
AN ABSTRACT OF THE THESIS OF

Richard Goodemoot for the degree of Master of Science in Computer Science

presented on June 11 1986 .

Title: A Query Facility for Allegro

Redacted for Privacy
Abstract approved:

Earl F. Ecklund, Jr.

Allegro is a network database management system being developed at

Oregon State University. This project adds a user friendly query facility to

the system.

The user is presented with pictorial display of the network records and a

query interface modeled on the QueryByExample system. By request the

user may be shown the network sets of the query schema. When necessary the

user may specify query navigation of the network schema. While

implemented and functional, this facility should be considered as a feasibility

study for a full query system on a network data base.

To provide the desired display this facility is implemented on a system

separate from the main Allegro system and uses a communication interface

to it. This facility is a Smalitalk implementation.

A Query Facility for Allegro

by

Richard Goodemoot

A THESIS

submitted to

Oregon State University

In partial fulfillment of the requirements for the

degree of

Master of Science

Completed June 11, 1986

Commencement June 1987

APPROVED:

/
Redacted for Privacy

Adjunct Professor of Computer Science in Charge of Major

Redacted for Privacy
on behalf of Walter Rudd

Chairman of Department of Computer Science

Redacted for Privacy

Dean of Gradtfate School

Date thesis is presented June 11, 1986

Typed by Richard Goodemoot

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

1.1 Network Database Management and Allegro 2
1.2 Allegro Query 3

2 QUERY LANGUAGES 6
2.1 Overview 6
2.2 QueryByExample 8
2.3 Other Query Languages 11

3 QUERY ON A NETWORK DATABASE 17

4 USER INTERFACE 24
4.1 Display Interface 24
4.1.1 One Time Actions 24
4.1.2 The Main Control Menu 25
4.1.3 Record View 27
4.1.4 The 'do query' Function and Navigation 30
4.1.5 Output Data View 33
4.2 Query Language 33

5 EXAMPLES OF ALLEGRO QUERY 39

6 ALLEGRO QUERY INTERNAL STRUCTURE 44
6.1 Query Processing 44
6.2 Interface to Allegro 48

7 FUTURE WORK 51

8 SUMMARY 55

BIBLIOGRAPHY 56

LIST OF FIGURES

Figure Page

1.2.1 An illustration of Bachman Diagrams. 3
1.2.2 The Allegro Query Interface to Allegro 5
1.2.3 Allegro Query system configuration. 5

2.2.1 The colors of ink available. 9

2.2.2 A link between relations. 10
2.2.3 A department selling pens and pencils. 10
2.2.4 A department selling pens or pencils. 10
2.2.5 The use of an arithemetic expression. 11

2.2.6 The use of a condition box. 11

2.3.1 The first of the sample queries in QBE. 15

2.3.2 The second of the sample queries in QBE. 15

2.3.3 The last of the sample queries in OBE. 16

3.1 BOOK_AUTHOR schema for trimming example. 20
3.2 A possible schema for local queries. 23

4.1.1.1 Schema Name View. 24
4.1.2.1 Yellow button menu of the Schema Name View. 26
4.1.3.1 Record view 'BOOK' of the BOOK_AUTHOR schema. 28
4.1.3.2 Yellow button menu of a record view. 29
4.1.4.1 Initial User Navigation View 30
4.1.4.2 User Navigation View with 'name sets' menu choice. 31
4.1.4.3 User Navigation View with 'record paths' menu choice. 32
4.1.5.1 Generated 'dataOut' record. 33
4.2.1 A simple query in QBE. 34
4.2.2 Allegro Query version of the simple query. 34
4.2.3 Another simple query. 35
4.2.4 A possible network for two QBE queries. 35
4.2.5 The schema does Allegro Query linking 36
4.2.6 The use of example elements. 36
4.2.7 Network schema for three query examples. 38
4.2.8 The first example in Allegro Query. 38
4.2.9 The second example in Allegro Query. 38

5.1.1 Screen dump of BOOK_AUTHOR example. 41

5.1.2 Screen dump of 'student_rec' example. 42
5.1.3 Screen dump of trimmed 'student_rec' schema. 43

6.2.1 The schema BOOK AUTHOR 50

A Query Facility for Allegro

Chapter 1

Introduction

Allegro is a network database management system. Allegro has been

developed and is currently being enhanced by the students of Dr. Ecklund at the

Computer Science Department at Oregon State University. For query

purposes, the current Allegro system provides only an embedded DML.

The purpose of this work is to develop the query facility for Allegro that

is called Allegro Query. The first problem is to define what is needed in a

network query facility. There is the constraint that Allegro is a network

database management system. That is any schema to be queried has an

underlying structure which must be considered. The author is impressed with

the Query-By-Example user interface as being intuitive and easy to use. He

considers TTY style line-at-a-time interfaces a relic of the old days. With

this mind set, the author chose to attempt a visual query facility for Allegro

that is modeled on the Query-By-Example user interface.

This paper is organized as follows. This introduction has a section on

Allegro as a network database and a section on Allegro Query. Chapter 2 is a

brief discussion of query systems in general. Chapter 3 is a discussion of

query on a network database. Chapter 4 gives the user interface to Allegro

Query. Examples of Allegro Query are -in chapter 5. Chapter 6 describes

some of the internal structure of Allegro Query. Chapter 7 lists possible

future work to improve Allegro Query.

2

1.1 Network Database Management and Allegro

Network database management11,12,16 normally refers to systems

following the series of proposals of the Data Base Task Group (DBTG) of the

Conference on Data Systems Languages (CODASYL)10. There is a Data

Definition Language (DDL) that describes the logical network structure
(schema). There is a Data Storage Definition Language (DSDL) the definition

of which is in the process of being split from the DDL. There is a Subschema

Data Definition Language (Subschema DDL) for defining views on the schema.

Finally there is a Data Manipulation Language (DML) that provides a set of

commands for manipulating data in the database. The Allegro system

definition has subsets of several of these languages. There is SDDL/SDSDL (S

for subset) to describe the schema. There is no view definition. There is a

DML whose Find statements are close to the record selection portions of

CODASYL Find without the for-update and retaining phrases.

The network model uses the terms record, set, and fields. A record
usually models an entity of the data model. The data of the database is stored

in record instances. The attributes of an entity are the fields of the record

used for the entity. The network set represents a many to one relationship of

one record type to another record type. It is not a mathematical set. The

'one' is called the owner record type while the 'many' is(are) called the
member record type(s). Attributes of relationships modeled by a network set

will be attached to one of the record types. A many to many relationship is

handled with a pair of sets and a link record type (Figure 1.2.1).

At the DML level a set is implemented by some type of pointer scheme

from an owner instance to (at any instant) one of the member record
instances. Which of the members is handled by the concept of currency.

There are several types of currencies. Allegro has current of each record

type, current of each set, and current of run-unit (the last record touched).

The user of a network DML must normally be aware of currencies. To look

ahead, Allegro Query is an exception to this need.

3

1.2 Allegro Query

There are two primary concerns in the use of a visual query facility for a

network database. First the user must be shown the schema he is interested

in querying. It is not enough that the user simply be shown some
representation of the schema. The user must be given the freedom to see a

representation of his schema as he would diagram it. That is, the user must

be able and should be encouraged to position the schema representation as he

sees fit.

Since Allegro is a network database, Bachman diagrams9 (figure 1.2.1)

are used to describe Allegro schemas. Four types of 'things' in a network

schema may be described by these diagrams. An entity is a particular object

being considered. An entity class is a group of entities sufficiently similar in

terms of their attributes to be considered collectively. The named rectangles

in the diagram are entity classes. That is rectangle 'BOOK' stands for a

collection of books. An entity set is a different type of entity grouping. It
associates a group of entities from one entity class (subset of the class) with

one entity from a different entity class. It is a one to many relationship

between members of separate entity classes. A set class is a group of entity

sets sufficiently similar in terms of their attributes to be described
collectively. The lines with an arrow in the diagram represent a set class.

The named line 'WRITTEN BY' stands for the class of entity sets each of

which links a book to the intermediate entities, members of BOOK AUTH.

BOOK

WRITTEN BY

N

AUTHOR

HRS_WRITTEN

A(/

BOOK AUTH

Figure 1.2.1. The schema BOOK_AUTHOR
as an illustration of Bachman diagrams.

4

The records and sets of an Allegro schema are displayed in Bachman

diagram form. The user may position the records of his schema when and

where he sees fit. Allegro Query will remember the users last positioning of

the schema records query to query and session to session of Allegro Query

itself. Allegro Query normally displays only the records of the network

schema. The sets of the network schema are displayed when the user requests

them.

