1959
 Annual Report

OREGON STATE GAME COMMISSION FISHERY DIVISION

1959

ANNUAL REPORT

FISHERY DIVISION

C.J.CAMPBELL a F.E.LOCKE Editors

P. W. Schneider Director

July, 1960

The key stream program has proven satisfactory on a number of experimental streams. On the Necanicun River the average catch for the season was $1 \frac{1}{2}$ fish per hour and on the East Fork of Hood River, fish were taken at slightly over one fish per hour.

The Oregon Game Commission joined in a stream improvement research program with the U. S. Forest Service to determine the effect of fencing a stream from cattle. Both the test plot and control areas are in the Silver Creek drainage in southeastern Oregon.

Atlantic salmon planted in Mud Lake at about six inches in length in 1958 were between 14 and 18 inches in length in October 1959.

In 1959, 22 per cent of the opening day's catch of trout at Pelton Reservoir were found to be immature steelhead. In view of this fact, a late opening date will be requested for this impoundment in 1960. Net sets in this reservoir show that the fish population contains more than 50 per cent nongame species.

In the 1,559 season an estimated 259,000 trout were taken by 108,000 anglexs fishing Detroit Reservcir. This represents the highest yield of trout and the greatest fishing intensity recorded in the six years creel records have been collected.

A creel census conducted on the Wilson and Nestucca Rivers during the extended steelhead season revealed that approximately 50 per cent of the fish retained by the angler were green. A similar survey on the Alsea River revealed that about 65 per cent of the steelhead were green. Twenty-three per cent of the steelhead examined in anglers creels for the entire season on the Wilson River were of hatchery origin.

About 74 per cent of the trout harvest in the North Umpqua River were hatchery trout and 22 per cent downstream migrant steelhead. A small percentage of native trout, migrant salmon, and hatchery steelhead was taken. Approximately 40 per cent of the hatchery rainbow released were caught during the trout season.

It is estimated that in 1959 about one-third of the run of summer steelhead in the North Umpqua were returning hatchery fish. Between 1 and 2 per cent of the summer steelhead released from the hatchery are believed to have returned to the river.

In 1959 a total of 2,626 surface acres of lakes and reservoirs having a normal area of 5,319 acres were treated with fish toxicants. Toxaphene was used on several large reservoirs and one 684-acre lake. The approximate cost of all treatment projects in 1959 was about $\$ 20,000$. Based on results obtained in the use of toxaphene, it would appear that the division can include large lakes and reservoirs in future rehabilitation programs.

Over 27 million trout, salmon, and steelhead eggs were eyed in Oregon Game Commission hatcheries in 1959. Approximately 703,000 pounds of game fish were released in Oregon waters.

The following abbreviations are used in this report to identify the indicated species of fish.

AS	Atlantic salmon
B	Bullhead catfish
BC	Black erappie
BG	Bluegill sunfish
B1B	Black bullhead
B1C	Blue catfish
Br	Brown trout
BrB	Brown bullhead
C	Crappie
CC	Channel catfish
Ch	Chinook salmon
ChF	Chinook salmon (fall)
ChS	Chinook salmon (spring)
Clm	Chiselmouth
Cp	Carp
CRC	Columbia River chub
CS	Chum salmon
CSu	Coarse-scaled sucker
Ct	Catthroat trout
D	Dace
DV	Dolly Varden trout
EB	Eastern brook trout
FC	Flathead catfish
FSa	Fine-scaled sucker
GS	Green sunfish

GI	Golden trout
K	Kokanee
LB	Largemouth bass
LT	Lake trout
Mu	Mullet
P	Perch
PK	Pumpkinseed sunfish
PS	Pink salmon
Rb	Rainbow trout
Ro	Roach
RsS	Red-sided shiner
SB	Smallmouth bass
Sg	Sturgeon
Sh	Shad
Sil	Silver salmon
Skb	Stickleback
Sq	Squawfish
SS	Sockeye salmon
St	Steelhead
StB	Striped bass
Su	Sucker
WC	White crappie
Wf	Whitefish
Wm	Warmouth bass
YB	Yellow bullhead
YP	Yellow perch

TABLE OF COMTENTS

Page
Umpqua River 1
Rogue River and South Coastal Streams 22
Upper Willamette。 50
Central Willamette. 64
Lower Willamette. 75
Northeastern Oregon 86
Southeast Oregon 109
Columbia District 132
Bend District 347
Klamath District. 175
John Day. 195
Astoria District. 216
Tillanook 226
Lincoln District. 243
Coos-Coquille District. 255
Fish Propagation. 266
Angling Regulations 276
Warm-Water Game Fish. 277
Stream Improvement. 284
Oregon Salmon and Steelhead Sport Fishery 287
Fish Stocking 290
Federal Aid Expenditures. 297
Rehabilitation. 298
Fishery Resource Expenditures 299
Contributing Personnel. 300
Game Comaission Hatcheries. 301

UMPQUA RIVER

J. A. Bauer and W. O. Saltzman
Fishery resource inventories

Winchester Dam fish counts

The 1959 steelhead runs counted at Winchester Dam remained about the same as the past two years, while the salmon runs continued their overall decline. Table 1 illustrates the total runs for the past fourteen years.

The spring chinook run failed for the third consecutive jear to equal its parent run. The run was 4,400 fish short of its parent run, and over 1,000 fish short of the fourteen-year average.

The fall chinook appeared in fair numbers while silver salmon mins were below the fourteen-year average.

The summer and winter runs of steelhead remained at about the same level as in 1958. The summer run was nearly l,000 fish short and the winter run 1,600 fish short of the past fourteen-year averages.

The coastal cutthroat migration over Winchester Dam remained quite low.

South Umpqua River spring chinook inventory
The South Umpqua was surveyed for the thirteenth year to emumerate spring chinook in the resting holes. The total of 113 fish is only twenty fish short of the thirteen-year average. Jacks made up 4.4 per cent of the count. The trend of higher numbers of fish above the falls continues since the construction of the ladder in 1955.

Jackson Creek was examined for the third year. While only seven fish were observed, it is possible that more fish were present as a number of redds were observed in the same area in the fall. The past counts for both areas are presented in Table 2.

South Umpqua fall chinook inventory
Approximately twenty miles of the South Umpqua between Myrtle Creek and the Douglas County Fairgrounds was drifted by boat for the first time in 1959 to enumerate fall chinook. Fifty-five fall chinook and many redds were observed.

Spawning ground counts in the lower Umpqua River area
Most of the streams have shown a decline in numbers of spawning silver salmon for the winter of 1959-60. Low water conditions apparently delayed the main salmon arrival into the Tenmile Lakes system until late December. The
Table 1
Winchester Dam fish counts, 1946-59

	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959
Spring chinook														
Adults	1,974	2,994	2,245	2,109	2,044	2,940	4,702	4,310	6,613	6,266	7,881	4,285	3,856	3,460
Jack:s	533	817	248	484	277	677	559	521	1,576	1,378	1,433	943	542	327
Total	2,507.	3,811	2,493	2,593	2,321	3,617	5,261	4,831	8,189	7,644	9,314	5,228	4,398	3,787
Fall chinook														
Adults				13	22	13	12	86	1	656	181	14	61	108
Jacks				--	--	--	--	2	-	36	3	1	--	3
Total				13	22	13	12	88	1	692	184	15	61	111
Silver salmon														
Adults	1,380	1,010	737	1,330	1,284	2,098	2,761	1,652	325	2,475	2,303	952	492	768
Jacks	58	28	53	82	91	161	305	704	64	222	457	111	81	50
Total	1,438	1,038	790	1,4:12	1,375	2,259	3,066	2,356	389	2,697	2,760	1,063	573	818
Summer steelhead	3,361	5,113	2,762	1,672	2,835	3,361	4,443	2,844	3,117	3,430	2,927	2,228	2,041	2,049
Winter steelhead	6,563	11,220	9,700	9,225	7,008	4,188	10,635	5,094	9,124	4,755	10,211	8,923	6,350	6,372
Coastal cutthroat	1,138	794	437	493	644	1,508	755	1,838	706	960	982	87	108	48
Other trout	82	69	79	157	360	266	390	240	64	47	269	25	42	104
Squawfish	726	1,692	471	487	256	336	382	150	2,109	294	438	--	--	---
Suckers	5,158	12,856	6,192	4,930	3,050	972	9,401	265	14,502	11,752	20,924	2,425	7,458	5,248

lower Umpqua and Smith River tributaries were relatively unaffected by low stream flows and maximal counts were obtained in late November and early December.

Table 2
South Umpqua River spring chinook inventory, 1946-59

Year	Number of fish			Total count
	Above falls	Below falls	Jackson Creek	
1946				70
1947				198
1948				141
1949		ry taken		
1950	30	74	--	104
1951	53	106	--	159
1952	86	$46 / 1$	--	132
1953	70	54	--	124
1954	41	$76 / 1$	--	117
1955	58	$131-$	--	189
1956	71	67	-	138
1957	113	45	42	200
1958	43	26	26	95
1959	93	20	7	120

/l Incomplete survey made below South Umpqua Falls because of unfavorable water conditions.

Silver salmon spawning ground counts for 1959-60 are one of the lowest in the fifteen consecutive years that counts have been taken. The results of the spaming ground counts for silver salmon on the Umpqua and Smith River tributaries are tabulated in Table 3.

Table 3
Silver salmon spawning ground counts on tributaries in the lower Umpqua River, 1959-60

Strean	Miles	Water	Adults	Jacks	Total
Scholfield	2.00	clear	61	11	72
Miller	0.75	clear	22	4	26
Dry	0.25	clear	11	0	11
Alder	0.25	clear	9	2	11
Dean	1.25	clear	11	0	11
Mehl	3.00	clear	0	0	0
Paradise	3.50	clear	0	0	0
little Paradise	2.00	clear	0	0	0
Spencer	4.50	clear	20	1	21
Buck	3.50	clear	42	5	47
Johnson	1.25	clear	0	0	0
Brush	1.50	milky	0	0	0
East Weatherly	1.25	milky	0	0	0
Beaver	2.00	clear	10	0	10
Otter	1.00	clear	5	2	7
South Sister	0.25	milky	1	0	1

Table 4 presents a comparison of the counts for the fifteen consecutive years that such counts have been made.

Table 4
Comparative spawning ground count data on selected tributaries of the lower Umpqua and Smith River areas, 1945-46 through 1959-60

Year	Miles surveyed	Number of adults	Total salmon	Percentage jacks	Adults per mile	Salmon per mile
$1945-16 / 1$	19.00	74	78	5.0	3.9	4.1
$1946-47$	24.25	133	170	22.0	5.5	7.0
$1947-48$	255.75	730	764	4.0	28.3	29.7
$1948-49$	25.75	391	405	3.0	15.2	15.7
$1949-50$	25.75	537	644	17.0	20.9	25.1
$1950-51 \angle 1$	23.75	458	510	10.0	19.3	21.5
$1951-52 \angle 1$	25.75	759	1,012	25.0	29.5	39.3
$1952-53$	25.75	812	920	12.0	31.5	35.7
$1953-54$	25.75	307	360	15.0	11.9	14.0
$1954-55$	25.75	733	939	22.0	28.5	36.5
$1955-56 \angle 1$	14.75	735	819	10.0	49.8	55.5
$1956-57$	25.75	425	527	19.0	16.5	20.5
$1957-58$	25.75	340	382	11.0	13.2	14.8
$1958-59$	23.75	195	234	17.0	8.2	9.9
$1959-60$	28.25	192	217	13.0	6.8	7.7

11 Observations were not made or were hampered on certain streams by high water conditions.

Table 5 shows silver salmon counts in the Tenmile Lakes system for 1959-60.

Table 5
Counts of silver salmon on selected tributaries
of the Tenmile Lakes system 1959-60

Stream	Miles	Water	Adults	Jacks	Total
Menegat	0.75	clear	0	0	0
Noble	1.25	milky	124	11	135
Murphy	1.50	milky	208	25	233
Wilkins	1.00	clear	26	6	32

Eel Lake tributary counts for 1959-60 are indicated in Table 6.
Counts of spawning fall chinook were made for the third consecutive year on the North Foris of Smith River and on South Sister Creek, also a tributary of Smith River. An additional count area was established on Mill Creek, tributary to the Umpqua River.

Eel Lake tributary counts for 1959-60

Stream	Miles	Water	Adults	Jacks	Total
Main Right Fork	0.50	clear	0	0	0
Main Left Fork	0.75	clear	6	4	10
Swamp Fork	0.25	clear	0	0	0
Cabin Fork	0.25	clear	8	15	23

Table 7 shows the counts on Smith River and on other streams where fall chinook were noted incidental to spawning silver salmon.

Table 7
Fall chinook spawning counts for 1959-60

Stream	Miles	Water	Adults	Jacks	Total
North Fork Smith River	0.50	milky	18	2	20
South Sister Creek	0.25	milky	0	0	0
Paradise	3.50	milky	0	0	0
Buck	3.50	clear	8	3	11
Mill	1.25	milky	75	8	83

Umpqua District - Cascade lakes and reservoirs population studies
Two gill nets set in Skookum Lake produced 134 eastern brook trout that had an average length of 12.0 inches and an average weight of about one pound. Skookum Lake was stocked for the first time in 1958 with brook trout fingerling.

Two gill nets set in Maidu Lake produced thirty-seven eastern brook trout between five and fifteen inches in length. The fish had an average length of 11.4 inches and were in excellent condition.

Lucile Lake apperently winterkilled as no fish were taken in gill nets or observed.

Four gill nets set in Lemolo Reservoir produced forty-eight trout and twelve roach. Fully mature roach were taken for the first time. The rainbow was 8.0 inches and weighed 103 grams. The nine eastern brook trout had an average length of 7.9 inches. The thirty-eight brown trout had an average length of 12.6 inches.

One gill net set in Stump Lake produced nine eastern brook trout and two rainbow trout. Brook trout had an average length of 9.7 inches and rainbow trout 8.0 inches.

Two gill nets set in Fish Creek forebay produced forty-six rainbow trout with an average length of 8.3 inches. The fish in the forebays are the result of trout lost down the diversion canals from individual reservoirs.

Three gill nets set in Lemolo \#2 forebay produced seven eastern brook trout, one rainbow, and thirty-eight brown trout. All fish were in good condition. The data from experimental net sets in Umpqua River reservoirs and Cascade lakes is presented in Table 8.

Two gill nets set in Clearwater \#l forebay produced nine eastern brook trout having an average length of 11.5 inches.

Coastal lake population studies
An investigation of Loon Lake and tributaries initiated in 1958 was completed in 1959. Special reports for these waters have been made.

Sport fishery evaluations
Spring chinook fishery
For the second consecutive year, creel census data were collected according to a program designed by Dr. Calvin of Oregon State College. It is estimated that 675 adults and 83 jacks were caught in 6,991 angling trips.

An increase in angling pressure and catch was noted in 1959. Catch data for 1958 and 1959 are presented in Table 9. In 1959, the bag limit of one fish a day or two fish in seven days was changed to the regular state bag limit of two and four, plus the taking of jacks was allowed during the entire season. Although the catch for 1959 was greater than for 1958 the increase is believed to be primarily the result of better stream conditions rather than the result of a change in bag limit.

Winchester Bay salmon fishery
The 1959 salmon sport fishery at Winchester Bay produced approximately 4,000 less fish than in 1958. Statistical computations reveal a total catch of 11,085 in 1959 as compared to 15,053 salmon in 1958. Salmon anglers fishing at Winchester Bay were calculated at 18,057 in 1959 as compared to 19,871 in 1958. Catch statistics for the fishery since catch records were first compiled in 1949 through 1959 are presented in Table 10.

Unsettled bar conditions which prevailed throughout most of the season are believed to be partly responsible for the light catch in 1959.

