

AN ABSTRACT OF THE THESIS OF

Hanzhong Xu for the degree of Doctor of Philosophy in Computer Science presented

on January 28, 2020.

Title: Computing the Fréchet Distance Between Surfaces

Abstract approved:
Amir Nayyeri

The Fréchet distance is a measure of similarity between curves or surfaces. The Fréchet dis-
tance between two polygons can be computed in polynomial time, but it is much harder
to compute the Fréchet distance between surfaces. We present the first (1+ε)-approximation
algorithm and the first exact algorithm for computing the Fréchet distance between two
surfaces. Next, we show that computing the Fréchet distance between a surface and a
triangle is in PSPACE. Combining the approximation algorithm and the exact algorithm,
we present an improved version of (1+ε)-approximation algorithm. Finally, we present
a new restricted class of surface, surfaces composed of large triangles, for which the
Fréchet distance between them can be computed faster.

c©Copyright by Hanzhong Xu
January 28, 2020

All Rights Reserved

Computing the Fréchet Distance Between Surfaces

by

Hanzhong Xu

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented January 28, 2020
Commencement June 2020

Doctor of Philosophy thesis of Hanzhong Xu presented on January 28, 2020.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Hanzhong Xu, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor, Amir Nayyeri, for his guidance through each stage of
the process.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Objective . 1

1.2 Background . 1

1.3 Our Results . 3

2 Related Work 5

2.1 Fréchet Distance between Curves . 5
2.1.1 Exact Algorithms for Curves 5
2.1.2 Approximation Algorithms for Curves 8

2.2 Fréchet Distance between Surfaces . 9
2.2.1 Algorithms . 10
2.2.2 Restricted Classes of Surfaces 11
2.2.3 Hardness Results . 13

3 Preliminaries 14

4 Overview 17

5 Scaffold Map and Its Properties 20

5.1 Vertex Maps and Refinements . 20

5.2 Scaffold Maps . 22

5.3 Scaffold Maps and Homeomorphisms 23

5.4 Crossing Number and Crossing Bound 25

6 Combinatorial Specification and Its Representation 28

6.1 Combinatorial Vertex Maps . 28

6.2 Combinatorial Embeddings . 29

6.3 Combinatorial Scaffold Maps and Normal Coordinates 29

7 Approximation Algorithm for Surfaces 32

7.1 Relaxation of Scaffold Maps . 32

7.2 Relaxation of Vertex Maps . 33

7.3 Summing Up . 35

TABLE OF CONTENTS (Continued)
Page

7.4 General surfaces . 37

7.5 Terrains . 39
7.5.1 Sampling . 39

8 Exact Algorithm for Surfaces 42

8.1 System of Polynomial Inequalities . 42

8.2 Vertex Variables . 44

8.3 Crossing Point Variables . 44

8.4 Valid Refinements . 45

8.5 Summing Up . 49

9 A Surface and a Triangle: PSPACE 51

9.1 Tight Images . 51
9.1.1 Tight Edge Images . 51
9.1.2 Tight Scaffold Maps . 53
9.1.3 Detailed Normal Coordinates 54

9.2 A System of Polynomial Size . 55

9.3 Summing up . 56

10 Improved Approximation Algorithm 58

10.1 Overview . 58

10.2 Approximate vertex map . 59

10.3 Optimization problem . 62

10.4 Convex Quadratically Constrained Quadratic Programming for `2 norm . 65

11 Surfaces composed of large triangles 69

11.1 Optimal Vertex Map . 69

11.2 Future work . 72

12 Discussion 73

Bibliography 73

LIST OF FIGURES
Figure Page

1.1 These two curves are close under Hausdorff distance, but far from each
other under Fréchet distance. 3

2.1 Free space diagram Fδ for two segments P and Q [3]. 6

2.2 Three kinds of critical values of the Fréchet distance between curves [3]. 7

2.3 The free space diagram for curves with long edges [17]. 8

5.1 upper: R and S before refinement, lower: R̃ and S̃ after refinement.
The cyclic order of boundary vertices is preserved. 21

5.2 The Fréchet distance between a curve and a linear segment is not in-
creased if we replace part of the curve with a line segment.(Figure 3 of
Buchin et al. [8]) . 24

6.1 Examples for normal coordinates in triangles. 30

7.1 H and H ′; corresponding faces and vertices have the same colors. . . . 34

7.2 Triangulated grid of width w. 38

9.1 Detailed normal coordinates; note in reality the segments intersect each
edge only at its endpoints; the figures are slightly modified for demon-
stration. 54

10.1 Approximating a quadratic constraint by linear constraints. .cFtebasu2017largescale. 67

Chapter 1: Introduction

1.1 Objective

The purpose of this study is to: (1) explore algorithms to compute or approximate the
Fréchet distance between surfaces; (2) explore restricted classes of surfaces for which
we can compute or approximate the Fréchet distance quickly. In this thesis, I present ex-
act and approximation algorithms and an exact algorithm for computing the Fréchet dis-
tance between surfaces, and show that computing the Fréchet distance between a triangle
and a surface is in PSPACE.

1.2 Background

Shape matching is a central problem in many applications, such as object recognition in
image processing and function detection in protein modeling. Given two geometric ob-
jects, we are interested in measuring the similarity between them. The Fréchet distance
is a natural way to measure similarity for geometric objects such as curves and sur-
faces. The Fréchet distance and its variants have been used in many applications, such
as matching of time-series in databases, speech and handwriting recognition [20, 21, 23].

The Fréchet distance between two curves P andQ denoted δF (P,Q), can be defined
as follows. Imagine a man walks along the first curve P , his dog walks along the second
curve Q, and they are connected by a leash. They can vary their speed, but they are not
allowed to backtrack. The Fréchet distance between P and Q is the minimal length of a
leash required for them to traverse the curves.

Compared to other similarity measures between spaces, the Fréchet distance is more
natural when it is important to capture the topology of the underlying spaces. For a
comparison, consider the Hausdorff distance between two point sets P and Q. Mapping
each point of P to its closest point inQ, and similarly each point ofQ to its closest point
in P , the Hausdorff distance is the maximum distance between a point and its image.
We can use the Hausdorff distance to measure the distance between curves if we treat

2

curves as sets of points, however, with this similarity measure we are disregarding the
topology. The Fréchet distance, on the other hand, takes the topology into account.

The Fréchet distance between curves can be computed or approximated efficiently.
Let n be the total number of vertices of two polygonal curves. The Fréchet distance
can be computed between such polygonal curves in O(n2 log n) time [3]. Moreover the
Fréchet distance can be approximated in nearly linear time for more restricted classes
of curves. For example, there is a (1 + ε)-approximation algorithm for c-packed curves
that runs in O((cn/ε) log n) time [14]. Computing the Fréchet distance between sur-
faces is much harder. It is NP-complete to decide the Fréchet distance even between a
triangle and a surface [16], or between two real valued surfaces [10]. On the positive
side, Alt and Buchin [2] show that the Fréchet distance between triangulated surfaces
is uppersemicomputable: there is an algorithm that outputs a sequence of values con-
verging to the Fréchet distance. For more restricted classes, such as polygons [8], folded
polygons [12] and polygonal spaces with a constant number of holes [22], there are poly-
nomial time algorithms. Buchin et al. [9] studied the Fréchet distance between moving
curves. They show that some variants are polynomial-time solvable or NP-complete
depending on the restrictions imposed on how the moving curves are matched.

3

Figure 1.1: These two curves are close under Hausdorff distance, but far from each other
under Fréchet distance.

1.3 Our Results

In this thesis, we describe exact and approximation algorithms. We show two different
(1 + ε)-approximation algorithms, a modification of the other with improvement in the
running time. The first algorithm is simpler, but with weaker bounds on the running
time. We describe both in the thesis to make the exposition smoother.

Theorem 1.3.1. Let R and S be two triangulated surfaces with m and n vertices, and
let ε > 0. There exists a (1+ε)-approximation algorithm for computing the Fréchet dis-
tance δF (R,S) betweenR and S with running time

2
O

((
m+n+

Area(R)+Area(S)
(εδ)2

)2)
.

Theorem 1.3.2. LetR and S be piecewise linear surfaces, and δ = δF (R,S). There is

4

a (1 + ε)-approximation algorithm for computing the Fréchet distance between R and
S with respect to the `1 norm in

log(δ + 1/δ)(1/ε)O(|RV |+|SV |)2O((|RV |+|SV |)2)

time, whereRV and SV are the set of vertices ofR and S.

Moreover, we describe exact decision algorithms for computing the Fréchet distance
between two triangulated surfaces.

Theorem 1.3.3. Let R and S be triangulated surfaces with m and n vertices, and let
δ ≥ 0. There is an algorithm to decide whether δF (R,S) ≤ δ.

For a triangle and a triangulated surfaces, we show that their Fréchet distance can be
decided in PSPACE. It was shown that this special case is NP-hard [16].

Theorem 1.3.4. Let R be a triangulated surface with m vertices, S be a triangle, and
let δ ≥ 0. There is an algorithm to decide whether δF (R,S) ≤ δ in PSPACE.

Finally, we study the problem for restricted classes of surfaces. For terrains our
Theorem 7.5.2 already implies a O((D + 1)/(εδ)2) · n + 2O((D+1)4/(ε4δ2)) running time
approximation algorithm where D is the maximum slope of the two terrains. We also
study the Fréchet distance between surfaces that are composed of large triangles relative
to their Fréchet distance. We show an exact algorithm for computing the Fréchet dis-
tance between two surfaces composed of large triangles.

Theorem 1.3.5. LetR and S be two surfaces composed of 2δ-large triangles, such that
δ ≥ δF (R,S). There is an exact algorithm for computing δF (R,S) in

2O(|RV |+|SV |)2

time.

5

Chapter 2: Related Work

In this chapter, we review existing results related to Fréchet distance between curves
and surfaces. For curves, we mainly focus on a few results that are more directly related
to the contribution of this thesis, and refer the interested reader to [14] [18] for more
exhaustive literature review. For surfaces, we try to include all the related results.

2.1 Fréchet Distance between Curves

Computing the Fréchet distance between curves has been well studied. Alt et al. [3]
give the first exact algorithm for computing the Fréchet distance between two polygo-
nal curves in O(nm log (nm)) time, where n and m are the number of vertices of two
curves. For general curves, it is still an open problem to compute or approximate the
Fréchet distance between curves with subquadratic running time. However, recently
Agarwal et al. [1] found a subquadratic time algorithm for the discrete Fréchet dis-
tance. Many researchers studied the Fréchet distance for restricted families of curves
with the goal of finding faster (nearly linear time) algorithms. For example, see the
(1 + ε)-approximation algorithm of Aronov et al. [4] for k-bounded curves and back-
bone curves.

2.1.1 Exact Algorithms for Curves

General curves. Alt and Godau [3] describe a decision algorithm to check whether the
Fréchet distance between two polygonal curves is no more than a given δ inO(nm log (nm))

time. The idea is to build the so called free space diagram for the given δ. Roughly
speaking, the free space diagram is a subset of an n ×m axis parallel rectangle. There
is a monotonic path from the bottom left corner to the top right corner within the free
space diagram, if and only if the Fréchet distance is at most δ. More specifically, let
P : [0, n − 1] → Rd and Q : [0,m − 1] → Rd be two polygonal curves with n

and m vertices. The free space diagram for P , Q and δ is defined as Fδ = {(s, t) ∈

6

[0, n − 1] × [0,m − 1] | dist(P (s), Q(t)) ≤ δ}. The points in the free space diagram
correspond to the points in P ×Q with distance at most δ. A monotone path from (0, 0)

to (n− 1,m− 1) within the free space diagram corresponds to a homeomorphism with
Fréchet length at most δ.

Figure 2.1: Free space diagram Fδ for two segments P and Q [3].

Alt and Godau show several interesting properties of the free space diagram. They
show that the free space diagram is composed of n × m cells, where each cell is the
intersection of a square with a perhaps degenerate ellipse. Each cell is basically the free
space diagram between two segments, see Figure 2.1. Based on this observation, they
design an algorithm to check whether a path from (0, 0) to (n−1,m−1) exists in Fδ, or
equivalently whether the Fréchet distance between P and Q is at most δ. This algorithm
is in spirit similar to a dynamic programming algorithm that works for the discrete case.

Having an algorithm that can verify whether the Fréchet distance between two curves
is at most δ, Alt and Godau use a binary search together with this algorithm to look
for the value of the Fréchet distance. To obtain an exact algorithm they would still
need a finite set of candidate values. In fact, they show a set of polynomial size for
the candidates, which they call critical values. Critical values are composed of three
categories: (a) the distances between every pair of vertices from different curves, (b)
the distances between a vertex of one curve and a segment of the other curve, and (c)

7

the value determined by two vertices v and u of one curve, and a point p on a segment
of the other curve that minimizes max(dist(p, v), dist(p, u)). See Figure 2.2 for an
illustration. One of the open problems that we propose in this thesis is whether it is
possible to obtain a finite set of critical values for two surfaces.

Figure 2.2: Three kinds of critical values of the Fréchet distance between curves [3].

Most of the existing algorithms for computing the Fréchet distance between curves
are based on these two techniques, free space diagrams and critical values. Notice that
the exact decision algorithm uses dynamic programming on the free space diagram,
which visits all cells in the free space diagram, so the running time is at least O(nm).
Hence, the high level idea to reduce the running time is trying to reduce the number of
cells visited in the free space diagram.

Curves with long edges. Researchers have studied the Fréchet distance for restricted
classes of curves. In this thesis, we are particularly interested in the restricted class of
curves with relatively long edges that Gudmundsson et al. [17] studied and its possible
generalization to surfaces. Given P and Q with Fréchet distance δ, they show fast
algorithms for computing δ assuming the edges of P andQ are longer than 2δ. They also
show a similar result assuming one curve is composed of 4δ-long edges and the other of
edges with arbitrary length. In high level, long edges guarantee that a straight segment
only has one combinatorially distinct path in the free space diagram, thus, it heavily
restricts options for the path that connects the lower left to the upper right in the free
space diagram. Therefore, this path can be computed quickly if it exists. Specifically,

8

they show that the greedy mapping from the prefix subcurve of P to the maximum
reachable prefix subcurve of Q finds this path, and therefore a mapping of length at
most δ. In this thesis, we ask whether it is possible to obtain similar polynomial time
exact or approximation algorithms for surfaces given that they consist of triangles whose
inscribed circles are large relative to δ.

Figure 2.3: The free space diagram for curves with long edges [17].

2.1.2 Approximation Algorithms for Curves

It is still an open problem to compute or approximate the Fréchet distance between two
general curves with subquadratic running time. Currently, there are a few restricted
classes of curves, for which we can approximate the Fréchet distance quickly. One
useful technique for the approximation algorithms for restricted classes of curves is
curve simplification. Curve simplification is a very natural technique that has been very
effective for curves. We ask, in this thesis, whether a similar technique can work for
surfaces.

9

Curve simplification. Given a polygon curve P = {p1, . . . , pn}, letQ = {q1, . . . , qm}
be the µ-simplified curve of Q. we obtain Q as follows:

1. Base case: q1 = p1.

2. Inductive step: (1) Let qi = pj , and pk be the first vertex out of Ball(pj, µ)

in {pj+1, . . . , pn}, then qi+1 = pk. (2) If all points of {pj+1, . . . , pn} are in
Ball(pj, µ), we set pn as the last vertex of Q.

The µ-simplified curves have two useful properties. First, the Fréchet distance be-
tween the simplified curve and the original curve is at most µ. Second, the lengths
of the simplified edges except possibly the last one are at least µ. Several (1 + ε)-
approximation algorithms are obtained for different restricted families of curves based
on these two properties, detailed below.

Aronov et al. [4] give a near linear time (1 + ε)-approximation algorithm for the
discrete Fréchet distance between backbone curves. Driemel, et al. present a (1 +

ε)-approximation algorithm for the Fréchet distance between c-packed curves and the
Fréchet distance between k-bounded curves.

Curves type Problem Running time See
c-packed Fréchet distance O(cn/ε+ cn log n) Driemel, et al. [14]
κ-bounded Fréchet distance (κ/ε)dn+ κdn log n Driemel, et al. [14]
backbone discrete Fréchet distance O(n4/3 log nm) Aronov, et al. [4]

2.2 Fréchet Distance between Surfaces

Computing the Fréchet distance becomes much harder for surfaces, as the main tech-
niques do not easily generalize to this higher dimensional variant of the problem. First,
the free space diagram is the main technique used for the decision algorithms for the
Fréchet distance between curves. However, the free space diagram for two surfaces is
not even easy to define. A straightforward definition would give us a subset of a 4-
dimensional rectangular cube as our free space. The homeomorphism, in this setting,
would correspond to surface in this 4-dimensional cube. For curves, we use the linear
ordering of points to find a bi-monotonic path in the free space diagram quickly. Clearly,

10

we cannot apply the same idea to the free space diagram of surfaces, because surfaces
don’t have the linear ordering of points.