The second primary concern for a visual query facility is that the user be

able to specify his desired navigation7 of the schema to answer his query. It is

intended that the user will navigate his schema with I im ited awareness that

he is doing so. In Allegro Query the user does not specify query navigation

with the initial specification of his query. If Allegro Query can find a unique

path to answer the query, it will do so without bothering the user for a
navigation specification. If it can not find a unique path, Allegro Query will

present a list of schema sets to the user and request that he select the sets to

be used. The user also has options that limit the schema structure available

for Allegro Query to consider. These options can significantly decrease the

occasions that Allegro Query must ask the user to navigate his query. The

details of these two primary concerns and a discussion of query navigation are

in Chapter 3.

Allegro Query uses a direct function call interface to the functions of

Allegro. This is the interface defined for the original kernel of Allegro, the

work of Myra Lane Uy.4 This is the same interface used by another portion of

the Allegro system, the superdbcs and OML C macros. This is shown in figure

1.2.2.

5

Allegro Query DML C Macros

RQ interface I Sdbcs
function call level

DBCS

Figure 1.2.2 Tha Allegro Query Interface to Allegro.

The decision to model Allegro Query on the appearance of

Query-By-Example resulted in the requirement of a complex display
interface. After much searching and several false starts, the author settled

on Smalltalk as an available system able to provide the desired displays. This

query facility is implemented in Smalltalk on the Textronix 4404 system.

Allegro itself is a UNIX on VAX implementation. A small portion of
Allegro Query is a user level part of Allegro on the VAX. The main portion of

the Allegro Query facility has a serial communication line interface to access

the portion of itself that is integrated with Allegro (figure 1.2.3).

Tektronix 4404

Smalltalk-80

Allegro Query

RS232

VAX

UNIX

Allegro

Figure 1.2.3. Allegro Query System Configuration.

Chapter 2

Query Languages

2.1 Overview.

6

A query language may be defined as a high level computer language for
the retrieval and modification of data in databases. It is usually interactive,
on line, and able to support queries that are not predefined.6 Some query

languages. for example ISBL12, are retrieval only at the high level and have
their modification facilities embedded in the host programming language.
Allegro Query is a retrieval only language in that data modification
capabilities have not been defined.

Vassilou and Jarke6 classify query languages as building from two
different backgrounds; one the need for simple end user interfaces, the other
from theoretical considerations. The first group emphasis usability, that is
the minimization of effort required to do useful queries. The second group

emphasis functional capabilities, that is what can be done with a query
system. Both of these groups are considered as evolving to include

considerations from the other background.

Allegro Query is oriented to the usability group. In particular Allegro
Query is intended to make the interface with a network database user

friendly. Specifically this means the navigation of the network schema is
made user friendly. The author is not aware of any other high level query

language that navigates a network database. As a query language separate

from the navigation, Allegro Query is unremarkable when compared with
other modern query languages.

Vassilou and Jarke6 continue with their query language classification by

lumping both of the above groups of query languages with the term previous

7

generation query languages. They have a grouping new generation query

languages some of whose characteristics are:

Use of more senses.
Direct manipulation of objects.
Use of examples as a natural deduction process.

Query-By-Example (QBE) is mentioned as a language which has features of a

new generation language. Allegro Query also has features of a new generation

query language. Allegro Query has a two dimensional display similar to (DBE

and a pointer driven menu interface. It uses more of the visual sense than

command line languages and uses other than the keyboard (a mouse) to

indicate the area of user interest. Allegro Query directly manipulates the

record type entity classes of the network database. It uses examples in the

same manner that QBE does. Allegro Query also has a ability to do
incremental queries by cut and paste modification of request entries.

The expression of queries in a high level language often gives no

consideration to the amount of work the database system will have to do to

answer the query. There may be more than one way to retrieve the requested

data, some ways more efficient than others. Often it is possible to

algebraically manipulate the query so that the less efficient operations are

taken over less data. For example, in relational algebra queries, selection and

projection may be moved inside a join such that the join is done over less data.

When a join over extensive data is necessary, a sort of the separate relations

on the join attributes reduces the data accesses required to do the join. In

most current query languages the expression of a query indicates the relations

used to answer it and implicitly a path to use to answer it. The Universal

Relation concept basically hides knowledge of the component relations.

Ullmann gives an example (P319) where different answers could be produced

by different paths through the component relations and where the

knowledgeable user may have to use tuple variables to direct the query.

Network databases are usually discussed in terms of programmed low

level retrievals. Considerations of query optimization do not apply as the

retrieval path is explicitly specified by the query and data selections are

coded directly into the retrieval specifications. Allegro Query, being an

8

attempt at a higher level query interface, does have path navigation and data

selection problems. These are discussed in Chapter 3.

2.2 QueryByExample.

Query-By-Example (QBE)13,3 is labeled a domain calculus language12,

since it uses sample elements which are variables over the domain of some

attribute. Zloof' makes a distinction between sample elements and variables.

This distinction does not appear to have been maintained in later descriptions

of QBE. In his papers, Zloof deemphasizes the predicate calculus basis of his

language in favor of definition by illustrative examples. He considers this

form of definition "... in our opinion more appealing to the causal user,

which is one of the major aspects of Query-By-Example."1 This aspect is the

primary reason why the appearance of Allegro Query is based on the

appearance of QBE. This flavor of QBE is given in the conclusion of Zloof's

first QBE paper'.

"In this paper we presented the data access portion of the Query By
Example Language. We conclude that the unique features of this
language are as follows:

1. The user has the perception of manual table manipulation.

2. The user has a pre-established frame of reference, ie the tables.

3. The user can easily pre-identify the relations to be used,
resulting in an early reduction of the scope of the data base.

4. As opposed to linear-type languages where the user is
constrained to one degree of freedom, here the user has
multi-degrees of freedom in that the sequence of filling in the
tables and rows within the tables is immaterial. This implies
that given a data base the system does not constrain the user's
thinking process in any way while he/she is formulating the
query. Take Q7 as an example. If the user's thinking process
wishes to first choose a manager and then compare his/her
salary to the salary of his/her employees, the query would be the
same whatever the row order is, thus the system is capable of
capturing the different ways different users approach the
problem.

5. The sequence of the following steps is also immaterial.

a) filling in the constant elements,
b) linking the variables,

9

c) specifying the output by the P. function (projection), and
d) grouping.

6. It follows from 4 and 5 that Query By Example allows the user
to divide the query into decoupled segments, making it
declarative and highly non-procedural. In contrast, most
linear-type and other languages require the user to first specify
the information to be outputted and then structure the query
accordingly.

7. Due to the decoupling features inherent in Query by Example, it
can handle rather complicated queries without relinquishing its
simplicity. This is in contrast to other languages where a
lengthy and complicated query has to be artificially divided into
multiple steps and then taken one at a time."

Q7, referenced in the quote, is presented in section 4.2 below.

Six examples from Zloof's papers1,3 are used to illustrate QBE. Q2 asks

the paper's department store database "What colors of ink are available?"

type item color size
ink p.black

Figure 2.2.1. Q2 of [1].
The colors of ink available.

In this query 'p.' stands for 'print' the attribute in which it appears. This is

QBE projection. 'ink' is a constant element. Its presence under item

specifies that all tuples considered will have the value of the item attribute

equal to 'ink'. This is the query selection. 'black' is an example element. It
states that the user is interested in the color of the item with black as an
example of his interest. In this query the example element serves no query

semantic purpose and may be omitted.

10

Q4 shows a link between two relations to find the suppliers of items sold

by the toy department.

Sales Dept Item
toy pen

Supply Item Supplier
pen p. gm

Figure 2.2 2. Q4 of [1].
A link between relations.

Q8 and Q9 show first an 'and' of which departments are selling both

items and then an 'or' condition of which departments are selling either item.

Sales Dept Item
p.toy

toy,

pen

penci I

Figure 2.2.3. Q8 of [1].
A department selling pens and pencils.

Sales Dept Item
p. toy_

p.hardware
pen

pencil
Figure 2.2.4. Qg of [1].

A department selling pens or pencils.

Entries can get considerably more complex. Constant entries may have

relational operators. Full row entries may be negated to mean that the rows

which answer the query do not do whatever is indicated. There are aggregate

operators, arithmetic expressions in operands, and condition boxes.

11

Two more examples from Zloof3 show the use of arithmetic operations
and the condition box.

EMP Name Sal Comm
Jones sl s2

Output Name Earnings
p.Jones p.(s1 + s2)

Figure 2.2.5. Figure 20 of [3].
The use of arithemetic expressions.

EMP Name Sal

p.

Jones

Nelson

sl
s2

s3

Figure 2.2.6. Figure 21 of [3].
The use of a condition box.

Conditions

s1 >(s2 +s3)

QBE has update capabilities in the language. Zloof2 describes how QBE

can be used for data descriptions, integrity constraints, etc.

2.3 Other Query Languages.

The examples for the other query systems to be discussed and most of

the material has been taken from Ullman12. These systems are presented as a

contrast to Allegro Query. There was awareness of, but no consideration of,

these systems in the design of Allegro Query. It is this type of interface that

Allegro Query is avoiding.

12

The example database used has three relations:

members(name, address, balance)
orders(order_no, name, item, quantity)
suppliers(sname, saddress, item, price)

The first example is to print the names of members with negative balances.

