFLP) 
markers. TheorAppl Geflet 95:791-798 

Wricke G, Wehling P (1985) Linkage between an incompatibility locus and 
peroxidase locus (Pix7) in rye. Theor AppI Genet 71:289-291 

Wu K-S, Tanksley SD (1993) Genetic and physical mapping of telomeres and 
macrosatellites of rice. Plant Mol Biol 22:861-872 



67 

Zabeau M, Vos P (1993): Selective restriction fragment amplification: a 
general method for DNA fingerprinting. European Patent Application 
number 92402629.7 Publication number 0-534- 858-Al. 

Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. 
Bot Gaz 147:355- 358 

Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ (1998) AFLP markers for 
the study of rice biodiversity. Theor AppI Genet 96:602-611 



68 

CHAPTER 4
 

Quantitative Trait Loci Underlyihg Fatty Acid Profile Differences 
in the Very Long-Chain Oilseed Meadowfoam 
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ABSTRACT
 

Meadowfoam (Limnanthes alba Benth) produces very long-chain seed oils 

with unique chemical and physical properties. The principal fatty acids of 

meadowfoam oil are 20 1A5, 22 1i5, 22 1M3 (erucic acid), and 22 2A5, M3 

(dienoic acid). L. a/ba ssp. versicolor germplasm accessions typically produce 

more erucic acid and less dienoic acid than L. a/ba ssp. a/ba germplasm 

accessions. The fatty acid profile differences between the subspecies are 

primarily caused by allelic variants at the E locus. The dominant allele, which 

seems to be fixed in L. a/ba ssp. a/ba, decreases erucic and increases dienoic 

acid. Erucic and dienoic acid concentrations vary continuously within E_ and 

ee phenotypic classes in segregating populations. Within class differences 

could be caused by quantitative trait loci (QTL). The aim of this study was to 

map the E locus and QTL affecting erucic and dienoic acid concentrations. 

Backcross progeny were produced using parent inbred lines (OMF4O-1 I and 

0MF64) with fatty acid profiles characteristic of the two subspecies. The fatty 

acid profiles of the backcross progeny were assayed using gas 

chromatography. The E locus segregated 94:86, a ratio that was not 

significantly different from 1:1 (p = 0.55). This locus was associated with 94 

and 77% of the phenotypic variance for erucic and dienoic acid concentration, 

respectively. Erucic acid varied from 42 to 151 g kg1 among E_ and 185 to 

269 g kg among ee progeny, while dienoic acid varied from 151 to 318 g kg 

among E_ and 66 to 209 g kg1 among ee progeny. The genome was 

searched for QTL using a genetic map constructed from 100 backcross 

progeny. The map was comprised of 66 loci spaced '-10cM apart across five 

linkage groups (x = 5). The E locus mapped to linkage group four and 

pleiotropically affected the concentration of nearly every fatty acid. QTL 

affecting erucic, and dienoic acid concentrations mapped to linkage group four 

and were centered or near the E locus, but were not found elsewhere in the 

genome. Despite this the phenotypic distribution of the E_ class was 
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reproduced by crossing extreme phenotypes, thus substantiating that E_ class 

phenotypes were almost certainly produced by genetic and non-genetic 

factors. 

INTRODUCTION 

The fatty acid profile and chemical and physical properties of meadowfoam 

(Limnanthes alba Benth.) seed oil are unique (Miller et aL, 1964; Gentry and 

Miller, 1965; Higgins et al., 1971; Chang and Rothfus, 1977; Isbell, 1997). 

With saturated fatty acid concentrations of 20 g kg1 or less, meadowfoam oil 

has significantly less saturated fat (Smith et al. 1960; Miller et al. 1964; 

Moreau et al. 1981, Lardans and Tremolieres, 1991, 1992) than soybean 

(Glycine max L.), sunflower (Helianthus annuus L.), and other common seed 

oils (Hammond, 1994). One unique characteristic of the oil is the 

concentration of very long-chain fatty acids (VLCFs), specifically acids with C20 

and C22 chain lengths. Although rapeseed (Brassica napus L.) and many 

other Cruciferae (Pollard and Stumpf, I 980a; Agrawal and Stumpf, 1985; 

Fehling et al., 1990; Taylor et al., 1992; James et al., 1995; Miller and Kunst 

1997, Barret et al., 1998) produce VLCFs (primarily erucic acid), meadowfoam 

produces VLCFs in higher concentrations than the Cruciferae and is the 

richest known source of VLCFs in the, plant kingdom (Princen, 1979; Purdy 

and Craig, 1987; Kleiman, 1990). VLCF concentrations typically range from 

940 to 960 g kg1 in meadowfoam (Knapp and Crane, 1995). 

The principal fatty acids foUnd in meadowfoam are cis-5-eicosenoic 

(20:1i5), cis-13- docosenoic (221M3, or erucic acid), cis-5,cis-13-eicosenoic 

(22:2i5, M3, or dienoic acid), and cis-5-docbsenoic (22:1A5) acid (Earle et 

al., 1959; Smith et al., 1960; Bagby et at., 1961). The presence and 

concentration of fatty acids with 5 double bonds is one of the unique 

characteristics of the oil. Fatty acids with 5 double bonds are found in low 
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concentrations in pines and other species (Hitchcock and Nichols, 1971; 

Harwood, 1989, 1996), but meadowfoam is presently the only commercial rich 

source of 5 fatty acids. The position of the double bond and high 

concentration of 5 fatty acids has led to the development of novel chemical 

derivatives often with high yields or processing efficiencies (Chang and 

Rothfus, 1977; Kaneniwa et al., 1988; Isbell, 1997). The triglyceride (crude 

oil), fatty acids, and chemical derivatives have been proposed for use as 

feedstocks for producing waxes, lubricants, surfactants, detergents, plastics, 

and other products (Miwa etal., 1962; Higgins et al., 1971; Chang and 

Rothfus, 1977; Pierce and Jam, 1977, Battey et al., 1989; Harwood, 1989, 

1996; Klieman, 1990; Topfer et al., 1995; Isbell, 1997). The oil is presently 

widely used in cosmetics (Isbell, 1997). 

The biosynthesis of certain VLCFs is fairly well understood in plants. De 

novo fatty acid biosynthesis is carried out in the chloroplast and other plastids 

where fatty acid synthase sequentially condenses two-carbon units into fatty 

acyl chains with C,6 and C18 chain lengths in common oils (Browse and 

Somerville, 1991; Ohlrogge and Browse, 1995). The most common fatty acids 

produced through this process are palrnitic(16:0), stearic (18:0), and oleic 

(18:1 9) acids. These fatty acids are released from acyl carrier protein by the 

activities of thioesterases. The acyl residues are exported to the cytoplasm 

and converted to acyl-00A esters by acyl-00A synthetase, thereby producing 

substrates that are further elongated in species that produce VLCFs and 

further desaturated in species that produce polyunsaturated fatty acids. These 

processes and the assembly Of triacylglycerols (seed storage lipids) are 

carried out in the endoplasmic reticulum (Browse and Somerville, 1991). 

Whereas the end products of de novo fatty acid synthesis are 16- or 18­

carbon fatty acids in commonseed oils, several species, as noted earlier, 

produce longer chains. Elongation of the fatty acid carbon chain from C,8 to 

C20 and C20 to C22 occurs by sequential addition of one and two C2 units from 

malonyl coenzyme A (C0A) to the C18 carbon skeleton (James et al. 1995). 
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Four enzymatic reactions are involved inthe elongation systems of plants: (1) 

condensation of malonyl-CoA with a long chain acyl CoA to form a f-ketoacyl 

C0A in which the acyl moiety has been elongated by two carbons, (2) 

reduction to f-hydroxyacyl-CoA, (3) dehydration to enoyl CoA, and (4) 

reduction of enoyl C0A to yield elongated acyl-CoA by two carbons (Fehling 

and Mukherjee 1991; Cassagne et aL, 1994). These four activities of fatty 

acid elongation (FAE) are named elongase (Von Wettstein-Knowles, 1982). A 

key component of this elongase complex is the -ketoacyl-CoA synthase, a 

condensing enzyme which in Arabidopsis is encoded by FAEI (Kunst et al. 

1992), which catalyzes the condensation of malonyl CoA with long-chain acyl-

CoA. 

The pathway for producing VLCFs in Arabidopsis and rapeseed have been 

well characterized. Cis-1 1-eicosenoic (20:IM 1) and erucic acid are produced 

by elongating 18:1 to 20:1 and 20:1 to 22:1, respectively (Agrawal and Stumpf, 

1985; Harwood, 1989, 1996; Kunstetal., 1992; Tayloretal., 1992; Ecker and 

Yaniv, 1993). The substrates are elongated by fatty acid elongases (FAEI) 

complex (Havey and Downey, 1964; Pollard and Stumpf, 1980a; Agrawal and 

Stumpf, 1985; Kunst et al., 1992; Taylor et al., 1992). This involves four 

different enzyme reactions (Fehling and Mukherjee, 1991). The concentration 

of erucic acid in rapeseed oil is primarily affected by two loci, (El and E2), with 

multiple alleles (Downey and Craig, 1964; Harvey and Downey, 1964; Siebel 

and Pauls, 1989; Ecke et aL, 1995; Thormann et al., 1996). Most of the alleles 

additively affect 20:IM I and erucic acid concentrations and are simply 

inherited (Kondra and Stefansson, 1965; Johnson, 1977; Ecke et al., 1995). 

