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Herein, a program of research is detailed related to transport through the 

Si metal oxide semiconductor (MOS) quantum dots fabricated in a process flow 

compatible with modern ULSI (ultra large scale integrated circuit). Silicon quantum 

dots were fabricated by placing split gates within a MOSFET structure. Quantum 

dots of several sizes and geometries were fabricated by this process for the purpose 

of investigating the effects of size and shape on quantized transport through the 

dots. 

The transport properties of the different quantum dot sizes and shapes were 

investigated at low temperatures, and compared to normal MOSFETs fabricated 

by the same technology. Equilibrium measurements with the device biased in the 

regime from the onset of weak inversion to just past the onset of strong inversion 

revealed strongly oscillatory behavior in the tunneling conductance. The conduc­

tance peaks appear to map an energy level spectrum in the dot as the inversion 

and depletion gates are separately swept. Symmetric devices, biased both sym­

metrically and asymmetrically, show two groups of "branches" which evolve with 

different slopes in the VInv - VDepl plane. An asymmetric device studied shows three 

groups of branches. In addition, a fine structure is observed in the conductance 

peak behavior of two devices. 
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This apparent energy level structure is compared to the body of literature on 

the so-called artificial atoms, as well as self-consistent three dimensional quantum 

mechanical solutions for the energy levels in the same dot structure, which qualita­

tively agree with the overall slope of the observed data. However, the calculations 
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branches, and several alternative mechanisms are presented to explain the origin of 

the fine structure observed. 
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TRANSPORT IN SILICON METAL OXIDE 

SEMICONDUCTOR QUANTUM DOTS 


1. INTRODUCTION 

Semiconductor nanostructures have received much attention in recent years, driven 

strongly by the reduction of electronic devices towards diminishingly small physical 

dimensions. Smaller device dimensions are required to lower the cost and increase 

the functionality and speed of ultra large scale integrated (ULSI) semiconductor 

microchips. Silicon metal oxide semiconductor field effect transistors (MOSFETs) 

and complementary MOSFETs (CMOS) have long been the dominant technology 

for logic devices, and thus have driven advances in the industry. In order to reduce 

the size of these devices, it is necessary to reduce the gate length, which leads to 

high fields in the drain region of the device unless the operating voltages are cor­

respondingly scaled. These high fields lead to problems such as hot carrier effects, 

including carrier multiplication due to impact ionization, carrier injection into the 

oxide, excessive substrate currents, and velocity saturation. These effects lead to 

a shift in the threshold voltage (device turn on voltage) causing logic errors, and 

multiplication-induced feedback effects leading to higher currents than designed, 

which can lead to snapback breakdown. In order to correct for these degrading 

effects, thinner gate oxides, shallower Ohmic contact junction depths, and com­

plex drain-engineered structures are required. These modifications in turn, lead to 

problems from increased tunneling through the gate oxide to increased complex­

ity in fabrication. It is even conceivable that channel lengths may decrease to the 

point where the discrete nature of dopant impurities will cause non-uniformities in 

the doping properties, which could cause additional device-to-device fluctuations in 
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threshold voltages. However, from the perspective of the electronics industry, the 

issue of greatest importance may turn out to be whether electronic transport con­

tinues to behave in a macroscopic manner. The study of these issues, meanwhile, 

has lead to a wealth of phenomena physically interesting in their own right. 

Historically, transport in semiconductor devices has been described using the 

Boltzmann transport equation (BTE) and its simplifications such as the drift­

diffusion equations. However, as devices are scaled down, one or many of the as­

sumptions inherent to the BTE may break down as characteristic device dimensions 

such as the gate length approach certain length scales. A brief discussion of the 

assumptions involved in solving the BTE in the context of charge transport are in 

order [1, 2, 3]. The interested reader is referred to the books by Conwell [4] and 

Ziman [5], for example. The important assumptions are: 

1. 	The external potential varies slowly enough that the effective mass approxi­

mation is still good, so a semiclassical description of transport is possible 

2. 	 The system behaves as a dilute gas, with density large enough that statis­

tical principles may be applied but small enough to minimize inter-particle 

interactions. 

3. 	 Scattering processes are highly localized in phase space (r, k, t), considered 

to be instantaneous, weak, and non-interacting. In other words, the time 

between collisions is much greater than the scattering time, Tsc , and the de 

Broglie wavelength, Ad, is much less than the distance between scattering 

centers. 

4. 	 Collisions are random, un-correlated events in which no phase memory is con­

served between events, and there is no dependence on the previous history of 

the particle. 
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The first and second assumptions are somewhat coupled. The third and fourth 

assumptions allow the decoupling of multiple particle distribution functions. In 

addition, they allow a treatment the particles using classical trajectories between 

scattering events. 

It is now appropriate to discuss the important length and time scales and 

their association with transport behavior in semiconductor nanostructures. In a 

two-dimensional electron gas structure (2DEG), such as that found at the Si - Si02 

interface of an MOSFET structure, the Fermi velocity is closely related to the sheet 

density of the 2DEG. The Fermi wave vector is given by kF = (27rn2D)1/2, and 

the Fermi velocity is VF = likF/m*, where n2D is the 2DEG density, and m* is 

the effective mass. Then the elastic mean free path is defined as the distance an 

electron may travel at the Fermi velocity without encountering a collision, Ie = VFTsc , 

which depends on the scattering time, Tsc. The scattering time is also related to the 

diffusion constant, defined in terms of the Fermi velocity and the dimensionality, d, 

of the system as D = V~Tsc/d. The distance which a particle may travel without 

encountering an inelastic or phase breaking scattering event is defined as the inelastic 

mean free path, lIN = VFTIN, where the inelastic time, TIN has been introduced. 

Inelastic scattering occurs due to electron-phonon or electron-electron processes, 

which are assumed to destroy the phase coherence of an electron. Lastly, define the 

phase coherence length as It/> = (DTt/»1/2, where Tt/> is the phase coherence time. It/> 

may be different from lIN due to. 

While these length scales are usually quite small at room temperature, cooling 

the system to a sufficiently low temperature suppresses inelastic scattering mech­

anisms that are strongly temperature dependent, and these characteristic length 

scales increase and may actually surpass the characteristic length L of the device. 

When this crossover occurs, interesting transport phenomena occur. For example, 

When L becomes on the order of or less than lIN, carriers may move through the 
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Table 1.1: A summary of the mesoscopic length scales typical measured for experi­
mental operating conditions of devices studied in this work. 

ns = 1.2 x 1012/em2 D = 27.51 em2/s 

kF = 1.94 X 106 em­1 T<jJ = 0.57 X 1O-11 s 

VF = 1.4 X 107 em/s lIN = 7.98 X 10-5 em 

le = 3.93 X 10-6 em l<jJ = 1.25 X 10-5 em 

device without encountering an inelastic scattering event. Further reduction in L 

to the phase coherence length l<jJ allows for quantum phase interference of particles 

to be observed in transport measurements. At this point, the fourth assumption 

of the BTE has been violated! As the L is reduced below the Fermi wavelength, 

AF = 27r/kF' and the phase coherence length l<jJ, momentum and energy become 

quantized in that direction. Then it is no longer possible to treat the motion be­

tween collisions as having classical trajectories because the particle is not localized 

within the device. Values for these length and time scales calculated for typical 

device operation from the experimental data within this work are summarized in 

Table 1.1 using the expressions for the phenomenological parameters defined above 

and the magnetoconductance data to be presented in Chapter 4. 

In addition to these effects, as the device size is decreased its associated capac­

itance decreases, and the charging energy becomes large enough that the discrete 

nature of charge itself can be physically observed. Such effects include steps in con­

ductance as the excitation bias is swept and peaks in conductance as a gate bias is 

swept, and are referred to as Coulomb blockade phenomena. 
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Through advances in fabrication techniques, it has become possible to study 

electrical systems in which the discrete nature of charge and the discrete energy 

spectrum of allowed states are physically observable in transport through the sys­

tem. Using advanced epitaxial growth techniques such as molecular beam epitaxy 

(MBE) and metallo-organic chemical vapor deposition (MOCVD), careful control of 

compound semiconductor heterojunctions on the scale of a few monolayers can be 

achieved. Through careful engineering of these heterojunctions and/or by applying 

an electric field normal to the interface, confinement of carrier motion along this 

direction results in a quantum well. While the carrier motion in the plane of the 

hetero-interface is free electron-like, the motion normal to the interface is quantum 

mechanically quantized into electron sub-bands. Since motion parallel to the in­

terface is essentially two-dimensional, the electrons are sometimes referred to as a 

two-dimensional electron gas (2DEG). 

The addition of some sort of lateral patterning in the plane of the interface 

can be used to remove the second degree of freedom, quantizing motion in one 

lateral dimension while leaving the particle free in the third. Such a structure can 

be achieved by placing depletion gates on the semiconductor surface, etching away 

most of the conducting layers leaving only a narrow strip of the channel, or even by 

etching away some of the channel and then oxidizing part of the remainder. Such a 

structure is termed a quasi-one dimensional (lD) system or a quantum wire. 

A quantum dot is created by confining the carriers laterally in the other spatial 

dimension as well. Now the motion of the carriers is fully quantized, and the energy 

levels within the dot are fully discrete. Such a system behaves as a zero-dimensional 

system, and is termed a quantum dot, artificial molecule, or OD system. Devices 

have been devised to operate using the quantum mechanical behavior manifested in 

these ID or OD structures based on the optical properties [6], the wavelike properties 

including interference [7], charge transfer devices such as pumps and turnstiles [8], 
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and charge storage devices such as memory cells [9]. More recently, exciting progress 

has been made in fabrication technology which has allowed the study of the inter­

action of few electron systems starting from one elecron [10]. These structures have 

been dubbed" artificial atoms" in the literature, behaving in some ways like atomic 

systems. 

While quantization normal to the oxide-semiconductor inteface was studied 

in MOSFETs 15 years earlier than in GaAs heterostructures, in recent years the 

system of choice for the study of these mesoscopic effects has been GaAs/AIGaAs 

heterojunction structures, due in part to the higher mobility attainable because of 

the material properties and advanced growth techniques. 

In the present investigation, the Si/Si02 or metal oxide semiconductor (MOS) 

system has been used to study the effects of lateral confinement in OD systems. Here, 

the 2DEG is created by applying an electric field normal to the oxide-semiconductor 

interface. At this stage, the device behaves exactly as a MOSFET which is already 

well known. Additional confinement in the plane of the interface is achieved by 

depositing small confining depletion gates on the thin oxide close to the Si-Si02 

interface, forming a quantum dot. While the mobility of the Si system is much 

lower than the GaAs system, Si02 has the advantage of being a much better insula­

tor than semi-insulating GaAs. That translates into the ability of forming a much 

thinner insulating layer between the depletion gates and the 2DEG, which allows 

for closer gate spacing and a much sharper confining potential profile for the dot, 

as well as much higher densities in the 2DEG. In addition, interesting effects should 

be observable due to the many-valley properties of Si. This work is then dually 

motivated by the technological importance of the Si-Si02 system for the semicon­

ductor industry and the increased complexity expected due to the more complicated 

band structure of Si, the higher density of carriers possible, and the higher degree 

of control possible due to the thin oxide. 
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The organization of the rest of this thesis goes as follows: In Chapter 2, the 

relevant background theory of transport in nanostructures will be developed, with 

particular emphasis on the work relating closely to this project. In parallel to this 

development will be a review of the literature regarding these subjects, which, while 

not exhaustive, should give the reader a good point of reference. In Chapter 3, the 

fabrication of the devices which make up the systems of study will be outlined, and 

a description of the experimental setup and method will be given. 

The main experimental results in Chapter 4 focus on the equilibrium transport 

phenomena in silicon MOSFET quantum dots. A sequence of conductance peaks is 

observed whose positions are controllable by changing the applied bias on the gates 

defining the dot and the inversion layer, and are strongly dependant on the physical 

geometry of these gates. The analysis of these results will be presented in Chapter 5. 

The peak positions are studied under the assumption of pure Coulomb blockade 

and pure electronic confinement, and compared to theoretical calculations. It is 

found that the peak behavior is more consistent with pure electronic confinement 

dominated transport, and that the peak positions map the spectrum of electronic 

states n the dot as a function of external bias. Finally, conclusions and proposed 

future work are given in Chapter 6. 
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2. THEORY AND LITERATURE REVIEW 

2.1 Introduction 

The basic building block for most all semiconductor nanostructure devices 

is a two dimensional electron gas (2DEG) formed at the semiconductor surface. 

This 2DEG may be created by either applying an electric field normal to the 

semiconductor-insulator interfacial plane, forming an inversion layer at that inter­

face, or by growing heterostructures of different bandgap semiconductors which 

confine carriers in a narrow region of space forming a quantum well. In this re­

search project, the former method was used to create vertical confinement within 

a Si MOS (metal-oxide-semiconductor) structure. In the remainder of this chapter, 

the previous work in nanostructure transport relevant to the experimental results 

presented in this work is reviewed. This will serve to formulate the basic background 

required to explain the results to be presented in Chapter 5. 

2.2 Silicon Band Structure 

Before discussing the electronic structure of an inversion layer formed at the 

Si-Si02 interface, it is necessary to discuss the band structure of the bulk Si system. 

Bulk Si has an indirect band gap, with the conduction band minima near the X 

point. Near these conduction band minima, the constant energy surfaces can be 

described well by ellipsoids of revolution, as illustrated in Fig. 2.1. The symmetry 

of the X point in Si gives six equivalent constant energy ellipsoids, or valleys, which 

are degenerate with each other in the bulk. 

The transport properties within a given valley are different depending on the 

orientation of the principal axis of the valley with respect to the surface or interface. 

For a Si (100) interfacial plane, there are three types of valleys, which are denoted 
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Figure 2.1: A schematic of the constant energy ellipsoids, where the shaded plane 
indicates the interfacial plane and reference valleys are labeled and orientation in­
dicated by the bold arrows. 

reference valleys of type I, II, and III, which are shown in Fig. 2.1. Due to the sym­

metry of the valleys, the type I valley have a different mass compared to the type II 

and III valleys with respect to transport parallel to to surface. Transport quantities 

are described with respect to the principal axes within the reference valleys must 

then be related back to the sample coordinate system. 

2.3 Inversion Layers 

Under conditions usually present in n-type metal oxide semiconductor (NMOS) 

structures, band bending occurs with zero bias applied to the gate electrode (e.g., 

by positively charged impurities in the oxide or work function mismatch from the 

gate electrode). Application of a bias voltage to a metal electrode deposited on the 

surface of a semiconductor creates an electric field normal to the interfacial plane of 

the semiconductor, resulting in bending of the energy bands i.e., the so-called 'field 

effect'. For a negative bias with respect to the substrate, an accumulation layer of 

holes forms at the interface. If a positive bias is applied, the majority carriers at 
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Metal Semiconductor 

Figure 2.2: A schematic of the band diagram for a Si inversion layer. The energy 
levels are labeled as Eo, Ell E2 and ¢>b is the barrier height for electrons entering 
into the oxide. 

the interface are first depleted with increasing bias. If the applied field is strong 

enough, this bending may move the conduction band edge near and then below the 

Fermi level in the bulk creating a potential well, confining motion of the minority 

carriers normal to the semiconductor interface, and forming quantized electronic 

subbands labeled Eo, E~, and El etc as shown in Fig. 2.3. Under these conditions, 

the carriers behave as a 2DEG, and the thin layer is referred to as an inversion 

layer. An inversion layer in an acceptor-doped (or p-type) substrate is referred to as 

an n-channel inversion layer, as shown in Fig. 2.3, where the carriers are electrons; 

a donor doped (or n-type) substrate yields a p-channel inversion layer with holes 

forming the channel. 
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equation 

V'2V{Z) = _ 47rp{z) , (2.4) 
€ 

where the charge density p(z) includes not only that due to the depletion region, but 

also the many body contribution due to the electons in the inversion layer itself [12]. 

The composite envelope function in Eq. 2.3 is then written 

(2.5) 

where i represents the ith eigenstate or subband for motion parallel to the surface. 

The energy dispersion measured from the conduction band minimum is given 

by the equation 

(2.6) 


where En,k is the energy at the conduction band edge, where n is the band index, Ei 

is the sub-band energy due to the vertical confinement, and the remaining portion is 

the kinetic energy of the electrons in the plane of the interface. Within the Hartree 

approximation, the one-electron envelope equation 2.3 is solved self-consistently with 

the Poisson equation 2.4 assuming an average charge density associated with the 

envelope function itself for electrons in the inversion layer. 

Due to the different effective mass projections along the 100 axis onto a (lOa) 

surface, the six-fold degeneracy within the bulk system is split into two sets of 

equivalent degenerate valleys. The two valleys with the larger effective mass (longi­

tudinal) projecting in the direction normal to the interface (type I) have the lower 

energy level structure; in the terminology of Stern [12], these are the ~2 ladder 

of subbands. The four valleys that have principal axes oriented tangential to the 

interface (type II, III) have the transverse effective mass in the direction of the field, 

and thus have higher subband energies. These valleys are termed the ~4 ladder of 

subbands. The effective mass values in Si are tabulated in Table 2.1. In the 
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Table 2.1: Effective mass properties for symmetrically orientated Si inversion layers 

Effective Mass Properties of Silicon Inversion Layers! 

surface orientation m x 
2 my m z m c 

3 
mde

4 gv 

{I OO} 

{110} 

{III} 
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mt mt+2m/ 3m/mt m;+2m/mt Jm;+~m/mt
3 mt+2m/ 4mt+2m/ 

2 

4 

4 

2 

6 

extreme quantum limit (EQL) corresponding to low temperatures and low carrier 

density, all of the electrons are in the lowest subband. In this case, several approxi­

mate forms have been found to describe the energies and wave functions. Two such 

approximate solutions are the triangular approximation and the variational wave 

function approximation. For more details, see the excellent review article by Stern, 

et al. [12]. 

1After Stern and Howard (1967) [11] 

2Effective masses for given direction in silicon. All effective masses are in units of the free 
electron mass. 

3the conductivity effective mass is defined as me = m~+my
mz my 

4the density of states mass per valley is defined by mde = Jmxmy 
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2.3.2 DENSITY OF STATES 


The density of states for a pure two-dimensional system is constant. Hence, 

for a multi subband 2DEG the density of states is step-like, given by [12] 

v 

D(E) = L Di(E) = L 9sg;;de (}(E - (2.7)Ei ) 

i i 

where the index v is for the valley, 9v is the valley degeneracy, 95 is the spin de­

generacy, and the density of states effective mass is defined as mde = JmV,1 mv,2 . 

Using Fermi-Dirac statistics for the equilibrium distribution function, 

j(E) = [~] 1. (2.8) 
exp kBT + 

The sheet density in the 2DEG is given by n = 2:i n;D where n;D is the 2D density 

in the ith subband 

(2.9) 


Since Di is constant, Eq. 2.9 becomes a Fermi-Dirac integral of zero order, which 

can be performed analytically, yielding 

(2.10) 

2.3.3 MAGNETIC FIELD 

If a magnetic field is introduced into the system normal to the interfacial 

plane, an additional potential is added to the Hamiltonian due to the Lorentz force. 

Classically, these carriers are confined to circular orbits in the interfacial plane with 

angular frequency Wc = eBfmc, provided there are no other forces present in the 

lateral direction. Quantum mechanics requires that additional energy quantization 

occurs. For small fields, the Hamiltonian is modified by using the Peierl's substitu­

tion for the momentum operator, such that p ~ p + eA where A is the magnetic 
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vector potential. If one chooses the Landau gauge, A = (0, Bx, 0) then the single 

band effective mass Hamiltonian is once again separable, with 

\lI(r) = ~(z)X(x, y). (2.11) 

Now the energy levels are quantized with an additional energy spectrum due to the 

magnetic field such that the energy levels (termed Landau levels) are 

E = Ei +En; En = fiwe (n +~) ,n= 0,1,2, ... (2.12) 

The effect of this additional quantization is to introduce a singular density of states, 

with each level being highly degenerate. Within each Landau level lie all the 2DEG 

states in the range ±fiwe/2, and the Fermi energy is pinned to the highest occupied 

Landau level. This gives the number of electrons within a given Landau level as 

eB 
(2.13)D = 9s9v 27rn· 

This singular density of states is indeed observable in the oscillatory magnetocon­

ductance observed as the magnetic field is swept, called Shubnikov de-Haas (SdH) 

oscillations. Peaks in the conductance occur when the Landau level passes through 

the Fermi circle of the 2DEG, which is pinned to the highest occupied Landau level. 

These oscillations are periodic in 1/B with the spacing being 

(2.14) 


From this equation, it is easy to determine the 2DEG density, n2D. The magne­

toconductance oscillations can be described in weak fields in the EQL by the form 

derived by Ando using linear response theory. This form is discussed in more de­

tail in a review article [13]. For weak magnetic fields (WeT ~ 1), the longitudinal 

magnetoconductance is written 

(2.15) 
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where the zero-field conductance is defined as (To = n2De2
T /m* and T is the scattering 

time for electrons at the Fermi energy. The first order term contains the non­

oscillatory component which depends on the Fermi energy and the inverse magnetic 

field, corresponding to the SdH oscillations described above. 

