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Chapter 1: Introduction

1.1 Transformers and Their Impact

The transformer class of models has provided natural language processing (NLP)

researchers and industry leaders with new ways to take advantage of relationships

within sequential data, primarily through the delegation of tasks between encoder

and decoder stacks along with an, admittedly not new, attention mechanism and

significant parallelization potential versus competitive RNNs. Their effectiveness

was first demonstrated by Vaswani et. al [57] and later expanded upon by a number

of others for many tasks outside of the scope of the original paper, including

various computer vision [15, 39], audio processing [18, 58], and biological science

applications (i.e. protein structure modeling) [34].

In regards to NLP applications, the attention mechanisms within the original

transformer architecture were effective for full sentence neural machine translation

(NMT), but by virtue of their complete nature across the entire length of the

sample and the softmax normalization applied to them, these attention calculations

are costly. Speedy and efficient alternatives are desirable, but often come with

significant penalties as far as accuracy is concerned. For some alternatives, this can

be overcome by a specification of environment conditions and assumptions about

the conditions of the attention calculation, but these solutions, such as kernel-
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based [56], hashing-based [24], or sparsity-based approaches [3, 9, 65], generally

lack widespread applicability by their very nature.

1.2 Attention Linearization and Autoregressive Applications

The state-of-the-art within the aforementioned space of maximimization of trans-

former efficiency and speed is cosFormer [45], which proposes an attention scheme

that replaces softmax functionality with a ReLU based activiation, provides ad-

ditional normalization that performs a similar function to the softmax normal-

ization, and provides a linear-time, decomposable, and cosine-based re-weighting

mechanism such that the attention calculation can be reordered into linear run-

time. They applied their scheme to a number of sequence to sequence tasks and

achieved competitive downstream results.

Unfortunately, for autoregressive tasks, their approach and implementation are

insufficient. cosFormer makes critical assumptions about the state of their inference

environment that renders their scheme difficult to apply without some adaptations.

Moreover, they fail to take advantage of a critical data reuse opportunity intro-

duced by Katharopoulos et. al [21] for autoregressive applications that actually

renders an initial application of their scheme quadratic with respect to the number

of samples. Finally, their general approach to the problem of linearizing attention

mechanisms is likely faulty, as they seek a one-size-fits-all linearization scheme.

In this thesis, it is demonstrated that with aggressive data reuse mechanisms,

the above run-time can be reduced to fully linear run-time with respect to the
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length of each sample in autoregressive tasks, which include the very popular simul-

taneous translation task as well as autoregressive speech synthesis (S2), specifically

the text to spectrogram (TTS) sub-problem. Moreover, this thesis highlights under

what practical circumstances latency reductions are likely achievable and provide

inference results for commonly used datasets for easy comparison to contemporary

schemes.
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Chapter 2: Literature Review

2.1 Fundamentals of Transformers and Attention

The core architecture of Vaswani et. al’s [57] original transformer has been studied

exhaustively, but this thesis will review it briefly and focus on the attention-based

elements. At a high level, a transformer is composed of an encoder stack that

encodes the input into a hidden embedding space and a decoder stack that takes

that encoded embedding space alongside outputs at previous time steps (most

relevant for autoregressive applications) and decodes it into the target data, most

commonly in the form of output probabilities for some visible embedding space.

Each encoder layer within the encoder stack is primarily composed of a self-

attention block with a residual connection and a normalization block for the atten-

tion output matrix alongside a fully connected feed-forward network with a similar

residual connection and normalization block. Decoder layers are very similar in

structure, but host, interposed between the self-attention and feed-forward blocks,

an encoder to decoder cross-attention block that assists in generating relation-

ships between the hidden embedding output of the encoder stack and the previous

outputs of the decoder alongside the same residual connection and normalization

block exhibited in encoder and decoder self-attention.

Every attention block takes in a query matrix Q in RN1×dk , a key matrix K



5

in RN2×dk , and a value matrix V in RN2×dv . Classically, a softmax operator is

employed on the product of the query and key to further distance tokens that are

less relevant to one another and normalize the output into what can be intuited

as probabilities. These attention blocks, for both encoder and decoder layers, are

multi-headed for some heads H, as opposed to scaled dot product attention that

works across the entire embedding space all at once, and the original embedding

space is reformed by concatenating the outputs of each head together. Each head

projects the query, key, and value matrices into this new sub-space via weight

matrices W q
h in Rdk×dkh , W k

h in Rdk×dkh , and W v
h in Rdv×dvh for some head h in

H. As a quick note, the scaling factor dk or dkh is a heuristic applied primarily

to ensure that the emphasized relationships produced by the softmax operator are

not so large as to introduce performance degradation. An output projection layer

is applied at the end of the concatenation of various attention head outputs to

ensure that the attention mechanism output maps back to the dimensionality of

the model as a whole as opposed to dv and that projection layer is characterized by

WO in RHdv×dmodel General formulations for the attention calculations of a classical

transformer are supplied below. A depiction of classical transformers is provided

in Figure 2.1.

Asdpa = softmax(
QKT

√
dk

)V (2.1)

ah = softmax(
QW q

hK
TW k

h√
dkh

)W v
hV (2.2)



6

Amha = concat(a1, a2, . . . , aH)WO (2.3)

2.2 Early Efficient Transformers

Almost since its inception, various groups have worked to better the efficiency of

transformers. Obvious solutions were quickly applied, mostly in the form of re-

duced precision [36], gradient-checkpointing [8], and similar methods [52]. Some

useful heuristics exist that involve pruning, most notably attention head pruning

to varying degrees [40, 59], to reduce the computational complexity of these mod-

els, but these heuristics are only really applicable to models that are significantly

over-parametrized, in which case reducing the number of attention heads or the

size of the embedding space of the model during training would probably be an

adequate solution that would also significantly reduce the cost of training. Sparsity

analyses (especially in hardware [9, 49, 55]) function similarly, avoiding stretches

of computation according to observed sparsity patterns or gating computational

units upon encountering null values. While sparsity is a significant issue for many

downstream tasks that over-parameterized transformers are often applied to, the

applicability of these methodologies is necessarily task specific.

For models that are not necessarily over-parameterized, alternatives become

desirable that focus on more generalizable computation reduction. A number of

options emerged during the early development of transformer architecture, includ-

ing Liu et. al’s Memory-Compressed Attention mechanism [30] and Parmer et. al’s
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Figure 2.1: Depiction of classical transformer architecture as constructed by
Vaswani et. al [57]. Input and output embeddings are commonly shared, as shown,
to reduce model size and it is typical to use similar, if not identical, positional
encoding schemes to produce recurrence. While not shown here, it has become
somewhat popular to rearrange the order of the normalization blocks [64], placing
them before the attention and feed-forward blocks to slightly speed up and stabi-
lize training with little to no cost to end performance.
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Image Transformer [39], both of which engaged with or were inspired by convo-

lutional elements in varying fashions to reduce their computational complexity to

manageable levels for long sequence lengths, often using sliding window mechanics

that heavily resemble convolution. These, alongside some others [13, 27, 63] that

also largely focused on these sliding window-like methodologies to reduce computa-

tion to manageable levels, introduced novel ideas concerning efficient computation

that would be built upon by later work. In a very similar vein, Sukhbaatar et. al

[54] proposed a learnable span for every query position, adding some adaptability

to the more rigid previous solutions.

Child et. al [9] introduced one of the most popular and foundational efficient

transformers for embedding spaces that are particularly sparse and/or patterned

consistently, and was followed up by a number of similar schemes including Long-

former [3], Big Bird [65], and Extended Transformer Construction [1]. Ultimately,

while they still explored ideas relevant to CNNs and employed mechanisms some-

what resembling convolution at their core, their methodology elaborated upon the

general concepts introduced by earlier works and focused on factorizing the general

form of an attention mechanism via strided or fixed implementations, where strided

attention resembles the aforementioned efficient attention schemes and fixed fac-

torized attention allowed for some limited attention for previous positions in au-

toregressive applications via specified stride and a high-level parameter specifying

the span of the blocks that can be observed with this limited look-back mecha-

nism, more closely approximating softmax behavior for applications that do not

exhibit extreme locality. Generally, such schemes that depend on fine-tuned pat-
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tern recognition and extreme reliance on locality to function can struggle when

dealing with applications that require long-range dependencies, and while fixed

factorized attention is efficient and can roughly approximate softmax behavior,

more generalizable alternatives are desirable.

Linformer [61] operates similarly, observing that self-attention resulting matri-

ces are often low-rank, and, as such, can be approximated via linear projections

or similar methods being applied to the key and value matrices to reduce their

size preemptively from n × dk and n × dv to some n × k space, resulting in a

significant run-time reduces when k is much smaller than the size of the sample.

These learned approximations proved themselves very accurate when k remained

somewhat large, but tended to decay quickly as k shrank, rendering it most useful

when operating with extremely large samples so as to avoid a loss of expressivity.

In contrast, Kitaev et. al [24] propose Reformer, a more generalizable form of ef-

ficient transformer with an attention mechanism that focuses on location-sensitive

hashing (LSH) to reduce computation to a manageable level. They employ a va-

riety of techniques to enable their LSH solution, and achieve competitive results

with Vaswani et. al [57] on English to German neural machine translation (NMT)

on the WMT 2014 dataset. Their hashing scheme ultimately provides a reason-

able performance baseline that later efficient transformer implementations would

consistently work to beat and a number of other schemes build directly upon their

work [14, 47].
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2.3 Linear Transformers

Katharopoulos et. al [21] introduce the first of what this thesis considers state-

of-the-art implementations for efficient attention calculations, allowing for a true

reduction to O(n) complexity with respect to the number of tokens in a given sam-

ple by reordering the attention mechanism demonstrated by Equation 2.1 such that

the key and value matrices can be multiplied together, first, before applying the

query to that product. This is not normally possible due to the softmax operator

removing any associability for the query and key matrices. In response, Kathara-

poulos et. al choose to remove it and attempt to roughly model its behavior with

a non-linear activation function that they denote as some similarity function S

that is distributable, meaning that S(Q,KT ) = Sq(Q)Sk(KT ). This reordering is

demonstrated in a row-wise manner for the output matrix of the attention mech-

anism via Equations 2.4, 2.5, and 2.6 where Ai is equivalent to one output row i

in N1 for classical softmax attention and Ãi is equivalent to one output row i in

N1 for reordered and linear attention. The effects of this reordering are further

showcased in Figure 2.2.