Tenmile Lakes silver salmon fishery
Angling for silver salmon and jack salmon in the Tenmile Lakes in the fall and winter of 1958 was only fair for the second consecutive year. The size of the run was down over past years and low water conditions which extended well into the fall did not attract large numbers of fish into the lakes until late in the season. Catch statistics of the fishery were obtained by dock owners at the lakes and are presented in Table 11.
Table 8
Composition of weights and length frequencies of catch by gill nets in Cascade lakes and reservoirs, 1959

	$\begin{gathered} \text { Nunber } \\ \text { of } \\ \text { sets } \end{gathered}$	Species		$\begin{gathered} \text { Percentage } \\ \text { of } \\ \text { total } \\ \hline \end{gathered}$	Average fork length (inches)	Average weight (grams)	Size groups						
reservoir							4-6	6-8	8-10	10-12	12-I	$\underline{1}-16$	16-18
Lemolo													
Reservoir	4	Ro	12	20	6.6	--	2	10					
		EB	9	15	7.9	97		3	6				
		Rb	1	2	8.0	103			1				
		Br	38	63	12.6	415		1	8	4	10	11	4
Stump Lake	1	EB	9	82	9.7	241		3	3	1	2		
		Rb		18	8.0	94		1	1				
Lemolo \#2 forebay	3												
		EB	7	15	7.8	115		4	3				
		Rb	1	2	5.5	35	1						
		Br	38	83	11.0	345		3	8	18	2	6	1
Fish Oreek forebay	2	Rb	46	100	8.3	--		23	16	3	2	1	1
Clearwater \#1 forebay	2												
		EB	9	100	11.5	351		1	1	3	2	2	
Lucile Lake	2	--	0										
Maidu Lake	2	EB	37	100	11.4	--	3	3	2	7	13	9	
Skookun Lake	2	EB	134	100	12.0	--				inches	- 134)		

Umpqua spring chinook fishery, 1958-59

Year	Anglers	Chinook	Jacks	Fish per angler	Fish per hour	Percentage of rum
1958	6,060	487	28	0.09	0.014	11
1959	6,991	675	83	0.11	0.019	18

The Tenmile Lakes salmon fishery for the fall of 1959 was the poorest on record because of prolonged low water conditions. Fish migrated into the lakes throughout the season as rains were insufficient to attract large numbers of salmon over the bar at any one time. One 15 -pound striped bass was caught during the fishery. Although not rare in the lakes, they are unusual. Dock owners voluntarily obtained catch statistics which are presented in Table 12.

Fall salmon fishery

The fall salmon and cutthroat fishery in the upper Umpqua River was practically non-existent because of the lack of fall rains and low stream flows.

Striped bass fishery

Anglers in the summer of 1958 discovered that striped bass could be taken in the lower Umpqua River with the same tackle and bait used for salmon. Considerable publicity to this new fishery resulted in large numbers of anglers turning to the pursuit of striped bass in 1959. Angling was heavy for stripers when bar and ocean conditions made salmon angling hazardous or unprofitable. Since many of the trips for striped bass originated at Winchester Bay, it was possible to check effectively a sample of the striped bass catch. These data are presented in Table 13.

The weights of some firty striped bass wera taken. The range in weight was from 5.5 to 53.0 pounds with an average of 19.5 pounds. The striped bass fishery can now be considered an integral part of the sumner fishery at Winchester Bay.

Summer steelhead fishery

Angling pressure in 1959 dropped in the fly area but increased nearly three times in the bait area. A comparison of angler pressure and success is illustrated in Table 14. Anglers averaged 0.25 fish per angler. Steelhead were caught at the rate of 0.05 fish per hour in 1959. The practice of releasing unharmed suramer steelhead on the Umpqua appears to be declining in the past few years.

Approximately 32.0 per cent of the total harvest were mariked fish. Of the 221 marked fish examined, 197 were marked Ad-RM and the remaining 21 marked Ad-RV.
Table 10
Winchester Bay salmon angling effort and catch, 1949-1959

	194.9	1950	1951	1952	1953	1951	1955	1956	1957	1958	1959
Boat trips,											
pleasure craft	7,243	6,452	8,190	7,324	3,890	4,935	5,561	4,583	8,471	5,956	2,949
charter	few	several	many	1,397	909	1,282	906	1,355	2,625	1,619	1,433
total				8,721	4,799	6,217	6,467	5,938	11,096	7,575	4,382
Angler trips,											
pleasurs craft	18,107	16,947	20,475	19,189	9,531	12,345	14,380	12,188	25,104	8,246	8,198
charter	few	several	many	10,375	6,255	9,515	7,003	10,955	20,725	11,625	9,859
total				29,564	15,786	21,860	21,383	23,143	45,829	19,871	18,057
Number of salmon,											
chinook	1,153	2,482	5,979	4,124	1,517	6,262	7,019	6,291	3,440	4,232	2,788
silvers	3,760	2,826	4,689	14,387	9,440	13,913	8,194	17,546	46,349	10,779	8,297
total	4,913	5,308	10,668	18,511	10,957	20,175	15,213	23,837	49,789	15,011	11,085
Average weight, chinook	21	19	22	18	16	14	13	17	17	13	13
silvers	9	10	10	9	9	9	8	8	7	9	7
Salmon per angler	0.28	0.31	0.52	0.63	0.69	0.92	0.71	1.02	1.09	0.76	0.61
Pounds of selmon taken	58,053	75,418	178,428	203,715	107,159	212,885	154,834	247,315	384,948	118,508	91,084
Pounds of salmon per angler	3.21	4.45	8.71	6.89	6.79	9.74	7.24	10.69	8.40	5.96	5.04

Table 11
Catch records of the salmon fishery kept by dock owners at the Tenmile Lakes in the fall of 1958

				Total	Fish per	
Period	Anglers	Silvers	Jacks	Percentage fish	angler	jacks

Table 12
Catch records of the salmon fishery kept by dock owners at the Tenmile Lakes in the fall of 1959

Period	Anglers	Silvers	Jacks	Total fish	Fish per angler	Percentage jacks
October 20-31	96	3	12	$15 \angle 1$	0.16	80
November 1-15	164	22	14	36	0.22	39
$16-30$	149	17	14	31	0.21	45
Depember 1-15	36	1	2	3	0.08	67
	$16-31$	75	3	5	8	0.10
Totals	520	46	47	93	0.18	62

$\angle 1$ Does not include one 15 -pound striped bass

Scale samples were obtained from ninety-two unmarked fish and fortyfour marked fish taken by the anglers. Table 15 illustrates the average size for these fish by sexes. The unmarked fish were about three inches larger than the marked fish; however, all of the marked fish were on their first spawning run while the unmarked fish included repeat spawners.

Winter steelhead fishery
Angler success was determined to be 0.17 fish per angler and steelhead were caught at the rate of 0.06 fish per hour. Success was about the same as in 1958. Creel data are presented in Table 16. Two marked summer steelhead were checked in the winter fishery. One was taken in January and the other on February 5, 1959. Both fish were males, had been to the ocean, and were caught in the North Umpqua.

Trout fisheries

Emphasis was again placed on determining the number of migrant steelhead and hatchery trout harvested by trout anglers in the North Umpqua River.

Completed anglers had an average catch of 3.14 fish. Trout were caught at the rate of 0.86 fish per hour. These figures compare to the 2.72 fish per angler taken at the rate of 0.75 fish per hour in 1958 and are illustrated in Table 17 The total harvest consisted of 74.6 per cent hatchery rainbow stocked in season, 22.8 per cent downstream migrant steelhead, 1.1 per cent native trout, 0.6 per cent hatchery migrant steelhead, 0.3 per cent hatchery rainbow from 1958 plants, 0.3 per cent downstream chinook migrants, and 0.3 per cent coastal cutthroats. Anglers harvested 24,169, or 39.6 per cent of the rainbows stocked in 1959. This is a significant increase over the 26.4 per cent harvested in 1958. The one change made in the 1959 liberation program was the stocking of trout twice monthly as compared to once a month in 1958.

Table 13
Creel census records of striped bass anglers fishing from Winchester Bay in the summer of 1959

Period	Number of trips	Number of anglers	Fish taken	Fish per angler
Pleasure craft				
June 16-30	1	3	5	1.7
July 1-15	9	28	4	0.1
16-31	12	32	9	0.3
August 1-15	21	59	10	0.2
16-31	4	7	1	0.1
September 1-15	7	18	0	0.0
Charter boats				
July 1-15	1	6	1	0.2
16-31	13	75	13	0.2
August 1-15	8	48	14	0.3
16-31	1	5	7	1.4
September 1-15	3	12	4	0.3
Totals	80	293	68	0.2

Yearling rainbow and cutthroat trout were marked prior to release in south coast streams. Some minor changes in numbers and time of release were made in an attempt to increase angling success.

Angling was generally good at most of the lakes in the area. Angling at the Tenmile Lakes was considerably better than in 1958. Eel Lake continues to yield good catches but only to a few experienced anglers. Loon Lake was a good producer with a number of fish being marked holdover rainbow trout from the releas in 1958. Creel census data for the various lakes are shown in Table 18. It was not always possible for dock owners to check all fish for marks.

Table 14
North Unpqua summer steelhead fishery, 1958-59

Area	Angler trips	Steelhead	Fish per angler	Fish per hour
Winchester Dam - Rock Creek 1958	363	163	0.45	0.11
1959	1,162	308	0.26	0.07
Fly area				
1958	1,847	709	0.38	0.07
1959	1,553	374	0.24	0.05
Totals				
1958	2,210	872	0.39	0.07
1959	2,715	682	0.25	0.05

Table 15
A comparison of average lengths between marked and ummarked Umpqua summer steelhead by sexes

Type	Females	Males
Marked (44)	22.1 (19)	22.2 (25)
Unmarked (92)	25.1 (51)	25.3 (41)

Note: Numbers in parentheses are the numbers of fish in the sample.
Table 16
Creel sampling results for winter steelhead, upper Umpqua District 1958-59 season

Area	Anglers	Steelhead	Fish per angler	Fish per hour
South Umpqua	58	4	0.07	0.03
North Umpqua	197	47	0.21	0.08
Main Umpqua	113	16	0.14	0.04
Totals	368	61	0.17	0.06

Lemolo continues to receive the greatest angling pressure of the North Unpqua reservoirs. Angling success was up in Toketee and Soda Springs, but down in Lemolo. Rainbows stocked as four to five inch fingerlings late in the summer of 1958 made up 49 per cent of the catch at Lemolo, 82 per cent at Toketee, and 87 per cent at Soda Springs. On opening weekend, these rainbows were just under twelve inches in length at Lemolo, just under ten inches at Toketee, and just over eight inches at Soda Springs. The catch of brown trout continued to decline in all reservoirs.
Table 17

Area	Anglers	Marked fish		Native trout			Migrant chinook	Migrant steelhead	Fish per angler	$\begin{gathered} \text { Fish } \\ \text { per } \\ \text { hour } \end{gathered}$
		Rainbow	Steel head	Rainbow	Cutthroat	Brown				
Bait										
1958	5,544	8,895	897	130	236	12		1,535	2.11	0.61
1959	4,782	13,184 /	197	15	107		76	1,593	3.17	0.91
Fly										
1958	5,568	10,455		740	315	75		6,810	3.30	0.87
1959	5,526	11,069 2		138	172	17	17	5,776	3.11	0.82
Totals										
1958	11,112	19,350	897	870	551	87				
1959	10,308	24,253 /3	197	153	279	17	93	7,369	3.14	0.86
/1 Includes 15 fish from 1958 plant										
12 Includes 69 fish from 1958 plant										
L3 Includes 84 fish from 1958 plant										

Table 18
Trout angling effort and catch in the lower Umpqua River area in 1959

Loon Lake

April (all sources) No records obtained

May (OSP)	19	0	11	45	0		2.9
(dock)	129	0	94	384	0	80	3.7
June (dock)	21	0	10	88	0	90	4.7

Saunders Lake

April (GC)	7	0	1	0	58	99	8.4

Marie Lake
April (all sources) No records obtained

May (GC)	8	0	4	0	IH_{4}	78	2.3

Table 19
Creel sampling results for North Umpqua reservoirs, 1959

Reservoir	Anglers	Rainbow	Eastern brook	Brown trout	Fish per angler	Fish per hour
Lemolo	558	541	491	72	1.98	0.54
Toketee	105	258	-	55	2.98	0.73
Soda Springs	53	181	-	28	3.94	0.74
Totals	716	980	491	155	2.27	0.59

Propagation and stocking

The 1959 spring chinook below Soda Springs produced 174,581 green eggs. Nearly 52,000 excess fry from the 1958 egg take were stocked in Loon Lake in December.

A heavy loss from Columnaris in the summer of 1959 leaves about 56,000 spring chinook for stocking in March of 1960. The fall chinook program was altered in 1959 with the stocking of fish at 176 to the pound into Loon Lake in May. A better evaluation of the program can be made as the returning fish are more easily observed in Camp Creek below the lake than in the main river. The history of salmon stocking in the Umpqua system is presented in Table 20.

Table 20
Salmon stocking in the Umpqua basin, 1949-1959

Brood year	Spring chinook	Fall chinook	Silver salmon	Brood year total stocking
1949	52,000 (18)	384,500 (fry)	20,000 (15)	456,500
1950		416,500 (fry)	3,500 (9)	
1950	31,500 (18)	25,000 (15)	31,500 (15)	508,000
1951	39,000 (18)	21,500 (15)	18,500 (15)	79,000
1952	51,000 (13)	25,500 (15)	27,000 (15)	103,500
1953	62,000 (114)	19,000 (14)	27,000 (14)	108,000
1954	205,000 (fry)			
1954	62,000 (14)	23,000 (12)	27,500 (12)	317,500
1955	122,000 (fry)			
1955	75,000 (14)	23,000 (12)	30,000 (12)	250,000
1956	702,000 (fry)			
1956	10,000 (13)	34,500 (15)	29,000 (14)	775,500
1957	75,600 (fry)	23,800 (15)		15
1958	51,800 (fry)	23,00 (15)		
1958	56,000 (18)	31,300 (6)		139,100
Totals	1,646,900	1,027,600	274,000	2,888,500

Note: Age in months from egg take to liberation is given in parentheses following the number of fish.

Marked salmon returns

A total of 239 spring chinook was examined at Winchester Dam during the period April 13 - October 10, 1959. The number marked was thirty-nine, or 16.3 per cent. The first marked fish was observed the last week of April. No marked fish were observed after the middle of July.

In the fall, 239 silvers and 62 fall chinook were examined at Winchester, but no marked fish were observed.

A five-mile section of lower Rock Creak just above the hatchery was examined to enumerate spring chinook using the creek. A total of sixty-nine chinook, all marked, substantiates the beliej that all or nearly all of the spring chinook in Rock Creak are of hatchery origin.

A total of thirty-four marked salmon was observed among 4,043 specimens at Winchester Bay in the summer of 1959. Of the marked fish, six were chinook salmon and twenty-eight were silver salmon. Only four marked fish, all silver salmon, were of Game Commission origin. A new law in effect in 1959 made it illegal to land ocean-caught salmon under 20 inches in length so the smaller fish were not available for examination.

Steelhead restoration and studies

Propagation and stocking

Summer steelhead brood fish captured in the ladder at Winchester Dam were held as an egg source for the fifth consecutive year. Some eighty-eight adults were taken during the period July 9-13, 1959. The 1958 brood stock produced 47,586 green eggs, from which 38,724 eyed eggs were transferred to the Bandon Hatchery for rearing.

The second plant of summer steelhead occurred in March 1959, when 34,908 yearlings were liberated below Winchester. The fish were between 6.8 and 9.1 per pound when released.

Marked steelhead returns
There were 408 summer steelhead examined at Winchester Dam during the period of July 9 - October 10, 1959, and a total of 138 fish, or 33.8 per cent, was marked. Marked fish made up 32.0 per cent of the anglers' creel.

Of the 815 marks recovered, 693 were taken above the dam, and 122 were caught below the dam. In the anglers' harvest 122 were caught below the dam, 81 in the bait area above the dam, and 18 in the fly area. Approximately 50 per cent of the harvest occurred in the exact area of stocking. Of the adult marked fish recovered 81 per cent were planted as yearlings and 19 per cent as 2 -year-olds. Marked hatchery steelhead recovered by anglers represented about 0.32 of one per cent of the plant. Yearling plants gave slightly better return than 2 -year-olds.

The 815 recovered marks represent a return of 1,2 per cent of the total number stocked. The per cent return appears much higher when we consider the following factors: A harvest of the migrants took place during the trout season, a harvest of prematura adults occurred during last winter, and marked summer adults are appearing in the present winter season catch. We should have a return of two-plus per cent from the ocean.

Experimental rearing ponds
Three farm ponds and the hatchery brood pond were stocked with unfed winter steelhead fry to determine growth rates under natural rearing conditions. A three-acre pond was stocked with 3,000 fry, a one-acre pond with 1,000 fry,
a three-quarter acre pond with 2,000 fry and the one-half acre hatchery pond with 6,000 fry.

Sampling for growth in mid-November gave an average of 4.3 inches fork length in the three-acre pond, 4.8 inches in the one-acre pond, and about 4.5 inches for the hatchery pond. No fish were taken in the three-quarter acre pond.

No figures are available at the present as to the exact number of fish remaining in each pond.