These gene copies contribute about 9-10% erucic acid to the seed oil (Harvey 

and Downey, 1964). In Arabidopsis mutation of FAEI locus reduces the level 

of VLCF in seed oil (James and Dooner, 1990; Lemieux et al., 1990) and 

result in a deficiency in acyl chain elongation from C18 to C20 and C20 to C22 

(Kunst et al., 1992). This work supports the notion that FAEI gene encodes a 

condensing enzyme, 3-ketoacyl-CoA synthase (KCS). In rapeseed, the two 
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loci (El and E2) were found to co-segregate with the FAEI gene (Fourmann 

et al., 1998) which encodes a condensing enzyme f3-ketoacyl-CoA-synthase 

(Kunst et al., 1992; Lassner et al., 1996; TOdd et al., 1999). Two sequences 

homologous to the FAEI gene were isolated from a Brassica napus immature 

embryo cDNA library (Barret et al., 1998). Southern hybridisation showed that 

the rapeseed -ketoacyl-CoA-synthase was encoded by a small multigene 

family. One of the FAEI genes is tightly linked to the El locus (Barret et al., 

1998). The -ketoacyl-CoA synthase (KCS) is proposed as a candidate gene 

for underlying erucic acid concentration in rapeseed (Fourmann et al. 1998). 

Meadowfoam has evolved a variant of the pathway found in Arabidopsis 

and rapeseed. Pollard and Stumpf (1 980b) propose two branches in the 

pathway underlying the synthesis of VLCFs in meadowfoam. They propose 

one branch whereby 18:0, 20:0 and 22:0 are produced by elongating 16:0. 

The elongated fatty acids are desaturated by A5 desaturase(s), thereby 

yielding 18:1A5, 20:1A5 and 22:15. The other branch yields 20:IMI, 

22:lM3 (erucic acid), and 22:2A5, M3 (dienoic acid). The substrates in this 

branch are produced by elongating oleic acid (l8:1i9). The diene (22:2A5, 

M3) is produced from 22:1M3 substrate by a i5 desaturase. Knapp and 

Crane (1998) showed that 22:1M3 and 22:2A5, M3 concentrations were 

strongly negatively correlated i meadowfoam populations segregating for a 

dominant gene (E) that decreases erucic and increases dienoic acid. 

Although this was not sufficient to show cause and effect between 5 

desaturase allelic variants and phenotypic differences in fatty acid 

concentration, 5 desaturase is a logical candidate for the E locus. Allelic 

variants that encode 5 desatwases with less activity on erucic acid substrate, 

for example, should produce more erucic acid than allelic variants that encode 

A5 desaturases with greater activity on erucic acid substrate. Allelic variants 

of the E locus produce such phenotypic differences; thus we speculate that the 

E locus encodes a A5 desaturase. 



74 

Two wild-type fatty acid profiles have been described for L. a/ba (Knapp 

and Crane, 1995). L. a/ba ssp. versicolorgermplasm accessions typically 

produce more erucic acid and less dienoic acid than those of L. a/ba ssp. a/ba 

germplasm accessions. The fatty acid profile differences between the 

subspecies are primarily caused by allelic variants at the E locus (Knapp and 

Crane, 1998). L. alba ssp. a/ba germplasm seems to be homozygous for 

dominant alleles, whereas L. alba ssp. versicolor seems to be homozygous for 

recessive alleles (Knapp and Crane, 1995, 1998). Nevertheless, erucic and 

dienoic acid concentration differences are found among accessions within the 

subspecies (Knapp and Crane, 1995). These differences could be caused by 

allelic variants of the E locus or perhaps by quantitative trait loci (QTL). 

Furthermore, erucic and dienoic acid concentrations vary continuously among 

E_ and ee progeny in segregating populations. These differences could be 

caused by quantitative trait loci (QTL). The aim of this study was to map the E 

locus and QTL affecting erucic and dienoic acid concentrations among 

intersubspecific backcross progeny. 

MATERIALS AND METHODS 

This study was performed using 180 progeny from the backcross 

population [(OMF4O-1 I x 0MF64) x 0MF64] described by Katengam et al. 

(1999). The donor parent (OMF 40-1 1)is an inbred line developed from the L. 

a/ba ssp. a/ba cultivar Meimaid The recurrentparent (0MF64) is an inbred 

line developed from the L. a/ba ssp. versicolor accession P1 374801 (Knapp 

and Crane, 1997). Fatty acid concentrations (phenotypes) were quantified for 

180 progeny, while molecular marker genotypes were measured on and a 

genetic map was constructed from 100 progeny (Katengam et al., 1999). The 

significance of mean difference between E_ and ee progeny, and the 

coefficient of determination (R2) for the effect of E locus for 180 BC1 progeny 
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were determined using one-way ANOVA from SAS PROC GLM (SAS Institute, 

1996) (SAS Institute Inc., Cary, NC). Differences were considered significant 

at p <0.05; actual p values are given where appropriate. The original map 

was comprised of 103 amplified fragment length polymorphism (AFLP) 

markers and one phenotypic marker (E). We selected 66 well-spaced loci 

from the map for the analyses described in this paper. The map was 

reconstructed using the methods described by Katengam et al. (1999) (Fig. 

4.1) 

Backcross seed was germinated at 4°C and transplanted to potting soil 

(pumice: peat moss: sandy loam) in 7.5 x 7.5 cM plastic pots. The seedlings 

were grown for 5 weeks in a growth chamber (Model CEL 37-14, Sherer-Gillett 

Co., Marshall, MI) with daily temperatures at 15°C of 8 h light. Five week-old 

plants were transferred from the growth chamber to a greenhouse with daily 

temperatures ranging from 18°C (night) to 25°C (day) and 16 h light. The 

plants were grown to maturity and harvested at 10 weeks. 

Because whole plants were needed to develop the genetic map (Katengam 

et al., 1999) we performed chemical analyses of the backcross progeny using 

half- seed samples (Knapp and Crane, 1998). BC1 seeds were sliced into 

nearly equal apical and basal halves with a scalpel. Fatty acids were 

extracted from the apical explants as described by Knapp and Crane (1995) 

and methylated, while the basal explants were germinated and transplanted. 

Fatty acid concentrations were measured using a Hewlett-Packard gas 

chromatograph (HP 6890 Series GC system) with a Durabond-23 column (30 

meters, 0.25 mm ID) (J&W Scientific, Folsom, CA). Standards with known 

18:15, 18:1A9, 18:3 (linolenic acid), 20:0, 20:IMI, 20:1i5, 22:1A5, erucic 

acid, and dienoic acid concentrations were used to identify peaks and check 

measurements. Standards were acquired from Thomas Abbott (USDA-ARS, 

NCAUR, Peoria, IL). 

Histograms (phenotypic distributions) were produced for the four principal 

fatty acids found in meadowfoam oil (20:1A5, 22:1A5, erucic acid, and dienoic 
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Figure 4.1 A genetic map of meadowfoam (Limnanthes alba) comprised of a 
subset of 66 AFLP loci and one phenotypic marker (E). The map was built 
using 100 [(OMF4O-1 1 x 0MF64) x 0MF64] BC1 progeny. Background 
markers are shown in italic. 
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acid) and for erucic by dienoic acid concentration. Backcross progeny were 

assigned to E_ (low erucic and high dienoic acid concentration) and ee (high 

erucic and low dienoic acid) classes using the erucic by dienoic acid 

distribution. The fit of the observed phenotypic distribution to the predicted 

genotypic distribution for the segregatioflOY a single gene in a backcross 

population (1:1) was checked using a 2 -test with one degree of freedom. 

The E locus was mapped using the methods described by Katengam et al. 

(1999). 

QTL analyses were performed using genotypes (AFLP marker scores) and 

phenotypes (fatty acid concentrations) recorded on 100 backcross progeny. 

Simple interval mapping (SIM) and simplified composite interval mapping 

(sClM) analyses were performed with MQTL (Tinker and Mather, 1995). sCIM 

analyses were performed using 27 'background' markers, which are used to 

account for possible variation in regions of the genome other than that under 

test which can refine the location of QTLs reveals by SIM (Tinker and Mather, 

1995). The E locus was one of the background markers used in this analysis. 

The background markers were spaced every 30 cM, start from both ends of 

each linkage group. SIM and 5CIM test statistics and tests of the null 

hypothesis (no QTL) were performed using permutation tests (Churchill and 

Doerge, 1994) with 1,000 permutations per test. Tests were performed for 

every 5 cM interval in the genome. Thresholds for hypothesis tests were 

estimated from the empirical distribution by setting a genome-wise Type I error 

threshold of 0.05. Primary QTL locations were established where peaks for 

SIM and sClM coincided (Tinker and Mather, 1995). In additional, 'secondary' 

QTL locations were declared where either SIM or sCIM, but not both gave 

evidence for QTLs (Tinker et al., 1996). The phenotypic variance explained 

(R2) of QTLs was estimated by MQTL (Tinker and Mather, 1995). The QTL 

effect was estimated by regression analysis. 
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RESULTS AND DISCUSSION
 

Two continuous, non-overlapping erucic acid distributions were observed 

(Fig. 4.2). The dienoic acid distribution was continuous with perhaps two 

modes, but with no discontinuities. The 20:1A5 and 22:1A5 distributions were 

continuous (Fig. 4.3). The erucic by dienoic acid distribution showed that the 

backcross progeny segregated intotwo distinct phenotypic classes (Fig. 4.4), 

one with low erucic and high dienoic acid and the other with high erucic and 

low dienoic acid, as previously reported for this inter-subspecific cross (Knapp 

and Crane, 1998). There were 96 progeny in the low erucic, high dienoic 

(dominant or E_) class and 84 progeny in high erucic, low dienoic (recessive 

or ee) class (Fig. 4.4). The fit of the observed phenotypic distribution was not 

significantly different from 1:1 (p = 0.55), the expected distribution for a single 

gene segregating in a backcross population. Tests for independent 

assortment were performed between the E locus and 103 AFLP loci on the 

genetic map (Katengam et al. 1999). The Elocus mapped to linkage group 

four near the AFLP locus ACG_CAA_79 (Katengam et al. 1999) (Fig. 4.4). 