Ai =
∑
j

exp(QiK
T
j )∑

j exp(QiKT
j )

Vj (2.4)

Ãi =
∑
j

S(QiK
T
j )∑

j S(QiKT
j )

Vj =
∑
j

Sq(Qi)Sk(KT
j )∑

j Sq(Qi)Sk(KT
j )

Vj (2.5)
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Figure 2.2: Illustration of attention calculation reordering and linearization for one
attention head. This is useful when both N1 and N2 are significantly larger than d,
which occurs for many applications or for models with many attention heads with
smaller samples. When this condition is met, run-time is linearized from O(N1N2)
to O(N1) + O(N2) for an arbitrary decoding time-step, assuming that neither size
is significantly greater than the other.

Ãi =
∑
j

Sq(Qi)(Sk(KT
j )Vj)

Sq(Qi)
∑

j Sk(KT
j )

(2.6)

Critically, Katharapolous et. al noted that their implementation could some-

what approach softmax attention accuracy for some tasks, beat out the perfor-

mance of Reformer [24], and, during inference for bi-directional and autoregressive

tasks, they could achieve practical run-times that were orders of magnitude faster

than classical attention for very long sequences. This is accomplished for au-

toregressive tasks, in large part, due to a data-reuse opportunity present in the
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intermediate matrices of the attention calculation, which is defined very generally

by Algorithm 2 in the Appendix. By changing the intermediate matrix in the nu-

merator of Equation 2.5 from Sq(Q)Sk(KT ) in RN1×N2 to Sk(KT )V in Rdk×dv , any

reliance on the query is removed for some decoding time-step m in time-steps 1 to

N1 (as a note, classically the query sample length is set to 1 during autoregressive

inference, as no previous query tokens can attend to future information, in theory

this could be applied for an arbitrary length query where that requirement is not so

strict but the output is still incremental). Given that, one could store and update

the Sk(KT )V intermediate matrix for every time-step where new information is

added, resulting in a run-time reduction from O(mN2) for some arbitrary decod-

ing time-step m in time-steps 1 to N1 (during self-attention N2 would also be equal

to m) to O(m). For typical autoregressive applications, this would result in con-

stant run-time at every decoding step as opposed to a run-time with dependence

on N2, which corresponds, of course, to linear run-time with respect to the number

of tokens across the entire autoregressive prediction. Note that the dimensionality

of attention heads where this occurs are omitted in this run-time notation, as it

is typical for N1 and N2 to be much larger than some general embedding dimen-

sion d (this is technically application-specific and model-specific). This data-reuse

opportunity and its benefits are further underscored in Figure 2.3.

While Katharapolous et. al’s work was remarkable for its time and sparked the

development of a number of linearized attention mechanisms or their application

to new tasks [10, 29, 45], it proved only foundational, as some fundamental prob-

lems existed with their approach. While their formulation of a hypothetical linear
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Figure 2.3: Illustration of one of the data-reuse opportunities present under re-
ordered and linearized attention for the KTV intermediate matrix for one atten-
tion head. Past time-steps are represented from decoding time-step 1 to m, with
the current decoding time-step being represented as m + 1.
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transformer via reordering and the replacement of softmax with some general, and

distributable, similarity function is still commonly used, their selected similarity

function seemed somewhat arbitrary. S(M) = elu(M) + 1 was settled on as a sim-

ilarity function, which does not approximate even the basics of softmax behavior

particularly well.

In response, Choromanski et. al [10] proposed Performer, an extremely efficient

transformer that makes use of the reordering mechanism proposed by Kathara-

polous et. al [21] in addition to several techniques to better approximate softmax-

based attention without any particular prior assumptions about sparsity or low-

rank representations that some other schemes rely on [9, 61]. Instead of using an

exponential linear unit for their similarity function, they choose to use positive

and orthogonal random feature maps as a kernel function to approximate softmax

attention in a lower dimensional space, although they note that their method-

ology can be used to further speed up any other similarity function (ReLU, elu,

trigonometry based similarity functions, etc.). Performer remains a somewhat pop-

ular paradigm and has inspired a number of capable, but similar, schemes [2, 41].

2.4 cosFormer and Modern Linearized Attention

Similar to its prominent predecessors, the Linear Transformer [21] and Performer

[10], cosFormer, proposed by Zhen et. al [45], takes advantage of the reordering

opportunities present in linearized attention when the softmax operator is replaced

with an approximate similarity function and propose an additional step that pre-
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serves the ability of an attention mechanism to attend across the entire sample,

unlike sparsity [3, 9, 65] or CNN-inspired [30, 39] mechanisms. In addition to re-

placing softmax with an alternative similarity function (in their case, they choose

ReLU as it maintains the non-negativity of softmax), cosFormer employs a re-

weighting mechanism to better approximate softmax behavior, noting that under

many circumstances and for many NLP tasks, significant locality bias is observed

[12, 25] that should render tight approximation of the softmax operator possible

in linear time.

In seeking out a re-weighting function that is suitable for their needs, Zhen

et. al focus on producing a non-linear operator that can be applied to the query

and key matrices in linear time so as to better approximate softmax non-linearity.

They note that softmax, classically, emphasizes relationships in the QKT matrix

(i.e. small scores are significantly reduced, larger scores are emphasized heavily)

and, as such, they land upon the re-weighting mechanism described in Equation

2.7 where N is the length of the query matrix and M is the length of the key and

value matrices, utilizing a cosine-based and location sensitive function to modu-

late the aforementioned scores such that tokens that are close to one another are

encouraged to attend strongly whereas tokens that are far away are discouraged

from doing so. A critical property of this re-weighting mechanism is that it is

also decomposable, meaning that it can be broken down such that all elements

relating to the row of the query can be applied element-wise and all elements re-

lating to the column of the transpose key matrix can be applied element-wise.

This is demonstrated via Equation 2.8 and 2.9, where Ptolemy’s Theorem is ap-
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plied to decompose the proposed cosine-based re-weighting mechanism that is then

distributed to the linearly transformed query and key matrices.

S(Qi, K
T
j ) = Sq(Qi)Sk(KT

j )cos(
π

2
(
i

N
− j

M
)) (2.7)

cos(
π

2
(
i

N
− j

M
) = cos(

iπ

2N
)cos(

jπ

2M
) + sin(

iπ

2N
)sin(

jπ

2M
) (2.8)

S(Qi, K
T
j ) = (Sq(Qi)Sk(KT

j )(cos(
iπ

2N
)cos(

jπ

2M
) + sin(

iπ

2N
)sin(

jπ

2M
))

= Sq(Qi)cos(
iπ

2N
)Sk(KT

j )cos(
jπ

2M
) + Sq(Qi)sin(

iπ

2N
)Sk(KT

j )sin(
jπ

2M
) (2.9)

It can be noted that re-weighting the query and key matrices in this way is,

functionally, the application of positional embedding within the attention mecha-

nism itself, which others have attempted before [31, 53]. However, these alternate

re-weighting schemes/embedding methods do not necessarily make the same guar-

antees concerning softmax approximation that cosFormer ensures, so this thesis

does not consider them as viable alternatives for re-weighting during attention

linearization.

cosFormer achieves state-of-the-art scores for a number of tasks, including lim-

ited autoregressive language modeling on WikiText-103, bi-directional language

modeling via being inserted into RoBERTa during pre-training, downstream fine-

tuning for various text classification tasks on RoBERTa, and competitive results
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on the Long-Range Arena benchmark, which is especially superb given the locality-

based assumptions baked into their reweighting mechanism that should, naturally,

discourage long-range dependencies. Given the above, this thesis considers cos-

Former to be the state-of-the-art in relation to generally applicable attention lin-

earization solutions.

Some problems do exist for cosFormer, however, when it is applied to autore-

gressive tasks. First and foremost, Zhen et. al do not provide a methodology

to deal with the mismatch between casual training and the downstream autore-

gressive environment as far as target length availability is concerned, and simply

stepping the target length at each decoding time-step (i.e. setting it equal to the

current sequence length) can prove to be problematic and introduces significant

exposure bias downstream. This can be considered for some arbitrary decoding

time-step where a given autoregressive model with cosFormer may believe that

a target sequence should be shorter than the ground-truth because N in Equa-

tion 2.7 classically corresponds to the entire sequence length, but during inference

corresponds to the current decoding time-step m from 1 to N . Moreover, while

locality bias is often present for attention mechanisms, it is not always relevant

depending on the application. Indeed, certain NLP tasks demand consistent long-

range dependencies and it can lead to significant performance degradation, in spite

of what the Long-Range Arena scores for cosFormer suggests of its ability to deal

with long-range dependencies. Finally, cosFormer was never applied towards and

tested on encoder to decoder cross-attention, despite its general applicability, and

has, as such, not been empirically shown to be a viable candidate for full attention
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linearization of all attention blocks in a given model.
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Chapter 3: Modular Linearized Attention

3.1 Impetus for Linearization Modularity on S2T NMT and SimulST

Previous works largely explored the necessity of linearized solutions for some tasks

that are not feasible with typical softmax attention, but this thesis focuses on the

benefits of applying linearization schemes to some tasks that, while possible for

classical attention mechanisms, could experience notable run-time benefits from

being linearized if costs to prediction quality are mitigated. Speech-to-text (S2T)

NMT and simultaneous speech translation (SimulST) were explored early in this

thesis as possible linearization applications. While these are not the main NLP

tasks explored in this thesis for attention linearization, they are used to under-

score the need for more flexible linearized attention implementations. A number

of assumptions are made about the intermediate softmax attention matrix that

cosFormer [45] attempts to approximate that are not always true on a task by

task basis. Chief amongst these assumptions is that the attention matrix typically

exhibits significant locality bias. While this can be observed anecdotally by ex-

amining the intermediate attention matrices of individual samples, it tends to be

more useful to examine the overall evaluation results of a trained model to get a

sense of how a linearization scheme performs as a whole (although this thesis does

provide some TTS QKT attention graphs later on for anecdotal examination).
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The chosen language pair for this brief experiment was English to German

(en-de), mostly because of the common, long-range reordering behavior that exists

within this language pair, which is to say that oftentimes German words that

would correspond to a strong attention score with some English word are located

in a disparate place when compared to that English word. This notion bucks

the assumption of cosFormer that a word roughly halfway through some English

sentence should exhibit some locality bias towards a word about halfway through

a corresponding German translation.