Steamboat migrant traps

Dowstream traps in Steamboat Creek tributaries showed that a peak in migration occurred during the period April 20-27. The peak in 1958 was reached in May 15-20. Two peaks were again observed in the migration of fish of the year. The first peak occurred the fourth week of June and a smaller peak occurred the last of July.

There ware approximately 8,000 more steelhead migrants trapped in 1959 than in 1958. This is illustrated in Table 21. Of particular interest were the silver salmon migrants taken in the Canton Creek trap. These were the first silvers taken in any trap during the two years of trapping.

Table 21
A comparison of Steamboat Creek migrant trapping results, 1958-59

Year	Rainbow (steelhead)				Cutthroat			Dace
	$\overline{0}+{ }^{\prime \prime}$	$\underline{2-4 "}$	$4-611$	6-8"1	4-6"	$6-8{ }^{\text {ii }}$	over $8^{\prime \prime}$	
1958	9,616	2,494	525	12	59	86	27	2,508
1959	13,326	5,962	1,595	79	122	56	27	1,500

In conjunction with the Steamboat Creek trapping, temperatures were recorded on tributary streams. Temperature data for the period January through August are presented in Table 22.

Table 22
Steamboat Creek tributary temperatures, January-August, 1959

$\begin{gathered} \text { Period } \\ (15 \mathrm{th}-15 \mathrm{th}) \\ \hline \end{gathered}$	Number of readings	Average temperature	Temperature range
January-February	24	420 F .	$37^{\circ}-46^{\circ}$
February-March	24	430 F .	$40^{\circ}-45^{\circ}$
March-April	28	440 F .	$41^{\circ}-46^{\circ}$
April-May	43	490 F .	$42^{\circ}-560$
May-June	55	540 F .	$45^{\circ}-62^{\circ}$
June-July	49	620 F .	$53^{\circ}-72^{\circ}$
July-August	13	$67^{\circ} \mathrm{F}$.	$58^{\circ}-73^{\circ}$

Two steelhead spawning peaks were observed on Steamboat Creek and the North Umpqua River. The first peak occurred the third week of April and. the second in the fifth week of April. No counts were made as to fish per mile.

Life history studies

An analysis of information obtained from scale studies on North Umpqua steelhead is shown in Table 23. As shown in Table 23 summer steelhead predominately spend three years in the ocean before spawning while most of the winter run remain two years at sea before returning to spawn.

Approximately 60 per cent of the summer steelhead and 73 per cent of the winter steelhead migrated to the ocean when they were over six inches in length.

Table 25 illustrates the calculated fork lengths at each annulus for the recovered marked summer steelhead. Fish released at about 7.5 inches in length returned as normal adults while those released at an average length of 9.3 inches returned the same year as $15-17$ inch fish. The smaller fish released seem to remain in the stream, many being caught in the summer trout fishery at 5.75-6.5 inches in length.

Habitat maintenance and improvement

Rotary fish screens
Rotary fish screens prevented the loss of 2,252 steelhead migrants, 786 silver migrants, and 9 cuthroat trout in eight irrigation canals on Myrtle and Cow Creeks. Bypass traps showed a peak in silver migration the last of May while steelhead migration peaked in June. Bypass trapping results are presented in Table 26. All screens were removed the second week of September.

Califormia-Oregon Power Company canal investigations

A sampling program was initiated with Copco to test for fish losses in Fish Creek and Lemolo \#2 diversion canals. The Game Commission conducted the sampling on Fish Creek, while Copco investigated Lemolo \#2. Seventeen sampling periods of twenty-four hours on Fish Creek canal produced seventeen rainbow trout. The trout ranged in size from two to seven inches. A six-foot fyke net was used to sample the ten-foot canal. A report from Copco stated that 328 hours of sampling prodaced only one 3-inch brown trout. Sampling will be continued in both canals in 1960.

Fishways

The Steamboat Falls fish ladder was completed and put into operation in late August 1959. Sumer steelhead moved through the ladder almost immediately and were soon observed fiftsen miles upstream.

It was found necessary to remove debris from the exit of the South Umpqua Falls ladder on seven different occasions during the winter of 1958-59.
Table 23

Pattern	First time females	First time males	Repeat spawners females	Repeat spawners males	Total
Summer strelhead	(100 samples)	(80 samples)	(13 samples)	(12 samples)	(205 samples)
2/1	2	3			2\%
2/2	14	11	1		13\%
$2 / 3$	7				3\%
3/1	4	2	8	9	11\%
3/2	61	57	4	2	61\%
3/3	12	7		1	10\%
Winter steelhead	(13 samples)	(I_{4} samples)	(6 samples)		(33 samples)
$2 / 1$					
2/2	13	10	4		82\%
2/3		3	2		12\%
3/1					
$3 / 2$		1	1		6\%
3/3					

Table 24

Calculated fork lengths for Umpqua River steelhead
Pattern

Summer. steelhead

$2 / 1$	3.6	6.7	19.8			
$2 / 2$	3.2	5.2	19.4	24.2	(27.0)	
$2 / 3$	3.2	5.1	17.6	25.3	27.0	
$3 / 1$	3.0	4.9	6.5	20.3	(25.1)	(29.0)
$3 / 2$	2.8	4.6	6.2	19.9	24.6	(26.6)
$3 / 3$	2.4	4.0	5.4	17.7	25.6	27.9

Winter steelhead

$2 / 1$						
$2 / 2$	3.9	6.1	18.8	26.8	(30.4)	(30.5)
$2 / 3$	2.1	3.4	12.9	20.8	(27.2)	(30.0)
$3 / 1$	3.1	4.8	6.2	18.1	25.3	(26.0)
$3 / 2$						
$3 / 3$						

Note: Figures in parentheses are for repeat spawners.
Table 25
Marked summer steelhead calculated lengths, 1959

Pattern	I	II	III	IV
1/1	$9.3 / 1$	15.3		
1/2	7.3 /1	18.9	22.4	
2/1		$9.3 / 2$	17.0	
2/2		7.672	19.8	23.6
$\begin{aligned} & \frac{11}{12} \text { Rais } \\ & \text { Rais } \end{aligned}$	ry one	release		

Table 26
Results from six bypass traps on Myrtle-Cow Creek areas, 1959

Period	Steelhead	Silver salmon	Cutthroat
March-April		116	
April-May	782	298	2
May-June	1,285	361	3
June-July	148	10	4
July-Ausust	37	1	
August-Soptember	2,252	786	9
Totals			

Lake improvement

Game Commission personnel participated to a considerable degree in the removal of old logging debris from the surface of Eel Lake in the winter of 1958-59. Large quantities of debris were burned as a part of the project to clean the lake and shoreline of old logging debris. The accumulation of floating and partially submerged logs and debris has hampered angling activity and created conditions hazardous to boating.

Rearing ponds

The location of sites suitable for the development of impoundments for rearing salmon and steelhead has been a major activity in the Umpqua basin. A number of sites have been located which appear to have possibilities. Oar Creek, Three M1le Creek, Frairie Creek, Soup Creek, and Brush Creek in the lower river appear to merit further consideration.

Following preliminary engineering, the Hemlock Meadows site on the upper river shows great promise as a steelhead rearing pond. Estimated cost is about $\$ 40,000$ for an eighty-plus acre pond. Also on the upper river, twenty-five to thirty potential rearing or public fishing pond sites have been cataloged for future investigations.

Tenmile Lakes fry marking project-

The removal of stranded silver salmon fry from drying stream channels of the Tenmile Lakes system has been an annual summer project by members of the Tenmile Lakes Sportsmen's Association. A marking pro ject was initiated in 1959 in on attempt to evaluate the contribution such salvage activity makes to the subsequent run of adult fish. Ten thousand silver salmon fry were collected from drying potholes of the tributaries of Big and Benson Creeks in the spring and summer of 1959. Chloretone was used as an anesthetic and the fish were immediately returned to the main flowing stream following marking.

The search for marked fish will be made on the tributaries of the Tenmile Lakes in the fall and winter of 1960-61 when the marked fish returning as jack salmon can be expected and in the following winter when the adult three-year-old fish arrive.

Cole M. Rivers and Henry E. Mastin

Low water, high water temperatures and extensive disease losses were disturbing features of the 1959 fishery. A spectacuiar fall run of steelhead appeared and was judged by veteran anglers as the best run since 1935. Fish production in most of the Rogue district lakes was considered excellent for the 1959 season.

Upstream migrant counts at Gold Ray Dam

The 1959 count of spring chinook over Gold Ray represented an 88.8 per cent return of the 1955 parent run. Low flows and high temperatures apparently stimulated an early migration to the upper river.

The winter steelhead of the 1958-59 run had little difficulty ascending the Gold Ray ladder. A representative count wes made of the run. A good catch was enjoyed by sport fishermen and all evidence indicates that the total winter run was moderate in size.

The count of summer steelhead was 905 which is 37.0 per cent of the previous ten-year average.

The 1958 run of silvers showed a large percentage return from the 1955 parent run, but because so few fish made up the total count, little significance can be attached to the high figare.

The annual counts of anadromous fish over Gold Ray since 1942 are presented in Table 27. Table 28 shows the percentage return of spring chinook and silver salmon from their respective parent runs.

Table 27
Counts of anadromous fish runs over Gold Ray Dam

Year	Spring chinook	Silvers	Steelhead	
			Summer run	Winter run
1942	43,429 (15.6)	4,608 (4.7)	5,725	
1943	38,052 (11.0)	3,290 (6.1)	5,768	16,534
1944	31,940 (13.1)	3,230 (10.4)	5,282	13,855
1945	33,718 (17.8)	1,907 (4.4)	4,804	14,196
1946	30,065 (16.5)	3,840 (5.5)	3,266	11,185
1947	34,740 (9.5)	5,340 (3.1)	3,431	10,754
1948	27,742 (10.8)	1,764 (4.8)	1,995	8,707
1949	20,028 (10.5)	9,440 (4.3)	2,761	8,073
1950	16,767 (18.8)	2,007 (11.8)	3,570	9,667
1951	21,117 (25.0)	2,738 (8.4)	2,630	6,608
1952	18,488 (23.0)	320 (2.2)	3,954	11,550
1953	33,558 (13.8)	1,453 (9.2)	3,266	11, 1, 3
1954	25,785 (21.6)	2,138 (10.8)	2,352	7,599
1955	16,550 (17.7)	480 (9.6)	1,123	5,251
1956	29,952 (13.7)	421 (5.4)	2,358	9,370
1957	18,770 (16.9)	1,075 (7.2)	1,316	5,045
1958	15,716 (13.1)	732 (11.5)	1,099	3,888
1959	14,707 (19.9)	227 (7.9) $/ 1$	905	4,755

Figures in parentheses are percentages of jack salmon.
LI Incomplete

Percentage of return of salmon progeny at Gold Ray

Year of run	Chinook		Silvers	
	Parent year	Percentage return	Parant year	Percentage return
1945			1942	41.1
1946	1942	69.2	1943	116.7
1947	1943	91.3	1944	165.3
1.948	1944	87.2	1945	92.5
1949	1945	59.4	1946	245.5
1950	1946	55.8	1947	37.6
1951	1947	60.8	1948	155.2
1952	1948	66.7	1949	3.4
1953	1949	167.6	1950	72.4
1954	1950	153.7	1951	78.9
1955	1951	78.4	1952	150.0
1956	1952	162.0	1953	28.9
1957	1953	55.9	1954	51.2
1958	1954	60.9	1955	152.5
1959	1955	88.8		

Note: A 100 per cent return indicates that a ran equalled the number from which it originated.

Salmon fishery
A drop in river flow early in the season followed by temperatares of 68° to $70^{\circ} \mathrm{F}$. between Dodge Bridge and Gold Ray apparently were factors in stimulating spring chinook salmon to move over Gold Ray into the upper river. Disease losses were severe on downstream migrants in the lower canyon in July and August, but losses of adults in the upper river were minor.

Catch
Anglers spent 25,856 angler days on the lower Rogue to catch 6,375 salmon in 1959. The catch was 32 per cent lower than that of the 1955 parent run. The decline in catch was noticeable on both the spring and fall chinook.

The lower river catch of spring chinook (March through June) was 45 per cent lower than the take of the 1955 parent run and 61 per cent below the average of the preceding ten years. The spring season peaked on May 4 when a catch of 66 salmon was recorded. The 1959 daily catch for April and May is compared to the 1955 parent run as well as the average daily catch for the ten preceding years in Figures 1 and 2.

The take of fall chinook (September through November) was 56 per cent less than the catch of the parent run and 44 per cent less than the ten-year average.

The catch for July and August, which is influenced by ocean fish entering the bay to feed on herring and smelt, showed a definite increase of 43 per cent over the parent run and 19 per cent over the previous ten-year average.

Figure 1

DAILY SPRING CHINOOK SALMON CATCH LOWER ROGUE RIVER

Figure 2

DAILY SPRING CHINOOK SALMON CATCH LOWER ROGUE RIVER

The catch success for the entire 1959 season was lower than the seasonal average for the past ten years. Table 29 summarizes the 1959 salmon fishery for the lower river by months as compared with the preceding ten years.

Catch weight

The total weight of salmon caught by sport fishermen from the lower Rogue in 1959 was 102,721 pounds. The average weight per fish was 16.7 pounds. Spring chinook had an average weight of 17.9 pounds and fall chinook 15.8 pounds. For silvers the average weight was 9.4 pounds per fish.

Gatch escapement
Since 1949, the largest percentage of escapement of spring chinook past the lower Rogue fishery occarred in 1959, at least as indicated by the ratio of catch on the lower river to the Gold Ray count. This ratio in 1959 was 1 to 10.7. The average ratio of catch to escapement since 1949 has been 1 to 5.9 , and the lowest, or heaviest catch, was I to 3.7 in 1952.

The 1959 catch represented 8.56 per cent of the known number of spring chinook entering the river. The highest take was 21.4 in 1952, and the average for the previous ten-year period has been 14.29 per cent. Table 30 shows the relationship of the catch to the Gold Ray escapement for the years 1950 through 1959.

Hatchery release studies
The history of Rogue River contains little or no evidence that any successful contribution has been made to the Rogue fishery by hatchery operations. The study of marked spring chinook salmon on the Rogue since 1949 has been designed to determine the most successful pattern of rearing and releasing which could be used as a guide for expansion of hatchery operations. The instigation of large scale artificial propagation of spring chinook does not seem desirable in view of unsatisfactory returns to date. It is suggested that a limited experimental work be done along these lines until satisfactory returns indicate a large scale program.

Spring chinook eggs have been obtained from Rogue River stock at the McLeod egg-taking station on Big Butte Creek. The eggs have been hatched and reared at difierent hatchery stations for various lengths of time to secure optimam growth rates and in an attempt to avoid onset of diseases and infections. The fish have been released at different sizes, locations and times of the year to determine the release pattern that will produce the best return.

The raturn of adults has been evaluated by random sampling of the sport catch at Gold Beach. The number of marked fish entering the river has been obtained by computing the total run from the ratio of marked to rmmarked fish in the sample.