Another interesting property of the 2DEG system is that of the quantum Hall 

effect (QHE) first reported in 1980 by von Klitzing, et al. [14]; at precisely the same 

field as the longitudinal magnetoconductance vanishes, there occur plateaus in the 

Hall resistance (transverse magnetoresistance) which have the magnitude 

n = 1,2,3, ... (2.16) 

where n is precisely the number of spin degenerate Landau levels occupied. Fig­

ure 2.3 shows the SdH oscillations and the Hall plateaus for one of the MOS samples 

studied in the present work. As can be seen there, plateaus occur at the same mag­

netic field as peaks in the transverse magnetoresistance; in the measurement, no 

attempt was made to source a constant current, so the Hall resistance could not be 

calculated. 

The 2DEG conductivity mobility can be determined from the zero field res is­

tance by the relation P2DIB=O = 1/(/.tn2De) , where P2DIB=O is the zero field longi­

tudinal resistivity. The 2DEG mobility and density can be determined for samples 

without perfect Hall bar geometry by the van der Pauw method [15]. 

2.4 Quantum Wires 

If carriers within the 2DEG discussed in Section 2.3 are confined in one ad­

ditional dimension, a so-called quantum wire is produced. Now carriers are free 

to move in only one spatial direction, and they behave in a quasi-one-dimensional 

manner. 

Quantum wires are traditionally fabricated in one of two manners: either a 

2DEG channel is patterned with an etch mask and the channel is etched to leave 
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Figure 2.3: A plot of the Hall voltage (open circles) and longitudinal voltage (open 
squares) for a voltage biased MOSFET. The data is from device M1 measurement 
H6. 

only a narrow conducting pathway, or metal gates are patterned on the surface of 

a structure under which a 2DEG exists such that when the gates are negatively bi­

ased, the channel is electrostatically constricted to allow only a narrow conducting 

path. Both methods result in essentially the same soft sort of confining potential 

for different reasons. In the former case, surface roughness induced from the wet 

or dry etching technique lead to surface states and roughness scattering which pro­

duces at best a parabolic potential profile, limiting the strength of the confinement 

energy. In addition, if the physical channel is made too narrow, the depletion at the 

air-wire interface can result in complete pinch off of the conducting path. In the 

latter method, also called the split-gate technique, the smearing of the electrostatic 

confinement results in a parabolic confining potential and the same end result of a 

relatively weak energy level separation. In GaAs/AIGaAs technology, quantum 
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wires are achieved confining an existing quantum well structure by one of the meth­

ods just mentioned. In Si, this is a little more complicated in that an additional 

oxide must be added to use the split gate technique. 

There have been other approaches to attaining a quantum wire in Si inversion 

layers. Fowler, et al. [16] used a MOSFET structure in which lateral confinement 

was achieved by implanting the regions adjacent to the channel and reverse biasing 

these regions to cause lateral depletion. F. Scott-Thomas et al. [17] used a dual gate 

MOSFET structure in which a narrowly separated (~ 70 nm) split-gate structure is 

placed on top of a thermal oxide, and then a CVD oxide is grown on top. Finally, an 

upper gate is placed above the entire structure. Only the space between the narrow 

split gates forms an inversion layer that is the quantum wire. 

Ishikuro, et al. [18] used a (100) oriented silicon-on-insulator (SOl) wafer sub­

strate, selective oxidation and anisotropic etching combined with electron beam 

lithography to fabricate quantum wires. First, a mesa is created under an etch 

mask formed with ShN4 . The edges are faceted in the (111) direction by use of an 

anisotropic dry etchant. The (111) facet sidewalls of the Si mesa are selectively ox­

idized through the mesa mask. Electron beam lithography (EBL) is used to expose 

the length adjacent to the (111) facet and this is also etched anisotropically and 

the whole triangular shaped wire is oxidized to form a gate oxide. Poly-Si gates are 

formed over the top, leaving wires which are 100 nm long in the (110) direction and 

roughly 10nm wide to form triangular shaped quantum wires with a poly-Si gate. 

Je et al. [19] used SOl, EBL and anisotropic etching to form a wire. In their 

structure, a wire is defined by patterning the Si layer with EBL and etching away 

all Si to the buried oxide. All of the oxide around the wire is etched away (including 

underneath) using buffered oxide etch (BOE). The Si wire is then further constricted 

by oxidizing the remaining Si, and a poly-Si gate is deposited. 
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Figure 2.4: An example of an etched Figure 2.5: An example of a split­
quantum wire in a quantum well gate quantum wire after F. Scott­

Thomas et al.,1989 

Ohdomari and Shinada [20] used SOl wafers to form quantum wires. In their 

structure, the wafers were oxidized and then the oxide surface was modified by 

scanning a focused ion beam (FIB) across the surface. The regions of oxide thus 

modified exhibited enhanced, anisotropic etching and were removed in hydrazine 

water, leaving a wire. These approaches are illustrated by the cross sections in 

Fig. 2.4. 

2.4.1 QUANTUM WIRE ELECTRONIC STATES 

For a quantum wire system in which the channel in the direction of free prop­

agation is long enough, we assume that translational symmetry holds. Then, within 

the effective mass approximation (EMA) we assume that the wave function is sep­

arable into a product form of free carrier and confined states for a single band 

'l1(r, z) = <Pn,m(r)eikxx
/ L, (2.17) 

where L is the normalization, and the wave function in two dimensions satisfies a 

one-dimensional Schrodinger equation. 
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gate oxide 

Figure 2.6: A quantum wire fabri­ Figure 2.7: A quantum wire fabri­
cated by anisotropic etch and selec­ cated by the gate-around technique, 
tive oxidation, after Ishikuro et al., after Je et al., 1998 
1~96 

The total energy associated with the quantum wire overlap function is the sum 

(2.18) 


where Ei is defined in Sec. 2.3 and Ej is the eigenvalue for the lh one dimensional 

subband; it will be convenient to introduce the shorthand notation Ei,j = Ei + Ej 

below. 

2.4.2 DENSITY OF STATES IN ONE DIMENSION 

The density of states (per unit length along the wire axis) for a quasi-one­

dimensional wire is given by the equation 

m 1(!i2)!D(E) = a 9 _x - ~(E - E· -)-28(E - E - .). (2.19)
S v 2 1;2 2 L.J t,J t,J

7r/£ mx .. 
t,J 

From Eq. 2.19 it can be seen that there are divergences in the DOS as the energy goes 

through each discrete energy level associated with either the vertical confinement 

or the confinement normal to the wire axis in the plane of the 2DEG, which go as 
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1/ JE - Ei,j. Experimentally, these divergences are seen in optical spectroscopy, 

but are not seen in transport. This is probably due to broadening of the levels by 

surface states and roughness as discussed previously. Self-consistent calculations of 

the quantum wires in Si [21] and in GaAS [22, 23], have shown that the typical 

subband spacing is on the order of 5-10 meV. 

2.5 Quantum Dots 

By constricting the semiconductor in the remaining free dimension, carriers 

may be confined in all three spatial dimensions, forming a quantum dot. The con­

ventional methods of introducing this confinement are the split gate technique, hard 

wall etching, and in-plane gating. The first two methods are exactly analogous to 

the same techniques for wire formation, and need no further discussion. The third 

method is similar to the hard wall etching method, except that only a narrow trench 

is etched through the 2DEG region. Another approach is growth of self assembled 

quantum dots. In self assembled, or self organized growth, a thin (typically about 

one monolayer) epitaxial layer (epilayer) of crystal is grown by MBE on top of a 

substrate with slightly different lattice constant. As the layer increases, strain devel­

ops between the epilayer and the substrate, and at some critical thickness the strain 

relaxes by forming clusters of atoms which are of non-stoichiometric composition. 

Such growth is called Stranski- Krastanov (SK) growth, and the dots formed by this 

procedure are called self-organized or self-assembled quantum dots. The material 

systems of choice are typically InXGal_xAs/InyGal_yAs, where the value of y is in­

tentionally larger than x to dilate the epilayer lattice constant, or GaAs/GaAsl+X 

where the fraction x is achieved by growing the epilayer at a lower temperature than 

is needed to grow stoichiometric GaAs. 

A representative group of studies for the strained InAs, InGaAs, and Sb con­

taining compound semiconductors on GaAs substrates include a study of the tem­
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perature and monolayer coverage effects [24], a detailed study of the critical layer 

thickness [25], growth on vicinal GaAs (001)-(2 x 4) surfaces [26], ordering phenom­

ena [27], and growth of InSb, GaSb, and AISb dots on GaAs [28]. It was also shown 

that the strain field induced by the self organized dots could in fact create confine­

ment in a 2DEG located underneath the dots both experimentally by Lipsanen et 

ai. [29] and theoretically by Tulkki and Heinanaski [30]. 

Arsenic precipitants in low-temperature-grown GaAs of p-doped and n-doped 

substrates was studied as a function of anneal time [31], and their structure was 

found to be of hexagonal single crystal structure [32]. Another approach to getting 

the non-stoichiometric deposition leading to precipitants is the use of GaAs ion 

implantation and thermal annealing [33]. 

The problem with SK growth is that it is difficult to make contact to the 

semiconductor island regions, the size of the islands is some statistical distribution 

so it is not easy to be sure of the size of the dot grown, and the location of the 

islands on bare wafer surfaces is random. There are at least two known methods 

to get around this difficulty. One is to grow the strained layer on slightly off­

axis wafers; the second is to grow strained layers on patterned (typically by EBL) 

substrates. Both approaches use the fact that these clusters tend to precipitate along 

sidewalls, present due to the crystal monolayer plane steps or by the patterning 

technique. By patterning trenches on a GaAs substrate, followed by subsequent 

deposition by MBE, chemical beam epitaxy (CBE), or metallo-organic vapor phase 

epitaxy (MOVPE), it was found that InAs [34, 35] and GalnP [36] would precipitate 

preferentially only on the sidewalls, the ridge tops, or mesa edges at the bottom of 

the trenches. Interestingly, it was found that using low-temperature-grown GaAs 

on unpatterned substrates, self-organized dots could be formed preferentially by 

patterning deposited InGaAs followed by SiN after the low-temperature growth [37]. 

The chains were found to grow with as little as a 23 nm edge-to-edge spacing. It 
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would be interesting to study the transport properties of dots that formed a one­

dimensional chain, which could behave as a near ideal one dimensional crystal. 

However, these spacings are still not close enough. It may be possible to overcome 

this difficulty, however, by stacking in the vertical direction, as was demonstrated 

possible by Miller, et al. [38], who stacked InAs islands in GaAs layers on a patterned 

GaAs substrate. They were able to have spacings as close as 5.4 nm for 2 nm high 

by 20 nm wide islands. 

Optical studies on these self-assembled quantum dots have shown that they are 

optically active. Photoluminescence (PL) on unpatterned wafers [39, 40, 41] have 

shown phenomena characteristic of discrete electronic states. The results of optical 

studies on the strain-induced dots were even more conclusive [29]. Cathodolumi­

nescence studies on single dots have shown sharp luminescent features [42]. Optical 

results on chains and stacks of self assembled quantum dots have also shown that 

they are active [34, 38]. 

In the Si - Si02 system, one approach for fabricating quantum dots has evolved 

around variations of a dual-gate split-gate structure along the same lines as Fig. 2.5. 

Alsmeier et al. [43] started with a thin NiCr mesh embedded in a MOS structure 

which they probed with far infra red spectroscopy to show that they could tune the 

electron number by the field effect. Matsuoka et al. [44, 45] used an arrangement 

where an inversion gate was placed on a lower thermal oxide, and then overlaid this 

with a depletion gate arrangement. Their depletion gate architecture was a series 

of periodically spaced lines ranging from one to several, which created a series of 

quantum dots, on which they carried out transport measurements. Matsuoka et 

al. [46, 47, 48] followed this with a II-shaped gate to form one quantum dot with 

the same dual gate structure. 

Several groups have taken the approach of etching the top Si layer of SOl wafers 

between source and drain contacts forming a narrow constriction and overlaying it 



24 

Source 

Drain 

Figure 2.8: A schematic of the Leoban­ Figure 2.9: Example of the etch and 
dung device geometry, after Leoban­ oxidize confinement showing the cross 
dung et al., 1995 section of a dot and device geometry. 

After Peters et al., 1998 

with a poly gate to form a dot. Chou et al. [49, 50, 51] used EBL and reactive ion 

etching (RIE) to form a wire channel with a node in the middle which served as the 

dot. This dot was overlaid with a poly-Si gate, as is illustrated in Fig. 2.8. Uchida 

et al. [52] and Peters et al. [53] etched the top Si layer of an SOl channel to a wire, 

oxidized the wire to reduce the channel to as small as 100 nm, and overlaid with 

a poly-Si gate going across the channel to yield dots as small as 300 nm by 100 

nm. Fujiwara et al. [54] used pattern-dependent oxidation (PADOX), which takes 

advantage of enhanced oxidation due to geometry, to oxidize a narrow wire formed 

by etching on a SOl wafer, forming narrower constrictions on either side of the dot. 

Fig. 2.9 illustrates the basic idea of this technique. 

Si nano-crystals are also quantum dots, which may be made by several ap­

proaches. Kanemitsu et al. [55] used laser breakdown of silane gas in a vacuum (P 

< 10-6 Torr) to deposit the nano-crystals on Ge and fused quartz substrates. They 

were then oxidized at room temperature in a clean air box. Photoluminescence stud­
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ies show that there is a peak in the spectrum which is independent of the size of the 

nano-crystals. Yamada, et al. [56] created nano-crystals on Si and fused quartz sub­

strates by laser ablation of crystalline Si in a vacuum with constant He background 

pressure. The size of the nano-crystals was controlled using the helium background 

pressure to have a mean diameter of 13-17 nm. Prior to PL measurements, the 

samples were oxidized in dry oxygen at 800 C. PL data at room temperature yield 

strong peaks; one independent of dot size, and one dependent of dot size. Fukuda et 

al. [57] fabricated nano-crystal Si on Si02 substrates by depositing pure silane in a 

low pressure CVD reactor at differing temperatures from 550 to 600 C, yielding dot 

diameters from 10 to 20 nm. The dots were then oxidized 1 nm at room temperature 

or 800 C. An atomic force microscope tip (AFM) was used as a probe to measure 

the tunneling current between the tip and the substrate; a room temperature peak 

was observed, which could be modeled by resonant tunneling. 

2.5.1 ELECTRONIC STRUCTURE OF QUANTUM DOTS 

The electronic structure of quantum dots has been studied quite extensively in 

recent years. Theoretical approaches range from non-interacting to self-consistent 

including exchange and correlation effects, and have been calculated using exact di­

agonalization of the Hamiltonian, density functional and Hartree-Fock formulations. 

In this work, we will begin by presenting a simple non-interacting picture and build 

upon it. In most cases, the details will be left to the references listed. 

2.5.1.1 Single Particle Electronic Structure 

First, we shall consider the case of a single, non-interacting electron in a quan­

tum dot. Begin again with the effective mass Hamiltonian, Eq. 2.1, assuming that it 

is separable and the wave functions may be written in a product form (suppressing 
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the Bloch wave functions for simplicity) 

~(x,y,z) = x(x)¢(y)~(z) (2.20) 

and that the z-component again satisfies Eq. 2.3. If we once again assume non-

interacting electrons, we can simply choose an approximate potential model (for 

example, hard wall or harmonic oscillator) and write down the wave function as a 

product of the solutions. The hard wall and harmonic confinement cases have been 

shown to be exactly soluble for the case of magnetic field normal to the interfacial 

plane. In the general case including a magnetic field, one starts with the Hamiltonian 

1 
H = - (p + eA)2 + V(R), (2.21)

2m 

where p, A, and R were defined earlier. Geerinckx et al. [58] showed that for 

isotropic effective mass in the plane and a cylindrically symmetric confinement po­

tential 

{000 r < Ro,
V(r) = for (2.22) 

for r > Ro, 

that the solution for the motion in the plane is given by 

[IFI (-a; 1 + Ill; ~~)1 

(2.23) 

where IFIO is a confluent hypergeometric series given, for example, by Morse and 

Feschbach [59], the magnetic length is defined as IB = JIi/eE, single valuedness 

requires that l = ±1, ±2, ... , and the normalization is given by 

(2.24) 


The energy levels are given by 

Enl = l'u.uc (ani +l ~Ill +~) , (2.25) 
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where ani are the roots to the equation 

= 0, (2.26)IFI (-a; 1 + Ill; ~f) 

or, equivallently, 

E 1 
an,1 = ftwc - "2(l + III + 1). (2.27) 

This expression, however, is singular at zero magnetic field, which is a non-physical 

result The only orbital dependence comes from the azimuthal portion of the wave 

function. The energy levels for negative orbital quantum number are always lower 

than the positive values, and so non-degenerate. Classically, this means that there 

is a difference between clockwise and counterclockwise orbits. At zero temperature, 

the Fermi level is pinned to the (N/2)th level, and is discontinuous but approaches 

ftwc/2 at high field. 

As mentioned in the context of quantum wire systems, a more realistic choice 

for the potential is that of a harmonic oscillator. It has also been shown that the 

solution to this potential can be expressed by an analytic form in the presence 

of a normal magnetic field, and the solutions are the so-called Darwin-Fock solu­

tions [60, 61], which have been investigated more thoroughly by Dingle [62] in the 

context of large systems of electrons, and later by Bockelmann [63]. Start with 

the Hamiltonian, Eq. 2.21 where V{x, y) = m/2w5{x2 + y2) and make the following 

substitutions: 

fl= w= 27rE (Ii (2.28)h fl' a = V-:;;;n' 

and make a transformation i = pa(cos(1», sin(1»). We end up with the wave func­

tion 

1 

,T, (r) = ( n! ) 2" pIIILIII(p2)e-4e-il f/> (n °1 ) (2.29)'J'n,l 7ra2(n + IlI)! n = , , ... , 
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where the associated Leguerre polynomials L~I (p2) are defined in Gradshteyn and 

Ryzhik [64], and the energy levels are given as 

(2.30) 


The level structure associated with the harmonic potential evolves linearly with con­

finement strength, and, once again, the degeneracy in the orbital quantum number 

l is lifted by its sign. As expected, the spacing of the ground states are uniform 

with a value 2nlin. 

2.5.1.2 Multi-Particle Electronic Structure 

We now move to the case where there are many electrons in the quantum 

dot. Here it is necessary to include the effect of the electron-electron interaction, 

and the Fermion nature of electrons (the wave functions must be anti-symmetric 

with respect to the exchange of position). We begin with the general form of the 

multi-electron Schrodinger equation, given for example by Ashcroft and Mermin [1]: 

(2.31) 

where Si are the spin indices. Note that the wave equation is written to explic­

itly show the spin and position of each particle in the dot. The Hamiltonian is 

written as the sum of single particle Hamiltonians and the inter-particle interaction 

Hamiltonian: 

ti = L
N 

HO(ri) + til (ri - rj). (2.32) 
i=l 

The single particle Hamiltonians in the presence of a magnetic field are given by 
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where here the spin-orbit coupling is included with g:n being the effective Lande 

g-factor, and the interaction part is given by the following, 

(2.34) 


There have been many attempts in the recent literature to solve the multi-particle 

quantum dot problem. The most direct method is to solve Eq. 2.31 exactly by diag­

onalizing the Schr6dinger equation for a suitably chosen basis set of wave functions. 

Of course, it is necessary to eventually truncate the number of terms in the series 

expansion so at this point it becomes no longer exact. The total wave function is 

built up from a series expansion of products of the single particle basis states such 

that 

N 

w(rl' 81; r2, 82;··· ri; 8i,··· rN; 8N,) = IT 'l/Ji(ri, Si) (2.35) 
i=l 

(2.36) 
n,a 

(2.37) 

where the spin portion of the wave function is lxa') and the spin index a can be 

either I t) or I -!-). Exact solutions to Eq. 2.31 have been reported by several 

groups [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. The natural choice of basis 

states is the set of solutions to the single particle Hamiltonian, where the bare 

potential is chosen to be harmonic. With the inclusion of the Coulomb interaction, 

the radial quantum number mixes, and only the total angular momentum .c = Li li 

is conserved, while the total spin is constrained to minimize the Zeeman term [75]. 

However, Bryant [65], Chakraborty [66, 69], Merkt et al. [68], and Pfannkuche 

[70] used the center-of-mass and relative coordinates, showing that they gave the 

same results as the single-particle basis states. In the case where the confinement 

is assumed to be harmonic and the Zeeman term is neglected, the Hamiltonian is 
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separable as 

ti = HCM + tire!' (2.38) 

where the various terms are defined as usual by 

HCM = 
1 ))2 1 2 2

2M (P + QA(R + 2" MwoR , (2.39) 

(2.40) 

N N1 N 

R= NLrb Q=Ne, P= LPi' M= Lm*, (2.41) 
i=l i=l i=l 

m* 
Pi = Pi - Pj, ri = ri - rj, j.J, = 2· (2.42) 

The wave functions for the center of mass and relative coordinate systems are identi­

cal (in the absence of Coulomb interaction) to the case of the single-particle Hamil­

tonian if we make the following substitutions: 

IiR 
p-t PCM = Mn (2.43) 

liri 
P -t Pre) = j.J,n· (2.44) 

When the Coulomb interaction is taken into account, the wave functions be­

come mixed in radial quantum number n for both the center of mass (CM) and 

single electron basis states. The CM system has the advantage that the Coulomb 

interaction affects only the motion of the relative wave function [75]. It was shown 

by Bryant [65] that this was very important in the case of zero magnetic field. Ezaki 

et al. [76] later diagonalized the N-particle Hamiltonian for up to 12 electrons in 

the dot, and allowed deformation of the cylindrical symmetry (still parabolic con­

finement) by changing the form of the external potential to be of the form 
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V(x, y) = ~m*(w;x2 + w;y2) { 1 + O!~ cos(3¢) } , (2.45) 

while Pfannkuche and Gerhardts allowed deviations from parabolic confinement [70]. 