Second, the exact algorithm for computing the Fréchet distance between curves
searches within a polynomial size set of critical values for the value of the Fréchet dis-
tance. For surfaces, we still do not know how to compute a finite set of critical values for
the Fréchet distance between general surfaces. Therefore, even given an exact decision
algorithm to check whether the Fréchet distance between two surfaces is at most a given
δ, we can not extend the decision algorithm to an exact algorithm for computing the
Fréchet distance between surfaces. Computing a finite set of critical values is an open
problem we propose in this thesis.

There are only a few papers regarding computing the Fréchet distance between sur-
faces, perhaps because of the inherent difficulty of the problem. We categorize these
papers into positive or algorithmic results versus negative or hardness results.

2.2.1 Algorithms

To our knowledge, there was no exact or approximation algorithm that is guaranteed
to terminate in finite time for general surfaces before the work of this thesis. How-
ever, there was an algorithm that generates a sequence of numbers converging to the
Fréchet distance.

Semi-computability Alt and Buchin [2] show that the Fréchet distance between trian-
gulated surfaces is upper semi-computable: they describe an algorithm that runs forever
but whose output converges to the Fréchet distance. The algorithm keeps refining two
triangulated surfaces R and S to surfaces R̃ and S̃ with smaller and smaller triangles.
For each pair of triangulations the algorithm enumerates all possible mesh homeomor-
phisms. Mesh homeomorphisms map each edge of R̃ to a path in the 1-skeleton of
S̃; therefore, it is possible to enumerate mesh homeomorphism. Since the algorithm
runs forever, the triangles of R̃ and S̃ are going to become arbitrarily small, so the enu-
meration process is guaranteed to converge to an optimal homeomorphism between the
surfaces.

11

2.2.2 Restricted Classes of Surfaces

Computing the Fréchet distance between general surfaces is hard, but solving this prob-
lem is straightforward for two triangles. A very useful observation is that the Fréchet dis-
tance between two triangles is the same as the Fréchet distance between their boundary
curves. In fact, this property holds for two convex polygons possibly in two different
planes: the Fréchet distance between two convex polygons is the same as the Fréchet dis-
tance between their boundary curves. The case for non-convex polygons is much more
complicated as detailed below.

Simple Polygons. A simple polygon is defined by its boundary: a non-self-intersecting
piecewise linear curve in a plane. Buchin et al. [8] present a polynomial time algorithm
to compute the Fréchet distance between two simple polygons P and Q (possibly on
different planes). First, they show that the Fréchet distance between a convex polygon
and a simple polygon equals the Fréchet distance between their boundary curves. For
two possibly non-convex simple polygons P and Q, their algorithm first decomposes
P into convex polygons. Then, it looks for the optimal image for each convex sub-
polygon of P in Q. Note, that after finding these images, the problem reduces to a set
of Fréchet distance computation problems between curves.

After decomposing P into convex polygons, the authors need to find the image of
each diagonal of P added for the decomposition. The authors observe that it is safe to
assume that the image of a diagonal in an optimal map is a shortest path in the other
polygon Q between two points on the boundary of Q. Therefore, deciding whether the
Fréchet distance between P and Q is at most δ reduces to deciding whether an orien-
tation preserving homeomorphism from the boundary of P together with the diagonals
added for the decomposition into convex polygons exists into Q such that the following
properties hold: (1) the boundary of P should map to the boundary of Q, (2) each diag-
onal on the P side should map to a shortest path, and (3) the Fréchet length of the map
must be at most δ. The authors refer to a monotone path with condition (2) as a feasible
path in the free space diagram of P , Q and δ. The algorithm checks the condition (2) by
building a reachability graph. For each vertex p of P , the algorithm computes a maxi-
mum interval I(p, e) on each boundary edge e ofQ such that the distance between p and

12

I(p, e) is no more than δ; the number of intervals is O(nm). Then, we are able to build
a reachability graph, such that a vertex in the graph represents an interval and a directed
edge from I(p0, e0) to I(p1, e1) represents the existence of a map from the diagonal
(p0, p1) of P to a shortest path from I(p0, e0) to I(p1, e1) in Q with Fréchet length no
more than δ. To find such a shortest path, the authors define the set of all shortest paths
from I(p0, e0) to I(p1, e1) as an hourglass. They show that if there exists one shortest
path in the hourglass with Fréchet distance at most δ to the diagonal (p0, p1), then all
shortest paths in the hourglass have Fréchet distance at most δ to the diagonal (p0, p1).
Once we have the reachability graph,if and only if two endpoints of a monotone path are
connected in the reachability graph, the monotone path is a feasible path in the graph.

For computing the Fréchet distance, the algorithm performs a binary search over a
set of critical values, and checks each value using the decision algorithm. Because each
edge of the decomposition of P maps to a shortest path in Q, we enumerate all pairs
of a diagonal and an hourglass, and hence a set of critical values can be computed in
polynomial time.

Folded Polygons. A folded polygon is a polygonal surface that does not have any in-
terior vertices. Cook et al. [12] generalize the work of Buchin et al. [8] to a polynomial
time algorithm for folded polygons. First, the authors show that the Fréchet distance
between a convex polygon and a folded polygon equals the Fréchet distance between
their boundary curves. The core idea of their algorithms is also decomposing P into
convex polygons, and looking for the optimal image for each convex sub-polygon. Be-
cause the Fréchet distance between each convex sub-polygon and its image, a folded
polygon, equals the Fréchet distance between their boundary curves, the problem re-
duces to looking for the optimal homeomorphism for each diagonal and boundary edge.
However, it is not enough to consider only mapping diagonals to shortest paths on Q.
Fortunately, the paths on Q that diagonals of P map to still have some good proper-
ties. The authors show that there exists an optimal map, such that it maps diagonals
to a polygonal path that follows the shortest path between two endpoints. If a path
goes through the same sequence of faces as the shortest path, we say that the path fol-
lows the shortest path. Based on this observation, the authors describe three algorithms:

13

(1) a fixed-parameter tractable algorithm, where the number of diagonals in a convex
sub-polygon of P and Q is constant. This algorithm is similar to our exact algorithm
for computing the Fréchet distance between surfaces: both of them reduce to a global
optimization problem with a set of constraints. (2) a constant-factor approximation al-
gorithm. The algorithm first finds a shortest path map for diagonals, such that the image
paths may cross others. Then, the algorithm fixes the image paths to non-crossing paths
one-by-one from outside diagonals to inside diagonal. The authors show that it gives a
9-approximation of the Fréchet distance between P and Q. (3) an exact algorithm for
computing the Fréchet distance between axis-parallel folds under the l∞ norm. For this
special case, the authors show that it suffices to use a shortest path as the optimal image
of a diagonal, and then the algorithm for simple polygons works.

Polygons with constant numbers of holes Nayyeri and Sidiropoulos [22] describe a
polynomial time algorithm for polygons with constant numbers of holes. The authors
show how to build a bounded set of candidates for the homotopy classes of the diagonals
in the optimal homeomorphism. Their main technique is a shortcutting argument that
shows unnecessarily complicated images (of the diagonals) can be simplified without
changing the Fréchet length of the map. In this thesis, we use similar ideas to combina-
torially constraint maps for our problems.

2.2.3 Hardness Results

Godau [16] showed that computing the Fréchet distance between a self-intersecting sur-
face and a triangle is NP-hard. Buchin, Buchin and Schulz [7] extended this work to
show that computing the Fréchet distance between two-dimensional terrains and be-
tween polygons with holes is also NP-hard.

14

Chapter 3: Preliminaries

Surfaces. A surface Q (or a 2-manifold) is a space in which every point has a neigh-
borhood that is homeomorphic to the plane or half-plane. The set of points that are
homeomorphic to the half-plane form the boundary ofQ. An embedding Φ : Q → R3

is a continuous one-to-one map. An immersion ϕ : Q → R3 is a continuous map, such
that for any x ∈ Q there is a neighborhood Nx of x on which f is an embedding.

A piecewise linear surface is a surfaceQ that is constructed from a set of Euclidean
triangles by identifying pairs of equal-length edges. We denote the constituent vertices,
edges, and triangles of Q by QV , QE , and QT , in order. In short, we write Q =

(QV ,QE,QT). In this paper, we consider locally isometric immersions, those that
map each triangle to a congruent triangle in R3.

Maps. Let f : A → B be a function. For any U ⊆ A, we define f(U) = {f(u)|u ∈
U}. The function f |U : U → B, called the restriction of f to the subset U , is defined
as for all u ∈ U , f |U(u) = f(u). In this case, we also say, that f is an extension of f |U
to A. If A and B are topological space, f is a homeomorphism if (1) it is a bijection,
(2) it is continuous, and (3) its inverse is continuous.

Ball. Let (M,d) be a metric space. We define Ball(p, r) as the ball of radius r > 0

centered at a point p in M , Ball(p, r) = {x ∈M | d(x, p) ≤ r}.

Discrete Fréchet distance for curves. Let P = (p1, p2, . . . , pn) andQ = (q1, q2, . . . , qm)

be two polygonal curves. Their discrete Fréchet distance is defined as

δD(P,Q) = min
M

max
(p,q)∈M

d(p, q)

where M ranges over all order-preserving complete correspondences between P and Q.

15

Fréchet distance for curves. Let A and B be two given curves, and σ : A → B

be a homeomorphism. The Fréchet length of σ is δF (σ) = maxx∈A ||x− σ(x)||2. The
Fréchet distance between A and B is

δF (A,B) = inf
σ
δF (σ).

where σ ranges over all homeomorphisms between P and Q.

Fréchet length of homeomorphisms. Let R and S be two surfaces, and σ : R → S
be a homeomorphism. The Fréchet length of σ is

δF (σ) = max
x∈R
||x− σ(x)||2

.

Fréchet distance for surfaces. Let R and S be two surfaces. The Fréchet distance
betweenR and S is

δF (R,S) = inf
σ
δF (σ),

where σ ranges over all homeomorphisms betweenR and S.

Existential theory of the reals. Let x1, . . . , xn be variables over reals, and letF (x1, . . . , xn)

be a quantifier-free formula involving real polynomial equalities and inequalities. The
decision problem for the existential theory of the reals is to decide if the following for-
mula is true:

∃x1 · · · ∃xnF (x1, . . . , xn).

The problem is to decide whether real numbers x1 . . . xn exist such that F (x1, . . . , xn) is
true. Canny [11] shows that the existential theory of the reals can be decided in PSPACE.
Note this is polynomial space under the Turing Machine model, that is, the required
space is a polynomial function of the number of bits used to specify the problem.

Lemma 3.0.1 (Canny [11], Theorem 3.3). The existential theory of the reals is decidable
in PSPACE.

16

Semidefinite Program. Let c ∈ Rm be a vector, and x ∈ Rm be a variable vector. A
semidefinite program is an optimization problem of minimizing a linear function of x
subject to a matrix inequality:

minimize ctx

subject to
∑

k∈[m] xkA
(k) −B � 0

where A(1), . . . , A(m), B ∈ Rn×n are symmetric matrices, and M � 0 means that M is
positive semidefinite.

Lemma 3.0.2 (Ben-Tal et al. [6], Section 4.6.3). A semidefinite program can be solved
by an interior point method in

O(n0.5m3 + n2.5m2 + n3.5m) log(1/ε)

time, where n is the number of variables, m is the number of constraints, and ε is the
additive error.

Linear Program. A Linear program is a special case of a semidefinite program,
where all matrices are diagonal.

Lemma 3.0.3 (Ben-Tal et al. [6], Section 4.6.1). A linear program can be solved in

O(n2(m+ n)3/2 log(1/ε))

time, where n is the number of variables, m is the number of constraints, and ε is the
additive error.

17

Chapter 4: Overview

Before we get into details, it’s better to understand the ideas and keep the big picture in
mind. Let’s start with computing the Fréchet distance between curves. Later we show
that similar ideas are helpful for computing the Fréchet distance between surfaces.

Let A and B be two piecewise linear curves with Fréchet distance δ. The goal of
exact or approximation algorithms is to compute a homeomorphism f : A → B with
Frechet length (close to) δ. Computing such an f reduces to computing the optimal
vertex map (g : AV → B, h : BV → A) that specifies f restricted to the vertices
of A and B (AV and BV , respectively). This reduction holds because g and h can be
extended to a full homeomorphism betweenA andB with the same Fréchet length as the
maximum of g’s and h’s. Therefore, to compute the Fréchet distance between curves,
we only need to worry about computing the vertex map (g, h).

To compute an optimal vertex map, the classic algorithm will search a set of candi-
date values of the Fréchet distance. To build the set of candidate values, for each vertex,
the algorithm computes a set of candidate locations of its image. The set of candidate
values of the Fréchet distance is composed of all distances between each vertex and
its candidate images. However, for surfaces, we cannot compute such a list of candi-
date locations of images for each vertex. Now, we will show another way to compute
the Fréchet distance between curves. It is slower and more complex than the classic
algorithm but can be extended to computing Fréchet distance between surfaces.

Let AE and BE be the edge sets of A and B. For piecewise linear curves, computing
the vertex map (g, h) can be simplified to computing the combinatorial version of the
vertex map (gc : AV → BE, h

c : BV → AE). For each v in AV , gc(v) specifies
which edge of BE contains g(v) (similarly, hc(v) specifies which edge of AE contains
h(v)), instead of specifying the exact location of g(v). Therefore, there are only finitely
many choices for gc and hc. A slow algorithm may try all possible choices for gc and
hc. For each choice, we would like to compute g and h that are consistent with gc and
hc and that extend to a homeomorphism with small Fréchet length. We consider two

18

approaches leading to an approximation algorithm and an exact algorithm respectively.
We observe that misplacing the images of vertices within an edge can increase the

Fréchet length by at most the length of the edge. Thus, if the maximum edge length
is r, then any vertex map that is consistent with the optimal combinatorial vertex map
can be extended to a homeomorphism of length at most δ + r. This leads to a (1 + ε)-
approximation algorithm by subdividing edges to edges of length εδ. Note that the
running time of the algorithm will depend on the lengths of the input curves as well as
their complexities.

A main ingredient of our exact algorithms is a decision procedure that can decide
for any given value δ whether the Fréchet distance between A and B is smaller than
or equal to δ. Given gc and hc, we can formulate this decision problem as a set of
(quadratic) inequalities. We will have two types of inequalities: (i) inequalities that
ensure the images of vertices appear in order on the other curve, and (ii) inequalities
that ensure the distance between any vertex and its image is at most δ. Inequalities of
type (i) are linear and those of type (ii) are quadratic. Hence, the problem reduces to
solving a system of inequalities.

We have understood how to compute the Fréchet distance between curves using a
combinatorial vertex map. Next, we generalize this idea to compute the Fréchet distance
between surfaces. Let R = (RV ,RE,RT) and S = (SV ,SE,ST) be two piecewise
linear surfaces with Fréchet distance δ. Our goal is to compute a homeomorphism f :

R → S that realizes the Fréchet distance δ. Computing f can reduce to computing
the optimal edge map f1 : RE → S that specifies f restricted to the edges of R,
because f1 can be extended to a full homeomorphism between R and S with the same
Fréchet length as the maximum of the f1’s.

We show that there exists an optimal edge map f ′1, such that for each edge e in
RE , the image f ′1(e) is a piecewise linear curve. Then, computing the Fréchet distance
between a line segment and a piecewise linear curve reduces to computing the vertex
map from f ′1(e) to e. There are three types of vertices of f ′1(e): (i) vertices of SV , (ii)
images of vertices of RV , f ′1(RV), and (iii) points on edges of SE . In this thesis, we
refer to these edge maps as scaffold maps, and the type (iii) vertices of f ′1(e) as crossing
points.

19

We introduce a combinatorial version of scaffold maps. It is composed of two parts:
a combinatorial vertex map (gc : RV → ST , hc : SV → RT) and f c : RE → Q where
Q is a sequence of vertices of SV , and edges of SE . For each v in RV , gc(v) specifies
which triangle of ST contains f ′1(v). For each edge e inRE , f c(e) specifies the sequence
of vertices and edges that are crossed by f ′1(e).

Similarly to the curve case, we observe that misplacing the images of vertices and
crossing points on the edges can increase the Fréchet length by at most the length of the
edge. Let r be the maximum edge length. We show that any scaffold map that is consis-
tent with the optimal combinatorial scaffold map can be extended to a homeomorphism
of length at most δ + r. We obtain a (1 + ε)-approximation algorithm by refining the
surfaces into triangulations composed of triangles of diameter O(εδ).

Note that f c(e) specifies a sequence of vertices and edges, and it may have arbitrary
length. We show that there exists an optimal combinatorial scaffold map, in which
the length of f c(e) is bounded for all edges. Thus, we can build a finite-size list L of
combinatorial scaffold maps that contains the optimal scaffold map.

To obtain our exact algorithm, we build a system of inequalities for each combina-
torial scaffold map f c in L. The system is feasible if and only if there exists a scaffold
map that is consistent with f c and has Fréchet length at most δ. There are four types of
inequalities: (i) inequalities that ensure the images of vertices lie in the correct triangles.
(ii) inequalities that ensure the crossing points appear in order on edges. (iii) inequali-
ties that ensure the relation of images of vertices and images of edges. (iv) inequalities
that ensure the distance between a vertex or crossing point and its image is at most δ.
The inequalities of type (iii) ensure that images of vertices and edges are consistent with
the combinatorial scaffold map f c, and it will convert to inequalities for maintaining the
refinement of R̃ and S̃ in our system.