Table 31 shows the marked groups of salmon liberated and the percentage return from.total numbers relsased of the brood years 1949 to and including 1954. The return of the 1954 brood year is not complete because the fish returning as five-year-olds have not been added.
Table 29
Lower Rogue River salmon catch and angler success

Season Month	Catch		Percentage catch				Angler days		Average fish per day		$\begin{gathered} \text { Fish } \\ \text { per } \\ \text { angler day } \\ \hline \end{gathered}$	
	1959	10-year average	1959	10-year average	1959	10-y ear average	1959	10-year average	1959	10-year average	1959	10-year average
Spring												
March 22 L3	17	32	0.5	0.6	0.3	0.3	246	205	1.54	5.80	0.07	0.16
April	548	1,314	17.5	26.7	8.6	13.4	2,787	5,451	18.26	43.78	0.20	0.24
May	596	1,718	19.0	34.9	9.3	17.5	3,363	6,042	19.22	55.42	0.18	0.28
June	216	484	6.9	9.8	3.4	5.0	1,085	1,661	7.20	16.13	0.20	0.29
July	1,058	718	33.7	14.6	16.6	7.3	4,401	2,859	34.13	23.17	0.24	0.25
August 44	701	658	22.4	13.4	11.0	6.7	2,460	2,161	46.73	43.87	0.28	0.30
Spring total	3,136	4,924	100.0	100.0	49.2	50.2	14,342	18,379	21.19	34.55	0.22	0.26
Fall												
August /5	1,038	965	32.0	19.8	16.3	9.8	3,551	3,174	64.88	60.32	0.29	0.30
Soptember	1,604	2,709	49.5	55.4	25.2	27.6	5,602	6,014	53.47	90.31	0.28	0.45
October	549	1,185	17.0	24.2	8.6	12.1	2,217	1,857	17.71	38.22	0.25	0.64
November 16	48	29	1.5	0.6	0.7	0.3	144	66	2.40	3.24	0.33	0.44
Fall total	3,239	4,888	100.0	100.0	50.8	49.8	11,514	11,111	33.39	56.84	0.28	0.44
Season total	6,375	9,812			100.0	100.0	25,856	29,490	26.12	42.94	0.24	0.33
11 lo-year average - 1950 to 1959, inclusive												
12 Last 10 days in March												
L3 8-year average - 1952 to 1959, inclusive												
44 First 15 days in August												
5 Total August catch: 1,739; 10-year average 1,623; fish per day 56.09; 10-year average 52.36; angler day 0.29; 10-year average 0.30												
16 First 20 days in November Weight of salmon catch 1959-102,721 pounds												

Table 30
Comparison of the lower Rogue spring chinook catch to the Gold Ray escapement for the years 1950 through 1959

Year	Catch	Escapenent	Ratio of catch to escapenent	Total run	Percentage eatch
1950	3,885	16,767	1 to 4.3	20,652	18.81
1951	2,857	21,111	1 to 7.4	23,968	11.92
1952	5,034	18,488	1 to 3.7	23,522	21.40
1953	7,750	33,558	1 to 4.3	41,308	18.76
1954	3,764	25,785	1 to 6.8	29,549	12.74
1955	2,493	16,550	1 to 6.6	19,043	13.09
1956	2,923	29,952	1 to 10.2	32,875	8.89
1957	2,593	18,770	1 to 7.2	21,363	12.14
1958	2,563	15,716	1 to 6.1	18,279	14.02
1959	1,377	14,707	1 to 10.7	16,084	8.56
$\mathbf{1 v e r r a g}$	3,524	21,140	1 to 5.9	24,664	14.29

Figure 3 illustrates the percentage return of the brood years with comparisons of lower river, middle river and Big Butte Creek releases. Generally the best returns have been enjoyed from middle river plants. No returns were found from the 1951 brood year groups that were released at Grants Pass in February, 1953, and November, 1952. Although the outstanding return from the Big Butte Creek plant of the 1954 brood year was obtained from a small number of fish released it would appear that this release site deserves further investigation.

The return of fish released at different months is illustrated in Figure 4. The month of the year in which the fish ars released does not appear to be important.

Figure 5 plots the size per pomd upon release of each group of marked fish with their percentage retarn. This comparison shows that fish that are reared to larger sizes before release produce a better return than those that are released at smaller sizes, Because many variables are influencing the returns, an ideal sine for release is difficult to establish, but the figure indicates that the Rogue River spring chinook show larger returns when released at eight or nine to the pound.

Many things have been suspected of influencing the level of retarn. Comparison of returns with know biological and ecological factors have shown a few relationships, but most of them cannot be proven with statistical significance because of numerous interrelating influences, both known and unknown.

Much interest has been aroused in losses after release that might be caused by the carry-over of diseases and infections acquired in the hatchery. The percentage loss in the hatchery before release is compared with the percentage return as adults in Figure 6. It indicates that those groups of salmon that

Table 31
Hatchery-reared spring chinook salmon study, Rogue River, 1949 to 1959

Brood year	Group mark	Release			Return	
		Number	Place	Date	Number	Percentage
1949	IM-Ad	19,301	Middie river	March 1951	34	0.176
	IM-BV	20,385	Lower river	March 1951	11	0.053
		39,686			45	0.113
1950	IM-Ad	15,169	Middle river	March 1952	32	0.211
	LM-BV	14,643	Lower river	March 1952	54	0.368
		29,812			86	0.288
1951	LM-Ad	24,079	Middle river	February 1953	38	0.157
	LM-BV	24,236	Lower river	March 1953	0	0.0
	LM-RV	23,996	Middle river	November 1952	0	0.0
	LM- ?	1			13	0.211
		72,311			51	0.070
1952	LM-Ad	23,188	Middle river	March 1954	199	0.858
	LM-BV	17,940	Lower river	March 1954	80	0.445
	LM-RV	9,247	Middle river	November 1953	80	0.865
	LM- ?				64	1.134
		50,375			423	0.839
1953	LM-Ad	25,130	Middle river	December 1954	941	3.744
	LM-BV	24,999	Lower river	December 1954	582	2,328
	LM-RV	27,532	Big Butte Creek	December 1954	179	0.650
	LM- ?				112	4.190
		$\overline{77,661}$			1,814.	2.335
1954	LM-Ad	24,930	Middle river	October 1955	163	0.653
	LM-BV	16,894	Lower river	October 1955	51	0.301
	LM-RV	2,492	Big Butte Creek	October 1955	51	2.046
	LMM ?				40	0.814
		44,316			305	$0.688 / 2$

$\frac{1}{12}$ Adult fish returning with LM mark only; no accompanying fin mark
12 Total return not complete
have suffered heavy losses in the hatchery before release do not show a significant return. In computing the losses at the hatchery, the mechanical losses were not included as a part of the starting inventory.

The first month after release is thought to be the most critical period for survival because of the major adjustments that wust be made to the new environment. The relationship between the percentage return of the Rogue hatchery salmon and floods or high waters to which the fish were exposed after release is plotted in Figure 7. Generally, the fish that were subjected to elevated flows returned at a low percentage level.

Figure 3

RETURN OF HATCHERY-REARED SPRING CHINOOK SALMON,ROGUE RIVER

Figure 4

[^0]Figure 5
SIZE OF SPRING CHINOOK UPON RELEASE COMPARED WITH RETURN AS ADULTS,
ROGUE RIVER, 1951 to 1959

Figure 6

BuIADOd U! SSOI OBD,UOOSOd
WITH RETURN AS

Figure 7

Much thought has been devoted to the exceptionally good retarn of the fish from the 1953 brood year. This group of fish was released in December, 1954, in cold, low water. River temperatures below $40^{\circ} \mathrm{F}$. prevailed more than sixty days following release. No high waters occurred at any time through the following winter and spring months. They were raised at the hatchery with small loss and, so far as known, were released as clean, healthy fish. Either these migrants made a rapid downstream migration in the spring or they were resistant to Chondrococcus columaris because wild migrants suffered heavy losses from the bacterium in July and August, 1955.

The saimon study on the Rogue to date indicates that best r eturns result from (1) groups of fish that have been free of disease losses in the hatchery before release, (2) fish raised to eight or nine to the pound, (3) fish released in the middle or upper parts of the basin, and (4) from releases that have been made after the danger of scouring high waters.

Artificial propagation has not greatly altered the pattern of returning age classes. Scale studies have shown that 10.4 per cent of the marked fish are returning as three-year fish, 67.3 per cent as four-year fish and 22.3 per cent as five-year fish. Average weight has been fourteen pounds per fish as compared to an average of eighteen to twenty poands for wild fish. All marked fish have been found returning with the spring run.

The marked fish taken by anglers on the lower river represent a small. contribution to the fishery, but the limited number being used in the study should not be expected to make a dramatic showing in the total catch, particulerly when they are accompanying a comparatively large run of wild fish.

The cost of rearing and releasing Rogue River spring chinook salmon has been apportioned to the marked fish returning as adults. The monetary value of each returning salmon is unreasonably high for some of the brood year classes, e.g., those fish retarning from the 1951 brood year at $\$ 79.58$ per fish or $\$ 6.36$ per pound. Other groups are within an acceptable economic limit such as those from the 1952 and 1953 brood classes at $\$ 6.58$ per fish, $\$ 0.53$ per pound and $\$ 3.31$ per fish or $\$ 0.26$ per pound, respectively.

Cost of returning Rogue River spring chinook is presented in Table 32. The average annual cost of returning adults found in this study to date are too high for practical application, but these costs can be greatly reduced by improving the patterns of rearing and releasing as guided by the knowledge gained in this study.

The data from the 1959 return became available after the above material on hatchery evaluation was compiled. Through the 1959 season 1,038 chinooks were examined at the canneries near Gold Beach, and only four marks were found. This represents the lowest recovery of hatchery salmon since the study began. The recovered marks were from spring chinook releases in the middle section of the Rogue. The data are presented in Table 33.

In estimated 135 silver salmon were taken in the sport fishery at the mouth of the Rogue representing one of the lowest catches recorded for the lower river. Examination of 108 silvers at the canneries failed to reveal any marks. This is the first year hatchery-reared silver salmon did not enter the sport catch; however, no yearling fish were stocked in the Rogue drainage in 1957.

Cost of returning Rogue River hatchery spring chinook

Brood y ear	Cost of stocked fish	Return to lower river catch			Return to river / 1		
		Marked fish	Cost per fish	Cost per pound	Marked fish	Cost per fish	Cost per pound
1949	\$ 1, 343.01	8	\$167.88	\$13.41	45	\$29.84	\$2.38
1950	1,806.70	$1{ }_{4}$	129.05	10.31	86	21.01	1.68
1951	4,058.40	6	676.40	54.02	51	79.58	6.36
1952	2,783.92	43	64.74	5.17	423	6.58	0.53
1953	6,011.06	227	26.48	2.12	1,814	3.31	0.26
1954	4,741.50	41	115.65	9.24	305	15.55	1.24
	\$20,744.59	339	\$ 61.19	\$ 4.89	2,724	\$ 7.62	\$0.61

L From total known catch plus Gold Ray escapement
Table 33
Marked salmon returns, Rogue River, 1959

Species Month	Number salmon examined	Marked fish returned / 1					Total return	Ratio of return	Percentage of marked salmon
		IM-Ad	LM-BV	LM-RV	LM-?	BV			
Chinook									
April	388	1	0	0	1		2	1 to 193.0	0.52
May	477	2	0	0	0		2	1 to 238.5	0.42
June	173	0	0	0	0		0	0 to 173.0	0.00
Total	1,038	3	0	0	1		4	1 to 258.5	0.38
Silvers									
Sept.	52	-	-	-	-	0	0	0 to 52.0	0.00
Oct.	56	-	-	-	-	0	0	0 to 56.0	0.00
Total	108	-	-	-	-	0	0	0 to 108.0	0.00

Steelhead fishery
Few steelhead were observed spawning in Rogue tributaries in the spring of 1959 apparently the result of low winter flows. Some tributaries were unused, particularly those to the Applegate River and middle section of the Rogue. The fish used the main river channels adjacent to the mouths of the tributaries instead.

The delayed opening of trout season reduced the catch of spanmed-out steelhead and two and three-year-old steelhead migrants.

Winter steelhead

Good weather and water conditions prevailed during the 1958-59 winter steelhead season. Table 34 shows creel census data obtained on the middle Rogue, Applegate and Illinois Rivers. Guided parties on the middle section of the Rogue had an average of 1.17 fish per angler as compared to the 0.16 fish per angler of non-guided parties.

Table 34
Greel census data, winter steelhead seasons, Rogue district, 1959

Stream	Anglers	Hours	Fish	Fish per angler	Fish per hour	Hours per Iish
Hiddle Rogue	50	186	10	0.20	0.05	18.6
Applegate	205	454	23	0.11	0.06	19.7
Tilinois	154	622	33	0.21	0.05	18.8
Total	409	1,262	66	0.16	0.05	19.1

Spring steelhead
The 1959 spring run was weak and the sport catch was light. Along with spring chinook, the spring run held over at points high on the main river.

The 1959 creel census study showed that 395 spring-run steelhead were taken by anglers from the river above Gold Hill between May 24 and September 18. Of the 837 steelhead counted over Gold Ray up to September 18, 315, or 37.6 per cent, were taken by sport fishermen. (See upper Rogue census study, page 42.)

Few spring-run steelh ead reared at the Butte Falls and Bandon Hatcheries and released as marked fish in March, 1958, were found retmrning in the 1959 season. Ninety-three spring steelhead were examined at Gold Ray in July, and no marks were found; however, ten, or 10.7 per cent, had left maxillaries missing, but had no accompanying fin clip.

To check the possibility that the hatchery fish were returning with the fall-run steelhead, 235 angler-caught fish were examined in September and October, but still no marks were found. While salvaging fish from the ladders at Savage Rapids in September and October, 185 steelhead were checked, and one 3-pound fish with a left maxillary-right ventral mark (Butte Falls two-year-old release) was found along with four with only the left maxillary clip. All maxillary clips were good and not like those with hooking injuries.

Hatchery-reared steelhead that were released in March, 1958, were being taken by trout anglears through the opening months of trout season that jear. The 1959 steelhead were distributed over an eleven mile section of the Rogue by a planting boat in an effort to improve their chances for a successful downstream migration. Creel census studies in the early parts of the trout season indicated that the efforts were not too successful because 1.8 per cent of the trout catch was made up of hatchery fish.

Table 35 compares the various groups of wild and hatchery fish taken by trout anglers from Savage Rapids Dam to Graves Creek between May 30 and June 11.

Table 35
Opening season catch by trout anglers, Savage Rapids to Graves Creek, Rogue River, 1959

Anglers interviewed	Catch				
	Wild migrants			Hatchery-released fish	
	Steelhead	Cutthroat	Chinook	Steelh ead	Rainbow
227	411	8	2	8	26
Percentage	90.3	1.8	0.4	1.8	5.7

Fall steelhead
The fall steelhead run was one of the largest known in the past ten years. Catches between lower Rogue canyon and Robertson Bridge were phenomenal. Many of the fish were the typical Rogue River "half-pounders"," but in the Marial and Galice sections, two to four pounders appeared in the catch in fair numbers.

The highest rate of catch, 1.35 fish per hour, was recorded in the Agness-Illahe area on September 9. Average catch success in the Agness-Illahe area and Galice section is compared in Table 36. Half of the census data werecollected when the five-per-day bag limit was in effect and the other half with the two-per-day limit.

Table 36
Catch success of fall-run steelhead, Rogue River, 1959

	Agness-Illahe area	Galice area
Anglers interviewed	75	96
Hours fished	236	190
Catch - under 20 inches	$200(100 \%)$	$46(88.5 \%)$
- over 20 inches	0	6
\quad Total	200	52
Fish per angler,		
- as interviewed		$0.5 \%)$
- projected to completed trip	3.67	0.5
Fish per hour	0.85	1.06
Hours per fish	1.18	0.27

A conservative estimate of the lower river catch of steelhead derived from the numbers of fish brought to the carneries would be 9,853 fish. That catch could have been duplicated in the Agness-Illahe area, for a total of nearly 20,000 fish from the lower canyon to Gold Beach.

The large fall run of steelhead could have resulted from one of two factors, or a combination thereof; (1) the new screens that operated for the first time at Savage Rapids Dam through 1958, and (2) two consecutive mild winters without a severe high water. The Savage Rapids screens could have been the reason for many fish of the 1959 run being in the 14 to 18 inch size group.

Trout fishery

In the special early trout season in headwaters of the Rogae watershed, good water conditions existed but the success of anglars was not spectacular. Fishing pressure was light. Anglers avaraged 1.46 fish per day. Out of 268 anglers interviewed, only one party was found with a limit catch. Sixty-two per cent of the catch was of legal rainbow that were liberated especially for the special early opening, but the return to the angler was lower then that of those fish stocked later in the season.

Good progress is being made toward enticing trout anglers away from the stream sections in the middle Rogue basin where a major part of the trout fishery is supported by downstream migrant steelhead. The excellent trout fishery in lakes has been widely publicized.

Low stream flows afforded good trout fishing in the early summer in headwater portions of the Rogue and Applegate, but extreme hot weather and high water temperatures had an adverse effect on fishing success from mid-July to the end of September. Hatchery rainbow released in early season were well harvested but those liberated in July were taken in limited numbers.

Until recent years, angling pressure for downstream migrant steelhead in the lower Rogue canyon has not been considered important. The major interest has always been for adult salmon and steelhead. Increased use of the lower Rogue canyon has resulted in more pressure being pat on steelhead migrants.

Lakes and reservoirs
111 trout lakes in the Rogue district are showing excellent yields. Good growth and return to the angler is being experienced in most lakes and impoundments.

Fish Lake
Fish Lake was chemically treated in early October, 1958, and restocked with 102,000 rainbow averaging 4.75 and 5.75 inches in length. The fish had grown to an average of 8.4 inches in length by May 30 and 11.75 inches by September. Limit catches were the rule rather than the exception throughout most of the season. The lake produced a catch success of 0.81 fish per angler in 1958 before treatment and 5.50 fish per angler after being rehabilitated. See Tables 37 and 38 for annual catch success comparisons with other lakes in the Rogue district.