OMF4O-1 1, the E_ inbred lineproduced 95g kg1 erucic and 204 g kg1 

dienoic acid, whereas 0MF64, the ec inbred line 203 g kg1 erucic and 92 g 

kg1 dienoic acid (Table 4.1). E_ progeny produced 909 kg1 erucic and 227 g 

dienoic acid kg1, whereas ee progeny produced 227 g kg1 erucic and 106 g 

kg1 dienoic acid (Table 4.2). The fatty acid concentration means for E_ and 

ee progeny were significantly different for 18:1A5 and all of the VLCFs (Table 

4.2); thus the E locus pleiotropically affected the concentrations of most the 

fatty acids produced in meadowfoam seed oil. 

Our hypothesis is that the E locus encodes a A5 desaturase. The 

concentrations of 22:1 Al 3 (erucic acid) and 22:1 A5M 3 (dienoic acid) were 

nearly perfectly negatively correlated (p = -0.90) among the backcross 
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Figure 4.4 Joint phenotypic distribution of erucic acid (22:1 Al 3) by dienoic 
acid (22:2A5, M3) concentration (g kg) for 180 [(QMF4O-1 I x 0MF64) x 
0MF64] BC1 progeny. 

progeny (Table 4.3). The Pollard and Stumpf (1980b) pathway for VLCFs 

biosynthesis in meadowfoam predicts that 22:1 Al 3 and 22:2A5, Al 3 are 

sequentially produced in one branch of the pathway from elongated 18:1 

substrate, while 20:1A5 and 22:1A5 are sequentially produced in another 

branch of the pathway from elongated 20:0 substrate. As predicted by this 

model, reduced activity of the A5 desaturase on 22:1A13 (erucic acid) 

substrate should increase 22:1A5, A13 (dienoic acid) concentration (the 

phenotypic change produced by the E locus). Whether or not the same 

desaturase has activity on 20:0 and 22:0 substrates is uncertain. Although 
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Table 4.1 Mean seed oil fatty acid concentrations for OMF4O-1 I and 0MF64, 
minimum and maximum seed oil fatty acid concentrations for 180 [(OMF4O-1 I 
x 0MF64) x 0MF64] BC1 progeny of meadowfoam 

BC1 

Fatty Acid OMF4O-1 I 0MF64 Minimum Maximum 
----------------------g kg1-------------------------------­

18:1A5 5.1 3.4 0 8.9 
18:19 10.3 14.0 7.1 41.8 
18:3 4.7 11.3 0 33.8 
20:0 7.0 12.6 0 16.5 
20:1A5 628.8 610.5 466.2 696.1 
20:IMI 6.5 8.6 0 28.5 
22:1A5 38.2 44.0 13.6 55.2 
22:1M3 95.2 203.5 42.3 268.7 
22:2A5M3 204.2 92.1 66.0 317.8 

Table 4.2 Seed oil fatty acid concentrations, probability (p) of tests of 
significance of mean differences between E_ and ee progeny, and coefficient 
of determination (R2) for the effect of the E locus for 180 [(OMF4O-1 I x 
0MF64) x 0MF64] BC1 progeny of meadowfoam 

Mean 

Fatty Acid E_ ee p R2 

gKg--­

18:1E5 3.9 2.4 0.0001 0.27 
18:19 13.5 11.9 0.0217 0.03 
18:3 7.2 6.4 0.165 0.01 
20:0 1.6 3.4 0.0048 0.04 
20:1A5 621.5 596.7 0.0001 0.14 
20:IMI 2.8 6.1 0.0001 0.12 
22:1A5 32.3 39.6 0.0001 0.20 
22:1M3 90.0 227.3 0.0001 0.94 
22:2i5M3 227.2 106.2 0.0001 0.77 
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numerous desaturases have beeAdoned from plants, cDNA or genomic 

sequences for A5 desaturases from rneadówfoam have not yet been 

published, so the number, specific activities, and expression patterns of the 

novel meadowfoam desaturases are not known The concentrations of 20 1 A5 

and 22:1A5 were significantly negatively and positively correlated with 22:1M3 

concentration among the backcross progeny, respectively (Table 4.3). 

Although the E locus significantly affected 20:15 and 22:1A5 concentration, 

this locus was only associated with 14 and 20% of the phenotypic variance for 

20:1 i5 and 22:1 5 concentration, respectively (Table 4.2) 

Table 4.3 Simple phenotypic correlations between major fatty acid 
concentrations in a meadowfoam BC1 mapping population 

Fatty acid 

Fatty Acid 22:1A5 Erucic acid Dienoic acid 

20 1A5 0 33** -0 41** 0 02 
22:1A5 0.43** 0.67** 
Erucic acid 0.90** 

**Correlations marked with double asterisks were highly significantly different 
from 0.00 (p = 0.01). 

By contrast, the E locus was associated with 94% of the phenotypic 

variance for erucic and 77% of the phenotypic variance for dienoic acid 

concentration; thus, for erucic acid concentration, most of the phenotypic 

variance was genetic (the heritability for this trait is greater than or equal to 

0.94) (Table 4.2). There was greater dispersion in the dienoic than the erucic 

acid distribution (Fig. 4.3). Dienoio acid concentrations ranged from 151 to 

318 g kg among E_ and 66 to 209g kg among ee progeny (the dienoic acid 
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distributions of the two classes overlapped) (Fig. 4.3). This variation might 

have arisen from the cumulative effects of numerous genes, each having a 

small effects (QTL), or by non-genetic factors, or by both. 

QTL affecting 20:1A5, 22:1A5, 22:1M3 (erucic acid), and 22:2A5, M3 

(dienoic acid) concentrations mapped to linkage group four and were centered 

or near the E locus accounted for 19%, 16%, 88% and 74% of total phenotypic 

variation, respectively (Table 4.4, Fig. 4.5- 4.7). Our hypothesis was that QTL 

were associated with some fraction of the phenotypic differences within E 

locus classes; however, simplified composite interval mapping searches of the 

genome did not uncover any QTL other than the QTL peak for 22:1M3 (erucic 

acid), and 22:2A5, M3 (dienoic acid) concentrations centered on or nearly on 

the E locus on linkage group four (Fig. 4.5 -4.6). QTL effects on linkage group 

four for the different fatty acids were presumably caused by the effect of the E 

locus alone. The coincident of QTL localization at the E locus affecting these 

fatty acids (multiple traits) suggests pleiotropic effects (Falconer, 1989; 

Paterson et al., 1991; Xiao et al., 1996). 

QTL affecting 20:1A5, 22:1A5 mapped near the E locus accounted for 

small proportion of total phenotypic variation (19% and 16%, respectively). 

The unexplained remainder of phenotypic variation might be due to 

undetected QTLs or environmental effect or both. Moreau et al. (1981) 

characterized A5 fatty acid desaturase activity in extracts of developing 

meadowfoam seed and reported that the highest activity was obtained from 

eicosanoyl-00A (20:0) which elongated from palmitate but the activity of 5 

desaturase was not detected for erucic acid Erucic acid is one of the major 

VLCFs which accounts for -15% of total seed oil. The detected A5 

desaturation of erucic acid in vivo have been demonstrated by Pollard and 

Stumpf (1980b). Since the Elocus had major effect for 22:1M3, and 22:2A5, 

M3 whereas less effect for 20:1A5 and 22:1A5, we speculated that there 



Table 4.4 Genomic locations, allele phase, phenotypic effect and phenotypic variation explained (R2) of putative 
QTLs for fatty acid composition of meadowfoam (Limnanthes a/ba) seed oils in 100 [(OMF4O-1 I x 0MF64) 
x 0MF64] BC1 progeny. 

atty uistance ui-'t rnenotypic
 
of NML (%) Effects (%) (%) (%)
 
(CM)
 

22:2i5M3 4 E 0 P1 1099 74 74 
4 AACTC1 89 10 P1 '1.36 36 

22:1M3 4 E 0 P2 13.04 88 90 
4 ACACTC189 10 P2 1.23 45 

22:15	 4 E 0 P2 0.4 19 27 
3 ACGCAC179* 0 P2 0.6 11 

20:15	 4 E 10 P2 2$ 16 24 
4 ACGCAA79 0 P1 55 23 

t = Putative genetic linkage group in meadowfoam map 
= Nearest marker locus of putative QTL 

§ = Direction of phenotypic effects (P1= OMF4O-1 1, P2 = 0MF64 S5), indicating allele increase that fatty acid content 
= Phenotypic effect accounted for the QTL 

# = Phenotypic variation accounted for the QTL 
= Total phenotypic variation accounted for the QTLs affecting that fatty acid (Multi-locus R2) 

11 = Primary QTL 
= Secondary QTL 
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Figure 4.5 sCIM test statistics from the QTL analysis for erucic acid (22:1 Al 3) concentration for 5 cM intervals
for each linkage group (x = 5) in the meadowfoam genome. The significance threshold for composite interval
mapping is shown as a dotted horizontal line for an empirical genome-wise Type I error probability threshold of
0.05. The position of the E locus in linkage group four is shown as a vertical arrow. 
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Figure 4.6 sCIM test statistics from the QTL analysis for dienoic acid (22:2 A5 M 3) concentration for5 cM 
intervals for each linkage group (x = 5) in the meadowfoam genome. The significance threshold for 
composite interval mapping is shown as a dotted horizontal line for an empirical genome-wise Type I error
probability threshold of 0.05. The position of the E locus in linkage group four is shown as a vertical arrow. 
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might be more than one A5 desaturase genes underlying i5 desaturation for 

20:1 and 22:1. 