Our algorithm builds a system of polynomial inequalities, and the number of vari-
ables and the number of constraints isO(2|RV |+|SV |). For the case that S is a triangle, we
show that the system of inequalities has polynomial size. Hence, the Fréchet distance
between a triangulated surface and a triangle can be decided in PSPACE.

20

Chapter 5: Scaffold Map and Its Properties

In this chapter, we introduce the notions of vertex maps, refinements, and scaffold maps.
As earlier, the scaffold map is the core component of our algorithm, mapping edges
to the other surface. First, we show that a scaffold map is able to extend to a full
homeomorphism with the same Fréchet length as the maximum of the scaffold map’s.
Second, we show that there exists an optimal scaffold map f ′1, such that for any edge
e ∈ RE , f ′1(e) crosses edges of S a bounded number of times.

5.1 Vertex Maps and Refinements

First, we define vertex maps, which either map vertices to points on the other surface,
or map points to vertices on the other surface.

Definition 5.1.1. Let R = (RV ,RE,RT) and S = (SV ,SE,ST) be two piecewise
linear surfaces. A bijection f0 : R̃V → S̃V is a vertex map if and only if it has the
following properties.

(1) R̃V = RV ∪ f−10 (SV), S̃V = SV ∪ f0(RV).

(2) f0 maps boundary vertices of R̃V to boundary vertices of S̃V , and it preserves the
cyclic order of boundary vertices on each boundary component.

Given a vertex map, to define the scaffold map more easily, we refine the surfaces
by R̃V and S̃V so that f0 becomes a vertex-to-vertex map on (R̃, S̃).

Definition 5.1.2. Let f0 : R̃V → S̃V be a vertex map between R and S; R̃V = RV ∪
f−10 (SV) and S̃V = SV ∪ f0(RV). Let R̃ = (R̃V , R̃E, R̃T) and S̃ = (S̃V , S̃E, S̃T) be
geometric refinements ofR = (RV ,RE,RT) and S = (SV ,SE,ST), respectively.

We say that (R̃, S̃) and f0 are consistent, as the preimage and image of f0 are the
vertex sets of R̃ and S̃, respectively.

21

Figure 5.1: upper: R and S before refinement, lower: R̃ and S̃ after refinement. The
cyclic order of boundary vertices is preserved.

Lemma 5.1.3. For any vertex map f0, there are 2O((m+n)2) refinements that are consis-
tent with f0.

Proof. Because R̃ and S̃ are planar graphs, they are subgraphs of the complete graph
withm+n vertices. The number of subgraphs of the complete graphKm+n is 2O((m+n)2).
Therefore, the number of possible refinements is bounded by 2O((m+n)2).

22

5.2 Scaffold Maps

We are ready to define scaffold maps. A scaffold map can be viewed as a collection of
maps from the edges in R̃E to the underlying surface of S̃.

Definition 5.2.1. Let f0 : R̃V → S̃V be a vertex map. Let R̃ = (R̃V , R̃E, R̃T) and
S̃ = (S̃V , S̃E, S̃T) be refinements ofR and S, respectively, that are consistent with f0. A
scaffold map (over refinements R̃ and S̃) is a continuous one-to-one map f1 : R̃E → S̃
with the following properties.

(1) f1(R̃V) = f0(R̃V).

(2) f1 is a cellular embedding of (R̃V , R̃E) on S̃.

(3) f1 maps boundary edges to boundary edges (so, it preserves the cyclic order of
boundary edges around boundary components).

(4) f1 preserves the cyclic order of edges around each vertex: for any u ∈ R̃V with
neighbors {w1, . . . , wk}, the cyclic order of the edges {(u,w1), (u,w2), . . . , (u,wk)}
around u is identical to the cyclic order of curves {f1(u,w1), . . . , f1(u,wk)}
around f1(u).

(5) For each e ∈ R̃E and each t ∈ S̃T , f1(e) ∩ t is a collection of straight line
segments that intersect ∂(t) at their endpoints.

Properties (1) to (4) are formal definitions of the intuition of edge maps. In addition,
scaffold maps do not just map edges to arbitrary curves on the other surface. Property
(5) requires that all intersections between edge images and triangles are straight line
segments. The reason for this extra requirement will be detailed in the following section.
Briefly, we will introduce a technique called a shortcutting operation. For a curve c
and a line segment l, the shortcutting operation allows us to replace any subcurve of c by
a line segment to reduce the Fréchet distance between c and l. Clearly, an arbitrary edge
map can be modified to a scaffold map without increasing the Fréchet length. Moreover,
property (5) will guarantee that any scaffold map can be extended to a homeomorphism.

23

5.3 Scaffold Maps and Homeomorphisms

In this section, we show the relation between scaffold maps and homeomorphisms. The
following lemma is our goal in this section.

Lemma 5.3.1. The relation between scaffold maps and homeomorphisms:

(1) A scaffold map f1 can be extended to an (R̃, S̃)-homeomorphism with Fréchet length
arbitrarily close to δF (f1).

(2) A scaffold map f1 of Fréchet length δ can be obtained from an (R̃, S̃)-homeomorphism
h of Fréchet length δ.

Lemma 5.3.1 will allow us to focus on scaffold maps, because any scaffold map can
be extended to a full homeomorphism with the same Fréchet length. Also, the second
statement will guarantee that there always exists an optimal scaffold map.

Before proving the first statement, we give the formal definition of the Fréchet length
of the scaffold map.

Definition 5.3.2. The Fréchet length of the scaffold map f1 is the maximum Fréchet length
of all its restrictions to edges e ∈ R̃E , denoted

δF (f1) = max
e∈R̃E

δF (f1|e).

Now, we will use the following lemma to show that a scaffold map f1 : R̃E → S̃ can
be extended to an (R̃, S̃)-homeomorphism of Fréchet length arbitrarily close to δF (f1).

Lemma 5.3.3 (Cook et al. [12]). Let t be a triangle, p be a folded polygon with n

triangles, and g : ∂(t) → ∂(p) a homeomorphism. For any ε > 0, the map g can be
extended to a homeomorphism, h : t → p, for which δF (h) ≤ δF (g) + ε, in polynomial
time in n.

Proof of Lemma 5.3.1 (1). Let f1 be an arbitrary scaffold map, and let t be a triangle in
R̃T , and let (e1, e2, e3) be the edges of t. Images f1(e1), f1(e2) and f1(e3) are piece-
wise linear curves. Let p be the folded polygon bounded by f1(e1), f1(e2) and f1(e3).

24

Because f1 is a homeomorphism from ∂(t) to ∂(p), Lemma 5.3.3 shows that f1 can be
extended to a homeomorphism h : t→ p for which δF (h) ≤ δF (g) + ε. The one-to-one
correspondence of triangles to folded polygons and Lemma 5.3.3 imply that a scaffold
map can be extended to an (R̃, S̃)-homeomorphism of Fréchet length arbitrarily close
to δF (f1).

To prove the second part, we introduce the shortcutting operation, which is also our
main tool to show the property (5) of the scaffold map.

Definition 5.3.4. Let α : [0, 1] → Rd be an immersed curve, let 0 ≤ t1 < t2 ≤ 1,
and let ` : [t1, t2] → Rd be a line segment with endpoints α[t1] and α[t2]. Finally,
let α′ : [0, 1] → Rd be α[0, t1) ∪ `[t1, t2] ∪ α(t2, 1], that is, α′ coincides with α in
[0, t1) ∪ (t2, 1], and coincides with the line segment ` on [t1, t2]. We say that α′ is
obtained from α via a shortcutting operation.

Lemma 5.3.5 (Lemma 3 of Buchin et al. [8]). Let α : [0, 1]→ Rd and α′ : [0, 1]→ Rd

be two curves, and let s be a line segment. If α′ is obtained from α via a sequence of
shortcutting operations then δF (α′, s) ≤ δF (α, s).

Figure 5.2: The Fréchet distance between a curve and a linear segment is not increased
if we replace part of the curve with a line segment.(Figure 3 of Buchin et al. [8])

25

Lemma 5.3.5 shows that the shortcutting operations do not increase the Fréchet length.
This lemma also implies that an (R̃, S̃)-homeomorphism f can reduce to a scaffold map
f1 of Fréchet length δF (f).

Proof of Lemma 5.3.1 (2). Let R̃V = RV ∪h−1(SV), and f0 = h|R̃V be the vertex map.
Let Γ = {γe = h(e)|e ∈ R̃E}. For any triangle t ∈ S̃T , if Γ ∩ t is not a set of line
segments, we apply shortcutting operations to Γ ∩ t. Let Λ = {λe|e ∈ R̃E} be the set
of linear piecewise paths obtained from Γ via shortcutting operations. By Lemma 5.3.5,
for any e ∈ R̃E , δF (e, λe) ≤ δF (e, h(e)). Then, there exists a map f1 : R̃E → Λ such
that δF (f1) ≤ δF (h). Clearly, f1 satisfies property (5). Because shortcutting operations
do nothing to the vertex map and the boundary edges, f1 satisfies property (1) and (3).
And applying shortcutting operations in each triangle does not change the embedding,
so properties (2) and (4) will be satisfied. Therefore, we obtain a scaffold map f1 from
the homeomorphism h such that δF (f1) ≤ δF (h).

5.4 Crossing Number and Crossing Bound

In the previous section, we showed that a scaffold map f1 of Fréchet length δF (f) can
be obtained from an (R̃, S̃)-homeomorphism f . However, for each edge s ∈ S̃, f1(R̃E)

can intersect s an arbitrary number of times. In this section, we show that for any
given scaffold map f1, we can extract a new scaffold map f ′1 from f1 without increasing
Fréchet length, such that f ′1(R̃E) only intersects each edge s ∈ S̃ a bounded number
of times. This property enables us to enumerate the combinatorial scaffold maps in our
algorithms.

Given a scaffold map f1, we can split f1 into two different types of mappings f1e
and f1p. f1e is the edge-to-edge map that maps edges in R̃E to S̃E , and f1p maps edges
to piecewise linear paths on S̃. f1e maps line segments to line segments, which is not
interesting. f1p is what we are interested in. We define f1p(R̃E) ∩ S̃E as the crossing
points set. In this section, we show that there exists an optimal scaffold map f ′1, such
that |f ′1p(R̃E) ∩ S̃E| ≤ 2|R̃V |+|S̃V |. This property allows us to enumerate the number of
crossing points on each edge of the optimal scaffold map f ′1.

Definition 5.4.1. The crossing points set S̃X is the set of all crossing points between

26

f1(R̃E) and S̃E . Each element y ∈ S̃X is the crossing point of f1(e) and s for an e ∈ R̃E

and s ∈ S̃E; note that two edges may have multiple crossing points. The preimage of
y, x = f−11 (y), is a crossing point between e and f−11 (s) on R̃ that corresponds to y.
The preimages of all points in S̃X comprise the set of crossing points R̃X on R̃ that is
in one-to-one correspondence with S̃X .

Definition 5.4.2. Let f1 be a scaffold map, and let e ∈ R̃E . The crossing sequence of
f1(e) is the sequence of edges (s1, s2, . . . , sk) of S̃E that f1(e) crosses in order.

Definition 5.4.3. For each s ∈ S̃E , its crossing number χ(s) is the number of crossing
points on s. The crossing number of a scaffold map f1 is the maximum crossing number
of edges of S̃E , denoted

χ(f1) = max
s∈S̃E

χ(f1(s)).

The following lemma implies that we always can obtain a scaffold map f ′1 from
f with at most Fréchet length δF (f) and bounded crossing number via shortcutting
operations.

Lemma 5.4.4 (Erickson and Nayyeri [15]). Let Γ = {γ1, γ2, . . . , γk} be a set of non-
crossing curves on a triangulated surface (of genus zero) Q = (QV ,QE,QT). There
exists a set of non-crossing curves Γ′ = {γ′1, γ′2, . . . , γ′k} with the following properties.

(1) For each i, γ′i is obtained from γi via a sequence of shortcutting operations along
the edges in QE .

(2) For each γ′ ∈ Γ′ and t ∈ QT , each connected component of γ′ ∩ t is

(a) a path with endpoints on different sides of t, or

(b) a path with one point being a vertex of t and the other on its opposite side,
or

(c) a side of t; in this case γ′ coincides with the side of t.

(3) For each e ∈ QE , if e is crossed by m different curves of Γ′ then it is crossed at
most 2m times.

27

Lemma 5.4.5. For any δ ≥ 0, the Fréchet distance betweenR and S is at most δ if and
only if there is a scaffold map of Fréchet length at most δ and crossing number at most
2|R̃E |+|S̃E |.

Proof. By Lemma 5.3.1, a homeomorphism h of Fréchet length δ can reduce to a
scaffold map f1 of Fréchet length δ. Let Γ = {γe = f1(e)|e ∈ R̃E}, and let Λ =

{λe|e ∈ R̃E} be the set of paths obtained from Γ via Lemma 5.4.4 that has properties
(1), (2), and (3). Since Λ is obtained via shortcutting operations, for any e ∈ R̃E ,
δF (e, λe) ≤ δF (e, γe). Because the total number of edges is |R̃E| + |S̃E|, for any
s ∈ S̃E , s is crossed at most 2|R̃E |+|S̃E | times by Λ. Hence, we get a scaffold map
of Fréchet length at most δ and crossing number at most 2|R̃E |+|S̃E |.

Because the number of edges is bounded by the number of vertices, the crossing
number is also bounded by 2O(m+ n), where m and n are the number of vertices ofR
and S.

28

Chapter 6: Combinatorial Specification and Its Representation

In this chapter, we introduce combinatorial variants of vertex maps, refinements, and
scaffold maps.

6.1 Combinatorial Vertex Maps

Definition 6.1.1. A combinatorial vertex map (g, h) is composed of two maps:

(1) g : RV → ST ∪ SE that maps each internal vertex of RV into a triangle of ST
and each boundary vertex ofRV into a boundary edge of SE .

(2) h : SV → RT ∪ RE that maps each internal vertex of SV into a triangle of RT

and each boundary vertex of SV into a boundary edge ofRE .

Intuitively, a combinatorial vertex map determines for each internal vertex u ∈ RV

the triangle of S that contains u’s image, and for each boundary vertex b ∈ RV the
boundary edge of S that contains b’s image. Similarly, for each internal vertex v ∈ SV ,
a combinatorial vertex map specifies the triangle of R that contains the preimage of
v, and for each boundary vertex c ∈ SV , it determines the boundary edge of R that
contains the preimage of c.

A vertex map f0 and a combinatorial vertex map (g, h) are consistent if for any
u ∈ RV , f0(u) ∈ g(u) and for any v ∈ SV , f−10 (v) ∈ h(v).

The following lemma is immediately implied by the definition of combinatorial ver-
tex maps.

Lemma 6.1.2. There are (m+ n)O(m+n) combinatorial vertex maps.

Proof. For each vertex v ∈ RV , there are O(n) possibilities for g(v), and for each
vertex u ∈ SV , there are O(m) possibilities for h(v). The total number of possible
combinatorial vertex maps is nO(m) ×mO(n), which is less than (m+ n)O(m+n).

29

6.2 Combinatorial Embeddings

If we ignore the exact location of vertices and edges, R̃ and S̃ can be interpreted as com-
binatorial embeddings of two triangulations. We call them combinatorial embeddings,
and use the notation R̃c and S̃c to refer to them.

Definition 6.2.1. Let R̃ = (R̃V , R̃E, R̃T) be a piecewise linear surface. For each vertex
v ∈ R̃V , let cv be the cyclic order of edges incident on v. The combinatorial embedding
R̃c = {cv|v ∈ R̃V } is the set of cyclic orders of all vertices.

Definition 6.2.2. Let R̃c be a combinatorial embedding, and R̃ be a piecewise linear
surface. We say that R̃c and R̃ are consistent if for all v ∈ R̃V , v has the cyclic order
cv ∈ R̃c.

6.3 Combinatorial Scaffold Maps and Normal Coordinates

Now, we are ready to define combinatorial descriptions of scaffold maps, which our
algorithm uses to limit its search space to a finite set. We use a technique named normal
coordinates to represent combinatorial scaffold maps.

Definition 6.3.1. Let f1 : R̃E → S̃ be a scaffold map, and let t = (s1, s2, s3) ∈ S̃T ,
where s1, s2, s3 ∈ S̃E . The intersection of f1(R̃E) with t is a collection of elementary
segments: straight line segments with endpoints on ∂(t). The intersection pattern of
f1(R̃E) ∩ t can be represented (up to continuous deformation) by three numbers, one
per edge. For each edge s ∈ SE we define its normal coordinate, denoted by N(s), as
follows:

(1) N(s) = −1 if s ∈ f1(R̃E),

(2) or N(s) is the number of elementary segments intersecting the interior of e.

Definition 6.3.2. The set of normal coordinates of f1(R̃E) is a vector of |S̃E| = O(m+

n) numbers, one per edge in S̃E . Each of these numbers is lower bounded by −1 and
upper bounded by the crossing number of f1, χ(f1). If the normal coordinates are
specified, there is a unique way of locating the elementary segments inside each t ∈

30

7

65

6

32

-1

22

Figure 6.1: Examples for normal coordinates in triangles.