It references only one relation. The second example is to print the supplier

name, items, and prices of all suppliers that supply at least one item ordered

by member Brooks. This example requires a join. The last example is to print

the suppliers that supply every item ordered by Brooks. The last example

specifies a 'for all' quantifier on the items ordered by Brooks. It stresses all

the query languages.

SQL is often the language of reference for command line query
languages. In addition to retrieval functions SQL has aggregate functions and

update actions. It may be a stand alone language or embedded in PL/1. SQL

uses keywords to translate from command line input to relational form.

In SQL the first example may be written:

select name
from members
where balance < 0

The 'select ... from ...' is projection from the named relation. The 'where'

clause can be very complex. Here it is a simple relational operator.

In the second example the 'where' clause represents an item ordered by

member Brooks:

select unique sname, item, price
from suppliers
where item in

select item
from orders
where name = 'Brooks'

Alternatively the second example can read like the join it represents.

select unique sname, suppl iers.i tem, price
from suppliers, orders
where name = 'Brooks' and suppl iers.item = orders. item

13

In the third query the 'where' clause is specifying set membership:

select sname
from suppliers t
where P. The set of items for supplier of given name

(select item
from suppliers
where sname = t.sname)

contains P. The items ordered by Brooks. Si
(select item
from orders
where name = 'Brooks')

The value after the initial 'suppliers' t' is an example tuple giving meaning to

't.sname' that folows.

QUEL is an example of a tuple relational calculus language. QUEL is the

query language of INGRES running under UNIX. It can be used stand alone or

embedded in a 'C' program. The three example queries are shown for
comparison. From the first example:

range of t is members
retrieve (t.name)
where t.balance < 0

The join of the second example can be read directly:

range of t is orders
range of s is suppliers
retrieve (s.sname, s.item, s.price)
where t.name = 'Brooks' and t.item = s. item

14

The third example from Ullman takes approximately 14 lines to state
the query:

range of s is suppliers
range of i is suppliers
retrieve into dummy (s=s.sname, i=i.item)
range of t is dummy
delete t where t.s = s.sname and t.i = s.item
range of r is orders
retrieve into junk (s = t.s, i=t.i)

where r.name = 'Brooks' and r. item = t.i
retrieve into sups (s = s.sname)
range of u is sups
range of j is junk
delete u where u.s = j.s
sort sups
print sups

It uses dummy relations with deletion and sort actions over the dummy

relations.

The last example language is ISBL. ISBL by itself is only a query

language. To obtain aggregate operators, update facilities, etc the language is

embedded in PL/1. It is presented as an example of a relational algebra

language. There are operators in ISBL for the relational algebra operators;

'+' for union, '' for set difference, '.' for intersection, ':' for selection,

'%' for projection, and '"' for the natural join. 'list' prints the value of a

relational algebra expression. Dummy relations are defined with the
assignment operator '='. 'n!' specifies expression evaluation by name. There

are other operators which do not show up in our examples.

In ISBL the first example is:

list members: balance < 0 % name

The second example may be written by defining a delayed evaluation

natural join:

os = n!orders x n!suppl iers
list os: name = 'brooks' % sname item price

15

or directly by:

list ordersmsuppliers: name = 'brooks' %sname item price

The 3rd example is also a convolution in ISBL:

s = n!suppliers % sname /* the set of suppliers 4/
i = n!suppliers % item /* the set of supplied items */
b = n!orders; name = 'brooks' % item /* items ordered by Brooks */
ns = (n!s * n!i) (n!suppliers % sname, item)

/* pairs of suppliers and items not supplied by supplier 4/
nsb = n!ns . (n!s * n!b)

/4 set of supplier-item pairs such that supplier doesn't
supply the item, and Brooks ordered the item */

s (nsb% sname)

To continue the comparison the same three queries are given in QBE. In

OBE all the user has to do is fill in the attribute positions as necessary. The

first and second examples are simple:

members name address balance
p. <0

Figure 2.3.1 The first of the sample queries in QBE.

orders order_no name item quantity

Brooks banana

suppliers sname saddr item price
p. p. banana p.

Figure 2.3.2 The second of the sample queries in QBE.

16

The third example is not given in Ullman12. Either Q9 or 0181 serve as a

template for the query, so it would be writen:

orders order no name item quantity

Brooks an x

suppliers sname saddr item price

P.

1:11.3.11 fl
P.

Figure 2.3.3 The last of the sample queries in QBE.

The brackets represent set grouping. Here the brackets state that all of the

sample elements x are a subset of the items in the supplier tuple. The

possible additional elements are represented by '.' in the brackets. Set

notation was not covered in the description of QBE above.

From this sample it would appear that QBE allows the most
user friendly writing of queries.

17

Chapter 3

Query on a Network Database

Query on a network database is normally discussed in terms of a low

level data manipulation language. For Allegro the DML is a subset of the

basic parts of CODASYL DIAL". For the FIND statement Allegro uses only

the record selection expression of the CODASYL statement. The FOR

UPDATE and RETAINING... phrases are not used. There are six formats of the

CODASYL record selection expression. Allegro has portions of five of these

formats. Formats 1, 3, 5 were provided by Uy4. Formats 2, 4 were provided

by Swasdichai5.

format 1

{ANY } record-name-1 USING {identifier -1 }...
DUPLICATE

Allegro has the portion of this format known as find by CALC key,
that is the identifiers supplied are those needed to locate a record
whose location mode is CALC.

format 2

DUPLICATE WITHIN set-name-1 USING {identifier -2 }...

format 3

NEXT
PRIOR

{ FIRST } [record-name-2] WITHIN set-name-2
LAST
integer- 1

The Allegro documentation does not specify identifier-3
(alternative to NEXT, etc). Allegro also has no notion of realm.

18

format 4

data-base-key- i dent i f i er- 1

Allegro has the keep list form of this format. Swasdichai6 indicates
the reference is by keep list position not by key comparison.

format 5

OWNER WITHIN set-name-3

The GET statement, according to Allegro documentation°, is not the GET

statement of CODASYL.

GET [record-name-1] [identifier -1]...

Allegro is specified to return the current of record named, if one is
named, whether that record is current of run unit or not.

Allegro has some additional auxiliary retrieval DML6. It also has update

DML46.

The retrieval functionality of a network database, even of the subset
implemented in Allegro, is sufficiently rich that for a schema of any
complexity there normally will be several ways to program a given query.
The programmer must choose the retrieval operations he will use to answer

the query. That is , the programmer must navigate712 his way through the

network schema from whatever database entry he has to the data that will

answer his query. The overall navigation process is described in textbooks on

database.",12 For Allegro a description of one navigation on the standard

demonstration schema (figure 1.2.1) is in Uy's thesis4. This example is given

here using the psuedo DML of Uy:

19

find the CALC record called BOOK based on its key
get BOOK record
print information from BOOK record
find the first BOOK_AUTH record in the WRITTEN BY set
while current BOOK record is not current of WRITTEN _BY set

§-find owner of current BOOK_AUTH record in HA WRITTEN set
get AUTHOR record
print information from AUTHOR record
find next record in WRITTEN BY set

To look ahead, Allegro Query requires no navigation for this query.

With Allegro Query, query is on a visual level rather than in a 'C'
program level. When necessary the user must still navigate his query.

However the user navigates his query without writing DML statements. As

indicated in Chapter 1, this is done with the use of a visual display and a

method to navigate, when necessary, by simply selecting schema sets. The

rest of this chapter focuses on these actions omitting the details. The details

of the user interface are in the next chapter.

To place Allegro Query on a visual level the user is shown a display which

has one display object for each record type in the schema. The contents of

each display object are discussed in Chapter 4. The user may remove record

displays that are of no interest to him for the current query or set of queries.

Removed records are removed from consideration by Allegro Query
processing. Such a trimmed display may survive session to session of Allegro

Query. Removed records are easily restored. The user normally sees only the

record displays of the schema. There is a menu option that will display the

set structures of the schema. Sets that connect to records which have been

removed will not be displayed and are also removed from consideration to

answer the query.

An example will help to explain what trimming the schema accomplishes

for the user. This example shows where it is easy to trim too much. Consider

the standard Allegro example schema, BOOK_AUTHOR. Augment it with a

record type which carries position held information for the various authors

(figure 3.1).

20

BOOK AUTHOR

/
WRITTEN_BY HAS WRITTEN

I/

BOOK AUTH

EMPLOYEDBY

POSITION

figure 3.1. BOOK_AUTHOR schema augmented for trimming example.

The user wishes to enter a book title and have the system respond with the

authors. For this query, author position information is superfluous and may

be trimmed. The user removes the record 'POSITION' from the screen. This

removes the record from availability for Allegro Query processing. The set

'EMPLOYED BY is also removed from availability for Allegro Query
processing. If displayed, the set is also removed from the screen. So far, all

is well. Next the user decides the BOOK AUTH record contains no useful

information. So he removes it from the screen. If displayed, the two sets

connected to BOOK_AUTH also disappear. Record removal removes that

record and any connecting sets from consideration during the path search. If

BOOK_AUTH is removed, Allegro Query will be unable to answer the query

without asking the user to navigate. This is one of the reasons the user should

understand the schema to use Allegro Query. While in the normal case the

query of this example will proceed silently, the user still should navigate the

schema in his thinking about the query.