Both translation tasks were trained on identical model architectures based on

ESPnet-ST [19], with a slightly different cross-attention module for simultaneous

translation that functions based on a wait-k and fixed-predecision paradigm [32].

To avoid cascading multiple models [4], all models were pretrained for automatic

speech recognition (ASR) and their encoders were used in initialization when train-

ing for S2T NMT from English to German, making them end-to-end S2T NMT

pipelines. Unless otherwise specified and in contrast to typical configurations for

ESPnet-ST, an increase of 4 to 8 attention heads were used, primarily to explore

just how beneficial linearized attention could be for decreased per-head embedding

sizes. All models were optimized via Adam [23] with a typical optimization con-

figuration: β1 and β2 were set to 0.9 and 0.98 respectively, the learning rate was

set to 6e-4, and the learning rate scheduler used an inverse square-root to decay

the learning rate. The models were trained with dynamic batching and warmed

up for 8000 updates, starting with a learning rate of 1e-4, and trained for around

14000 updates, corresponding to about 30 epochs, with gradients clipped to 10.0
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on the MuST-C English to German dataset [7]. All models were trained on four

NVIDIA Tesla V100 GPUs and were evaluated on an Intel Xeon Gold 6130 CPU.

All models were evaluated via detokenized BLEU-4 through sacreBleu [43] and

via SimulEval [33], with the S2T NMT task being executed on a wait-k of 100 to

ensure non-simultaneous autoregressive behavior.

For speech-to-text NMT, a number of configurations were tried with varying

degrees of success, but fully linearized versions struggled to the point of producing

essentially useless translation results. Quantitative results for these initial experi-

ments can be found in Table 3.1, and results for an alternate set of hyperparameters

can be found in Table 3.2. It must be noted that cosFormer has no special capa-

bility to deal with unknown target lengths during autoregressive inference, so, to

demonstrate a simple solution, this thesis analyzes the training split for MuST-C

and generate a single ratio to ball-park the target length, multiplying the source

length by an α of 0.6. This is significantly larger than the average target to source

length ratio, but it was initially considered critical to overestimate in an attempt

to preserve the non-negativity of the query and key matrices (this is no longer

guaranteed, but is typically true under these circumstances). cosFormer was not

applied vigorously towards SimulST as preliminary findings were not encouraging

and initial probes did not yield viable target length prediction schemes.

Between the various results below, a few key things can be observed for these

particular applications that provide an impetus for later examinations. While there

is a severe accuracy penalty for linearizing either encoder self-attention or encoder

to decoder cross-attention, the observed penalty for decoder self-attention is sig-
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Attention Linearization Scheme BLEU ppl(dev)
Softmax Attention (non-Linear) 10.47 9.36
Full cosFormer 2.37 20.08
Full Simple ReLU 1.95 18.33
cosFormer Decoder Self-Attn, Softmax Elsew. – 9.92
Simple Decoder Self-Attn, Softmax Elsew. 11.07 9.74

Table 3.1: Results from S2T NMT for MuST-C en-de for various linearization
schemes with softmax as a baseline. BLEU scores (higher is better) are generated
at inference on the test set, are detokenized, and are generated via sacreBLEU.
Perplexity (lower is better) is generated during training on the validation set.
Missing entries were not explored due to resource/time constraints.

nificantly reduced for both cosFormer and simple ReLU, with their results being

fairly close together (it was observed that models could converge to solutions dur-

ing training that might result in significant variation at inference, i.e. two models

trained on different seeds would often differ between 0.1 to 0.5 BLEU). While it was

expected that encoder to decoder cross-attention would be difficult to approximate,

especially for cosFormer given the aforementioned reordering behavior that bucks

cosFormer’s locality assumptions, there was a noticeable increase in quality from

simple ReLU attention to cosFormer where it might be expected that the opposite

would be true. These somewhat surprising results demonstrate two primary ideas

that this thesis respects moving forward: firstly, it is insufficient to simply estimate

the characteristics of an attention block and find a seemingly suitable linearization

scheme as the QKT intermediate matrix may not always align with expectations,

and secondly, attention linearization schemes must be both application-specific

and tested on various attention blocks for a given application to gain an accurate

understanding of how well softmax behavior is approximated.
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Attention Linearization Scheme BLEU ppl(dev)
Full cosFormer 2.73 22.12
cosFormer Self-Attn, Simple Cross-Attn 1.89 23.1
cosFormer Self-Attn, Softmax Cross-Attn 7.71 13.35

Table 3.2: Results from S2T NMT for MuST-C en-de for various linearization
schemes with slightly different hyperparameters. These models were trained with
an embedding dimension dmodel of 224 and 4 attention heads in an attempt to
explore run-time differences for various linearization schemes.

Attention Linearization Scheme BLEU ppl(dev)
Softmax Attention (non-Linear) 9.25 10.15
Simple Self-Attn, Softmax Cross-Attn 7.35 12.81
Simple Decoder Self-Attn, Softmax Elsew. – 9.71

Table 3.3: Results from SimulST for MuST-C en-de for various linearization
schemes. Models were trained on a wait-k of 5 and a fixed-predecision ratio of
9 and evaluated on a wait-k of 3 and a fixed-predecision ratio of 5.

3.2 Applying Modular Linearization with cosFormer Towards TTS

Given the particular foibles of the previous task, another application was sought out

that might better fit cosFormer for autoregressive environments. Specifically, an

application that exhibited significant locality bias and operated on longer sequences

would benefit most from cosFormer as far as accuracy and run-time were concerned.

In line with the aforementioned requirements, English text-to-spectrogram (TTS,

any references to TTS are defined as text-to-spectrogram as opposed to text-to-

speech, which implies an embedded vocoder is present) was chosen to demonstrate

the capability of attention linearization on autoregressive tasks. Moreover, another

attempt at linearizing attention for autoregressive TTS was not found during this

paper’s literature review, rendering this research novel (implementations for non-
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autoregressive TTS do exist, although they are limited [66]). This thesis notes

that the paper that introduced cosFormer [45] made no attempt at applying it

towards cross-attention for their chosen applications, although it can be generalized

for cross-attention, and applied it in a very limited capacity to autoregressive

applications. As such, this thesis considers this work novel with respect to those

elements as well.

As the previous section demonstrated, attempting to estimate the best lin-

earization scheme based on assumed characteristics is a poor method of applying

linearization to attention mechanisms. It is vastly preferable to examine training

and inference results for various linearization configurations and view a number

of randomly sampled QKT intermediate matrices to supplement those results.

Given that, this thesis proposes a particular design attitude and methodology

meant to validate the functionality of a particular linearization scheme (in this

case, cosFormer) for use on a given attention block by considering a simple ReLU

implementation as a performance baseline, one where the re-weighting function

is essentially an identity function that functionally makes no assumptions about

approximate softmax behavior beyond ensuring non-negativity of the query and

key matrices.

This thesis firmly urges designers to avoid seeking a ”one size fits all” attention

linearization solution. As the previous section demonstrated and as the results

later in this thesis will demonstrate, the applicability of a particular linearization

scheme is necessarily application-specific and attention block-specific (one should

note that it is possibly layer-specific, or even attention head-specific, as well, but
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this level of granularity is beyond the scope of this thesis and would require an ex-

cessive amount of training to enable, rendering it too costly to be practical). Given

that, this thesis proposes a modular linearization solution where, for some set of

possible linearization schemes that function similarly to the solutions proposed

by Katharapolous et. al [21], cosFormer [45], and others [10, 66], one tests the

applicability of those solutions for encoder self-attention, decoder self-attention,

and encoder to decoder cross-attention, comparing them to one another and base-

line softmax performance while considering a simple ReLU implementation as a

required performance floor for that attention linearization solution’s viability.

3.3 Challenges Associated with cosFormer Linearization

This thesis notes some small challenges associated with cosFormer linearization,

some of which are associated with the released code-base for this linearization

scheme. First and foremost, the released code-base does not natively support

batching when batches are not guaranteed to be of the same source and target

length, as it uses the largest sequence length in the batch and inherently does not

support any kind of key matrix padding. Secondly, as mentioned previously, there

is no true support for cross-attention in the code-base or appropriate expression

generalizations for cross-attention in the paper introducing cosformer [45]. Finally,

the released code-base does not address some of the memory constraints observed

for linearized training without some specialized CUDA implementation that en-

sures limited memory consumption, and the paper introducing cosFormer does not
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address problems related to this either. These memory constraints can result in

linearized training being so inefficient as to be impractical, requiring a reordering

from a Q(KTV ) sequence of matrix multiplications to a (QKT )V sequence.
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Chapter 4: Implementation and Experiments

4.1 Experimental Setup for Linearized Autoregressive TTS

For the purpose of demonstrating the effectiveness of the proposed modular lin-

earized attention, this thesis formalizes the following experiments on Fairseq [38],

a language and sequence-modeling toolkit built in PyTorch that is widely used in

both research initiatives and industry. This thesis specifically makes use of the

Fairseq S2 extension [60], which enables the development of solutions for text-to-

spectrogram, text-to-speech, and speech-synthesis (S2) tasks and provides a num-

ber of popular architectures as development frameworks, most notably amongst

those being Tacotron2 [50], TransformerTTS [28], and FastSpeech2 [46]. While

FastSpeech2 is considered state-of-the-art for non-autoregressive TTS, it is not

usable for autoregressive TTS and is missing some classical transformer elements.

Therefore, this thesis chooses to adapt the TransformerTTS architecture, chang-

ing the hyperparameters of the model and adding a length predictor to assist

cosFormer in downstream environments. This adaptation is showcased in Figure

4.1.