For greater than rv 10 electrons in the dot, the exact diagonalization of Eq. 2.31 

becomes computationally taxing, and other approximation methods become neces­

sary. The simplest approximation replaces the electron-electron interaction with a 

Coulomb interaction between one electron and an average charge distribution from 

the remaining electrons in the dot, the so-called Hartree approximation, 

(2.46)hli~ '12 +Vo(r) + (e2 2f Jdr' 1!/J;(r')I'lr ~ r'l) - £i] !/Ji(r) = 0, 

and the set of i equations are the Hartree equations. Two shortcomings of the 

Hartree equations are that it does not properly treat the Fermion property of an­

tisymmetry with exchange of particle position in the product wave function (Pauli 

principle) , 

(2.47) 

and that it includes a self interaction in the Coulomb interaction term. Anti-

symmetrization of the wave equation can be ensured by taking the Slater deter­

minant of the product wave function. 

The over counting of the Coulomb interaction by inclusion of the self-interaction 

term is corrected for by the inclusion of an additional factor leading to the Hartree-

Fock equations: 

[-:>2 +Vo(r) + (e' 2f Jdr' 1!/J;(r')I'lr ~ r'1) - £i] !/Ji(r) 
(2.48) -~! dr' Ir ~ r'l ~;(r')~i(r')~h(r)oSiSi = 0 

J 

The last term in the Hartree-Fock equations, called the exchange term, makes the 

set of equations integro-differential equations, which are much more computationally 

complex. 
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The Hartree approach to solving the multi-particle quantum dot has been re­

ported by Kumar et al. [77], Stopa et al. [78], and Gudmundsson and Gerhardts [79]. 

In these references, no attempt is taken to account for the electron spin, but the full 

three dimensional problem is studied by the first two authors. 

The unrestricted Hartree-Fock equations including spin were solved for a two­

dimensional parabolic potential by Palacios et al. [80], and for a three dimensional 

anisotropic harmonic potential of the form 1/2(w;(x2 + y2) + W;Z2) by Fujito et 

al. [81]. Ezaki [82] later solved the Hartree-Fock equations for a self-consistent 

three-dimensional potential. 

Another approach that has been used to determine the energy levels within a 

quantum dot is the density functional method [83, 84, 85, 86]. Stopa [83] solved for 

the external confinement potential self consistently by solving the z-component of 

the Schrodinger-Poisson equation at every point in the x - y plane and then making 

an expansion in terms Darwin-Fock states or Bessel functions to reduce the problem 

in the plane of the dot. Macucci et al. [84, 85, 86] solved the Schrodinger equation 

including Coulomb interaction, exchange, and correlation for a quasi-parabolic po­

tential. 

2.5.1.3 	 Experimental Observation of Energy Level Structure 

in a Quantum Dot 


Experimentally, the level structure of quantum dots has been observed opti­

cally and by transport measurements. I will delay discussion on the latter until the 

discussion of transport in quantum dots. Intense interest has been directed toward 

the potential application to quantum dot lasers, so that there have been numerous 

investigations of the optical properties. Studies in PL and cathodoluminescence have 

been discussed in connection with self assembled quantum dots. Another optical 

probe of the level structure within a quantum dot is far infrared absorption (FIR) 

which has been investigated on arrays of quantum dots [87, 88, 89, 90, 91]. The 
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arrays are fabricated using holographic double exposure lithography and reactive 

ion etching of high mobility samples such as GaAs/AIGaAs and InSb, and include a 

gate to couple to the chemical potential of the dots. In this manner, the number of 

electrons can be tuned and the size of the dots is very uniform (on the order of 100 

nm). In the experiments, FIR radiation is incident on the sample which is placed in 

a superconducting magnet equipped cryostat. The detector, which measures optical 

conductivity, is typically coupled out of the cryostat by waveguide. The data reveals 

peaks in the optical conductivity which can be modeled by the classical conductivity 

model 

(2.49) 


where T is a phenomenological relaxation time and the mobility J1, = eT/m*. As 

the magnetic field is increased, branches w± are observed at the allowed dipole 

transitions with dispersion 

w2 + (Wc)2 ± wc. (2.50)
o 2 2 

Typically, only the lowest one or two branches are observable. Demel et at. [88] 

observed an anti-crossing of the Wl+ and W2- levels. Meurer et al. [91] studied the 

integrated FIR absorption strength as a function of gate voltage to correlate the 

FIR spectrum to electron number. The expression for relative transmission is 

f:j.T _ -2R { a(w) } (2.51)
T - [(1 + Vi + rv/rg)EoC] , 

where rv is the optical vacuum impedance and r 9 is the impedance of the gate 

contacts. They found that the integrated conductance followed sharp steps when 

allowing for a superposition of dipole frequencies. It is curious that so few reso­

nances appear in the FIR spectrum; far fewer features are observable than predicted 

from the theory presented for the parabolic quantum dots in a magnetic field, in 

the previous section. However, the results agree well with theory; Maksym and 
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Chakraborty [66] showed that the FIR energy couples only to the sum of the radial 

coordinates, and therefore couples only to the CM system, which is not affected 

by the electron-electron interaction. This result was confirmed theoretically by Pe­

ters [92] and by Brey et al. [93]. Therefore, FIR measurements only show the single 

electron energy states. Two possible models were given for the anti-crossing ob­

served by Demel et al. [88]. Chakraborty et al. showed that for strictly parabolic 

confinement, a coupling between L(CM) = 2 and L(rel) = 5 would cause a splitting 

and also between L(CM) = 2 and L(CM) = 5 would cause splitting. Pfannkuche 

and Gerhardts [70] showed that this splitting could be a result of a non-parabollic 

confining potential. It occurs when the ground state changes from L(CM) = 0 to 

In principle, it should also be possible to measure thermodynamic quantities 

to get at the additional structure of the energy levels in quantum dots. The specific 

heat capacity of electrons has been calculated as a function of magnetic field by 

Maksym and Chakraborty [66], given by Cv = (a;:;)) lv' who found that the specific 

heat capacity including electron interactions was far different from the case where 

the electron-electron interactions were neglected. Oscillatory structure was observed 

where competing ground states of total L were observed. The specific heat capacity 

of two-dimensional electron gases has been measured by Gornik et al. [94] using a 

heat pulse method. In principle, it should be possible to measure Cv for an ensemble 

of dots. 

Maksym and Chakraborty [95] showed another possible probe for the electronic 

structure in a magnetic field is the magnetization. Their calculation of 

M = (8(F))1 ' (2.52)
8B TV, 

whose matrix elements are evaluated from the operator expression 

N 

M = __e_~r· x (p. +eA)
2m* ~ 1 1 , 

t=l 

(2.53) 
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for parabolic confinement found that there were discontinuities in the magnetization 

when the ground state switched to different values of total angular momentum £, 

and the magnetization was sensitive to the electron-electron interaction. Stormer et 

al. [96, 97] have measured the magnetization for a two-dimensional electron gas; in 

principle it should be observable in a quantum dot (or array of quantum dots). 

Some of the most important experimental verification which has been done on 

the level structure of quantum dots are the transport measurements. Discussion of 

these in terms of discrete level structure will be deferred to Section 2.6.3. 

2.6 Transport in Nanostructures 

The subject of transport in nanostructures is introduced in this section, dealing 

with the effects encountered in this research project. It should be emphasized that 

this is intended only to serve as a review of a very narrow portion of a very rich field 

of study. A review of a more broad scope is the book by Ferry and Goodnick [3] 

with a more complete list of references. Beginning with single barriers as the most 

simple unit and progressing through quantum dots, a review of some of the more 

significant results is pointed out below. 

2.6.1 QUANTUM POINT CONTACTS 

One of the most basic nanostructures is a quantum point contact (QPC) within 

a two dimensional electron gas (2DEG). The structure may be considered to be 

an ideal ID conductor into which electrons may be injected from a pair of phase 

randomizing reservoirs with chemical potential J.11 and J.1r, separated by a barrier 

which constricts the channel, only allowing a few electrons at a time to pass. Phase 

randomized means that there is no phase relation between carriers injected into 

the conducting channel. A typical example is that of a pair of split gates which 

separate two sides of a modulation doped field effect transistor (MODFET), the 
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Ohmic contacts serving as the reservoirs. The current allowed to pass through the 

QPC can be written as the sum of the left going and right going portions, 

00 

1= ~: [100 

dkv(k)ft(k)T(E) -1 dklV(kl)h(kl)T(EI)] , (2.54) 

where the prefactor is the 1D density of states in k-space, v (k) the 1D velocity, and 

T(E) is the transmission coefficient for the barrier. At low temperatures, carriers 

are injected with a maximum energy equal to the chemical potentials in the leads. 

In the electron quantum limit, and in the linear transport regime, the transmission 

coefficient T(E) may be considered to be energy independent since linear transport 

assumes that El ~ Er . With these approximations, the resulting expression is the 

Landauer formula [98, 99], 

(2.55) 

Note that the pre-factor for G is significant; it represents the fundamental quantum 

of conductance. This value is experimentally observable, having the value 

1 -1 1 
(2.56)GQ = h 

2e2 

= 12.907kn = R
Q

' 

Equation 2.56 corresponds to making a four-terminal measurement where the poten­

tial drop across the sample is measured without including the potential drop across 

the leads. If making two terminal measurements, the value of conductance differs 

from Eq. 2.55 by a factor of 1/(1 - T) due to the contact potential drop, giving 

G = (2~2) T, (2.57) 

which is lower than Equation 2.55. The generalization to multiple channels (i.e. 

conduction through more than one 1-D subband) is quite straightforward [100]. Ex­

perimentally, quantized conductance steps have been observed in split-gate struc­

tures fabricated in high mobility material (~1- 2 x 106 cm2/Vs), where the sheet 

charge density is on the order of 1011 - 1012
/ cm2 

• In a typical experiment, a fixed 
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Figure 2.10: Conductance steps in an GaAs/AIGaAs QPC device at 100 mK, After 
A. Krishnaswamy, 1998 

source drain bias is applied and the depletion gates are swept from more open to 

more closed while the conductance is measured. Examples of such experimental 

results were first reported in papers by van Wees et al. [101, 102, 103] and Wharam 

et al. [104, 105], who found steps in the conductance in integer multiples of Go with 

depletion gate voltage. Figure 2.10 shows an example of these conductance steps, 

measured in GaAs/AIGaAs QPCs measured at the University of Oregon. 

One of the earliest attempts to solve for the transmission coefficient and en­

ergy levels at which conductance steps occur for a realistic potential (albeit simple 

one) was by Kemble [106] using a one-dimensional Schrodinger equation and the 

WKB approximation. Later, Connor [107]' Miller [108], Fertig et al. [109], and 

Biittikker [110] extended the parabolic case to include a saddle point potential in 

a magnetic field. Fertig [109], solved this case by three methods (exact, WKB ap­

proximation, and method of complex variables), and showed that the exact solution 
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to a potential saddlepoint of the shape 

(2.58) 


yields a transmission coefficient of the form , 

T(E) 	_ 1 (2.59)
- 1 + exp( -7ft)" 

The expression for t is 

t =(Ee - Va)/E I , 	 (2.60) 

1 
Ee = 	E - (n + 2)E2 , n = 1,2, ... (2.61) 

and the EI and E2 are functions of the confinement UI and U2 and the cyclotron 

frequency We' In the absence of a magnetic field, this expression has a nice inter­

pretation in terms of open channels of transport [110, 111]. Classically, all electrons 

with energy up to the Fermi level when 

(2.62) 


are unbound, and thus open channels to transmission; i.e. T(E) = 1; then V(x, y) 

can be viewed as the nth subband edge of a conducting channel. Due to the quadratic 

nature of the potential, there is no mixing between subband indexes; the transmis­

sion coefficient for electrons with energy above this classically accessible subband 

edge reduces to [110, 107, 108] 

1 
Tnm(E) = 1 () 6nm . (2.63)+ exp -t7f 

This quantum mechanical tunneling probability leads to rounding of the conducting 

steps as classical transmission is not possible above the subband index n, as seen in 

the experimental data where G = GoT and T = En Tnm. 

The shape of the conductance plateaus is dependent on the ratio of wy/wx . 

For Wy » wx , they are nearly fiat, while for Wy ~ Wx there is little structure. When 
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there is a magnetic field, the same holds true with the inclusion of the cyclotron 

frequency; for We + Wy ~ W x , the plateaus are nearly flat, while for We + Wy ~ W x , 

there is little structure [110]. 

This leads to some discussion of the importance of the shape of the poten­

tial. For smooth merging of the quantum point contact potential to the channel 

potential (adiabatic potential), one only needs to calculate the conductance due to 

the barrier for accuracy up to only small corrections. Using a hard wall potential 

model, Glazman et al. [111] showed that conductance steps appear (meaning reflec­

tion coefficient R « T) if the potential radius of curvature is sufficiently smooth; 

i.e. 7r
2 J2R/d > 1 where R is the radius of curvature and d is the diameter of the 

QPC constriction. 

For finite magnetic field, we can predict how the conductance plateaus should 

behave by examining how many subbands should be classically accessible for trans­

port. This is accomplished by re-examining the expression for the dimensionless 

parameter c the number of subbands should be the number such that the numera­

tor of E 2:: 0 at the Fermi level of the system 

( 1) {EF-Vo I}EF - Vo - n +"2 E2 2:: 0 -7 n = I nt E2 -"2. (2.64) 

Since E2 is monotonically increases with We, this expression says that as the mag­

netic field increases, there should be fewer available channels for transport, and the 

number of plateaus should decrease. This effect is termed the magnetic depopulation 

of subbands [112]. 

When the temperature of the system is finite, this also introduces broadening 

into the shape of the conductance plateaus, as expected by the rounding of the 

distribution function. Such thermal broadening was indeed observed by van Wees 

et al. [113]. 
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2.6.2 TRANSPORT IN QUANTUM WIRES 


While the topic of transport in quasi-one-dimensional systems is indeed inter­

esting, it is recognized that many of the effects seen in these systems are similar or 

identical in nature to the phenomena in quasi-zero-dimensional systems. Coulomb 

blockade will be discussed in some detail in the following section (section 2.6.3). 

Other interesting effects are due to the discrete density of states, or mode matching 

which is similar to electromagnetic waves propagating in wave-guides. For some 

discussion and many references on these matters, the reader is referred to chapters 

2 and 3 of the book by Ferry and Goodnick [3]. 

2.6.3 TRANSPORT IN QUANTUM DOTS 

The topic of transport in quantum dots is a large field. The discussion in this 

section will be only a narrow subsection, intended to develope the background for 

the results to be presented in Chapters 4 and 5. 

2.6.3.1 Coulomb Blockade 

One of the most remarkable observables to come out of nano-structure systems 

is due to the discrete nature of charge, which is manifested in the phenomenon of 

Coulomb blockade (CB). 

To understand how this effect may be seen in transport measurements, con­

sider the relationships between charge, capacitance, and energy stored in a charged 

capacitor. The electrostatic potential energy stored on two charged conductors with 

associated capacitance C is simply 

(2.65) 


where the linear relationship between charge and external electrostatic potential is 

given by Q = CV. To extend this to a system of multiple conductors, an N x 

N matrix C with elements Cij describing the capacitance between each pair of 
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conductors is introduced, and the total charge may be written by the superposition 

of the linear relation 

N 

Qi = 	LCjVj. (2.66) 
j=1 

Extending Eq. 2.65 for the energy to multiple conductor systems, we have 

1 N N 

E = 2L L((:-1 )ijQiQj or equivalently, (2.67) 
i=1 j=1 

N N 

E = L L(C)ijViVj. (2.68) 
i=1 j=1 

When (:-1 is very small, the characteristic charging energy, E, may be on the order 

of the thermal voltage kBT for charge corresponding to a single electron. We are 

not interested in the change in background charge, or polarization charge, on the 

capacitor, which may be varied continuously by means of the external potential 

on the ith conductor, but instead the change in number of electrons occupying the 

dot. In transport measurements, CB is observable only when the total current 

through the sample is on the order of single electrons at a time. Typically, CB 

is observed in what is referred to in the language of mesoscopic physics as the 

single electron tunneling (SET) regime. Currents are on the order of "'-'nA-pA 

range, and are governed by the transmission rates through barriers in the system. 

Within this regime, CB is observable only when the energy associated with charging 

the capacitor system Eq. 2.65 or Eq. 2.68 is greater than the energy of thermal 

lattice vibrations, E > kBT". If these conditions are met, CB can be understood by 

considering the schematic for an energy diagram shown in Fig. 2.11. In order for an 

electron to tunnel into the dot, there must be an available energy state in the dot, 

and electrons in the channel available at this same energy. The addition of a single 

electron to the dot system creates an energy barrier for the next electron to enter 

the dot, and another electron cannot tunnel into the dot until either that electron 

has an energy to overcome this barrier, or the first electron tunnels out of the dot. 
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The energy level separation between the Nth level and the (N + l)th level is given by 

the simple expression (with N being the quantum number for number of electrons 

in the dot) 

(2.69) 


where the contribution due to Coulomb charging is Ee 

En+! - En, and En is the bare energy for an electron in an energy eigenstate with 

principle quantum number n). This results in tunneling events which are single 

correlated tunneling of electrons, or single electron tunneling (SET). The region 

in which tunneling is allowed may be changed by either changing the position of 

the energy levels in the dot by means of an external gate bias, or by changing the 

chemical potential in one side of the channel with respect to the other (which in 

effect results in higher electron energy). Sweeping an external gate results in oscil­

latory conductance as the energy levels in the dot sweep through alignment with 

the chemical potential in the channel. If the spacing of the peaks is periodic with 

period Ee , the Coulomb charging dominates the energy level spacing and we have 

Coulomb blockade transport. However, it is also possible to have oscillatory con­

ductance due to uncorrelated resonant tunneling if the term ~En dominates; this 

type of transport is not termed Coulomb blockade. For pure Coulomb blockade 

transport, changing the the chemical potential on one side of the dot with respect 

to the other results in a step in the conductance for each multiple of e2/2C difference 

between the right and left chemical potential in the channel, known as the Coulomb 

staircase. For dots where the term ~En dominates, it is possible to see regions of 

negative differential conductance, as in the case of resonant tunneling diodes. 

To investigate this idea mathematically, consider the following simple model 

for a quantum dot. Two ideal reservoirs at chemical potential J.Ll and J.L2 are sep­

arated from each other by a perfectly conducting channel. In the middle of the 

channel, an isolated island is created by placing a tunnel barrier on either side of 
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Figure 2.11: Left: When the chemical potentials in the channel do not align with 
an allowed state in the dot, no tunneling is allowed. Right: Alignment between the 
chemical potential in the channel and an allowed energy level in the dot leads to 
allowed tunneling. 

the central region. This central conducting region becomes the dot. Phenomeno­

logically, these barriers can be described in terms of a tunneling resistance and a 

capacitance, R!,r and C' ,T) respectively. The relative chemical potentials between 

the two reservoirs may be changed by applying a bias across the channel, and the 

chemical potential in the dot may be coupled externally by capacitively coupling 

a voltage source (with a Schottky gate) to the dot. An equivalent circuit model is 

schematically illustrated in Fig. 2.12. To understand the Coulomb blockade easily, 

consider a case where the dot is large, so that the spacing of energy levels is small 

compared to the charging energy; .t:::..En «Ec. In terms of our phenomenological 

parameters, the energy can be described by considering the charge stored on the 

system of capacitors and the work done by the voltage source transfering the elec­

trons in and out of the dot. For our model system, the total energy stored may be 

written [3] 

Es = ~~ [CgC,(Vd - Vg)2 +C,CrV; + CgCr ~2 + Q2] , (2.70) 

Q=e(n,-nr), C~=C,+Cr+Cg, (2.71) 

where Q is the charge stored in the dot, and n, and nr are the number of electrons 

tunneling through the left QPC into the dot and from the dot through the right 
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Figure 2.12: An equivalent circuit model for a quantum dot capacitively coupled to 
an external electrostatic potential by means of a gate. 

QPC, respecitvely. The work done by the external voltage sources, W s , to force the 

electrons through the tunnel barriers is 

Ws - Jdt VdI(t); I I ,r6.t = nl,re - 6.Q, (2.72) 

Ws(nl) = -nl [~: eVd + ~~ e(Vd - Vg)1' 
(2.73) 

Ws(nr) = -nl [g~ eVd + ~~ eVg] . 

These equations can be combined to get the energy associated with a given charge 

state; 

6.Et = - Qp + (Cg+ Cr)Vd - CgVg]);r, (-~ =F [en 
(2.74) 

6.E; = - Qp - ClVd - CgVg]) ,;r, (-~ ± [en 

where the ± indicies + for an electron tunneling into the dot and - for an electron 

tunneling out of the dot, and n = nr - nl is the net number of electrons in the dot. 