S̃T (up to a continuous deformation) so that they do not cross. Hence, the normal
coordinates specify, for every e ∈ R̃E , the crossing sequence of f1(e).

Definition 6.3.3. A combinatorial scaffold map is a triple 〈(g, h), (R̃c, S̃c), N〉 where
(g, h) is a combinatorial vertex map, (R̃c, S̃c) is a combinatorial embedding consistent
with (g, h), and N is a set of normal coordinates consistent with (R̃c, S̃c) specifying the
crossing sequence for the image of every edge in R̃E in S̃.

Definition 6.3.4. A scaffold map f1 : R̃E → S̃ is consistent with a combinatorial
scaffold map 〈(g, h), (R̃c, S̃c), N〉 if

(1) f0 = f1|R̃V ∪f−1
1 (S̃V) is consistent with (g, h).

(2) f0 is consistent with (R̃c, S̃c).

(3) for every edge e ∈ R̃E , the crossing sequence of f1(e) is consistent with the one
implied by the normal coordinates N .

The following corollary immediately follows from Lemma 5.4.5.

Corollary 6.3.4.1. For any pair of piecewise linear surfaces, R and S, and any δ ≥
δF (R,S), there is a list of combinatorial scaffold maps L of size 2O((m+n)2) that can be
computed in 2O((m+n)2) time that has the following properties:

(1) There exists a combinatorial scaffold map 〈(g, h), (R̃c, S̃c), N〉 ∈ L that is con-
sistent with a scaffold map of Fréchet length at most δ.

31

(2) For any 〈(g, h), (R̃c, S̃c), N〉 ∈ L, every normal coordinate of N is at most 2m+n.

This corollary enables us to enumerate a set of combinatorial scaffold maps, one
of which can be extended to an optimal scaffold map. Given an optimal combinatorial
scaffold map, the problem becomes to find the exact location of the images of vertices
and the crossing points. We consider two approaches: an approximation algorithm and
an exact algorithm.

32

Chapter 7: Approximation Algorithm for Surfaces

In this chapter, we describe a (1+ε)-approximation algorithm for computing the Fréchet dis-
tance between two triangulated surfacesR and S of diameter at most r.

In the previous section, we have shown that all possible optimal combinatorial scaf-
fold maps are in size 2O((n+m)2). Our goal of this section is to show that any scaffold
map is a good approximation if it is consistent with the optimal combinatorial scaffold
map.

7.1 Relaxation of Scaffold Maps

If the maximum diameter of the triangles of the two surfaces is at most r, we show that
if two scaffold maps are consistent with the same vertex map, refinement and normal
coordinates, then the difference between their Fréchet lengths is no more than 2r.

Lemma 7.1.1. Let f1 : R̃E → S̃ be a scaffold map of Fréchet length δ′, and let e ∈ R̃E .
Let T ⊆ S̃T be the set of all triangles that intersect f1(e). For any point x ∈ e and any
point y ∈ t ∈ T , we have ||x− y|| ≤ δ′ + 2r.

Proof. Let z ∈ f1(e) ∩ t, and let x′ = f−11 (z). Because x and x′ are both on e, we have
||x−x′|| ≤ r. Since y and z are in the same triangle t, we have ||z−y|| ≤ r. Therefore,

||x− y|| ≤ ||x− x′||+ ||x′ − z||+ ||z − y|| ≤ r + δ′ + r ≤ δ′ + 2r

Lemma 7.1.1 shows that for any scaffold map f1, for any e ∈ R̃E , the distance
between e and all triangles f1(e) crosses is not greater than δF (f1) + r. Because the
normal coordinates uniquely specify the sequence of triangles each f(e) crosses, we get
the following corollary immediately.

33

Corollary 7.1.1.1. Let f1 : R̃E → S̃ and f ′1 : R̃E → S̃ be two scaffold maps with
identical sets of normal coordinates N . For each e ∈ R̃, we have δF (e, f1(e)) ≤
δF (e, f ′1(e)) + 2r.

Notice that f1 and f ′1 have the same refinement R̃ and S̃. In other words, Corol-
lary 7.1.1.1 shows that if two scaffold maps have common vertex map f0, and combina-
torial scaffold map S, then the difference of their Fréchet lengths will be no more than
2r.

Corollary 7.1.1.2. Let f1 and f ′1 be two scaffold maps consistent with the same vertex
map f0 and combinatorial scaffold map S. Then δF (f1) ≤ δF (f ′1) + 2r.

7.2 Relaxation of Vertex Maps

In the previous section, we show that scaffold maps have similar Fréchet lengths if they
share the same vertex map and normal coordinates. In this section, we relax the common
vertex map to common combinatorial vertex map. We show that scaffold maps have sim-
ilar Fréchet lengths if they are consistent with the same combinatorial vertex map and
normal coordinates. In other words, once the diameter of triangles is bounded, all scaf-
fold maps with the same combinatorial specification will have similar Fréchet lengths.

First, we consider homeomorphisms from one single triangle to itself. Because the
diameter is bounded, it implies the following lemma immediately.

Lemma 7.2.1. Let t be a triangle with diameter r, and for any homeomorphism f : t→
t, δF (f) ≤ r.

Proof. For any point x ∈ t, |x− f(x)| ≤ r. Then δF (f) ≤ r.

Corollary 7.2.1.1. Let t be a triangle with diameter r, and for any two homeomorphisms
f : t→ t and g : t→ t, |δF (f)− δF (g)| ≤ r.

This lemma shows that all homeomorphisms for one triangle have bounded Fréchet length,
and it implies that we can move the images of vertices with cost r.

Lemma 7.2.2. Let t be a triangle with diameter r, and let P, P ′ ⊆ int(t) be finite point
sets with the same cardinality. Also, let g : P → P ′ be a bijection. There exists a
homeomorphism h : t→ t such that

34

(1) h|∂(t) is the identity map.

(2) h|P = g.

(3) δF (h) ≤ r.

Proof. Let (x, y, z) be the vertices of t. Let g′ : {x, y, z} ∪ P → {x, y, z} ∪ P ′ be a
bijection that is the identity map for {x, y, z} and g for P . Let H be a triangulation
(a plane graph) with vertex set {x, y, z} ∪ P . Let H ′ be a graph with vertex set V ′ =

{x, y, z} ∪ P ′, where v, v′ ∈ V ′ are adjacent if and only if their corresponding vertices
via g′ are adjacent in H . The isomorphism between H and H ′ naturally gives rise
to a combinatorial embedding of H ′ that is equivalent to the embedding of H . The
isomorphism between H and H ′ and their equivalent embedding provides bijections
between vertex sets, edge sets, and face sets ofH andH ′. Let h be any homeomorphism
that respects these bijections and that is identity on the boundary. By the construction,
h has properties (1) and (2). Additionally, δF (h) ≤ r, as h maps points within t, which
has diameter r.

Figure 7.1: H and H ′; corresponding faces and vertices have the same colors.

Combining Corollary 7.2.1.1 and Lemma 7.2.2, we show that for any homeomor-
phism f : R → S , if we relax its vertex map to any vertex map with the same
combinatorial vertex map (which may break the combinatorial embedding), then the
Fréchet length will increase by at most 2r.

35

Lemma 7.2.3. Let f : R → S be a homeomorphism of Fréchet length δ, and (g, h) be
the combinatorial vertex map of f . Any vertex map f0 that is consistent with (g, h) can
be extended to an (R,S)-homeomorphism of Fréchet length δ + 2r.

Proof. By Lemma 7.2.2, there exist two homeomorphisms of Fréchet length at most r,
h′ : R → R and h′′ : S → S, such that for any v ∈ SV , h′(f−10 (v)) = f−1(v), and
for any u ∈ RV , h′′(f(u)) = f0(u). Then h′′ ◦ f ◦ h′ is an extension of f0, and the
Fréchet length is at most δ + 2r.

Lemma 7.2.3 implies that for any homeomorphism h : R → R, for any triangle
t ∈ S (or s ∈ R), if we replace the mapping between h−1(t) and t (or s and h(s)) with
any valid homeomorphism, then the Fréchet length will increase by at most 2r.

Corollary 7.2.3.1. Let f : R → S be a homeomorphism of Fréchet length δ, and (g, h)

be the combinatorial vertex map of f . For any vertex map f0 consistent with (g, h), there
exists a scaffold map f1 and a combinatorial scaffold map S = 〈(g, h), (R̃c, S̃c), N〉,
such that f1 is consistent with f0 and S, and δF (f1) ≤ δ + 2r.

7.3 Summing Up

In the previous section, we showed that all scaffold maps with the same combinatorial
scaffold map S have bounded Fréchet length. Using Corollary 7.2.3.1, we will show that
there exists a combinatorial scaffold map S such that for any scaffold map f1 consistent
with S, δF (f1) ≤ δ + 4r, where δF (f1) is the Fréchet length of f1.

Lemma 7.3.1. There exists a combinatorial scaffold map S, such that for any scaffold
map f1 consistent with S, δF (f1) ≤ δ + 4r.

Proof. Let f : R → S be a homeomorphism of Fréchet length δ, and (g, h) be the
combinatorial vertex map of f . By Corollary 7.2.3.1, for any vertex map f0 consistent
with (g, h), there exists a scaffold map f1 and a combinatorial scaffold map S, such that
f1 is consistent with f0 and S, and δF (f1) ≤ δ + 2r. And by Corollary 7.1.1.2, for any
homeomorphism f ′1 consistent with f0 and S, δF (f ′1) ≤ δF (f1) + 2r = δ + 4r. Hence,
there exists a combinatorial scaffold map S, such that for any scaffold map f1 consistent
with S, δF (f1) ≤ δ + 4r.

36

This lemma only shows the existence of the combinatorial scaffold map. Notice that
the images of vertices can have arbitrary locations in the triangle. Once we pick a vertex
map, any refinement consistent with the vertex map will be fine. And the crossing points
also can have arbitrary locations on each edge. Actually, in the algorithm, two things
will decide whether the scaffold map is good approximation: one is the combinatorial
vertex map, the other one is the normal coordinates. Any scaffold map that meets these
two requirements must be a good scaffold map. Therefore, the proof also works for a
stronger version.

Corollary 7.3.1.1. Let f : R → S be a homeomorphism of Fréchet length δ, and (g, h)

be the combinatorial vertex map consistent with f . For any combinatorial embedding
(R̃c, S̃c), there exist normal coordinates N , such that for any scaffold map f1 consistent
with 〈(g, h), (R̃c, S̃c), N〉, δF (f1) ≤ δ + 4r.

Corollary 7.3.1.1 also suggests how our algorithm works. First, we search exhaus-
tively for optimal combinatorial vertex map, and arbitrarily select a vertex map and a
refinement. Then, we search exhaustively for an optimal normal coordinates N , and
arbitrarily select a scaffold map.

Lemma 7.3.2. Let R and S be two triangulated surfaces composed of triangles of
diameter at most r. There exists a 2O((m+n)2) time algorithm to compute an (R,S)-
homeomorphism of Fréchet length at most δF (R,S) + 4r, where m and n denote |RV |
and |SV |.

Proof. By Lemma 7.3.1, there exists a combinatorial scaffold map S, such that for any
scaffold map f1 consistent with S, δF (f1) ≤ δ + 4r. To construct the scaffold map f1,
we will search exhaustively for the combinatorial scaffold map S. First, we enumerate
all possible combinatorial vertex maps. By Lemma 6.1.2, there are (m + n)O(m+n)

combinatorial vertex maps. For each combinatorial vertex map (g, h), we select an
arbitrary vertex map f0 that is consistent with (g, h), and select an arbitrary refinement.
Then we enumerate all possible normal coordinates N . By Corollary 6.3.4.1, every
coordinate of N is bounded by 2m+n, so the number of possible normal coordinates is
bounded by 2(m+n)2 . For each choice of normal coordinates N , for each e ∈ R̃E ∪ S̃E ,
we select N(e) arbitrary points on e as the crossing points. Then, we use the vertex map

37

and the crossing points to construct a scaffold map f1. By Corollary 7.3.1.1, δF (f1) ≤
δ + 4r.

In the following sections, we study two cases, general surfaces and terrains. The
algorithms for both are based on the algorithm above. We refine the surfaces until they
are composed of triangles of bounded diameter, and apply our algorithm. For general
surfaces, the running time depends on the area of the surfaces. For terrains, the running
time depends on the maximum slope of the surfaces.

7.4 General surfaces

In this section, we describe an algorithm to compute the Fréchet distance between two
arbitrary surfaces (of genus zero) R = (RV ,RE,RT) and S = (SV ,SE,RT). To sim-
plify our running time analysis, we assume that R and S are composed of fat triangles,
that is, all their angles are larger than a constant θ > 0. In general, our running time
would depend on the minimum angle of the constituent triangles of the surfaces.

We define an r-refinement of a triangulation to be a refinement composed of trian-
gles of diameter at most r. Before refiningR and S, we define triangulated grids, which
we find helpful here and in the next section.

Triangulated grids. For any w ∈ R, let Gw = (Vw, Ew) be a triangulated grid of
width w, see figure 7.2. That is

Vw = {(iw, jw) |i, j ∈ Z} ,

and

Ew = {((iw, jw), (i′w, j′w)) |i, j, i′, j′ ∈ Z ∧ (i− i′, j − j′) ∈ {(0, 1), (1, 0), (1, 1)}} .

Lemma 7.4.1. LetQ = (QV ,QE,QT) be a triangulated surface composed of fat trian-
gles, and let r ∈ R+. There exists an O(|QV |+ Area(Q)/r2) time algorithm to compute
an r-refinement of Q of size O(|QV |+ Area(Q)/r2).

Proof. For each triangle t ∈ Q with diameter larger than r, we show how to refine it

38

w

w

w

w

w

w

Figure 7.2: Triangulated grid of width w.

into a new triangulation composed of O(Area(t)/r2) triangles with diameter r. Note
that when we put these triangulations together their vertices do not necessarily match on
the border of different triangles. As a result, we may see flat polygons with more than
three sides, but we can triangulate them without introducing new vertices.

Let t ∈ QT with side lengths `, `′ and `′′, with max(`, `′, `′′) > r. Place t on Gr/
√
2,

the triangulated grid of width r/
√

2. Let t be the triangulation of t induced by Gr/
√
2.

The number of triangles in t is |t| = O((` + `′ + `′′)/r + Area(t)/r2). Since all angles
of t are larger than a constant, `, `′, and `′′ are within a constant factor of each other, and
Area(t) = Θ(`2). Therefore, |t| = O(`/r + `2/r2) = O(`2/r2) = O(Area(t)/r2).

Our algorithm for general surfaces is implied by Lemma 7.3.2 and Lemma 7.4.1.

Theorem 7.4.2. Let R = (RV ,RE,RT) and S = (SV ,SE,ST) be two triangulated
surfaces composed of fat triangles, let n = |RV | + |SV |, and let ε > 0. There exists
a (1 + ε)-approximation algorithm for computing the Fréchet distance δ = δF (R,S)

betweenR and S with running time

2
O

((
|RV |+|SV |+ Area(R)+Area(S)

(εδ)2

)2)
.

Proof. Let δ = δF (R,S), and let r = (εδ)/4. Let R and S be r-refinements of R
and S, respectively, obtained by applying the algorithm of Lemma 7.4.1, thus, |RV | =

O(|RV | + Area(R)/r2), and |SV | = O(|SV | + Area(S)/r2). Also, R and S can be

39

computed in linear time with respect to their sizes. Trivially, the number of vertices
of RV ∪ SV in each ball of radius max(δ, r) is at most n = |RV | + |SV |. Thus, by
Lemma 7.3.2 forR and S, there is an 2O(n2) max(1, log(1

δε
)) time algorithm to compute

an (R,S)-homeomorphism of Fréchet length at most δ + 4r = (1 + ε)δ. We have

2O(n2) max(1, log(
1

δε
)) = 2O(|RV |+|SV |)2 max(1, log(

1

δε
)) = 2

O

((
|RV |+|SV |+Area(R)+Area(S)

(εδ)2

)2)

7.5 Terrains

In this section, we describe an algorithm to compute the Fréchet distance between two
polyhedral terrainsR and S over [0, 1]2 (i.e. the images of the immersionsϕR : [0, 1]2 →
R3 and ϕS : [0, 1]2 → R3 are polyhedral terrains over [0, 1]2). Let δ = δF (R,S), and
let D be the maximum slope ofR and S for any point in their domain, [0, 1]2.

7.5.1 Sampling

LetQ : [0, 1]2 → R be a polyhedral terrain, let 1/r ∈ Z, and let Gr = (Vr, Er) be a grid
of width r. Here we use Q both to refer to the triangulated surface and to the function
over [0, 1]2. The r-coarse approximation of Q is a polyhedral terrain Q, whose vertex
set is

QV = {(x, y,Q(x, y)) | (x, y) ∈ Vr} ,

and whose edge set is

QE = {((x, y,Q(x, y)), (x′, y′,Q(x′, y′))) | ((x, y), (x′, y′)) ∈ Er} .

Again, we view Q as a triangulated surface as well as a function Q : [0, 1]2 → R; thus,
we use Q(x, y) for a point (x, y) ∈ [0, 1]2.