To meet the challenges related to using cosFormer downstream as far as target

lengths are concerned, this thesis proposes a few simple solutions that empha-

size various aspects of the guarantees and objectives of cosFormer during train-



28

ing. First, this thesis proposes a simple statistical analysis alongside a set large

ratio between the source length to the predicted target length that, while gener-

ally ball-parking the reference target length, consistently over-estimates it so as

to somewhat ensure the non-negativity of the query and key matrices. This is

only possible due to the fact that, for later TTS experiments, the input text is

pre-processed into phonemes that should result in a relatively consistent number

of output frames. This thesis found that a ratio α of 1.5 results in non-negative

transforms of the query and key matrices at least 90% of the time while still main-

taining somewhat competitive downstream results with other ratios (a comparison

of the performances of these various ratios is provided later). It should be noted

that all models that made use of this method were trained on the oracle target

length as opposed to some predicted target length, and this method is treated

as an inference only implementation. It was observed, generally, that attempting

to train with this resulted in models that converged to poor solutions instead of

models that were simply robust to the estimation error.

Similarly, this thesis proposes a lookup table (LUT) of average mappings from

phonemes to audio frames so as to more accurately match the ground truth target

length. While this fails to even reasonably ensure non-negativity for the query

and key matrices, as it is not uncommon for this method to slightly underestimate

the ground truth target length, the more accurate mapping intuitively could result

in better evaluation results, as there is less of a mismatch between the training

environment and the downstream environment.

Finally, in the spirit of FastSpeech2 [46], this thesis proposes the implementa-
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tion of a small, learned length predictor at the output of the encoder stack that

will train alongside the model. This length predictor is modeled directly after

the length predictor of FastSpeech2, but has differing hyperparameters, and is a

two-layer network composed of two convolutional layers in addition to a ReLU

activation and a residual connection with a normalization layer. In contrast to

the proposed LUT, this method should be more resilient to variance in phoneme

alignment, especially as far as silences are concerned (often encoded as ”space”

phonemes), but has a more consistent and non-negligibile computational cost.

4.2 Model Configuration and Training Hyperparameters

All models trained for the following experiments were based on TransformerTTS

with a length predictor augmentation in accordance to the schemes mentioned

above. However, some changes to the baseline configuration were made. Typi-

cally, TransformerTTS uses an embedding dimension of 512 and 4 attention heads,

whereas for the following experiments an embedding dimension of 256 was used

with 8 attention heads. The above linearization schemes are primarily meant for

environments where latency and resources are a concern, so a reduction in model

size is considered appropriate for a demonstration of the capability of these lin-

earization schemes. It should be noted that, qualitatively, the resulting speech

when baseline spectrograms were passed through a Griffin-Lim vocoder [17] is un-

derstandable but do suffer from some distortion for the baseline model, and this

thesis attributes that distortion both to the reduced embedding size as well as to
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Figure 4.1: Depiction of TransformerTTS-based model used for the following ex-
periments. Input and output embeddings were shared and normalization blocks
were reordered to occur before other relevant blocks, despite not being shown here.
The length predictor is varied in later experiments, with implementations that are
inference only, implementations that are trained, and implementations that must
be used during training for model robustness.
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not taking advantage of optional pre-processing steps before training [60].

All models were trained with Adam [23] as an optimizer with classical param-

eters: β1 and β2 were set to 0.9 and 0.98 respectively, the learning rate was set

to 2e-3, and the learning rate scheduler used an inverse square-root to decay the

learning rate. The models were trained with dynamic batching and warmed up for

4000 updates and trained for around 18000 updates with gradients were clipped

to 5.0 and layer and attention dropouts of 0.1. All models were trained on four

NVIDIA Tesla V100 GPUs and on the single-speaker, English LJSpeech dataset

[20] with recommended splits for training, validation, and testing. Around 24

hours of reference audio was extracted from LJSpeech at a sampling frequency of

16 kHz.

4.2.1 End of Sequence Training

As showcased in Figure 4.1, end of sequence prediction is engaged with separately

and is a somewhat sensitive part of the training process, with a single positive

output resulting in an end of sequence prediction. If the end of sequence linear

layer converges to a poor solution, almost unstoppable inference can occur and

significant overgeneration on the order of 3x to 4x the number of reference output

frames will be observed. To compensate for this issue, a recommended positive

weighting of 5.0 in Wang et. al’s work [60] was applied to a separately calculated

end of sequence loss that serves as an additional training objective.
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4.2.2 Target Length Prediction Training

For learned target length prediction, this thesis adopts a very similar approach

to FastSpeech2 [46], implementing an identical target length predictor in overall

structure but with reduced size (hidden embedding of 128 instead of 256) so as to

mitigate the computational cost, in line with previous efforts to properly emulate

a low-resource and latency-critical application. A kernel size of 3 was used for the

convolutional layers and a steep dropout of 0.5 was applied to train for robustness.

Training goals were added via separately calculated loss values for the predicted

target length on a phoneme-by-phoneme basis, generated via the Montreal Forced

Aligner [35] (directly using the overall sequence length for calculating loss tended

to result in volatile training).

It was observed, generally, that training the target length predictor alongside

cosFormer when using the oracle target length during training resulted in poorer

results than making use of the predicted target lengths during training, but train-

ing directly with the predicted target lengths was somewhat volatile. As such, this

thesis proposes a brief amount of pre-training on the oracle target length, a brief

amount of pre-training with predicted target lengths as a training goal but still us-

ing the oracle target length for any cosFormer attention blocks, and the remainder

of training being executed using the predicted target length for cosFormer attention

blocks. Training results were slightly more stable with this general pre-training

framework.
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4.2.3 Linearization During Training

While linearization during training can be helpful, it can be difficult to do so

without specialized CUDA implementations for casual attention. This is due to

the fact that the space complexity of a naive approach for linearized attention

during training for decoder self-attention, for example, would require O(nd2) space

complexity, as opposed to the O(d2) space complexity required during inference.

To reuse the d×d space that is taken by the intermediate KTV matrix, which must

be updated for each row of the query, an algorithm similar to Algorithm 1 would

be necessary, and implementing this at a high level tends to introduce significant

sequentialism that is not simple for PyTorch to optimize away.

To compensate, a reduction in batch size is necessary, but, in practice, this

results in overall slower training. Given that the end results are identical for

(QKT )V and Q(KTV ) orderings, all models were trained in a quadratic rather

than linear order. If batch sizes were not a constraint, it would be trivial to

implement the above linearization of training in a highly parallelizable manner via

PyTorch’s Einstein summation notation.

4.3 Evaluation Setup and Metrics

4.3.1 Evaluation Details and Vocoder Use

It is critical to note that directly comparing the synthesized output spectrograms

to the reference waveforms would misrepresent the capability of a given model to



34

Algorithm 1 A simple algorithm for causal linearized attention during training
that avoids the O(nd2) space complexity that would be introduced by a naive
implementation.

Input Q in RN1×d, K in RN2×d, V in RN2×d Ktr
pr in RN2×d

Output A in R1×d

Require Decomposable similarity function defined by Sq and Sk, linear re-
weighting scheme defined by Rq and Rk

Q′ ← Rq(Sq(Q))
K ′ ← Rk(Sk(K))
M ← zeros(N1, N2)
P ← zeros(d)
for i in 1 to N1 do
M ←M + K

′T
i Vi

P ← P + K
′T
i

Ai ← Q′
iM

P

end for

return A
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produce understandable speech and fail to account for errors and distortion that

might be introduced by fairly classical methods. As such, a Griffin-Lim vocoder

[17] was used to process the reference speech into a spectrogram with some minimal

distortion so as to avoid the aforementioned issues.

Machines for model evaluation were not necessarily standardized when latency

was not being measured, and no difference in evaluation quality was observed

for differing machines. For latency-sensitive experiments, a single NVIDIA Tesla

V100 GPU was used. A recommended test split of 523 samples from LJSpeech were

used for evaluation. Unless otherwise specified, checkpoints of various attention

schemes were ranked via their loss, as it encapsulates all of the aforementioned

training goals for each model (end of sequence loss, target length prediction, etc.).

4.3.2 Mel Cepstral Distortion and Mel Spectral Distortion

Mel cepstral distortion (MCD) [26] and mel spectral distortion (MSD) have emerged

as popular quantitative metrics for speech synthesis and reconstruction [51, 60, 62].

MCD is calculated as demonstrated in Equation 4.1 with dimensionality K of 13

and with the Mel-Frequency Cepstrum Coefficients (MFCCs) ci,k and their syn-

thesized counterparts being calculated via classical methods. For the purposes

of this thesis, audio was separated into windows of around 50 ms to avoid time-

domain information being collapsed by later Fourier transforms and a hop length

of around 12.5 ms generated frames of audio that would be used for MFCC calcula-

tion. Those frames were passed through a Hamming window and a 512-point Fast
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Fourier Transform (FFT), also known as a Short-Time Fourier Transform (STFT)

when composed in this way. Finally, an 80-channel filter bank with a minimum

frequency of 20 Hz and a maximum frequency of 8 kHz was applied to generate the

MFCCs and the first 13 coefficients were extracted to produce relevant information

(the very first one is ignored, as it summarizes the energy of the waveform as a

whole).

MSD is provided alongside MCD as they both contain slightly different em-

bedded information. MSD is calculated identically to MCD, but instead on the

log-mel spectrum instead of calculated MFCCs. While MFCCs can be intuited

as containing primarily phonetic information and not necessarily speaker informa-

tion, the log-mel spectral features encode both [60]a. As a result, MSD can be

considered a more holistic view of the TTS task. Depending on what is desirable,

phonetic emphasis versus faithful speech reconstruction, prioritizing one metric

over the other may be preferable. This thesis generally defaults to MCD when

considering model fitness, but MSD is provided for the sake of completeness.