Also, an additional term Qp has been added to represent the polarization charge 
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coming from un intentional background impurities as well as other sources (oxide 

charge and work function differences, for example in Si inversion layers). From these 

equations, we can develop conditions in which tunneling is blocked, or equivalently, 

the number of electrons in the dot is stable. At low temperature, it is necessary that 

electron tunneling events leave the system in a state of lower total energy. If we 

redefine the gate voltage to include the stray background and polarization charges 

to be V; = Vg + Qp/Cg, the conditions for tunneling are: 

-~ =F [en + (Cg+ Cr)Vd - CgV;J > 0 (2.75) 

-~ ± [enClVd - CgV;J > O. (2.76) 

In addition to the conditions for stability, the Heisenberg uncertainty principle, 

t::..Et::..t > Ti, gives another condition for observation of CB. The time to charge the 

capacitance of the dot is T = t::..t = RtCE , and the energy required for tunneling 

is t::..E ~ e2 /2CE • Combining these two, we have that Rt » h/e2 »25kO. The 

case of a drain bias sweep experiment, where the relative chemical potential of the 

reservoirs are changed while the dot is left essentially constant, is perhaps easiest 

to understand. If the quantum point contact pairs defining the entrance and exit 

barriers are biased such that the exit barrier is much higher than the input barrier 

(R!; » ~), CB manifests itself in steps in the current through the dot. The step 

height will be controlled by the portion of the drain bias which drops across the 

output barrier divided by the tunnel resistance 

(2.77) 


For small VDS , sweeping a gate capacitively coupled to the dot leads to periodic 

oscillations in the conductance through the dot (if the bare level spacing t::..En is 

small), according to Eqs. 2.75 and 2.76 equating to zero (and hence the Coulomb 

blockade is lifted). 
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This corresponds to the situation shown in Fig. 2.11 in which the energy of the next 

filled level in the dot is aligned with the Fermi energy in the left and right. 

The theory for Coulomb blockade in quantum dots and wires has been well 

studied and agrees with experiment rather well. Both Beenakker [114] and Averin 

et al. [115] extended the theory presented by Kulik and Shekhter [116] for Coulomb 

blockade in metal tunnel junctions to include the effect of finite energy level spacings, 

such as in a semiconductor system. Following the development of Beenakker [114], 

the charging energy U(N) in the dot is given by extension of Eq. 2.68 

U(N) = (Ne - Qext)2 Q;_xt 
2C~ 

_ _ 
2C~ 

(2.78) 

Qext = C¢Jext (2.79) 

Cg
¢Jext ~ C~ Vg 

~ 
C~ = Cdot + C1 + Cr +~ Cgates, (2.80) 

where Cdot is the self-capacitance of the dot. Using linear response theory, they 

calculate the conductance with the assumptions that the tunneling rates are small 

and temperature sufficiently low, i. e, 

(2.81) 

where the tunneling rates, rl,r, are defined by the sum of the transmission trans­

mission coefficients over all energy levels from the left into the dot or from the dot 

to the right, respectively i.e. 

rl,r = 2; L 11iI ,rI2J(E - Ei)' (2.82) 
i 

Due to the discrete nature of the allowed tunneling states in the dot, the 

expression for the conductance in the case of tunneling, (Eq. 2.54) is not given by 

an integral over continuous states, but rather as a sum over allowed energy states p 

and electron occupation number, N, as 
2 00 00 r l rr

G- _e_~~ p p 


- kBT ~~ r ' + rr 

p=l N=O P P (2.83) 
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where the probability that there are N electrons in the dot is Peq(N) and the condi­

tional probability that level p is occupied if N electrons are in the dot is Feq(EpIN) 

as defined by thermodynamic relations of the free energy and energy related to the 

charge, and f(Ep +U(N) - U(N -1) - EF ) is the Fermi Dirac distribution function. 

This theory predicts that there are periodic oscillations in the conductance, 

whose period is given by the condition that an allowed energy level in the dot is 

aligned between the chemical potential in the leads. Such oscillations are observed 

experimentally when a gate bias coupled to the dot is swept; the period is given as 

6.V = Cr:, (En+! - En) ~ (2.84)
9 C +C· 

9 e 9 

It should be emphasized that there are really two transport mechanisms described 

by Eq. 2.84, distinguished by which term dominates the spacing. If the first term in 

Eq. 2.84 dominates, the conductance oscillations should be referred to as resonant 

tunneling, as the discrete levels of the dot dominate. If the second term dominates, 

we have true Coulomb blockade oscillations. In the case of CB, true SET behavior 

occurs, meaning that only one electron tunnels through the dot at a time due to 

a charging energy barrier. These tunneling events are thus correlated. However, 

in resonant tunneling, tunneling is restricted by discrete allowed states; the barrier 

due to Coulomb charging is small, and thus the tunneling is not correlated. 

An example of ideal Coulomb blockade oscillations due to a gate bias sweep 

is shown in Fig. 2.13 (assuming the first term in Eq. 2.84 is small). The Beenakker 

model [114] described by Eq. 2.83 leads to the following expression for the line shape 

close to one of the conductance peaks 

G 1 
(2.85)

Go ~ h2(~)'cos 2.5ksT 



48 

1 

0.8 


Q 

0.6
~ 

0.4"0.2 

'-.) 
~ 

0 ~) U \.,U u 
-10 -5 0 5 10 

Vg(e\CL) 

Figure 2.13: Coulomb Blockade oscillations according to the theory of Beenakker 
for kBT = 0.1 x e2 /2CE and Cg = 0.2 X CEo 

where the bEe is defined as 

b = eCg (vres - V) (2.86)Ec C 9 9 ,
E 

with Vrs being the gate voltage of the resonance. 

By pulling the lead chemical potential up or down with respect to an energy 

level in the dot by means of the gate bias, the region of drain bias in which Coulomb 

blockade occurs in the source-drain bias sweep can be shifted positive or negative. 

By combining gate bias sweeps with stepped drain bias, using the conditions for 

allowable tunneling, a stability plot can be generated in the plane of gate and drain 

bias, as in Fig. 2.14 and 2.15. Regions where tunneling is blocked by stable number 

of electrons in the dot are diamond shaped (the light regions in Fig. 2.14 and 2.15); 

these regions are bordered by regions which are unstable, meaning that they are 

energetically favorable to tunneling. Coulomb blockade oscillations are routinely 

observed in high mobility semiconductor material, and were first reported in the 

context of a semiconductor quantum dot by Meirav et al. [117] in 1990. 
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More recently, Coulomb blockade-like features have been reported in Si devices, 

although it is not clear that true CB is observed in any of the experiments. Examples 

include work by Matsuoka et al. [44,45,46,47,48] in a dual-gate split-gate structure, 

Chou et al. [49, 50, 51] with their etch-defined dot on SOl operating up to room 

temperature, Khoury et al. [118, 119, 120], Gunther et al. [121] (the work reported 

in this dissertation), and Fujiwara et al. [54]. 

2.6.3.2 Excited Discrete states 

The variation in the gate period of the Coulomb blockade oscillations in quan­

tum dots or resonant tunneling peaks in resonant tunneling diodes (RTD's) due to 

quantization of the energy levels in quantum dots predicted by Eq. 2.84 has been 

observed experimentally [122, 123, 124, 125, 126, 127]. Reed [122] found peaks in the 

resonant tunneling through small area vertical quantum well structures, which were 

attributed to the singular density of states associated with discrete energy levels. 

In lateral structures exhibiting Coulomb blockade behavior, discrete excited states 

show up in the stability plots in the Vd - Vg plane as regions of suppressed current 

in single electron tunneling regions (SET- regions) along the drain bias (Vd ) axis, 

as was seen in the work by Johnson et al. [123], Foxman et al. [124] and Weis et 

al. [125]. A schematic of these stability plots are given in Fig. 2.14 and 2.15. These 

variations in linear transport were in fact predicted by Averin et al. [115, 128] 

By studying the linear and non-linear magnetoconductance spectrum of a 

quantum dot, Stewart et al. [127] found correlations between the mth excited state 

of an N-electron dot and the ground state of an (N + m) electron dot. These 

correlations suggested that these dots behave like collections of single-particle like 

systems, although there were also some characteristics of many bodied interactions. 

Ashoori et al. [129, 130, 131] developed another probe for studying the energy spectra 

of quantum dots by fabricating a quantum well with one barrier thin enough to allow 
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which was etched into a cylindrical pillar and a Schottky side gate was evaporated 

around the base and side wall to controllably deplete the dot. The measured addi­

tion energy (the energy required to add two successive single electrons to the dot) 

has a filling structure much like the atomic shell structures in atoms. Filled shells 

give rise to large addition energies (relative to other filling numbers) for the second, 

fourth, sixth, 12th, and 18th electrons, in agreement to exact and Hartree-Fock 

calculations [86, 76, 82] assuming a harmonic confinement potential model. In low 

magnetic field there appears to be a spin singlet (anti-parallel I ..J-t)) to spin triplet 

(parallel I ..J-..J-) Itt))transition with increasing field. Evidence for such a transition 

has in fact been observed in other experiments [136, 130, 137], as was predicted by 

Wagner et al. [73]. In addition, Tarucha et al. observed transitions between ground 

states and excited states which allow for reduction in Coulomb energy and exchange 

energy, crossings between excited states, and crossings between parallel and anti par­

allel spins [135], which at higher magnetic field switches to a spin-degenerate pairing 

behavior, in agreement with Hund's rule. 

2.6.3.4 Spin Blockade 

Another interesting feature seen in small systems with correlated multiple 

electrons is that of spin blockade of linear and non-linear transport. In several 

experiments in which excited states were accessible in the transport (typically in 

the non-equilibrium regime), regions of negative differential conductance were ob­

served [123, 138, 139, 125]. A possible explanation for this was presented by Wein­

mann et al. [140, 141] in terms of spin blockade. There, transition rates were calcu­

lated taking spin into account by including Clebsch-Gordan coefficients: 

(2.87) 
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What comes out of Eq. 2.87 are selection rules which lead to slow depopulation of 

states. This slow depopulation leads to reduced conductance (or negative differential 

conductance) because the current is due essentially to electrons oscillating between 

accessible states. In the Coulomb blockade regime, the accessible states are electron 

numbers Nand N - 1. In one type of spin blockade, the oscillations are transitions 

between correlated many electron states with electron number and maximal spin 

which must end in lower total spin states; IN, S = N/2) -+ IN -1, S' = (N -1)/2). 

But states with S < N /2 may go either to higher or lower total spin states, so 

depopulation is slower from states in the spin polarized state, leading to a negative 

differential conductance. 

Another anomalous behavior is that of increase in the Coulomb blockade 

peak amplitude with increasing temperature, as seen in experiments by Nichols 

et al. [142]. The possible spin blockade mechanism responsible for suppressing this 

peak at very low temperatures is due to transitions between ground states requiring 

!J.S > 1/2, forbidden for ground states at zero temperature; i.e. {Eo(N), S} H 

{Eo(N - 1), S'}; IS - S'I > 1/2. At higher temperatures or under non-equilibrium 

conditions, excited states may become available to allow these forbidden transitions. 

2.6.3.5 Coulomb Blockade of Activated Conduction 

Matveev and Glazman [143] showed that it is possible to have Coulomb block­

ade in transport characterized by activated conductance over barriers rather than 

tunneling as discussed earlier as the dominant mechanism of transport. They start 

with the expression for the limiting conductance over a barrier, 

(2.88) 


where the tunneling coefficient T( f) was that describing a saddle point contact 

Iiw 
To=-, (2.89)

27r 
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which below is extended to include finite temperature. In the region of finite tem­

perature U» T > To, it was shown that the conductance shape has the form 

5E ]exp c 
G(N) = Gb(U) [ 

(2,x-l)kBT (2.90) 
sinh (5E e )

kBT 

2e2 7rTo -U/k TGb= - e B (2.91)
h kBT sin(7rTo/ kBT) . 

In Eq. 2.91, the parameter A describes the asymmetry of the tunneling process, 

(2.92) 

The expression bEe was defined earlier in Eq. 2.86 This expression gives peaks in con­

ductance similar to those predicted by the expression of Beenakker [114], Eq. 2.85, 

but are shifted from the resonance and are asymmetric in shape. 



54 

3. FABRICATION AND EXPERIMENTAL SETUP 

3.1 Device Overview 

The quantum dots studied in this work are based on an n-channel Si MOSFET 

structure, with the modification of having thin metal depletion gates sandwiched 

between two oxide layers underneath the metal inversion gate used to induce the in­

version layer. This structure is shown in the cross-sectional diagram of Fig. 3.1. The 

lower of these oxides is a 5 nm thick thermal oxide, while the upper is a 95 nm thick 

oxide deposited by the Plasma Enhanced Chemical Vapor Deposition (PECVD) 

technique. The inversion gate partially overlaps the source and drain ohmic con­

tacts to ensure the conducting channel extends over the entire active region of the 

device. In addition, Ohmic contacts are provided in the Hall configuration sur­

rounding the device for additional characterization of the inversion layer, with legs 

of the inversion gate extended to partially overlap them. To minimize background 

leakage current, the channel region as defined by the inversion gate is surrounded 

by the channel stop region formed by implantation. 

There were four different geometries of depletion gates fabricated, of which 

three produced useful transport measurements. The generic structure is shown in 

Fig. 3.2. The size of the dot refers to the inner length of the box defined by the 

depletion gates, which produce the electronic confinement potential. The square 

geometries consisted of 500 nm and 200 nm dots. Also fabricated were 100 nm x 

200 nm asymmetric dots. A summary of the device structures measured is given in 

Table 3.1. 

A sketch of the 200 nm symmetric configuration is given in Fig. 3.2. The inset 

shows an SEM micrograph of the depletion gate structure. The lower gate forms 

quantum point contacts (QPC's) with the left and right gates shown in Fig. 3.2, 
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Source Drain 
Channel (inversion layer) 

P-Substrate 

Figure 3.1: A schematic of the vertical layer structure for the quantum dots. The 
vertical scale has been exaggerated to allow all features to be represented. 

Table 3.1: A summary of the device geometries used for the experimental measure­
ments 

Symmetric Asymmetric 

lateral dimension 500 nm x 500 nm 200 nm x 200 nm 100 nm x 200 nm 

device D2, DID D9, D12 Dll 
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Figure 3.2: A sketch of the symmetric 200 nm depletion gate geometry. The di­
mensions of the as drawn metal lines (before liftoff) are given. Inset: An SEM 
micrograph of the 200 nm gate geometry. 

controling transport into and out of the dot. The middle upper gate controls the 

geometry of the dot itself, and is referred to as the 'plunger'. These depletion gates 

will often be referred to in the remainder of this work by abbreviations SGL, SGM, 

SGR, SGB, for side gate left, side gate middle, etc while voltages applied to these 

gates will often be denonted as VSGL , VSGM , VSGR , or VSGB . 

3.2 Fabrication 

In this section, the fabrication of devices will be described in some detail. 

When introducing a new fabrication technique, a full description will be included. 

In later cases, these methods will just be referred to by name. As there were several 

revisions to the process as development progressed, an explanation of these differ­

ences and the reasons for changes will be included. The included figures illustrate 

the layer structure and layout of the devices at each stage of the process. 
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Also, differences from typical industry NMOS practices will be pointed out. An ex­

cellent reference for silicon processing in general is the series by Wolff and Tauber [144]. 

3.2.1 p+ REGION 

This step in the initial process flow is used to make degenerately doped Ohmic 

contact regions to the substrate. It introduces many of the process steps used during 

the device fabrication. 

Piranha clean wafers: the Piranha clean procedure is as follows: Immerse 

wafers in hot piranha (7:3 sulfuric acid:hydrogen peroxide) for 5 min; rinse in running 

deionized water (DI) for 10 min; etch wafers in dilute hydrofluoric acid:deionized 

water (1:100) for 10 min; spin dry in rinser/dryer. 

400 nm wet thermal oxide growth: Immediately remove wafers from rinser / 

dryer and insert into mouth of wet oxide tube which is preheated to 700 C . Wait 

5 min, and insert to center of 3-zone furnace. Ramp temperature of furnace tube 

to 1050 C . Oxidize in 02-H20 ambient for 50 min. The ratio of flows for the gases 

should be approximately 2 parts H2 to one part O2, which produces a water vapor 

with a slight excess of oxygen due to unreacted gases. Remove the wafers at a rate 

of six inches per minute to avoid warping the wafers. 

Pattern wafers with implant mask: Spin on Hexamethyl Di-silazane (HMDS) 

at 5000 rpm for 30 s. Spin on positive photoresist OCG825 for 30 s at 5000 rpm; 

Soft bake 15 min at 80 C; Expose wafers in the Canon contact aligner using light 

integra setting 6.0; spray-develop wafers for approximately 30 s; rinse in running DI 

and blow dry with dry N2 gas. Post bake the wafers for 20 min at 130 C to harden 

resist. 

Etch wafers in buffered oxide etch (BOE): Immerse wafers in BOE, allowing 

sufficient etch time for slight over-etching of Si02; rinse for 5 min in running DI. 

Rinse and spin-dry in the rinser/dryer. Strip the photoresist: Immerse the wafers 
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light 

Figure 3.3: A schematic of the wet etch technique 

in hot Microstrip 2000 photoresist stripper followed by hot methanol, acetone, and 

running DI (AMD clean) . The etch process is shown schematically in Fig. 3.3. 

Ion implantation: Ion implantation was done externally at Ion Implantation 

Services. The implantation has the following specifications: Implant BF2 at 40keV 

acceleration to an area dose of 2 x 1015 / cm2 with 7 degrees of tilt. Strip the oxide 

in BOE and rinse the wafers in running DI and spin dry. 

A process revision replaces the p+ -ohmic contact with a channel stop implant. 

The dosage is reduced to 1 x 1015/ cm2 and only the active channel region is masked 

off by the implant mask. The reasoning behind this change is to reduce the back­

ground leakage around the channel. This step is also more in line with a standard 

MOS process. 

3.2.2 FIELD OXIDE/n+ OHMIC CONTACTS 

Piranha clean wafers; Grow 650 nm wet thermal oxide at 1050 C; pattern the 

wafers in the Canon Aligner for the n+ ohmic contact regions. 
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Post bake the wafers at 130 C for 30 min to harden the photoresist mask. 

Then etch the wafers in BOE to the Si surface; strip photoresist; then send wafers 

out for implantation with the following specifications: Implant at 40 keV As at a 

dose of 2 x 1015/ cm2 at a tilt of 7 degrees. 

In the second revision to the process, several changes were made to this step: 

after stripping the photoresist, perform a hot Piranha clean; re-grow a thin dry ther­

mal oxide (about 10 nm) at 1000 C. The purpose for this thin oxide is to improve on 

the randomization of the incoming ion beam during implantation to minimize chan­

neling. The wafers are sent out for implantation, where a dual implant is performed: 

first implant 3 x 1015 / cm2 As at 50 keY followed by P at 50 keY to a concentration 

of 1 x 1015 
/ cm2 

. This implantation scheme should leave a higher concentration of 

less mobile As impurities close to the surface with further thermal steps, ensuring 

degenerate contacts at low temperatures. In addition, the more mobile P ions pene­

trate further into the substrate, and diffuse laterally during thermal processes later 

to form a doping profile which reduces the fields at the drain region in high-bias 

operation, which leads to hot carrier effects and merging of the source and drain 

depletion regions for high drain bias for short-channel MOSFETs. 

This process step differs greatly from most modern MOS practice. There, the 

field oxide is grown using a local oxidation process (LOCOS) in which the active 

region of the device is masked off using Si3N4 as an oxygen diffusion barrier. This 

step serves to make a smooth profile, allowing for better step coverage on later 

deposition steps. Formation of the source and drain Ohmic contacts is delayed until 

after the gate is formed, utilizing a self aligned process. In addition, the implant 

step is usually followed by a drive-in step to diffuse the dopant impurities to the 

desired junction depth. 
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Figure 3.4: A flow diagram showing the process variables in the post-implant anneal 
step. 

3.2.3 POST IMPLANT ANNEAL 

Piranha clean the wafers. Next, in a Tamarack rapid thermal processing reac­

tor, under N2 ambient, a rapid thermal anneal is performed at 950 C for 60 s. The 

susceptor for this reactor is a clean Si wafer. This step is done to anneal out damage 

incurred during the ion implantation and activate the dopant species. Rapid ther­

mal processing is chosen to minimize the thermal load on the samples, which causes 

unwanted redistribution of dopant impurities. It is also chosen to minimize prop­

agation of defects which may otherwise occur at lower temperatures which would 

be a unavoidable with conventional annealing. Fig. 3.4 gives the relevant times, 

temperatures, and gas flows for the post-implant anneal. 

Following the post implant anneal, the upper 250 nm of oxide is stripped in 

BOE to remove the dopant-rich oxide layer. 
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3.2.4 DEFINE ACTIVE REGION AND GATE OXIDE GROWTH 

Pattern the wafers with the active region mask layer using the Canon aligner 

and OCG 850 PPR. Post bake wafers at 130 C for 20 min and then etch the field 

oxide in BOE to expose the Si surface. Finally, strip the photoresist. Perform a 

piranha clean, and insert the wafers into the mouth of the dry oxide tube heated to 

950 C. After a three minute delay, push the wafers to the center zone at a rate of 6 

in per minute. Insert a delay time to allow for thermal equilibrium to be achieved, 

and then grow a 5 to 10 nm oxide in pure O2 ambient. Ramp the furnace to 1000 

C, and then anneal 15 min in pure N2 ambient. Remove the wafers at 6 in per min. 

As previously mentioned, this step differs in modern MOS processes by the use 

of a local oxidation (LOCOS) process in which the active region would be masked 

off during the field oxide growth by a silicon nitride (Si3N4 ) diffusion barrier, which 

would be removed following the oxidation, a sacrificial oxide would be grown and 

stripped, and then the active region would be prepared. 

