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Structural Health Monitoring (SHM) is known as the process of implementation of 

damage detection and characterization strategy.  The method is widely used in modern 

critical equipment to minimize the risk of failures. While a significant effort has been 

devoted by researchers for the detection of faults in situations including periodic 

dynamic loads, there are no generally recognized methods for the identification of a 

non-periodic event, especially those with low signal-to-noise ratio (SNR). In this 

research, the case of an impact on wind turbines blades, as a typical non-periodic event 

during normal turbine operations, was studied using the newly developed advanced 

SHM method with implementation of support vector machine, a machine learning 

algorithm, explicitly, developed for the case with low SNR. Field tests were performed 

to collect data from vibration sensors installed on blades with artificial impacts 

obtained by launching tennis balls toward the blades’ trajectory. Pre-processing 

showed that nearly half of the recorded impact events were successfully identified by 

visual inspection or by performing short-time Fourier transform.  The present research 



 

 

covers visually undetectable impact events, masked under background noise due to low 

SNR. Numerically simulated impacts on blades at various levels of SNR were used to 

perform an analysis of various training methods for the machine learning impact 

detection algorithm. Performance of the trained prediction model was evaluated using 

filed experimental data. Results on the feasibility and the efficiency of new proposed 

support vector machine algorithm including its optimization and accuracy were 

reported. 
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1 INTRODUCTION 

Most of engineering structures and machinery, such as bridges, wind turbines and 

transportation systems, are regulated by the application of codes, supported by various 

analyses, to ensure safety operations throughout the desired equipment’s working life. 

Structures may be characterized by extreme design, include imperfection in materials, 

or experience extreme loading conditions. In all those cases machinery or structures 

may be functional while suffering from damages, or a shorter operating life. It is 

therefore highly desirable to monitor its working condition including possible changes 

in materials such as aging, fatigue, corrosion, delamination or other factors that can 

weaken the designed structure. Thus, it’s of vital importance that critical structures are 

under continuous monitoring and evaluation for damage detection and characterization 

on a regular basis to minimize the risk of failures. 

 

1.1  Structural Health Monitoring 

The process of implementation of damage detection and characterization strategy is 

known as Structural Health Monitoring (SHM). Traditional SHM methods include 

visual inspection, non-destructive testing (NDT) techniques such as eddy current, 

ultrasound, and other wave-propagation-based methods [1]. As an example, the recent 

accident of a Southwest airlines flight potentially caused by an invisible crack in a fan 

blade in one of its two turbofan engines reminds the public of the risk of imperfection 

in materials or components, even for sophisticated items such as the nickel-based alloy 

engine blades. The engine blades are fully inspected for quality control purposes both 

during and after the production line [2]. In production process, X-ray dye is the most 



2 
 

 

commonly used technique for inspection of metal forging flaws. Ultrasound test is 

usually carried out as well to ensure that there are no weak spots in the part. As a results 

of the Southwest airlines accident, a new FAA directive specified that for certain CFM 

International S.A. (CFM) CFM56-7B turbofan engines ultrasonic inspection needed to 

be performed on fan blades due to the in-flight fan blade failure [3]. By these methods, 

specifically trained personnel are able to detect most of the hidden defects. However, 

the accuracy and effectiveness of such inspections depend heavily on accessibility of 

structural locations and the expertise of individuals performing the inspections. 

Furthermore, many of the current NDT methods cannot provide continuous 

information on the conditions of the system while in operation. The most widely 

applied engineering solution for continuous machine or structure monitoring is 

represented by SHM, which includes the implementation of automatic data collection 

and post processing or real-time evaluation. The ultimate goal of SHM is to predict the 

conditions of the system in the future by observing the present and using information 

from the past. 

 

Traditional SHM involves three key steps [2, 4]:  

(1) The observation of a system over time using sample of periodic dynamic response 

measurements from an array of sensors. 

(2) The extraction of damage-sensitive features from these measurements. Time-

frequency analysis, which introduces various techniques that can identify local and 

transient characteristic features in the vibration signal, is most commonly used in 

feature extraction in SHM [2, 5, 6]. 
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(3) Statistical analysis of these features to determine the current health state of the 

system. The implemented algorithms analyze statistical distributions of identified 

features allowing to distinguish between undamaged and damaged structures as well as 

enabling the prediction of potential future damage. 

 

1.2  Machine Learning 

Machine learning is usually defined as giving computers or software applications the 

ability to learn without being explicitly programmed. Supervised and unsupervised 

learning are two categories in the field of machine learning. In the case of supervised 

learning, a known data set of input and output is referred to as the training examples. 

An algorithm to learn the mapping function from the input to the output is part of the 

progress. Once the mapping function is developed, new output can be predicted by new 

input data. For unsupervised learning, there are no output values and the main task of 

learning is to gain some understanding of the process which generated the data. The 

main difference between supervised and unsupervised learning is that the algorithms 

for supervised learning need training data from the testing system, while those for 

unsupervised learning do not. Support Vector Machine (SVM) is under the category of 

supervised learning. It is one of the most widely used frameworks for general 

classification and regression problems such as text categorization, image classification, 

biosequence analysis, and others. Features of an event or example can be extracted and 

then represented as a point in SVM space. Using a non-probabilistic binary linear 

classifier, SVM divides the space into two categories in which each point is assigned 

to one category or the other. For instance, in the field of SHM, signals collected from 
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a healthy structure (i.e. events) can be assigned to either healthy or faulty category. As 

a new technique for data classification developed since early 2000s, SVM fits the scope 

of feature extraction and statistical analysis in SHM, and hence has attracted special 

attention. 

 

1.3  A SPECIAL CASE IN SHM 

Vibration-based monitoring techniques are well developed and widely adopted by 

modern wind turbines for the purpose of sutural health monitoring [24]. Vibration 

sensors such as piezoelectric accelerometers are commonly installed on wind turbines 

for the analysis of dynamic structural response during operations [25, 26]. A lot of 

effort has been made by researchers for the detection of periodic faulty in rotating parts 

such as blades, bearings and gearbox under dynamic loads, by identifying its 

characteristic features in the vibration signal. However, there is no existing 

methods/techniques for automated non-periodic event detection, which is defined as a 

special case in SHM. This work proposes a robust method for non-periodic event 

detection under the general framework of SHM. Instead of traditional statistical 

analysis involved in SHM, a predictive model is constructed by implementation of 

SVM trained by extracted local and transient features that are sensitive to the non-

periodic event from the vibration signals. 

 

One of the major ecological concerns of the deployment of wind farms is the potential 

threat to bird species due to collisions with wind turbines [8-10]. Studies of bird and 

bat mortality rates for collisions with utility-scale wind turbines have reported an 
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estimate of up to 40 deaths per turbine per year on certain sites [11-13]. It is imperative 

that the development of offshore wind facilities will include efforts to minimize 

negative impact on bird and bat species, especially those that are listed as endangered 

or threatened. Common methodologies for bird/bat collision assessments and mortality 

rate monitoring include carcass survey and long-term visual observation [14-17]. 

However, due to surveyor efficacy and carcass removal by scavengers, the count could 

be inaccurate, and the true magnitude of the problem could be underestimated [17]. 

One approach for effective and low-cost automatic detection of bird/bat collision with 

wind turbines is to perform structural monitoring by the implementation of vibrational 

or acoustic sensing devices. The conceptual design of a multi-sensor system that 

provides both temporal and spatial coverage capacities for auto-detection of bird 

collision events was carried out at Oregon State University (OSU) based on prior bird 

collision monitoring systems [27-28]. Field testing was performed on utility-scale wind 

turbines. Artificial collision events were created by launching tennis balls into moving 

blades using compressed-air cannon. The preliminary results showed that it is feasible 

to detect an impact using common vibration sensors by visual inspection [29]. However, 

vibration signals that contain low-intensity impacts embedded in relatively high 

background noise are often characterized by low detection rate or low signal-to-noise 

ratio (SNR). In such case, neither visual identification nor conventional signal 

processing methods is feasible in identifying the impact event. Therefore, more 

advanced signal processing algorithms need to be developed for higher detection rate, 

especially for those impacts with relatively low SNR. 
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1.4 RESEARCH OBJECTIVE 

By conducting this research, a robust method based on SVM is applied to vibration 

signal processing. In perspective of general SHM framework, the method is developed 

with the specific and original objective of the detection of non-periodical events in the 

presence to a low signal-to-noise ratio. The feasibility and efficiency of the proposed 

method applied to wind turbine blade impact detection are evaluated by simulation 

experiments. Finally, the proposed method is validated using filed experimental data. 

1.5  References 

1. Carden E.P., Fanning P. Vibration Based Condition Monitoring: A Review. 

Structural Health Monitoring. 2004; 3(4). 

2. Isermann, Rolf. Fault-Diagnosis Systems: an Introduction from Fault Detection to 

Fault Tolerance. Springer, 2011. 

3. Federal Aviation Administration (FAA), DOT. Airworthiness Directives; CFM 

International S.A. Turbofan Engines. August, 2017. 

4. Martinez-Luengo M., Kolios A., Wang L. Structural health monitoring of offshore 

wind turbines: A review through the Statistical Pattern Recognition Paradigm. 

Renewable and Sustainable Energy Reviews. 2016; 64 (91-105). 

5. Kumar A., Kumar R. Time-frequency analysis and support vector machine in 

automatic detection of defect from vibration signal of centrifugal pump. 

Measurement. 2017; 108(119-133). 

6. Farrar C. R., Worden K. An introduction to structural health monitoring. Phil. 

Trans. R. Soc. A. 2007; 365(303-315). 

7. Schwartz M, Heimiller D, Haymes S, Musial W. Assessment of Offshore Wind 



7 
 

 

Energy Resources for the United States. NREL/TP-500-45889; 2010 

8. Bailey H, Brookes KL, Thompson PM. Assessing environmental impacts of 

offshore wind farms: lessons learned and recommendations for the future. Aquatic 

Biosystems. 2014;10(8) 

9. homsen K. Offshore Wind: A Comprehensive Guide to Successful Offshore Wind 

Farm Installation. London: Elsevier Science; 2014.ISBN 9780124095946 

10. Flowers J, Albertani R, Harrison T, Polagye B, Suryan RM. Design and Initial 

Component Tests of an Integrated Avian and Bat Collision Detection System for 

Offshore Wind Turbines. In: Marine Energy Technology Symposium; April 15–

18, 2014; Seattle 

11. Sovacool BK. Contextualizing avian mortality: A preliminary appraisal of bird and 

bat fatalities from wind, fossil-fuel, and nuclear electricity. Energy Policy. 

2009;37(6):2241–2248 

12. Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, Fonseca C, 

Mascarenhas M, Bernardino J. Understanding bird collisions at wind farms: An 

updated review on the causes and possible mitigation strategies. Biological 

Conservation. 2014;179:40–52 

13. Al Zohbi G., Hendrick P., Bouillard Ph. Evaluation of the impact of wind farms on 

birds: the case study of Lebanon. Renewable Energy. 2015; 80(682-689). 

14. Kunz T, Arnett EB, Cooper BM, Erickson WP, Larkin RP, Mabee T, Morrison ML, 

Strickland MD, Szewczak JM. Assessing Impacts of Wind-Energy Development 

on Nocturnally Active Birds and Bats: A Guidance Document. Journal of Wildlife 

Management. 2007;71(8):2449–2486 



8 
 

 

15. Korner-Nievergelt F., Brinkmann R., Niermann I., Behr O. Estimating bat and bird 

mortality occurring at wind energy turbines from covariates and carcass searches 

using mixture models. PLOS ONE. 2013; 8(7). 

16. Parise J., Walker T. Industrial wind turbine post-construction bird and bat 

monitoring: A policy framework for Canada. Journal of Environmental 

Management. 2017; 201(252-259). 