We showed that QTL underlying erucic and dienoic acid was mapped at 

the E locus. The identified QTL may be allelic to a major gene (E) affecting the 

phenotypic difference between these two subspecies. Several studies have 

been reported on the coincidence of QTLs mapped to the same location of 

major genes affecting plant height in maize (Beavis et aL, 1991; Edwards et 

al., 1992; Veldboom et al., 1994). These studies supported the hypothesis 

proposed by Robertson (1985) that QTLs are allelic with the major genes 

affecting the same trait. 

We empirically tested for the presence of genetic effects other than the E 

locus by selecting and crossing E._ individuals from the tails of the 22:25, M 3 

(dienoic acid) distribution from the backcross population. The erucic and 

dienoic acid concentrations F2 progeny produced from this cross are shown in 

Fig. 4.8. One of the selected individuals (the P1 parent) produced 93.6 g kg1 

erucic and 176.8 g kg1 dienoic acid, while the other selected individual (the P2 

parent) produced 621 g kg1 erucic and 284.3 g kg1 dienoic acid. F2 progeny 

replicated the original phenotypic distribution for the E_ class (Fig. 4.3 and 4.8) 

and spanned the phenotypic range between the parents (P1 and P2)erucic 

acid concentrations ranged from 31 to 135 g kg1 and dienoic acid 

concentrations ranged from 151 to 347 g kg (Fig. 4.8). While not definitive, 

these data suggest that genetic factors (QTL in this cross) were associated 

with erucic and dienoic acid concentration differences, especially the latter, 

among E_ progeny. Our QTL mapping study was not powerful enough to 

uncover the putative QTL. 
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Figure 4.8 Joint phenotypic distribution for erucic acid (22:1 Al 3) 
concentration by dienoic acid (22:2A5M3) concentration (g kg1) for 100 F2 
progeny from a cross between P1 and P2 (shown as filled triangle). 
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CHAPTER 5 

CONCLUSION 

Molecular marker information is rapidly becoming an essential tool to 

expedite the process of crop improvement and cultivar development. Although 

enormous molecular marker and genetic mapping information has been 

generated for most food and industrial crops, such information is lacking in 

meadowfoam, a recently domesticated source of novel very long-chain seed 

oils (C20 and C) with low concentrations of saturated fatty acids (typically less 

than 2%). We employed molecular markers to expedite meadowfoam 

breeding and cultivar improvement. The objectives of this study were to 

assess the genetic diversity and relationships patterns of elite and exotic 

meadowfoam germplasm in the lnflexae section, to construct a genetic linkage 

map, and to map genes and quantitative trait loci (QTL) underlying fatty acid 

profile differences in the very long-chain oilseed meadowfoam. AFLP, a 

relatively high throughput marker, was chosen. to facilitate these molecular 

breeding projects owing to its outstanding features such as being highly 

abundant, reproducible,with relatively high multiplex ratio, no prior sequence 

information required, and a large number of polymorphic markers can be 

produced in a short period of time. 

A study of genetic diversity was undertaken to gain an understanding of the 

pattern of genetic relationships among elite and exotic germplasm accessions 

of lnflexae section. We fingerprinted 41 accessions including nine inbred 

lines, eight open-pollinated cultivars, and 24 wild populations and species 

using AFLP markers. A total of:176 polymorphic markers was generated from 

six primer combinations. Even though a làrgé number of polymorphic markers 

were produced, only unambiguous markers across all genotypes J,ere 

included in our genetic analysis. Out of 176 polymorphic markers tested on all 

genotypes, 175 were polymorphic among wild populations and species 
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whereas 142 were polymorphic among inbred lines and 138 for open-

pollinated cultivars. The polymorphic information content (PlC) varied from 0.0 

to 0.5 with an average of 0.39. Forty-two percent of the markers showed high 

PlC scores in a range between 0.45 to 0.5, indicating that meadowfoam 

germplasm in lnflexae section gene pool was diverse. The genetic distance 

estimated by Roger-W ranged from 0.14 to 0.55 with an average of 0.44. The 

UPGMA cluster analysis showed concordance with species, subspecies, 

geographic, and breeding origin. The first principal component analyses 

accounted for 37% of the total variation of genetic distance estimated. There 

were three diverse clusters. Cluster and principal component analysis clearly 

separated L. floccosa from L. a/ba. Within L. a/ba, subspecies a/ba and 

versicolor were distinctly separated into two groups. Inbred lines derived from 

L. a/ba spp. a/ba were clustered with L. a/ba spp. alba. Similarly, inbred lines 

derived from L. a/ba spp. veiicoIor were clustered with L. alba spp. versicolor. 

Open-pollinated cultivars were clustered to L. a/ba spp. a/ba. Our results 

suggested that the L. a/ba gene pool was found to be genetically diverse and 

most accessions were separated by great genetic distances. 

DNA marker resources and molecular breeding tools are limited in 

meadowfoam. The aim of the second study (chapter 3) was, therefore, to 

develop a genetic linkage map for meadowfoam to facilitate molecular 

breeding and genome mapping. The initial linkage map was built using 

intersub-specific backcross progeny derived from a cross between OMF4O-1 1 

and 0MF64 with AFLP markers. The inbred parent lines, OMF4O-1 1 (L. a/ba 

ssp. a/ba) and 0MF64 (L. a!ba ssp. versicolo,) segregate for self-pollination, 

fatty acid content, seed oil content, growth habit, seed yield, and variety of 

morphological traits. Sixteen primer combinations were used to screen these 

two parents. These primers produced 425 polymorphic and 1376 

monomorphic bands. These two parents are highly polymorphic and have 

greatly facilitated the development of the map and should be useful for 

marker-assisted selection in inter-subspecies crosses. Nine primer 
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combinations were chosen based on polymorphic rate to generate AFLP 

markers for constructing genetic map. One hundred and seven segregating 

AFLP loci were scored and mapped. The initial AFLP genetic map comprised 

of 104 markers, assigned to 5 linkage groups which correspond to five haploid 

chromosomes (x = 5) of L. alba. The framework map covers 698.3 cM with a 

mean density of 6.7 cM. Our results show that this map had excellent genome 

coverage. The lack of information on the position of telomeres, however 

prevents us from considering this mép complete. Mapping telomeres would 

help us to define the boundaries of this genetic map. With this information the 

total genetic distance and potential genetic expansion for each chromosome 

can be accurately estimated. 

The AFLP markers were evenly distributed among the five linkage groups. 

This finding is contrary to that in several other plant species in which AFLP 

markers tended to be clustered in some regions particularly around 

centromeric and telomeric areas (Tanksley et al. 1992; Becker et al. 1995; Qi 

et al. 1998; Jan et al. 1998). The suppression of recombination in centromeric 

areas may result from both a centromere effect and (or) a lower level of 

recombination in heterochromatin around the centromeres (Tanksley et al. 

1992). Heterochromatin reduces levels of recombination presumably due to 

its more condensed during meiosis at the time of crossing over (Roberts 

1965). 

Although most of the loci were evenly distributed, there were some regions 

where the distance between pairs of markers exceeded 20 cM. These gaps 

were probably caused by a lack of polymorphic markers in the genome, 

representing areas of high recombination (Becker et al. 1995; Berry et al. 

1995; Keim et al. 1997). These gaps could be filled as more polymorphic 

markers are identified and added to the map. Saturating this existing 

meadowfoam map with a variety, of codominant markers, for example, simple 

sequence repeat (SSR) and intrOn fragment length polymorphism (IFLP) 

markers, provides the flexibility fo Utilization of this molecular genetic map for 
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different purposes such as for marker-assisted selection (MAS) and map-

based cloning. The development of SSR and IFLP markers for meadowfoam 

is underway in our laboratory. This will provide opportunities not only to 

anchor the locus specific markers to each linkage group but also to saturate 

the existing meadowfoam map with multi-allelic, highly polymorphic SSR and 

gene specific IFLP markers. SSR markers are highly polymorphic and can be 

multiplexed and automated for high throughput genotyping, and convenient to 

exchange between laboratories (Powell et al. 1996a, 1996b; Senior et al. 

1996). IFLPs are gene specific markers which are developed from unique 

sequences flanking introns of specific genes (Slabaugh et al. 1997; Hongtrakul 

et al. 1998). Polymorphisms are caused by intron fragment length differences. 

IFLP markers for meadowloam have been developed in our laboratory for fatty 

acid gene families, for example FatB (thioesterases) and SAD (9-stearoyl 

ACP desaturase) genes (unpublished data). These PCR-based markers 

would be useful in synteny mapping and candidate gene analysis as well. 