3.2.5 ELECTRON BEAM GUIDE PATTERN 

This first metalization step lays down a pattern that aids in the alignment 

process for electron beam lithography and demonstrates another basic process which 

will be repeated several times, that of lift-off. Illustrated in the schematic Fig. 3.5, 

this process step goes as follows: pattern the wafers using the electron beam guide 

mask in the Canon aligner with OCG 825 PPR. After development and rinsing, dry 

wafers very thoroughly and place in the vacuum jar of the electron beam evaporator 

(either the CRA or TorrVac) and evacuate to as high vacuum as can be reached 

within the time allotment (typically, about 2 x 10-6 Torr). Sequentially evaporate 40 

nm Cr followed by 8 nm Pt. Lift off all unwanted metal by sequentially immersing 

the wafer in hot Microstrip 2000, followed by hot methanol, acetone, methanol, 
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light 

Figure 3.5: A schematic of the liftoff technique. 

and then rinse in running DI. It may be necessary to use a jet of Microstrip or 

use ultrasonic agitation. In this way, the pattern may be transferred to the metal 

without the need for etching the metal. 

The metals for this process were chosen for the following reasons: Cr adheres 

nicely to, does not interact heavily with, nor diffuse through Si or Si02 . Pt has a 

high Z number, thus gives off a high yield of secondary electrons and is thus easily 

seen under the scanning electron microscope (SEM) but diffuses rapidly through 

Si and Si02 , beads up on the surface of Si, and forms a highly conducting silicide. 

Thus, Cr acts as a wetting and adhesion layer for the Pt while acting like a diffusion 

barrier, and the Pt serves the purpose of alignment marks for the SEM. Other 

possible choices studied included Co [145, 146], Ti [147], Nb [147, 148], V, Ta, and 

Zr [149]. 

This process step has no analog in the modern MOS process. In addition, it 

should be noted that in Si processing, the liftoff technique is rarely used. Instead, 

uniform layers of metal are deposited and then the wafers are patterned such that 
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the photoresist masks off areas in which metal should not be etched. Then the 

unmasked areas are etched off, typically using a plasma etching process. 

3.2.6 TITANIUM CONTACT METAL/ FIRST VIA LAYER 

The first major revision to the process was to add a TiSix contact metal 

to enhance the contacts at low temperature. Ti is chosen for several reasons. It 

reacts strongly with Si02 , dissolving thin layers of the oxide and moving the oxygen 

away from the Si surface to form TiOx , which is also conducting. TiOx is highly 

conducting and stable, and the reaction occurs even at room temperature [150]. 

Overall, the effect is to remove the native oxide which is always present and forms 

a conducting silicide in its place. In addition, it forms a diffusion barrier against Al 

spiking into the Si. In the industry, a Ti/W barrier layer is often used due to its 

better endurance. Alternatively, a Ti/TiN stack may be used to replace the Ti. 

The order in which this step occurs in the process went through several 

changes, eventually occurring after the guide pattern and before the electron beam 

lithography in the final process sequence for efficiency. The process follows: Pattern 

the wafers with the first via mask in the Canon aligner using OCG 825 PPR. Do 

a post bake for 15 min at 130 C. Etch in BOE long enough to slightly over-etch 

through the oxide layer, rinse and thoroughly dry. Immediately place the patterned 

wafers into the electron beam evaporator and evacuate. Sequentially evaporate 30 

nm Ti followed by 30 nm AI, remove from the vacuum jar, and lift off. 

3.2.7 DEFINE DEPLETION GATES/ELECTRON BEAM LITHOGRAPHY 

Electron beam lithography (EBL) is the key research tool, which allowed fab­

rication of the nano-scale electronic devices studied here. It has advantages and 

disadvantages over conventional photolithography. The key advantage is the ability 

to achieve dimensions not yet available by photolithography. The major disadvan­
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tage is that it takes a great deal more time per exposure compared to photolithog­

raphy because EBL is a direct write technology, whereas photolithography utilizes 

a blanket exposure masked off by some sort of optical mask. In either case, the 

same principle of operation is used. A resist thin film is placed on the surface of 

the sample to be patterned, and then selectively exposed to energetic particles. The 

sample is then placed in some developer chemical, which reacts to the exposed re­

gions. In the case of EBL, the particles are electrons that are rastered across the 

surface by controlling the scan coils of a scanning electron microscope which has 

been modified for this purpose. A computer program is used to translate a pattern 

file, typically a computer aided design (CAD) drawing, into an analog signal. In the 

case of this research project, the program and lithography package used was ELPHY 

plus, manufactured by Raith GmbH. The electron beam lithography process steps 

will be discussed in detail below; there are several good references on the subject of 

electron beam lithography [151, 152, 153, 154]. 

Other approaches to achieving small pattern size include patterning 

self-assembled monolayers with electron beam lithography capable of producing sub­

10 nm lines [155], and patterning by scanned probe oxidation (using a biased atomic 

force microscope (AFM) tip in an oxygen ambient) capable of 10 nm lines [156, 157]. 

3.2.7.1 Sample Preparation 

For EBL, the following process steps were used. Clean the wafer using an 

AMD clean with ultrasonic agitation. Spin on poly methyl methacrylate (PMMA) 

solution (2% PMMA in chlorobenzene) for 30 s at 4,000 rpm and bake at 170 C for 

at least 2 hours. Place the sample in the main chamber of the scanning electron 

microscope and evacuate to a base pressure of ~ 10-6 Torr. Once the base pressure 

has been reached, the filament is brought to saturation at an acceleration of 40 

keY. For lithography purposes, a high acceleration is desired to minimize secondary 
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exposure from secondary electrons reflected from the substrate. Higher acceleration 

causes the back scattering of secondary electrons to occur deeper in the sample. 

After the filament is saturated, the column must be carefully aligned electronically, 

and image shift between probe current modes (LM and STD) must be corrected for. 

Stigmation of the lenses must also be corrected for to achieve the smallest symmetric 

spot sizes. 

3.2.7.2 Coarse Alignment 

After the lenses have been corrected for image shift and stigmation, the sample 

coordinates must be set up. The electron beam lithography set up is equipped with 

a laser-interferometer to make this procedure convenient and accurate. The par­

ticular model is capable of controlling the position of the sample relative to some 

internal three dimensional axis to a precision of several nanometers through DC 

servo motors and piezoelectric transducers. The location is monitored by means of 

a laser interferometer. In the process of coarse alignment, the known dimensions 

and location of the optical alignment marks are determined, and the software per­

forms a coordinate transformation. This process allows for moving from one pattern 

exposure to the next by simply typing in the desired sample coordinates. 

3.2.7.3 Fine Alignment and Focus 

After the coarse alignment is completed, the sample is moved to the location 

of the electron beam alignment metal pattern at the corners of the active region. 

The patterns are scanned into the computer at the magnification of writing, and 

their centers are picked manually by a mouse click. Now the best focus must be 

attained by the following procedure: in LM mode, get the best focus possible up 

to 70kX magnification. Increase the magnification to 250X, and use the spot scan 

mode for long enough to burn a hole in the PMMA; then focus on this spot. 
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3.2.7.4 Exposure 

After alignment and focus are completed, the pattern is exposed. First the 

current must be accurately measured to ensure that the correct dosage of charge 

is delivered. This is done by moving to the Faraday cup which is mounted on the 

stage, and measuring the current with a Keithley electrometer. Then move back to 

the working position and expose the pattern. 

Due to the extremely small nature of the patterns used for these devices, and 

the fact that the surface is a dielectric which charges and deflects the trajectory of 

the electron beam, a strategy was necessary to achieve fine features. This strategy 

was manifested in the drawing of the pattern file. Issues that arose include: 

• 	 Since the current supplied by the filament drifts over the time of the exposure, 

the most critical features are patterned first to ensure the closest possible dose. 

• 	 To counter the jitter which occurs when the beam settles into a new location, 

features are always written to scan from far away from critical features toward 

the feature. 

• 	 To counter exposure by secondary electrons from pattern features in close 

proximity to other features, the relative dose is reduced. Typically, the dosage 

in these regions is reduced to a factor of .90 to .95 of full scale. 

• 	 Small, isolated features need higher dose to ensure full exposure, so these are 

typically scaled to 1.1 to 1.2 of full scale. 

• 	 The smallest lines are written as a series of single pass lines. The uniformity 

of dose across the lines in ensured by increasing the dose on the outer line 

relative to inner line of a series. 

• 	 three layers of exposure are performed, with each having its own exposure 

parameters. The finest, most sensitive layer is exposed first, followed by a 
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slightly less fine portion of the pattern further from the center. These are 

exposed in the STD current mode, which has a higher focus resolution. Large 

area patterns are written after all fine patterns have been exposed using the 

high current, lower resolution LM mode to reduce the exposure time. Some 

overlap is required to ensure that no lines are severed between layers after 

re-positioning and fine aligning on the second pass. 

Before an actual pattern is written, it is necessary to optimize exposure pa­

rameters for the exact conditions a given sample will have. These parameters will 

change with the age of the resist and filament, as well as the topography of the sam­

ple. Therefor, optimization must occur on identical samples with nearly identical 

resist and filament conditions and requires a full metal deposition and liftoff. For 

the patterns developed for this research project, the parameters were generally very 

close to the parameters given in Table 3.2. 
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Table 3.2: Exposure parameters for Electron Beam Lithography 

A summary of typical EBL exposure parameters yielding successful results 

Mode LM STD 

Parameter S5 AS 6 Mag. S AS SPLD 7 SPLS 8 Mag. 

Layer 1 NA NA NA 272 2 (.0024) 2.5 2.3685 3.77kX 

Layer 2 NA NA NA 312 2 (.0024) NA NA 3.77kX 

Layer 3 285 3 (.0036) 1kX NA NA NA NA NA 

3.2.7.5 Develop PMMA 

After the sample has been exposed and the SEM has been cooled down, the 

sample is removed and then developed. Immerse the sample in PMMA developer 

(CEL:MIBK:MIK) for 20 s, followed by 20 s in isopropyl alcohol (IPA) and then 

a thorough rinsing in running DI. The sample is next inspected under an optical 

microscope to ensure that the patterns were exposed properly. If the patterns do 

5Sensitivity (nC/cm2) 

6 Area line spacing (Pixels) (Jlm) 

7single pixel line dose (nC/cm) 

Bsingle pixel line spacing (nm) 
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not come out well, the whole EBL process must be repeated. If the patterns are 

sufficiently well defined, deposition of the depletion gate metal follows. 

3.2.7.6 Depletion Gate Metalization 

Thoroughly dry (both dry N2 and 100 C oven bake for about 5 min) the sample 

and place in the vacuum jar of the E-beam evaporator and evacuate to ~ 10-6 Torr. 

Evaporate 30 nm Cr at a rate of 0.1 nm/s. Remove the sample from the vacuum jar 

and liftoff in hot Microstrip, followed by a thorough cleaning including ultrasonic 

agitation in hot methanol, acetone, and then running DI. Careful inspection is 

important at this stage to ensure that the metalization and liftoff are complete 

and the pattern transfer is good. Note that the smallest patterns are much below 

the resolution limits of optical microscopy at this point, but the larger features are 

clearly observable. 

As mentioned in Section 3.1, three different depletion gate geometries were 

fabricated by electron beam lithography: 

• symmetric 500 nm x 500 nm (D2, DI0) 

• symmetric 200 nm x 200 nm (D9, D12) 

• asymmetric 100 nm x 200 nm (Dl1) 

SEM Micrographs of the first three geometries are shown Fig. 3.6, which gives a view 

of the devices before the second oxide is laid down. After the oxide is deposited, it 

is no longer possible to obtain an SEM image, due to excessive charging from the 

oxide. The quoted dimensions of the dot are the distance between the inside edges 

of the metal lines. In the Fig. 3.6, the scale is not the same between micrographs. 
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(a) (b) 


(c) (d) 

Figure 3.6: SEM micrographs showing: a) a symmetric 500 nm dot (DlO), b) a 
asymmetric 100 nm x 200 nm dot (Dll), c), a symmetric 200 nm dot (D12), and 
d) lower magnification of the 200 nm dot. 
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3.2.8 SECOND GATE OXIDE 


Immediately after the liftoff of the depletion gate metal, the upper gate oxide 

is deposited by remote plasma enhanced chemical vapor deposition (RPECVD). 

As metals are already present in the structure, thermal loads must be minimized to 

eliminate cross contamination by metal migration. This precaution is also necessary 

to minimize the redistribution of dopant species by diffusion. RPECVD allows a 

reduced temperature of 350 C in this process. Besides the electron beam lithography, 

this step required the most time to develop. 

The sample is first thoroughly cleaned and dried, and placed in the loading 

chamber of the PlasmaQuest CVD system, which is a downstream reactor design. 

Here it is allowed to further dry in a flowing N2 gas ambient for 5 min. A cantilever 

exchange arm loads the sample, and the reactor chamber is pumped down to as low 

a pressure as is achievable for the system. It is critical that generous time is allowed 

to reach the process temperature, as the oxide performance is highly sensitive to 

temperature. A He purge is performed, and then a stable flow of the process gases 

He and N20 is achieved. Now the RF power is introduced, and the plasma is tuned 

to a maximal value in the minimum time. Finally, silane (SiH4 ) is introduced, the 

plasma re-tuned, and the deposition is timed based on a previous calibration of 

deposition rate. Fig. 3.7 follows the pressure, gas flow rates, and RF power as a 

function of time for the process. Note that the times for the steps where the plasma 

are tuned (steps 4 and 5) are kept to the minimum time required for the tuning of 

the plasma to be achieved. 

Initially, the thickness of the deposited oxide was 50 nm, but this was increased 

in the third revision of the process to 90 nm to allow for more planarization of the 

active region, reducing edge-induced electric breakdown. 
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Figure 3.7: A flow diagram showing the process variables for the RPECVD second 
gate oxide step. 

This process does not have any analog in the modern MOS process, although 

PECVD oxides are commonly used as passivation layers or inter-metal dielectrics in 

multi-metal processes. 

3.2.9 SECOND VIA LEVEL 

The second via level goes through the RPECVD oxide to make contact to 

all underlying electrical contact regions. As the etch rate of the RPECVD oxide 

is much higher than for thermal oxide, it must be determined to minimize the 

the undercutting by lateral etching. After it has been determined, the process is 

standard: pattern the wafers using OCG 825 PPR in the Karl Suss contact aligner 

with a 30 s exposure through the second via level mask. Develop for approximately 

30 s and rinse thoroughly in running DI, then blow dry with dry N2 gas. Post bake 

for 12 min at 130 C. Etch in BOE for sufficient time to completely etch through 

the deposited oxide, and rinse in running DI. Strip the photoresist, clean and blow 

500 1000 1500 2000 2500 3000 
Time (S) 
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dry. Note that in a modern MOS process in the sub-micron range, vias are typically 

etched using a reactive ion etching process (RIE), resulting in very steep sidewalls. 

The vias are then plugged with CVD-deposited W to ensure good step coverage. 

3.2.10 FINAL METALIZATION 

This step defines the inversion gate, metal interconnects, and makes contact 

to previously defined contacts as well as forming interconnects and bonding pads. 

The basic steps are: 

Pattern the sample in the Karl Suss aligner using OCG 825 PPR and the 

final metal mask, develop, dry, and insert into the vacuum jar of the electron beam 

evaporator. Deposit 350 nm of AI, remove from the evaporator, and liftoff. 

In the fourth revision, the Al metal was replaced by Si doped Al (AI:Si 3%) to 

prevent spiking into the Si Ohmic contacts. In the fifth revision, a major change in 

the processing occurred due to the break down of the TorrVac evaporator. The CHA 

requires the use of a planetary multiple wafer mounting fixture which rotates the 

sample through all angles to ensure step coverage. Unfortunately, this makes lift off 

difficult, as the solvent can not attack the underlying photoresist. To alleviate this, 

a new photoresist was selected because it was possible to spin a much thicker resist 

film. This also allowed for deposition of a much thicker Al layer, which helped in 

the bonding process further down in the fabrication sequence. The revised process 

steps are: spin on HMDS for 30 s at 4000 rpm and immediately spin AZ4210 PPR 

at 4000 rpm for 30 s. Bake the sample on an 85 C hot plate for 1.5 min, expose in 

the Karl Suss aligner for 30 s, and develop for 20 s in AZ 400K developer diluted 

3:1 H20:AZ 400K. Evaporate 450 nm AI:si in the electron beam evaporator and lift 

off. 
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In the sixth revision, a stack of Cr and Si doped Al was used in the thicknesses 

of 30 nm and 400 nm, respectively. Also, the hot plate bake was replaced by an 

oven bake at 85 C. 

In a standard MOSFET process, the gate would be formed from a uniformly 

deposited poly-Si, which is defined by etching away everything but the gate. The 

source and drain would be implanted at the same time the gate is doped using a 

self-aligned gate process. In a standard self aligned process, the gate is used as 

an implant mask for the channel, aligning the gate to the source and drain Ohmic 

contacts through windows etched through the poly-Si and other existing layers. 

3.2.11 CONTACT SINTER 

The final step involving all the devices as a whole is the Al sinter step, which 

is done to improve the metal conductance and to hydrogen-passivate the dangling 

Si bonds at the Si-Si02 interface. 

The steps are: Perform an AMD clean, and very thoroughly dry sample first 

by blowing with dry nitrogen gas, and then baking at 110 C in an oven. Load the 

sample into the center chamber of the annealing furnace heated to 425 C under 

forming gas ambient. Sinter the sample for 12 min and remove from the annealing 

furnace tube. 

These process steps are shown pictographically in the figures on the following 

three pages, in which both the significant topographical and layer structure changes 

which occur with each process step. To give some impression of the scale, the 

width of the gate is 20 /lm. In the close-up, (Fig. 3.13) the depletion gates are just 

barely visible through the oxide and the inversion gate. 
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Figure 3.11: Process steps 10 (top) and 11 (bottom two) 
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Figure 3.12: An optical micrograph showing all of the features of a complete device. 
At this scale (200X magnification) , it is not possible to distinguish the depletion 
gates. 

All that remains in the device fabrication is to break the chips into individual 

devices, mount them in header packages that are suitable for cryostatic measure­

ments, and bond the electrical leads on the package to the leads on the device. 

Optical micrographs of the devices to this point are shown in Figs. 3.12 and 3.13. 

3.2.12 CLEAVING CHIP 

The chip is inspected under the optical microscope to determine which indi­

vidual devices will be tested. After selecting the desired devices, they are extracted 

from the chip by cleaving the chip. This is done by applying pressure along the 

cleavage planes ((100) directions) with a diamond scribe. 

3.2.13 MOUNTING DEVICES 

An AMD clean is performed on the selected devices in ultrasonic baths, they 

are dried, and placed into 16 pin DIP packages using old, thick photoresist as an 

adhesive. They are then baked at 170 C for 20 min, and checked to make sure that 

they are firmly mounted. 
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Figure 3.13: A close-up showing the active region of the device. At this scale (2000 
magnification), the depletion gates are barely visible as shadows in the inversion 
gate and the gate oxide. 

3.2.14 BALL-BONDING 

Last, the devices are bonded to the lead frame packages in an thermosonic 

wire bonder using Au wire. The packages are heated to a temperature of 180 C, 

and ultrasonic power is supplied. At this point, electrostatic precautions are very 

important to the electrical survival of the devices; both a grounding strap and 

electrostatic-protective gloves are used whenever it is possible to make electrical 

paths between the handler and the device. 

3.3 Cryogenic Setup 

Low temperatures are required to observe the phenomena of interest in these 

nanostructure systems. At higher temperatures, inelastic scattering of electrons 

with phonons reduces the phase coherence length to the point where quantum in­

terference effects are no longer visible. Coulomb blockade effects also require that 

e2/2C» kBT. Kinetic energy may be imparted to electrons in the collisions mak­

ing confinement effects negligible. Cooling to low temperatures makes the phonon 

modes available in a thermal equilibrium distribution small enough to reduce the 
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effects of the inelastic scattering and thus allows the transport effects to be seen. 

Several references are available for review of cryogenic systems [158, 159, 160]. In 

the following, a description of the cryogenic systems used for the experiments re­

ported in Chapter 4 is given. Three different cryogenic systems were used in this 

research briefly discussed here. 

3.3.1 INTRODUCTION TO CRYOGENICS 

Cryogenic systems utilize liquefied inert gases to cool specimens to low tem­

perature. N2 gas liquefies at 77 K at atmospheric pressure. By pumping on the 

vapor above the liquid, it is possible to lower the temperature, but violent bubbling 

and freezing of the liquid in simple systems makes it an inpractical working fluid for 

temperatures less than 77 K. 

The isotope 4He liquefies at 4.2 K, and by pumping on the vapor above the 

L4He it is possible to reduce the temperature of evaporation to approximately 1.2 

K. For temperatures between 4.2 K and 77 K, an arrangement can be used which 

allows heated 4He vapor to pass by the sample and maintain it at intermediate 

temperatures. It is possible to reach 300 mK by pumping on the isotope L3He, and 

below 300 mK, dilution refrigeration is required. 