MCDK =
1

T

T∑
t=0

√√√√ K∑
k=1

(ci,k − c′i,k) (4.1)

For samples of differing output frame length between the predicted and refer-

ence spectrogram, two primary options exist to align these samples before compar-

ing them: zero padding for the smaller sample [51] and stretching/compression of

samples to attempt to align features [5, 62]. This thesis chooses to engage with the

latter of these two methods, but also provides MCD/MSD on a per reference frame
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basis. This is due to the fact that evaluating purely based on the aforementioned

frame alignment tends to suggest, in practice, that models which overgenerate are

more capable. This thesis considers frame-aligned MCD/MSD more useful when

the difference between the length of the predicted and target frames remains rel-

atively close and defaults to distortion per reference frame when models seem to

struggle with end of sequence prediction, which is specified as when a given model

predicts a number of output frames larger than two times the number of reference

frames.

4.4 Alternative Metrics

Several popular quantitative and qualitative metrics were not employed for this

thesis due to its limited scope. Prominent among them are Gross Pitch Error

(GPE) [37, 42], Voicing Decision Error (VDE) [37], F0 Frame Error (FFE) [11],

and character error rate (CER) [48, 60]. GPE is most useful to determine severe

pitching errors for generated waveforms and VDE, which often goes fairly hand in

hand with GPE, is relevant when determining whether a voicing error or unvoicing

error has been made. Both of these are determined with a number of classical

algorithms and heuristics to gather relevant pitch and voicing information [6, 16,

22]. FFE more or less directly combines GPE and VDE into a single metric,

measuring both pitching and voicing errors as a proportion of total frames.

On the qualitative side, the most commonly used metric is crowd-sourced mean

opinion scores (CMOS), also known as crowdMOS [44], that attempts to judge
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the naturalness of speech via the polling of anonymous native speaking listeners.

MCD and MSD were considered sufficient for the analysis of quantitative quality

of constructed spectrograms with additional context via frame-aligned distortion

and distortion per reference frame. This thesis leaves it to later work to examine

further insights that can be gathered from employing these other metrics, especially

CMOS, which could provide fascinating insights into the overall quality of the

produced speech, regardless of the results of observed distortion metrics.
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Chapter 5: Results

5.1 Establishing Performance Baselines

Various baseline results were gathered before beginning to explore how combina-

tions of various linearization schemes could further optimize performance. Training

results for best checkpoints are provided in Table 5.1 and provided a quick reference

for expected quality downstream in later experiments.

It must be noted that cosFormer performs reasonably well during training.

While there is significant performance degradation when cosFormer is applied to all

attention blocks compared to a model with full softmax attention, cosFormer vastly

outperforms a simple ReLU based linearization scheme for every attention block.

Of course, it must be noted that training results for cosFormer will, generally,

overstate its accuracy, as access to oracle lengths during training ensures excellent

results during validation. An example of this can be observed in the end of sequence

loss which, for cosFormer implementations in the decoder stack, resulted in loss

that nearly converged to zero. As will be observed later on, when cosFormer

attention blocks do not have access to the oracle length, they tend to struggle

ensuring that an end of sequence is predicted appropriately.

When comparing the two linearization schemes and their various ablations, the

most significant gap during training in cosFormer’s favor appears to emerge in
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the encoder to decoder cross-attention, where cosFormer maintains a very decisive

edge in terms of overall loss, although it should be acknowledged that much of

this is due to the end of sequence loss having converged to zero. Nonetheless, this

aligns with expectations that cosFormer would be particularly suited for encoder

to decoder cross-attention for TTS tasks, as the scoring of phonemes, represented

in the encoded output of the encoder stack, to their output frames, represented by

the hidden embeddings of the decoder stack, should exhibit significant locality bias.

cosFormer encoder self-attention also performed well in comparison to simple ReLU

encoder self-attention, especially when it comes to end of sequence prediction. A

surprising point in simple ReLU’s favor is the performance of decoder self-attention

for both linearization schemes, where instead of just being competitive a simple

ReLU implementation consistently beats out a cosFormer implementation and is

even able to engage in end of sequence prediction better than a model with just

softmax attention blocks. These results generally suggest that a fully linearized

model with cosFormer encoder self-attention, simple ReLU decoder self-attention,

and cosformer encoder to decoder cross-attention would perform best downstream

with appropriate target length prediction.

Results from the downstream TTS task are presented in Table 5.2 and Table 5.3

for softmax attention, cosFormer encoder self-attention linearization, and simple

ReLU linearization alongside its ablations, with cosFormer’s results for decoder

ablations being presented in later sections due to varying target length prediction

schemes. One example result for one of cosFormer’s ablations is supplied, however,

where no target length prediction was given and, instead, the current decoding
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Linearization Scheme Loss MSE Loss EOS Loss
Softmax Attention (non-Linear) 1.021 0.364 0.026
Full cosFormer 1.132 0.440 0.000
cosFormer Enc. Self-Attn, Softmax Elsew. 1.063 0.385 0.029
cosformer Dec. Self-Attn, Softmax Elsew. 1.158 0.455 0.000
cosformer Dec. Cross-Attn, Softmax Elsew. 1.102 0.424 0.000
Full Simple ReLU 1.262 0.496 0.029
Simple ReLU Enc. Self-Attn, Softmax Elsew. 1.097 0.399 0.037
Simple ReLU Dec. Self-Attn, Softmax Elsew. 1.133 0.424 0.025
Simple ReLU Dec. Cross-Attn, Softmax Elsew. 1.162 0.438 0.031

Table 5.1: Training results for various linearization schemes and their ablations,
providing a brief overview of their expected performance at inference. All loss
values (lower is better) are provided from the best performing checkpoint on the
validation split. Note that, generally, cosFormer’s loss for decoder attention blocks
tends to overestimate its downstream performance given that it can access ora-
cle lengths during training and all of these cosFormer implementations were not
trained with the learned target length prediction module.

time-step was used as the supposed sequence length. This is present entirely to

validate the importance of predicting the target length and to showcase that the

approach provided in Zhen et. al’s [45] paper and code-base is insufficient for

autoregressive tasks. It should be noted that some downstream volatility was

observed for linearization schemes that was, primarily, tied to a given linearized

model’s ability to properly predict the end of a sequence. As can be clearly seen,

the presented linearized models all struggled with significant overgeneration issues

that seem to indicate a poor ability to predict the end of a sequence. For some

models, such as the provided cosFormer decoder ablation and the ReLU encoder

to decoder cross-attention, they essentially achieved unstoppable inference and

exceeded nearly six times the reference target length for their synthesized duration.
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It is worth noting that it is somewhat odd for the fully linearized solution listed

in Table 5.2 and Table 5.3 to perform better downstream compared to a model with

just ReLU encoder self-attention or just ReLU encoder to decoder cross-attention,

but it should be observed that both of those models struggle significantly with

overgeneration, and this can be seen during training in their slightly larger end

of sequence loss. This thesis attributes the strange downstream results for full

simple ReLU linearization to volatility in the performance of trained checkpoints

downstream (i.e. it was observed that checkpoints that achieved essentially identi-

cal validation loss could exhibit significant differences in downstream performance,

especially for ReLU linearization). This could possibly be compensated for by

applying an even larger positive weight to the end of sentence prediction during

training [60], but this is left for future work to explore.

Linearization Scheme Synth. Dur. (frames) Dist./Ref. Dist./Align.
Softmax Attention (non-Linear) 285k 5.52 4.69
Full Simple ReLU 414k 10.87 6.31
Simple ReLU Enc. Self-Attn. 819k 14.11 4.45
Simple ReLU Dec. Self-Attn. 323k 8.20 6.10
Simple ReLU Dec. Cross-Attn. 1372k 22.34 4.35
cosFormer Enc. Self-Attn. 313k 7.00 5.20
cosFormer Dec. Cross-Attn. 1989k 29.47 4.01

Table 5.2: MCD values (lower is better) for full softmax attention, simple ReLU
linearization, alongside its ablations, and cosFormer implemented in encoder self-
attention. Ablations made use of softmax attention for all blocks but the specified
linearized block. A single decoder cosFormer ablation is provided without target
length prediction to validate the necessity of avoiding using the current decoding
time-step in the cosine-based reweighting scheme’s denominator. Reference dura-
tion is approximately 273k frames across all 523 test samples in LJSpeech.
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Linearization Scheme Synth. Dur. (frames) Dist./Ref. Dist./Align.
Softmax Attention (non-Linear) 285k 2.61 2.27
Full Simple ReLU 414k 4.80 2.89
Simple ReLU Enc. Self-Attn. 819k 6.64 2.12
Simple ReLU Dec. Self-Attn. 323k 3.66 2.81
Simple ReLU Dec. Cross-Attn. 1372k 10.44 2.05
cosFormer Enc. Self-Attn. 313k 3.22 2.45
cosFormer Dec. Cross-Attn. 1989k 13.95 1.91

Table 5.3: MSD values (lower is better) for full softmax attention, simple ReLU
linearization, alongside its ablations, and cosFormer implemented in encoder self-
attention. Ablations made use of softmax attention for all blocks but the specified
linearized block. A single cosFormer ablation is provided without target length
prediction to validate the necessity of avoiding using the current decoding time-
step in the cosine-based reweighting scheme’s denominator. Reference duration is
approximately 273k frames across all 523 test samples in LJSpeech.

5.2 Ratio-Based Target Length Prediction Iteration

As mentioned previously, one of the proposed target length prediction schemes

relies on a simple statistical analysis of the training set target length to source

length ratios and a subsequent application of a set ratio α during inference to

estimate the reference target length. Here, an α of 1.25 closely approximates

the average length that the reference output should have whereas an α of 1.5

produces around a 90% probability, based on the training set, that the query and

key matrices will be positive. During experiments early on in this thesis related

to NMT and SimulST, a larger ratio was chosen to attempt to mostly ensure the

non-negativity of the query and key matrices.

However, as demonstrated in Table 5.4 and Table 5.5, it is not clear that

overestimating the target length is beneficial in any way due to the general difficulty
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that linearized models have in correctly predicting the end of a sequence. Due to

that tendency to overgenerate, this thesis notes the capability of this target length

prediction method of dampening the model’s eagerness to avoid end of sentence

predictions. It should be noted, briefly, the important information encoded in

both distortion per reference frame and distortion per aligned frame, as optimizing

for either would result in α values that are patently ridiculous compared to the

environment that these linearized attention mechanisms were trained in. Even

so, an α of 1.125 could be used to better match the reference target length while

also maintaining a somewhat balanced performance profile, in spite of the expected

poorer approximation of softmax behavior by consistently, slightly underestimating

the target sequence length.