17. Smallwood KS. Long search intervals underestimate bird and bat fatalities caused 

by wind turbines. Wildlife Society Bulletin. 2017; 41(2): 224-230. 

18. Sovacool B, Lindboe HH, Odgaard O. Is the Danish Wind Energy Model 

Replicable for Other Countries? Electricity Journal. 2008;21(2):27–38 

19. lonczkier P, Simms IC. Radar monitoring of migrating pink-footed geese: 

behavioural responses to offshore wind farm development. Journal of Applied 

Ecology. 2012;49(5):1187–1194.10. 

20. Brabant R, Vanermen N, Stienen EWM, Degraer S. Towards a cumulative collision 

risk assessment of local and migrating birds inNorth Sea offshore wind farms. 

Hydrobiologia. 2015;756:63–74.11. 

21. Fijn RC, Krijgsveld KL, Poot MJM, Dirksen S. Bird movements at rotor heights 

measured continuously with vertical radar at a Dutch offshore wind farm. Ibis. 

2015;157(3):558–566.12. 

22. Towsey M, Wimmer J, Williamson I, Roe P. The use of acoustic indices to 

determine avian species richness in audio-recordings of the environment. 

Ecological Informatics. 2014;21:110–119.13. 

23. Masden EA, Cook ASCP. Avian collision risk models for wind energy impact 



9 
 

 

assessments. Environmental Impact Assessment Review. 2016;56:43–49 

24. Marquez FPG, Tobias AM, Perez JMP, Papaelias M. Condition monitoring of wind 

turbines: Techniques and methods. Renewable Energy. 2012;46:169–178. 

25. bouhnik A, Albarbar A. Wind turbine blades condition assessment based on 

vibration measurements and the level of an empirically decomposed feature. 

Energy Conversion and Management. 2012;64:606–613.16.  

26. Bassett K, Carriveau R, Ting DS. Vibration response of a 2.3 MW wind turbine to 

yaw motion and shut down events. Wind Energy.2011;14(8):939–952.17.  

27. Wiggelinkhuizen EJ, Rademakers LWMM, Barhorst SAM, Boon HJ, Dirksen S, 

Schekkerman H. WT-bird: Bird collision recording for offshore wind farms. In: 

European Wind Energy Conference; Feb. 27–Mar. 2, 2006; Athens.18.  

28. Desholm M, Fox AD, Beasley PDL, Kahlert J. Remote techniques for counting and 

estimating the number of bird wind turbine collisions at sea: a review. Ibis. 

2006;148(s1):76–89 

29. Hu C., Albertani R., Suryan RM. Wind turbine sensor array for monitoring avain 

and bat collisions. Wind Energy. 2018. 

  



10 
 

 

2 BACKGROUND THEORY 

2.1  TIME-FREQUENCY ANALYSIS 

All methods are based on the post processing analysis of signals recorded, from the 

interested machine or structure, in a time-based dimension.  The goal is to perform such 

analysis in real time. Time-frequency analysis methods are widely used in the 

identification of local and transient characteristic features in vibration signals. One of 

the common techniques for performing time-frequency analysis is short-time Fourier 

transform (STFT). For the computation of STFT, a longer time-series signal is divided 

into shorter segments of equal length, and then, the Fourier transform is calculated 

separately on each shorter segment [1]. Due to the fixed width of the windowing 

function of STFT, there is always a trade between time resolution and frequency. In 

opposite to STFT, wavelet transform (WT) is computed by the frequency-dependent 

window. WT allows good time resolution for high frequencies, which is not possible 

in the case of STFT [1]. In this work, STFT and resulting spectrogram are performed 

for the evaluation of signal quality. Continuous wavelet transform (CWT) is carried out 

in the process of feature extraction in non-periodic event detection. 

2.2  SUPPORT VECTOR MACHINE 

As a supervised learning model, SVM adopts a discriminant function, also known as 

classifier, to classify if an event/example is positive or negative (i.e., 1 or -1). The 

fundamental of SVM is illustrated in Figure 2.1 using a linear classifier. In this case, 

each example can be represented by bold x, which denotes a vector with component xi 
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(e.g., i=1, 2 in two-dimensional space, i=1, 2, 3 in three-dimensional space). A linear 

classifier is based on the discriminant function of the form [2]: 

 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏                                                    (1) 

 

The vector w is known as the weight vector, which is a unit vector always perpendicular 

to the classifier. The term b is called the bias, which shifts the classifier away from the 

origin. When the discriminant function equals zero, the expression [2] 

 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0                                                (2) 

 

defines a hyperplane dividing the space into two regions (i.e. categories). It is a line in 

two dimensions or a plane in three dimensions. The side of an example (i.e. a point) is 

denoted by the sign of the discriminant function. In the illustration of two-dimensional 

space as shown in Figure 2.1, the hyperplane (the boldface straight line) divides all 

examples into two sides based on the sign of discriminant function: points marked by 

cross have positive sign, and those marked by circles are negative. 

 

For a given hyperplane the closest points (circled points in Figure 2.1) to the hyperplane 

among positive and negative examples are denoted by x+ and x-. From simple geometric 

considerations the margin of a hyperplane with respect to a dataset (i.e. all 

events/examples) can be defined as [2] 
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𝑚𝑚 = 1
2
𝑤𝑤𝑇𝑇(𝑥𝑥+ − 𝑥𝑥−)                                                (3) 

 

The maximum margin classifier is then defined as the hyperplane which has the 

maximum margin between positive and negative examples for linear separable dataset. 

 

  

Figure 2.1: Illustration of linear classifier in SVM [2]. The two plots illustrate the 

concepts of linear classifier and margin selection in two-dimensional space case. 
 

This technique can be applied to identify abnormal events in vibration data from 

dynamic structures on the extracted features, especially in the field of Structural Health 

Monitoring (SHM) [3, 4]. Training data are required for the implementation of the 

discriminant function. For instance, in the case of impacts on wind turbine blades, 

vibration sensors need to be installed on the blade for the collection of the structural 

responses to positive (impact) or negative (normal operation without impact) events. 

The methodology applied for the training process is illustrated in Figure 2.2. Figure 

2.2(a) shows the time-series vibration signal collected by sensors deployed on a wind 

turbine blade. Multiple events were identified as independent training examples. A 

(a) (b) 
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positive (i.e. 1) or negative (i.e. -1) label was assigned to each example with or without 

an impact, as illustrated in Figure 2.2(b). A classifier is implemented by calculating the 

maximal margin between positive and negative events in an n-dimensional space, 

where n is the number of features extracted from raw signals of each example. In Figure 

2.2(c), it was assumed to have only two features for each example, which formed a 

two-dimensional space. Finally, the calculated max-margin classifier allows the 

computer to automatically predict if a future event is with (positive) or without impact 

(negative). In real applications, vibration data are usually complex and noisy therefore 

they cannot be separated neatly by simple linear classifier as shown in Figure 2.2(c). 

 

For the purpose of a desired linear separation, the data need to be transformed from low 

dimensional space into higher dimensional space. Therefore the kernel function, K(xi, 

xj), is introduced to map examples in lower dimensions to higher dimensions [5]. The 

following four basic kernels are most common: 

 linear: , 

 polynomial: , 

 radial basis function (RBF): , 

 sigmoid: , 

where ɣ, r and d are kernel parameters. The RBF kernel is generally preferred [2, 5, 6] 

and is used in this work. 
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With the data sets formed by training features provided by the time-frequency analysis, 

the predictive model is constructed based on SVM, and is used to classify if an impact 

event is contained in non-periodic signals. 

2.3  References 
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Figure 2.2: Example illustrating the training process of the Support Vector 

Machine with a maximal margin classifier. (a) Time series data of simulated 

signal for vibration sensor deployed on the wind turbine blade with three 

impacts. Ten events (every two seconds) were identified as independent inputs 

of training examples. (b) Plot shows labeling of the output for each training 

example. In this illustration, the seven events without an impact were labeled 

negative (-1) and the three with an impact were labeled positive (1). (c) Two-

dimensional space formed by all ten examples. A classifier was implemented 

by calculating the maximal margin between positive and negative events. 

Negative events 

Positive events 

Classifier 
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3.1 ABSTRACT 

Assessment of avian and bat collisions with wind turbines is necessary to ensure that 

the benefits of renewable wind power generation are not outweighed by mortality of 

protected species. An onboard, integrated multi-senor system capable of providing 

detection of turbine collision events, including taxonomic information, was developed. 

The conceptual design of a multi-sensor system including a vibration sensing node, an 

optics node, and an bioacoustic node with an event-driven trigger architecture was 

field-tested on utility-scale wind turbines. A pixel density computational model was 

built to estimate the spatial coverage and target resolution to the optimized 

configuration for camera placement. Field test results of the vibration node showed that 

nearly half of the recorded impact events were successfully identified by visual 

inspection and running short-time Fourier transform on recorded vibration signals. The 

remaining undetected impact events were masked under background noise due to low 

impact energy and high background noise of the operating turbine which result in 

subsequent low signal-to-noise ratio. Our results demonstrate the feasibility of 

triggering the system through single impact event sensed by vibration sensors. 

3.2 INTRODUCTION 

In recent years, wind energy generation is experiencing rapid worldwide development 

and is expected to play a significant role in the coming decades. In the United States, a 

total gross offshore wind energy potential of 4150 gigawatts (GW) was estimated by 

the National Renewable Energy Laboratory (NREL) [1]. However, the deployment of 

offshore wind farms brings environmental concerns such as interactions with marine 

life, increased noise, alterations to food resources, and disturbance to the seabed [2]. 
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One of the major ecological concerns is the potential threat to marine bird species due 

to collisions with wind turbines [3, 4]. Studies of bird and bat mortality rates for 

collisions with utility-scale wind turbines have reported an estimate of up to 40 deaths 

per turbine per year on certain sites [5, 6]. It is imperative that the development of 

offshore wind facilities will include efforts to minimize negative impact on bird and 

bat species, especially those that are listed as endangered or threatened. 

 

Common methodologies applied at land-based wind farms for bird/bat collision 

assessments and mortality rate monitoring are carcass survey and long-term visual 

observation [7], made generally at the scale of a single wind farm. Due to surveyor 

efficacy and carcass removal by scavengers, the count could be inaccurate, and the true 

magnitude of the problem could be underestimated. Most importantly, carcass surveys 

are expensive or infeasible at some sites, such as agricultural fields, dense shrub 

habitats, remote locations, and offshore. Common methodologies used to estimate 

potential interactions with offshore wind facilities are visual surveys (aerial and boat 

based), radar monitoring, and acoustic recordings that can inform collision risk models 

based on flux data [8-13]. Although these methodologies are powerful tools for the 

assessment of displacement effects of local birds and barrier effects of the wind farms 

on birds during migration, they are poorly suited for directly monitoring of collision 

events with wind turbines. Hence, effective and low-cost methods of collision event 

monitoring are required. Such approaches should include on-board systems with 

automatic collision detection, provide information for taxonomic identification, feature 

automatic monitoring, and ensure a long operational life with minimum maintenance. 
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One approach for automatic detection of bird/bat collision with wind turbines is 

abnormal event monitoring by the implementation of vibrational or acoustic sensing 

devices. Vibration-based monitoring techniques are well developed and widely adopted 

by modern wind turbines for rotating parts (e.g. blades, bearings, gearbox) [14]. 