Since Allegro is a network database, the user is expected to be familiar

with the Bachman diagramming techniques used for network databases. It is
assumed that the user has a data structure diagram vision of the schema he is

using. While not necessary, the user can and should position the schema

records he has not removed so that they correspond to his vision of the

schema. Allegro Query makes no attempt to guess the user's vision of the

schema. Once the user has positioned the schema records as he likes, Allegro

21

Query will remember that position query to query and session to session.
Such positioning may be changed at will.

Each schema record is displayed in a QBE like format. The user
interacts with the display in a QBE like manner, that is the query information
that applies to a field of a record is interactively placed in that field. Do not

assume from the use of a QBE like format that Allegro Query is a domain

calculus language where the variables range over the domain of an attribute.
Allegro is a network database where the data available in any schema record

depends on instances of the path into instances of that record. The data

available is that which will have the QBE like selection and projection
specifications applied to it. The details of this interface are in section 4.2.

In the initial statement of a query the user makes no statement of the
navigation necessary to answer a query. When the query answer is requested,

Allegro Query will search for a path through the schema sets that accesses all

the records that participate in the query. The search will detect the
availability of more than one path or of no paths. If there is only one path,
the query proceeds silently. If the user has exercised his option to trim the
schema available to the current query, this will happen more often than it
might first appear.

If there is more than one path possible to answer a query, Allegro Query

does not attempt to determine all the paths. Instead it presents the user with

a list of schema sets and asks him to select the sets that should be used to

access the records that participate in the query. This is the case where the

user must navigate his query. All the user has to do is select the sets that are
to be used. The user does not have to state 'find first in ...', etc. Allegro

Query will generate the DML necessary to follow a path through the specified
sets.

What does the user need to know to use the visually displayed schemas of

Allegro Query? As mentioned above, he needs to understand the one-to-many

concepts of network databases. He needs to be able to visualize retrieval

following set paths and know that it is possible to retrieve both ways along a

set path. He needs to know that Allegro FIND format 1 is limited to the calc

22

key concept. If he visualizes a record, other than a system record, as the
starting point for a query, he must provide a calc key for that record. For
schemas that have both calc keys and a system record (the student_rec

schema in the examples chapter), he needs to realize that the normal mode of

Allegro Query will prefer calc key retrieval as less data is retrieved when calc

key retrieval is possible. The designed 'retrieve for local query' option will

reverse this preference. Finally the user does need to know the very simple

Allegro Query language. Since this language is modeled on the well known

QBE, the language usage is expected to be intuitive.

Allegro Query does little query optimization. Allegro Query retrieves

all the data that occurs along whatever path is specified. The structure of a

network database and, if necessary, the user's path selection has programmed

for Allegro Query that which on a relational database would be the
implementation of a join. There is no optimization here. Selections are not

moved inside the retrieval path.

There is a positive reason for not moving selections inside the retrieval

path. The author visualizes the situation where the user will be able to do
local queries on the data once retrieved. Consider a situation where the user

is interested in the salary history of the firm's employees. Assume a schema

with the employee records as members of a singleton set and the employee

records connected to several things one of which is that employee's salary

history (figure 3.2). There are no calc keys specified. The initial retrieval

will get all the employee and salary history records. The user then does a

series of local queries fine tuning selection and projections until he has the

data he wants. With such a scenario, Allegro Query can not move initial
selection inside a retrieval path. Once the data is retrieved selections are

applied in path order. That is selections will be applied to the owner records

first thereby pruning member data that must be considered.

23

System

Employee
Rec

Salary
History

Other things

Figure 3.2
Example of a subset of a schema

that could be used for local queries.

The query answer is displayed in a manner intended to maintain user

awareness that Allegro is a network database. When the user requests

projection items from several schema records, the display will be in a
generated record with a field for each projected item. This answer is not in

the form of a full table as would be displayed for a relational database.

Instead the set relationship is maintained by not repeating owner record data

for member data along a set instance. This presentation can follow several

sets in a path with the intermediate owners, if they are projected, repeated

when their instance changes. An example of this display is in chapter 4.

24

Chapter 4

User Interface

4.1 Display Interface.

Smalltalk13'1415 terminology is used to describe the user interface.

4.1.1 One Time Actions.

To use Allegro Query the user should have a standard Smalltalk image

with the category Allegro-Query added by 'file in'. After the 'file in' the
Query class method initialize should be sent. These are actions in the nature
of system generation.

A query instance is obtained by evaluating 'Query open' (without the

quotes) in any view which supports the standard 'do it' function. The author

normally uses the system browser then cancels the change. Upon evaluation

of 'Query open' Smalltalk will have the user frame the view referred to as the

Schema Name View (figure 4.1.1.1). This view may be framed at the
minimum size the view will allow. With a Smalltalk image 'save' the state
of a query instance survives session to session. Closing the Schema Name

View releases the query instance.

IMAWsgettarotiwp*
student_records studentRecords

Figure 4.1.1.1. Schema Name View.

25

The Schema Name View contains the names of the Allegro schemas that

have been made known to Allegro Query. Allegro Query does not attempt to

ask Allegro for all schemas known to it. The display of a schema name

contains the schema name as known to Allegro and the data file name
expected by Allegro on DML 'open'. If there are more schema names than

space in the view, the names will scroll. These names are maintained in a

class variable and will be available to other query instances. The Schema

Name View does, as do all views in Allegro Query, respond to the standard

blue button menu.

The project design envisions that an Allegro schema is associated with an

Allegro Query instance. This schema is used until the user is done with it. It
is possible to have more than one query instance (with view) in existence.

Since the user can control view placement, he may be able to keep the
situation straight. The data of each query instance will be distinct. Although

no provisions are made, the interface with VAX Allegro is discrete enough and

of short enough duration that no problems should arise.

4.1.2. The Main Control Menu.

The Schema Name View also contains a yellow button menu (figure

4.1.2.1). This menu is what the user uses to control Allegro Query. The

content of this yellow button menu varies with the content of the view and
the state of the query instance. When there are no schema names or one has

not yet been selected this menu presents only 'add schema name'. When a

name entry has been selected, but not yet fetched (described below), this menu

presents 'fetch schema' add schema name' and 'remove schema name'. When

a schema has been fetched, this menu presents choices as shown in figure

4.1.2.1.

26

,&qmmOetchschenlaitir
iReto

::kmk new query ft1.--

do uer
redraw schema,

show sets
erase schema mem

Figure 4.1.2.1. Yellow Button Menu
of the Schema Name View.

The term fetched means a schema has been associated with the query

instance. It means Allegro Query has communicated with the portion of

itself in Allegro on the VAX to fetch those portions of the schema i t needs. I t

also means this query instance is ready to do queries on this schema. A change

in Schema Name View schema name selection will require another schema

fetch. Schema fetch should also be a one time action. It need be repeated

only if the schema definition changes for Allegro.

The schema records will have been displayed on schema fetch. If the user

has moved the schema records to suit his image of the schema, his positioning

of the records will be remembered and used on any redisplays of the schema.

Selection of 'new query' initializes the query portion (Section 4.2) of the

query instance. If the schema is not displayed, 'new query' will display it. The

use of 'new query' is not necessary when the user prepares a new query.

Individual fields may be modified and 'accept'ed (see below).

The use of 'do query' is discussed below.

The action 'redraw schema' will maintain user record positioning and

restore removed record views. It also makes all network sets available (but

not displayed) for query processing. 'redraw schema' will restore the original

state of the records affected by the 'resize field' or 'remove field' actions.

Along with 'new query', 'redraw schema' serves to clean up the state of the

27

Allegro Query instance. It will often be appropriate after the user has
responded to a request for query navigation (see below).

Selection of 'show sets' will display schema set lines for the sets
currently available for query processing. If the user has not removed records

or responded to a path navigation request, the display will include all the
schema sets. Set lines, when drawn, are not views. They will be erased by

'redraw schema', by the display screen yellow button menu 'restore display',

and by anything else that does restore the display; for example the activation

of overlapping views.

The action 'erase schema' removes the schema from the screen. It does

not affect the state of a query. Any (partial) query language request will be

restored on 'redraw schema'.

When the user selects 'add schema name' he will be presented with a pair

of fill-in-the-blank views. The first asks him for schema name (as known to

Allegro). The second asks him for the VAX filename of the schema.