AFLPs have several outstanding features and provide efficient high 

throughput markers for meadowfoam genome mapping and molecular 

breeding. The utility of AFLP markers is greatest where scoring as dominant 

markers is sufficient, for instance mapping in backcross (BC), double haploid 

(DH), or recombinant inbred lines (RIL), and marker-assisted backcross 

breeding (Knapp et at. 1999). AFLPs can be scOred as co-dominant markers 

by estimating allele dose using densitometry and the difference of doses is 

great enough to distinguish between homozygotes and heterozygotes 

(Hongtrahul 1997, Knapp et aL 1999). The utility of AFLPs as co-dominant 

markers would be recognized as the hardware and software for co-dominant 

scoring AFLPs become more available. AFLPs are visually scored as 

dominant markers. An automated gel scoring system was successfully used 

to analyze the complex AFLP patterns obtained from sugarcane (Besse et at. 

1998). The autoradiographs were scanned using a large BioRad scanner with 

the GelCompare software (Molecular Analyst Fingerprinting Software, BioRad) 
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and the gel images can be analyzed and scored using this software. Perkin 

Elmer has developed an automated AFLP analysis system that requires the 

use of Applied Biosystem Inc (ABI) sequencer and fluorochomes. The release 

of software for automated AFLP acquisition and analysis including co­

dominant scoring would enhance the utility of AFLP markers for molecular 

breeding and genome mapping. We showed here that the genetic linkage 

maps for meadowfoam can be rapidly constructed using small set of AFLP 

primer combinations. AFLPs should have tremendous utility for molecular 

breeding, especially marker-assisted backcross breeding, in meadowfoam. 

Genetic linkage maps are powerful tool for localizing genes underlying both 

simple and complex traits. We utilized the AFLP genetic linkage map to locate 

genes and quantitative trait loci (QTLs) affecting fatty acid profile differences in 

oilseed meadowfoam (chapter 4). The QTL analyses were performed using 

both interval mapping and simple regression procedures. Both simple interval 

mapping (SIM) and simplified composite interval mapping (sCIM) procedures 

in MQTL were performed for QTLs searching. In the latter, 27 background 

markers were used to account for possible variation in the regions of the 

genome other than those under tst which can refine the location of QTLs 

revealed by SIM or reveal additional QTL (Tinker and Mather 1995) We 

showed here that QTL underlying érucic and dienoic acids were mapped to 

linkage group four at the E Ioøus. The identified Oils may be allelic to a 

major gene (E) affecting the phenotypic difference between these two 

subspecies Our results suggested that the effect of the E locus was 

pleiotropic since the QTLs at this locus was associated with multiple traits, for 

instance erucic and dieñoic acid levels. This study did not uncover QTL 

underlying erucic and dienoic acid concentration differences within the E_ and 

ee classes The result of this study confirmed that the E locus has a direct 

effect on the erucic and dienoic acid content in meadowfoam and we 

speculated that the E locus encoded a i 5 desaturase. 
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Molecular genetic linkage maps appear to be the greatest tool available to 

elucidate the Mendelian genetic underlying quantitative traits. In this study we 

simultaneously determined the number, genome location, and effect of loci 

underlying fatty acid profile differences in oilseed using interval mapping. 

However, we could not find other QTLs, which have significant effect on erucic 

and dienoic acids other than the E locus as we expected. 



102 

BIBLIOGRAPHY
 

Aggarwal RW, Brar DS, Nandi S, Huang N, Khush GS (1999) Phylogeny 
relationships among Oiyza species revealed by AFLP markers. Theor 
AppI Genet 98:1320-1328 

Agrawal VP, Stumpf PK (1985) Elongation systems involved in the 
biosynthesis of erucic acid from oleic acid in developing Brassica 
juncea seeds. Lipids 20(6):361-366 

Allard RW (1960) Principal of plant breeding. John Wiley and Sons, Inc., New 
York 

Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed 
using amplified fragment length polymorphism. Theor AppI Genet 
98:411-421 

Arroyo MTK (1973) A taximetric study of infraspecific variation in autogamous 
Limnanthes floccosa (Limnantaceae). Brittonia 25:177-191 

Arroyo MTK (1975) Electrophoretic studies of genetic variation in natural 
populations of allogamous Limnanthes a/ba and autogamous 
Limnanthes floccosa (Limnanthaceae). Heredity 35(2): 153-164 

Bagby MO, Smith CR, Miwa TK, Lohmar RL, Wolff LA (1961) A unique fatty 
acid from Limnanthes gouglassi seed oil: The C22 diene. J Org Chem 
26: 1261-1 265 

Bai G, Ayele M, Tefera H, Nguyen HT (1999) Amplified fragment length 
polymorphism analysis of Tef [Era grostis tef (Zucc.) Trotterj. Crop Sci 
39:819-824 

Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe 
TJ (1998) A rapeseed PAEI gene is linked to the El locus associated 
with variation in the content of erucic acid. Theor AppI Genet 96:177­
186 

Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment 
among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261­
1271 

Battey JF, Schmid KM, Ohlrogge JB (1989) Genetic engineering for plant oils: 
potential and limitations. TIB 7:122-125 



103 

Beavis WD, Grant D, Albertson M, Fincher R (1991) Quantitative trait loci for 
plant height in four maize populations and their associations with 
qualitative genetic loci. Theor AppI Genet 83:141-145 

Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of 
AFLP and RFLP markers in barley. Mol Gen Genet 249:65-73 

Bennett MD, Leitch lJ (1995) Nuclear DNA amounts in angiosperms. Ann Bat 
76:113-176 

Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes SR, Rufener 
GK, Lee M, Caligari PDS (1995) Molecular marker analysis of 
Helianthus annuus L. 2. Construction of an RFLP linkage map for 
cultivated sunflower. Theor AppI Genet 91: 195-199 

Besse P, Taylor G, Carroll B, Berding N, Burner 0, McIntyre CL (1998) 
Assessing genetic diversity in a sugarcane germplasm collection using 
an automated AFLP analysis. Genetica 104:143-153 

Botstein D, White RL, Skolnick M, Davis R (1980) Construction of genetic 
linkage map in man using restriction fragment length polymorphism. Am 
J Hum Genet 32:314-331 

Brown CR (1977) A comparison of patterns of vanabiity in Limnanthes a/ba 
Beth. and L. floccosa Howell. Ph.D. Diss Univ Cali Davis 

Brown CR, Hauptli H, Jam SK (1979) Variation in Limnanthes a/ba: A 
biosystematic survey of germ plasm resources. Eco Bot 33:267-274 

Brown CR, Jam SK (1979) Reproductive system and pattern of genetic 
variation in two Limnanthes species. Theor Appl Genet 54:181-190 

Browse J, Somerville CR (1991) Glycerolipid synthesis: Biochemistry and 
regulation. Ann Rev Plant Physio Plant Mol Biol 42:467-506 

Burr B, Burr FA, Matz E, Romero-Severson J (1992) Pinning down loose ends: 
Mapping telomeres and factors affecting their length. The Plant Cell 
4:953-960 

Calhoun W, Crane JM (1975) Registration of "Foamore" meadowfoam. 
Oregon Agr Exp Sta Corvallis 

Calhoun W, Crane JM (1984) Registration of "Mermaid" Meadowfoam. Oregon 
Agr Exp Sta Corvallis 



104 

Cassagne C, Lessire R, Bessoule JJ, Moreau P, Creach A, Achneider F, 
Sturbois B (1994) Biosynthesis of very long chain fatty acids in higher 
plants. Prog Lipid Res 33:55-69 

Causse MA, Fulton TM, Cho YQ, Ahn SN, Chunwongse J, Wu K, Xiao J, Yu 
ZR PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) 
Saturated molecular map of rice genome based on an interspecific 
backcross population. Genetics 138:1251-1274 

Cervera MT, Gusmao J, Steenackers M, Peleman J, Storme V, vander Broeck 
A, van Montagu M, Boerjan W (1996) Identification of AFLP molecular 
markers for resistance against Melampsora larici-populina in populus. 
Theor AppI Genet 93:733-737 

Chang S-P, Rothfus JA (1977) Enrichment of eicosenoic and docosadienoic 
acids from Limnanthes oil. J Am Oil Chem Soc 54:549-552 

Cheres MT, Knapp SJ (1998) Ancestral origins and genetic diversity of 
cultivated sunflower: Coancestry analysis of public germplasm. Crop 
Sci 38:1476-1482 

Cho Y, Blair MW, Panaud 0, McCouch SR (1996) Cloning and mapping of 
variety-specific rice genomic DNA sequences: amplified fragment 
length polymorphisms (AFLP) from silver- stained polyacrylamide gels. 
Genome 39:373-378 

Cho YG, McCouch SR, Kuiper M, Kang M-R, Pot J, Groenen JTM, Eun MY 
(1998) Integrate map of AFLP, SSCP and RFLP markers using a 
recombinant inbred population of rice (Oiyza sativa L.). Theor Appl 
Genet 97:370-380 

Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative 
mapping. Genetics 138:963-971 

Cnops G, den Boer B, Gerats A, Van Montagu M, Van Lijsebettens M (1996) 
Chromosome landing at the Arabidopsis TORNADOI locus using an 
AFLP-based strategy. Mol Gen Genet 253:32-41 

Downey RK, Craig BM (1964) Genetic control for fatty acid biosynthesis in 
rapeseed (Brassica napus L.). J Am Oil Chem Soc 41:475-478 