Vibration sensors such as piezoelectric accelerometers are commonly installed on wind 

turbines for the analysis of dynamic structural response during operations [15, 16]. The 

WT-bird bird collision monitoring system [17] initially employed wired contact 

microphones (piezoelectric transducers sensitive to sound propagating through solid 

structures) on the blades before switching to wired accelerometers to improve 

durability and signal-to-noise ratios. Results have confirmed the feasibility of detection 

of collision events from structural vibration signals. Another approach, video 

surveillance (in either visual or infrared spectrum), also is widely employed by avian 

species monitoring systems. One notable infrared-based monitoring system is the 

Thermal Animal Detection System (TADS) [18], which was developed and applied to 

identify species through wing beat analysis and animal size. However, its collision 

detection function is not automatic, and a manual review of all collected imagery is 

required to assess the interactions of volant species with wind turbines. 

 

Based on prior bird collision monitoring systems, this paper presents the conceptual 

design of a multi-sensor system that provides both temporal and spatial coverage 

capacities for auto-detection of bird collision events. Field testing was performed on 

utility-scale wind turbines. Testing details such as device positioning and sensor 

selection on the application of two main types of integrated vibration sensors (i.e. 
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accelerometer and contact microphone) are discussed. Artificial collision events were 

created by launching tennis balls into moving blades using compressed-air cannon. The 

objectives of this project are to test and evaluate signal qualities of common vibration 

sensors on non-stationary wind turbines to determine the feasibility of the designed 

multi-sensor system, and to serve as some basis to help develop advanced auto-

detection systems for bird collision event monitoring in the future. 

3.3 System description and testing 

3.3.1 Multi-sensor system overview 

The design of the on-board multi-sensor system under daylight operations mainly 

consists of four components: 1) the vibration sensor node (accelerometers and contact 

microphones) installed on the root of the blade, 2) the optical node (visual cameras) 

aiming at the rotor plane, 3) the bioacoustics node (acoustic microphones) mounted 

outside the nacelle, and 4) the data acquisition system and central controller inside the 

nacelle. The schematic diagram of the system is shown in Figure 3.1. The vibration 

sensors provide continuous vibration monitoring, while the optical and acoustic nodes 

acquire necessary information (i.e. visual images, impact sounds, and animal calls) for 

event confirmation and species recognition when an impact is detected. Since 

continuous data acquisition by the optical node at frame rates sufficient to capture fast-

moving objects will produce a prohibitory volume of data to be archived, requiring 

massive post-processing, the event-driven trigger architecture has been developed to 

address this challenge. Each node continuously streams data into a ring buffer for 

temporary storage. When an event (e.g. collision) is registered by the vibration node, 

all buffers will store data in an operator-determined time window (e.g. equal temporal 
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period of temporal data on both sides of a triggered event), and eventually, all buffered 

data will be asynchronously stored on disk. This architecture minimizes the volume of 

data archived and enhances efficiency of data post-processing. 

 

 

 

 
Figure 3.1: Schematic diagram of the auto-detect system with event-driven trigger 

architecture on NREL CART3 wind turbine. 

 
Figure 3.2: Sensor placement: vibration sensors mounted on the blade including 

(a) 1.5 MW GE wind turbine at NAWRTC (b) 600 kW CART3 wind turbine at 

NREL-NWTC. 
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3.3.2 Vibration node 

The sensing of blade vibrations was tasked as the primary triggering source for image 

acquisition and impact confirmation. As such, particular attention was devoted to 

testing two different sensors for the same function with the objective to ultimately 

select the more practical sensor. The two sensors were 1) wireless three-axis 

accelerometers (LORD MicroStrain G-Link LXRS w/ 104-LXRS base station), and 2) 

wireless contact microphones (Sun-Mechatronics USK-40 w/ UZ-10 UHF receiver). 

Two per blade, they formed the vibration node, providing continuous structural 

vibration monitoring and collision event trigger in the event-driven architecture. The 

sensors with weatherproof housing were installed at the root of the blades, as shown in 

Figure 3.2, for easier accessible installation, easy maintenance, and negligible 

aerodynamic effects on the blades. The blade surface first was cleaned at the 

application location, and the housing box was applied to the surface with proper 

orientation (one axis parallel to the longitudinal axis of the blade) using 3M double 

bonding tape. The accelerometer signal was digitized prior to wireless transmission, 

while the contact microphone signal was transmitted as an analog signal, and was 

digitized by a NI USB-4431 DAQ (www.ni.com) at the receiver station. The receiver 

station containing paired wireless receivers was placed inside the nacelle next to the 

central controller. For timely processing of data for real-time collision monitoring, 

considering the processing ability of current hardware [16], sampling rates were chosen 

at 512 Hz for accelerometers and 1000 Hz for contact microphones. 
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3.3.3 Bioacoustics node 

The bioacoustics node consisted of an acoustic microphone (G.R.A.S. general-purpose 

electronic piezoelectric microphone with frequency range of 10 to 20,000 Hz). The 

microphone was placed on top of the nacelle. In addition to species audio identification, 

it is valuable for environmental assessment that might lead to missed or false impact 

triggers (e.g. rain, lightning, etc.). Since no avian vocalizations were recorded due to 

the short timeframe of the testing, only acoustic recordings of turbine operation 

associated with an impact trigger used to trigger the system were collected, thus 

providing a proof of concept for an integrated bioacoustics node to be used as potential 

extra source of trigger. 

3.3.4 Optical node 

The implementation of optical cameras always involves the tradeoff between target 

resolution and field of view (FOV). In general, wider field of view would also result in 

lower target resolution. A target pixel density simulation model was developed to find 

the proper camera deployment location. With known camera specifications (i.e. 

effective focal length, sensor size, and image resolution), position (i.e. distance from 

camera to the rotor plane) and orientation, each pixel on the image can be projected 

(mapped) onto the rotor plane using trigonometric functions, as illustrated in Figure 

3.3. For a given physical dimension on the rotor plane, the target resolution can be 

estimated as the sum of pixel pitches for all correlated pixels. Three options of optical 

node configurations are 1) on the nacelle, with a field of view that intersects the rotor 

plane, 2) on the turbine tower, near its base, in an upward-facing configuration, and 3) 

on an adjacent tower, viewing the entire rotor plane. During the field testing, option 2) 
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was tested with a visual camera (Currera-R RL50C-OC) deployed near the tower base 

with an upper angle of view targeting the blade rotor plane, due to the short testing 

timeframe. 

 

3.3.5 System field tests 

The required sub component functions and overall system functionality, reliability, and 

accuracy had to be validated in field tests with operating wind turbines and simulated 

bird impacts on the blades. Two locations for tests were selected for availability of 

wind turbines not involved in commercial energy conversion and for the excellent 

technical and logistic support on site. Partial system early tests were performed at the 

North American Wind Research and Training Center (NAWRTC) at the Mesalands 

Community College in Tucumcari, NM. The Center operates a General Electric GE 1.5 

MW wind turbine. Later tests on the fully integrated system were performed at the 

National Renewable Energy Laboratory (NREL) National Wind Technology Center 

(NWTC) in Boulder, CO. The turbine used at the NWTC was the 600 kW CART3 

(three blades). 

 
Figure 3.3: Illustration of pixel mapping. 
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In both cases, bird impacts were simulated by launching tennis balls using a custom 

compressed-air launcher, as illustrated in Figure 3.4. The cannon was barreled to the 

size of a regular tennis ball, and it was possible to launch one or two simultaneously. 

Three avian species (two offshore, one onshore) of regulatory concern include the 

marbled murrelet (Brachyramphus marmoratus), the short-tailed albatross 

(Phoebastria albatrus) and golden eagle (Aquila chrysaetos). They reflect a wide 

variety in body length and weight of 24 cm and 202 g for the murrelet, 70 cm and 3600 

g for golden eagle, to 91 cm and 4680 g for the albatross. Specific bat species that were 

investigated include the hoary and silver-haired bats. They have body length of 11-15 

cm and weight of 10-30 g. All species can fly at speeds up to 45 km/hour or more. 

When considering the impact kinetics, it is more likely that a bird/bat would be hit by  

 
 

Figure 3.4: Air cannon is used to launch tennis balls to mimic bird impacts at NREL-

NWTC. 
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the leading edge of a blade than the animal running into the rapidly moving face of the 

blade (up to 250 km/hr or more). Additionally, the tennis balls were launched from 

ground and flying in a parabolic trajectory before hit by the blade. Therefore, the impact 

kinetics is more a function of the object mass and the blade speed. Tennis ball mass 

was 57 g without water, and 140 g when filled with water, which is comparable to small 

birds or large bats. In addition, tennis balls were easy to launch and made no damage 

to the blade. Launch direction in reference to the rotor was downwind in the case of 

NAWRTC and upwind in the case of NREL-NWTC. Regulations at NREL prevented 

launching of balls from downwind toward the rotor, which at the NAWRTC allowed 

two passes to be made through the rotor, for medium and high wind, effectively 

doubling the probabilities of a blade strike. 

 

Due to varying wind conditions, low impact rate, and short timeframe of field testing, 

a limited number of collision events was created and recorded. During field testing, the 

ring buffer duration was set for 10 s before and after impact of the tennis ball. All 

recordings were manually triggered to ensure that data are collected for later 

examination and post-processing. Field notes of visually observed impact events 

including time, position of impact, blade status, and weather conditions were taken and 

matched with output data acquired from each sensor node. Typical accelerometer and 

contact microphone data post-processing included 1) First stage with visual inspection 

of time histories for quality control purposes and for event detection, and 2) Second-

stage processing including numerical signal analysis. In summary, a total of 23 

dynamic impact (i.e. tennis balls hitting moving blades) events were successfully 
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obtained at NAWRTC, and six were obtained at NWTC under wind turbine normal 

operating condition (i.e. rotor at designed speed, generator engaged). The higher impact 

rate at NAWRTC was primarily caused by more favorable wind conditions. Likewise, 

four additional dynamic impact events were recorded at NWTC under turbine idle 

operation (i.e. blade free spinning, generator not engaged) due to low wind occurrence. 

The signal-to-noise ratio (SNR) was defined as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 20 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙10
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛
                                            (1) 

where A is the root mean square (RMS) amplitude, and was calculated and evaluated 

for all impacts. 

3.4 Results and discussion 

3.4.1 Signal quality of vibration node 

Figure 3.5 shows a sample of the six time histories vibration data (two sensors per blade, 

three blades) collected at NAWRTC, which resulted from a single impact of a tennis 

ball on one blade. Signals from accelerometers are in the left column, with sensors 

labeled N543, N648, and N649, respectively. Signals from the three contact 

microphones are in the right column, with the sensors labeled A, B, and C. Although 

the ball was struck by one blade only, it is evident from the figure that two 

accelerometers and all three contact microphones had picked up the impact, 

demonstrating the generally higher sensitivity to impact detection of contact 

microphones. In our specific case, however, the wireless transmission protocol for the 

accelerometers was decisively more reliable than the contact microphones, resulting in 

an unpredictable and relevant loss of data for the latter system. Therefore, the choice 
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of the accelerometers was the primary source of vibration data for post-processing and 

statistical analysis in the present work. In addition, the contact microphone exhibited 

consistently noisy signals, resulting in random false positive impact information. The 

wireless protocol of the accelerometers included a signal storage capability at the 

sensor level and a feature for automatic transmission repetition of data packets in the 

event of a lost connection. 