Lemma 7.5.1. LetQ : [0, 1]2 → R be a polyhedral terrain with maximum slope D, and
letQ be its r-coarse approximation, where 1/r ∈ Z. We have δF (Q,Q) ≤ 2

√
2 · r(D+

40

1).

Proof. Let f : Q → Q be the projection map along the z-axis. That is, for any
(x, y, z) ∈ Q, f(x, y, z) = (x, y,Q(x, y)). Let t be the triangle in Gr that contains
(x, y), and let (x′, y′) be any vertex of t. We have ||(x, y) − (x′, y′)|| ≤

√
2 · r, which

implies
||(x, y,Q(x, y))− (x′, y′,Q(x′, y′))|| ≤

√
2 · r(D + 1),

and
||(x, y,Q(x, y))− (x′, y′,Q(x′, y′))|| ≤

√
2 · r(D + 1),

for the maximum slope of Q is bounded by D too.
On the other hand, since (x′, y′) is a grid point, Q(x′, y′) = Q(x′, y′). Thus, by the

triangle inequality,

||(x, y,Q)− (x, y,Q)|| ≤ 2
√

2 · r(D + 1).

Theorem 7.5.2. Let R and S be polyhedral terrains over [0, 1]2 of maximum slope D,
and let n = |RV |+ |SV |. There exists a (1 + ε)-approximation algorithm for computing
the Fréchet distance betweenR and S with running time

O((D + 1)2/(εδ)2) · n+ 2O((D+1)4/(ε4δ2)).

Proof. Let r′ = min(εδ/(8 + 8
√

2), εδ/(8
√

2D)), let 1/r be the smallest integer larger
than 1/r′, and letR and S be r-refinements ofR and S, respectively. Consider any point
p = (x, y, z) ∈ R3. The number of vertices ofRV ∪SV in Ballmax(δ,r)(p) is at most the
number of grid points, vertices of Vr, in a disk of radius max(δ, r) with center (x, y),
which is O(1 + δ2/r2). Thus, Lemma 7.3.2 implies that an (R,S)-homeomorphism of
Fréchet length δ+ 4r can be computed in 2O(δ2/r4) = 2O((D+1)4/(ε4δ2)) time. Composing
this homeomorphism with the (R,R)-homeomorphism and the (S,S)-homeomorphism
of Lemma 7.5.1, we obtain a homeomorphism of Fréchet length

δF (R,S) + 4r + 4
√

2 · r(D + 1) ≤ δ + εδ/2 + εδ/2 = (1 + ε)δ.

41

We need to sampleO((D+1)2/(εδ)2) points fromR and S to computeR and S, which
takes O((D + 1)2/(εδ)2n) time. Therefore, overall, we obtain the desired asymptotic
time bound.

42

Chapter 8: Exact Algorithm for Surfaces

In this chapter, we study the decision problem for the Fréchet distance between two
piecewise linear surfaces: decide whether the Fréchet distance between two piecewise
linear surfaces is less than a query value. We describe an exact algorithm to decide
the Fréchet distance between two piecewise linear surfaces. We also show that the
Fréchet distance between a piecewise linear surface and a triangle can be decided in
PSPACE.

In the previous section, we build a finite-size list of combinatorial scaffold maps that
contains at least one optimal combinatorial scaffold map. To obtain the approximation
algorithm, we show that for any scaffold map consistent with the optimal combinato-
rial scaffold map, its Fréchet length is at most δF (R,S) + r, where r is the maximum
length of edges of R and S. To obtain our exact algorithm, for a given combinatorial
scaffold map and δ, we want to check whether the combinatorial scaffold map can be
extended to a scaffold map with Fréchet length at most δ. We observe that computing the
Fréchet length of a scaffold map can be reduced to computing the maximum distances
between (1) vertices and their images, (2) crossing points and their corresponding im-
ages (crossing points) on the other surface. For a given combinatorial scaffold map, if
we are able to compute the optimal locations for images of vertices and crossing points,
minimizing the maximum distance between them, then we can compute an optimal scaf-
fold map consistent with the given combinatorial scaffold map. This observation gives
us an idea to build a system of inequalities for the given combinatorial scaffold map
and δ. If and only if there is a feasible solution for the system, the given combinatorial
scaffold map can be extended to a scaffold map of Fréchet length at most δ.

8.1 System of Polynomial Inequalities

Recall our decision problem: given two surfaces of genus zero R and S, and δ ≥ 0, we
want to decide whether δF (R,S) ≤ δ.

43

The algorithm of Corollary 6.3.4.1 builds a list of combinatorial scaffold maps L that
is guaranteed to contain one that extends to a scaffold map of Fréchet length at most δ, if
and only if δ ≥ δF (R,S). To decide whether δF (R,S) ≤ δ, we check every element of
L to see if such an extendable map exists. Therefore, we need an algorithm to decide if a
combinatorial scaffold map is extendable. To that end, for a given combinatorial scaffold
map S = 〈(g, h), (R̃c, S̃c), N〉 ∈ L, we show how to build a system of inequalities that
is feasible if and only if S extends to a scaffold map of Fréchet length at most δ.

As we mentioned, this system tries to compute the exact locations of (i) images of
vertices and (ii) crossing points on edges, and these locations are able to extend to a fea-
sible scaffold map. So, there are two types of variables in our system: vertex variables,
which represent the locations of images of vertices, and crossing point variables, which
represent the crossing points on edges.

Besides these variables, we have three types of constraints to ensure that the scaffold
map is consistent with S. (1) For each vertex u ∈ RV , let uv be the variable represent-
ing its image. We have constraints on uv to ensure that the image of u is contained by
the triangle g(v). (2) For the crossing points on each edge, the constraints ensure their
order on the edge, and they will ensure the images of edges do not cross each other. (3)
Constraints ensure that the refinement is valid. If we do not have the third type of con-
straints, the system will put the image of each vertex on the closest point to that vertex
in its corresponding triangle. In other words, these constraints ensure that the images of
vertices stay on the correct side of the images of edges corresponding to the given com-
binatorial scaffold map. Finally, we have constraints to ensure that the Fréchet length of
the scaffold map is at most δ. They are inequalities on distance formulas to ensure that
the distances between vertices, crossing points and their images are at most δ.

During the rest of this section, for each triangle t fix an ordering of its vertices, and
for each edge e fix an ordering of its endpoints. Hence, we can unambiguously denote a
triangle by an ordered triple of vertices, such as (a, b, c), and unambiguously denote an
edge by an ordered pair of vertices, such as (a, b).

44

8.2 Vertex Variables

For each vertex u ∈ RV , we specify f0(u) by two variables αu, and βu, in addition
to g(u). Specifically, if g(u) is a triangle (a, b, c) (with a, b, c ∈ SV) then f0(u) =

a+αu
−→
ab+βu

−→ac. We can guarantee that f0(u) ∈ g(u) by enforcing αu ≥ 0, βu ≥ 0 and
αu + βu ≤ 1. Additionally, the distance between u and f0(u) must be at most δ. Hence,
for each u ∈ RV and g(u) = (a, b, c) ∈ ST , we have the following constraints:

αu, βu ≥ 0, αu + βu ≤ 1 (8.1)

||u− f0(u)|| = ||u− a− αu
−→
ab − βu−→ac|| ≤ δ

Similarly, for each v ∈ SV , we specify f−10 (v) with two variables α′v and β′v, in addition
to h(v). By a similar argument, for each v ∈ SV and h(v) = (a′, b′, c′) ∈ RT , we have
the following constraints:

α′v, β
′
v ≥ 0, α′v + β′v ≤ 1 (8.2)

||v − f−10 (v)|| = ||v − a′ − α′v
−→
a′b′ − β′v

−→
a′c′|| ≤ δ

In each case, the first three constraints are linear and the last one is of degree p under
the `p norm; in particular, it is linear for the `1 norm and quadratic for the `2 norm.

8.3 Crossing Point Variables

Let e ∈ R̃E , let s ∈ S̃E , let x be the crossing point between e and f−11 (s), and let y be
the corresponding crossing point between f1(e) and s. Note that f1(x) = y. Now, let
e = (ae, be) and let s = (as, bs). We specify (the location of) x by one variable αx, so
x = ae + αx ·

−−→
aebe. We can guarantee that f1(x) ∈ (a, b) by enforcing 0 ≤ αx ≤ 1.

Similarly, we specify y = as +αy ·
−−→
asbs, and enforce 0 ≤ αy ≤ 1. Finally, as y = f1(x),

the x-to-y distance must be at most δ. In summary, for a pair of corresponding crossing
points x ∈ (ae, be) ∈ RE , and y ∈ (as, bs) ∈ SE , we obtain the following set of

45

constraints:

0 ≤ αx, αy ≤ 1 (8.3)

||x− y|| = ||(ae + αx ·
−−→
aebe)− (as + αy ·

−−→
asbs)|| ≤ δ

The first two constraints are linear, and the third constraint is of degree 2p for the `p
norm. Note ae, be, as, and bs may be described by variables themselves, so the constraint
of ||x − y|| is of degree 2p, rather than p. In particular the last equation is at most
quadratic for the `1 norm and at most quartic for the `2 norm.

We also need to guarantee that the sequence of crossing points on an edge is as
specified by f1. Let e ∈ R̃E , and let x1, x2, . . . , xk be the set of crossing points on s =

(a, b) in the order deduced from the normal coordinates N . Also, for each 1 ≤ i ≤ k,
let xi = a+ αi ·

−→
ab, as specified above for crossing points. To ensure that the images of

the edges of R̃E under f1 do not cross, it is sufficient to force the xi’s to appear in order
on s; that is

α1 ≤ α2 ≤ . . . ≤ αk. (8.4)

Similarly, for each e = (c, d) ∈ S̃E , if y1, y2, . . . , y` is the sequence of crossing points
on e deduced from N , and yi = c+ βi ·

−→
cd (for each 1 ≤ i ≤ `), the following condition

must hold:

β1 ≤ β2 ≤ . . . ≤ β`. (8.5)

All the constraints in this last category are linear.

8.4 Valid Refinements

Let R̃c, S̃c be combinatorial embeddings, and f0 be a vertex map. We say that (R̃c, S̃c)
and f0 are consistent if they give a valid geometric triangulation of every triangle in
RT and ST . Specifically, let t = (a, b, c) ∈ ST (a, b, c are in counterclockwise order),

46

V = {f0(u) | u ∈ RV , f0(u) ∈ t}. Let v ∈ V ∪ {a, b, c}, and let v′0, v
′
1, . . . , v

′
k−1 be the

neighbors of v inside t in counterclockwise order according to S̃c. We should have:

(1) For any 0 ≤ i ≤ k − 1, we have 0 ≤ ∠v′ivv
′
i+1 ≤ π.

(2) In addition:

(a)
∑k−1

i=0 ∠v
′
ivv
′
i+1 = 2π, if v /∈ {a, b, c}.

(b)
∑k−1

i=0 ∠v
′
iav
′
i+1 = ∠bac,

∑k−1
i=0 ∠v

′
ibv
′
i+1 = ∠cba, and

∑k−1
i=0 ∠v

′
icv
′
i+1 =

∠acb.

Additionally, the analogous set of conditions must hold for each triangle ofR.
We check the consistency of the combinatorial embeddings (R̃, S̃) and the vertex

map f0. Conditions (1) and (2) of consistency must be verified for each triangle of ST
and each triangle ofRT . Here we explain how to build a system of inequalities to verify
these conditions for a triangle t ∈ ST ; the other case is symmetric. Let t = (a, b, c) ∈ ST
and let V be the set of vertices of S̃V that are in t. Let v ∈ (a, b, c) ∪ V and let V ′ =

{v′0, v′1, . . . , v′k−1} ⊆ {a, b, c}∪V be the set of its neighbors in cyclic (counterclockwise)
order according to S̃. Condition (1) is equivalent to the following constraint:

(v′i − v)× (v′i+1 − v) ≥ 0,

where × is the cross product. Recall that the location of each vertex in the image ofRV

under f0 is specified by two variables. For any 0 ≤ i ≤ k − 1, let

v′i = a+ α′i ·
−→
ab + β′i · −→ac.

Also, let
v = a+ α ·

−→
ab + β · −→ac.

Therefore, the cross product can be written as follows.

(v′i − v)× (v′i+1 − v) =
(
(α′i − α)(β′i+1 − β)− (β′i − β)(α′i+1 − α)

)
· (
−→
ab ×−→ac)

47

Therefore, since
−→
ab ×−→ac > 0, then

(v′i − v)× (v′i+1 − v) ≥ 0⇔ (8.6)

(α′i − α)(β′i+1 − β)− (β′i − β)(α′i+1 − α) ≥ 0

We add a quadratic constraint to our system of constraints. Note that if any of v, v′i,
or v′i+1 corresponds to a, b, or c, the constraint becomes simpler because these vertices
have fixed locations, so fewer variables will be involved in our constraints.

Next, we show that if Condition (1) holds for every vertex of {a, b, c} ∪ V , then
Condition (2) must hold for all these vertices. Hence, we do not need to check Condition
(2) explicitly.

Lemma 8.4.1. If Condition (1) is satisfied, then

(1) Condition (2-b) is satisfied, and

(2) for any v /∈ {a, b, c}, there is a k ∈ N such that
∑k−1

i=0 ∠v
′
ivv
′
i+1 = 2kπ.

Proof. First, we show Condition (2-b) for vertex a; the arguments for vertices b and
c are symmetric. Let v′0, v

′
2, . . . , v

′
k−1 be the set of a’s neighbors in counterclockwise

order. In particular, we have, v′0 = b and v′k−1 = c. Therefore, the set of angles
{∠v′iav′i+1 | 0 ≤ i ≤ k − 2} covers the angle ∠bac. Also, for every 0 ≤ i ≤ k − 2, we
have ∠v′iav

′
i+1 ≥ 0 by Condition (1). Therefore, for any 0 ≤ i ≤ k − 3, ∠v′iav

′
i+1 and

∠v′i+1av
′
i+2 are internally disjoint. Hence, we conclude

∑k−1
i=0 ∠v

′
iav
′
i+1 = ∠bac.

Next, consider an internal v /∈ {a, b, c}. Note that v and V ′ are in the same plane, and
∠v′ivv

′
i+1 ≥ 0 by Condition (1). Therefore, v′0, v

′
1, . . . , v

′
k−1, v

′
0 give a traversal around v

that always goes counterclockwise, and starts and ends at the same vertex. We conclude
that

∑k−1
i=0 ∠v

′
ivv
′
i+1 is a positive multiple of 2π.

Lemma 8.4.2. Condition (1) implies Condition (2).

Proof. By Lemma 8.4.1, Condition (1) implies Condition (2-b). It remains to show that
condition (1) implies condition (2-a).

To that end, let τ = (τV , τE, τT) be the combinatorial embedding of t accord-
ing to S̃. Further, let t̃ be the piecewise linear surface that is obtained by identifying

48

sides of geometric triangles according to τ . Therefore, for each combinatorial triangle
(z1, z2, z3) ∈ τT we have a geometric triangle with side lengths ||z1 − z2||, ||z1 − z3||,
and ||z2 − z3||, where z is used to denote the location of the combinatorial vertex z de-
termined by f0 if z is internal, or as part of the input of z is a vertex of t. The (dual of
the) combinatorial description τ specifies how to identify the sides of these triangles to
obtain τ̃ .

For the topological disk τ̃ , a discrete form of the Gauss-Bonnet theorem implies∑
v∈τV ∠v = 2π(|τV | − 3) + π, where ∠v denotes the total angle around v on the

surface τ̃ . We include a short proof based on Euler’s formula.
Since τ̃ is a topological disk, by the Euler formula we have: |τV | − |τE|+ |τT | = 1.

Additionally, as τ has exactly three boundary edges, we have |τE| = 3(|τT |+1)
2

. It follows
that

|τV | −
3(|τT |+ 1)

2
+ |τT | = 1 ⇒

|τV | −
|τT |
2

=
5

2
⇒

2|τV | − |τT | = 5 ⇒
|τT | = 2|τV | − 5.

Consequently, ∑
v∈τV

∠v = π · |τT | = 2π|τV | − 5π = 2π(|τV | − 3) + π.

Because ∠a+ ∠b+ ∠c = π, therefore,∑
v∈τV \{a,b,c}

∠vi = 2π(|τV | − 3).

But, since condition (1) holds, we have ∠vi ≥ 2π for all v ∈ τV \{a, b, c}. It follows
that ∠vi must be exactly 2π, for all v ∈ τV \{a, b, c}, and the proof is complete.

49

8.5 Summing Up

Now, we show that given a combinatorial scaffold map we can check whether a low-cost
scaffold map with that combinatorial scaffold map exists.

Lemma 8.5.1. LetR and S be piecewise linear surfaces with m and n vertices, respec-
tively, and let δ > 0. Also, let S = 〈(g, h), (R̃, S̃), N〉 be a combinatorial scaffold map,
such that the value of every coordinate of N is at most 2m+n. In 2O(m+n) time, a system
of polynomial constraints of size 2O(m+n) can be computed that is feasible if and only if
S extends to a scaffold map of Fréchet length at most δ.