No roach have been found since the lake was rehabilitated but several eastern brook were taken by anglers in June, 1959. The fish were two and three years old, evidence that adult eastern brook escaped the treatment. Escapenent of brook trout is believed to have occurred in lava recesses.
Table 37

Lake or reservoir	Species	Slue groups in inches							$\begin{array}{r} \text { Total } \\ \text { fish } \end{array}$	$\begin{aligned} & \text { Total } \\ & \text { anglars } \\ & \hline \end{aligned}$	Hours fished	Fish per angler	Hours per fish	Fish per hour
		$\begin{gathered} \text { Under } \\ 6 \end{gathered}$	6-8	8-10	10-12	12-14	14-16	$\begin{array}{r} \text { Over } \\ \hline 16 \\ \hline \end{array}$						
Fish Lake	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{~EB} \end{aligned}$		666	886	4	2			$\begin{array}{r} 1,556 \\ 2 \\ \hline \end{array}$					
									1,558	282	914	5.52	0.59	1.71
Howard Prairie														0.25
Hyatt Reservoir	C	142	127	132	7				408					
	LB		54	13	14	2	1	1	85					
	PK	7							7					
	BG	330							355					
	B		47	80	2	14			143					
									998	193	603	5.16	0.60	1.66
Squaw Lakes $/ 1$	Rb		19		79	4			463					
				$\frac{1}{6}$	13	5			19 6					
										78	296	6.25	0.61	1.64
Willow Creek Reservoir / 1														
	R b		3	488	1,519	132	38	1	2,181	453	1,867	4.82	0.85	1.17

11 First 45 days of season only

Table 38
Annual early season catch
from Fish Lake, Willow Creak Reservoir, and Squaw Lakes, Rogue district, 1953 to 1959

Year	Fish Lake		Willow Creek Reservoir		Squaw Lakes	
	$\begin{gathered} \text { Fish } \\ \text { per } \\ \text { angler } \\ \hline \end{gathered}$	$\begin{gathered} \text { Fish } \\ \text { per } \\ \text { hour } \end{gathered}$	$\begin{gathered} \text { Fish } \\ \text { per } \\ \text { angler } \end{gathered}$	$\begin{gathered} \text { Fish } \\ \text { per } \\ \text { hour } \end{gathered}$	$\begin{array}{r} \text { Fish } \\ \text { per } \end{array}$ angler	$\begin{array}{r} \text { Fish } \\ \text { per } \\ \text { hour } \end{array}$
1953	1.76					
1956	1.51		4.30		2.32	
1957	$4.84 \angle 1$		5.10			
1958	1.69	0.29 /2	1.24	0.28	3.78	0.97
1959	5.20	$1.60 \quad 13$	4.82	1.17	7.24	1.85

L Results of heavy catch of 6 to $6 \frac{1}{2}$ inch rainbow
$\angle 2$ Season preceding treatment
$\angle 3$ Season following treatment
Seventeen per cent of the angler-caught fish were found with Myxosporidia infestations in June, but the incidence of the parasite had declined to nine per cent in July and much less than that in August.

Fillow Creek Reservoir

Willow Creek Reservoir continues to be the most heavily fished body of water in the Rogue Basin. Stocking of fingerling rainbow in early summer has greatly improved survival and return to the angler. For creel census data, see Tables 37 and 38.

Kokanee were planted in 1959 in order to establish a supplementary fishery. A kokanee egg-take is planned should the introduction be successful.

Myxosporidia infestations were found on eight per cent of angler-caught rainbow trout in June and on four per cent in July. As at Fish Lake, the parasite probably originated with hatchery-planted fish.

Howard Prairis Reservoir

Because of a light runoff, only four feet over the dead-storage level was impounded in 1958-59. Water shortages through the summer required a drawdown to dead storage. The angler use was light in 1959 owing to the low water and absence of recreational facilities.

Rainbow trout fingerlings placed in Howard Prairie in September, 1958, at 2.5 and 4.5 inches in length grew to an average of 9.5 inches in length by May of 1959 and 14 inches by Soptember. Crustaceans are abundant and the fish have developed a bright, red flesh as well as an excellent condition factor.

The policy of stocking Squaw Lakes with large numbers of fingerling rainbow in summer instead of fall months has resulted in extending good trout fishing throughout the entire season.

On the opening weekend of 1959, the highest catch success recorded in the Rogue Basin was found at Squaw Lakes with an average of 7.2 fish per angler. See Tables 37 and 38 for the results of creel census studies.

Fingerling crappie and bluegill were found in the lower lake in September. It is anticipated that the illegal introduction of warm-water species will, in time, seriously reduce trout production.

Warm-water fishery
Hyatt Reservoir will continue to be used as a major source of water for the Talent Project owing to water shortages accompanying the Bureau of Reclamation's construction schedule. The majority of the catch at Hyatt Reservoir is made up of crappie and bluegill under six inches in length, sunfish under four inches in length, and largemouth bass between six and eight inches in length. A few eight to ten inch crappie are available. The reservoir continues to produce three to four pound catfis'. See Table 37 for creel census data.

Waterfowl resting ponds on the Camp White Management Area are starting to produce fair to good catfishing. Largemouth bass were salvaged from Emigrant Reserroir and placed in two of the ponds. Bluegills will be added in 1960.

Upper Rogue census study, 1958
A random creel census study was completed on the upper Rogue in 1958. A sampling schedule was followed from May 24 to September 18, 1958, between Gold Hill and Laurelhurst Bridge. The resulting data were used to compute total catch and angler use by sections, areas and seasons.

The program was outlined and the data analyzed by Ir. Iyle D. Calvin, Oregon State College Statistician. Information will be used to formulate angling regulations and as a guide to fishery interests in river basin development.

Table 39 presents the data from the 1958 creel census study. Figure 8 illustrates the general distribution of angler use and catch of trout-steelhead and salmon in specific sections of the upper Rogue.

River basin development
Rogue flood control
In June, the Corps of Engineers summarized their findings on multiplepurpose development on the Rogue River Basin Project. A public hearing on the plans for development was to be held in September, 1959, but as a result of the adverse water temperatures predicted for Lost Creek releases, a two-year postponemant has been granted to make further studies of the relationships between
Table 39
Upper Rogue, May 24 to September 18, 1958

	$\begin{gathered} \text { Rocky Point } \\ \text { to } \\ \text { Gold Ray } \\ \hline \end{gathered}$	$\begin{gathered} \text { Gold Ray } \\ \text { to } \\ \text { Dodge Bridge } \\ \hline \end{gathered}$	$\begin{gathered} \text { Dodge Bridge } \\ \text { to } \\ \text { Rogue Elk } \\ \hline \end{gathered}$		Total
Trout and steelhead					
Angler days	6,650	6,715	2,920	6,125	22,140
Hours fished	45,945	45,110	16,730	39,525	147,310
Total catcin	16,570	20,880	14,865	20,115	72,430
Fish per hour 11	0.45	0.62	1.09	0.71	0.63
Hours per fish ${ }^{\text {l }}$	2.21	1.63	0.91	1.40	1.58
Fish per angler-day	2.40	3.11	5.09	3.28	3.23
Salmon (to July 15)					
Angler days	295	1,015	1,240	3,34,0	5,890
Hours fished	1,795	12,580	9,555	35,010	58,940
Total catch	100	160	265	1,300	1,825
Fish per hour 1	0.06	0.01.	0.03	0.04	0.03
Hours per fish 71	17.95	78.63	36.06	26.93	32.30
Fish per angler-day	0.34	0.16	0.21	0.39	0.31
Total					
Angler days	6,945	7,730	4,160	9,465	28,300
Hours fished	47,740	57,690	26,285	74,535	206,250

[^1]Figure 8

flow, storage and temperature. A cooperative study has been started by the U. S. Fish and Wildlife Service, Oregon Game Commission, Oregon Fish Commission, and State Water Resources Board. Twenty-five thermographs and twelve additional gauging stations are being installed. The data will be presented to the s Corps with recommendations as to the type and quantity of releases needed from upriver impoundments to protect or enhance the Rogue fishery.

Oregon Water Resources Board

The Oregon Water Resources Board completed its evaluation of the water-use program of the Rogue Basin. Its findings were published in Jonuary. The report is an outstanding compilation of sources and complex uses of water in the Rogue watershed.

Guide catch success

Fifty-six licensed guides operated on Rogue River in 1959. Catch reports were submitted on 304 trips which were made with 656 people, 62.9 per cent of which were nonresident anglers. The reports acknowledged the catch of 430 salmon, 1,233 steelhead and 850 trout.

Screening and ladders

Savage Rapids

The fish loss on the face of the new Link-Belt screens was measured and studied. The 1959 irrigation season was the structure's second year of operation. Up to ten per cent of the migrants, mostly chinooks, were being impinged upon the upstream face of the screen. An estimated 38,000 fish were lost during July, 1959.

The approach velocities to the screens were found to be greater than flows into the bypass ports. The difference in velocities is believed to be responsible for fish being impinged on the surfaces of the screens.

A report was submitted on the resuits of the study and recommendations for correction were included.

Irrigation district personnel used improved methods to clean the trash racks, and they were successful in preventing the accumulation of debris on lower surfaces of the trash racks.

Gold Hill
Hydro-wedges were installed at the entrances of the bypass colums in the Gold Hinl louvers. The improved patterns of approach velocity are believed to have greatly increased the efficiency of the bypass system. All restrictive flow devices were removed and approximately 116 c.f.s. of water flowed through the bypass system during most of the downstream migraticn season.

Gold Ray
A detailed study of the downstream migration is being made at Gold Ray in order to determine an optimum shut-down period for the power plant of
the Califormia-Oregon Power Company. The trapping study was started in March and will continue into May, 1960. The data will be used to set a period of weeks and hours of the day which will be required to save all but two per cent of the total annual dowstream migration. Copco's analysis of consumptive power peaks, loads and personnel distribution shows that a shut-down between $5 \mathrm{p} . \mathrm{m}$. and $8 \mathrm{a} . \mathrm{m}$. would be the most economical period.

Illinois Falls

Adult chinook, silvers and fall steelhead were blocked at the Illinois Falls from October through most of January because of low water flows in the ladder channel.

Stream flows and water temperatures

The 1958-59 snow pack in all sections of the Rogue watershed was below average, and water content ranged from 50 to 95 per cent of normal. Stream flows through sumaer and early fall were near those recorded for the drought years of 1930 and 1931.

With the low stream flows were record-high water temperatures in Rogue River. Maximum daily water temper atures of $70^{\circ} \mathrm{F}$. or more prevailed at Gold Ray from July 16 to 27 , and $73^{\circ} \mathrm{F}$. was reached on three separate days. Warmest waters were found in the lower canyon with 74° to $80^{\circ} \mathrm{F}$. commonly recorded through July and August. A record high temperature of $85^{\circ} \mathrm{F}$. was taken at Illahe on July 21.

Large concentrations of both downstrean migrant and adult salmon and steelhead were present at the mouths of cooler tributaries. Heaviest concentrations were found at the mouths of Rum, Mule, Stairs, Foster, and Iwo Mile Creeks.

The Applegate was dry throughout most of its main channel below Williams after July 15. Most tributaries in the middle section of the basin became intermittent before the end of sumer. Fish loss was heavy to moderate on many mid-basin tributaries.

Disease

The losses of downstream migrant salmon and steelhead from infections of Chondrococcus columnaris equalled, or exceeded, levels suffered in years of heavy loss, namely 1947, 1949 and 1955. Migrants succumbed to the bacterium as high up on the river as Savage Rapids. Peak loss occurred on Sunday, July 19. The keaviest rate of loss was found at the mouth of Mule Creek on the evening of July 29 when chinook fingerlings were dying at the rate of 1.25 per minute.

Exotic fishes

The top minnow, Gambusia affinis, has become abundant in the canal systems of the Grants Pass Irrigation District.

The redsided shiner, Richardsonius balteatus, has multiplied to a high population level in the middle section of the Rogue and in the lower Applegate River. The first few specimers were found near the mouth of Jump-off Joe Creek in July of 1957.

SOUTH COAST

Trout fishery

A total of 271 trout anglers was interviewed on the south coastal streams and lakes. A catch of 1,013 trout was tallied for an average of 3.73 fish per angler, or 1.30 fish per hour of fishing effort.

Ninety-one per cent of the catch was hatchery fish, with 2 per cent fish from 1958 releases. All of the trout surviving from the 1958 releases were observed in the catch of anglers fishing Garrison and Floras Lakes.

In addition to the trout catch the anglers interviewed on Floras and Garrison Lakes had taken 8 bass and 11 perch. There was more interest in bass fishing on Floras lake than has been evident in previous years. The perch in Garrison Lake (illegally planted in 1953) are increasing in size and number and are becoming common in the catch. The results of the creel census work are summarized in Table 40.

Table 40
Trout creel census, South Coast District

Water	Number of fish	Number of anglers	Fish per angler	Hours fished	Fish per hour	Marked trout
Floras Lake	420	99	4.24	347	1.21	375
Garrison Lake	103	59	1.75	149	0.69	77
Chetco River	382	91	4.19	214	1.79	371
Winchuck River	108	22	4.90	69	1.56	101
Total	1,013	271	3.73	779	1.30	924

Population study
Two net sets in Floras Lake in late August were made to determine the presence of marked trout and the composition of the population. The catch included 22 suckers, 2 black bass, 1 silver salmon smolt, 3 marked rainbow and 6 unmarked cutthroat. All of the marked rainbow were of the 1959 releases. The two black bass were the first bass taken in net sets from the lake. The bass measured 18 and 19 inches in length and weighed 4.25 and 6.5 pounds respectively.

Steelhoad fishery

High stream levels hampered steelhead anglers on the south coastal streams through the 1958-59 season. There were 48.9 inches of rainfall through the months of December, January and February. The success of steelhead fishermen interviewed is summarized in Table 41.

Extended steelhead season, Sixes River
The steelhead season was extended through March on the Sixes River. This extension was one of several to determine the extent that bright, unspent fish were available to the angler.

Table 41
Steelhead angling success, south coastal streams, 1959

Strean	Number of fish	Namber of anglers	Fish per angler	Hours fished	Fish per hour
Sixes River	6	19	0.32	36	0.15
Elk River	5	11	0.45	19	0.26
Chetco River	33	73	0.45	218	0.15
Winchuck River	2	8	0.25	8	0.25
Totals	46	111	0.41	281	0.16

Seventy-three anglers were interviewed who had spent 243 hours fishing. The fishing intensity was considered very light for an extended season. Of the 8 steelhead retained by anglers, three were bright and three were dark. Two bright spent fish were kept. In addition there were 15 spent fish hooked and released. Most of the spent fish released were bright. Table 42 presents the results of the extended season creel census.

Table 42
Extended steelhead season, Sixes River

	Number of fish	Number of anglers	Fish per angler	Hours fished	Fish per hour	Spent fish
Stream	8	73	0.11	243	0.03	17

Spawing ground surveys

Spawning ground survey areas were established for five south coast watersheds. As the result of low waters the spawing activity on all streams did not reach its peak until late December. There was not sufficient water for salmon to enter many of the tributary streams. As a result some of the spawning areas did not have the expected spawning activity. Spot surveys through other parts of the streams indicated good to excellent spawning for all south coastal streams. The established winter deadlines were effective in protecting spawning salmon. Results of the spawning survey in the established areas are presented in Table 43.

Table 43
Spaming ground surveys, South Coast, chinook salmon, fall and winter, 1959

Stream	Miles	Water	Redds	Adults	Jacks	Total	$\begin{gathered} \text { Fish per } \\ \text { mile } \\ \hline \end{gathered}$	$\begin{gathered} \text { Redds per } \\ \text { mile } \end{gathered}$
Floras Creek	0.5	Murky	82	20	0	20	40	164
Willow Creak	0.5	Murky	47	5	1	6	12	94
Sixes River								
Crystal Creek	1.0	Muricy	118	8	1	9	9	118
Edson Creek	1.0	Milkg	210	73	5	75	75	210
Dry Creek	2.0	Clear	311	270	5	275	137	155
Elk River								
Anvil Creek	0.25	Clear	26	$4 / 1$	2	6	24	104
Bob Creek	0.5	Clear	0	0	0	0	0	6
Elk River \#1	2.0	Clear	125	20	0	20	10	64
Elk River \#2	2.5	Clear	81	15	0	15	6	32
Chetco RIver								
Jack Creok	0.5	Milky	79	2			6	
Nook Creek	0.5	Clear	17	2	0	2	4	34
South Fork Chetco	1.0	Clear	49	5	0	5	5	49
Winchuck River								
Wheeler Creek	1.0	Clear	4	0	0	0	0	4
East Fork Winchuck	1.5	Clear	29	7	3	10	7	19

UPYER WILLAMETTE

Ralph L. Swan

General creel census studies
Most of the creel census data were gathered from the McKenzie River, Willamette River, and other popular fishing areas such as Clear and Gold Lakes. Little angling pressure was noted on Lookout Point and Dexter Reservoirs. Dorena Reservoir provided good angling but pressure was light. Anglers from several of the high Cascade lakes were interviewed and most of them reported good catches of fish. Little angling pressure resulted from the opening of the Long Tom River to winter angling; however, the main part of the cutthroat run in the stream may have been over by the time it was opaned.