3.4.2 Configuration of optical node 

Using the target resolution simulation, the spatial coverage, which is defined as the 

percentage ratio between the camera surveillance area and the area of the blade rotor 

plane, as well as the target pixel resolution, was estimated using the turbine at the 

 
Figure 3.5: Sample time history plots showing vibration data collected by all six 

sensors (two sensors per blade, three blades) from a single impact event on one 

blade at NAWRTC for (a) accelerometers and (b) contact microphones. The impact 

can be identified through visual inspection on two accelerometers and three contact 

microphones. 
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NREL-NWTC as reference (rotor diameter of 40 m and nacelle length of 9 m). As an 

illustration, the camera was positioned at the rear end of the nacelle looking forward 

toward the rotor at an angle of 55 degrees upward from the horizontal plane. For an 

image resolution of 640x480 pixels and a focal length of 12 mm, Figure 3.6 shows a 

contour plot of pixel density for a target with dimensions of 240x240 mm on the rotor 

plane, assuming the target was struck by the blade. In this configuration, the camera 

provided a spatial coverage of 6.5% and minimum target resolution of more than 100 

pixels. Three different camera positions, at the end of the nacelle, at the tower base, 

and on an adjacent tower at a distance of 200 m from the turbine, were evaluated using 

the same simulation model. Results, which are summarized in Table 1, illustrate spatial 

coverage and target resolution for a standard 240x240 mm object. As expected, the 

relation is inverse between camera coverage and image pixel resolution. The 

configuration on an adjacent tower provides more than 90% coverage at the expense of 

target resolution to a mere 20 pixels. The camera placed at the tower base offers up to 

50% of coverage with a medium pixel density of 50. The negative characteristic of the 

above positions is the inability of the camera to follow the yawing of the nacelle, an 

impractical solution. 

Table 3.1: Computational results of spatial coverage and target resolution for 

different camera configurations. 

Camera location Spatial coverage Minimum target resolution 
(a 240x240 mm target) 

On the nacelle approximately 7% more than 100 pixels 

Near the tower base approximately 50% more than 50 pixels 

On adjacent tower approximately 90% more than 20 pixels 
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3.4.3 Impact-driven architecture 

Validation of the blade sensor-triggering capabilities was critical for system 

characterization. Simulations of blade collision events using tennis balls were 

conducted along different sections of the rotating blades during field testing. An 

example of a blade striking a tennis ball is also illustrated in Figure 3.7, showing the 

signal from the accelerometer mounted on the blade. The three time-histories 

represented from top to bottom are 1) NREL CART3 during normal operations 

producing energy, 2) NAWRTC GE during normal operations producing energy, and 

3) NREL CART3 during idle with generator disengaged. Table 2 lists the results of 

average SNR and the corresponding coefficient of variation (CV) for each testing case. 

In all three plots in Figure 3.7, the noise in the signals correspond to the vibrations on 

the root of the blade, measured by the accelerometer. The spikes of impact were slightly 

ahead of the triggering events due to the reaction time of the recorder. As expected, 

 
 

Figure 3.6: Contour plot of target resolution for single camera deployed on the 

nacelle. 
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idle operations, shown in the bottom plot in Figure 3.7, are characterized by a lower 

background vibration noise which results the highest SNR due to the disengagement of 

the generator and low-power operation of the gearbox. In addition, Figure 3.7 and Table 

2 reveal the generally lower background vibrations on the GE turbine with respect to 

the NREL CART3; this condition of higher SNR would improve the efficiency of data 

post-processing. The problem of automatically detecting a blade impact in the presence 

of noise at various, but predictable, frequencies could be solved by applying time-

frequency analysis techniques, a common procedure in analyzing vibrations from 

rotating machines. 

 

Table 3.2: Overview of signal-to-noise ratio for all impacts. 

Cases Number of impacts Average SNR (dB) CV (%) 

CART3 600 kW 
normal operation 

6 5.45 35.74 

CART3 600 kW idle 
operation 

4 14.59 37.01 

GE 1.5 MW normal 
operation 

23 7.03 33.05 
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The short-time Fourier transform (STFT) was applied to the accelerometer signals in 

second-stage data post-processing. The primary result of this method, a spectrogram, 

is illustrated in Figure 3.8. The spectrogram provides a visual representation of the 

frequency spectrum in the time window selected for post-processing. The technique 

was chosen for the potential application to detect impacts in real time. The example 

given in Figure 3.8 is the spectrogram obtained from the signal of the accelerometer 

installed on a blade of the NREL CART3 turbine during idle operation with the blade 

 
Figure 3.7: Accelerometer data from the CART3 600 kW turbine during normal 

operation and idle operation, and the GE 1.5 MW turbine during normal operation 

from top to bottom. Impacts were measured and can be seen on the plots at -1.33, -

1.30 and -0.6 seconds, respectively. 
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hitting a tennis ball. The time history of the same event is illustrated on the left of Figure 

3.8; it shows the acquired signals from the accelerometer with time on the vertical axis. 

The spectrogram exhibits a spike in the frequency domain at the time of the blade 

hitting the tennis ball, thus unequivocally identifying the strike. Frequency levels at 

different times represent typical turbine background vibrations due to blade 

aerodynamics, structural vibrations, bearings, gearbox, and various mechanical sources. 

General results from 29 field tests with blade strikes showed the positive detection and 

confirmation of 14 events. The most probable cause of partial impact detection was the 

low-energy aspect of several events, with the result of a significantly low sensor signal-

 
Figure 3.8: Illustration of acquired vibration data post-processing using STFT. The 

plot on the left shows the time history signal of the accelerometer installed on a 

blade of the CART3 turbine during idle operation. An impact was identified by its 

corresponding spectrogram, which exhibits a spike in the frequency domain. 
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to-noise ratio that cannot be detected with the current post-processing technique. Most 

of the detected strikes occurred at the leading edge of the blade and in a radial position 

between half blade and blade tip, thus at relatively high kinetic energy. Impacts during 

turbine idle operations are particularly favorable for detection due to the extremely low 

background noise measured by the sensors. A result of great interest was the capability 

of detecting a strike of a blade to a tennis ball by any of the sensors installed on the 

three blades, an indication that not necessarily all blades of a rotor need to be provided 

with sensors to detect impacts. 

 

3.5 Conclusions 

This study demonstrates through experimentation the feasibility of an impact detection 

system based on vibration sensors that are integrated into a multi-sensor array to detect 

and identify causes of blade impacts on wind turbines. Our study also highlights the 

necessity to validate any impact detection system by operating field tests on full-scale 

wind turbines in real operating conditions and by simulating bird impact on the blades. 

Results from this study elucidate several key characteristics and critical features for 

efficient automatic impact detection on wind turbine blades. The system can be adapted 

easily to any structure exposed to impact events. Cameras for impact confirmation and 

animal species recognition are critical, however, camera installation on the nacelle or 

any other fixed structure on or around the wind turbine has little practical value for the 

significantly small field of view with the minimum pixel density required for species 

recognition. Automatic triggering of the cameras using vibration sensors on the blades 

is an efficient technique, providing the sensors have a reliable wireless data 
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transmission, a high signal-to-noise ratio and, most important, an efficient and fast post-

processing technique to discern the spike caused by the impact from the normal 

vibration background. Using a combination of visual impact detection by inspecting 

vibration signal time histories and running short-time Fourier transform, 14 out of 29 

registered artificial impacts were detected, which corresponds to a 48.3% success rate. 

Considering a more efficient automatic detection event from vibration sensors, it is 

strongly believed that the success rate can be significantly increased. It is important to 

note that several impacts were successfully detected by sensors installed on blades 

other than the blade subjected to the impact. This is an indication that only one or two 

blades, out of three, could be instrumented with vibration sensors without decreasing 

the detection success rate significantly. However, it is required to have all three blades 

in the vision system field of view for event confirmation and animal species recognition. 

It was evident from the field tests that contact microphones have greater potential than 

accelerometers in terms of sensitivity and ease of signal processing. However, the low 

quality of wireless transmission of the available commercial contact microphones has 

hampered their use, and results from accelerometers were used primarily for impact 

detection. Bioacoustic microphones embedded in the system, providing they can record 

a signal relatively clean from background noise, can have a significant value in terms 

of event confirmation, can enhance species recognition in the presence of animal calls, 

and provide information on environmental variables affecting sensors such as rain, 

lightning, etc. Micro wireless visual sensors mounted directly on the blades have been 

tested briefly, with great success in terms of blade impact area coverage, species 

recognition, and potential for event detection. 
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3.6 Future work 

With the general aims of improving automatic real-time impact detection, increasing 

video imaging coverage, and decreasing system energy requirements, the following 

improvements are suggested: 

 Blade vibration sensors should have on-board data processing capabilities and 

transmit a packet of data only after the impact is detected; 

 Sensor fusion should be applied to improve detection success rate; 

 Sensor wireless transmission should rely on more efficient and standard wireless 

protocols; 

 An efficient and fast event detection method should be applied, possibly with real-

time signal filtering to decrease background noise and improve the detection 

success rate; 

 Micro wireless visual sensors should be mounted directly on the blades to greatly 

increase critical impact area coverage; 

 More tests should be carried out with the specific objective to establish the 

minimum number of vibration sensors on blades required for camera triggering; 

 Micro infrared camera mounted on blades should be tested for night vision; 

 Solar energy or rotational motion energy harvesting for sensor battery charging 

should be tested for increased autonomous and low-maintenance operations. 
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4.1   ABSTRACT 

The significant development of wind power generation worldwide brings, together with 

environmental benefits, wildlife concerns for volant species vulnerability to 

interactions with wind energy facilities. For surveying such events, an automatic 

system for continuous monitoring of blade collisions is critical. An onboard multi-senor 

system capable of providing real-time collision detection using integrated vibration 

sensors is developed and successfully tested. However, to detect low signal-to-noise 

ratio impact can be challenging hence an advanced impact detection method has been 

developed and presented in this paper. A robust automated detection algorithm based 

on support vector machine is proposed. After a preliminary signal pre-processing, 

geometric features specifically selected for their sensitivity to impact signals are 

extracted from raw vibration signal and energy distribution graph. The predictive 

model is formulated by training conventional support vector machine using extracted 

features for impact identification. Finally, the performance of the predictive model is 

evaluated by accuracy, precision and recall. Results indicate a linear regression 

relationship between signal-to-noise ratio and model overall performance. The 

proposed method is much reliable on higher signal-to-noise ratio (SNR≥6), but it 

shows to be ineffective at lower signal-to-noise ratio (SNR<2). 

4.2   Introduction 

As an important component of renewable energy, wind energy generation has been 

growing at a fast pace in recent years due to its low cost and high availability [1-3]. 

Although the environmental impact associated with the usage of fossil fuel can be 

reduced by the clean alternative energy source, the deployment of an increased number 
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of wind facilities with larger scale turbines generates wildlife concerns for volant 

species such as birds and bats [4, 5]. Common causes of death for wildlife interacting 

with wind turbines include direct collision with turbines [6-9] and the risk of 

barotrauma especially for bats [10]. Among all the causes, direct collision with wind 

turbines is the most visible and well-documented impact as results of wind energy 

development [11]. 

 

Common methodologies applied at land-based wind farms for bird/bat fatality 

assessments are carcass surveys and long-term visual observation [6-8, 12], made 

generally at the scale of a single wind farm. Studies of bird and bat mortality rates from 

collisions with utility-scale wind turbines [13, 14] have reported an estimate of up to 

40 deaths per turbine per year on certain sites. However, due to surveyor efficacy and 

carcass removal by scavengers, the count could be inaccurate, and the true magnitude 

of the problem could be underestimated [9]. Moreover, carcass survey and visual 

observation are characterized by high human operator's labor time, and are infeasible 

at certain sites, such as agricultural fields, dense shrub habitats, remote locations, and 

on water. Other methodologies [15-20] applied for estimation of potential interactions 

between volant species and wind facilities include aerial and boat-based visual surveys, 

radar monitoring, and acoustic recordings, which can be applied to collision risk 

models based on flux data. However, they are not suited for deterministic monitoring 

of collision events. Hence, effective and low-cost methods of continuous collision 

event monitoring with implementation of automatic data collection and evaluation have 

been sought by researchers in recent years [21]. 
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Vibration-based monitoring techniques are widely adopted by modern wind turbines 

for rotating parts (e.g., brakes, bearings and gearboxes) [21]. Vibration sensors such as 

piezoelectric accelerometers are commonly installed on wind turbines for the analysis 

of dynamic structural response during operations [22, 23]. One notable approach for 

volant species collision detection is the conceptual design of a multi-sensor system 

developed by the authors [24]. By implementation of vibration sensors and surveillance 

cameras, the multi-sensor system can perform on-board collision detection, providing 

information for taxonomic identification, with minimal effort required to maintain long 

operational life. The preliminary results of field testing on utility-scale wind turbines 

proved the feasibility of collision detection using vibration sensors [24]. However, 

advanced signal processing methods need to be developed for a higher detection rate, 

especially for those impacts with relatively low signal-to-noise ratio (SNR), which 

typically involve bats and small birds such as the Marbled Murrelet. 