4.1.3. Record View.

On 'schema fetch', 'new query', or 'redisplay schema' a record view is

displayed for each record in the schema. These records are constructed from

schema data, particularly field size. The user is not asked to frame schema

records. The appearance of a record view (see figure 4.1.3.1) is similar to

that normally shown for a CUBE query. The record name appears as the label

of the record. It does not have its own column. There is a column for each

field in the record with the field name at the head of the column. Lines for

query request entries follow. The field size will be adjustable as defined
below. A record view is composed of two subviews, the 'name view' and the

'request view'. When appropriate, an output data view will be tacked on below

the request view during 'do query'.

28

00------ai

title ISBN number year

of pages published

pr. Data Structures and Algorithms

Figure 4.1.3.1 Record View 'BOOK' of the BOOK_AUTHOR schema
with a query entry.

On schema fetch the initial record views for the schema will appear

overlapped on one another with an offset for each record. There is no record

placement algorithm. One of the thrusts of this thesis is that the user should

place the schema records as he would draw them on paper. The record view

blue button 'move' is used to do this. The user may also 'frame' the record
view. The user may, but need not, remove the views of records he is not

interested in for the current query. Use blue button 'close' to do this. Only

the blue button 'move' and 'frame' actions have overrides to capture user
record positioning.

The name sub view of a record view is non-interactive. Some attempt

has been made to display readable field names. The underscores commonly

used for 'C' have been removed and an attempt has been made to split the

words of a field name over two lines at word boundaries.

The request sub view is the important view in preparing a query. The

query language is discussed in section 4.2 below. This view has three query

request lines where the number of lines is changeable. The request line on

which a query is entered is unimportant. Some effort was expended to defeat

scrolling for the request lines as it was felt that this would be less

intimidating to the user. However scrolling does occur on a field/line by

field/line basis for a useful reason. The fields are sized on the Allegro schema

field size subject to a maximum and a minimum. The variable size character

display and the added query operators can make a field too long for display on

29

a single field/line in the view. The default font used displays numbers quite

large. A field that contains numerical data, eg social security number, will
normally overflow its boundaries. The view will scroll in this case but
without scroll bars. User control of the scrolling is by dragging the cursor

through the top or the bottom of the field/line. Single sub view scrolled data

(a query field/line) is received by the processing portion of Allegro Query as

one line. The scrolling is an illusion.

accept
,

accept a
ariWiSi
$Ps, cance I ::.*K`Z;'9;P

resize field
%.0.4eXii*X.:::0:4M.IONSManCSOnNe

*gaiLiaeoo remove fie

Figure 4.1.3.2 Yellow Button Menu
of a record view.

The request view also has a yellow button menu (figure 4.1.3.2). This

menu controls query request entries. Most of the items on the menu are the

standard editing items. 'Accept' presents the current field/line entry to
Allegro Query for processing. There are three additional entries in the yellow

button menu; 'accept all', 'resize field' and 'remove field'. The availability of

'accept all' gives the user a chance to be lazy. He may make several field/line

changes then do one 'accept all' rather than several 'accepts'. Even 'accept

all' is not necessary if these are the initial entries of a query, that is there

have been no previous accepts for this query. 'resize field' is intended to be

used when the Allegro Query displayed field size is not visually satisfactory.

'remove field' will be useful for a large record whose display overflows screen

boundaries.

30

4.1.4. The 'do query' Function and Navigation.

The 'do query' function of the Schema Name View is used to obtain the

answer to a query. If the user has entered data he may use 'do query' directly,

even if he has done no previous 'accepts' or 'accept all'. The accepts will be

simulated. If the user has changed data and not used 'new query', he needs to

use 'accept all' or 'accept' for each changed field. It is during 'do query' that

several error situations, for example lack of a valid calc key, are discovered.

The 'do query' function communicates with Allegro on the VAX for its data.

As discussed in Chapter 3, when Allegro Query can process a users query

silently, it will do so. When Query detects the existence of more than one

path or can find no path there is further user interaction to provide query

navigation. When the user must navigate, the view frame symbol will appear.

Upon completing the view frame, the user will see a view that is referred to

as the user navigation view (figure 4.1.4.1).

entry
majors
dept members
course offer
schedule
teaches

Figure 4.1.4.1. A typical view when the user
has been asked to navigate a query. In this case

the user has not yet selected a menu choice.

The view as shown is titled "Multiple paths to answer query exist." The view

title alternatively may read "No path to answer query found." The left hand

side of this view shows the sets of the schema with no initial selection. The

sets scroll if necessary. The left hand side of this view has a yellow button

menu associated with it. When initially displayed this menu shows four lines

'name sets', record paths', 'use BB close to', and 'abort query' with a divider

line after the second item. The users choices are 'name sets' and 'record

31

paths'. The last two lines function as a no action reminder message. This

menu will change depending upon the users selection.

73

dept members
course offer
schedule
teaches

fs

seatth7oourse

class list

Set selection:

schedule
class I ist
course section

Continue with query.

fi

Figure 4.1.4.2. A typical view when the user
has been asked to navigate a query. In this case
the user has selected the 'name sets' menu choice.

The 'name sets' choice is the easiest choice for the user to use. Allegro

Query design considers this as the normal user choice. With this choice the

user specifies the sets that are available for Allegro Query to use to attempt

to navigate the query. The use of 'show sets' in the Schema Name View may

be helpful here. When 'name sets' is chosen the line 'Set selection:' appears in

the navigation view right hand sub view. The user then selects as many sets as

he wants Allegro Query to consider. Each set selected will be reflected in the

right hand sub view. The order is not important. The selection of 'name sets'

will have changed the yellow button menu. The choice 'do query' appears in

place of the original first two choices. Selection of 'do query' starts the
query over with the named sets available for processing. It also enters the
phrase 'Continue with query.' in the right hand sub view.

The set choices mark sets in the same manner that record removal
removes them. It takes use of 'redraw schema' to restore the full quota of

network sets to Allegro Query processing. It is possible for the named group

of sets to produce either of the results that cause an entry to the user
navigation view. this has happened to the author when he specified a name

value for the student record entry (of student_records schema in the
examples chapter) forgetting that the calc key was social security number.

32

The path specified had included only the records necessary for calc retrieval
but not for use of the system record.

,,,,

..,

dept members
course offer
schedule
teaches

., 5 mural motion----,..,.-...-------
class list

schedule
class list

Path from student to course:
schedule
class list
course section

Continue with query.

Figure 4.1.4.3. A typical view when the user
has been asked to navigate a query. In this case

the user has selected the 'record paths' menu choice.

The menu choice 'record paths' is intended for the really sticky cases.

With this choice the user is asked to specify a path from the record Allegro

Query intends to use to enter the schema to each other record in the query. A

separate path is expected for each target record in the query. The sets should

be named in order along each path. When all paths have been specified, Allegro

Query continues with the query. The user's path choices are used as given. No

checks are made.

The use of 'record paths' starts with the menu selection. That action
will show the line "Path from <entry record> to <current record>:" with the

appropriate substitution for the <...> in the right hand subview of the user

navigation view. The user then selects sets as before. Each set selected will

be reflected along the right hand side. Query detects when the target record

has been reached by the set path. It will then move the current record and
show the path line again until the target records are exhausted. Query

resumes automatically when the last target path is complete. This menu

choice has no optimization. If one record lies along the partial path of
another, the user will still have to make two path specifications.

33

4.1.5. Output Data View.

The output data view may appear in two places. If all the projected
fields are members of a single record the output data view is tacked on the
affected record view as a sub view below the request view sub view. This is
true even for a multiple record query that must follow paths to fetch data and
process selections. If fields from multiple records are projected, the output
is presented as a generated record (named dataOut') with name and output
data subviews (figure 4.1.5.1). Only the projected fields are present. In both
cases the output data view is scrolled on a full view basis, that is all fields
scroll as a unit.

title name

Data Structures and Algorithms

book2

Jeffery D. Ullman

John E. Hoperoft

Alfred V. Aho

narte2

=igure 4.1.5.1. Generated DataOut record for a multiple record query.
(Some data added to show the network structure appearance.)

The awareness that this is a network database is maintained in the
output data views (figure 4.1.5.1). The output data view by design does not
have a full table appearance. The awareness of one-to-many relationships is
maintained by not duplicating the owner data along a chain path.

4.2 Query Language.

Entries in the query language deal with the several fields on one line of
the request view. The language is illustrated using more examples from

Zloof1. A typical Query-By-Example (QBE) entry, "Print the red Items:", is

34

type item color size
p.pen red

Figure 4.2.1. Q1 of [1] in QBE.
A simple query.

where all but sp.pef and 'red' are shown by the QBE template. For Allegro

Query the user will type ' p._pen' and 'red' in the slightly different template.

type
item color size

p._pen red

Figure 4.2.2. Allegro Query version of Q1.

again where all but ' p._pen' and 'red' is an object displayed by Allegro Query.

The case of the initial 'p.' is not relevant. This entry is an example of a

possible answer with the addition of a command function. 'p.' specifies

printing of this field. 'red' is a constant element. The items selected to

answer the query must have data element 'red' in the 'color' field. When the

field is a string, the case of the constant element is important. is the

example element of this query. There might be a red pen in the query answer.