α Length Ratio Synth. Dur. (frames) Dist./Ref. Dist./Align.
0.50 167k 7.42 7.05
0.60 212k 7.73 6.99
0.75 307k 8.49 6.59
1.00 431k 9.70 5.75
1.25 531k 10.74 5.27
1.50 650k 12.00 4.88
1.75 772k 13.30 4.59

Table 5.4: MCD values (lower is better) for differing target length to source length
ratios for target length predictions. All models were fundamental TransformerTTS
architectures with their encoder to decoder cross-attention mechanism replaced
by cosFormer. Reference duration is approximately 273k frames across all 523
test samples in LJSpeech. Extremely low ratios are provided to demonstrate the
problems with relying purely on distortion per reference frame and extremely large
ratios are provided to demonstrate issues with relying entirely on distortion per
alignment frame.
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α Length Ratio Synth. Dur. (frames) Dist./Ref. Dist./Align.
0.50 167k 3.28 3.16
0.60 212k 3.42 3.17
0.75 307k 3.78 3.06
1.00 431k 4.42 2.69
1.25 531k 4.96 2.50
1.50 650k 5.62 2.33
1.75 772k 6.30 2.21

Table 5.5: MSD values (lower is better) for differing target length to source length
ratios for target length predictions. All models were fundamental TransformerTTS
architectures with their encoder to decoder cross-attention mechanism replaced
by cosFormer. Reference duration is approximately 273k frames across all 523
test samples in LJSpeech. Extremely low ratios are provided to demonstrate the
problems with relying purely on distortion per reference frame and extremely large
ratios are provided to demonstrate issues with relying entirely on distortion per
alignment frame.

5.3 Lookup Table-Based Target Length Prediction

To construct the aforementioned lookup table, data was collected related to the

training set alignments produced by the Montreal Forced Aligner [35]. Averages

were determined alongside standard deviations to briefly test whether or not over-

estimation of the reference target length would yield generally better results (ensur-

ing that 90% of expected encountered target lengths would result in positive queries

and keys, similar to previous experiments with NMT and SimulST as tasks). Upon

observing that such guarantees did not, typically, result in generally superior out-

put quality, both quantitatively and qualitatively, average phoneme to audio frame

mappings were generally used. It should be noted that quiet frames, or ”spaces,”

which correspond to a single phoneme necessarily suffer from very large phoneme
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to audio frame mapping variance. While the average mapping for a ”space” was

around 40 frames of audio, a standard deviation of 20 frames was observed, making

predicting the actual length of silences incredibly difficult.

Results are observed for various dampening factors are provided in Table 5.6

and Table 5.7, with these dampening factors serving to suppress or strengthen a

linearized model’s general tendency to overgenerate. Encouraging overgeneration

via a dampening factor of 0.9 is provided purely to test the severity of observed

prediction quality degradation. Generally, the use of LUT-based length prediction,

while somewhat competitive when dampening was enabled, failed to perform above

some simple ratio α, which can also provide a kind of dampening effect.

Dampening Factor Synth. Dur. (frames) Dist./Ref. Dist./Align.
1.1 342k 8.81 6.11
1.0 378k 9.20 5.89
0.9 450k 9.56 5.55

Table 5.6: MCD values (lower is better) for various LUT dampening factors. All
models contained cosFormer attention blocks for encoder self-attention and encoder
to decoder cross-attention with softmax decoder self-attention. Reference duration
is approximately 273k frames across all 523 samples in the test set of LJSpeech.

Dampening Factor Synth. Dur. (frames) Dist./Ref. Dist./Align.
1.1 342k 3.94 2.89
1.0 378k 4.13 2.78
0.9 450k 4.5 2.62

Table 5.7: MSD values (lower is better) for various LUT dampening factors. All
models contained cosFormer attention blocks for encoder self-attention and encoder
to decoder cross-attention with simple decoder self-attention. Reference duration
is approximately 273k frames across all 523 samples in the test set of LJSpeech.

I 
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5.4 Learned Target Length Prediction

This thesis briefly explores learned target length prediction as a possible target

length prediction scheme, but critically acknowledges that any learned module that

does not produce significant improvements on downstream results likely renders

this scheme unviable, as there is a non-negligible computational cost associated

with this small convolutional neural network embedded into the encoder stack.

The results for this experiment can be found in Table 5.8 and Table 5.9 for a few

decoder-focused cosFormer ablations. While the generated down-stream results

are certainly competitive, they are not notably better than a simple ratio of alpha

when it is used as a general dampener for target length overgeneration. It should be

observed that, when cosFormer was applied to all attention blocks, the synthesized

duration was actually closer to the reference length. While this validates learned

target length prediction on some level, this thesis notes that even when models with

identical training parameters achieved similar training results, their downstream

performance could vary significantly, and attributes this observed improvement to

that volatility.

Linearization Scheme Synth. Dur. (frames) Dist./Ref. Dist./Align.
cosFormer Dec. Attn. Blocks 328k 9.09 6.68
cosFormer Dec. Self-Attn. 334k 8.98 6.58
cosFormer Dec. Cross-Attn. 367k 9.38 6.35

Table 5.8: MCD values (lower is better) for various cosFormer ablations with
learned target length prediction. Ablations made use of softmax for all atten-
tion blocks other than the specified linear ones. All models followed the brief
pre-training protocol outlined earlier in this thesis. Reference duration is approx-
imately 273k frames across all 523 test samples in the test set of LJSpeech.

I 
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Linearization Scheme Synth. Dur. (frames) Dist./Ref. Dist./Align.
cosFormer Dec. Attn. Blocks 328k 4.04 3.13
cosFormer Dec. Self-Attn. 334k 3.97 3.05
cosFormer Dec. Cross-Attn. 367k 4.17 2.93

Table 5.9: MSD values (lower is better) for various cosFormer ablations with
learned target length prediction. Ablations made use of softmax for all atten-
tion blocks other than the specified linear ones. All models followed the brief
pre-training protocol outlined earlier in this thesis. Reference duration is approx-
imately 273k frames across all 523 test samples in the test set of LJSpeech.

5.5 Finalized Model Configuration and Performance Comparisons

5.5.1 Competitive Models and Synthesized Spectrogram Quality

Based on the results from previous sections, a few combinations of linearization

schemes were considered reasonable to investigate for this thesis. When examining

the training results alone for various linearization schemes, it seems viable to at

least consider the following options: cosFormer encoder self-attention and encoder

to decoder cross-attention with simple ReLU decoder self-attention, cosFormer en-

coder self-attention and encoder to decoder cross-attention with softmax decoder

self-attention, and cosFormer encoder to decoder cross-attention with softmax self-

attention blocks (latency profiles in the Appendix suggest that for this workload,

there may not be significant latency benefits for linearizing decoder self-attention

and decoding should dominate run-time, so encoder self-attention linearization also

may not be necessary). Upon examining the downstream results for various abla-

tions, it can generally be expected that models incorporating cosFormer encoder

to decoder cross-attention will perform reasonably well if the target length is some-

I 
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what closely predicted. Additionally, cosFormer encoder self-attention performed

well, although it should be noted that the encoder self-attention block was rather

sensitive to checkpoint selection (i.e. evaluating checkpoints with reasonably close

loss values could swing the evaluation significantly, usually due to poor end of

sequence prediction).

Of the aforementioned target length prediction options, this thesis notes that a

simple ratio α that very roughly estimates the target length performs competitively

with the LUT and learned target length prediction alternatives with negligible

computational cost, in comparison (LUT run-time complexity is O(n) and target

length prediction is roughly O(knddh) where k is the kernel size and dh is the

number of filters). As such, a simple α of 1.125 is employed for the following final

evaluations, selected at a slightly lower value than the observed average ratio in the

training set to dampen the tendency of linearized schemes to overgenerate. It is

left to future work to seek out alternative, more accurate target length prediction

schemes that produce more noticeable improvements upon downstream results.

Results for inference runs with the aforementioned models are provided in Ta-

ble 5.10 and Table 5.11. As can be observed below, their performance is sur-

prisingly similar, but given that the synthesized lengths are fairly close to the

reference length, it can be generally stated that the model with softmax decoder

self-attention likely has a slight edge as far as prediction quality is concerned, as the

distortion per aligned frame is slightly lower for both MCD and MSD, indicating

general superiority in phonetic reconstruction and other speaker-specific features.

A model with only cosFormer encoder to decoder cross-attention is included with
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a slightly different training configuration that encourages underestimation of the

reference target length that seems to perform the best out of all available options,

but given that it does include a slightly different training configuration it is only

included for the sake of completeness.

Linearization
Scheme

Synth. Dur. (frames) Dist./Ref. Dist./Align.

cosFormer Enc.
Self-Attn & Dec.
Cross-Attn, simple
ReLU Elsew.

273k 8.10 6.57

cosFormer Enc.
Self-Attn & Dec.
Cross-Attn, Soft-
max Elsew.

293k 8.35 6.43

cosFormer Dec.
Cross-Attn, Soft-
max Elsew. 1

297k 8.20 6.30

Table 5.10: MCD values (lower is better) for various final linearization schemes,
two of which are not fully linearized. Reference duration is approximately 273k
frames across all 523 samples in the test set of LJSpeech.

5.5.2 Estimated FLOPs and Observed Latency

This thesis briefly touches upon a calculation of the estimated number of floating

point operations (FLOPs) for each attention block for a single attention head

during inference in the presented hybrid model. This thesis assumes, initially, that

all floating point operations are equal and then follows up that analysis by making

the following assumptions about various floating point operations and the relative
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Linearization
Scheme

Synth. Dur. (frames) Dist./Ref. Dist./Align.

cosFormer Enc.
Self-Attn & Dec.
Cross-Attn, simple
ReLU Elsew.

273k 3.59 3.08

cosFormer Enc.
Self-Attn & Dec.
Cross-Attn, Soft-
max Elsew.