Dudley JW (1993) Molecular markers in plant improvement: manipulation of 
genes affecting quantitative traits. Crop Sci 33:660-668 



105 

Earle FR, Melvin EH, Mason LH, Van Etten CH, Wolff IA, Jones Q (1959) A 
search for new industrial oils. I. Selected from 24 plant families. J Am 
Oil Chem Soc 36:304-307 

Ecke W, Uzunova M, WeiBleder K (1995) Mapping the genome of rapeseed 
(Brassica napus L.) II. Localization of genes controlling erucic acid 
synthesis and seed oil content. Theor Appi Genet 91:972-977 

Ecker R, Yaniv Z (1993) Genetic control of fatty acid composition in seed oil of 
Sinapis a/ba L. Euphytica 69:45-49 

Edwards, M.D., Helentjaris, T., Wright, S., and Stuber, C.W. 1992. Molecular­
marker-facilitated investigations of quantitative trait loci in maize. Theor 
AppI Genet 83:765-774 

Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated 
investigations of quantitative trait loci in maize. I. Number, genomic 
distribution and types of gene action. Genetics 116:113-125 

Ellis RP, McNiclo JW, Baird E, Bboth A, Lawrence P, Thomus B, Powell W 
(1997) The use of AFLP to examine genetic relatedness in barley. Mol 
breeding 3:359-369 

Eujayl I, Baum M, Powell W, Eeskine W, Pehu E (1998) A genetic linkage map 
of lentil (Len sp.) based on RAPD and AFLP markers using 
recombinant inbred lines. Theor AppI Genet 97:83-89 

Falconer DS (1989) Introduction to quantitative genetics, 3 ' eds. Longman, 
England 

Faure S, Noyer JL, Horry JP, Bakry F, Lanaud C, Gonzalez de Leon D (1993) 
A molecular marker-based linkage map of diploid banana (Musa 
acuminata). Theor AppI Genet 87:5 17- 526 

Fehling E, Mukherjee KD (1991) Acyl-00A elongase from a higher plant 
(Lunaria annua) metabolic intrmediates of very-long-chain acyl-00A 
products and substrates specificity. Biochimica et Biophysica Acta 
1082:239-246 

Fehling E, Murphy D, Mukherjee KD (1990) Biosynthesis of triacylglycerols 
containing very long chain mcnounsatuated acyl moieties in 
developing seed. Plant Physio 94:492-498 



106 

Fourrnann M, Barret P, Renard M, lelIetier G, Delourme R, Brunel D (1998) 
The two genes homologous to Arabidopsis FAEI co-segregate with the 
two loci governing erucic content in Brassica napus. Theor Appi Genet 
96:852-858 

Ganal MW, Broun P, Tanksley SD (1992) Genetic mapping of tandemly 
repeated telomeric DNA sequences in tomato (Lycopersicon 
esculentum). Genomics 14:444-448 

Ganal MW, Lapitan NLV, Tanksley D (1991) Macrostructure of the tomato 
telomeres. Cell 3:87-94 

Gedil MA, Berry S, Jones R, LeonA, Wye C, Peleman J, Knapp SJ (1999) An 
integrated RFLP-AFLP tinkae map for cultivated sunflower. Genome 
(submitted) 

Gentry HS, Miller RW (1965) The search for new industrial crops. IV. 
Perspectives of Umnanthes. Eco Bot 19:25-32 

Graner A, Jahoor A, Schondelmaier J, Siedler I-I, Pillen K, Fischbeek G, 
Wenzel G, Herrmann RG (1991) Construction of RFLP map of barley. 
Theor AppI Genet 83:250-256 

Graner A, Ludwig AE, Melchinger AE (1994) Relationships among European 
barley germplasm: II Comparison of RFLP and pedigree data. Crop Sd 
34:1199-1205 

Hallauer AR, Russel WA, Lamkey KR (1988) Corn Breeding. In: Sprague SP, 
Dudley JW (eds) Corn and Corn improvement, 3 ed, Agron Monogr 
18. ASA CSSA and SSSA, Madison, Wisconsin, USA 

Hammond EG (1994) Edible oil fronl herbaceous crops. In: Kamel BS, Kakuda 
Y (eds) Technological advances in improved and alternative sources of 
lipids. Blackie Academic & Professional, an imprint of Chapman & Hall, 
Glasgow 

Hansen M, Kraft T, Christiansson M, Nilsson N-O (1999) Evaluation of AFLP 
in Beta. Theor Appl Genet 98:845-852 

Harushima Y, Kurata N, Yano M, Nagamura Y, Sasaki T, Minobe Y, 
Nakagahra M (1996) Detection of segregation distortions in an indica­
japonica rice cross using a high-resolution molecular map. Theor AppI 
Genet 92:145-150 



107 

Harvey BL, Downey RK (1964) The inheritance of erucic acid content in 
rapeseed (Brassica napus). Can J Plant Sd 44:104-111 

Harwood J (1989) Lipid metabolism in plants. Cr1 Rev Plant Sci 8(1):1-44 

Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. 
Biochimica et BiophyslciActa 1301:7-56 

Higgins JJ, Calhoun W, Willingham BC, Dinkel DH, Raisler WL, White GA 
(1971) Agronomic evaluation of prospective new crop species II. The 
american Limnanthes. Eco Bot 25:44-54 

Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1997) PCR-
based fingerprinting usihg AFLPs as a tool for studying genetic 
relationships in Lactuca spp. Theor Appi Genet 93:1202-1210 

Hitchcock C, Nichols BW (eds) (1971) Plant lipid Biochemistry. pp. 11-12. 
Academic Press, London / New York 

Holloway JL, Knapp SJ (1993) GMENDEL 3.0 users guide. Department of 
Crop and Soil Science, Oregon State University, Corvallis, OR, USA. 

Hongtrakul V, Huestis GM, Knapp SJ (1997) Amplified fragment length 
polymorphisms as a tool for DNA fingerprinting sunflower germplasm: 
genetic diversity among oilseed inbred lines. Theor AppI Genet 95:400­
407 

Hongtrakul V, Slabaugh MB, Knapp SJ (1998) DFLP, SSCP, and SSR 
markers for A9 stearoyl- acyl carrier protein desaturases strongly 
expressed in developing seeds of Sunflower: intron lengths are 
hypervariable among elite inbred lines. Mol Breed 4:195-203 

lsbell TA (1997) Development of meadowfoam as industrial crop through novel 
fatty acid derivatives. Lipid Technol 9:140-144 

Jan CC, Vick BA, Miller JF, Kahler AL, Butler Ill ET (1998) Construction of an 
RFLP linkage map for cultivated sunflower. Theor AppI Genet 96:15­
22. 

Jam S (1978) Breeding system in Limnanthes a/ba: several alternative 
measures. Amer J Bot 65:272-275 



108 

Jam SK (1986) Domestication of Limnanthes (Meadowfoam) as a new oil crop. 
In: FAO/IAEA (ed.) Plant domestication induced mutation: Proceedings 
of an advisory group meeting on the possible use of mutation breeding 
for rapid domestication of new crop plants. pp.121-134, Vienna, Austria 

James OW Jr, Lim E, Keller J, Plooy I, Ralston E, 000ner HK (1995) Directed 
tagging of the Arabidopsis fatty acid ELONGATIONI (FAEI) gene with 
the maize transposon activator. The Plant Cell 7:309-319 

James DW, Dooner HK (1990) Isolation of EMS-induced mutants in 
Arabidopsis altered the deed fatty acid composition. Theor AppI Genet 
80:241-245 

Jenczewski E, Gherardi M, Bonnin L, Prosperi JM, Olivieri I, Huguet 1(1997) 
Insight on segregation distortions in two intraspecific crosses between 
annual species of Medicago (Leguminosae). Theor AppI Genet 94:682­
691 

Johnson R (1977) Erucic acid heredity in rapeseed (Brassica napus L. and 
Brassica campestris L.). Hereditas 86:159-170 

Jolliff GD (1986) Plant variety protection certificate (#8500166) for Mermaid 
meadowfoam. USDA, Washington,D.C. 

Jolliff GD (1994). Plant variety protection certificate (#9200257) for Floral 
meadowfoam. USDA, WashingtonD.C. 

Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, 
Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini 
P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Art R, Volckaert G, 
Rueda J, Linacero R,Vazquez A, Karp A (1997) Reproducibility 
testing of RAPD, AFLP and SSR markers in plants by a network of 
European laboratories Mol. Breed 3:381-390 

Kahn MT (1971) The evolution of autogamy in Limnanthes section Inflexae. 
Ph.D. Dissertation, University of California, Berkeley 

Kaneniwa M, Myashita K, Takagi T (1988) Autooxidation rates of 5-olefinic 
monoenoic and dienoic fatty acids from sea uechin lipids and 
meadowfoam oils. J Am Oil Chem Soc 65:1470-1474 

Katengam S, Crane JM, Knapp SJ (1999) A genetic map for the oilseed 
meadowfoam comprised of amplified fragment length polymorphisms. 
(in preparation) 



109 

Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Liang 5, Ferreira A, Webb 
DM (1997) A high- density soybean genetic map based on AFLP 
markers. Crop Sci 37:537-543 

Kendal I M, Gibbons JD (1990) Rank correlation methods. pp.1-260. Oxford 
Univ. Press, New York 

Kesseli RV, Jam SK (1985) Breeding systems and population structure in 
Limnanthes. Theor AppI Genet 71:292-299 

Kilian A, Kleinhofs A (1992) Cloning and mapping of telomere-associated 
sequences from Hordeum vulgare L. Mol Gen Genet 235:153-156 

Kisha TJ, Diers BW, Hoyt JM, Sneller CH (1998) Genetic diversity among 
soybean plant introductions and North American germplasm. Crop Sci 
38:1669-1680 

Kleiman R (1990) Chemistry of new industrial oilseed crops. In: Janick J, 
Simon JE (eds) Advances in new crops. Timber Press, Portland, 
Oregon 

Knapp SJ, Berry ST, Rieseberg L (1999) Genetic mapping in sunflower. (in 
press) In. Phillips RL, Vasil 1K (ed.) DNA markers in plants. Kluwer, 
Dordrecht, Netherlands. 