There might also be a red dress in the query answer. There might not be a red

pen in the query answer. For the example given '_pen' is unnecessary and

may be omitted.

For many queries, the entire query language has been given. Consider

Q5, "List the names, salaries, and managers of employees in the toy
department:"

35

EMP
name sal mgr dept

11 p. p. toy

Figure 4.2 3 Q5 of [1] in Allegro Query.
Another simple query.

The example elements have been omitted. If in this case it was also desired

to print the department, QBE would use 'p.' in the record name field. Allegro

Query follows the Smalltalk idea of labeling the display object by using the

record name in the view label. There is no column to enter record data. To

obtain an entire record print without entering 'p'. in each field, enter 'pr.' in

any field.

Q3, "Find the department(s) that sells an item(s) supplied by the supplier

Parker:" illustrates a QBE link between separate relations. Allegro is a
network database. The network does the linking. Links as shown in Q3 are not

used in the query. It is assumed that SALES/SUPPLY has a network similar

to BOOK AUTHOR4 with 'ITEM' the connecting record.

Figure 4.2.4. A possible network
for Q3 and Q6 of [1].

36

In Allegro Query this query is written as:

SALES

dept
SUPPLY
supplier
parker

Figure 4.2.5. Q3 of [1] in Allegro Query.
The schema does Allegro Query linking.

With this network, we do Q6 by placing a 'p.' in these records and the

connecting ITEM record. No example elements are necessary.

Q7 is entered as shown in Zloofl except that the underline becomes a

prefix "Find the name(s) of any employee(s) who earn more than his

(their) manager(s)."

EMP
name sal mgr dept

p._Jones

Peter

> 10K

10K

Peter

Figure 4.2.6. Q7 of [1] in Allegro Query.
The use of example elements to establish

conditions in the data.

"If Peter is an example of such a manager and if Peter earns 10K (as an
example) then Jones is an example of an employee who earns more than 10K

(indicated by the > operator) and, therefore, more than his manager."'

The above query introduces several more elements of the Allegro Query

query language. Applied to constant elements are the relational operators;

'<', '<=', '>', '>=', with omission for equal and '!' for not equal. Both

omission representing equality and '>' are used in the query above. Three

synonyms =', 1=-1, and'k='are accepted. The last two are for the Allegro

programmers. When the constant element contains a 1.1, an explicit

37

equality operator '=' (or '==') rather than omission should be specified. If

the explicit operator is omitted and a is present, the query parse will try to
treat that which proceeds the '.' as a command function. The standard

demonstration schema, BOOK AUTHOR, has data with a '.' in it.

The above example also shows the use of and'ed conditions both on the

same line and on separate query lines. The conditions on the first line
postulate an employee who both makes more than some (example) amount and

has some (example) manager. The conditions on the second line specify that

the example manager makes the example amount. This is and'ed with the

first line. The use of 'or' was shown with Q9 given in section 2.2.

The above specifies the design of Allegro Query language. There are sort

operators in OBE as in figure 6 of Zloof3. They may be specified similarly for

Allegro Query but were not as they are not needed to demonstrate query on

Allegro. Similarly built-in functions like 'cnt.' or 'sum.' may be specified.
There is no provision for a condition box nor are there expressions in a query

field. Allegro Query also lacks a provision for set theoretic constructs. The

queries of figure 20 and 21 of Zloof3, (see section 2.2) are not currently
expressible by Allegro Query. Again these are functions that are not needed to

demonstrate a higher level query on Allegro. Allegro Query could follow OBE

in the specification of these items with possibly { all _x, .1 as the set
notation.

In the network database of Allegro some schema are specified with calc

keys. For such a schema the query user must be aware of the database and

know what data may be expected to be on a calc key. Allegro Query will
detect if a user query lacks an equality constant in at least one of the fields

specified as a calc key as it will be unable to construct a retrieval for the

query. The implementation can detect the error of missing calc key only

after attempting to retrieve data from Allegro (on the VAX). The standard

schema used to demonstrate Allegro projects is a schema with calc keys.

Three example queries12 were presented in section 2.3 above. For

comparison the first two of these are given in Allegro Query. The schema of

these examples in network form is:

38

members

orders

items

prices

suppliers

.7
Figure 4.2.7. Network schema for three query examples.

members
name addr balance

p. <0

Figure 4.2.8. Example 1 in Allegro Query.

members suppliers
name addr balance name
Brooks p.

1

addr

item prices
description price

p. p.

Figure 4.2.9. Example 2 in Allegro Query

The third example will need specification of Allegro Query set theoretic

functions to write it. When so specified, the third example would be expected

to look much as the QBE example does.

39

Chapter 5

Examples of Allegro Query.

The figures of this chapter are actual examples of Allegro Query
obtained by the Smalitalk function 'copy display'. These are full page figures

following the chapter text.

The schema BOOK AUTHOR is a schema used by Uy4 and in most of the

work on Allegro. It is the schema used in most of the discussion in the text of

this report. The Allegro program sample2 is a question and answer
implementation of two queries on BOOK_AUTHOR. The first of these two
queries prepared in Allegro Query is shown as figure 5.1.

At some previous time the system generation actions resulting in the

Schema Name View (middle right) with the schema names shown had been

done. Earlier in the session, we also had logged in to proper directory on the

VAX. The schema name selection was changed to the highlighted

BOOK AUTHOR and 'fetch schema' selected. This displayed three

overlapping record views. The record views AUTHOR and BOOK_AUTH were

moved with blue button 'move' to obtain the triangle shown. 'show sets' was

selected as that is the way the author likes to use Allegro Query. The sets are

superfluous for a schema as simple as BOOK_AUTHOR. The request line

shown in BOOK (highlighted) and also in AUTHOR were filled in. 'do query'

(Schema Name View yellow button) was used directly not bothering to do any

'accepts'. The result is the dataOut view as shown where the top and bottom

boundaries show that the entire data is seen without scrolling the view.

A more complex schema, student_rec, is used for figure 5.2 and figure

5.3. This schema includes six data records, a system record, and nine sets

with multiple paths everywhere. This schema has not been entered in Allegro.

The communication line is redirected to dummy files when using schema

40

student_rec. The schema and data files used were hand prepared from a study

of structures in Allegro routine dbcs, the formats in Uy4, and what actually
does transmit for BOOK AUTHOR.

Figure 5.2 shows a simple query for a student transcript. The full
schema and set lines are shown. There are entries in four of the schema
records including a calc field in the student record. Due to font size for
numbers it is necessary to scroll 'student ss nbr' to see the full entry. The

entry is typed without concern for the scrolling. When 'do query' is selected,

Allegro Query detects the possibility of multiple paths to answer the query

and responds with the Navigation View. In this view the 'name sets' menu

option was selected, followed by three sets from the list shown on the left,

then 'do query' from the Navigation View menu. With only these three sets to

search, Allegro Query has a unique path. It proceeds silently to yield the
dataOut view shown. The lack of a bottom boundary indicates that only part

of the data is shown. The rest of the output data may be seen by scrolling the

view or in the case of limited data by enlarging the view vertically.

Figure 5.3 shows the same student transcript query. This time the
option to trim the schema by removing the department and faculty records

has been used. 'do query' was selected as in the previous figure. This time the

result appears without having to specify a navigation path.

"AUTIO8 I

ame
0111011111MM

ffiliation

0111111i dataOut

title ISBN number of
pacies

year
publishe

name

Data Structures and Algorithms 0-201-00023-7 400 1982 Jeffrey D. Ullman
John E. Hoperoft
Alfred V. Aho

141115,11011111MMIlijil

Allegro queryt

JIOPPAR1190kiiiiiiNg*WOUi
student.rec studentRec

F i our e 5. 1 .1 Screen Dump of B001(1___AUTHOIR example,
...

department
apt name apt nbr

acuity name faculty ss
nbr

student
udent name

p.S.Zonker

tudent ss
br
012-34-5

""-.advisees
Course

course
hr

course name

medal

student sec
Allegro query]
BO. ALITH,F1 boor 5.rrhor
stus1kilt.4-rec stusbouttlec

,cla 5 list,Z,T
OCati011

Multiple paths to answer query exist,
,4

course offer
course sections
advisees
teaches
schedule
class La

Set selection.
course sections
schedule
class list

Continuing with query.

dataOut
Itudent name course

nbr
Course name credit section

nbr
grade

B. Zonker 101
m101
pe 19 1
a 10 2
m102

englisn
math
basketweaving
english
math

01
01
01
01
01

A' Yl 1 '1 il '1

Figure 5.1.2 Screen Dump o 'stuclent_rec' example.

system record s
non-Interactive

;1,1

student Lg..,i4i#1i4;RiOili:11., 0 .1 d '1.11
tudent name tudent ss

br
..B.Zonker 12-34-6

nurse
br

Allegro query

ocation

dateOut
tudent name ourse name ,rade

B. Zonker englIsh
math
basketweaving
english
math

'

Figure 5.1.3 Screen Dump of trimmed 'student_rece example.