Proof. Our algorithm builds variables and constraints for vertices, crossing points, re-
finements, and non-crossing images in order as detailed above. First, it builds vertex
variables and constraints from (g, h) in O(m+ n) time (all constraints of type (8.1) and
(8.2). Next, it expands the normal coordinates to compute the crossing sequence of the
image of each e ∈ R̃E . This crossing sequence identifies all the crossing points on e
together with their pairs on S̃ . As the maximum coordinate is at most 2m+n, the crossing
sequence of e’s image can be computed by just tracing it based on the normal coordi-
nates in 2O(m+n) time. Since, there are O(m+n) edges in R̃E , the crossing sequence of
all of them can be computed in 2O(m+n) time. After computing all crossing sequences
we introduce 2O(m+n) constraints of type (8.3). Additionally, for each edge we include
constraints of type (8.4) or (8.5) to ensure the images of edges do not cross. Finally,
to ensure that the refinements are consistent with all feasible solutions of our system,
we introduce constraints of type (8.6) for each vertex and its neighbors. Any feasible
solution of our system can be extended to a scaffold map of Fréchet length at most δ
by interpolating the map between consecutive crossing points. On the other hand, if a
scaffold map f1 of Fréchet length at most δ that is consistent with S exists, then our
system has a feasible solution.

The main theorem of this section is that the Fréchet distance between two surfaces is
decidable. Our result follows from Corollary 6.3.4.1, Lemma 8.5.1, and Lemma 3.0.1.

Theorem 8.5.2. Let R and S be piecewise linear surfaces with m and n vertices, re-
spectively, and let δ ≥ 0. There is an algorithm to decide whether δF (R,S) ≤ δ.

50

Proof. By Corollary 6.3.4.1, a list L of 2O((m+n)2) combinatorial scaffold maps can
be built in 2O((m+n)2) time so that at least one of them extends to a scaffold map of
Fréchet length δ if and only if δF (R,S) ≤ δ. By Lemma 8.5.1, for any S ∈ L a
system MS of 2O(m+n) polynomial inequalities can be built in 2O(m+n) time such that
MS is feasible if and only if S extends to a scaffold map of Fréchet length δ. Finally, by
Lemma 3.0.1 the feasibility of MS can be checked in 2O(m+n) space.

51

Chapter 9: A Surface and a Triangle: PSPACE

In this chapter, we show that the special case of deciding the Fréchet distance between
a surface and a triangle is in PSPACE. This special case has been proved to be NP-hard
by Godau [16].

Let R = (RV ,RE,RT) be a piecewise linear surface, and let S = (SV ,SE,ST) be
a triangle, both immersed into R3 (by immersions ϕR : R → R3 and ϕS : S → R3).
In particular, |SV | = |SE| = 3, and |ST | = 1. Also, let m = |RV |, and let δ ≥ 0. We
describe a PSPACE algorithm to decide whether δF (R,S) ≤ δ.

9.1 Tight Images

We introduce tight scaffold maps and detailed normal coordinates. We show that enu-
merating over tight scaffold maps is sufficient when deciding the Fréchet distance be-
tween a surface and a triangle. We use detailed normal coordinates to enumerate com-
binatorial descriptions of tight scaffold maps.

9.1.1 Tight Edge Images

We show that for any δ ≥ δF (R,S) there is a scaffold map f1 of Fréchet length at most δ
that maps each edge e ∈ RE into a homotopic shortest path in S\f1(RV). This property
enables us to reduce the number of constraints for crossing points to a polynomial, and
hence facilitates our PSPACE result. We discuss two auxiliary lemmas before stating
our main lemma.

The following lemma is implicit in the work of Colin de Verdière and Erickson [13],
and it follows from Hass and Scott [19].

Lemma 9.1.1 ([13, 19]). Let γ1 and γ2 be two non-crossing paths on a surface of genus
zero with boundary components, and let γ′1, and γ′2 be the shortest homotopic paths in
the homotopy classes of γ1 and γ2, respectively. Then, γ′1 does not cross γ′2.

52

Buchin et al. [8] observe that shortcutting a curve along a line segment cannot in-
crease its Fréchet distance to a line segment. Hass and Scott [19] show that if a curve γ
on a surface of genus zero with boundary components is not the shortest path in its ho-
motopy class, then there is an empty bigon whose one side is a subpath of γ and whose
other side is a global shortest path. Exploiting this property, Nayyeri and Sidiropou-
los [22] show that each curve in a planar domain can be modified to its homotopic
shortest path via a finite sequence of shortcuttings along line segments. Taking the ob-
servation of Buchin et al. into account they conclude the following lemma.

Lemma 9.1.2 ([22], Corollary 3.8). Let t ⊆ R3 be a triangle with point punctures, let
γ ∈ t be a path, let γ′ be the shortest path homotopic to γ, and let s ∈ R3 be a line
segment. Then, δF (γ′, s) ≤ δF (γ, s).

Now, we are ready to prove the following lemma.

Lemma 9.1.3. Let R be a piecewise linear surface and let S be a triangle. Let f0 be a
vertex map between them, and let R̃ and S̃ be refinements that are consistent with f0.
Finally, let f1 be a scaffold map over R̃ and S̃. There exists a scaffold map f ′1 over R̃
and S̃ with the following properties:

(1) The maps f1 and f ′1 have the same set of normal coordinates.

(2) For any e ∈ RE , f ′1(e) is the shortest homotopic path in S\S̃V .

(3) δF (f ′1) ≤ δF (f1).

Proof. We obtain f ′1 by iteratively modifying f1 as follows. For each e ∈ RE , we
replace γ = f1(e) with the shortest path γ′ in γ’s homotopy class in S\S̃V . We modify
f1 such that (i) f1(e) = γ′, and (ii) δF (f1|e) = δF (e, γ′).

Lemma 9.1.2 implies for every e, δF (f ′1|e) ≤ δF (f1|e), hence, δF (f ′1) ≤ δF (f1).
Lemma 9.1.1 implies that for each e, e′ ∈ RE their images are still non-crossing. In
particular, for each vertex u ∈ RV the cyclic orders of edges around f1(u) and f ′1(u) are
the same. Hence, f ′1 is a valid scaffold map. Therefore, properties (2) and (3) hold.

Additionally, for each e ∈ RE , γ = f1(e) and its homotopic shortest path γ′ are
homotopic. Therefore, f1 and f ′1 must have the same set of normal coordinates.

53

9.1.2 Tight Scaffold Maps

Let f0 be a vertex map, R̃ = (R̃V , R̃E, R̃T) and S̃ = (S̃V , S̃E, S̃T) be refinements
consistent with f0, and f1 a scaffold map consistent with f0, R̃, and S̃. We say that f1
is tight over (R̃, S̃) if it has the following two properties.

(1) For each e ∈ R̃E , f1(e) is the shortest homotopic path in S\SV .

(2) For each e ∈ R̃E , f1(e) is composed of edges of S̃E .

Lemma 9.1.4. For any δ ≥ 0, the Fréchet distance between R and S is at most δ if
and only if there are refinements R̃ = (R̃V , R̃E, R̃T) and S̃ = (S̃V , S̃E, S̃T) and a tight
scaffold map of Fréchet length at most δ over (R̃, S̃) that has crossing number at most
2m2m.

Proof. By Lemma 9.1.3, there are refinements R̃′ = (R̃′V , R̃′E, R̃′T) and S̃ ′ = (S̃ ′V , S̃ ′E, S̃ ′T),
and a scaffold map f1 such that (1) for each e ∈ R̃′E , f1(e) is a homotopic shortest path,
(2) the normal coordinates of f1 are bounded by 2m, and (3) δF (f1) ≤ δ. Therefore,
Condition (1) of tight scaffold maps already holds. We modify S̃ ′ to satisfy Condition
(2).

Since Condition (1) holds, for each e ∈ R̃′E , f1(e) is a sequence of segments
(f1(x), f1(x

′)), where x, x′ ∈ R̃′V . Let T be the set of all segments s = (f1(x), f1(x
′))

such that s ∈ f1(e) for at least one e ∈ R̃′E . Since the images of edges of R̃′E are
non-crossing, T is a noncrossing set of segments over S ′V . Complete it to a triangulation
S̃ = (S̃ ′V , S̃E, S̃T) of S by adding more segments. By the construction of S̃, Condition
(2) holds for f1 and S̃E . It remains to bound the crossing number of each segment in
S̃E .

Let s ∈ S̃E , and let ns be the number of times (with multiplicity) that the images
of edges of R̃′E use s. We show that ns ≤ 2m. If s ∈ S̃ ′E then the statement follows
from the bound on the crossing number according to S̃ ′. Otherwise, s crosses at least
one edge ` ∈ S̃ ′E , therefore, nS ≤ χS̃′(`) ≤ 2m, as any traversal of s crosses `.

Now, let s′ = (y, y′) ∈ S̃E , and note that any subpath that crosses s′ must use an
edge that is adjacent to y or y′. But, there are at most 2m such edges, and each one is
used at most 2m times by the images of R̃′E as proved above.

54

9.1.3 Detailed Normal Coordinates

Because of Lemma 9.1.4, we can assume that crossings between images of R̃E and
any edge s ∈ S̃E happen only at endpoints of s. We call these endpoints portals. For
each e ∈ R̃E , in addition to its edge crossing sequence, we define its portal crossing
sequence, which is the sequence of portals in order that f1(e) crosses. We refine the
normal coordinates to include two numbers for each edge s ∈ S̃E , N1(s) and N2(s): the
number of crossings in each endpoint. If N(s) = −1 then we set N1(s) = N2(s) = −1.
Otherwise, for each edge (a, b) ∈ S̃E , N1(s) and N2(s) are the number of crossings
of s at a and b, respectively. The set of detailed normal coordinates of f1(R̃E) is
composed of two vectors N1 and N2 each with |S̃E| numbers, one per edge in S̃E .
Each of these numbers is lower bounded by −1 and upper bounded by the crossing
number of f1, χ(f1). Provided the normal coordinates, there is a unique way of locating
the elementary segments inside each t ∈ S̃T . Note that many of these segments may
overlap, but no pair of them crosses.

Figure 9.1: Detailed normal coordinates; note in reality the segments intersect each edge
only at its endpoints; the figures are slightly modified for demonstration.

A combinatorial scaffold map with detailed coordinates is a triple

〈(g, h), (R̃, S̃), (N1, N2)〉

where (g, h) is a combinatorial vertex map, (R̃, S̃) is a combinatorial embedding over
(g, h), and (N1, N2) is a set of detailed normal coordinates over (R̃, S̃) specifying

55

the crossing sequence of edges and portals for the image of every edge in R̃E . A
combinatorial scaffold map 〈(g, h), (R̃, S̃), (N1, N2)〉 extends a scaffold map f1 if (i)
f0 = f1|R̃V ∪f−1

1 (S̃V) is consistent with (g, h), (ii) f0 is consistent with (R̃, S̃), and (iii),

for every edge e ∈ R̃E , the portal crossing sequence of f1(e) is the same as the one
implied by the detailed normal coordinates (N1, N2). Also, if a vertex map f0 consis-
tent with (g, h) is given, then we can build the crossing sequences and the scaffold map
from (R̃, S̃) and (N1, N2). Therefore, our algorithm searches exhaustively for an opti-
mal combinatorial scaffold map with detailed coordinates, and build a system to check
whether a vertex map exists, that is consistent with the combinatorial scaffold map and
gives the Fréchet length at most δ. The following corollary follows immediately from
Lemma 9.1.4.

Corollary 9.1.4.1. Let R be a piecewise linear surface with m vertices, S a triangle,
and δ ≥ δF (R,S). There is a list of combinatorial scaffold maps (with detailed normal
coordinates) L of size 2O(m2) that can be computed in 2O(m2) time and enumerated in
O(m2) space, with the following properties:

(1) There is at least one 〈(g, h), (R̃, S̃), (N1, N2)〉 ∈ L that extends to a tight scaffold
map of Fréchet length at most δ.

(2) For any 〈(g, h), (R̃, S̃), (N1, N2)〉 ∈ L, every coordinate of N1 or N2 is at most
2m2m.

9.2 A System of Polynomial Size

If f1 is a tight scaffold map over (R̃, S̃) then the crossing points on S co-locate with
vertices of S̃V . The following lemma uses this property to reduce the number of required
constraints in our systems.

Lemma 9.2.1. Let f1 be a tight scaffold map over refinements R̃ = (R̃V , R̃E, R̃T) and
S̃ = (S̃V , S̃E, S̃T). Let e ∈ R̃E , s = (p1, p2) ∈ S̃E . Finally, let x1, . . . , xk be the set of
all corresponding points on e in order such that f1(x1) = . . . = f1(xk) = p1. For any
1 ≤ i ≤ k, we have ||xi − f1(xi)|| ≤ max(||x1 − f1(x1)||, ||xk − f1(xk)||).

56

Proof. Let xi = (1− λ)x1 + λxk for a 0 ≤ λ ≤ 1. We have:

||xi − f1(xi)|| = ||(1− λ)x1 + λxk − p1||
= ||(1− λ)(x1 − p1) + λ(xk − p1)||
≤ max(||x1 − p1||, ||xk − p1||)
= max(||x1 − f1(x1)||, ||xk − f1(xk)||)

The inequality follows from the convexity of the norm function.

Lemma 9.2.1 implies that we can disregard all constraints of type (8.3) exceptO(m2)

of them: two for each choice of e ∈ R̃E and a portal in S̃. Now, we are ready to show
how to build our system of inequalities in polynomial space.

Lemma 9.2.2. Let R be a piecewise linear surface with m vertices, S a triangle, and
δ ≥ δF (R,S). Also, let S = 〈(g, h), (R̃, S̃), (N1, N2)〉 be a combinatorial scaffold
map (with detailed normal coordinates), such that the value of every coordinate of N1

and N2 is 2O(m). In 2O(m) time, a system of polynomial constraints of size O(m2) can be
computed that is feasible if and only if S extends to a tight scaffold map of Fréchet length
at most δ.

Proof. Our algorithm builds variables and constraints similar to the algorithm of Lemma 8.5.1.
The number of variables and constraints for vertices and refinements are polynomial (all
constraints of type (8.1), (8.2) and (8.6)). We show that in the new case that S is a
triangle we can reduce the number of variables and constraints for crossing points to
O(m2). Each crossing point of S̃X is co-located with a vertex; therefore, given the final
location of vertices and the detailed normal coordinates, the locations of all crossing
points are uniquely determined. Hence, all constraints of type (8.4) and (8.5) can be dis-
regarded. Finally, by Lemma 9.2.1, only O(m2) constraints of type (8.3) can represent
all constraints of this type; all others are redundant.

9.3 Summing up

Now, we are ready to prove the main theorem of this section: deciding the Fréchet dis-
tance between a surface and a triangle is in PSPACE. Our result follows from Corol-

57

lary 9.1.4.1, Lemma 9.2.2, and Lemma 3.0.1.

Theorem 9.3.1. Let R be a piecewise linear surface with m vertices, S be a triangle,
and δ ≥ 0. There is an algorithm to decide whether δF (R,S) ≤ δ in PSPACE.

Proof. By Corollary 9.1.4.1, there is a PSPACE algorithm that enumerates a sequence
of 2O(m2) combinatorial scaffold maps with detailed normal coordinates such that at
least one of them extends to a scaffold map of Fréchet length at most δ if and only if
δF (R,S) ≤ δ. By Lemma 9.2.2, for any combinatorial scaffold map S (with detailed
normal coordinates) a system of a polynomial number of inequalities can be built in
PSPACE time that is feasible if and only if S extends to a scaffold map of Fréchet length
at most δ. Finally, Lemma 3.0.1 ensures that the feasibility of S can be checked in
PSPACE.

58

Chapter 10: Improved Approximation Algorithm

10.1 Overview

The approximation algorithm for general surfaces has two limitations. First, the running
time depends on the area of the surfaces, not the combinatorial complexity of the input.
Second, it works only if the input surfaces are composed of fat triangles. In this chapter,
we show how to eliminate these limitations.

In the approximation algorithm for general surfaces, the first step is r-refinement of
the input surfaces: refining the surfaces into triangulated surfaces with triangles of diam-
eter at most r. As a result each input triangle t may be decomposed into Ω(Area(t)/r2)

triangles even if the input is composed of fat triangles. If the input can have skinny
triangles, a refinement with may have many triangles; in fact the smallest angle in the
input will also show up in the running time. With these problems in mind, in this chapter
we modify our algorithm to work without the r-refinement step.

Before we talk about how to remove the r-refinement, let’s take a look at the purpose
of r-refinement. Recall the last step of our approximation algorithm, which constructs
an arbitrary scaffold map f1 consistent with the given normal coordinates. The error of
the Fréchet length of f1 is bounded by the maximum length of edges of two surfaces,
and the r-refinement reduces the maximum length of edges to at most r. In other words,
the purpose of r-refinement is to limit the freedom of the scaffold map, and it focuses
the images of vertices and crossing points close to the optimal location by breaking the
surfaces into small pieces. Therefore, to remove the r-refinement, we need to find an
alternative way to guarantee that the images of vertices and crossing points are close to
their optimal locations.