Knapp SJ, Crane JM (1995) Fatty acid diversity of selection Inflexae 
Limnanthes (meadowfoam). Industrial Crops and Products 4:219-227 

Knapp SJ, Crane JM (1997) The development of self-pollinated inbred lines of 
meadowfoam by direct selection in open-pollinated. Crop Sci 37:1770­
1775 

Knapp SJ, Crane JM (1998) A dominant mutation affecting the erucic acid and 
dienoic acid contents of meadowfoam subspecies. Crop Sci 38:1541­
1544 

Knapp SJ, Crane JM (1999) Breeding advances and germplasm resources in 
meadowfoam: A novel very long-chain oilseed. In Janick J pp. 222-233. 
Perspectives on new crops and uses Ashs Press, Alexandria, VA. 

Kondra ZP, Stefansson BR (1965) Inheritance of erucic and eicosenoic acid 
content of rapeseed oil (Brassica napus). Can J Genet Cytol 7:505-5 10 

Kunst I, Taylor DC, Underhill EW (1992) Fatty acid elongation in developing 
seeds of Arabidopsis thaliana. Plant Physiol Biochem 30(4):425-434 



110 

Lander ES, Botstein 0 (1 989)Mapping mendelian factors underlying 
quantitative traits using RFLF linkage maps Genetics 121185-199 

Lander ES, Green P, Abrahamson J, Barlow A, Da!y MJ, Lincoln SE, Newburg 
L (1987) MAPMAKER an interactnle Computer package for 
constructing primary genetic linkage maps of expenmental and natural 
populations. Genomics 1:174-1 81 

Lardans A, Tremolieres A (1991) Accumulation of C20 and C22 unsaturated 
fatty acids in Triacyiglycerols from developing seeds of Limnanthes 
a/ba. Phytochemistry 30:3955-3961 

Lardans A, Tremolieres A (1992) Fatty acid elongation activities in subcellular 
fractions of developing seeds of Limnanthes a/ba. Phytochemistry 
31:121-127 

Lassner MW, Lardizabal K, Metz JG (1996) A jojoba 3-ketoacyl-CoA synthase 
cDNA complements the canola fatty acid elongation mutation in 
transgenic plants. The Plant Cell 8:281-292 

Lee M (1995) DNA markers and plant breeding programs. Adv Agron 55:265­
344. 

Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants Arabidopsis with 
alterations in seed lipid fatty acid composition. Theor Appi Genet 
80:234-240 

Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient 
method for DNA extraction from grapevine cultivars and Vitis species. 
Plant Mol Biol Rep 12(1):6-13 

Lu Z-X, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of 
a genetic linkage map and identification of AFLP markers for resistance 
to root-knot nematode in peach rootstocks. Genome 41:199-207 

Lyttle TW (1991) Segregation distorters. Arinu Rev Genet 25:511-557 

Mackill DJ, Zhang Z, Redona ED, Colowit PM (1996) Level of polymorphism 
and genetic mapping of AFLP markers in rices. Genome 39:969-977 

Mantel NA (1967) the detection of disease clustering and a generalized 
regression approach. Can Res 27:209-220 



111 

Marques CM, Araujo JA, Ferreira JG, Whetten R, O'Malley DM, Liu B-H, 
Sederoff R (1998) AFLP genetic maps of Eucalyptus globulus and E. 
tereticomis. Theor AppI Genet 96:727-737 

Mason CT (1952) A systematic study of the genus Limnanthes. Bot Pubi 
25:455-512 

Maughan PJ, Saghai Maroof MA, Buss GR, Huestis GM (1996) Amplified 
fragment length polymorphism (AFLP) in soybean: species, diversity, 
inheritance, and near-isogenic line analysis. Theor AppI Genet 93:392­
401 

McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, 
Tanksley SD (1988) Molecular mapping of rice chromosome. Theor 
AppI Genet 76:815-829 

McNeill Cl. (1983). Genetic differentiation, species relationships and the 
evolution of mating system in the plant genus Limnanthes (section 
lnflexae). Ph.D. Diss Univ Calif Davis 

McNeill Cl, Jam SK (1983) Genetic differentiation studies and phylogenetic 
inference in the plant genus Limnanthes (section lnflexae). Theor AppI 
Genet 66:257-269 

Meinke DW, Cherry MC, Dean C, Rounsley SD, Koornneef M (1998) 
Arabidopsis thaliana: A model plant for genome analysis. Sci 282:662­
682 

Melchinger AE, Graner A, Singh M, Messmer MM (1994) Relationships among 
European barley germplasrn: I. genetic diversity among winter and 
spring cultivars revealed by RFLPs. Crop Sci 34:1191-1199 

Mignouna HD, Ellis NTH, Knox MR, Asiedu R, Ng QH (1998) Analysis of 
genetic diversity in Guinea yams (Dioscorea spp.) using AFLP 
fingerprinting. Trop Agric (Trinidad) 75:224-229 

Miller RW, Daxenbichler ME, Earle FR, and Gentry HS. (1964) Search for new 
industrial oil, VIII. The genus Limnanthes. J Am Oil Chem Soc 41:167­
169 

Miller AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled 
through the expression and specificity of the condensing enzyme. Plant 
J 12:121-131 



112 

Miwa TK, Wolff IA (1962) Fatty acids, fatty alcohols, and wax esters from 
Limnanthes douglasii (Meadowfoam) seed oil. J Am Oil Chem Soc 
39:320-322 

Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T 
(1997) Genome mapping, molecular markers and marker-assisted 
selection in crop plants. Mol breeding 3:87-1 03 

Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in 
plant genetics. Plant J 3:175-1 82 

Moreau RA, Pollard MR, StumpfPK (1981) Properties of a 5-fatty acyl-00A 
desaturase in the cotyledons of developing Limnanthes a/ba. Arch 
Biochem Biophys 209(2):76-384 

Mullis K, Faloona 5, SchrfS, SaikiR, Horn G, Bruch H (1986) Specific 
enzymatic amplification Of DNA in vitro: the polymerase chain reaction. 
Cold Spring Harb Symp Quant Biol 51: 263-273. 

Mumm RH, Dudley JW (1994) A classification of 148 U.S. maize inbreds: I. 
Cluster analysis based on RFLPs. Crop Sci 34:842-851 

Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N 
(1997) Mapping QTLs for submergence tolerance in rice by AFLP 
analysis and selective genotyping. Mol Gen Genet 255:1-8 

Ohirogge J, Browse J (1995) Lipid Biosynthesis. The Plant Cell 7:957-970 

Ornduff R (1971) Systematic studies of Limnanthaceae. Madrona 21:103-111 

Ornduff R, Crovello TJ (1968) Numerical taxonomy of Limnanthaceae. Amer J 
Bot 55(2):173-182 

Ott J (1991) Analysis of human genetic linkage. John Hopkins University 
Press, Baltimore, Maryland 

Pakniyat H, Powell W, Baird E, Handley LL, Robinson 0, Scimgeour CM, 
Nevo E, Hackett CA, Caligari PDS, Forster BP (1997) AFLP variation in 
wild barley (Hordeum spontaneum C. Koch) with reference to salt 
tolerance and associated ecogeography. Genome 40:332-341 

Parker WH (1976) Comparison of numeric taxonomic methods used to 
estimate flavonoid similarities in the Limnanthaceae. Brittonia 28:390­
399 



113 

Paterson AW, Dason S, Hewitt JD, Zamir 0, Rabinwitch HD, Lincoln SE, 
Lander ES, Tankslay SD (1991) Mendelian factors underlying 
quantitative traits in tomato: Comparison across species, generations, 
and environments. Genetics 127:181-197 

Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic 
differentiation among populations of indian and kenyan tea (Camel/ia 
sinensis (L.) 0. Kuntze) revealed by AFLP markers. Theor AppI Genet 
94:255-263 

Pejic L, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, 
Taramino G, Motto M (1998). Comparative analysis of genetic similarity 
among maize inbred lines detected by RFLPs, RAPDs, SSRs, and 
AFLPs. TheorAppl Genet 97:1248-1255 

Pierce RO, Jam SK (1977) Variation in some plant and seed oil characteristics 
of meadowfoam. Crop Sci 17:521-526 

Pillen K, Steinrucken G, Wricke G, Hermann RG, Jung C (1992) A linkage 
map of sugar beet (Beta vulgaris L.). Theor Appl Genet 84:129-135 

Pollard MR, Stumpf PK (1980a) Long chain (C20 and C22) fatty acid 
biosynthesis in developing seeds of Tmpaeolum majus. Plant Physio 
66:641-648 

Pollard MR, Stumpf PK (1 980b) Biosynthesis of C20 and C22 fatty acids by 
developing seeds of Limnanthes a/ba. Plant Physio 66:649-655 