3.3.2 L4He TRANSPORT DEWAR CRYOSTAT 

The simplest cryogenic arrangement used was to insert a dipstick into a 100 I 

liquid He transport dewar. This system allowed for low noise and simple grounding 

of the cryostat to the instrumentation by use of a grounding strap. The insert for this 

arrangement consisted of a hollow tube through which a bundle of insulated copper 

wires led to an 18-pin DIP socket. Coaxial contacts provided electrical connection 

to the instrumentation. 
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3.3.3 JANIS RESEARCH CRYOSTAT 

For early measurements, a Janis Research cryostat was used. The Janis cryo­

stat uses a liquid nitrogen jacket as the outer insulation and the sample chamber is 

isolated from the He bath by an inner vacuum jacket. Liquid He may be introduced 

to the sample chamber by means of a needle valve, and the temperature may be 

reduced below 4.2 K by pumping continuously with a small mechanical pump or 

increased by heating the vapor which passes through the sample space with a re­

sistor and monitored and controlled with a carbon resistor bridge and a Lakeshore 

cryogenics controller. Magnetoconductance measurements are possible with a 9 T 

superconducting magnet. The chronic problem with this cryogenic setup was a bad 

grounding arrangement for the leads in the time between connection to the insert 

and connection for measurement. This problem almost always lead to destruction 

of devices before it was possible to get any reasonable transport data. One notable 

exception was the device MI, which was a simple MOSFET used for calibration of 

the 2DEG properties. 

3.3.4 AMERICAN MAGNETICS CRYOSTAT 

The American Magnetics cryostat was equipped with a 9 T superconducting 

magnet with a lambda plate (allowing for magnetic fields up to 11 T) and a super­

insulated outer shell. Two insert configurations were used: The dipstick of the 

transport dewar cryostat arrangement, and a L3He insert made by RMC systems (a 

now defunct corporation). For the purposes of this research project, the L3He insert 

was used as a sealed cryostat. A rough sketch of the American Magnetics cryostat 

is given in Fig. 3.14. 

The RMC systems cryostat consisted of a vacuum can housing a 4He-pot con­

nected to the He bath by a continuous fill impedance and to an external mechanical 

pump through a hermetically sealed tube which ran the length of a sliding seal to 
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the pump port. The signal and control wiring bundles also ran the length of the 

sliding seal tube. These bundles consisted of insulated 30 gauge twisted pair copper 

wire. A 3He-pot was connected to the 4He-pot, and this was thermally connected 

to the sample stage and heater assembly. The sample stage was made of Cu, and 

housed both a calibrated carbon resistor and a calibrated Si diode for temperature 

measurement. The signal and control wire bundle were anchored at the vacuum 

can, at the 4He-pot and 3He-pot. This length of wiring consisted of twisted pairs of 

constantine wire. 

3.4 Experimental Measurement 

In this section, the electrical measurement setups will be briefly described. 

Simplified schematic diagrams will illustrate the basic configuration of the external 

electrical connections for the current carrying nodes. 

3.4.1 INSTRUMENTATION 

A wide variety of electrical measurement instruments was used in acquiring 

data during experiments. There were two classes of measurement: near-equilibrium 

and non-equilibrium; nearly all measurements were of the first kind. All DC mea­

surements used a Hewlett Packard 4156b semiconductor parameter analyzer. AC 

measurements used lock in amplifiers as both reference source and measurement 

instruments. Lock in amplifiers used included the Stanford Research 830, and the 

EG&G 7265 and 5210. Additional voltage sources were provided by the Keithley 

1000 voltage source and a Keithley 236 source measure unit, while a Hewlett Packard 

2000 digital multimeter was used to measure magnetic fields. 
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3.4.2 MAGNETOCONDUCTANCE MEASUREMENTS 


Three types of magneto conductance measurements were performed: AC near­

equilibrium, DC near-equilibrium, and AC non-equilibrium. Most of these measure­

ments were done in order to characterize the 2DEG density and mobility. 

3.4.2.1 A C N ear-Equilibrium 

Near-equilibrium AC magnetoconductance measurements were performed by 

a current-biased AC lock-in technique. Early experiments were done in the Janis 

Research cryostat with a Stanford Research SR 830 lock-in amplifier (LIA) providing 

the excitation voltage. The gate was held at a constant bias by using a Keithley 236 

source measure unit (SMU). In order to divide out line noise, which was damaging 

to the gate, a 5:1 voltage divider was used. A schematic of the current biased lock-in 

circuit is given in Fig. 3.15. The magnetic field was determined by measuring the 

voltage dropped across a shunt resistor. All voltages were acquired from a DAQ 

card. LabVIEW software controlled the measurements over a GPIB interface. 

Later experiments (in the American Magnetics cryostat) used a EG&G lock-in 

amplifier, with the voltage across the shunt being measured with a Keithley 2000 

digital multimeter. 

3.4.2.2 AC Non-Equilibrium 

An experiment was performed to purposely force the 2DEG system out of 

equilibrium. This was done using a voltage-biased drain bias excitation, in which 

a DC voltage is placed in series with a small AC signal. The DC signal was varied 

between 200 p,V and 2 mY, ensuring that the bias was higher than 4kBT, the 

expected energy of the thermal fluctuations of the lattice. A schematic of this setup 

is also shown in Fig. 3.15. 
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Figure 3.15: Schematics of the circuits used in the AC (a) near- and (b) non­
equilibrium measurements. 
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3.4.2.3 DC Equilibrium Magnetoconductance 

DC magneto conductance measurements were performed using a Hewlett-Packard 

4156b semiconductor parameter analyzer. The measurement uses a voltage-biased 

circuit, shown in Fig. 3.16. 
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Figure 3.16: A schematic for measurement circuits used in a) voltage-biased 
DC near-equilibrium transport measurements, and b) voltage-biased AC near­
equilibrium transport measurements. 
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4. EXPERIMENTAL RESULTS 


4.1 	 Characterization of MOSFET Structure Without Dot 
Depletion Gates 

Prior to transport measurements on the quantum dot structures themselves, 

the properties of the 2DEG were determined in the absence of depletion gates to 

establish a baseline reference point using devices Ml and Dll. Device Ml is a 

MOSFET without additional depletion gates to define the quantum dot; its lower 

gate oxide is 10 nm. Device Dll is full quantum dot structure with the symmetric 

200 x 200 nm geometry. The lower oxide thickness is ~ 5 nm. Oscillatory magneto­

conductance measurements were performed to determine the sheet charge density 

as a function of inversion gate bias and estimate the mobility. Also, the current as a 

function of gate bias was measured to establish the threshold voltage and transcon­

ductance characteristics of the transistor structure itself. 

4.1.1 MAGNETOCONDUCTANCE 

Figure 4.1 shows the magnetoresistance plotted for various inversion gate bi­

ases as a function of the magnetic field normal to the Si - Si02 interfacial plane 

taken with current-biased AC lock-in measurements. A schematic of the Hall bar 

configuration used in these measurements is shown in Fig. 4.2. At low magnetic 

fields, the longitudinal magnetoresistance is measured through the full MOSFET 

structure using the source-drain contacts to source current and measuring the volt­

age drop across the sample using the contacts labeled Vxx and V xy , as was done in 

the case of sample Ml with a four-terminal method. It may also be measured in the 

full quantum dot structure by measuring two terminal between Vyy and V xy , as was 

done in device Dll. An example of Shubnikov-de Haas (SdH) oscillations in the 

longitudinal magnetoresistance at 4.2 K plotted against 1/B is shown in Fig. 4.3. 
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Figure 4.3: Longitudinal magnetoconductance oscillations in sample Dll for gate 
bias of 13V. The sheet density for this bias is approximately n2D ~ 3.5 x 1012/cm2 

Using Eq. 2.14, the 2DEG sheet density for the average periodicity shown in Fig. 4.3 

gives a density of approximately 3.5 x 1012/ cm2 
, where the degeneracy factors (g8' 

gv) have been taken to be 2, meaning that the electrons are in the electron quantum 

limit. 

4.1.2 NON-EQUILIBRIUM MAGNETOTRANSPORT 

In order to study non-equilibrium effects in the transport properties of the 

material, a DC bias voltage was supplied in series with the AC voltage , and the 

AC response was measured. The intent was to observe carrier heating effects on 

the mobility and possibly see carriers populating the .6.4 ladder of subbands. The 

results of this experiment are shown in Fig. 4.4, where the only observable effect is 

greater zero field longitudinal resistance for an inversion gate bias of 2 V and drain 

bias of 2 m V, which is due to lower mobility. 
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Figure 4.4: Semi-Equilibrium magnetoconductance measurement showing a slight 
increase in the zero-field resistance and oscillation amplitude at gate bias of 2 V. 

4.1.3 GATE RESPONSE CHARACTERIZATION 

In order to understand the transport through the quantum dot structure, it is 

necessary to understand the transport properties of the 2DEG channel which con­

nects the dot to the reservoirs. Of most interest is the response to the inversion gate 

bias of MOSFETs. For a thorough discussion of the fundamental operating charac­

teristics, the reader is referred to the text by S. M. Sze [161]. In an ideal MOSFET, 

there are two basic regions of operation: the linear region and the saturation region. 

For small drain bias and gate bias above the threshold voltage VT , the current is 

characterized by a linear increase from zero bias, following the relation 
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In this region of operation, the differential conductance, 9D, and transconductance, 

9m, are given by the equations 

(4.2) 

(4.3) 

where Wand L are the channel width and length, respectively. The differential con­

ductance and transconductance give a method for solving for the so-called effective 

mobility (/-leff) and field effect mobility (/-lFE), which differ in that the effective mo­

bility is generally greater. Below Vi, the current has very weak dependence on the 

drain bias (ideally none) and a nearly exponential dependence on the gate bias in 

weak inversion. 

As the drain bias is increased, the depletion region associated with the p-n 

junction at the drain increases. At pinch off, this depletion layer pinches off the 

inversion layer, and increasing the drain bias results in approximately no increase in 

the current. The saturation voltage is approximately given by VDSSat ~ V GS - V T . 

In the saturation region, the current is ideally given by 

(4.4) 


where m is a dimensionless constant whose value is a function of the doping con­

centration. The transconductance in saturation is given by 

(4.5) 


As in the inversion gate characteristics of a MOSFET without depletion gates 

were investigated, with measurements both by the AC the DC methods. Figure 4.5 

shows the gate voltage dependence of the source-drain current and conductance 

for device Ml. From this measurement the threshold voltage is determined by 

interpolating the linear portion of the current to zero through the point of maximum 
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Table 4.1: The threshold voltage for device M1 for temperatures of 300, 77, and 4.2 
K 

Temperature (K) 300 77 4.2 

Threshold (V) -0.25 0.5 1.5 

gm. The zero intercept gives the gate voltage at the onset of strong inversion, defined 

in terms of the surface potential as the point where 'lj;surf = 2'lj;B, where 'lj;B is the 

bulk potential defined as the difference of the bulk Fermi energy from the intrinsic 

Fermi energy. Also seen in the figure is the onset of weak inversion as indicated 

by the rapid increase in the voltage drop across the channel, around 1.5 V. The 

area of weak inversion, which is roughly the range of gate bias where the surface 

potential is 'lj;B :S 'lj;surf :S 2'lj;B is shown in Fig. 4.6 shows a nearly exponential current 

increase with gate bias. The threshold voltages for various temperatures are given 

in Table 4.1. 

A striking point to notice about Fig. 4.5 is that the conductance in this range 

of measurement is far below the first quantum of conductance 2e2 / h ~ 77.5 J-LS. In 

fact, due to the geometry and low mobility of the sample, it was not possible within 

the working range of the gate bias to achieve such a base conductance. This was 

the case with all devices fabricated during the project. 

4.1.4 DRAIN RESPONSE CHARACTERISTIC 

The response of the MOSFET to finite drain bias for constant inversion gate 

bias gives important information about sub-threshold current, Ohmic contacts, and 
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Figure 4.6: The current in the weak inversion regime as a function of gate bias. 

device saturation characteristics. Measurements of the drain response characteristic 

were performed using a DC technique. An example of a good device performance 

at room temperature is given in Fig. 4.7. This device is operating below saturation 

for all sweeps except for the second sweep, where the gate bias is at 1.5 V. 

4.1.5 CONTACT RESISTANCE 

One of the test structures placed on the die was a TLM structure, used in 

measuring the resistance of the Ohmic contacts [162] by the transfer length method 

(TLM). In this method of measuring the specific contact resistance, the resistance 

is measured between Ohmic contacts at different spacings and plotted as a function 

of the contact separation. The intercept with zero distance is then twice the contact 

resistance. From this measurement, it was determined that the contact resistance 

did not significantly limit the conductance of the device. 
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Figure 4.7: Drain characteristic for device Ml at 300 K for gate voltages of 0,1.5, 3, 
4.5, and 6 V from bottom to top. The device is operating below saturation. 

4.2 DID: 500 nm Symmetric Dot 

Device D2 was the first fully functional dot measured with features reportable 

in this work. The depletion gate geometry is 500 nmx500 nm, which is larger than 

the other devices reported on later in this work. 

4.2.1 INVERSION GATE SWEEP 

The first type of experiment done after confirming that there is functionality 

in the device gates is to sweep the inversion gate bias for fixed drain and depletion 

gate biases. In effect, this changes the chemical potential in the leads. As shown in 

Fig. 4.5, in an ordinary MOSFET, the ID - Ves curve in the linear region exhibit 

a smooth turn on followed by a linear increase of drain current past threshold. As 

shown in Fig. 4.8, peaks in the source-drain current are seen as the inversion gate is 

swept in device DlO from from below the onset of weak inversion to slightly above 

the onset of strong inversion. For a range of depletion gate biases, these peaks are 



98 

/L/--+-----1--+---+---+--__+_ 0.12 
1J---t---+--t---t---t----+0.10 

r+----t----+---t---t--i- 0.08 Do­
IH---+---+---+---t---+ 0.06 S­

1-1\-t----f---+--+----+0.04 l> 
r-...--/--+---+---i- 0.02 "-" 

"<>'=~:t::::::::::::t:=:::;~ 0.00 
"'--===~y- -0. H 5 

-v----===:vU" -0.19 
""""----=====iiH -0.185 

"'--==="11ifH -0.18 
""----====:m:Y -0.175 

""'-""'--=====ii¢T -O~·~& .S' 
'--""",,===~ -O~·~~ ~ 

'-'-""-=====w~' -0. 15 ~J 

'--"-======~_o~'145 ~~ 
...............""""'"'=====~ -0.135 
~--===="iiiiIT -0.13 

~-~~~"ij'ilm!I~~W1l!fT -0.125 
2.3 2.2 2.1 2.0 1.9 1.8 

Vg (V) 

Figure 4.8: A plot of the drain current through device DlO versus inversion gate 
voltage for a sequence of depletion gate biases. Some splitting and merging of the 
peaks is observed as the depletion gate bias is changed. 

pronounced and evolve in a systematic way as the depletion gate bias is stepped as a 

parameter. All of the depletion gates are tied to the same bias voltage and stepped 

from -100 m V to -200 m V. For depletion gate biases less negative than -0.1 V, the 

behavior of the peaks becomes less ordered. Visible in Fig. 4.8 are some apparent 

merging and splitting of peaks, which is reminiscent of crossings or anti-crossings 

in electronic energy levels observed in other reported dot structures, as discussed in 

Section 2.5.1. 

http:r+----t----+---t---t--i-0.08
http:1J---t---+--t---t---t----+0.10
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4.2.2 NON-ZERO DRAIN BIAS 

In order to study carrier heating effects on the peaks observed in Fig. 4.8, 

different source-drain biases were applied to the sample. The range of bias (~ 2m V) 

were larger than kBT at 4.2 K, hence heating is expected. In these measurements, 

the drain bias is increased in successive increments while the inversion gate bias 

is swept, as shown in Fig. 4.9 as a gray-scale composite plot. The main effect is 

that as the amplitude of the current increases with increasing bias, the peak to 

valley ratio for the most part decreases; eventually, the peaks are broadened and 

not distinguishable from the background conductance. Another feature is that the 

minimum current valleys vary in position as the drain bias is changed. It is seen 

that there is not a large change in the position of the current peaks as the drain bias 

changes. While there appears to be a large variation as the drain bias goes from 0.1 

m V to 0.5 m V, this is likely to be due to the shift from the oxide charging discussed 

more in Section 4.3. After this initial range, the change is largely linear. 

As the drain bias is further increased, the device operates less and less in the 

linear transport regime. A sequence of such drain sweeps has been plotted in a gray 

scale semi-log plot of the current magnitude in Fig. 4.10. The main feature is that 

the position of minimum current has some small variation in position about zero 

drain bias. 

4.3 D9: Symmetric 200 nm Dot 

Two symmetric 200 nm devices were fabricated which showed some interesting 

conductance features. These devices are labeled D9 and D12. D9 is discussed in the 

present section (4.3) while D12 is discussed separately in Section 4.4. 
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Figure 4.9: A composite plot in the drain bias-inversion gate bias plane for device 
DID in which the current is represented by the gray scale color map (dark is lower 
current). 

S X 10-3 

1.S 2 
X 10-3 

4 

- 3?!. 2 
o

.!!! 1 

10 
0 

c:
'i -1 
~ 

C -2 

-3 

-S 
2 2.02 2.04 2.00 2.00 2.1 2.12 

Gate Bias (V) 

Figure 4.10: Magnitude of ID through device DID plotted on a semi-log scale in the 
VGS - VDS plane. The gray scale represents the magnitude of the current. 



101 

co 
N 

7 

6 

5 

4-en 
3-" " 2 

0 

9.5 

co
co'
0) .... 
.:t; .... 

..,. 
It) co 
cot-: 
'00 ........ 

10.0 10.5 11.0 11.5 12.0 
Inversion Gate Bias (V) 
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4.3.1 INVERSION GATE SWEEP 

The symmetric 200 nm dot D9 exhibited oscillatory features as a function 

of the inversion gate bias. For low source drain bias (100/LV), aperiodic peaks in 

the drain conductance occurred. An example of these peaks is shown in Fig. 4.11, 

where the peak positions have been picked by a numerical peak selection routine and 

labeled. Because the background conductance is a strong function of the inversion 

gate bias, (see, for example Fig. 4.5), peaks at lower gate bias have amplitude below 

the visible threshold in the plot. These peaks have a shape very similar to the form 

for Coulomb blockade given by Beenakker. 

Multiple sweeps of the inversion gate bias for different bottom depletion gate 

bias (VSGB ) results in the same sequence of peaks, with the position of the peaks 

changing in inversion gate voltage. These measurements are performed with the 

sequence: 
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• 	 The drain bias is set. This value does not change until the end of the mea­

surement. 

• 	 The depletion gates are set and held for each individual sweep. 

• 	 The initial value of the gate bias is set, and held for a hold time set by the 

amount of time for which further increases do not change the initial value of 

a given measurement due to capacitive charging effects associated with the 

gates. 

• 	 The sweep is performed, with a delay between each data point in the sweep 

run. 

• 	 The new depletion gate values are set and the inversion gate bias is reset to 

the initial value in a given sweep. 

To see the effects of changing the bottom depletion gate bias on a larger scale, a 

composite of each of the individual sweeps has been generated and plotted in a two 

dimensional contour plot. The color scale represents the conductance amplitude. 

This composite is shown in Fig. 4.12. The order of the individual sweeps was mixed 

up for the data in the image, and this is manifested in the shifting of the positions 

of the ridges going laterally across the plot; each start of a new series of sweeps had 

its own offset, which resulted in a shift in the position of the ridges associated with 

that sweep. 

4.3.2 BOTTOM DEPLETION GATE SWEEP 

Since the position of the peaks change as a function of the depletion gate bias, 

it should be possible to see oscillations in the conductance if the inversion gate bias 

is maintained at constant value and the depletion gates are swept independently. 

This is indeed the case, as shown in Fig. 4.13, where oscillations are seen on a linear 

scale. It is observed that 
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Figure 4.12: A composite plot of inversion gate sweeps of device D9 for different 
bottom depletion gate biases. The color scale represents the conductance amplitude. 
Apparent shifting in the conductance peak positions is an artifact of the order in 
which the individual sweeps were taken and the offset due to a presumed oxide 
charging mechanism. 
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Figure 4.13: A linear plot showing the dependence of the current through device D9 
on the bottom depletion gate for various inversion gate biases. 

• 	 the spacing in inversion gate bias is not fine enough to detect any significant 

trends 

• 	 The spacing between peaks at different inversion gate biases is a strong func­

tion of inversion gate bias, as is shown in Fig. 4.12. 

4.3.3 MIDDLE (PLUNGER) DEPLETION GATE 

Although the plunger gate was not connected in a configuration which allowed 

for a sweep-type of measurement (due to a limitation in number of source-measure 

units on the HP4156b), the inversion gate sweep was done for different plunger gate 

voltages. The results of this measurement are very similar to those for the bottom 

depletion gate in Section 4.3.1, Fig. 4.12, except for a smaller range of inversion gate 

bias. A notable difference is that the offset due to the oxide charging seems to be 

reduced (but clearly not non-existent), likely due a greater amount of relaxation 
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Figure 4.14: A quasi-3D plot showing the dependence of the conductance on the 
right depletion gate of device D9 for different inversion gate biases. 

time between sweeps because the plunger gate bias had to be manually configured 

on the Keithley 1000 source unit between successive sweeps. 

4.3.4 RIGHT DEPLETION GATE 

The characteristic of the right depletion gate has also been measured for dif­

ferent inversion gate biases, and the results shown in Fig. 4.14, plotted as a semi-log 

quasi-3D plot. It is observed that there is a rapid increase in current within the 

range of bias. 