293k 3.7 3.05

cosFormer Dec.
Cross-Attn, Soft-
max Elsew. 1

297k 3.64 2.93

Table 5.11: MSD values (lower is better) for various final linearization schemes,
two of which are not fully linearized. Reference duration is approximately 273k
frames across all 523 samples in the test set of LJSpeech.

time that they consume:

• Addition, subtraction, and multiplication are all equivalent to 1 general

FLOP

• Division is equivalent to 2 general FLOPs

• Exponential operations are equivalent to 2 general FLOPs

As a reference, this thesis makes use of the provided run-time complexities in

Table 5.12 and Table 5.13, but expands collapsed terms for FLOPs calculation

(e.g. the softmax operator application is expanded from m operations to 3m

operations for exponentiation, summation, and division across a single token’s

1A somewhat experimental model with slightly differing training parameters is used here that
encouraged it to underestimate target sequence lengths. An α of 1.75 was necessary to encourage
it to avoid significant underestimation.
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attention scores). Estimations for the FLOPs required are provided in Table 5.14,

Table 5.15, and Table 5.16.

Attention Mechanism Component Run-Time Complexity
Q,K, V Linear Projections O(nDd)
(QKT ) Intermediate Matrix Multiplication O(n2d)
softmax Operator Application O(n2)
(QKT )V Matrix Multiplication O(n2d)
ReLU Operator Application O(nd)
cosine-Based Transform Application O(nd)
(KTV ) Intermediate Matrix Multiplication O(nd2)
Q(KTV ) Matrix Multiplication O(nd2)
Linearized Normalization Construction O(nd)
Linearized Normalization Application O(nd)
Output Attention Projection O(nDd)

Table 5.12: Estimated run-time complexities during autoregressive inference of
various encoder self-attention mechanisms where D is the entire embedding size
for the model and d is the embedding size for a single attention head (dk is assumed
to equal dv here).

It can be observed that as far as estimated number of FLOPs is concerned,

both cosFormer and simple ReLU attention blocks beat out softmax implementa-

tions by a notable margin, especially in cross-attention for autoregressive decoding.

However, while estimating FLOPs and calculating run-time complexities is a neces-

sary step in estimating the acceleration of attention calculations via linearization,

it should be noted that various under-the-hood optimizations on the side of Py-

Torch may render some of these estimations inaccurate when it comes to practical

run-times. Given that, latencies for various viable schemes are provided below

and, for completeness, a brief comparison of run-time profiles for various attention

schemes in practical environments and engaging in rote calculation are provided
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Attention Mechanism Component Run-Time Complexity
Q,K, V Linear Projections O(Dd)
(QKT ) Intermediate Matrix Multiplication O(md)
softmax Operator Application O(m)
(QKT )V Matrix Multiplication O(md)
ReLU Operator Application O(d)
cosine-Based Transform Application O(d)
(KTV ) Intermediate Matrix Multiplication O(d2)
Q(KTV ) Matrix Multiplication O(d2)
Linearized Normalization Construction O(d)
Linearized Normalization Application O(d)
Output Attention Projection O(Dd)

Table 5.13: Estimated run-time complexities during autoregressive inference of
various decoder self-attention mechanisms at some arbitrary decoding time-step m
where D is the entire embedding size for the model and d is the embedding size for
a single attention head (dk is assumed to equal dv here). Decoder cross-attention
replaces all m values with the encoded sequence length. Maximal reuse is assumed
for relevant linearization elements.

in the Appendix.

Concerning observed latencies, it can be somewhat difficult to account for differ-

ences in predicted sequence length between these various schemes. The fairest met-

ric employed in this thesis, beyond estimated FLOPs, is throughput, and through-

put results are provided in Table 5.17. As observed in this table, decoder through-

put gains of up to 7.2% were achieved with a more balanced approach achieving

around 5% decoder throughput gains. While around a 3.9% encoder throughput

increase was observed, it should not be emphasized for this application as decoder

run-time typically eclipses encoder run-time by a factor of at least 5x to 20x.
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Attention Scheme FLOPs when Equal FLOPs when Unequal
Softmax Attention 7.86M 7.88M
Simple ReLU Attention 6.98M 6.99M
cosFormer Attention 7.41M 7.41M

Table 5.14: Estimated required FLOPs for encoder self-attention for a single atten-
tion head when assuming all FLOPs are equal and when making some assumptions
about the relative time consumption of certain operations. For the purposes of this
calculation, the encoded sequence length ne is set to 100 tokens, D is set to a total
embedding space of 256, and d is set to an embedding space of 32 for a single
attention head, in accordance with the models trained for this thesis.

Attention Scheme FLOPs when Equal FLOPs when Unequal
Softmax Attention 12.4M 13.1M
Simple ReLU Attention 10.6M 10.6M
cosFormer Attention 11.4M 11.4M

Table 5.15: Estimated required FLOPs for decoder self-attention for a single atten-
tion head when assuming all FLOPs are equal and when making some assumptions
about the relative time consumption of certain operations. The represented FLOPs
are for a full autoregressive prediction, with a sequence length of n. For the pur-
poses of this calculation, n is set as a sequence length of 150 tokens, D is set to a
total embedding space of 256, and d is set to an embedding space of 32 for a single
attention head, in accordance with the models trained for this thesis.

Attention Scheme FLOPs when Equal FLOPs when Unequal
Softmax Attention 11.6M 12.5M
Simple ReLU Attention 5.4M 5.5M
cosFormer Attention 5.8M 5.8M

Table 5.16: Estimated required FLOPs for decoder cross-attention for a single at-
tention head when assuming all FLOPs are equal and when making some assump-
tions about the relative time consumption of certain operations. The represented
FLOPs are for a full autoregressive prediction, with a sequence length of n and an
encoded sequence length of ne. For the purposes of this calculation, n is set as a
sequence length of 150 tokens, ne is set to a sequence length of 100, D is set to a
total embedding space of 256, and d is set to an embedding space of 32 for a single
attention head, in accordance with the models trained for this thesis.
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Linearization
Scheme

Enc. Thrpt. (itr/sec) Dec. Thrpt. (itr/sec) FLOPs

Softmax Attention
(non-Linear)

1.51 72.81 1.94G

cosFormer eSA &
dCA, ReLU dSA

1.57 77.88 1.46G

cosFormer eSA &
dCA, Softmax dSA

1.58 76.53 1.60G

cosFormer dCA,
Softmax eSA &
dSA

1.52 76.56 1.68G

Table 5.17: Efficiency related results from various configurations generating spec-
trograms on the LJSpeech test set. Encoder and decoder throughput (higher is
better) was measured via the number of forward calls and the wall-clock time for
those calls. FLOPs (lower is better) were calculated and are an estimation of float-
ing point operations (all operations treated as equal) for a single sample with a
source sequence length of 100 and a target sequence length of 150. Small varia-
tions in throughput are attributed to slightly different device conditions between
efficiency tests.
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Chapter 6: Conclusions and Future Work

Classical attention mechanisms for the transformer class of models can be compu-

tationally expensive for many NLP tasks. Even for tasks where softmax attention

is still viable as far as latency in concerned, it can be desirable for various attention

mechanisms to be linearized as long as costs to downstream prediction quality are

minimized. This thesis focuses on some of the problems related to applying state-

of-the-art linearization techniques to various autoregressive tasks with a focus on

TTS.

Specifically, this thesis hones in initially on providing rebuttals to the general

effort to find a one-size-fits-all solution for attention linearization by underscoring

the importance of choosing a linearization scheme on an application by application

basis. NMT and SimulST are employed as example applications that can be diffi-

cult to provide linear softmax approximations for, where state-of-the-art solutions

like cosFormer [45] largely fail to mitigate prediction accuracy degradation when

broadly applied. Additionally, these applications underscore the importance of

engaging with multiple linearization schemes and attempting to combine them, as

such combinations can yield fascinating insights related to the general downstream

behavior of the QKT intermediate matrix.

Moreover, this thesis seeks to answer some of the challenges specific to autore-

gressive tasks for cosFormer, specifically related to fixing its initial naive imple-
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mentation and providing numerous methods for target length prediction, which

are absent in the original implementation for autoregressive tasks. Often, naive

implementations of cosFormer fail to predict anything more than end of sequence

tokens or often significantly stretch features to the point of rendering the result-

ing prediction unrecognizable compared to the reference. As demonstrated in the

results of this thesis, the improvement from a naive cosFormer-based model and

its ablations to one with the solutions provided in this thesis is beyond significant,

rendering such improvements mandatory for autoregressive applications.

To better explore cosFormer and how modular linearized attention could be em-

ployed to better approximate softmax attention across all attention blocks, TTS

was chosen as an application due to its expected strong locality bias across multi-

ple attention blocks. Trained, evaluated, and tested on the single-speaker dataset

LJSpeech [20], various linearization ablations based on TransformerTTS [28] were

analyzed to determine what combination might best approximate softmax atten-

tion for full linearization. As the results in this thesis have shown, for this dataset

and for TTS as an application, a cosFormer encoder self-attention block combined

with a cosFormer encoder to decoder cross-attention block and a simple ReLU

decoder self-attention block perform the best out of a number of ablations with a

notable latency reduction compared to full softmax attention. Due to the size of

this workload, full linearization is not entirely necessary, and upon replacing the

ReLU decoder self-attention block with a softmax decoder self-attention block, a

slight quality improvement was observed while still maintaining a significant end-

to-end speed-up in comparison to full softmax attention.
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A number of tasks remain to be fully explored that this thesis only touches on,

most notable amongst them being the creation and selection of a target length pre-

diction scheme with near negligible computational cost that better predicts target

sequence lengths than some simple ratio α. As the training results in this thesis

demonstrated, cosFormer performs excellently when oracle sequence lengths are

available for attention blocks that exhibit significant locality bias, so a more so-

phisticated and accurate target length predictor should result in vastly improved

prediction quality. Additionally, optimization opportunities for the various lin-

earized models within this thesis remains for TTS, as a number of preprocessing

steps were not explored that could improve prediction quality. Moreover, the lim-

its of these linearized models for multi-speaker datasets have not been explored by

this thesis, and the aforementioned preprocessing steps can assist in cleaning up

multi-speaker or noisy datasets which could enable linearized solutions for more

complex TTS environments.
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Appendix A: Feature Comparisons for Synthesized Spectrograms

A handful of samples were randomly selected for comparisons between the refer-

ence spectrogram and the synthesized spectrograms. In many cases, the linearized

model (only cross-attention was linearized for this comparison) was able to some-

what compete with the baseline, full softmax attention model insofar as visible

features are concerned. Figure A.1 and Figure A.2 are good examples of an in-

stance where the linearized model seems to have performed somewhat comparably,

with both capturing the starting features reasonably well. Spectrogram quality, in

general, seemed to degrade for later decoding time-steps.
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Figure A.1: Spectrogram comparison between the reference spectrogram and the
synthesized spectrogram from a baseline model with only softmax attention on
sample LJ001-0030. This sample was randomly selected out of the test set. The
left axis is the frequency in kHz, the right axis is the decibel value, and the bottom
axis is the duration in frames.