 

Support vector machine (SVM) is one of the most widely applied frameworks for 

general classification problems such as condition monitoring and fault diagnosis [25]. 

Relevant features of an event can be extracted and then represented as a vector in SVM 

feature space. Non-probabilistic binary linear classifiers allow SVM to divide the 

feature space into different categories, enabling automatic prediction of a future event 

on its member category. 
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This paper presents a robust signal processing method based on SVM applied to 

automated impact detection. Firstly, geometric features associated with structure 

characteristics of impact signals are extracted from both raw vibration signals and 

energy distribution graph. Input vectors constructed by extracted features are then 

applied to train the SVM model, which is used for impact identification after training. 

The objectives of this study are to illustrate signal qualities of common vibration 

sensors on non-stationary wind turbine blades, and to evaluate the feasibility of 

proposed automated impact detection method using conventional support vector 

machine, especially for different levels of SNR. 

 

The remainder of this paper is organized as follows. The theoretical background and 

proposed procedure are briefly described in section 2. Section 3 introduces the 

experimental data acquisition system, discusses field testing results, and illustrates the 

pre-processing methods on field-collected raw signals. To overcome the issue of rarity 

of bird collision events and limited number of artificial impacts, simulated studies are 

performed in Section 4. Finally, conclusions are drawn in Section 5. 

 

4.3   Theoretical Background 

4.3.1 Support Vector Machine 

SVM is a supervised machine learning method introduced by [26], which is widely 

used in machine condition monitoring and fault diagnosis. The process of SVM for a 

binary classification problem is described as follows. Assume a sample dataset 
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(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)𝑖𝑖=1𝑁𝑁 , where the notation 𝑥𝑥𝑖𝑖 denotes the𝑖𝑖𝑡𝑡ℎ vector in the dataset and 𝑦𝑦𝑖𝑖 is the label 

associated with 𝑥𝑥𝑖𝑖. In binary classification, the positive and negative classes are labeled 

with 𝑦𝑦𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖 = −1, respectively. The discriminant function is of the form 

 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏                                                (1) 

 

where 𝑤𝑤 is the weight vector, and 𝑏𝑏 is the bias. Based on the discriminant function, a 

hyperplane defined by 

 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0                                            (2) 

 

divides the input space 𝑋𝑋 into two classes: positive (𝑓𝑓(𝑥𝑥) > 0) and negative (𝑓𝑓(𝑥𝑥) <

0). To find the optimal hyperplane, the maximum margin criterion is applied, by which 

the optimal hyperplane is the hyperplane that gives the maximum distance between the 

decision boundary and the plane, as illustrated in Figure 4.1. 



46 
 

 

 

Figure 4.1. Illustration of linear classifier in two-dimensional space. 

 

Considering noisy data that are not linearly separable, or to achieve a larger margin, 

misclassification is allowed by introducing slack variables 𝜉𝜉𝑖𝑖 > 0 and error penalty 

𝐶𝐶 > 0 . The problem can be expressed by the following constrained optimization 

problem: 

 

Minimize             1
2
‖𝑤𝑤‖2 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑛𝑛

𝑖𝑖=1  
(3) 

Subject to      𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖 
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which is also known as soft-margin SVM [25]. Introducing Lagrange multipliers 𝛼𝛼𝑖𝑖, 

this optimization problem can be converted into the equivalent Lagrange dual 

formulation: 

 

Minimize       𝐿𝐿(𝛼𝛼) = ∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 1

2
∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑇𝑇𝑥𝑥𝑗𝑗  

(4) 

Subject to                         ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0, 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. 

 

To define a nonlinear classifier, the input vector 𝑥𝑥𝑖𝑖 is mapped from lower input space 

𝑋𝑋 into higher feature space 𝐹𝐹 by mapping function Φ(𝑥𝑥), which typically calculates 

using a dot product. However, the approach of explicitly mapping each input vector 

from the input space into the feature space results in quadratic complexity (i.e., 

quadratic increase in memory usage and quadratic increase in time required for 

computation). The kernel function 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = Φ𝑇𝑇(𝑥𝑥𝑖𝑖) ∙ Φ(𝑥𝑥𝑗𝑗) is then introduced to 

solve the issue by skipping the step of explicitly mapping. The following four basic 

kernels are most commonly used: 

 linear: , 

 polynomial: , 

 radial basis function (RBF): , 

 sigmoid: , 

The RBF kernel is generally preferred [25] and is applied in the present work. 
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Finally, the problem is converted into a “kernelized” dual quadratic optimization 

problem as follows: 

 

Minimize       𝐿𝐿(𝛼𝛼) = ∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 − 1

2
∑ 𝛼𝛼𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) 

(5) 

Subject to      ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0, 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶. 

 

This problem can be solved by the method of sequential minimal optimization [25]. 

The final discriminant function then has the expression of 

 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1 + 𝑏𝑏).                                    (6) 

 

4.3.2 Procedure for Impact Detection 

In the present study, SVM has been proposed as the classification method; the 

procedure for the automatic impact detection using SVM is shown in Figure 4.2. The 

following steps are applied: 1) Raw vibration signal is collected by vibration sensors 

installed on the wind turbine blades; 2) Raw signal is pre-processed using continuous 

wavelet transform (CWT); 3) The time marginal integration (TMI) graph is obtained 

by calculating the energy distribution in CWT with respect to time (i.e., integrating 

CWT with respect to time for each scale); 4) Features are extracted from both raw 

signal and TMI graphs. The selected 18 features [27] are listed in Table 4.1; 6) The 
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SVM model is trained and tested by 10-fold cross-validation. Parameters 𝛾𝛾 and 𝐶𝐶 are 

optimized by grid search in a grid of 2−10 −  210. 

 

Table 4.1. List of extracted features. 

No. Feature Source No. Feature Source 

1 Kurtosis Raw signal 10 Kurtosis TMI signal 

2 Skewness 11 Skewness 

3 Mean 12 Mean 

4 RMS 13 RMS 

5 Variance 14 Variance 

6 Peak 15 Peak 

7 Impulse factor 16 Impulse factor 

8 Shape factor 17 Shape factor 

9 Crest factor 18 Crest factor 
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Figure 4.2. Flow chart of procedure for impact detection. 

 

 



51 
 

 

4.4   Experimental Evaluation 

4.4.1 System Setup and Data Acquisition 

The conceptual design of the on-board multi-sensor system under daylight operations 

was developed by the authors [24]. It primarily consists of: 1) Vibration sensor node 

(accelerometers) installed on the root of the blade, 2) Optical node (surveillance 

cameras) aiming at the rotor plane, 3) Bioacoustics node (acoustic microphones) 

mounted outside the nacelle, and 4) Data acquisition system and central controller 

inside the nacelle. The vibration sensors provide continuous vibration monitoring, 

while the optical and acoustic nodes acquire necessary information (i.e., visual images, 

impact sounds, and animal calls) for event confirmation and species recognition when 

an impact is detected. The event-driven trigger architecture was used to acquire data 

since continuous data acquisition by the optical node at frame rates sufficient to capture 

fast-moving objects will produce a prohibitory volume of data to be archived. Each 

node continuously streams data into a ring buffer for temporary storage. When an event 

(e.g., collision/impact) is registered by the vibration node, all buffers will store data in 

an operator-determined time window, which eventually will be asynchronously stored 

on disk. This architecture minimizes the volume of data archived and enhances 

efficiency of data post-processing. 

 

Blade vibrations were selected as the primary triggering source of the system. Wireless 

three-axis accelerometers (LORD MicroStrain G-Link LXRS w/ 104-LXRS base 

station) were installed at the root of each blade with weatherproof housing, as shown 
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in Figure 4.3. The installation position was selected for easier accessible installation 

and maintenance, and negligible aerodynamic effects on the blades. For timely 

processing of data for real-time collision monitoring, considering the processing 

capabilities of the selected hardware, sampling rates were chosen at 512 Hz [22]. 

 

 

Figure 4.3. Experimental set-up of data acquisition system: (a) Installation of vibration 

node at the root of each blade; (b) housing of vibration node. 

 

The overall system functionality, reliability, and accuracy were validated in field tests 

with operating wind turbines and simulated bird impacts on the blades. Two sites for 

field testing were selected for availability of wind turbines not involved in commercial 

energy conversion and for the excellent technical and logistic support on site. Partial 

system early tests were performed at the North American Wind Research and Training 

Center (NAWRTC) at the Mesalands Community College in Tucumcari, NM, on a 

General Electric (GE) 1.5 MW wind turbine. Later tests on the fully integrated system 

were performed at the National Renewable Energy Laboratory (NREL) National Wind 
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Technology Center (NWTC) in Boulder, CO. The turbine used at the NWTC was the 

600 kW CART3 (three blades). In both cases, bird impacts were simulated by launching 

tennis balls using a custom compressed-air cannon, as illustrated in Figure 4.4. The 

cannon was barreled to the size of a regular tennis ball, whose mass was 57 g and 140 

g when filled with water. 

 

 

Figure 4.4. Simulation of bird impacts by launching tennis balls using an air cannon. 

 

Development costs of the general system were covered by funds from the U.S. 

Department of Energy. Material costs, without considering improvement due to 

manufacturing efficiency and mass production, are estimated to be approximately 700 

to 1,000 U.S. dollars per blade plus the cost for a computer laptop per turbine, after 

fixed costs for production tools are covered. Installation on a large size wind turbine 

requires approximately two persons for two to three days, including system set up and 
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basic functional tests. Real time blade-events monitoring is automatic including 

uploading of data and images to a storage system, cloud-based or similar, providing 

network or satellite link is available. Post events inspection of recorded images is 

currently based on visual interaction with human operators after the images are 

available after recording. Automatic computer-based inspection is possible as future 

development. Additionally, since blade damage was the most frequently reported 

damage occurrences among all other subsystems (i.e., gearbox, generator, transformer, 

foundation and other) [28], the proposed system may also serve for blade health 

monitoring. However, it will require better understanding on the turbine and blade 

structures [29] and further development of implemented diagnosis algorithms [30, 31]. 

 

4.4.2 Summary of Field Testing Results 

Due to varying wind conditions, low impact rate, and short timeframe of field testing, 

a limited number of collision events was created and recorded. All recordings were 

manually triggered to ensure that the raw signal was collected for later examination and 

post-processing. Field notes of visually observed impact events including time, position 

of impact, blade status, and weather conditions were recorded and matched with output 

signals acquired from each sensor node. Preliminary examination, including visual 

inspection and signal processing using the short-time Fourier transform (STFT), was 

performed on-site on raw signals. In summary, 23 dynamic impact events (i.e., moving 

blade hitting tennis balls) were successfully obtained at NAWRTC, and six were 

obtained at NWTC under wind turbine normal operating condition (i.e., rotor at 

designed speed, generator engaged). The higher impact rate at NAWRTC was primarily 
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caused by more favorable wind conditions. Likewise, four additional dynamic impact 

events were recorded at NWTC under turbine idle operation (i.e., rotor free spinning, 

generator not engaged) due to low wind occurrence. 