A summary of 4,176 creels checked in the field by Game Commission and State Police personnel will be found in Table 44.

McKenzie River and tributaries
Water conditions were ideal when the trout season opened and the rate of catch was good. Larger percentages of fish in the eight to ten and ten to twelve inch groups were taken from the McKenzie than in 1958 and the rate of catch was higher.

Reports were received from eight guides who reported making 213 trips. Guided anglers fished 2,763 hours and caught 2,538 trout at a rate of .92 fish per hour or 6.5 fossh fer angler as compared to .77 fish per hour and 1.81 fish per anglor for each non-guided angler.

Salmon anglers were also favored with good water conditions and their rate of catch rose from .07 in 2959 to .10 in 1959. Most of the angling took place below the Leaburg dam and in the tailrace below the Leaburg powerhouse.

Clear Lake
The totel catch as calculated from boat rentals and creel census data Was 19,779, which was littie different from 1958 when 19,928 fish were taken. Approximately 87 per cant of the rainbow and 85 per cent of the cutthroat were eight inches and over in length. This was a rise of 12 per cent for the rainbow and a drop of 5 per cent for the cutthroat as compared to the 1958 catch. Myxosporidia was present but did not seem to be any more prevalent than in 1958. Markec fish were virtually non-cxistent, with only two left ventral clipped rainbow being checked. A summary of monthly creel records is shown in Table 45.

Willamette River

The rate of catch improved in the upper Willamette River and most of its tributaries over 1958. Watur conditions were good and yearling trout were stociaed at regular interyils.
TabIe 44

Water	Anglers checked	Hours	Species	Length in inches shown in percenteges						Total fish		Fish per angler	Fish per hour
				6-8	8-10	10-12	12-14	14-16	Over 16				
Beaver Creek	2	6	Ct	100							3	1.50	0.50
Blue River	22	110	Rb	35	55	10					65	2.95	0.59
Calapooya River	175	398	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ct} \end{aligned}$	$\begin{aligned} & 51 \\ & 61 \end{aligned}$	$\begin{aligned} & 44 \\ & 26 \end{aligned}$	$\begin{array}{r} 5 \\ 13 \end{array}$				$\begin{array}{r} 156 \\ 74 \end{array}$	230	1.32	0.58
Fall Creek	97	272	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ct} \end{aligned}$	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	$\begin{aligned} & 29 \\ & 42 \end{aligned}$	$\begin{aligned} & 5 \\ & 8 \end{aligned}$	1			$\begin{aligned} & 78 \\ & 12 \end{aligned}$	90	0.93	0.32
Hills Creek	3	7	Rb	45	55						22	7.33	3.74
Horse Creek	11	44	$\begin{aligned} & \mathrm{Rb} \\ & C t \end{aligned}$	$\begin{aligned} & 50 \\ & 86 \end{aligned}$	50	14				$\begin{aligned} & 2 \\ & 7 \end{aligned}$	9	0.82	0.20
Hulit Mill Pond	18	62	$\begin{aligned} & \mathrm{C} t \\ & \mathrm{~B} \end{aligned}$	2	$\begin{aligned} & 88 \\ & 78 \end{aligned}$	$\begin{aligned} & 10 \\ & 22 \end{aligned}$				$\begin{array}{r} 62 \\ 9 \end{array}$	71	3.95	1.15
Lake Creek	21	63	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ct} \end{aligned}$		$\begin{aligned} & 60 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \end{aligned}$				$\begin{aligned} & 10 \\ & 15 \end{aligned}$	25	1.19	0.40
Long Tom River	53	88	$\begin{aligned} & C \\ & I B \\ & B G \end{aligned}$	$\begin{array}{r} 72 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & 22 \\ & 50 \end{aligned}$	6				$\begin{array}{r} 82 \\ 2 \\ 2 \end{array}$	86	1.61	0.98
Lost Creek	2	1	Rb	33	67						3	1.50	3.00
Mozenzie River	524	1,232	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ct} \end{aligned}$	$\begin{aligned} & 27 \\ & 49 \end{aligned}$	$\begin{aligned} & 53 \\ & 35 \end{aligned}$	$\begin{aligned} & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$			$\begin{array}{r} 907 \\ 43 \end{array}$	950	1.81	0.77
	205	440	Ch		(adu	(ts)					44	0.21	0.10

Table 44 (continued)

Water	Anglers checlied	Hours	Species	Length in inches shown in percenteges						Total fish		Fish per angler	Fish perhour
				6-8	8-10	10-12	$\underline{1} \hat{-1 l_{i}}$	11-16	Over 16				
McKenzie River, South Fork	166	405	Rb	47	50	2	1			268			
			Ct	30	60	10				10			
			Wf		33	34	33			3	281	1.69	0.69
Mosby Creek	32	85	Rb	27	51	22				67			
			Ct	27	73					11	78	2.44	0.91
Muddy Creek	4	5	B	100							3	0.75	0.60
Quartz Creek	24	86	Rb	24	55	21				53			
			Ct	76	24					46	99	4.13	1.15
Roaring Rivar	2	5	Ct	100							9	4.50	1.80
Salmon Creek	27	54	Rb	38	57			5		28			
			Ct	100						2	30	1.11	0.55
Row River	36	93	Rb	31	66	3					69	1.91	0.74
Sharps Creek	48	97	Rb	50	45	4	1			106			
			Ct	63	30	7				43	149	3.10	1.54
Siuslaw River	31	107	Ct		21	61	18				49	1.58	0.47
Triangle Lake	24	73	Rb		93	7				24			
			Ct		73	27				15			
			BG	100						1			
			P		100					1	41	1.70	0.56
Willamette River	26	46	Hb	54	37	9				41			
			Ct		86	12	2			29			
			Ch		100					4	74	2.85	1.60
Willamette Rivor,	37	39	Rb	47	44	9				34			
Coast Forl:			Ct	38	50	12				18	52	1.40	1.32

Table $4 h_{\text {(continued) }}$

Table 44 (continued)

Water	Anglers checked	Hours	Species	Length in inches showt in percentages						Total fish		Fish per angler	Fish per hour
				6-8	8-10	10-22	12-14	$14-16$	Over 16				
Cascade lakes													
Betty	7	13	EB					100			5	0.72	0.38
Bongo	2	30	EB			31	31	21	17		19	9.50	0.63
Campers	6	$1{ }_{4}$	EB		94	6					15	2.50	1.07
Clear	822	3,643	$\begin{aligned} & \mathrm{Rb} \\ & \mathrm{Ct} \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	$\begin{aligned} & 58 \\ & 41 \end{aligned}$	$\begin{aligned} & 25 \\ & 22 \end{aligned}$	$\begin{array}{r} 3 \\ 15 \end{array}$	$\frac{1}{4}$	3	$\begin{array}{r} 1,539 \\ 27 \end{array}$	1,566	1.91	0.43
Eastern Brook	11	46	EB	2	64	32	2				50	4.55	1.08
Ecma	5	17	Rb	23	62	15					13	2.60	0.76
Edieleo	4	40	EB			100					15	3.75	0.37
Ermabolle	25	185	Rb		28	41	22	6	3		110	4.40	0.59
Fish	24	52	Ct	52	36	12					23	0.96	0.44
Gander	3	9	EB			100					30	10.00	3.33
Gold	215	1,123	Pb	1	18	27	30	18	6		385	1.78	0.34
Hand	7	33	EB	8	51	47					37	5.30	1.11
Hidden	64	131	ct		75	20	5				100	1.56	0.77
Horsefly	8	11	EB	36	56	8					11	1.38	1.00
Island	4	14	EB	60	30	10					10	2.50	0.72
Kiwa	2	5	Rb	33	67						3	1.50	0.60

Table 44 (continued)

Water	Anglers checked	Hours	Species	Length in inches shown in percentages						Total fish		Fish per angler	Fish per hour
				6-8	8-10	10-12	12-14	11.16	Over 16				
Linton	9	39	Rib			100				1			
			EB	66		34				3			
			Br			40	44	16		25	29	3.22	0.74
Long	7	34	EB		6	14	38	28	14		21	3.00	0.62
Marylin (lower)	15	54	EB		30	33	33	4			33	2.20	0.61
Marylin (upper)	6	7	EB				50	50			2	0.33	0.28
McFarland	4	32	Rb				100				2	0.50	0.06
McFarlend (east)	4	20	Rb	52	48						18	4.50	0.90
Otter	11	72	EB				27	36	37		22	2.00	0.31
Rigdon (lower)	2	6	EB				100				3	1.50	0.50
Robinson	1	5	EB			100					1	1.00	0.20
Round	6	30	Rb			44	30	13	13	30			
			EB			100				2	32	5.33	1.07
Salmon	13	60	EB	20	44	30	6				78	6.00	1.30
Separation	5	30	Rb		16	32	16	16	20		12	2.40	0.40
Torrey	2	20	EB	17	27	27	17	12			18	9.00	0.90
Wahana	7	106	Rb	4	45	36	11	4		66			
			EB					100		1	67	9.57	0.63
Waldo	16	104	Rb		33	56	8	3		39			
			EB		25	75				4	43	2.70	0.41

Tabie $4 山$ (continued)

	Anglers checked	Hours	Length in inches shown in percentages							Total fish	Fish per angler	Fish per hour
Water			Species	6-8	8-10	10-12	12-74	$\underline{14-16}$	Orer 16			
Whig	10	38	Rb		77	13	7	3		30	3.00	0.78
Totals	4,381	14,038								8,263	1.89	0.59

[^2]19
Metolius River, 170, 172
Squaw Creek, 170, 172
Umpqua District,7
Eel Lake,
kokanee, Bend District, 170, 173
Woahink Lake, }24
Northeastern Oregon, 100, 103
salmon, South Coast, 48, 49
Tillamook District, 230
silver salmon, Coos Bay area, 256, 257
Coos-Coquille District, 257
Coquille River, 255, 256
Tenmile Lakes,4
Umpqua River, 1, }
Steamboat Creek, 18
steelhead, John Day District, 196
Squaw Creek, }17
Tillamook District, 237, 238
Umpqua River, 4, 18
Wallowa River, 100, }10
sport catch, Bend District, 154, 164-166
Beulah Reservoir, 113
bottom fish, Tillamook District, 240
chinook, Umpqua, 6, }
Willamette River, Lower, 75, 77
Diamond Lake, 175, 183, 184
East Lake, 167, 168
Fish Lake (Harmey County), 112
Fish Lake (Jackson County), 39, 41
Howard Prairie Reservoir, Ll
Klamath District, lakes and streams, 176-178
Klamath River, 190
Lake of the Woods, }18
Odell Lake, }18
Paulina Lake, 169, 171
Rogue District, lakes and reservoirs, 39, 40
salmon, Alsea River, 249, 251
Astoria District, }22
Columbia River, 100, 104, 216, 219, 220
Coos Bay, 258, }26
Coquille River, 259, 260
Necanicum River, 222
Nehalem River, 221, 223
Northeastern Oregon streams, 100, 104
Rogue District, 23-29, 38, 40, 41
Silatz River, 249, 250
Siuslaw River, 250, 252
state-wide, 287-289
Tillamook District, 226-229

```
sport catch, salmon, Umpqua District, 8 Winchester Bay, 6, 9
shad, Coos-Coquille District, 262, 263 Millicoma River, 263
silver salmon, Tenmile Lakes, 6, 10
Southeastern Oregon, lakes and reservoirs, 109-111
Squaw Lakes, 41, 42
steelhead, Alsea River, 243, 244
Columbia River, 100, 104
Coos Bay area, 261
Coquille River, 261
Deschutes River, 143, 14
Hood River, \(140,142,143\)
John Day District, 195, 196
Northeastern Oregon streams, 100, 104
Rogue District, 36-38, 42, 43
Sandy River, 77, 78
Siuslaw River, 243
South Coast, 47, 48
state-wide, 287-289
Tenmile Creek, 243
Tillamook District, 230, 233, 234, 236
Umpqua District, 8, 10, 12, 13
striped bass, Coos-Coquille District, 264
Umpqua District, 8, 11
tidewater fishery, Lincoln District, 249
trout, Alsea River, 249, 251
Astoria District, 216, 218, 223
Cascade lakes, 57, 67, 70, 71
Clear Lake, 50, 56
coastal lakes, Lincoln District, 246
Tillamook District, 240
coastal streams, Lincoln District, 245
Columbia District, 132-136
Coos-Coquille District, 262, 263
Detroit Reservoir, 64-66
Devils Lake, 246
Erhart Lake, 248
Georgia Lake, 248
Higgins Reservoir, 93, 94
Hood River, 137
Imnaha River, 105, 106
John Day District, 199, 206
Lincoln District, 245, 246
Lost Lake (Douglas County), 248
Lost Lake (Hood River County), 132, 139, 140
Lower Willamette District, 82
McKay Reservoir, 91, 93
McKenzie River, 40
Morgen Lake, 91, 93
Murray Reservoir, 93, 94
Necanicum River, 217, 222
```