Powell W, Morgante M, Andre C, Hanafey C, Vogel J, Tingey 5, Rafalski A 
(1 996a) The comparison of RFLP, RAPD, AFLP and SSR 
(microsatellite) markers for germplasm analysis. Mol breeding 2:225­
238 

Powell W, Machray GC, Provan J (1996b) Polymorphism revealed by simple 
sequence repeats. Trends Plant Sd 1:215-222 

Powell W, Thomas WIB, Baird E, Lawrence P, Booth P, Harrower B, McNicol 
JW, Waugh R (1997) Analysis of quantitative traits in barley by the use 
of amplifies fragment length polymorphisms. Heredity 79:48-59 

Princen LH (1979) New crop developments for industrial oils. J Am Oil Chem 
Soc 56:845-848 

Purdy RH, Craig CD (1987) Meadowfoam: new source of long chain fatty 
acids. JAm Oil Chem Soc 11:1493-1498 



114 

Qi X, Lindhout P (1997) Development of AFLP markers in barley. Mol Gen 
Genet 254:330-336 

Qi X, Stam P, Lindhout P (1998) Use of locus-specific AFLP markers to 
construct a high-density molecular map in barley. Theor AppI Genet 
96:376-384 

Rafalski A, Morgante M, Vogel J, Powell W, Tingey SV (1996) Generating new 
DNA markers in plants. In: Birren B, Lai E (eds) Analysis of Non-
mammalian Genomes. pp 75-129 Academic Press. London 

Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere from 
Arabidopsis thaliana. Cell 53:127-136 

Ridout ML, Donini P (1999) Use of AFLP in cereals research. Trends in Plant 
Sci 4:76-79 

Ritland K, Jam S (1984) A comparative study of floral and electrophoretic 
variation with life history variation in Limnanthes alba (Limnanthaceae). 
Theor Appl Genet 63:243-251 

Roa AC, Maya MM, Duque MC, Tohme J, Allem AC, Bonierbale MW (1997) 
AFLP analysis of relationships among cassava and other Manihot 
species. Theor AppI Genet 95:741-750 

Roberts PA (1965) Difference in the behavior of eu- and hetero-chromatin: 
crossing over. Nature 205:725-726 

Robertson OS (1985) A possible technique for isolating genic DNA for 
quantitative traits loci in plants. J Theor Biol 117:1-10 

Roder MS, Lapitan NLV, Sorrefls ME, Tanksley SD (1993) Genetic and 
physical mapping of barley telomeres. Mol Gen Genet 238:294-303 

Rohlf FJ (1993) NTSYS-pc ñuméric I taxonomy and multivariate analysis 
system. Version 1.8. Exster Software, Setauket, New York 

Russell JR, Fuller JD, Macàulay M, Hatz BG, 'Jahoor A, Powell W, Waugh R 
(1 997a) Direct comparisQn of levels of9etic variation among barley 
accessions detected by RFLPS, AFLPs SSRs and RAPDs. Theor AppI 
Genet 95:714-722. 

Russell J, Fuller J, Young G, Thomas B, Taramino G, Macaulay M, Waugh M, 
Powell W (1 997b) Discriminating, between barley genotypes using 
microsatellite markers. Genoñle 40:442-450 



115 

SAS 6.12 (1996) SAS User's guide. SAS institute Inc. Cary, North Carolina. 

Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW (1996) Simple sequence 
repeat markers developed from maize sequences found in the 
GENBANK database: Map construction. Crop Sci 36:1676-1683 

Siebel J, Pauls KP (1989) Inheritance patterns of erucic acid content in 
populations of Brassica napus microspore-derived spontaneous 
diploids. Theor Appl Genet 77:489-494 

Slabaugh MB, Huestis GM, Leonard J, Holloway JL, Rosato C, Hongtrakul V, 
Martini N, Toepfer R, Voetz M, Schell J, Knapp SJ (1997) Sequence-
based genetic markers for genes and gene families: Single-strand 
conformational polymorphisms for the fatty acid synthesis genes of 
Cuphea. Theor AppI Genet 94: 400-408 

Smith CR, Bagby MO, Miwa TK, Lohmar RL, Wolff IA (1960) Unique fatty 
acids from Limnanthes doug/ash seed oil: the C20- and C22-monoenes. J 
Org Chem 25:1770-1774 

Smith MSC, Chin ECL, Shu H, Smith Wall SJ, Senior ML, Mitchell SE,OH1 

Kresovich 5, Ziegle J (j997)An evaluation of utility of SSR loci as 
molecular markers in maize (Zea mays L.) comparisons with data from 
RFLPs and pedigree. Theor AppI, Genet 95:163-173 

Smith JSC, Smith OS 1991. Restriction fragment length polymorphisms can 
differentiate among U.S. maize hybrids. Crop Sci 31:893-899. 

Smith OS, Smith JSC, Bowen SL, Tenborg RA, Wall SJ (1990) Similarities 
among a group of elite Inbieds as measuted by pedigree, F1 grain yield, 
heterosis, and RFLPs. Theor AppI Genet 80:833-840 

Smith JSC, Smith OS, WrightS, Wall SJ, Walton M (1992) Diversity of U.S. 
hybrid maize germplsni as revealed by restriction fragment length 
polymorphisms. Crop Sd 32:598-604 

Sneath PHA, Sokal RR (1973) Numeric Taxonomy. Freeman, San Francisco 

Staub JE, Serquen FC (1996) Genetic markers, map construction, and their 
application in plant breeding. HortSci 31:729-741 

Stuber CW (1992) Biochemical and molecular markers in plant breeding. Plant 
Breed 9:37-62 



116 

Tanksley SD, Ganal MW, PriceJP,De Vicente MC, Bonierbale MW, Broun P, 
Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller 
JC, Miller L, Peterson AH, Pinea 0, Roder MS, Wing RA, Wu W, 
Young ND (1992) High density molecular linkage maps of the tomato 
and potato genomes; Genetics 132:1141-1160 

Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205-233 

Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping 
in plant breeding: new tools in an old science. Bio/tech 7:257-264 

Taylor DC, Barton DL, Rioux KP, Mackenzie SL, Reed DW, Underhill EW, 
Pomeroy Mk, Weber N (1992) Biosynthesis of acyl lipids containing 
very long-chain fatty acid in microspore-derived and zygotic embryos of 
Brassica napus L. cv Reston. Plant Physio 99:1609-1618 

Thomas CM, Vos P, Zabeau M, Jones DA, Norcott KA, Chadwick BP, Jones 
JDG (1995) Identification of amplified fragment length polymorphism 
(AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to 
CLadosporium fulvum. Plant J 8:785-794 

Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC (1994) 
comparison of RFLP and RAPD markers to estimating genetic 
relationships within and among cruciferous species. Theor AppI Genet 
88:973-980 

Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci 
controlling the concentrations of erucic acid and linolenic acids in seed 
oil of Brassica napus L. Theor Appi Genet 93:282-286 

Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval 
mapping of QTL in multiple environments. JQTL 1:1-4 

Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, kleinhofs A, Hayes PM, 
Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, 
Briggs KG, Ullrich SE, Franchkowiak JO, Blake Tk, Graf RJ, Dofing 
SM, Saghai Maroof MA, Scoles GJ, Hoffman D, Dahleen LS, Kilian A, 
Chen F, Biyashev RM, Kudrna DA, Steffenson BJ (1996) Region of the 
genome that affect agronomic performance in two row barley. Crop Sci 
36:1053-1062 

Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCSI encodes a fatty acid 
elongase 3-ketoayl-00A synthase affecting wax biosynthesis in 
Arabidopsis thaliana. PlantJ 17:119-130 



117 

Topfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Sci 
268:681-686 

Veldboom.LR, Lee M, Woodman WL (1994) Molecular marker- facilitated 
studies in an elite maize population: I. linkage analysis and 
determination of QTL for morphological traits. Theor Appi Genet 88:7­
16 

von Wettstein-knowles PM (1982) Elongase and epiculticular wax 
biosynthesis. Physiol Veg 20:797-809 

Vos P, Hoger R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, 
Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique 
for DNA fingerprinting. Nucleic Acids Res 23:4407-4414 

Wang Y-H, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis 
melo L.) based on amplified fragment length polymorphism (AFLP) 
markers. Theor AppI Genet 95:791-798 

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA 
polymorphisms amplified by arbitrary primers are useful as genetic 
markers. Nucleic Acids Research 18: 6531-6535 

Wricke G, Wehling P (1985) Linkage between an incompatibility locus and 
peroxidase locus(Prx7) in rye. Theor AppI Genet 71:289-291 

Wright S (1978) Evolutions and the genetics of populations. Vol.4 Variability 
within and among natural populations. University of Chicago Press, 
Chicago 

Wu K-S, Tanksley SD (1993) Genetic and physical mapping of telomeres and 
macrosatellites of rice. Plant Mol Biol 22:861-872 

Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits 
of agronomic importance in ó recombinant inbred population derived 
from a subspecific rice cross. Theor AppI Genet 92:230-244 

Zabeau M, Vos P (1993): Selective restriction fragment amplification: a 
general method for DNA fingerprinting. European Patent Application 
number 92402629.7 Publication number 0-534-858-Al 

Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. 
Bot Gaz 147(3):355- 358 

http:Veldboom.LR


118 

Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ (1998) AFLP markers for 
the study of rice biodiversity. Theor Appi Genet 96:602-611 