 

Raw signal examples of a blade striking a tennis ball are shown in Figure 4.5. The three 

time histories represented from top to bottom are (a) NREL CART3 during normal 

operations producing energy, (b) NREL CART3 during idle with generator disengaged, 

and (c) NAWRTC GE during normal operations producing energy. Table 4.2 lists the 

results of average SNR and the corresponding coefficient of variation (CV) for each 

testing case. The SNR was defined as follows: 

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 20𝑙𝑙𝑙𝑙𝑙𝑙10
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛
                                           (7) 

 

where $A$ is the root mean square (RMS) amplitude and was calculated and evaluated 

for signal with impacts. In all three plots in Figure 4.5, the spikes of impact were 

slightly ahead of the triggering events due to the reaction time of the recorder. As 

expected, signals collected under idle operations are characterized with a lowest 

background vibration noise, resulting in a highest SNR due to the disengagement of the 

generator and low-power operation of the gearbox. 
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Table 4.2. Overview of SNR for all impacts. 

Case # of impacts Avg. SNR (dB) CV (%) 

CART3 normal 6 5.45 35.74 

CART3 idle 4 14.59 37.01 

GE normal 23 7.03 33.05 

 

 

Figure 4.5. Illustration of vibration signals from accelerometers with different 

background noise: (a) NREL CART3 during normal operations producing energy; (b) 

NREL CART3 during idle operation with blade free spinning; (c) NAWRTC GE 

during normal operations producing energy. 
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Over the 29 blade-strike events under normal operation, only 14 can be confirmed by 

visual inspection, as illustrated in Figure 4.5, and by STFT. The most probable cause 

of this partial detection rate was the low-energy characteristic of several events due to 

the location of the impact close to the rotor shaft, which results in a significantly low 

SNR that cannot be identified using preliminary examination techniques. Most of the 

detected strikes occurred at the leading edge of the blade and in a radial position 

between half blade and blade tip, thus at relatively high kinetic energy. Impacts during 

turbine idle operations are particularly favorable for detection due to the extremely low 

background noise measured by the sensors. 

 

4.4.3 Pre-processing of Raw Signals 

For SVM data preparation, the raw signals were pre-processed. Figure 4.6 and Figure 

4.7 illustrate the pre-processing steps using raw signals from both the GE and CART3 

turbines under normal operation. The raw time histories of Figure 4.6 and Figure 4.7 

are shown in Figure 4.5 bottom and top, respectively. A high-pass filter was applied to 

eliminate low-frequency components (𝑓𝑓 ≤ 5 ℎ𝑧𝑧) caused by blade rotation. Resultant 

time histories are shown in Figure 4.6 (a) and Figure 4.7 (a). This step was applied to 

eliminate the considerably large kinetic energy caused by blade rotation, which can 

easily dominate the energy distribution graph if presented. Figure 4.6 (b) and Figure 

4.7 (b) show the scalograms as results of the continuous wavelet transform (CWT). 

CWT gives overall better time resolution for high-frequency components, which is 

essential for obtaining the energy distribution graph when integrating CWT with 
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respect to time. Figure 4.6 (c) and Figure 4.7 (c) are the energy distribution plots 

illustrated by TMI graphs. It is noted that impacts are better distinguishable in TMI 

graphs than in CWT plots. Features listed in Table 4.1 are then extracted from the raw 

signal and the TMI graph to obtain a training and testing dataset. 
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Figure 4.6. Combination of three graphs showing a) Time-series plot, b) Wavelet plot 

and c) Integration of wavelet respect to frequency, respectively, for NAWRTC GE 

turbine during normal operation. 
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Figure 4.7. Combination of three graphs showing a) Time-series plot, b) Wavelet plot 

and c) Integration of wavelet respect to frequency, respectively, for NREL CART3 

during normal operation. 
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Figure 4.8. The waveform of constructed signal with 𝑆𝑆𝑆𝑆𝑆𝑆 = 1.5: (a) single impact with 

𝜉𝜉 = 0.007 and 𝑓𝑓 = 512 𝐻𝐻𝑧𝑧; (b) Gaussian white background noise with zero-mean and 

0.05 standard deviation; (c) mixed signal. 

 

4.5   Simulated Studies 

Since bird/bat impacts are rare, artificial impacts were created by launching tennis balls 

using a compressed-air cannon. Ideally, the vibration sensors need to be installed on 

turbine blades for a sufficient time to obtain both signals with and without artificial 

impacts. However, even with artificial impacts, only a handful of events were 

successfully created, as stated in the previous section. The predictive model developed 

by such imbalanced dataset can be biased and inaccurate [25], especially when the 

detection of the impact is crucial. Hence, mathematically simulated impact events were 
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conducted for sufficient number of training examples from both positive (i.e., impact 

events) and negative (i.e., non-impact events) categories. In the simulation, a single 

impact signal is defined as 

 

 𝑠𝑠(𝑡𝑡) = 

0                                   𝑡𝑡 < 0 

(8) 
exp�−

𝜉𝜉
�1 − 2𝜉𝜉2

∙ 2𝜋𝜋𝑓𝑓𝑡𝑡� ∙ sin(2𝜋𝜋𝑓𝑓𝑡𝑡)      𝑡𝑡 ≥ 0 

 

where 𝜉𝜉 is the damping coefficient, 𝜉𝜉
�1−2𝜉𝜉2

 is the damping attenuation characteristics 

of impact response, and 𝑓𝑓 is the sampling frequency [32]. The background noise is 

simulated using Gaussian white noise, which can be characterized by its mean and 

standard deviation. Figure 4.8 shows the waveform of the simulation signal with 𝜉𝜉 =

0.007 and 𝑓𝑓 = 512 𝐻𝐻𝑧𝑧 for the single impact signal, Gaussian white background noise 

with zero-mean and 0.05 standard deviation, and the mixed signal, respectively. A total 

number of 10,000 independent examples (5,000 with impact and 5,000 without impact) 

were simulated for each level of SNR. The SVM model was built using 10-fold cross-

validation and evaluated by traditional evaluation methods including: 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁

                                                     (9) 

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                                           (10) 
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𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

                                                           (11) 

 

where 𝑇𝑇𝑃𝑃 , 𝑇𝑇𝑆𝑆 , 𝐹𝐹𝑃𝑃 , 𝐹𝐹𝑆𝑆  are true positive, true negative, false positive, and false 

negative events, respectively. Figure 4.9 and Figure 4.10 show the relationships 

between SNR and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦, SNR and 𝑝𝑝𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙, respectively. In both plots, the first 

three datapoints (𝑆𝑆𝑆𝑆𝑆𝑆 < 2) are considered as outliers since an approximate of 50% or 

less detection rate in a binary classification case indicates nothing more than a random 

guess. In other words, the predictive model is underfitting when the impact signal is 

too small. For 𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 2, both plots exhibit linear regression relationships between 

SNR and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 , SNR and 𝑝𝑝𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 , respectively. As expected, the overall 

performance of the predictive model increases as the SNR increases. 

 

It should be noted that in the case of avian species interacting with wind turbines, the 

detection of impact is crucial for the purpose of bird protection since data and images 

for event confirmation and species recognition will only be available when the system 

is triggered [24]. That means the detection system will prefer to detect all actual impacts 

(i.e., 𝑇𝑇𝑃𝑃 plus 𝐹𝐹𝑆𝑆) but can allow some tolerance in the accuracy of non-impact event 

detection. Hence, 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙  is of greater importance when evaluating the model 

performance. Figure 4.11 shows the relationship between SNR and 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙. The first 

three datapoints are still considered as outliers despite a detection rate slightly over 

50%. For 𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 2, the plot also exhibits linear regression relationships between SNR 
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and 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 , which is in consistence with the results of performance evaluated by 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 and 𝑝𝑝𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙. 

 

 

Figure 4.9. Relationship between SNR and accuracy. Each point represents the 

resultant of 10,000 independent examples. 
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Figure 4.10. Relationship between SNR and precision. Each point represents the 

resultant of 10,000 independent examples. 

 

Figure 4.11. Relationship between SNR and recall. Each point represents the resultant 

of 10,000 independent examples. 
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4.6  Conclusions 

This study demonstrates through both experimentation and simulation the feasibility of 

impact detection using a conventional SVM model applied to vibration data collected 

by vibration sensors on wind turbine blades. Field tests were performed on full-scale 

wind turbines in real operating conditions with simulated bird impact on blades. 14 out 

of 29 registered artificial impacts were identified on-site by visual inspection and signal 

processing using the short-time Fourier transform on raw vibration signal time histories, 

which corresponds to a 48.3% success rate. It elucidates that SNR, together with a fast 

post-processing technique to discern the spike caused by the impact from the normal 

vibration background, are critical for real-time automatic impact detection on wind 

turbine blades. It is necessary to perform simulated studies due to the fact that bird 

impacts are rare. Simulated studies also allow the performance evaluation of SVM 

model on lower SNRs, which is not feasible using field testing data since the impact 

signals are usually indistinguishable. It can be concluded from simulated studies that 

the proposed SVM model trained by the 18 features extracted from raw vibration time 

histories and TMI graph can reliably predict whether a sample signal contains an impact 

or not, with an overall 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 , 𝑝𝑝𝐴𝐴𝑃𝑃𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙  and 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙  higher than 95% when 

𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 6. However, the model is not effective when 𝑆𝑆𝑆𝑆𝑆𝑆 < 2. 
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5.1   ABSTRACT 

Considering the increase in the deployment of wind energy conversion systems, 

improving the co-existence between wind turbines and wildlife with an efficient 

method for blade impact assessment are of primary importance. A heterogeneous multi-

sensor system for automatic eagle detection and deterrent, including an automatic 

blade-event detection module, was developed providing the necessary field data. An 

automated blade event detection system, based on support vector machine, a form of 

machine learning, was developed and tested. Training of the algorithm was performed 

using features extracted from vibration signals and energy distribution graphs obtained 

from numerical simulations of blade impacts. Performance of the method, evaluated 

using numerical simulations at different levels of signal-to-noise ratios, relative to 

artificial impacts, showed the best results when trained using combined raw vibration 

signal and time marginal integration graphs, exhibiting an overall 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 of 93% at 

𝑆𝑆𝑆𝑆𝑆𝑆 = 6 . The proposed model was tailored for improving specificity (i.e. false 

negative error), a critical aspect for endangered species events. Performance of the 

trained algorithm evaluating field data exhibited an improvement in impact detection 

from a visually identifiable rate of 42% to true positive prediction rate of 75%. The 

system could perform, with appropriate training, diverse functions as components 

health monitoring or lighting strike automatic monitoring. 
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5.2   Introduction 

One of the major ecological objectives associated with the deployment of wind farms 

is the improvement of the coexistence of birds and bats with wind turbines [1-5]. While 

blade collisions rates have been investigated and reported [6, 7], traditional mortality 

estimates still rely on methods such as long-term visual observation and carcass survey 

[8-11]. Those methods however are characterized by inherent uncertainties caused 

mainly by scavengers, low deployment of human observers and the nature of the 

environment like presence of thick grass, shrubs or on water. Under the aforementioned 

conditions the estimated mortality rates could contain significant differences from 

reality [10]. 