sport catch, trout, Nehalem River, 219, 221, 223
Nestucca River, 239
North Santiam, 65, 68
Northeastern Oregon, 94, 95, 105
Olallie Lake, 132, 137-139
Pudding River, 67, 69
reservoirs, Upper Willamette District, 57
Rogue District, 38, 39, 42, 43
Salmon River, 241
Siletz River, 249, 250
Siuslaw River, 250, 252
South Coast, 47
South Santiam, 66, 68
Tillamook District, 237, 239
Timothy Meadows Reservoir, 80
Umpqua District, 10, 13, 14
Unity Reservoir, 93, 94, 99
Wallowa Lake, 86, 87
west-side Wi Ilamette streams, 67, 69
Willamette River, upper, 50-56
Woahink Lake, 246
warm-water game fish, Cold Springs Reservoir, 90, 93, 96
Northeastern Oregon, 96
Rogue District, 42
Willow Creek Reservoir, 41
Yaquina Bay, 248, 249
spruce budworm spray effects, John Day, 210, 211
stocking, salmon, Umpqua District, 15
state-wide, 290-296
steelhead, Sandy River, 78
Umpqua District, 16
trout, Wallowa Lake, 87
Wallowa Mountain lakes, 90
stomach analyses, Odell Lake, 187, 188
stream flows, Rogue District, 46
STREAM IMPROVEMENT, 284-286
stream improvement, Tillamook District, 242
strearn surveys, John Day District, 212-214

```
    \(T\)
temperature studies, Allison Creek, 130
    Morgan Lake, 98
    Rogue District, 46
    Silver Crsek, 129
    Steamboat Creek, 17
TILLAMOOK, 226-242
trapping, Steamboat Creek, 17
U
UMPQUA RIVER, 1-21
UPPER WILIAMETTE, 50-63

WARM-WATER GAME FISH, 277-283
weed control, Delintment Lake, 117 Northeastern Oregon, 107 ponds, 280, 281```


[^0]:    MONTH
    WITH
    ORY-REARED SPRING CHINOOK COMPARED
    OF RELEASE, ROGUE RIVER, 1949-'59
    
    RETURN

[^1]:    1 Using unprojected census data

[^2]:    Table 45
    Monthly catches of trout in Clear Lake - 1959

    | Month | Moorage boats rented | Calculated totai boats | Calculated total ane | $\begin{gathered} \text { Aver ag } \\ \text { ajach } \\ \hline \end{gathered}$ | Total catch |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | May | 74 | $11 / 1$ | 409 | 4.40 | 1,800 |
    | Jme | 538 | 755 | 2,273 | 4.30 | 9,774 |
    | July | 690 | 960 | 2,208 | 2.17 | 4,793 |
    | Aughast | 597 | 830 | 1,828 | 1.23 | 2,24,8 |
    | Sopteningr | 173 | 245 | 613 | 1.51 | 926 |
    | October | 35 | 48 | 120 | 2.00 | 240 |
    | Totals | 2,107 | 2,979 | 7,1:51 | 2.65 | 19,779 |

    ## Reservoirs

    Little angling pressure was noted on Lookout Point and Dexter Reserroirs after the opening weekend of trout season. Regular creel checks wers not made at either reservoir because of the lack of anglers. It is estimated that less than 2,000 fish were taken from Dextar and less than 1,500 were taken from Lookout Point Reservoirs throughout the fishing season.

    Dorena Reservoir contained a good population of rainbow but angling pressure was lighter than expected, particularly in July and August. Pressure increased in September and October when the reservoir reached minimum pool. Most of the trout taken were from fingerling plants made in 1958 following chemical treatmant. Growth of the fingerlings was good through the winter months with many fish reaching ten inches by the opening of trout season. Growth through the summer months, however, was slow and few fish over twelve inches in length were taken by the end of the season. See Table 46 for creel records obtained on Dorena Reservoir.

    Rainbow fingerlings stocked in Row River above the reservoir ranged up to eight inches in length at the beginning of the trout season. Fingerlings released in Sharps Creek, however, had barely reached the minimum length of six inches.

    > Table 46
    > Monthly catches of trout in Dorena Reservoir 1959

    | Month | Anglars | Hours | Rainbow | Fish per <br> anglar | Fish per <br> hour |
    | :--- | :---: | ---: | :---: | :---: | :---: |
    | April | 1,981 | 9,905 | 9,508 | 4.80 | 0.96 |
    | May | 5,670 | 18,731 | 26,650 | 4.70 | 1.45 |
    | June | 1,128 | 7,388 | 6,206 | 5.50 | 0.84 |
    | Juyy | 1,782 | 6,148 | 5,190 | 2.90 | 0.84 |
    | Augusi | 1,332 | 10,213 | 7,660 | 5.75 | 0.75 |
    | September | 2,749 | 11,043 | 9,472 | 3.45 | 0.85 |
    | Cctober | 1,653 | 8,040 | 11,407 | 6.90 | 1.42 |
    | Totals | 16,295 | $71,4,68$ | 76,093 | 4.67 | 1.06 |

    Except for the early part of the trout season, angling pressure for trout was light on Cottage Grove Reservoir. Most of the angling in the summer months was for bass and catfish. Small bass were taken in substantial numbers.

    Litille activity was noted on Fern Ridge Reservoir but the borrow pit below the dam received heavy angling pressure when excess rainbow brood trout from the Leaburg hatchery were released there. Anglers caught a large percentage of the brood fish released.

    ## Cascade lakes

    The rate of success was high in most of the Cascade lakes according to the anglers interviewed. Gold Lake was exceptionally good for large rainbow
    at the beginning of the season. Fish Lake, in Linn Country, provided little angling although anglers reported seeing good numbers of fish in the lake.

    Throuzh road blocks on the Taylor Burn road it was possible to obtain information on several lakes not covered in routine investigations. All fish examined were in good condition and the percentage of large fish was high on the more inaccessible lakes.

    The prolonged dry summer caused the levels of many of the lakes to drop far below normal. Hand Lake, on the McKenzie Pass, dropped to a record low and no signs of fish could be found. Campers Lake nearby also became very low.

    ## Anadromous fish

    As in previous years, the large volume of water in the Walterville and Leaburg powerhouse tailraces attracted large numbers of spring chinook salmon. The number of fish entering the tailraces was apparently greater in 1959 than in previous years because of the low flow in the McKenzie River. Flows were reduced in the powerhouse tailraces by the Eugene Water and Electric Board in order to encoarage fish into the main flow of the McKenzie River.

    The Oragon Fish Comaission estimated ovar 5,000 spring chinook passed over the Leaburg dam. Both visual and electronic counts were used to make the estimate.

    State Polica game officers checked 43 steelhead anglers on the Calapooya Rivar with 7 steelhead and 1 cutthroat which were taken at a rate of .064 fish per hour or . 18 fish per angler.

    ## Population of fourtean-inch length trout

    Reports were received from eight guides whose parties released 74 rainbow over fourteen inches in length. The proportion of large fish released was one for every 34 under fourteen inches kept as compared to one for every 116 kept in 1958.

    Traps were installed in the ladders at the Leaburg dam in the first week of April and removed on May 18 in order to permit the Fish Commission to install electronic counting devices for spring chinook salmon emmeration. The traps took 46 rainbow over fourteen inches and 97 mider. Of the 97 under fourteen inches, approximately half were mature. In addition the traps took 3 steelhead, 2 catthroat, and 1 Dolly Varden trout. The Oregon Fisin Commission counted ll4 trout of all sizes betweon May 18 and July 16.

    ## Gill net sets

    Annual gill net sets were made in the following waters; Lookout Point Reservoir, Dexter Reservoir, Dorena Reservoir, and Triangle Lake. Nets were also set in the millrace at the University of Oregon, several dredge ponds at the mouth of the Coast For' of the Willamette River, and Waldo Lake. Results of the sets will be found in Table 47.

    Table 47
    Gill net set results

    | Date | Water | Spacies | Namber | Avarage <br> langth (inches) |
    | :---: | :---: | :---: | :---: | :---: |
    | February 10 | Dorena | Rainbow | 5 | 7.5 |
    | September 4 | Dorena | Rainbow | 13 | 9.6 |
    |  |  | Catfish | 19 | 6.3 |
    | April 30 | Coast Foris Willamette borrow pits | Sucker | 23 | 13.9 |
    |  |  | Squawfish | 1 | 13.0 |
    |  |  | Redsided shinar | 5 | 5.0 |
    |  |  | Chiselmouth | 7 | 9.8 |
    |  |  | Columbia River chab | 3 | 9.1 |
    |  |  | Bluegill | 9 | 4.9 |
    | April 30 | Goodpasture borrow pit | Sucker | 19 | 15.7 |
    |  |  | Chiselmouth | 9 | 10.7 |
    |  |  | Squawfish | 4 | 10.0 |
    |  |  | Black crappie | 2 | 5.9 |
    |  |  | Bluegill | 9 | 4.9 |
    | April 30 | University of Oregon millrace | Sucker | 1 | 6.0 |
    | August 20 | Dexter Reservoir | Squawfish | 1 | 7.0 |
    | September 14 | Dexter Reservoir | Rainbow | 1 | 9.0 |
    |  |  | Sucker | 3 | 11.3 |
    |  |  | Squawfish | 4 | 8.0 |
    | August 20 | Lookout Point Reservoir | Squawfish | 35 | 9.4 |
    |  |  | Sucker | 3 | 10.3 |
    |  |  | Rainbow | 1 | 8.0 |
    |  |  | Kokanee | 1 | 9.0 |
    | September 17 | Triangle Lake | Sucker | 4 | 25.6 |
    |  |  | Squawfish | 3 | 12.8 |
    |  |  | Catrish | 19 | 8.3 |
    |  |  | Bass | 3 | 7.8 |
    |  |  | Bluegill | 16 | 5.5 |
    |  |  | Cuttiroat | 9 | 9.3 |
    | August 19 | Gold Lake | Rainbow | 12 | 10.4 |
    | September 8-11 | Waldo Lake | Rainbow Eastorn brook | $\begin{aligned} & 55 \\ & 4 \\ & \hline \end{aligned}$ | $\begin{array}{r} 9.5 \\ 12.3 \\ \hline \end{array}$ |

    Nets set in Dorena Reservoir took catfish for the first time since its rehabilitation in 1958. Several of the cutthroat taken from Triangle Lake had lamprey scars but were in good condition otherwise. Several trout taken September 4 were in spawing condition.

    Over twenty lakes in the high Cascades were surveyed for the first time by the lake survey crew and the data regarding length frequencies and length at maturity may be found in Tables 48 and 49.

    A gill net set in the millrace at the University of Oregon took only one small sucker, but a subsequent treatment with rotenone revealed a heary population of rough fish. Suckers, squawfish, Columbia River chub, carp, catfish, bass, and bluegill were killed.

    Barriers and pollution
    The most serious barrier to fish migration, other than the tailraces of the Eugene Water and Electric Board, was the Georgia-Pacific mill dam in Springfield. On June 15, a thirty-minute count was made at the dam and spring chinook wera jumping at the rate of one a minute. No fish were observed passing the barrier.

    A portion of the new road around Cougar Reservoir slid into the stream and it was thought for a time that it would be a barrier to the spring chinook runs at low water levels. However, redd counts made above the slide by the Fish and Wildlife Service indicated that more than 1,500 fish passed over the barrier.

    At times a considerable amount of muddy water was noted in the Willamette River below Hills Creek dam and in the McKenzie River below Cougar dam. The Hills Creek contractor was served notice by the State Sanitary Authority to reduce the amount of sediment entering the river. Little muddy water entered the McKenzie River during the trout season and what enterad at other times was of short duration.

    ## Reservoir investigations

    Close contact was maintained with the U. S. Fish and Wildlife personnel stationed in Eugene on developments concerning Hills Creek and Cougar Reservoirs. Some work was done on the tributaries of the Willamette River above the Hills Creak dam site in an attempt to determine the range of rough fish in the watershed. Cresol was used as a means of sampling the composition of the fish populations but the results were not satisfactory. The chemical was effective for short distances in low volume streams but it would not penetrate the deeper pools.

    Temperature records at the Cougar dam site revealed that there was an eight degree rise in the average daily temperature of the water passing through the cleared impoundment area during the summer months.

    Road construction
    Plans for a tiraber access road up the Coast Fork of the Willamette River were checked with the logging engineer for the Weyerhaeuser Company.
    Table 48
    Composition and length frequency table of gill net catches

    |  | Number of sets | Species | Number taken | Number in one inch size groups (fork length) |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Lake |  |  |  |  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | $1{ }_{4} 15$ | Over 15 |
    | Abemethy (lower) | 1 | Rb | 1 |  |  |  |  |  | 1 |  |  |  |  |  |  |
    | Abernethy (upper) | 2 | Rb | 5 |  |  |  |  | 4 |  | 1 |  |  |  |  |  |
    | Blatr | 2 | EB | 30 |  |  |  | 14 | 4 | 8 | 2 |  | 2 |  |  |  |
    | Devils | 2 | EB | 10 |  |  |  |  |  |  |  |  | 5 | 4 | 1 |  |
    | Eileen | 1 | EB | 7 |  | 1 | 1 | 2 | 2 |  |  | 1 |  |  |  |  |
    | Elf | 1 | $\begin{aligned} & \mathrm{EB} \\ & \mathrm{Rb} \end{aligned}$ | $\begin{aligned} & 5 \\ & 8 \end{aligned}$ |  |  | 8 |  | 3 | 2 |  |  |  |  |  |  |
    | Ernie | 2 | EB | 35 |  |  | 10 | 7 | 2 | 8 | 5 | 2 | 1 |  |  |  |
    | Glaze | 1 | EB | 15 |  |  | 11 | 4 |  |  |  |  |  |  |  |  |
    | Heart | 2 | EB | 49 | 1 | 2 | 6 | 6 | 23 | 4 | 5 | 2 |  |  |  |  |
    | Hidden | 2 | Ct | 61 |  |  | 10 | 5 | 7 | 8 | 9 | 11 | 6 | 5 |  |  |
    | Huckieberry | 2 | EB | 4 |  |  |  |  | 2 |  |  |  |  |  | 1 | 1 |
    | North Torrey | 2 | EB | 22 |  |  |  | 5 | 8 | 2 | 1 | 2 | 3 | 1 |  |  |
    | Notch | 2 | EB | 5 |  |  |  | 1 | 2 | 2 |  |  |  |  |  |  |
    | Waldo | 6 | $\begin{aligned} & \mathrm{EB} \\ & \mathrm{Rb} \end{aligned}$ | $\begin{aligned} & 45 \\ & 55 \\ & \hline \end{aligned}$ |  |  | $\begin{aligned} & 1 \\ & 4 \\ & \hline \end{aligned}$ | 4 | $\begin{array}{r} 1 \\ 13 \end{array}$ | 11 | 6 4 | $\begin{aligned} & 6 \\ & 6 \\ & \hline \end{aligned}$ | 6 | 10 4 | $\begin{array}{ll} 8 & 5 \\ 2 \end{array}$ | 2 |

    Table 49

    | Lake | Average length of female fish in each stage of maturity collected in gill nets in Willamette National Forest lakes, 1959 |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Immature |  | Maturing |  | Mature |  |
    |  | Species | Number in sample | Average length, inches | $\begin{gathered} \text { Number in } \\ \text { sample } \\ \hline \end{gathered}$ | Average length, inches | $\begin{gathered} \text { Number in } \\ \text { sample } \end{gathered}$ | Average length, inches |
    | Abernethy (lower) | Rb |  |  | 1 | 9.0 |  |  |
    | Abernethy (upper) | Rb |  |  | 2 | 9.1 |  |  |
    | Blair | EB |  |  | 16 | 9.6 |  |  |
    | Devils | EB |  |  | 3 | 12.6 |  |  |
    | Eileen | EB |  |  | 2 | 7.8 | 2 | 8.5 |
    | Elf | $\begin{aligned} & \frac{\mathrm{EB}}{\mathrm{Rb}} \end{aligned}$ | 1 | 6.2 | 4 | 8.8 |  |  |
    | Ernie | EB |  |  | 9 | 7.7 | 2 | 9.4 |
    | Glaze | EB |  |  | 10 | 6.7 |  |  |
    | Heart | EB |  |  | 22 | 8.4 |  |  |
    | Hidder | Ct | 2 | 7.4 | 19 | 10.2 | 1 | 13.1 |
    | Huckleberry | EB |  |  | 2 | 8.5 | 2 | 15.5 |
    | North Torrey | EB |  |  | 6 | 7.9 |  |  |
    | Notch | EB |  |  |  |  | 5 | 12.2 |
    | Weldo | EB | 1 | 11.5 | 20 | 12.7 | 4 | 13.2 |
    |  | Rb | 14 | 8.9 |  |  |  |  |
    | Wiiliams | $\mathrm{Rb} / 1$ |  |  | 2 | 8.8 |  |  |

    $\angle 1$ Males - no females taken

    A trip was made to the site to determine the road's effect on the stream. A small amount of roci rip-rapping was planned along with a minor channel change in a sharp bend in the stream. Neither was deemed to be a serious threat to fish life.

    Plans for a Bureau of Land Management timber access road up Greenleaf Creek in the Siuslaw watershed were studied with representatives of the Bureau of Land Management and Bureau of Public Roads. Sections of the road where it would be near the stream were visited and the need for keeping a clear channel was stressed. Both agreed to do everything possible to leave the stream in its natural state and to let the contract in the summer to further minimize damage to the fishery.

    ## Diseases and parasites

    Trout held in the hatcheries in the district were examined periodically for the presence of diseases and parasites. Gyrodactylas and Trichodina were found present on rainbow at the Willamette Hatchery and were subsequently treated with formalin. Assistance was given to the superintendent at the McKenzie Hatchery in an attempt to save the channel catfish scheduled for release in Devils Lake. Sevaral types of treatments were tried but none were successiul in ridding the fish of the infestation of Ichthyophthirius.