Let v ∈ RV , and let t ∈ ST be the triangle that contains the optimal image of v. Our
first observation is that there is a disc of area at most πδ2 in t ∈ ST that contains the
optimal location of v’s image. The reason is that the largest possible intersection of the
ball Ball(v, δ) and the triangle t is a circle of radius δ, so Area(Ball(v, δ) ∩ t) ≤ πδ2.

59

By this observation, we are able to build a list of approximate locations for images of
vertices. Instead of using refinement to limit the images of vertices, for each vertex
v ∈ RV and each triangle t ∈ ST , we sample O(δ2/r2) points from Ball(v, δ) ∩ t such
that if the optimal image of v is in t then it is r-close to at least one of our sample points.

Once we can approximate the images of vertices, our second task is to approximate
the crossing points. To that end, we formulate an optimization problem to find the
optimal location for crossing points given a combinatorial scaffold map and an exact
vertex map. In turn, the solution of this optimization problem can be extended to a
nearly optimal homeomorphism, as described in the previous sections.

Unfortunately, our optimization problem contains quadratic constraints, as the dis-
tance between points is computed based on the `2 norm. First, we observe that if we
replace the `2 norm with `1, we obtain a linear program. So, we can use existing poly-
nomial time methods to obtain a (1 + ε)-approximation algorithm with respect to the
`1 norm. This approximation algorithm immediately implies

√
2(1 + ε)-approximation

with respect to `2. Furthermore, we note that we can add several `1-type constraints to
approximate the `2 norm arbitrarily closely, thereby obtaining a (1 + ε)-approximation
algorithm with respect to `2.

10.2 Approximate vertex map

In the previous section, we showed the intuition for removing the dependence on area in
the running time of our approximation algorithm. At a high level, our algorithm runs as
previously, using a binary search on the value of δ. In this section, we show, for a given
δ > δF (R,S), how to obtain a homeomorphism of Fréchet length at most (1+ε)δ. This
fits in the general framework described for our approximation algorithm.

We start with a definition that simplifies the exposition.

Definition 10.2.1. A bijection f0 : R̃V → S̃V is a λ-vertex map if and only if it has the
following properties.

(1) R̃V = RV ∪R′V , S̃V = SV ∪ S ′V , f0(RV) = S ′V , and f0(R′V) = SV .

(2) f0 maps boundary vertices to boundary vertices, and it preserves the cyclic order
of boundary vertices on each boundary component.

60

(3) There exists a homeomorphism f : R → S of Fréchet length at most λ such that
f(R̃V) = f0(R̃V).

Let δ ≥ δF (R,S). To obtain a (1 + ε)δ-vertex map, we construct a grid-based
approximation for the images of vertices. For each triangle t of ST , we put a grid of
width

√
2εδ/4 on t. For each v ∈ RV , we search for the grid cell that contains its optimal

image, and pick an arbitrary point in the grid cell as the approximation of its optimal
image. To show this approximate vertex map can be extended to a homeomorphism of
Fréchet length (1 + ε)δ, we reuse the same technique from Chapter 7.

By replacing the triangle with diameter r by a square s with diagonal of length r in
Corollary 7.2.1.1 and Lemma 7.2.2, the following lemma is obtained immediately.

Corollary 10.2.1.1. Let s be a square with diagonal of length r. For any two homeo-
morphisms f : s→ s and g : s→ s, |δF (f)− δF (g)| ≤ r.

Lemma 10.2.2. Let s be a square with diagonal of length r, and let P, P ′ ⊆ int(s) be
finite point sets with the same cardinality. Also, let g : P → P ′ be a bijection. There
exists a homeomorphism h : s→ s such that

(1) h|∂(s) is the identity map.

(2) h|P = g.

(3) δF (h) ≤ r.

Combining Corollary 10.2.1.1 and Lemma 10.2.2, we show that for any homeomor-
phism f : R → S, for all v ∈ RV , if we relax the images f(v) to any points in the same
grid cell of f(v), then the Fréchet length will increase by at most r where r is the length
of the diagonal of grid cells.

Lemma 10.2.3. Let f : R → S be a homeomorphism of Fréchet length δ. Let Grid(t)

be the square grid of diagonal length r on the plane of a triangle t ∈ RT ∪ ST . Let
f0 : R̃ → S̃ be a vertex map with the following properties

(1) For every v ∈ RV :

61

(i) f(v) and f0(v) are in the same triangle t of S, and

(ii) f(v) and f0(v) are in the same grid cell of Grid(t).

(2) For every u ∈ SV :

(i) f−1(v) and f−10 (v) are in the same triangle t ofR, and

(ii) f−1(v) and f−10 (v) are in the same grid cell of Grid(t).

Then, f0 is a (δ + 2r)-vertex map.

Proof. By Lemma 10.2.2, there exist two homeomorphisms of Fréchet length at most
r, h′ : R → R and h′′ : S → S, such that for any v ∈ SV , h′(f−10 (v)) = f−1(v), and
for any u ∈ RV , h′′(f(u)) = f0(u). Then h′′ ◦ f ◦ h′ is an extension of f0, and the
Fréchet length is at most δ + 2r.

The following lemma shows that it is possible to obtain a bounded list of vertex
maps, one of which is a nearly δ-vertex map.

Lemma 10.2.4. Let δ ≥ δF (R,S). It is possible to compute a list of vertex maps of
size ((|RT |+ |ST |)/ε)2(|RV |+|SV |) that contains at least one (1 + ε)δ-vertex map in time
linear in the size of the list.

Proof. For each vertex v ∈ RV and triangle t ∈ ST , let a be the set of points of t
that are at distance at most δ from v. It follows that Area(a) ≤ πδ2. We put a grid
of width

√
2εδ/4 on the plane of t, and consider the grid cells intersecting a as a set

of candidate cells for f0(v). The size of this set is O(1/ε2). For each candidate cell,
choose an arbitrary point in the grid cell as a candidate location for f0(v). Overall, for
each vertex v ∈ RV , we have a list LV (v) of candidate locations for f0(v) on S whose
size is O(|ST |/ε2). Similarly, for each vertex u ∈ SV , we have a list LV (u) of candidate
locations for f−10 (u) onR whose size is O(|RT |/ε2).

Now let f : R → S be any homeomorphism of Fréchet length at most δ. Therefore,
by Corollary 10.2.1.1 and Lemma 10.2.2, we can obtain a list that contains a (1 + ε)δ-
vertex map by enumerating all locations in L(v) for f0(v) for every vertex v ∈ RV , and

62

all locations in L(u) for f−10 (u) for every vertex u ∈ SV . The total number of the vertex
maps that we enumerate is

O((|RT |/ε2)|SV | × (|ST |/ε2)|RV |) ≤ O

((
|ST |+ |RT |

ε

)2(|SV |+|RV |)
)

10.3 Optimization problem

For a given δ, we build a list of vertex maps as described, which is guaranteed to contain
a (1 + ε)δ-vertex map provided δ ≥ δF (S,R). For each vertex map f0 in our list, we
look for a scaffold map f1 with the minimum Fréchet length that is consistent with f0.
To that end, we enumerate over a restricted set of combinatorial scaffold maps similar
to our previous approximation algorithm. For each combinatorial map, we formulate an
optimization problem for computing the optimal locations for the crossing points.

We use one variable to specify each crossing point, and set linear constraints to
ensure the order of crossing points on each edge. The objective function is to minimize
the maximum distance between pairs of crossing points corresponding to the normal
coordinates. In this section, we will describe the optimization problem, and give the
general form.

For a given vertex map f0, and normal coordinatesN , the optimization problem only
has variables for crossing points. Let v be a crossing point on edge r = (a, b) of R̃E; we
specify v by one variable x, such that v = a+ x ·

−→
ab. For each edge e ∈ R̃E , the normal

coordinate k = N(e) specifies the number of crossing points on e. Let x1, x2, . . . , xk be
the sequence of crossing points on e corresponding to the normal coordinates. To ensure
their order, we have the following constraints:

0 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ 1

Similarly, let u = f1(v) be a crossing point on edge s = (c, d) of S̃E . We specify u by
u = c + y ·

−→
cd, and we have the same constraints to ensure the order of crossing points

63

on each edge e ∈ S̃R.
0 ≤ y1 ≤ y2 ≤ · · · ≤ yl ≤ 1

Then, let θ be the variable that specifies the maximum distance between crossing points
and their images. Let v be a crossing point on edge ab specified by the variable x, and let
u = f1(v) be on edge cd specified by the variable y. We have the following constraint

||v − u|| = ||(a+ x ·
−→
ab)− (c+ y ·

−→
cd)|| ≤ θ

Because a, b, c, d are all fixed vertices, the constraint has degree p under the `p norm.
The objective function is to minimize θ, and the optimization problem has the fol-

lowing form

minimize θ

xe1 ≥ 0 ∀e ∈ R̃E

ye1 ≥ 0 ∀e ∈ S̃E
xek ≤ 1 ∀e, k : e ∈ R̃E, k = N(e)

yek ≤ 1 ∀e, k : e ∈ S̃E, k = N(e)

xei ≤ xei+1 ∀e, i : e ∈ R̃E, i ∈ {1, 2, . . . , N(e)− 1}
yei ≤ yei+1 ∀e, i : e ∈ S̃E, i ∈ {1, 2, . . . , N(e)− 1}

||(a+ xei ·
−→
ab)− (c+ ye

′
j ·
−→
cd)|| ≤ θ ∀e, i : e ∈ R̃E, i ∈ {1, 2, . . . , N(e)},

ye
′
j = f1(x

e
i)

If we use the `1 norm, the distance function will be linear. So, the optimum with
respect to `1 can be approximated using linear programming.

Theorem 10.3.1. Let R and S be piecewise linear surfaces. There is a (1 + ε)-
approximation algorithm for deciding whether the Fréchet distance between R and S
no more than δ with respect to the `1 norm in time

(1/ε)O(|RV |+|SV |)2O((|RV |+|SV |)2)

time.

Proof. By Lemma 10.2.4, we can build a list L of size ((|RT |+ |ST |)/ε)2(|RV |+|SV |) that

64

contains at least one (1+ε)-approximation vertex map in time ((|ST |+|RT |)/ε)O(|RV |+|SV |).
For each vertex map in L, we enumerate over a set of combinatorial scaffold maps of
size 2O((|RV |+|SV |)2). For each combinatorial scaffold map, we formulate an optimiza-
tion problem for computing the optimal locations for the crossing points. The opti-
mization problem contains 2O(|RV |+|SV |) variables and constraints, and it can be solved
in 2O(|RV |+|SV |) time by Lemma 3.0.3. If the algorithm find there exists an optimization
problem whose solution is no more than (1+ε)δ, then the algorithm accepts. Otherwise,
it rejects. The total running time of the algorithm is

((|ST |+ |RT |)/ε)O(|RV |+|SV |)2O((|RV |+|SV |)2) = (1/ε)O(|RV |+|SV |)2O((|RV |+|SV |)2)

Correctness: If δ ≥ δF (S,R), then L contains at least one (1 + ε)δ-approximate
vertex map, and the algorithm always accepts δ. If δ < δF (S,R)/(1 + ε), then there
doesn’t exist a (1 + ε)δ-approximate vertex map, the algorithm always rejects δ.

Theorem 10.3.2. Let R and S be piecewise linear surfaces, and δ = δF (R,S) > 0.
There is a (1 + ε)-approximation algorithm for computing the Fréchet distance between
R and S with respect to the `1 norm in

log(δ + 1/δ)(1/ε)O(|RV |+|SV |)2O((|RV |+|SV |)2)

time.

Proof. The algorithm applies exponential search starting with the real number 1 to find a
range (x, y), where y ≤

√
1 + εx, x is rejected and y is accepted by the 1+(

√
1 + ε−1)-

approximation decision algorithm. By Theorem 10.3.1, we know that x < δF (R,S)

and
√

1 + εy ≥ δF (R,S). Therefore, δF (R,S) ≤
√

1 + εy ≤ (1 + ε)x < (1 +

ε)δF (R,S).

This, in turn implies a
√

2 · (1 + ε)-approximation algorithm for the `2 norm. In a
sense, we obtain the

√
2 factor because we are estimating an `2 ball with the smallest `1

ball that contains it. We can obtain better approximation factors, in fact arbitrarily small
factors, by estimating the `2 ball as the intersection of several `1 balls. That approach

65

would result in a (1 + ε)-approximation algorithm. In the following section, we obtain
a (1 + ε)-approximation algorithm by directly solving the optimization problem for the
`2 norm.

10.4 Convex Quadratically Constrained Quadratic Programming for `2
norm

In this section, we show that this optimization problem for the `2 norm is an instance of
convex quadratically constrained quadratic programming. Thus, it can be solved using
standard semidefinite programming solvers.

Definition 10.4.1. A convex quadratically constrained quadratic programming problem
has the form

minimize 1
2
xTP0x+ qT0 x

subject to 1
2
xTPix+ qTi x+ ri ≤ 0 for i = 1, . . . ,m,

Ax = b,

where P0, . . . , PM are n-by-n positive semidefinite matrices.

First, we re-formulate the optimization problem for the `2 norm:

minimize θ′

xe1 ≥ 0 ∀e ∈ R̃E

ye1 ≥ 0 ∀e ∈ S̃E
xek ≤ 1 ∀e, k : e ∈ R̃E, k = N(e)

yek ≤ 1 ∀e, k : e ∈ S̃E, k = N(e)

xei ≤ xei+1 ∀e, i : e ∈ R̃E, i ∈ {1, 2, . . . , N(e)− 1}
yei ≤ yei+1 ∀e, i : e ∈ S̃E, i ∈ {1, 2, . . . , N(e)− 1}

||(a+ xei ·
−→
ab)− (c+ ye

′
j ·
−→
cd)||22 ≤ θ′ ∀e, i : e ∈ R̃E, i ∈ {1, 2, . . . , N(e)},

ye
′
j = f1(x

e
i)

Instead of minimizing the distance between crossing points, we minimize the square

66

of the distance between them.

Lemma 10.4.2. The optimization problem for the `2 norm is a convex quadratically
constrained quadratic program.

Proof. The objective function and all constraints to ensure the order of crossing points
are linear. It remains to show that the distance constraints are convex with semidefinite
matrix coefficients. To show the convexity, we expand the distance constraints:

||(a+ x ·
−→
ab)− (c+ y ·

−→
cd)||2 ≤ θ′

⇒ ||(a− c) + (x ·
−→
ab − y ·

−→
cd)||2 ≤ θ′

⇒ ||x ·
−→
ab − y ·

−→
cd||2 + 2(a− c) · (x ·

−→
ab − y ·

−→
cd)− θ′ + ||a− c||2 ≤ 0

||a− c||2 is constant, and 2(a− c) · (x ·
−→
ab− y ·

−→
cd)− θ′ is linear. It remains to show

that ||x ·
−→
ab− y ·

−→
cd||2 can be written as a quadratic form with a semidefinite matrix. We

have:
||x ·
−→
ab − y ·

−→
cd||2 = Ax2 +Bxy + Cy2

For constants A, B, and C. Let

P =

[
A B/2

B/2 C

]
.

We have [
x y

]
P
[
x y

]T
= Ax2 +Bxy + Cy2 = ||x ·

−→
ab − y ·

−→
cd||2 ≥ 0

But, the above inequality holds for any point (x, y), that is, P is a positive semi-
definite matrix. Further, P is symmetric by its construction. So, the statement of the
lemma holds.

Basu et al. [5] introduced a technique that approximates quadratic constraints by a
set of linear constraints. By applying this technique to our problem, the optimization
problem becomes a linear programming problem, because the objective is also linear.

67

Figure 10.1: Approximating a quadratic constraint by linear constraints. .cFte-
basu2017largescale.

Unfortunately, we cannot show that the number of linear constraints needed to get
a (1 + .vFrepsilon)δ-approximation of the original quadratic constraints is polynomial
in the problem description size and 1/ε. A trivial construction is adding portals of width
εδ on each edge of S̃ and R̃. It is easy to show that for each quadratic constraint, there
exists a set of linear constraints of size O(`/(εδ)) that is a (1 + ε)δ-approximation of
the quadratic constraint, where ` is the length of edges. Hence, this construction builds
a linear program of size O(2O((|RV |+|SV |)2)(Length(SE) + Length(RE))/(εδ)).

On the other hand, the SDP problem can be solved in polynomial time by Lemma 3.0.2.
The final theorem of this section follows from Theorem 10.3.2 and Lemma 10.4.2.

Theorem 10.4.3. Let R and S be piecewise linear surfaces, and δ = δF (R,S) > 0.
There is a (1 + ε)-approximation algorithm for computing the Fréchet distance between

68

R and S with running time

log(1/δ + δ)(1/ε)O(|RV |+|SV |)2O((|RV |+|SV |)2)

69

Chapter 11: Surfaces composed of large triangles

In this chapter, we describe a new restricted class of surfaces, surfaces composed of
large triangles. This restricted class of surfaces is inspired by the study on curves with
long edges [17]. The definition of surfaces composed of large triangles is as following:

Definition 11.0.1. Let t be a triangle. If the radius of the incircle of t is no less than θ,
then t is a θ-large triangle.