4.3.5 EFFECT OF DRAIN BIAS 

Large drain excitation bias sweeps were taken for different inversion gate bi­

ases, as shown in Figs. 4.15 and 4.16, where the current as a function of drain bias is 

plotted for several values of the inversion gate bias. In these sweeps, the input and 

output barriers to the contacts have been purposely biased asymmetrically to look 



106 

_0 

-~ c 

c -

~ ...

8 -2 

Gate Bias (V) 

--10.0 
_.- 10.075 
- - ·10.15 

-20 0 20 
Drain Bias (mV) 

Figure 4.15: Drain bias sweeps of device D9 for different values of the inversion gate 
bias. The depletion gate biases are -30 m V, 35 m V, 35 m V, and -15 m V for the left, 
middle, right, and bottom respectively. 

for the Coulomb staircase discussed in Section 2.6.3. Although this phenomenon 

was not seen, there are obvious kinks in the characteristic for gate bias in the range 

of 10.0-10.15 V plotted in Fig. 4.15; for slightly larger inversion gate bias these kinks 

give way to a smooth increase in current which is much greater (Fig. 4.16). Both 

Figs. 4.15 and 4.16 are for inversion gate bias significantly lower than that where a 

sharp turn on in current is observed in equilibrium transport observed in Fig. 4.11. 

4.4 D12: Symmetric 200 nm Dot 

Device D12 is a symmetric dot with the same pattern file (and thus intended) 

gate structure as D9. However, it will be seen that the features are somewhat 

different. 

http:10.0-10.15
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Figure 4.16: Drain bias sweeps of device D9 for various values of the inversion gate 
bias. The depletion gate biases are -30 m V, 35 m V, 35 m V, and -15 m V for the left, 
middle, right, and bottom respectively. 

4.4.1 INVERSION GATE SWEEP 

The first type of experiment on this device is a sweep of the inversion gate bias 

with all of the depletion gates held at zero bias. The results of a sweep with the drain 

bias held at 100 p,V are shown in Fig. 4.17. In this sweep, there were some major 

peaks, with some minor peaks, shoulders and inflection points superimposed. These 

points have again been picked by a numerical peak finding routine and the bias 

values labeled. A major feature of the data is the presence of a negative current. It 

is believed that this is due to an unresolved ground loop in the measurement system 

which serves as a lower resistance path in the subthreshold region of the MOSFET 

operation. 

4.4.2 ALL DEPLETION GATES TIED 

The I - V characteristics were also measured for the case where the depletion 

gates are all tied to the same bias, which is swept for a fixed source-drain and 
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Figure 4.17: A single inversion gate sweep of device D12 where all of the peaks and 
inflection points have been identified and labeled. 

inversion gate bias. An example of a single sweep is shown in Fig. 4.18, where 

the source-drain bias is held at 100 fLV and the inversion gate bias is 1.615 V. In 

the figure, peaks in the source-drain current are observed. If we now generate 

a composite image of all such sweeps taken for a range of inversion gate biases, 

the position of these peaks is observed to evolve as a function of both inversion 

and depletion gate bias. The source-drain current is plotted in the depletion gate-

inversion gate plane in Fig. 4.19, where the amplitude is represented by a color 

map. Superimposed on the color mapped plot are the positions of peak conductance 

(circles) and shoulders (open squares) discussed earlier in regard to Fig. 4.17. The 

main overall feature of this plot is that the positions of the peaks evolve in an almost 

linear fashion with depletion gate bias with slope a. If one examines Fig 4.19 closely, 

there are several other subtle features: 

• There appear to exist two different ladders of lines which evolve with different 

slopes, al and a2, which produce crossings. 
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Figure 4.18: A single sweep of the depletion gate bias in device D12 for fixed source­
drain and inversion gate biases of 1.615 V and 0.1 m V, respectively . 

• 	 There are several regions away from these crossings where one line jumps to 

another line in the same ladder . 

• 	 Some lines go from series of peaks to series of shoulders, and some which begin 

as series of shoulders disappear only to reappear at lower gate bias. 

One would expect that in changing the depletion gate bias, the confining 

energy would change with it. However, it is equally likely that in changing the 

inversion gate bias, the shape of the potential would also be changed by such effects 

as carrier screening. From the data, it appears that the changes due to the inversion 

gate bias are equally balanced by the changes due to the depletion gate bias, keeping 

the change linear. 

4.4.3 PLUNGER DEPLETION GATE 

Rather than varying all of the depletion gates simultaneously, measurements 

were performed in which only the plunger gate (shown in Fig. 3.2) was swept, while 



110 

X 10.10 

12 
~ 

> 2.6 10'-'" 
tn ca 

8.­m 2.4 

CI) 6... 
2.2 ca 

CJ 4 

c: 2 
0 2 
...tn 

1.8 


.­
CI) 0 

-0.2 -0.1 0 0.1 0.2 

Depletion Gate Bias (V) 

Figure 4.19: A composite plot of individual sweeps of the depletion gate bias in 
device D12 for different inversion gate bias with the position of the peaks overlaid. 
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Figure 4.20: A single sweep of the plunger gate bias in device D12 (with all other 
depletion gate biases held at ground) for fixed source-drain and inversion gate biases 
of 0.1 mVand 1.735 V, respectively. 

the other depletion gates were held at ground. The plunger controls the input and 

output channels directly, and should in principle have less effect on the overall shape 

and size of the dot itself compared to the biasing all gates simultaneously. It also 

allows us to look at asymmetry effects in the dot shape. An example of an individual 

sweep is shown in Fig. 4.20. 

Figure 4.21 is a composite of the sequence of sweeps for the plunger gate. 

The color map has the same meaning as before, and the peak positions are again 

superimposed over the color map plot. Here, it is even more evident that there is an 

additional ladder of peaks that crosses the first ladder. Also, it is not clear that the 

first peaks which are visible in this plot correspond to starting with zero electrons 

in the dot. 

Viewing this sequence of sweeps in a quasi-three dimensional plot allows us to 

visualize the peak structure in a different way. Figure 4.22 shows a waterfall plot 
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Figure 4.21: A composite plot of individual sweeps of the depletion gate bias of 
device D12 with the position of the peaks (filled circles) and shoulders (open boxes) 
overlaid. 

that has been rotated in such a way that the crossing points are easily visualized, 

showing that the peaks that have the higher slope a, also have larger amplitude. 

4.4.4 NON-ZERO DRAIN BIAS 

To study non-equilibrium effects, the inversion gate is swept for small finite 

drain bias. The results are shown in Fig. 4.23 and Fig. 4.24 for various positive 

and negative drain biases, respectively. These figures show that the peak current 

magnitude increases monotonically as the excitation bias is increased, as expected. 
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Figure 4.22: A waterfall plot of the plunger gate sweeps oriented with the view 
along the higher ladder of peaks. 
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Figure 4.23: A set of increasingly positive drain excitation bias in device D12, show­
ing oscillations with a fine structure which are persistent in the range of measured 
drain excitation of 100/LV to 1 m V DC. 

There is an oscillatory structure which is persistent above the 1 m V excitation bias. 

However, the peak to valley ratio decreases as the excitation bias is increased. In 

addition, there is a fine structure, which remains approximately the same, whose 

peak to valley ratio does not decrease with the increasing drive bias. 

The existence of current with zero source-drain excitation bias suggests that 

there is a ground loop in the system, to which the negative currents observed could 

also be attributed, as previously mentioned. A composite plot of all of the individual 

sweeps is shown in a semi-log plot of the current magnitude in Fig. 4.25. In the 

color map, the darker color is smaller current. It can be seen that changing the 

inversion gate bias moves the position of the gap back and forth in drain bias. 

Larger bias sweeps of the source drain excitation bias were performed as shown 

in Figs. 5.24 and 5.27. As mentioned in Section 2.6.3, observation of the Coulomb 

staircase, which should occur due to single electron charging, gives information 

about the charging energy in the dot and its coupling to the drain bias. If the 
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Figure 4.24: A set of increasingly negative drain excitation bias, showing oscillations 
with a fine structure in device D12, which are persistent in the range of measured 
drain excitation of 0.0 m V to -1 m V DC. 

Coulomb charging energy were the dominant energy scale and the dot barriers were 

asymmetrically biased and the overall conductance of the channel were » 2e2 / h, 

the Coulomb staircase would be evidenced. 

4.5 Dll: Asymmetric 100 nm by 200 nm Dot 

Device Dll was fabricated with an asymmetric geometry (as shown in Fig. 3.6 

frame b) with the idea of specifically probing the effects of an asymmetric confine­

ment potential and therefore help in understanding the transport spectroscopy of 

the symmetric devices as well. 

4.5.1 INVERSION GATE SWEEP 

The measured inversion gate sweeps for constant drain bias are shown in 

Fig. 4.26 for several depletion gate biases for sample D11. The inset is a smaller in­

terval with range similar to that of depletion gate sweep measurements. The major 



- - --------

116 

2.6 

2.5 

2.4 ..-.. 
> 2.3 "-'" 
tn 
ca 2.2 .­m 

2.1 
CD... 
ca 2 

" 1.9 

1.8 

1.7 

1.6 
-1 -0.5 0 0.5 

3x 10­
Drain Bias (V) 

Figure 4.25: A semi-log plot of Id sweeps of device D12 for finite drain bias. The 
gap in current is seen to move back and forth in drain bias as the inversion gate 
bias is changed. 
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Figure 4.26: Inversion gate sweeps of device D11 for several increments of the de­
pletion gate bias, with all depletion gates tied to the same voltage source. 

features are similar to the other devices measured. In this device, there was a very 

dramatic turn on and some fine structure similar to device D12. 

4.5.2 ALL DEPLETION GATES TIED 

Most of the measurements were performed with all of the depletion gates 

tied together. These measurements gave similar results to devices DID and D12. 

Figure 4.27 shows a sequence of sweeps of all depletion gates tied together for several 

successively larger inversion gate biases. Note how the relative importance of each 

peak changes with changing inversion gate bias as the sweeps progress. Also note 

how the current amplitude is much lower than for the other devices for similar 

biasing conditions. 

A composite plot of all depletion gate sweeps is shown in Fig. 4.28, with the 

peak positions superimposed over the color mapped plot. An interesting feature" 

of this plot is that there are apparently three different types of lines. Members of 
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Figure 4.27: A sequence of several depletion gate sweeps of device D11 for succes­
sively larger inversion gate biases. 

each group have the same slope in the VInv - VDepl-plane, which is different from the 

slopes in the other groups. This is discussed in more detail in Chapter 5. 

4.5.3 NON-ZERO DRAIN BIAS 

Figure 4.29 illustrates the effect of non-zero drain bias on the I - V character­

istics, where the top inversion gate bias is swept while the drain bias is incremented 

from 100 t-tV to 3.4mV. As the inversion gate bias is swept for increasing drain bias, 

the position of the current peaks evolve linearly with positive slope. The positive 

slope is a departure from D12. For drain bias around 3.2 meV, most of the features 

have broadened to a point that they are indistinguishable from the background 

current increase. 
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Figure 4.28: A composite plot of all depletion gate sweeps of device D11 for increas­
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have been overlaid. 
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Figure 4.29: A sequence of inversion gate sweeps of device Dll for increasing drain 
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5. ANALYSIS 


5.1 	 Introduction 

In this chapter, an analysis of the transport data for the devices DlO, D9, 

D12, and Dll will be presented. The calibration of the inversion charge density and 

reservoir Fermi energy as a function of the inversion gate bias is first discussed in 

Section 5.2. This will be followed by a discussion of the dot capacitance and size 

in Section 5.3. In Section 5.4, the effort to calculate the quantum dot energy levels 

within the tunneling regime is discussed, followed in Section 5.5 by a comparison of 

the experimental addition energy spectrum. Section 5.6 follows with a discussion of 

how the peak shape characterization can be related to the various dot capacitances 

and energy level fine structure. In Section 5.7 the behavior of dot Dll in a magnetic 

field will be discussed, followed in Section 5.8 by a discussion of the results for a finite 

source-drain bias. Perhaps the most important results in this work are presented 

in Section 5.9, the evolution of the peak conductance positions in the inversion 

gate bias-depletion gate bias plane. Included are simulations which attempt to 

explain these results in terms of the calculated energy level structure presented in 

Section 5.4. 

5.2 	 Conversion of Inversion Gate Bias to Reservoir Fermi 
Level 

Here the conversion from the raw magnetoresistance data to inversion layer 

electron density and the calibration of the Fermi Level in the channel as a function 

of inversion gate bias will be discussed. 
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Figure 5.1: Inversion charge density as determined by SdH measurements at 4.2K 
for devices M1 and D11. 

5.2.1 MAGNETOTRANSPORT AND DENSITY DETERMINATION 

As discussed in Section 5.7, the density of a 2DEG can be determined from the 

periodicity of Shubnikov de Haas oscillations with inverse magnetic field, as given 

by Eq. 2.14, or solving in term of the sheet charge density, 

z 9s9v (5.1)n2D = 27rn~ ( ) -k . 

As discussed in Section 2.3.1, the valley degeneracy 9v for the lowest silicon (1 0 0) 

surface (in the absence of valley splitting) is 2, and the spin degeneracy of the lowest 

lying set of ~2 subbands 9s is 2. The 2DEG density as a function of inversion gate 

bias is plotted in Fig. 5.1 for devices M1 and Dll, extracted using Eq. 5.1 and the 

positions of the SdH peaks extracted numerically. As expected, they can be well fit 

by a straight line. The extracted relation between the inversion charge density n2D 

and the gate voltage for the data shown in Fig. 5.1 is 

(5.2) 
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In an MaS capacitor, the relation between the 2DEG density and the capacitance 

and threshold voltage is given by 

(5.3) 


where the capacitance per unit area is given by Cox = foxfO/Xox . In an ideal MOS­

FET, the threshold voltage depends on the temperature, dopant density, and sub­

strate bias. However, imperfections in the oxide (such as oxide charges), interface 

states, and the electron work function for the metal may shift this threshold voltage. 

Comparing the results of the SdH measurements to the expected value in a device 

with a 95 nm oxide, we would expect a slope of 2.27 x 1011 /cm2 , which is in good 

agreement to our measured slope of 2.31 x 1011 /cm2 . 

If the position of the SdH oscillation peaks are plotted as a function of the 

inversion gate bias, a fan diagram results in which the dependence of the Landau 

levels on the gate bias can be seen. This diagram helps identify spin and valley 

splitting, and the population of higher 2D subbands. An example of a fan diagram 

for the data of Dll is given in Fig. 5.2. One can associate sequences of peaks (shown 

by the straight lines) with the evolution of a given Landau level with magnetic 

field. In Fig. 5.2, it is speculated that peak labeled l' may be attributed to spin or 

valley splitting. The first eight Landau levels from the lower ladder of subbands (~2 

ladder) fill to the right. No evidence for upper subband occupancy is observed, which 

supports the assumption that electrons may be treated in the electron quantum limit 

(EQL) in calculations. 

5.2.2 FERMI LEVEL CALCULATION 

It was shown in Section 2.3.2 that for a pure 2DEG system, the 2DEG density 

and the Fermi energy are related by Eq. 2.10. For low temperatures, this may be 
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Figure 5.2: A fan diagram for the SdH data from D11. the Landau levels corre­
sponding to the filling of the ~2 ladder of sub-bands are denoted by un-primed 
labels; l' denotes filling of the lowest ~4 Landau level. 

accurately approximated by the expression 

(5.4) 


which, when solved for the Fermi energy relative to the energy at the bottom of the 

subband of index i, gives the linear relation 

(5.5) 


As was determined in the previous section, the devices measured in this work 

behaved as a single subband 2DEG for all experimental conditions encountered. 

Using Eq. 5.5 and the experimentally determined inversion gate 2DEG density de­

pendence, the Fermi energy in the reservoirs can be calculated as a function of the 

inversion gate bias. Using the experimental data for the 2DEG density presented in 
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the previous section (Eq. 5.2) and Eq. 5.5, we have 

EF - Ei = 5.81{3.2 + Vinv) meV, 	 (5.6) 

for the Fermi level referenced to the bottom of the lowest .6.2-subband (Ei = Eo). 

5.3 Estimation of Dot Sizes and Capacitance 

In this section, the quantum dot size will be estimated first based on Coulomb 

blockade analysis (that is to say that it is assumed that transport behaves as if purely 

Coulomb blockade limited), and then under the assumption that the confinement 

energy dominates the transport. 

5.3.1 AN ESTIMATE OF DOT SIZE BASED ON COULOMB BLOCKADE 

ANALYSIS 

If CB is the limiting factor in transport (i.e. the dominant term in Eq. 2.84) 

then it is possible to make an estimate of the dot size based on the effective capaci­

tance of the dot. While there are fluctuations in the periodicity in each of the gate 

voltage sweeps which suggest the probable role of electron-electron interactions and 

the underlying discrete energy level structure, a median value for the capacitances 

will be assumed a valid measure of the system. The total capacitance of the system 

is given by equation 

C E = C Se1f + Cgates + C Bias 	 (5.7) 

where Cgates is the algebraic sum over all the capacitively coupled gates in the 

system, C Bias will be discussed below, and C Se1f is the self-capacitance of the dot 

itself, which is ultimately what we seek. For device D12, the algebraic sum of gate 

capacitances may be computed as follows: 

• 	 The inversion gate capacitance is taken from the mean voltage splitting be­

tween consecutive central peaks and Eq. 2.84, to be CInv = 1.08 aF. 
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• 	 From Table 5.3, the average value of the sum of depletion gate capacitances is 

CDep1 ~ 6.65 aF. These values can be obtained by either fitting the capacitance 

using Eq. 2.B5 or the peak splitting using Eq. 2.B4. 

• 	 The total capacitance of the system can be taken as the mean value as obtained 

from the peak fits from Tables 5.3 and 5.4 to be Cy:, ~ 67.62 aF. Note that not 

all devices could be fit in this manner; an alternative approach is to assume 

that the Coulomb gap voltage (i.e., the voltage range around zero bias where 

current is supressed) gives the value of Cy:, using Eq. 2.B4. This method was 

used in Table 5.1, where CBias is neglected. Using this method for D12 gives 

Cy:, ~ 32 aF. 

• 	 The capacitance of the biased lead will be neglected in this section; discussion 

of this quantity will be deferred to Section 5.B 

Subtracting from the total capacitance these individual parts gives the dot 

capacitance 

Cse1f = Cy:, - [CDep1 + CIny] ~ 24.3 aF. 	 (5.B) 

To estimate the size, a model for the quantum dot self capacitance must be 

found. Several possible model geometries and their associated capacitances are [163] 

Parallel plates: C = E: assuming A ~ d (5.9) 

disc above conducting plane: C = BER (5.10) 

Conducting sphere: C = 47rW (5.11) 

conducting sphere above grounded plane: 

(5.12) 
C = 21r€v'<f1- 4a2 t. (coth [(j + 1/2)arcosh C~)] -1) 

where a is the sphere's radius and d is the distance from the sphere's center to the 

grounded plane. The most popular model among experimentalists is that of the 
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conducting disc, Eq. 5.10, since the 2DEG is narrow and the electrostatic confine­

ment gives a rounded lateral potential. For Eq. 5.10 to hold, one must assume that 

R is much smaller than the distance above the plane. Here, since the distance from 

the Si-Si02 interface is ~ 95 nm, this is a questionable assumption. The solution 

incidentally is given as a problem in Jackson's book on Electrodynamics [164]. Tak­

ing the relative dielectric constant for Si as 11.7, Eq. 5.10 gives the radius of the dot 

as Rlot ~ 	29.3 nm, or a diameter of 58.6 nm. These results are significantly larger 

than those reported by Khoury et al. [165] for a similar structure. 

However, it is equally reasonable to consider the case of a sphere above a plane 

(Eq. 5.12), since in a MOS structure there is a finite width to the inversion layer 

on the order of 10 or 20 nm. As the expression 5.12 does not lend itself easily to 

inversion for a, instead we will use Eq. 5.11 as an approximation. Table 5.1 gives 

a summary of the capacitances for devices D9, DID, D11, and D12, as well as the 

calculated radii for all but D11. It should be noted that the value for Cr, for device 

D12 is the second value stated above, which gives a result much more consistent 

with the other devices measured. In all cases except DID, the derived radius is 

much less than the lithographic dimensions of the dots shown in Fig. 3.6, which is 

expected based on the depletion potential around the gates which extends inwards 

from the metal edge itself. 

5.3.2 	 AN ESTIMATE OF DOT SIZE BASED ON DISCRETE ENERGY 

LEVELS 

For a device the size given in Table 5.1, one should certainly expect that the 

discrete nature of the dot states would be a dominating factor in the tunneling 

transport. In this section, it is assumed that the period of tunneling current peaks 

is due solely to the spacing of confinement energy states in the dot rather than CB. 

Theoretical calculations based on the same dot structure [166] (to be presented in 

Section 5.4) show that the lower lying energy eigenvalues are grouped with nearly 



128 

Table 5.1: Capacitance and radius values for dots, assuming pure Coulomb blockade 
transport. 

Device CE (aF) CDep1 (aF) CInv (aF) CSe1f (aF) RDot (nm) 

D9 24.6 7.36 0.917 16.4 12.6 

DI0 267 1.49 4.76 261 199 

Dll 16.9 2.20 0.903 13.9 ? 

D12 32.0 6.65 1.08 24.3 29.3 

uniform spacing, as predicted for dots with a harmonic lateral confinement potential 

(see Section 2.5.1). These calculations appear to be supported by the data to be 

presented in Section 5.9. 