Figure A.2: Spectrogram comparison between the reference spectrogram and the
synthesized spectrogram from a model with cosFormer encoder to decoder cross-
attention and softmax self-attention blocks on sample LJ001-0030. This sample
was randomly selected out of the test set. The left axis is the frequency in kHz,
the right axis is the decibel value, and the bottom axis is the duration in frames.
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Figure A.3: Spectrogram comparison between the reference spectrogram and the
synthesized spectrogram from a baseline model with only softmax attention on
sample LJ001-0106. This sample was randomly selected out of the test set. The
left axis is the frequency in kHz, the right axis is the decibel value, and the bottom
axis is the duration in frames.

Figure A.4: Spectrogram comparison between the reference spectrogram and the
synthesized spectrogram from a model with cosFormer encoder to decoder cross-
attention and softmax self-attention blocks on sample LJ001-0106. This sample
was randomly selected out of the test set. The left axis is the frequency in kHz,
the right axis is the decibel value, and the bottom axis is the duration in frames.
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Figure A.5: Spectrogram comparison between the reference spectrogram and the
synthesized spectrogram from a baseline model with only softmax attention on
sample LJ002-0178. This sample was randomly selected out of the test set. The
left axis is the frequency in kHz, the right axis is the decibel value, and the bottom
axis is the duration in frames.

Figure A.6: Spectrogram comparison between the reference spectrogram and the
synthesized spectrogram from a model with cosFormer encoder to decoder cross-
attention and softmax self-attention blocks on sample LJ002-0178. This sample
was randomly selected out of the test set. The left axis is the frequency in kHz,
the right axis is the decibel value, and the bottom axis is the duration in frames.
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Appendix B: Final Decoder Layer Cross-Attention Comparisons

A handful of samples were randomly selected for comparisons between a baseline

softmax attention model and a model with its encoder to decoder cross-attention

blocks replaced by a cosFormer implementation for the final layer of the decoder.

To generate these scores, features were averaged across attention heads for the

intermediate and normalized QKT matrix (this was generated purely for logging

during linearized inference and was not used for prediction). The general shape of

this layer’s cross-attention does seem to be reasonably approximated by cosFormer

cross-attention, but it should be noted that the diagonal structure expected of

modules that cosFormer should perform well with is not truly observed here (i.e.

a token from the encoder stack’s output at some relative position should score

strongly with tokens in the same relative position in the decoder stack for cos-

Former to perform particularly well). It should be noted that cosFormer seems

to be somewhat peakier for its scores, so an initial heatmap comparison looks

rather strange but common features are still very much observable. Values that

correspond to scores of zero are typically padding symbols.
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Figure B.1: Softmax QKT intermediate matrix results for the cross-attention of
the final layer of the decoder stack for sample LJ001-0030 in LJSpeech’s test set.
The left axis represents the source tokens in the form of phonemes and the bottom
axis represents the predicted waveform tokens.
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Figure B.2: cosFormer QKT intermediate matrix results for the cross-attention of
the final layer of the decoder stack for sample LJ001-0030 in LJSpeech’s test set.
The left axis represents the source tokens in the form of phonemes and the bottom
axis represents the predicted waveform tokens.
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Figure B.3: Softmax QKT intermediate matrix results for the cross-attention of
the final layer of the decoder stack for sample LJ001-0106 in LJSpeech’s test set.
The left axis represents the source tokens in the form of phonemes and the bottom
axis represents the predicted waveform tokens.
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Figure B.4: cosFormer QKT intermediate matrix results for the cross-attention of
the final layer of the decoder stack for sample LJ001-0106 in LJSpeech’s test set.
The left axis represents the source tokens in the form of phonemes and the bottom
axis represents the predicted waveform tokens.
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Figure B.5: Softmax QKT intermediate matrix results for the cross-attention of
the final layer of the decoder stack for sample LJ002-0178 in LJSpeech’s test set.
The left axis represents the source tokens in the form of phonemes and the bottom
axis represents the predicted waveform tokens.
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Figure B.6: cosFormer QKT intermediate matrix results for the cross-attention of
the final layer of the decoder stack for sample LJ002-0178 in LJSpeech’s test set.
The left axis represents the source tokens in the form of phonemes and the bottom
axis represents the predicted waveform tokens.
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Appendix C: Relevant Algorithms

The following algorithm is somewhat relevant to this thesis, but was not considered

critical to include in its main body. Algorithm 2 provides a reference for the data-

reuse implementation inspired by Katharapalous et. al’s work [21], resulting in a

run-time complexity that is linear with respect to the number of samples during

inference. This particular algorithm is extremely generalizable and portions of it

are cut away for the sake of efficiency given a particular linearization scheme.
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Algorithm 2 Generalized fully linearized attention for autoregressive decoding at
inference for some arbitrary decoding time-step m + 1 for a single attention head.
Note that keeping track of the transformed keys is optional, but can be useful
under some specific circumstances.

Input Q in R1×d, K in RN2×d, V in RN2×d, Mpr in Rd×d, Spr in R1×d,
Ktr

pr in RN2×d

Output A in R1×d

Require Flag f for K and V updates, chunk size k for K and V updates,
decomposable linear similarity function defined by Sq and Sk, linear re-weighting
scheme defined by Rq and Rk

Q′ ← Sq(Q)
Qtr ← Rq(Q

′)
if f is True then
K ′

up ← Sk(K[−k :])
Ktr

up ← Rk(K ′
up)

Ktr ← concat(Ktr
pr, K

tr
up)

else
Ktr ← Ktr

pr

end if

if f is True then
Sup ←

∑
KtrT

up

S ← Spr + Sup

else
S ← Spr

end if

if f is True then
Mup ← KtrT

up × V [−k :]
M ←Mpr + Mup

else
M ←Mpr

end if

D ← Qtr ×M
N ← Qtr × S
A′ ← D

N

A← out(A′)

return A
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Appendix D: Synthetic Dataset for Brief Latency Comparisons

In addition to the run-time analyses for practical workloads in this thesis, below

is a brief analysis of the effect of embedding dimension size and sequence length

on the latency of softmax attention and various linearization schemes for decoding

attention blocks and a single attention head. The data used for this analysis is

entirely synthetic, generated for rote calculation to demonstrate run-time profiles

with no priors. CPU and GPU-based analyses are provided below, with the CPU in

question being an Intel Xeon Platinum 8168 and the GPU being a single NVIDIA

Tesla V100. Batching is disabled for CPU runs and enabled for some GPU runs to

showcase differences in run-time profiles for practical workloads and environments.

Generally, performances on CPUs resulted in observed latency advantages for

simple ReLU attention implementations and essentially no latency advantages for

cosFormer. On the side of GPUs, when batching was disabled, similar behavior was

observed. Only with batching enabled (e.g. something like TTS for speeches where

the entire speech is available immediately is a possible example of when batching

might be enabled), does cosFormer begin to demonstrate latency advantages. This

is attributed to some overhead in PyTorch’s under-the-hood optimizations that

can render very lightweight operations cumbersome if they are not engaging in

large scale, and highly parallelizable, floating point operations.



81

Figure D.1: Comparisons of run-time profiles for decoder self-attention for varying
sample lengths on a CPU. 250 samples are present in this synthetic dataset with
batching disabled. Naive linearization techniques make no attempt at reusing the
KTV intermediate matrix while reuse implies storing older information for later
use. Notably, cosFormer does not beat out softmax implementations for any of the
provided sample lengths.
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Figure D.2: Comparisons of run-time profiles for decoder cross-attention for vary-
ing sample lengths on a CPU. 250 samples are present in this synthetic dataset
with batching disabled. For cross-attention, the sample length variations vary the
source length (key and value sizes) while the target length is set to 150 tokens.
Naive linearization techniques make no attempt at reusing the KTV intermediate
matrix while reuse implies storing older information for later use. Notably, cos-
Former does not beat out softmax implementations at practical sample lengths for
TTS.
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Figure D.3: Comparisons of run-time profiles for decoder self-attention for varying
sample lengths on a GPU. 250 samples are present in this synthetic dataset with
batching disabled. Naive linearization techniques make no attempt at reusing the
KTV intermediate matrix while reuse implies storing older information for later
use. Notably, cosFormer does not beat out softmax implementations for any of the
provided sample lengths.
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Figure D.4: Comparisons of run-time profiles for decoder self-attention for varying
sample lengths on a GPU. 250 samples are present in this synthetic dataset with
batches of 125. Naive linearization techniques make no attempt at reusing the
KTV intermediate matrix while reuse implies storing older information for later
use. Notably, cosFormer does not beat out softmax implementations at practical
sample lengths for TTS.
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Figure D.5: Comparisons of run-time profiles for decoder cross-attention for vary-
ing sample lengths on a GPU. 250 samples are present in this synthetic dataset
with batches of 125. For cross-attention, the sample length variations vary the
source length (key and value sizes) while the target length is set to 150 tokens.
Naive linearization techniques make no attempt at reusing the KTV intermediate
matrix while reuse implies storing older information for later use. Notably, cos-
Former easily beats out softmax implementations at all relevant sample lengths.
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