44

Chapter 6

Allegro Query Internal Structure

6.1 Query Processing.

The implementation of Allegro Query follows the
model/view/controller triad of the Smailtalk display implementation.15 The

structure of the model section of Allegro Query follows Allegro's main data
structures. At the top there is a query instance which can process a series of
queries. One of the instance variables of the query instance is an instance of
class Schema. An instance of class Schema has several instance variables.
Most of the variables are collections of various things. Two of the instance
variable collections are a collection of schema records and a collection of
schema sets. The elements of the collection of schema records contain
instances of class Record. One of the instance variables of a record instance

contains a collection of instances of class Field. An instance of class Field
again contains several things one of which is a collection of instances of
Field Model. These Field Model instances contain the user query for that field.
Another variable of the Field instance contains the data received from
Allegro for that field. Another variable contains the data that remains after
selection processing.

This section is a brief outline of the code of Allegro Query on the query

side. Within Smalltalk, Allegro Query exists as a series of class definitions.
Each class defines the object it represents with a series of variable definitions

and the specific methods which operate on those variables. The order

following is class by class as the reader would see them if he had done a 'print
out' of the category 'Allegro Query'. The actual query processing happens to

be near the end.

45

The class Output Controller is used to scroll all the field output data
views of a record in lock step on one record scroll bar.

The class Field Controller handles the yellow button control actions for

the request views. It disables scroll bars on individual field lines. Actually
the standard editing actions are handled by the Smalltalk defined superclasses

of Field Controller. This class is dealing with the sensitive Paragraph Editor.

The class RecordBBController contains overrides and extensions to
SystemStandardController. The record view open, close, and move actions

are here. It appears to the author that Smalltalk view controlling is intended

to work with one view at a time. There are multiple views for the network
schema. There was considerable trouble with view scheduling early in the

project until it was decided to write this override class and do the scheduling

explicitly. This class is playing with fire and reminds us of that every time

we touch it.

The class Field defines an object which parallels Allegro's field

structure. Each field in a schema has an instance here. This is mostly a data

structure. There is not much processing here.

The class Field Model has instances which contain the models of the

paragraphs displayed as each field/line of the request subview of the record

view. The user edits query input until he is satisfied with it. When he selects

'accept' or one of its equivalents his input is deposited in an instance of
Field Model. The parse of the user input is the main processing of this class.

Class Query has the overall processing for a query instance and the

instance of a Schema Name View associated with. it. The Schema Name View

yellow button menu selections are received here. The interface to Allegro for

'fetch schema' is the main processing of this class. The schema name add and

remove are here. Most of the rest of the yellow button functions are passed

on to the selected instance of class Schema (see below).

The class Query Set defines an object which parallels Allegro's set

structure. There is an instance for each set of the schema. Set line display is

here. The high use method 'pathCheck:' is here.

46

Similarly class Record has an instance for each record in the Allegro
schema. The method 'checklnQuery' is here. It is a series of double loops
through Field instances to Field Model instances to determine that record's

participation in the query.

Class Schema is the big class of Allegro Query. Its main function is to

do the query processing that results when 'do query' is selected. This class is

discussed protocol by protocol, the Smalltalk breakdown of a class. The

protocol 'schema display' implements those SchemaNameView yellow button

display actions that were passed on by class Query. The protocol 'process

query external' implements 'accept all' and 'do query'. The protocol 'process

query' contains some of the internal Schema class methods for processing the

query. The 'data display' protocol contains more of the internal methods for

'do query'. The methods relating to query paths are in a separate class (see

below). There are other less significant protocol sections.

The method 'doQuery' starts the significant action of this class. After

initialization the records that participate in the query are collected. This

uses method getRecords and can get involved with 'accept all' and a second

pass through getRecords. 'getRecords' loops through the record instances

checking a variety of flags. The result of 'getRecords' is a collection of
instances of class Association that represent the records which participate in

the query. The entry to the schema, either a calc record or the system record

will be first in the getRecords collection. Each association represents one

record and a currently nil path to the record. If there is more than one record

in the query the query needs path data via method 'getPath:'. This is discussed

below.

After any path work 'do query' continues with method 'doQuery2'. The

record associations now have path data filled in. The method

'generateAllegroQuery' is used to generate the commands to the Allegro
section of Allegro Query that wiI I be sent across the communication line. It

is also discussed below (section 6.2). The query is written by 'writeQuery',

then Allegro Query waits to read the returned data with 'readQueryData'.

The method 'readQueryData' converts the data from the communication line

to the various collections which are instance variables of the various field

47

instances. It prepares the presentation of data along chain lines which

maintains the perception of the network data structure. The structure of the
output data view is prepared by checking which fields are to be projected.
Finally 'doQuery2' uses method 'processQueryData' to apply the query
selections and fill in the data view.

The method 'processQueryData' is currently a data collection copy. It
will expand greatly if query selections are implemented (future work). When

implemented the several methods that will exist here may have to be split off

from class Schema for the same reason as class Schema Path (next).

The class Schema Path is logically a part of class Schema. It was split
from class Schema when Smalltalk 'cops' limitations were encountered. The

entry to the methods of Schema Path is 'getPath:' It initializes then starts a
depth first search of the schema network by calling method 'followPath:of:'

at the query entry node, either the appropriate calc record or the system
record. The method 'followPath:of:' assembles the out sets of the current
node then recursively follows each. The used out sets are taken from those

out sets marked available as explained in Chapters 3 and 4. Unless a node that

has been visited before is encountered, the algorithm will search the entire
available schema. If it encounters a previously visited node, there are
multiple ways to get to this node and any node back along the current path and

any node along the path that resulted in the original visit to the current node.

If any of these nodes or any node that is later visited from these nodes
represents a record used in the query the algorithm backs out the search then

asks the user for a path selection. If the search backs out without having

found multiple paths it checks to see if all query used records have been
visited. If no path to all the used records is found, the user is also asked for a

path selection.

The eleven methods in the 'user path' protocol of Schema Path are those

used to interact with the user navigation view. When the user selects the

'name set' method of path specification Allegro Query initializes all the

schema sets to not available then marks available only those the user
specifies. The use of 'do query' starts query processing over ignoring previous

processing. When the user selects 'record paths' method of path specification,

48

his selections simply fill in the path sections of the queryRecords associations
described above. In this case the query resumes.

The class Name View is used in the display of field names in the record
views. Its main processing is to attempt to present the Allegro field name
reasonably.

The class Record View is all class level protocol. It generates and
displays the various schema record views.

6.2 Interface to Allegro.

At the outset it is acknowledged that this is the weak portion of the

Allegro query facility. This has not been the area of emphasis of the project.

It works on the schema tested. A more complex schema has been tested

through retrieval command generation and supplied data return. The

following first considers the code used to retrieve data then the physical

interface. The terms user side and VAX side are used with obvious meaning.

Allegro Query obtains two forms of data from VAX side Allegro, schema

description and database data. For each usage (and for any usage of Allegro

DML) the first action is to open the schema desired. As described in the user

interface above, the user of a query instance has selected a schema to use.

Allegro Query uses the selected schema information to provide Allegro DML

OPEN with schema name and data filename. The open action makes schema

description tables available to the Allegro DBCS. When the user side request

is schema fetch, the VAX side of query ships portions of the schema tables to

the user side, then exits.

The code used to retrieve data was intuitively designed to walk specified

paths in a network schema. It starts from whatever entry point into the
database has previously been found and proceeds to whatever records are

necessary to answer the query. At this point the path has been specified.

Allegro Query codes the retrieval by generating a collection of retrieval

statements from path information. The method used, generateAllegroQuery

in class Schema, is a depth first pass down the paths in the collection

49

queryRecords. Each generated statement consists of two chain pointers and

one of four pidgin DML statements. The VAX side reads these statements and

makes the appropriate procedure calls. There is a procedure for each of the

four pidgin DML statements. These procedures make the DML calls
necessary to perform its function at the Allegro DBCS function call level.

The procedure to implement GET returns data to the user side. At the end of

the retrieval statements the VAX side of query exits.

The two statement chains, in statement order are termed 'next' and
'sub'. The 'sub' chain is used when the retrieval moves from one schema

record to the next along a path. Its value, if not nil, is always the next

retrieval statement. This chain is followed recursively on the VAX side. The

'next' chain is used when there are actions following the first at a record i.e. a

GET and a query used set path out of the record, or more than one query used

set path out of the record. When not nil and the 'sub' chain is in use the value

of the 'next' chain is a forward reference. The recursion of method
generateAllegroQuery handles the forward reference without a fix-up pass.

The four pidgin DML statements are:

caic record_name calc_key
follow set_name
owner set_name
get record_name

Of these statements only 'follow' should require an explanation. On the VAX

side 'follow' is implemented with FIND FIRST followed by as many FIND
NEXT's as are necessary. After each FIND the sub chain, if not nil, is

fo I lowed.