 

One approach for effective and low-cost automatic detection of bird/bat collision with 

wind turbines is to apply continuous vibration and noise monitoring on blades by the 

implementation of vibrational or acoustic sensing devices. The conceptual design of a 

multi-sensor system that provides both temporal and spatial coverage capacities for 

auto-detection of bird collision events was carried out at Oregon State University (OSU) 

based on prior research on bird collision monitoring systems [12, 13]. Vibrations and 

structural-borne noise data was acquired during field testing on utility-scale wind 

turbines. Artificial collision events were created by launching tennis balls into moving 

blades using compressed-air cannon. Preliminary results showed that it is feasible to 

detect an impact using common vibration sensors by visual inspection. Relatively 

simple automatic algorithms were applied in the case of high signal-to-noise ratios 

(SNR) [12]. However, vibration signals that contain low-intensity impacts embedded 
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in relatively high background noise are characterized by low SNRs, exhibiting low rate 

or no success in detection. In such cases, more advanced signal processing algorithms 

need to be developed and tested using experimental data.  

 

Vibration-based monitoring techniques are well developed and widely adopted on 

modern wind turbines for the main purpose of structural health monitoring [14, 15]. 

Vibration sensors such as piezoelectric diaphragms and accelerometers are commonly 

applied for the analysis of dynamic structural response during turbine operations [16]. 

A significant effort has been devoted by researchers for the detection of faults in 

rotating parts such as blades, bearings and gearbox under dynamic loads, by identifying 

its characteristic features in the vibration signal. In such case, signals caused by the 

defects will have a periodic characteristic. However, when in the occurrence of an 

abnormal one-time event, typically a blade strike or a lighting strike, the resulting effect 

is a non-periodic signal. Currently, there are no practical existing methods/techniques 

for automatic non-periodic event detection. 

 

This paper presents a robust method for automatic detection of non-periodic event 

under the general framework of structural health monitoring (SHM). Instead of 

traditional statistical analysis involved in SHM, a predictive model is constructed by 

implementation of support vector machine (SVM), one of the most widely applied 

machine learning methods for general classification problems such as condition 

monitoring and fault diagnosis [17]. The proposed method extracts features from 
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vibrations signals acquired on wind turbine blades and associated energy distribution 

graphs. Training of SVM is achieved by running the algorithm on a significant number 

of impact simulations. Preliminary results obtained by testing the predictive model 

trained by SVM using simulations of blade impact [18] showed an increasing 

performance as the SNR increases, as expected. This paper explains further 

developments in the SVM algorithm training methodologies by conducting simulated 

studies. Finally, a SVM predictive model was constructed and its performance was 

evaluated using field data on a commercial 1.5 MW wind turbine with and without 

impacts on the blades. 

 

5.3   Methods 

5.3.1 Support vector machine 

Support vector machine is a supervised machine learning method introduced by Vapnik 

et al. [17, 19]. It is widely applied to specific fault diagnosis of different types of 

machinery [20]. The method, well known for classification of periodic-type events, was 

originally defined and applied to non-periodic events such as blade impacts with 

foreign objects. Using time histories of vibrations and structure-born noise on wind 

turbine blades, a binary classification problem including two classes of labeled events 

for training is defined. SVM then is employed to construct a predictive model for new 

non-labeled events [18]. 
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Given a sample dataset (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)𝑖𝑖=1𝑁𝑁 , 𝑥𝑥𝑖𝑖 denotes the𝑖𝑖𝑡𝑡ℎ vector in the input space 𝑋𝑋 and 𝑦𝑦𝑖𝑖 

is the label associated with 𝑥𝑥𝑖𝑖. A hyperplne, in the form of 

 

𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 0,                                            (1) 

 

where 𝑤𝑤 is the weight vector and 𝑏𝑏 is the bias, is established to divide the input space 

𝑋𝑋 into two classes: positive (𝑓𝑓(𝑥𝑥) > 0) and negative (𝑓𝑓(𝑥𝑥) < 0). Maximum margin 

criterion is applied to find the optimized hyperplane, which gives the maximum 

distance between the nearest data and plane, as illustrated in Figure 5.1. 

 

 

Figure 5.1. Illustration of linear classifier in two-dimensional feature space given by 

maximum margin criterion. 
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A Constrained optimization technique also known as soft-margin SVM , coupled with 

Lagrange dual formulation method are then applied. For data that are non-linearly 

separable in the input space 𝑋𝑋, the input vector 𝑥𝑥𝑖𝑖 can be mapped into a higher feature 

space 𝐹𝐹 by mapping function Φ(𝑥𝑥), making them linearly separable. Since explicitly 

mapping input vectors from the lower dimensional space into the higher dimensional 

space can result in quadratic complexity, kernel function 𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� = Φ𝑇𝑇(𝑥𝑥𝑖𝑖) ∙ Φ(𝑥𝑥𝑗𝑗) 

is introduced to solve the issue by skipping the step of explicitly mapping [17]. Finally, 

a ''kernelized'' dual quadratic optimization problem is solved by the sequential minimal 

optimization [17] method, obtaining the final discriminant function with expression of 

 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙(∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)𝑁𝑁
𝑖𝑖=1 + 𝑏𝑏).                                    (2) 

 

5.3.2 Application to impact detection 

The application of the methods described above for automatic impact detection on wind 

turbine blades starts with the collection of raw time-histories collected by the sensors 

installed on the wind turbine blades and then processed by continuous wavelet 

transform (CWT), followed with integrating CWT with respect to time, producing the 

energy distribution graph, which is also defined as the time marginal integration (TMI) 

graph [18]. The flow chart of the proposed method is shown in Figure 5.2. A total 

number of 18 selected statistical features, as listed in Table 5.1, are extracted from the 

raw signals and TMI graphs, respectively. The predictive model is trained by 10-fold 
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cross-validation with parameters 𝛾𝛾 and 𝐶𝐶 optimized by grid search in a grid of 2−10 −

210. 

 

 

Figure 5.2. Flow chart of proposed method for automatic impact detection on wind 

turbine blade. 
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Table 5.1. List of extracted features. 

No. Feature from raw signal No. Feature from TMI graph 

1 Kurtosis 10 Kurtosis 

2 Skewness 11 Skewness 

3 Mean 12 Mean 

4 RMS 13 RMS 

5 Variance 14 Variance 

6 Peak 15 Peak 

7 Impulse factor 16 Impulse factor 

8 Shape factor 17 Shape factor 

9 Crest factor 18 Crest factor 

 

5.4   Simulated studies 

To verify the validity of the SVM predictive model applied to impact detection, 

simulation experiments were conducted before its application to field experimental data. 

Simulations of independent events with and without impact components were 

performed. Demonstration of the advantage of TMI-based features was carried out. The 

performance of the model was further evaluated by the receiver operating 

characteristics (ROC) curve. 
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5.4.1 Impact simulation 

In the simulation, each independent training example is constructed by combining a 

single impact signal and the background noise. The single impact signal is defined as: 

 

𝑠𝑠(𝑡𝑡) = 

0                                   𝑡𝑡 < 0 

(3) 
exp�−

𝜉𝜉
�1 − 2𝜉𝜉2

∙ 2𝜋𝜋𝑓𝑓𝑡𝑡� ∙ sin(2𝜋𝜋𝑓𝑓𝑡𝑡)      𝑡𝑡 ≥ 0 

 

where 𝜉𝜉 is the damping coefficient, 𝜉𝜉
�1−2𝜉𝜉2

 is the damping attenuation characteristics 

of impact response, and 𝑓𝑓 is the sampling frequency [21]. The background noise is 

simulated using Gaussian white noise characterized by its mean and root mean square 

(RMS) value. Signals are characterized by different SNR levels, which depend on 

impact signal intensities and background vibrations. The SNR is defined as follows: 

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 20𝑙𝑙𝑙𝑙𝑙𝑙10
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐴𝐴𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛
                                           (4) 

 

where𝐴𝐴 denotes the RMS amplitude. Figure 5.3 illustrates simulated training example 

signals of the pure impact with 𝜉𝜉 = 0.007  and 𝑓𝑓 = 512 𝐻𝐻𝑧𝑧 , Gaussian white 

background noise with zero-mean and 0.05 RMS, and the resulting combined 
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waveform, respectively. The impact of SNR = 1.5, which occurred at time = 0.5 s, was 

embedded in a noisy signal. For each level of SNRs (12 different levels from SNR = 

0.5 to SNR = 6 with an increment of 0.5), a total number of 10,000 independent 

examples (5,000 with impact and 5,000 without impact) were simulated. 

 

 

Figure 5.3. Result of an example of the construction of a simulated blade impact with 

the waveform of combined signal with SNR=1.5: (a) Single impact with 𝜉𝜉 = 0.007 

and 𝑓𝑓 = 512 𝐻𝐻𝑧𝑧, (b) Gaussian white background noise with zero-mean and 0.05 root 

mean square, and (c) Resulting mixed signal. 
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5.4.2 Performance evaluation 

The SVM model was trained with 10-fold cross-validation, and evaluated by overall 

accuracy [18] and receiver operating characteristics (ROC) curve. Figure 5.4 shows the 

relationships between SNR and accuracy. As expected, the overall accuracy of trained 

SVM model increases as the SNR increases, exhibiting linear regression relationships. 

Furthermore, to demonstrate the advantage of TMI-based features, the accuracy of the 

model trained by combined raw and TMI features was compared with the models 

trained by raw features only and TMI features only, respectively. The prediction results 

of SVM for features extracted from different stages are shown in Figure 5.4. At SNR 

= 6, the accuracy of the model trained by raw features was 80.32%, while the accuracy 

of the model trained by TMI features was 91.46%. The model trained by combined 

features showed the best performance of 93.98% in accuracy, but only a modest 

increase in respect to TMI features only model. 

 

ROC plot is a graphical plot that shows relative trade-off between true positive rate and 

false positive rate [21]. It is obtained by plotting the sensitivity against 1 - specificity. 

The sensitivity, also known as the true positive rate, is a measure of the fraction of 

actual positives which have been classified as such. The specificity, also known as the 

true negative rate, measures the fraction of actual negatives correctly classified as such. 

They are mathematically expressed as: 

 

𝑆𝑆𝑃𝑃𝑙𝑙𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑆𝑆𝑖𝑖𝑡𝑡𝑦𝑦 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁

,                                               (5) 
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𝑆𝑆𝑝𝑝𝑃𝑃𝐴𝐴𝑖𝑖𝑓𝑓𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑡𝑦𝑦 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇

,                                               (6) 

where 𝑇𝑇𝑃𝑃, 𝑇𝑇𝑆𝑆, 𝐹𝐹𝑃𝑃  and 𝐹𝐹𝑆𝑆  are true positive, true negative, false positive and false 

negative events, respectively. The obtained ROC plot for each selected level of SNR is 

shown in Figure 5.5. It can be noted from Figure 5.5 that as SNR increases, the points 

move towards the top-left corner, which represents a perfect model with 100% rate in 

both sensitivity and specificity. For 𝑆𝑆𝑆𝑆𝑆𝑆 < 2, in the three cases of 𝑆𝑆𝑆𝑆𝑆𝑆 = 0.5, 1 and 

1.5, the data points are close to the diagonal line (i.e. 50% random guess line), 

indicating the model is inefficient and under-fitting. 

 

 

Figure 5.4. Impact simulation results showing relationship between SNR and accuracy 

for three different cases of model training. 
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Figure 5.5. ROC graphs showing classification performance of the proposed method 

using simulation data. 