    Both the rainbow and cutthroat in Cottage Grove Reservoir were heavily infected with copepods in the sumaer months. Dead fish were observed on several occasions.

    Heavy fungus infections developed on some of the rainbow brood fish released in the borrow pit below Fern Ridge Reservoir.

    Tapeworm cysts continued to be found in varying numbers in the trout examined from the high Cascade lakes. Of sixty fish examined from Waldo Lake, forty-eight contained tapeworm cysts.

    Several Myxosporidia infected rainbow from Clear Lake were sent to the Western Fish Disease Laboratory at Seattle, Washington, for species identification. A tentative identification of Myxosoma sp. Was given. Some of the fish were frozen at the lab for further study but no report has been received. Cutthroat trout from Triangle Lake were examined for the presence of Myxosporidia but none were found.
    

    # CENTRAL WILIAMETTE 

    J. J. Wetherbee

    ## Steelhead

    Steelhead were first observed in the Santiam Rivar system the last week in Marci. From all indications, the 1959 steelhead run was comparatively low. The delay of migrants at the various barriers was again observed.

    Table 50 discloses that 163 anglers fished 299 hours to catch five steelhead and four trout. Quartzville Creek has become a popular steelhead stream as an access road paralleling the creek enables anglers to locate fish readily. As in past years, the bulk of the steelhead are caught during the first part of trout season.

    Table 50
    Creel census, steelhead, Middle Willamette tributaries 1959

    | Water | Number <br> anglers | Hours <br> fished | Rainbow | Cutthroat | Steelhead | Totel <br> fish |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
    | North Santiam | 82 | 128 | 1 | 3 | 0 | 4 |
    | South Santiam | 40 | 94 | 0 | 0 | 3 | 3 |
    | Middle Santiam | 19 | 48 | 0 | 0 | 2 | 2 |
    | Santiam River | 13 | 18 | 0 | 0 | 0 | 0 |
    | Thomas Creek | 9 | 11 | 0 | 0 | 0 | 0 |
    | Totals | 163 | 299 | 1 | 3 | 5 | 9 |

    Spring chinook
    The main run of spring chinook bypassed the Stayton power canal although a few salmon were still attracted into the tailwaters of the spill dan off the canal. The Fish Commission installed a temporary fish lader over the dam which provided some passage. Chinook were not concentrated behind the various dams as in past years, although the 1959 ron was relatively low. Creel census data for salmon anglers checked are included with other such data in Table 53.

    ## Detroit Reservoir

    The estimated total catch and effort for Detroit Reservoir was 259,847 fish taken by 108,753 anglers. In additional 65,000 people were classed as boaters and onlookers and were not included in the estimates. A six-year comparison of creel check data may be seen in Table 51.

    Bi-monthly catch records for Detroit are presented in Table 52. Angling success for the season was 0.69 fish per hour, the highest on record for the reservoir. Hatchery rainbow were heavily utilized in the upper arms.

    When stocking terminated in July, a good fishery was maintained on fish reared in the reservoir. Rainbow in the catch again ranged from 8 to 12 inches in length.

    Table 51
    Catch, Detroit Reservoir 1954-1959

    |  | 1954 | 1955 | 1956 | 1957 | 1958 | 1959 |
    | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
    | Anglers checked | 3,559 | 4,022 | 2,446 | 2,029 | 1,452 | 2,514 |
    | Total fish caught | 9,868 | 5,689 | 3,381 | 4,254 | 2,546 | 6,157 |
    | Fish per angler | 2.74 | 1.41 | 1.38 | 2.09 | 1.75 | 2.45 |
    | Fish per hour | 0.54 | 0.54 | 0.39 | 0.44 | 0.42 | 0.69 |
    | Estimated anglers | 49,062 | 61,738 | 64,787 | 91,660 | 97,950 | 108,753 |
    | Estimated catich | 131,796 | 87,050 | 89,406 | 147,332 | 171,412 | 259,847 |

    An initial stocking of 500,000 kokanee fry was made in April.
    A total of 20,000 marked rainbow fingerlings was released among the annual fingerling allotment in order to determine the contribution of fingerling plents to the catch in 1960.

    The catfish population in the reservoir was sampled by fishing catfish hoop nets. An overnight set produced 24 bullhead catfish, ranging in size from 7.2 to 10.6 inches in length. There is some question as to whether this species can reproduce in the reservoir to the extent of endangering the trout population.

    Creel census
    Excellent creel census coverage of streams and lakes was obtained through efforts of State Police game officers. The officers and Game Commission personnel interviewed 3,261 anglers on high lakes and the various stream systems in the district. An additional 2,514 anglers were checked on Detroit Reservoir.

    Creel census totals are analyzed by stream system. Cascade lakes are tabled separately.

    North Santiam System
    Better utilization of hatchery releases in 1959 accounted for a pronounced increase in angling success on North Santiam streams. All major tributaries exceeded one fish per hour. The upper North Santiam and Breitenbush Rivers received heavy angling pressure in June and July.

    An intensive creel check was conducted on MiIl Creek to determine its use as a juvenile stream. The creek received considerable pressure on the first two weekends only. Hatchery released rainbow constituted 89 per cent of the recorded catch. Other details concerning Mill Creek were covered in a special report.
    Table 52
    Creel census, Detroit Reservoir, 1959

    |  | Number of <br> anglers | Hours <br> fished | Rainbow | Chinook | Whitefish | Bullhead <br> catfish | Total <br> fish | Fish per <br> angler | Fish per <br> hour |
    | :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Period |  |  |  |  |  |  |  |  |  |

    

    Table 53 gives the creel census data for the various streams in the system.

    ## South Santiam System

    The release of hatchery rainbow accounted for an increase in angling success on most South Santiam streams. Anglers on the South Santiam River caught trout at a rate of 0.98 fish per hour. Creel census records are given in Table 54.

    West Side Willamette Streams
    Anglers enjoyed a success of 1.43 fish per hour on the Little Luckiamute River and 0.79 fish per hour on the Big Luckiamute. Native cutthroat made up 35 per cent of the catch for all streams on the west side. Results of creel census on west side streams are shown in Table 55.

    Pudding River System
    The average success on Abiqua Creek was 0.67 fish per hour, which was similar to that of 1958. Butte Creek anglers enjoyed a catch rate of 1.19 fish per hour, half of which were native cutthroat. Smaller tributaries in the system provided good fishing on native cutthroats early in the season. (See Table 56)

    ## Cascade Lakes

    Creel census
    For the third successive year, most of the popular Cascade lakes were accessible opening day. Marion, Ann, and Lost Lakes produced mediocre catches compared to the 1958 opening. Pamelia and Daly Lakes again provided good angling on cutthroat six to ten inches in length.

    Elk Lake, which has provided poor angling since chemical treatment in 1953 improved in 1959. Cutthroat, stocked in 1958, provided the bulk of the catch. A good number of rainbow over twelve inches were caught during the opening weekend. Angler success at Lost Lake was extremely low compared to past years; however, gill net samples indicated that a satisfactory trout population was present in 1959. The lake is exceptionally productive in fish food organisms. The catch records for the various lakes are presented in Table 57.

    ## Lake sureveys

    Sixteen Cascade lakes were surveyed by the district agent and the high lake survey crew. Parrish, Daly, and the two Gordon Lakes were surveyed for the first time.

    An excellent cutthroat population exists in both Gordon Lakes. Gill net samples produced 105 fish of which 45 wers over ton inches in length.
    Table 53

    | Water | Number anglers | Hours fished | $\begin{aligned} & \text { Rain- } \\ & \text { bow } \end{aligned}$ | Cutthroat | Eastern brook | Chinook | Whitefish | Steelhead | Total <br> fish | Fish per angler | Fish per hour |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | North Santiam | $24 山$ | 500 | 484 | 7 | 5 | 5 | 3 | 2 | 506 | 2.08 | 1.01 |
    | Breitenbush River | 259 | 516 | 641 |  |  |  | 1 |  | 642 | 2.48 | 1.24 |
    | Little North Fork | 194 | 392 | 423 |  |  |  | 1 |  | 424 | 2.18 | 1.08 |
    | Santiam River | 37 | 67 | 2 |  |  |  |  |  | 2 | 0.05 | 0.03 |
    | Mill Creek | 485 | 527 / | 133 | 16 |  |  |  |  | 149 | 0.31 | 1 |
    | Blowout Creek | 47 | 109 | 229 | 11 |  |  |  |  | 240 | 5.11 | 2.20 |
    | Marion Creek | 27 | 75 | 78 |  |  |  |  |  | 78 | 2.89 | 1.04 |
    | Parks Creek | 13 | 39 |  | 27 | 47 |  |  |  | 74 | 5.70 | 1.90 |
    | French Creek | 6 | 6 | 8 |  |  |  |  |  | 8 | 1.33 | 1.33 |
    | Pamelia Creek | 3 | 4 |  | 4 |  |  |  |  | 4 | 1.33 | 1.00 |

    Table 54
    Creel census, South Santiam system, 1959

    | Water | Number anglers | Hours <br> fished | Rainbow | Catthroat | Eastern brook | Chinook | Whitefish | Steelhead | Total fish | Fish per angler | Fish per hour |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | South Santiam | 175. | 567 | 483 | 73 |  | 2 |  | 1 | 559 | 3.19 | 0.98 |
    | Quartzville Creek | 106 | 241 | 90 | 11 |  |  |  | 4 | 105 | 0.99 | 0.44 |
    | Middle Santiam | 42 | 108 | 47 | 1 |  |  |  |  | 48 | 1.14 | 0.44 |
    | Crabtree Cruek | 101 | 249 | 147 | 19 |  |  | 1 | 1 | 168 | 1.66 | 0.68 |
    | Hoaring River Creek | 56 | 108 | 53 | 16 |  |  |  |  | 69 | 1.23 | 0.64 |
    | Wiley Creek | 48 | 84 | 9 | 40 |  |  |  |  | 49 | 1.02 | 0.58 |
    | Hamilton Creek | 22 | 28 | 12 | 2 |  |  |  |  | 14 | 0.64 | 0.50 |
    | Thomas Creek | 20 | 53 | 2 | 9 |  |  |  |  | 11 | 0.55 | 0.21 |
    | ḂIyeu Craek | 21 | 24 | 7 | 2 |  |  |  |  | 9 | 0.43 | 0.38 |
    | McDowell Creek | 10 | 17 | 4 | 14 |  |  |  |  | 18 | 1.80 | 1.05 |
    | Mooso Creek | 7 | 21 | 6 | 5 |  |  |  |  | 11 | 1.57 | 0.52 |
    | Canal Greek | 5 | 7 |  | 6 |  |  |  |  | 6 | 1.20 | 0.85 |
    | Indian Prairie Lake | 6 | 29 | 2 |  | 2 |  |  |  | 4 | 0.67 | 0.74 |
    | Moose Lake | 4 | 24 |  | 44 |  |  |  |  | 44 | 11.00 | 1.83 |

    Table 55

    | Water | Number anglers | Hours fished | Rainbow | Cutthroat | Total fish | Fish per angler | Fish per hour |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Big Luckiamute | 138 | 486 | 235 | 148 | 383 | 2.78 | 0.79 |
    | Little Luckiamute | 155 | 281 | 295 | 104 | 399 | 2.57 | 1.43 |
    | Rickreall Creek | 41 | 112 | 2 | 70 | 72 | 1.75 | 0.64 |
    | Mary's River | 12 | 23 | 3 | 7 | 10 | 0.83 | 0.44 |
    | Teal. Creek | 4 | 5 |  | 3 | 3 | 0.75 | 0.60 |
    | Pedee Creek | 2 | 6 |  | 2 |  | 1.00 | 0.33 |

    26
    Tenmile Creek, 243
    Wilson River, 234, 235

    ```

 \section*{F}
    ```

    farm ponds, 281, 282
    FEDERAL AID EXPENDITURES, 297
    fish production, hatcheries, 266, 269, 296
    FISH PROPAGATION, 266-275
    FISH STOCKING, 290-296
    FISHERI RESOURCE EXPENDITURES, 299
    fishways, Columbia District, 144, 146
    Rogue District, 45
    Umpqua District, 18
    flood control, Rogue River, 42, 45
    food studies, hatcheries, 266, 270-274
    Forest Camp use, Diamond Lake, 179, 182

    ```

 \section*{G}

 GAME COMMISSION HATCHERTES, 301
 growth studies, Southeastern Oregon, 118-122
 warm-water game fish, 283
 guided catch, McKenzie River, 50
 Rogue River, 45
 South Coast, 58

 \section*{H}
 habitat improvement, Astoria District, 224
 Bend District, 173, 174
 Davis Lake, 154
 John Day District, 210
 Northeastern Oregon, 106
 Silver Creek, 126, 129, 130
 Southeastern Oregon, 114, 117
 state-wide, 284-286
 Tillamook District, 242
 Umpqua District, 18
 hatcheries, Game Commission, 301
 hatchery automation, 275
 J
 JOHN DAY, 195-215

 K
 key stream program, Columbia District, 132, 137
 KLAMATH DISIRICT, 175-194
 ladders, Big Bend, 190, 191 Illinois Falls, 46
 Rogue District, 45
 IAKE AND STREAM REHABILITATION, 298
 lake improvement, Umpqua District, 21
 lake surveys, Astoria District, 224, 225
 Southeastern Oregon, 131
 license survey, Owyhee Reservoir, 115
 life history studies, steelhead, 18, 19, 24
 LINCOLN DISTRICT, 243-254
 LOWER WILLAMETTE, 75-85
 M
 management, Big Gultus Lake, 147
 Big Lava Lake, 153
 Crane Prairie Reservoir, 153
 Crescent Lake, 184
 Davis Lake, 154
 Dayville Pond, 207
 Devils Lake, 184
 Diamond Lake, 175, 179
 East Lake, 163, 167, 168
 Elk Lake, 156
 Fourmile Lake, 184
 Haystack Reservoir, 156
 Jump Off Joe Creek, 207
 Klamath Lake, 184
 Klamath River, 190
 Lake of the Woods, 185
 Little Lava Lake, 157
 Miller Lake, 189
 Mud Lake, 157
 North Twin Lake, 157
 Ochoco Reservoir, 157
 Odell Lake, 186
 Paulina Lake, 163, 169, 171
 Pelton Reservoir, 158-162
 ponds, Northeastern Oregon, 96, 99
 Sparks Lake, 158
 steelhead, Siletz River, 72
 Wall owa Lake, 86-89
 warm-water game fish waters, 277-283
 Wiliiamson River, 191
 marked salmon retums, Coos Bay, 259
 Rogue River, 26, 29-36
 Tillamook District, 230, 232
 Umpqua District, 15
 marked steelhead returns, Necanicum River, 220
 Tillamook District, 234
 Umpqua District, 16
 marking, lake trout, Odell Lake, 189 salmon, Tenmile Lakes, 21
 mortality, stocking, 114, 116
 unscreened diversions, Northeastern Oregon, 100, 103

 \section*{N}

 NORTHEASTERN OREGON, 86-108
 0
 OREGON SALMON AND STEELHEAD SPORT FISHERY, 287-289

 \section*{P}
 parasites, East Lake, 170
 John Day District, 212
 Lake of the Woods, 185
 Paulina Lake, 170
 trout, South Coast, 63
 pollution, John Day District, 209-211
 South Coast, 60
 population studies, Astoria District, 224, 225
 Brownlee Reservoir, 90-92
 Cascade lakes, 5, 7, 67, 72-74, 83-85
 Central Willamette District, 65
 chinook, Central Willamette District, 64
 McKenzie River, 58
 Sandy River, 79
 coastal lakes, 6, 58, 59, 61, 62
 Coos-Coquille District, lakes, 265
 Diamond Lake, 175, 180-182
 Klamath District, 192-194
 Magone Lake, 207-209
 North Fork fishway, 80, 81
 Odell Lake, 186, 187
 Olive Lake, 202, 206
 siiver salmon, Luckianute River, 72
 Southeastarn Oregon, 119, 123-128
 steelhead, Central Willamette District, 64 Crystal Springs Creek, 83
 Hood River, 143
 Sandy River, 79
 Strawberry Lake, 202, 207
 Tillamook District, 240, 241
 trout, Bend District, 147-154
 Devils Lake, 247
 Higgins Reservoir, 99
 Lost Lake, ILI
 McKay Reservoir, 91 Morgan Lake, 91, 96 Northeastern Oregon, 100 South Coast, 47
 population studies, Wallowa Lake, 88
 Wallowa Mountain lakes, 88, 89
 propagation, fish, state-wide, \(266-275\)
 salmon, Hood River, 140
 Umpqua District, 15
 steelhead, Umpqua District, 16
 public fishing lake sites, John Day District, 209, 210 Southeastern Oregon, 118
 punch card analysis, 287-289

 \section*{R}
 rearing ponds, Northeastern Oregon, 107, 108
 South Coast, 60
 steelhead, Coos-Coquille District, 265
 Umpqua District, 16, 21
 regulations, angling, 276
 rehabilitation, Ana Reservoir, 174
 Antelope Reservoir, 114
 Chickahominy Reservoir, 118
 Devils Lake, 251-254
 Erhart Lake, 247
 Georgia Lake, 247
 Lofton Reservoir, 114
 Lost Lake, 247
 McKay Creek and Reservoir, 106
 Millar Lake, 188, 189
 Morgan Lake, 106
 North Powder Pond, 106
 state-wide, 298
 Thompson Valley Reservoir, 117
 restoration, salmon, Umpqua District, 15
 steslhead, Umpqua District, 16
 river basin development, Rogue, 42, 45
 road construction, South Coast, 60
 ROGUE RIVER AND SOUTH COASTAL STREAMS, 22-49

 \section*{S}
 salvage, steelhead, Dad's Creek, 197
 screen investigations, Big Bend, 190, 191
 screens, Columbia District, 144-148
 Gold Hill, 45
 Gold Ray, 45, 46
 John Day District, 197-205
 Northeastern Oregon, 100-102
 Rogue District, 45
 Savage Rapids, 45
 Umpqua District, 18, 20
 shocker studies, John Day District, 212, 215 SOUTHEAST OREGON, 109-131
    ```

    spawning ground counts, Astoria District, 220, 224
    chinook, Coquille River, 258
    John Day District, 196,