For the query entry (figure 5.1):

pr.Data Structures and Algorithms
P.

in records BOOK and AUTHOR respectively of the schema BOOK_AUTHOR.

50

BOOK

WRITTEN BY HAS_WRITTEN%

AUTHOR

Figure 6.2.1..

BOOK_AUTH

The schema BOOK_AUTHOR.

the retrieval code is:

5 Pcmd start@
2 0 1 calc BOOK Data Structures and Algorithms
1 2 0 get BOOK
1 0 3 follow WRITTEN_BY
1 0 4 owner HAS_WRITTEN
1 0 0 get AUTHOR

The first line and first column are implementation items. The second

and third columns are the 'next' and 'sub' chains.

The physical interface is coded to use the 4404 remote function, a serial

line RS232 connection. The serial interface was chosen due to the remote
function's ability to be used from a program. The user prepares the
connection using remote, then key Fl to temporarily leave remote, and either

enter or return to Smal I talk.

The VAX side connection is prepared by logging in on the VAX then
moving to the appropriate directory. This is done by the user. Both of the
Allegro Query functions, schema fetch and data retrieval, send the command

line 'query' as the first line. Each then waits until the VAX query function has

responded showing its presence. They then send schema identification and

their request. The VAX side exits after returning data. Data transfer is by

blank and new line delimited character streams. The underscore is used to

handle blanks embedded in the data. Any underscore character in the data will

be represented as blanks on the user side.

51

Chapter 7

Future Work.

This section will show Allegro Query, as implemented and described

above, to be only a feasibility study. While most of the items that follow
were in the original design, it was with awareness that they would be deferred

to future work. A full query system is not a one person project. The emphasis

has been on the visual display and query navigation. The presentation is in a

suggested order of priority.

The query language selection operator code is not implemented. This

includes the relational and logical operators of section 4.2. The design is to

apply query selections along retrieval paths. While this has not been
investigated, it is expected that the selection operator code will be straight

forward. The method processQueryData will expand to several methods. The

size problem we had with class Schema is expected to reoccur.

The definition of the query language should be filled out as described at

the end of section 4.2. The current language is so simple that a formal parse

system was not used. Since language entries are discrete for each
field/line/record a formal parse will probably not be necessary even for the
full language This should be done in conjunction with the selection logic above

as the full language will complicate that logic considerably.

A forms mode is expected in current query implementations. The

current dataOut record will not be sufficient. It would be best if this mode

would take advantage of the display capabilities of Smalltalk as described in

Chapters 18-20 of Goldberg.13 The author has not investigated this area of

Smalltalk.

52

The ability to do a local query should be added. This will be useful for
changes in projection and selection in the query specifications. Two additions
are required. Allegro Query must be told in some manner to get all the
applicable data. A schema with a system record will be required as Allegro
lacks a utility to retrieve all the calc keys of a record. In a user-unfriendly

manner this could be left up to the user. An entry in any field of the record

retrieves the whole record. All the user has to do is code one field of each

data record from the system record to the desired record with a relational
operator '>' and a minimum value constant. With the current
implementation this would fetch the data. A more reasonable way for the
user would be a command option in the desired record, for example 'all.'. The

second change is the addition of a 'do local query' menu option adjacent to 'do

query' in the Schema Name View. The problem with this feature is expected

to be Smalltalk size limitations.

The path navigation interface would be more user friendly if it had an

option to display example paths to answer a particular query. The examples

would be set line displays of actual paths with the shortest path shown first.

The user would have a next/previous capability to see other navigation paths

until he has the path he wants. This will be somewhat harder than the current

implementation. In addition to path identification, a better method for
redrawing set lines would be needed.

The record view yellow button options 'resize field' and 'remove field'
are not implemented. The implementation of these will probably involve
record view display. This is always a touchy area full of surprises.

Error processing of the query entry on 'accept' (or its variations) is not

implemented. Currently Allegro Query expects clean query request input.

The syntax is simple, so this should not be much of a problem.

There is no consideration for Allegro errors or communication errors

The case of immediate importance is missing calc key; for example if a

requested book is not entered into the data of the book record of the
600K_AUTHOR schema.

53

Currently scrolling in the request fields occurs more often than it
should, causing query entries to disappear from view. This is corrected by
positioning the cursor in the view and dragging it through the top or bottom

of the line. This is dealing with the Paragraph Editor. The code for
Paragraph Editor is very long and it is only the tip of the iceberg. There are

many temporary objects each with their own class definition.

With an added function in Allegro (VAX side), Allegro Query could

implement an 'update schema names' Schema Name View menu item. This

function would replace 'add schema name'. It would relieve the user of the

burden of knowing the precise schema name and filename of a schema.

When the network schema in use has calc keys, the schema name view

could carry a yellow button entry 'show fields'. The information to do this is

currently present.

A name completion facility on query request constant elements would

be useful. Some of the book names in BOOK AUTHOR are rather long. The

retrieval considerations for 'do local query' would get the necessary data.

With the data this facility would be just an enhancement to the selection
code.

The data out view is non-interactive. A user desire to cut items from .

the data output display and paste into a new query request has been noted.

This should be little more than the addition of an editing menu.

There are several assumptions in the design of Allegro Query:

One member record type sets are assumed. The generalization to

multiple member sets is not expected to be trivial.

Schema record calc keys are restricted to one field. This

assumption should be reasonably easy to generalize.

Certain places in the code assume that schemas contain only one

set between any two records. This assumption should yield to recoding.

54

In developing a user version of this feasibility study these assumptions would
have to be removed.

55

Chapter 8

Summary

This thesis has prepared a query facility for the network database system

Allegro. This facility is implemented in Smalltalk on the Tektronix 4404
system. It is about as distinct from the main Allegro system as it is possible

to get, a result of the distinct machine and distinct language implementation.

In the section on Query-By-Example the flavor of QBE was showed by

quoting Zloof's conclusion on the features of the language. Allegro Query has

all of these features intended to be appealing to the causal user. Some of
Allegro Query's features are:

1. The user has the perception of schema record manipulation as he
manipulates display objects which represent the schema records. These

record display objects are the frame of reference. The user can position

these records. The user can see the schema sets if he wants.

2. The user can identify the records to be used by removing those he does

not want. This is an reduction in the scope of the query.

3. Allegro Query is declarative in nature. The user has freedom in the

order in which he will specify his query. There are a few constraints

concerning what is and what is not on the same line but these are
intuitive. Some complicated queries are simple to state.

4. The user does have the constraint that any path specification occurs

after the rest of the query is entered, but in many cases he does not have

to specify path navigation.

56

BIBLIOGRAPHY

[1] Zloof, M.M. Query -By- Example. AFIPS Conference Proceedings,

National Computer Conference 44, 431-438 (1975).

[2] Zloof, M.M. Query-fly-Example, The Invocation and Definition of Tables

and Forms. Proceedings of the International Conference on Very Large Data

Bases, Boston Ma. Sept. 22-24, 1975 pp. 1-24.

[3] Zloof, M.M. Query-Ely-Example: A Data Base Language. IBM System
Journal V16,4 1977.

[4] Uy, M.L.Y. A Network Data Base Management System. M.S. Thesis.

Department of Computer Science, Oregon State University, 1983.

[5] Swasdichai, C. Extension to Allegro, A Data Base Management System,

Research Paper, Department of Computer Science, Oregon State University,

1984.

[6] Jarke, M. and Vassi I iou, Y. A Framework for Choosing a Database Query

Language. ACM Computing Surveys V17,3 (Sept 85).

[7] Bachman, Charles W. The Programmer as Navigator. Communications of

the ACM V16,11 (November 1973).

[8] Bachman, Charles W. Integrated Data Store. DPMA Quarterly, Jan 1965

pp 61-80.

[9] Bachman, Charles W. Data Structures Diagrams, Data Base 1,2 (1969)

Quarterly Newsletter of ACM SIGBDP pp 4-10.

[10] CODASYL COBOL Committee, Journal of Development, Ottawa,

Canada. Canadian Government Publishing Centre, Supply & Services Canada

1981.

[11] Date, C.J. An Introduction to Database Systems. 3rd ed.

Addison-Wesley, 1981

57

[12] Ullman, J.D. Principles of Database Systems. 2nd ed. Computer Science

Press, 1982.

[13] Goldberg, Adele and Robson, David. Smalltalk-80 The Language and its

Implementation. Addison-Wesley, 1983.

[14] Goldberg, Adele Smalltalk-80 The Interactive Programming

Environment. Addison-Welsey, 1984.

[15] 4404 Artificial Intelligence System Introduction to the Smalltalk-80
System Part No 070-5606-00. Tektronix, Inc. Beaverton, Or. 1984.

[16] Taylor, R.W. and Frank, R.L. CODASYL Data-Base Management

Systems. ACM Computing Surveys V8,1 (March 1975).

[17] Reisner Phyllis Human Factors Studies of Database Query Languages: A

Survey and Assessment. ACM Computing Surveys V13,1 (March 1981).