 

5.5   Experimental evaluation 

5.5.1 System overview 

A heterogeneous multi-sensor system with specific capabilities of eagle detection and 

identification, eagle deterrent and blade collision detection has been recently developed 

[23]. The system mainly consists of three modules as shown in Figure 5.6. The 

monitoring of the airspace surrounding a wind turbine is performed by the first module, 

a 360-degree field of view commercial camera. The camera module provides real-time 

feedback about the presence of moving objects, eagle identification and their flight 
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paths with respect to the turbine structure. Once a moving object is detected with 

sufficient number of pixels, eagle identification can be carried out by computer vision 

deep-learning techniques [23]. In a positive event of eagle flying towards the wind 

turbine, kinetic inflatable visual deterrents on the ground will be deployed 

automatically. The third module is a weather-proof blade impact detection (BID) unit 

installed at the root of each blade as shown in Figure 5.7. The module includes vibration 

sensors, an accelerometer and a contact microphone, providing continuous structural 

vibration monitoring used for blade collision detection. The InvenSense MPU-9250 

MEMS triple axis accelerometer, forming an inertial measurement unit (IMU) is rigidly 

attached inside the BID unit with two axes (𝑌𝑌 and 𝑍𝑍) being in-plane in respect of the 

blade and parallel to the chord line and 𝑋𝑋 axis off-plane. The contact microphone (CUI 

Inc. CEB-27D44) is a piezoelectric diaphragm that consists of a piezoelectric ceramic 

plate. Being attached to the blade surface using adhesive tapes, the deformation of the 

piezoelectric ceramic plate caused by surface vibrations induces the electric charge. In 

addition, the BID unit contains a on-blade surveillance camera that provides visual 

images for potential taxonomic identification. 
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Figure 5.6. Eagle detection, deterrent and blade event detection system diagram. 

 

 

Figure 5.7. Blade impact detection unit installed at the root of each blade on the GE 1.5 

MW at the NREL National Wind Technology Center 
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5.5.2 Field testing summary 

The overall system functionality and reliability were validated by field tests at the 

National Renewable Energy Laboratory (NREL) National Wind Technology Center 

(NWTC) in Boulder, CO and at the North American Wind Research and Training 

Center (NAWRTC) at the Mesalands Community College in Tucumcari, NM, both on 

a General Electric (GE) 1.5 MW wind turbine. Artificial impacts were created by 

launching tennis balls and small potatoes using a custom compressed-air cannon [12, 

13]. Sample plots of raw vibration recordings from the three blades on the GE 1.5 MW 

at the NWTC are illustrated in Figure 5.8. The top three time histories represent the 

voltage time histories recorded by the contact microphones, and bottom three represent 

𝑋𝑋 axis (i.e. out-of-plane axis) accelerations recorded by the accelerometers. The tests 

were under low-wind speed conditions and with the rotor in slow wind milling rotation. 

The figures show the impact occurring on Blade #1 was clearly visible due to the 

relatively high SNRs, 14.1 and 4.4 for contact microphone and accelerometer 

respectively. Due to the low background vibration noise and high impact intensity, 

sensors on Blade #2 and Blade #3 were also able to capture this impact with relatively 

lower SNRs. The impact cannot be easily discerned from noise and signal spikes from 

Blade #2 signal from the contact microphone.  Cases of data with extremely high noise 

in the signals or multiple random spikes, were classified as N/A. 

 

 



89 
 

 
 

Fi
gu

re
 5

.8
. V

ib
ra

tio
n 

si
gn

al
s f

ro
m

 c
on

ta
ct

 m
ic

ro
ph

on
es

 (u
pp

er
 p

lo
ts

) a
nd

 a
cc

el
er

om
et

er
s (

lo
w

er
 p

lo
ts

) w
ith

 im
pa

ct
 o

cc
ur

re
d 

on
 b

la
de

 #
1.

 



90 
 

 

In summary, 13 artificial impacts with tennis balls at NWTC and 13 at NAWRTC were 

successfully obtained and manually annotated during wind turbines normal operation. 

Preliminary inspection showed that 11 over the total 26 impact events can be visually 

identified by any of the recorded raw signals with calculated SNRs in a range between 

1.3 and 25.4 with an average of 6.3. Field notes show that most of the identified impacts 

occurred at the leading edge of the turbine blade thus at a relatively high kinetic energy, 

while impacts concealed by signal noise and with significantly low SNRs were usually 

located closer to the rotor shaft at low kinetic energy. 

 

5.5.3 Application 

5.5.3.1 Data preparation and model training 

Characteristically for a supervised machine learning method, a SVM predictive model 

requires a substantial number of training examples from all classes to modify and 

optimize its non-probabilistic linear classifier. In real applications, the vibration sensors 

would be installed on turbine blades for a sufficient long period of time to obtain 

vibrations with and without impacts. Since the blade impacts obtained during field tests 

were not sufficient for an efficient training of the predictive model, a large number of 

signals with and without impacts were mathematically simulated for training purposes. 

The simulated signals, characterized by RMS of the background noise and SNR of the 

impact, were created to replicate the characteristics of the actual signals. 
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Preliminary inspection on all impact signals indicated a higher reliability of 

accelerometer signals since contact microphone data exhibited random noise such as 

multiple spikes shown in Figure 5.8 Blade #2, which can be misclassified as false 

positive impacts. The three-axis acceleration data showed a wide variation of RMS and 

SNR due to different test sites, changing weather and turbine operating conditions. To 

avoid attributes in larger numeric ranges dominating those in lower ranges, the out-of-

plane X axis acceleration data from the NAWRTC tests with similar signal properties 

were selected for valid evaluation of the proposed method. The 13 sets of actual impact 

signals from NAWRTC, each containing three X-axis acceleration signals from the 

three respective blades, were selected for the evaluation of the SVM predictive model. 

A high-pass filter with cutoff frequency of 5 Hz was applied to acceleration signals to 

eliminate low-frequency components caused by blade rotation, as illustrated in Figure 

5.9. All signals were offset to zero to avoid numerical difficulties in calculation. The 

calculated RMS values range from 0.0020 to 0.0027 with an average SNR of 2.7 for 

all identifiable impacts. 

 

A total number of 10,000 independent examples (5,000 with impact and 5,000 without 

impact) were simulated with zero-mean, RMS of 0.0027 g and a fixed SNR of 2.7. The 

predictive model was trained using those examples by 10-fold cross-validation. 
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5.5.3.2 Results 

It was determined that testing the predictive model, obtained as explained above, with 

real vibrations signals was critical, thus the constructed model was evaluated using 13 

actual impacts.  For testing purpose 1,000 extra independent examples (500 with impact 

and 500 without impact) were simulated by the same parameters as used in the training 

dataset simulation, and were added to each actual impact to construct a rich testing 

dataset. This step provides a larger base of testing examples for the overall accuracy 

evaluation, which is necessary in determining if a model is reliable or under-fitting. 

The labels of the 13 actual impacts as predicted by the proposed model including 

overall accuracy are listed in Table 5.2. Although all actual impacts were predicted as 

impacts by any of the three-axis acceleration, impact #6, #9 and #10 showed 

significantly lower overall accuracy (approximately 50%), indicating the model is 

underfitting, hence their results were considered invalid. The reason for low accuracy 

 
 

Figure 5.9. Illustration of a high-pass filter. (a) Raw acceleration signal recorded by the accelerometer 

installed on Blade #2 during an impact. (b) After the application of a high-pass filter with cutoff frequency 

of 5 hz, low frequency components caused by blade rotation was eliminated. 
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was attributed to high signal noise level.  Figure 5.10 shows graphically the overall 

results of our validation runs.  Excluding impact #8, 75% of the actual impacts (nine 

out of 12) were successfully predicted, including those impacts signal concealed by the 

background noise, compared to 42% of the actual impacts (five out of 12) identified by 

visual inspection or detectable by simpler algorithms. Figure 5.11 illustrates a sample 

of a non-identifiable signal that was successfully predicted to contain an impact with 

an overall accuracy of 99%. 

 

Table 5.2. Predictive labels of the 13 actual impacts by the predictive model. 

Impact # Blade #1 Blade #2 Blade #3 Overall Accuracy 

1 1 N/A N/A 100% 

2 1 1 -1 99% 

3 1 -1 -1 97% 

4 1 1 -1 99% 

5 1 -1 -1 98% 

6 1 1 1 Approximately 50% 

7 N/A 1 1 99% 

8 N/A N/A N/A N/A 

9 1 1 1 Approximately 50% 

10 1 N/A N/A Approximately 50% 

11 1 N/A N/A 99% 

12 1 N/A N/A 99% 

13 -1 1 -1 98% 



94 
 

 

 

Figure 5.10. Results in percentage of identifiable impacts by: (a) visual inspection; (b) 

the constructed predictive model. 

 

 

Figure 5.11. Graphs of (a) raw acceleration time-histories and (b) energy distribution 

of impact #12 on blade #1. The impact was visually non-identifiable but was 

successfully predicted by the predictive model. 
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5.6  Conclusions 

This study demonstrates the feasibility of the proposed SVM model for detection of 

blade impact signals concealed in background noise using vibration data collected by 

conventional sensors (accelerometer and contact microphone) installed on wind turbine 

blades. Field tests were performed on commercial wind turbines in operating conditions 

with addition of artificial impacts of tennis balls on blades. Considering the collected 

data base of confirmed artificial impacts, 11 out of 26, with an average calculated SNR 

of 6.3, were identified by visual inspection. Those impacts could be alternatively 

automatically detected by simple automatic algorithms. Simulated operational 

vibrations with and without impact showed that the proposed SVM model formulated 

from features extracted from raw and TMI signal has been found to be effective in 

automatic impact detection in low SNR when the impact is embedded in the 

background vibration noise, and virtually invisible from inspection. Field impacts 

augmented by a number of mathematically simulated impacts, at different levels of 

SNRs, including at extremely low levels of SNRs, showed that the proposed SVM 

model can effectively detect and classify an abnormal one-time (non-periodic) event as 

an impact with sufficient accuracy for relatively low levels of SNRs. Considering a 

𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 6 , the overall accuracy can be higher than 93%.  Results also showed 

approximately 50% of accuracy for 𝑆𝑆𝑆𝑆𝑆𝑆 < 2, which indicates the model limit reaching 

random guess in a binary classification problem. Random guess boundary was also 

proved by the ROC plot illustrating model results close to the diagonal random guess 

line for 𝑆𝑆𝑆𝑆𝑆𝑆 < 2 . Comparison between predictive models formulated by three 

different feature sets showed the best results for the model trained using combined 
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features extracted from both raw vibration signal and TMI graph.  TMI-only feature 

however showed results close to the combination of the two while using raw features 

only exhibited the lowest performance.  Additionally, considering a real case of impact 

detection between an endangered specie and wind turbine blade, the occurrence of false 

negative is considered more critical than the occurrence of false positive.  In this respect, 

the specificity is considered more critical than sensitivity. Although 𝑆𝑆𝑆𝑆𝑆𝑆 = 5.5 has 

approximately the same sensitivity (i.e. false positive error) as 𝑆𝑆𝑆𝑆𝑆𝑆 = 5, the model is 

superior in improving specificity (i.e. false negative error).  Finally, the predictive 

model trained by simulated signals was evaluated using field data from NAWRTC.  

Results showed an overall true positive impact detection of 75% compared to 42% of 

the actual impacts identified by visual inspection or detectable by simpler algorithms, 

validating that concealed (not visible) impacts can be successfully identified by the 

proposed predictive model. Alternative training of the same algorithm can perform 

different tasks as blade structural health monitoring, lighting strike or hail impact 

automatic monitoring.  The system is designed to be turbine-agnostic thus it can be 

installed and implemented at any time of the turbine operational life or deployment. 

 

5.7  Future work 

As concluded, the proposed model with the current training is not effective for 

extremely low levels of 𝑆𝑆𝑆𝑆𝑆𝑆 < 2.  Potential improvements of the system include: 

 Algorithm optimization for real time operations; 

 Establish new features with stronger correlations with the characteristics of an 

impact event need in the presence of significant background vibrations noise; 
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 Increase field data collection to improve model training and possibly identifying 

new features; 

 Installing multiple sensors at different positions per blade and on nacelle and apply 

sensor fusion techniques to improve impact signal detection.  Optimization studies 

with the objective of establishing the minimum number of vibration sensors on 

blades for optimum performance and minimum cost could also be beneficial. 
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