Definition 11.0.2. Let S be a piecewise linear surface. If all triangles of S are θ-large
triangles, then S is a surface composed of θ-large triangles.

Let R and S be two surfaces composed of δF (R,S)-large triangles. We show that
there is an exact algorithm to compute the Fréchet distance betweenR and S.

11.1 Optimal Vertex Map

In the previous chapter, the improved approximation algorithm consists of two stages,
searching for an approximate vertex map and computing an optimal scaffold map. If an
optimal vertex map can be computed in the first stage, then we obtain an exact algorithm.
We show that for surface composed of large triangles, the optimal vertex map can be
computed.

Lemma 11.1.1. Let R and S be two surfaces composed of δ-large triangles, and f :

R → S be a homeomorphism of Fréchet length no more than δ, and there exists a
homeomorphism f0 : R → S of Fréchet length no more than δ with the following
properties:

(1) For every v ∈ RV :

(i) f(v) and f0(v) are in the same triangle of S, and

(ii) f0(v) is the closest point to v in the triangle.

70

(2) For every u ∈ SV :

(i) f−1(u) and f−10 (u) are in the same triangle ofR, and

(ii) f−10 (u) is the closest point to u in the triangle.

Proof. Let v0 be a vertex in RV , and A(v0) = {v1, . . . , vk} be the list of adjacent
vertices of v0 in clockwise order, E(v0) = {(v1, v2), (v2, v3), . . . , (vk, v1)} be the edges
between A(v0). Because f is a homeomorphism of Fréchet length no more than δ, for a
point p ∈ S, the image f(p) ∈ Ball(p, δ). The radius of any triangle is no less than δ,
the distance from v0 to the edges between its adjacent vertices E(v0) is no less than 2δ.
Therefore, for each point p onE(v0),Ball(v0, δ)∩Ball(p, δ) = ∅. In other words, for all
homeomorphisms f of Fréchet length no more than δ, Ball(v0, δ)∩Ball(p, δ) = ∅. Let
T (v0) be the triangle that contains f(v0), andDisk(v0) = Ball(v0, δ)∩T (v0). Consider
the scaffold map f1 of the homeomorphism f . Because Ball(v0, δ) ∩ Ball(p, δ) =

∅, Disk(v0) doesn’t contains any image f1(p) for any point p ∈ E(v0). Therefore,
by moving f1(v0) anywhere in Disk(v0), we obtain a new scaffold map f ′1 without
increasing the Fréchet length. So, there exists a scaffold map that maps each vertex
v ∈ RV to the center of Disk(v), that is, the closest point to v in the triangle T (v0).

Because (1) and (2) are symmetrical, we can obtain a scaffold map f ′′1 from f ′1 by
mapping the closest point in the triangle containing f ′−11 (u) to u ∈ SV without increas-
ing the Fréchet length. Finally, we extend f ′′1 to a homeomorphism f ′′ of Fréchet length
no more than δ.

The following lemma can be obtained from the above lemma.

Lemma 11.1.2. Let R = (RV ,RE,RT) and S = (SV ,SE,ST) be two surfaces com-
posed of large triangles. There exists a vertex map f0 that can be extended to an optimal
homeomorphism of Fréchet length δF (R,S), with the following properties:

(1) R̃V = RV ∪ f−10 (SV), S̃V = SV ∪ f0(RV).

(2) f0 maps boundary vertices of R̃V to boundary vertices of S̃V , and it preserves the
cyclic order of boundary vertices on each boundary component.

(3) For every v ∈ RV :

71

(i) f0(v) is a vertex in SV , or

(ii) f0(v) is the closest point in the triangle of ST containing f0(v), or

(iii) f0(v) is the closest point on the edge of SE containing f0(v).

(4) For every u ∈ SV :

(i) f−10 (u) is a vertex inRV , or

(ii) f−10 (u) is the closest point in the triangle ofRT containing f−10 (u), or

(iii) f−10 (u) is the closest point on the edge ofRE containing f−10 (u).

(5) There exists an optimal homeomorphism f : R → S of Fréchet length δF (R,S)

such that f(R̃V) = f0(R̃V). For each vertex v ∈ R̃V , f0(v) is the closest point to
v in the triangle containing f0(v).

Clearly, the optimal vertex map between two surfaces composed of large triangles
can be found by enumeration. Replacing the approximate vertex map by the optimal ver-
tex map in the first stage of our improved approximation algorithm, an exact algorithm
for computing the Fréchet distance between two surfaces composed of large triangles
can be obtained.

Theorem 11.1.3. Let R and S be two surfaces composed of 2δ-large triangles, such
that δ ≥ δF (R,S). There is an exact algorithm for computing δF (R,S) in

2O(|RV |+|SV |)2

time.

Proof. For each v ∈ RV , we enumerate all vertices in SV and all closest points to v
on triangles in ST and all closest points to v on edges in SE . Also, for each u ∈ SV ,
we enumerate all vertices in RV and all closest points to u on triangles in RT and all
closest points to u on edges in RE . By Lemma 11.1.2, the enumeration builds a list L
of size O(|RV |O(|SV |) + |SV |O(|RV |)) that contains at least one optimal vertex map. For
each vertex map in L, we enumerate over a set of combinatorial scaffold maps of size
2O(|RV |+|SV |)2 by enumerating all possible normal coordinates. For each combinatorial

72

scaffold map, we build an optimization problem for computing the optimal locations for
the crossing points. Because δ(R,S) is the solution of the optimization problem for the
optimal combinatorial scaffold map, and the algorithm returns the minimum value over
the solutions of all optimization problems, the algorithm computes δF (R,S) exactly.
The optimization problem has size O(2O(|RV |+|SV |)), and it can be solved in polynomial
time. The total running time for the algorithm is

O(|RV |O(|SV |) + |SV |O(|RV |))× 2O(|RV |+|SV |)2 × 2O(|RV |+|SV |) = 2O(|RV |+|SV |)2 .

11.2 Future work

The running time of the exact algorithm is limited by enumerating all normal coordi-
nates. Therefore, one possible way to improve the algorithm is to show that the crossing
number of each edge is linear in the number of vertices. Another possible approach
would extend the work of Gudmundsson et al. [17], who gave a greedy algorithm to
compute the Fréchet distance between curves with long edges. It is an open problem
whether there exists a greedy algorithm for computing the Fréchet distance between
surfaces composed of large triangles.

73

Chapter 12: Discussion

We presented exact and approximation algorithms for computing the Fréchet distance
between two surfaces in this thesis. Our results suggest two natural directions for future
research that we elaborate here.

Computational complexity of the Fréchet distance. We show for the first time that
the Fréchet distance between two surfaces is decidable. Moreover, we show that com-
puting the Fréchet distance between a triangle and a surface is in PSPACE. Determining
the computational complexity of the problem remains open.

Our algorithms rely on enumerating all skeleton maps, and in particular edge maps
f1. The number of these maps is bounded by the number of times that the image of an
edge of R can cross an edge of S. So, a natural way to obtain faster algorithms is to
find better bounds. In fact, it suffices to show that all edges are crossed in some optimal
maps at a polynomial number of points, even if the number of crossings is exponential.

Practical algorithms. Most of the algorithms in this thesis are prohibitively slow for
practical purposes. The main reason is that computing the Fréchet distance between
general surfaces is a computationally hard problem. We asked if this measure can be
computed efficiently for special classes of surfaces that appear in practice. To this end,
we studied the class of surfaces with large triangles. We show faster algorithms for this
class. A future direction is to find more general classes for which the Fréchet distance
can be computed or approximated efficiently.

74

Bibliography

[1] Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Com-
puting the discrete Fréchet distance in subquadratic time. CoRR, abs/1204.5333,
2012. URL: http://arxiv.org/abs/1204.5333, arXiv:1204.5333.

[2] Helmut Alt and Maike Buchin. Semi-computability of the Fréchet distance be-
tween surfaces. In Proceedings of the 21st European Workshop on Computational
Geometery, pages 45 – 48, 2005.

[3] Helmut Alt and Michael Godau. Computing the Fréchet distance between two
polygonal curves. Int. J. Comput. Geometry Appl., 5:75–91, 1995.

[4] Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk.
Fréchet distance for curves, revisited. In Proceedings of the 14th Conference
on Annual European Symposium - Volume 14, ESA’06, pages 52–63, London,
UK, UK, 2006. Springer-Verlag. URL: http://dx.doi.org/10.1007/
11841036_8, doi:10.1007/11841036_8.

[5] Kinjal Basu, Ankan Saha, and Shaunak Chatterjee. Large-scale quadratically
constrained quadratic program via low-discrepancy sequences, 2017. arXiv:
1710.01163.

[6] Aharon Ben-Tal and Nemirovskiaei. Lectures on Modern Convex Optimization.
2019. URL: https://www2.isye.gatech.edu/˜nemirovs/LMCO_
LN.pdf.

[7] Kevin Buchin, Maike Buchin, and André Schulz. Fréchet distance of sur-
faces: Some simple hard cases. In Proceedings of the 18th Annual European
Conference on Algorithms: Part II, ESA’10, pages 63–74, Berlin, Heidelberg,
2010. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=
1882123.1882132.

[8] Kevin Buchin, Maike Buchin, and Carola Wenk. Computing the Fréchet dis-
tance between simple polygons. Comp. Geom. Theo. Appl., 41(1-2):2–20, Octo-
ber 2008. URL: http://dx.doi.org/10.1016/j.comgeo.2007.08.
003, doi:10.1016/j.comgeo.2007.08.003.

http://arxiv.org/abs/1204.5333
http://arxiv.org/abs/1204.5333
http://dx.doi.org/10.1007/11841036_8
http://dx.doi.org/10.1007/11841036_8
http://dx.doi.org/10.1007/11841036_8
http://arxiv.org/abs/1710.01163
http://arxiv.org/abs/1710.01163
https://www2.isye.gatech.edu/~nemirovs/LMCO_LN.pdf
https://www2.isye.gatech.edu/~nemirovs/LMCO_LN.pdf
http://dl.acm.org/citation.cfm?id=1882123.1882132
http://dl.acm.org/citation.cfm?id=1882123.1882132
http://dx.doi.org/10.1016/j.comgeo.2007.08.003
http://dx.doi.org/10.1016/j.comgeo.2007.08.003
http://dx.doi.org/10.1016/j.comgeo.2007.08.003

75

[9] Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Computing the similarity
between moving curves. CoRR, abs/1507.03819, 2015. URL: http://arxiv.
org/abs/1507.03819, arXiv:1507.03819.

[10] Kevin Buchin, Tim Ophelders, and Bettina Speckmann. Computing the Fréchet
distance between real-valued surfaces. In Proceedings of the Twenty-Eighth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 2443–
2455, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Math-
ematics. URL: http://dl.acm.org/citation.cfm?id=3039686.
3039848.

[11] John Canny. Some algebraic and geometric computations in PSPACE. In Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC
’88, pages 460–467, New York, NY, USA, 1988. ACM. URL: http://doi.
acm.org/10.1145/62212.62257, doi:10.1145/62212.62257.

[12] Atlas F. Cook IV, Anne Driemel, Jessica Sherette, and Carola Wenk. Com-
puting the Fréchet distance between folded polygons. Computational
Geometry, 50:1 – 16, 2015. URL: http://www.sciencedirect.
com/science/article/pii/S0925772115000760, doi:http:
//dx.doi.org/10.1016/j.comgeo.2015.08.002.

[13] Éric Colin de Verdière and Jeff Erickson. Tightening nonsimple paths and cycles
on surfaces. SIAM J. Comput., 39(8):3784–3813, December 2010. URL: http:
//dx.doi.org/10.1137/090761653, doi:10.1137/090761653.

[14] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet
distance for realistic curves in near linear time. CoRR, abs/1003.0460, 2010. URL:
http://arxiv.org/abs/1003.0460, arXiv:1003.0460.

[15] Jeff Erickson and Amir Nayyeri. Shortest non-crossing walks in the plane. In
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 297–308, 2011.

[16] Michael Godau. On the Complexity of Measuring the Similarity Between Geomet-
ric Objects in Higher Dimensions. PhD thesis, Freie Universität Berlin, 1998.

[17] Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk. Fast
Fréchet distance between curves with long edges. CoRR, abs/1710.10521, 2017.
URL: http://arxiv.org/abs/1710.10521, arXiv:1710.10521.

http://arxiv.org/abs/1507.03819
http://arxiv.org/abs/1507.03819
http://arxiv.org/abs/1507.03819
http://dl.acm.org/citation.cfm?id=3039686.3039848
http://dl.acm.org/citation.cfm?id=3039686.3039848
http://doi.acm.org/10.1145/62212.62257
http://doi.acm.org/10.1145/62212.62257
http://dx.doi.org/10.1145/62212.62257
http://www.sciencedirect.com/science/article/pii/S0925772115000760
http://www.sciencedirect.com/science/article/pii/S0925772115000760
http://dx.doi.org/http://dx.doi.org/10.1016/j.comgeo.2015.08.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.comgeo.2015.08.002
http://dx.doi.org/10.1137/090761653
http://dx.doi.org/10.1137/090761653
http://dx.doi.org/10.1137/090761653
http://arxiv.org/abs/1003.0460
http://arxiv.org/abs/1003.0460
http://arxiv.org/abs/1710.10521
http://arxiv.org/abs/1710.10521

76

[18] Sariel Har-Peled and Benjamin Raichel. The Fréchet distance revisited and ex-
tended. ACM Transactions on Algorithms, 10(1):3, 2014. URL: http://doi.
acm.org/10.1145/2532646, doi:10.1145/2532646.

[19] Joel Hass and Peter Scott. Intersections of curves on surfaces. Israel Jour-
nal of Mathematics, 51(1-2):90–120, 1985. URL: http://dx.doi.org/10.
1007/BF02772960, doi:10.1007/BF02772960.

[20] Man-Soon Kim, Sang-Wook Kim, and Miyoung Shin. Optimization of subse-
quence matching under time warping in time-series databases. In Proceedings of
ACM Symposium on Applied Computing, pages 581–586, 2005.

[21] S. Kwong, Q. H. He, K. F. Man, K. S. Tang, and C. W. Chau. Parallel genetic-based
hybrid pattern matching algorithm for isolated word recognition. International
Journal of Pattern Recognition and Artificial Intelligence, 12(05):573–594,
1998. URL: https://doi.org/10.1142/S0218001498000348,
arXiv:https://doi.org/10.1142/S0218001498000348,
doi:10.1142/S0218001498000348.

[22] Amir Nayyeri and Anastasios Sidiropoulos. Computing the Fréchet distance be-
tween polygons with holes. In Automata, Languages, and Programming - 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceed-
ings, Part I, pages 997–1009, 2015. URL: http://dx.doi.org/10.1007/
978-3-662-47672-7_81, doi:10.1007/978-3-662-47672-7_81.

[23] E. Sriraghavendra, K. K., and C. Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Ninth International Conference
on Document Analysis and Recognition (ICDAR 2007), volume 1, pages 461–465,
Sept 2007. doi:10.1109/ICDAR.2007.4378752.

http://doi.acm.org/10.1145/2532646
http://doi.acm.org/10.1145/2532646
http://dx.doi.org/10.1145/2532646
http://dx.doi.org/10.1007/BF02772960
http://dx.doi.org/10.1007/BF02772960
http://dx.doi.org/10.1007/BF02772960
https://doi.org/10.1142/S0218001498000348
http://arxiv.org/abs/https://doi.org/10.1142/S0218001498000348
http://dx.doi.org/10.1142/S0218001498000348
http://dx.doi.org/10.1007/978-3-662-47672-7_81
http://dx.doi.org/10.1007/978-3-662-47672-7_81
http://dx.doi.org/10.1007/978-3-662-47672-7_81
http://dx.doi.org/10.1109/ICDAR.2007.4378752

	Introduction
	Objective
	Background
	Our Results

	Related Work
	Fréchet Distance between Curves
	Exact Algorithms for Curves
	Approximation Algorithms for Curves

	Fréchet Distance between Surfaces
	Algorithms
	Restricted Classes of Surfaces
	Hardness Results

	Preliminaries
	Overview
	Scaffold Map and Its Properties
	Vertex Maps and Refinements
	Scaffold Maps
	Scaffold Maps and Homeomorphisms
	Crossing Number and Crossing Bound

	Combinatorial Specification and Its Representation
	Combinatorial Vertex Maps
	Combinatorial Embeddings
	Combinatorial Scaffold Maps and Normal Coordinates

	Approximation Algorithm for Surfaces
	Relaxation of Scaffold Maps
	Relaxation of Vertex Maps
	Summing Up
	General surfaces
	Terrains
	Sampling

	Exact Algorithm for Surfaces
	System of Polynomial Inequalities
	Vertex Variables
	Crossing Point Variables
	Valid Refinements
	Summing Up

	A Surface and a Triangle: PSPACE
	Tight Images
	Tight Edge Images
	Tight Scaffold Maps
	Detailed Normal Coordinates

	A System of Polynomial Size
	Summing up

	Improved Approximation Algorithm
	Overview
	Approximate vertex map
	Optimization problem
	Convex Quadratically Constrained Quadratic Programming for 2 norm

	Surfaces composed of large triangles
	Optimal Vertex Map
	Future work

	Discussion
	Bibliography