In the following, it is assumed that the spacing of conductance peaks is due 

solely to the alignment of the quantum dot energy eigenvalues with the Fermi energy 

in the leads. For simplicity assume that the wave function is that of a one dim en­

sional simple harmonic oscillator, which leads to well known results for the lateral 

extent of the wave function given by (see, for example the text by Cohen-Tannoudji 

et al. [167]) the root mean square deviation of the spatial extent (X) of the wave 

function 

(5.13)1 - Jm*wf3 - n'f3..J2' 

where fiw = b..E, the confinement energy for electrons in the dot and f3 has dimen­

sions of inverse length. For the ground state b..X = 2RDot • The values for 

L--__________________ 
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Table 5.2: A summary of the estimated dot size and capacitance based on the 
assumption that the confinement energy dominates the transport 

Device tEl (meV) RDot (nm) CSe1f (aF) 

D9 0.282 17.6 22.9 

DlO 0.066 115.1 149.8 

D11 0.106 (0.358) 28.6 (15.6) 28.7 

D12 0.141 24.8 32.3 

each quantum dot measured are given in table 5.2, where the mean energy splitting 

between tunneling peaks are taken from Section 5.9. Again, the radius is less than 

the lithographic dimensions of the dot. 

By equating the charging energy to the confinement energy, (Ec = EQ), the 

critical dot radius for which CB dominated energy gives way to confinement domi­

nated energy: 

(5.14) 


For all values of RDot greater than this value, theoretically the charging energy 

dominates. 

5.3.3 DISCUSSION 

At this point, it is reasonable to question whether the estimates obtained in 

the previous two sections are in line with what can be expected from a theoretical 

perspective. As discussed in Chap. 1, one should expect to see the effects of quan­

tization when the value of the phase coherence length, l</> is on the order of the size 
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of the dot. Based on the experimental data characterizing the 2DEG (namely, the 

mobility and the sheet charge density extracted from the magnetoconductance and 

correlated to the field effect and effective mobility from gate sweeps), this length 

has been estimated to be It/> ~ 1.25 - 1.9 x 10-5 cm, or ~ 125 - 190 nm. Cer­

tainly, it should be expected that devices D9, Dll, and D12 have smaller minimum 

dimensions, as was estimated in Section 5.3 and again in Section 5.4 to be on the 

order of 40 nm for the lithographic dimension of 200 nm. However, there is some 

question as to whether a device of the size of DlO or D2 (500 nm lithographic) 

should exhibit energy quantization effects. If we allow for similar lateral depletion 

(75 nm) in from each depletion gate edge, the electrostatic extent of the dot is still 

350 nm, which is greater than two times lcP. One should be skeptical that energy 

quantization should be observable in such a system. This suggests that possibly 

the energy quantization in the quantum point contacts defining the dot entrance 

and exit lead to the conductance oscillations. Another possibility is that Coulomb 

blockade dominates the conductance. For a dot with a radius of 175 nm (as de­

fined by the lateral electrostatic depletion) the associated capacitance (using the 

disk model) is 146 aF with a corresponding charging energy Ec = 548 j.leV. Yet 

another possible explanation stems from theory developed to study energy relax­

ation in semiconductor quantum dot lasers [63]. In this work, it was found that the 

discrete allowed phonon states drastically retarded the phonon scattering rate; this 

leads to longer scattering times, which could enhance It/> in semiconductor quantum 

dots. This effect has been studied more recently for the specific case of Si quantum 

dots by Diir et al. [168, 169], leading to similar findings. No attempt has been made 

to calculate the lcP enhancement from this effect. It has also been shown that the 

role of multiple phonon [170], Auger [171], and spectral broadening [172] processes 

can reduce this so-called phonon bottleneck to phonon scattering. 
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Another scattering effect detrimental to the observation of quantization of 

energy levels which must be considered is level broadening. With Te = /-Lm* / e and 

using the Heisenberg uncertainty principle, it can be argued that level broadening 

occurs due to the scattering, which is estimated as b.E = Ii/Te. From the mobility 

of 3000 - 4000 cm2/Vs typical of the experimental conditions, the calculated energy 

level broadening is 125 - 200 /-LeV. Level broadening of this magnitude should smear 

out all of the fine structure observed in device D12, as well as severely broaden other 

peak structures observed. This fact suggests once again the possibility of mobility 

enhancement in the dot. This mobility enhancement could make observation of 

these small quantization energies possible. 

From the analysis in this section, combined with the theoretical calculations 

which will be presented in Section 5.4, the dot sizes calculated under the assumtion 

of pure electron confinement energy are more consistent with the as-drawn dot 

dimensions. There is some difficulty with the asymmetric device in coming up with 

a value; two values are reported in Table 5.2 for this reason. Also, it is believed 

that the calculated radius for DlO is underestimated by the confinement energy and 

overestimated by the capacitance method. It is a reasonable assumption that this is 

the dominant energy scale in the transport behavior observed in the quantum dots 

reported on in this work. 

5.4 Self Consistent Calculations of Dot Structure 

To calculate the energy level structure in these and other quantum dots fab­

ricated in this work, Dragica Vasileska's group at Arizona State University recently 

developed a full 3-D Schr6dinger-Poisson solver [166]. The calculations reported 

herein were performed by Srdjan Milicic at ASU. The calculations start by comput­

ing a self-consistent background potential by solving the Poisson equation taking 

into account detailed balance of dopant impurities and using Dirichlet boundary con­
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ditions for the electrostatic potential applied to the depletion and inversion gates. 

For the solution of the 3D Poisson equation, either the ILU or the Bi-CGSTAB 

methods were used. Partial ionization of the dopant impurities are taken into ac­

count, but do not account for the exchange-correlation corrections to the ground 

state energy of the system. 

This background potential is used as a starting point to self consistently solve 

the Schrodinger-Poisson equations for the bound and free electrons within the dot. 

For the solution of the 3D Schrodinger equations in the dot region, Lanczos/ Arnoldi 

factorization is used to construct an orthogonal basis for a Krylov subspace that 

provides a way to implement the projection numerically. Implicit restarting is used 

to overcome the intractable storage and computational requirements in the origi­

nal Lanczos/ Arnoldi method. As such, this method allows calculation of a desired 

number of the lowest eigenvalues and the corresponding eigenvectors that describe 

the occupied states in the dot at low temperature. Sturm sequencing, combined 

with bisection and inverse iteration, is used to find the eigenvalues and the cor­

responding eigenfunctions of a tri-diagonal symmetric matrix that arises from the 

finite-difference discretization of the 1D Schrodinger equation for the 2DEG in the 

leads. 

5.4.1 ENERGY EIGENVALUES 

in this section, the calculated energy eigenvalues will be presented for a sym­

metric dot with both symmetric and asymmetric biasing conditions. These calcu­

lated energy eigenvalues correspond to the dot geometries of devices D9 and D12. 

The energy eigenvalues for an asymmetric dot with symmetric biasing conditions 

will also be presented, corresponding to the dot geometry of device Dll. The case 

of asymmetric dot geometry is not presented because there is not experimental data 

for the asymmetric dot to compare calculations to. 
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5.4.1.1 Symmetric Dot, Symmetric Depletion Gate Bias 

The first 30 energy eigenvalues have been calculated by the methods described 

above for various values of inversion gate bias and with all depletion gates tied 

to the same bias for a quantum dot with the same geometry as that of devices 

D9 and D12. Fig. 5.3 is a plot of the energy eigenvalues for fixed inversion gate 

bias treating the depletion gate bias as a parameter, while Figure 5.4 plots the 

energy eigenvalues for fixed depletion gate bias treating the inversion gate bias as 

a parameter. It is observed that the effect of increasing the inversion gate bias is 

to pull down the energy of the lowest ground state eigenvalue (with the relative 

spacing of all eigenvalues becoming more dense), while the effect of biasing the 

depletion gates increasingly negative is to push up the lowest ground state energy 

eigenvalue. It is also observed in both plots that the lower eigenvalues evolve in 

groups which are nearly degenerate and have a nearly uniform spacing, while as the 

quantum number increases, the gap between groups of nearly degenerate eigenvalues 

decreases until the grouping structure is difficult to distinguish. In the first four 

groups, the membership increases by one per group so that the first 10 eigenvalues 

are grouped by 1, 2, 3, and 4 members. This grouping structure is in agreement 

with the degeneracy of an isotropic two dimensional harmonic oscillator potential 

(g = n + 1). The lowest lying states appear to be well described by harmonic 

oscillator-like solutions, whereas for higher energies, the potential is less symmetric, 

leading to a splitting of the degeneracies. 

The dashed horizontal line in Fig. 5.3 is the position of the Fermi energy 

in the channel. States above this line are empty, states below it are filled, and 

states which cross this line are active tunneling channels at thermal equilibrium. 

The dependence of the ground state energy eigenvalues on the change in inversion 

gate bias (as a function of principal quantum number) is plotted in Fig. 5.5, while 

the effect of changing the depletion gate bias (as a function of principal quantum 
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Figure 5.3: A plot of the first 30 energy eigenvalues for various inversion gate biases 
as a function of the depletion gate bias. The Fermi level in the channel is shown as 
a horizontal dashed line, with states below the Fermi energy being filled in the dot 
and those above it being empty. 
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Figure 5.4: A plot of the first 30 energy eigenvalues for various depletion gate biases 
as a function of the inversion gate bias. 
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number) is plotted in Fig. 5.6. It is apparent from Fig. 5.3 that for higher energy 

level indices that there is deviation from a linear dependence for high n. The energy 

eigenvalues evolve with a nearly linear dependency of slope CYInv (or slope CYDepl) 

defined by the relations 

aEn I aEn I
CYInv = ay-; CYDepl = (5.15) 

Inv VDepl=const. aVDepl Vinv=const. 

The same grouping as in Figs. 5.3 and 5.4 also clearly appear in Figs. 5.5 and 5.6. It 

appears that a more positive inversion gate bias leads to a smaller dependence on n 

in CYDep), while a more negative depletion gate bias leads to a reduced dependence of 

CYInv on n. Another feature to point out is that while the dependence on the inversion 

gate or depletion gate is increased for increasing n, the higher levels are occupied 

only for higher inversion gate bias, but the dependence is reduced as inversion gate 

bias is increased. An overall interpretation is that the higher lying states are more 

weakly bound as a result of this effect. 

5.4.1.2 Symmetric Dot, Asymmetric Biasing 

Figure 5.7 shows plots of the first 30 energy eigenvalues for a dot with sym­

metric gate bias, but for the biasing condition where the plunger gate is biased 

asymmetrically with respect to the remaining three depletion gates, which are held 

tied to ground. Again, the position of the Fermi energy in the channel (with respect 

to the lowest subband in the conduction band) is indicated by a dashed line. The 

primary difference from the case of symmetric biasing of a symmetric dot is that the 

plunger depletion gate coupling is weak compared to the case where all depletion 

gates are biased at the same value. The slope of the energy eigenvalues for change 

of plunger gate bias is plotted in Fig. 5.8 for several values of inversion gate bias. It 

is clearly observed that these slopes are smaller than those for symmetric depletion 

gate biasing in Fig. 5.5. Again, the same nearly degenerate grouping is observed in 

the plots in Figs. 5.7 and 5.8 as in the symmetrically biased counterparts. 
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pletion gate bias of -0.2 V and -0.4 V. various inversion gate biases in a sym­

metrically biased symmetric quantum 
dot. 

5.4.1.3 Asymmetric Dot 

The first 28 to 30 energy eigenvalues for an asymmetric quantum dot with the 

same geometry as that of Dll are plotted in Fig. 5.9. Two obvious differences that 

can be observed are that the bottom of the energy band structure is much higher for 

the asymmetric dot geometry, and that (especially at lower inversion gate biases) 

there is a clear non-linearity in the dependence of the energy levels on the depletion 

gate bias. This non-linearity is significant enough that no attempt has been made 

to extract an Q'Inv or Q'Depl. The position of the Fermi level in the channel is marked 

for each inversion gate bias by the horizontal dashed line. Again energy levels below 

the dashed line are filled states, while energy levels above the Fermi level are empty. 

In general, as the inversion gate bias is increased, the dependence on the depletion 

gate bias is reduced, and the successive energy levels in the ladder are more closely 
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Figure 5.7: Plots of the first 30 energy eigenvalues for an asymmetrically biased 
symmetric quantum dot for various values of plunger gate bias. The inversion gate 
bias goes from right-to-Ieft and top-to-bottom panes as 6.0 V, 6.5 V, 7.0 V, and 8.0 
V. 
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Figure 5.8: A plot of the slope aplunger as a function of quantum number n for 
various inversion gate biases for the asymmetrically biased symmetric quantum dot. 

spaced. Another important feature is that the degeneracy structure, which was so 

apparent in the symmetric case, disappears, particularly as the inversion gate bias 

is increased. 

5.4.2 DISCUSSION 

An important issue analyzed in the last section (Section 5.3) was the dot size. 

From the calculations of the background base potential profile, it appears that there 

is a lateral depletion from the depletion gates on the order of 50 nm in the symmetric 

devices. The calculations of electron wave function shows that there is considerable 

variation with quantum number, but that for the ground state the size is roughly 

60 nm. This is in good agreement with the size calculated in Table 5.2. 
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5.5 Addition Energy 

As discussed in Section 2.5.1, multi-electron quantum dots show an energy 

level structure which has features analogous to atomic spectra when the dots are 

small enough and are occupied by a small number of electrons. In Section 2.6.3, in 

the context of few electron dots and artificial atoms, it was discussed how a shell 

structure appeared to be observed in the tunneling conductance peak periodicity. 

Such structure is often discussed using the concept of an addition energy, L:::.E, 

which is simply defined in terms of the incremental change in energy between two 

consecutive tunneling peaks, or 

L:::.E E(n) - E(n - 1), (5.16) 

where the argument n can be considered the principal quantum number, electron 

number N occupying the dot, etc. In other words, the addition energy is the energy 

needed to fill the next available state in the ladder of allowed energy levels given 

that the state preceding it is already filled. From this discussion, it is seen that it 

would also be appropriate to use the term filling energy interchangeably with the 

term addition energy. It is worth emphasizing that what is measured is the Fermi 

level in the channel at which the peak tunnel current is observed, so that in Eq. 5.16, 

L:::.E = EF(n) - EF(n - 1). 

In this section, the addition energy spectrum will be presented from the ex­

perimental data for the quantum dots D9, DID, Dl1, and D12. As was discussed 

in Section 2.6.3, in tunneling transport through a quantum dot with fully discrete 

states, a peak in the conductance arises when the chemical potential in the channel 

(the leads of the quantum dot) aligns with an allowed state in the quantum dot, 

as was shown schematically in Fig. 2.11. In the following analysis, data from the 

inversion gate sweeps are used to generate an addition spectrum by using Eq. 5.6, 

the empirically derived relation between inversion gate voltage and 2D Fermi energy 
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Figure 5.10: Filling energies for device DID, assuming that the two sets of peaks are 
independent of each other. These two sequences are labeled 81 and 82 . 

from the SdH data in Section 5.2, to correlate the inversion gate peak positions to 

the Fermi energy in the channel. 

In this section these devices will be treated as if there are two independent 

addition spectra corresponding to two sets of "branches". As is discussed later in 

Section 5.9, several of the devices exhibit complex structure when the peak positions 

are plotted in the inversion gate-depletion gate bias plane. The reader is referred to 

that section for further discussion on this matter. 

The addition spectrum for device DID is shown in Fig. 5.10, as extracted from 

the data of Fig. 4.8 for a depletion gate bias of -100 m V, while the addition energy 

for device D9 is plotted in Fig. 5.11, as extracted from the data plotted in Fig. 4.11 

for a similar sequence of depletion gate biases. 

Figure 5.12 plots the addition energy for device D12 taken from the data 

presented in Fig. 4.17. For device D12, it is assumed that the fine structure is due 

to splitting of some degeneracy associated with the energy level, whose bare level 
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Figure 5.11: The addition energy spectra for several different bottom depletion gate 
voltages is plotted for device D9. There are local maxima in the spectra for filling 
number N=2, 4, and 6. 

is located at the center of the major peak. Discussion of the meaning of this fine 

structure will be deferred to Section 5.6. Again, there appear to be two ladders of 

energy levels for device D12. 

Figure 5.13 shows a plot of the addition spectrum for device Dll from the 

data presented in Fig. 4.26. For Dll, there appear to be three ladders of energy 

levels. 

5.5.1 COMPARISON OF MEAN ADDITION ENERGY 

A simple comparison to make is that of the mean addition energy, which is 

essentially the same value as the mean spacing summarized in Table 5.2 in the first 

row. As one would intuitively expect, the addition energy is greater for the smaller 

devices (D9, D12, and Dll) and much smaller for the larger device (DID). 
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Figure 5.12: The addition energy spectrum for the ground state of the quantum 
dot D12, calculated assuming that the ground state energy is at the location of the 
central, dominant peaks. The depletion gate bias for these measurements is zero. 
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Figure 5.13: An estimate of the addition energies for each of the sets of branches 1, 
2, and 3 plotted for device D11. The depletion gates have been biased at 0 V. 
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5.5.2 COMPARISON TO THEORY 


A comparison to the theory of artificial atoms discussed in Section 2.6.3 is 

not necessarily straight-forward for the experimental data from this work for the 

following reason: in the experiments reported here, the Fermi energy in the channel 

does not remain fixed as the inversion gate is swept, while in the results discussed 

in the literature the Fermi energy should remain fixed. For the same reason, it is 

not necessarily straight-forward to compare the calculated energy levels with the 

addition energy structure reported in the literature; changing the inversion gate 

bias clearly leads to large variations in the bare level structure in the dot, as was 

evidenced by the plots for C¥Inv and C¥Depi in Figs. 5.5 and 5.6. What is observed 

in Figs. 5.10 through 5.13 is that only in Fig. 5.11 does there appear to be a shell 

structure similar to the literature; it is this apparent shell structure which will be 

considered first. 

While addition energy in Fig. 4.11 is aperiodic, there are some features that 

have been observed in other systems [134], and have been predicted in the literature 

in conjunction with the theory of semiconductor artificial atoms [76, 82, 86]. In 

these previous works, it was found that there are special filling numbers for which 

the addition energy gives local maxima. These filling numbers have been attributed 

to filled electron shells, and correspond to: N = {2, 6,12, ... } with minor peaks at 

N = {4, 9}. Ezaki et al. [76, 82] showed through a theoretical study in which the 

exact diagonalization of the few particle Hamiltonian (as discussed in Section 2.5.1) 

that these minor peaks were in fact special to circular dots, and should not be seen 

in dots with square geometry (or at least should be suppressed). 

While the effects of some shell structure for a circularly shaped dot potential 

is one possible interpretation of the data, another is that of a double-dot structure, 

which was studied theoretically by Matveev et al. [173, 174, 175] and experimentally 

by Waugh et al. [176] for intentionally formed double quantum dots. The theoretical 
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work found that if there were two dots coupled capacitively to each other and the 

reservoirs on either side by tunnel junctions, and the coupling between the two 

quantum dots and the channel were asymmetric, then the Coulomb blockade peaks 

would be grouped together in pairs, each pair separated by some small amount and 

with a nearly equal pair splitting X+ - X_ (defined below) which grows as the 

inter-dot coupling Go increases. The peaks were shown to occur when the charging 

energy on the two dot system satisfied the simple relation 

(5.17) 


where, as usual {Nb N2 } are the number of electrons occupying dots {I, 2}. In their 

model, the peak sequences are related to the system capacitances by the following: 

X* _ n + 1/2 * n + 1/2
X 2 = / ,n = 0, 1,2, ... , (5.18)

1 - 1 + a/2 I-a 2 

where the asymmetry is defined by the capacitances: 

(5.19) 

(5.20) 

While device D9 was not purposely fabricated to have this double dot struc­

ture, it is possible that there was an accidental dot formed by an ionized impurity 

or imperfections in the lithography. Such an accidental dot has been attributed 

to CB phenomena in other cases, such as work reported by F. Scott-Thomas et 

al. [17] in Si, or the work by the von Klitzing group. The accidental dot idea 

is illustrated schematically in Fig. 5.14, including the equivalent capacitive cir­

cuit used in Eq. 5.20. Figure 5.15 shows a plot of the peak positions for four 

successive (increasingly negative) bottom depletion gate biases are plotted versus 

energy (calibrated from the inversion gate bias) for various values of the bottom 

depletion gate bias. It appears that each sequence is the evolution of the previous 
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Figure 5.14: Top: The equivalent capacitance circuit for a double dot quantum dot 
structure. Bottom: a schematic of a double dot system accidentally formed by an 
impurity located near one of the point contacts defining the dot. 
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Figure 5.15: Positions of the peaks in inversion gate bias for different values of the 
bottom depletion gate voltage. 

sequence, where the first peak in each sequence after the 0.0 V sequence is indis­

tinguishable from the background, possibly suppressed due to oxide charging effects 

{recall that Id ex: (VInv - VT )). Labeling the centroid of an apparent peak pair, 

X = (VInv{N) +VInv{N + 1))/2 and ~X = XN - X~-l' as the spacings between the 

centroids of successive pairs, the peak splittings ~X in Fig. 5.15 have been plotted 

against the centroids of the pair positions X in Fig. 5.16. As predicted in the the­

ory, one should expect that since the conductance is monotonically increasing with 

increasing gate bias, the peak splitting should increase monotonically as well. This 

is clearly not the case for this range of investigated inversion gate bias. In fact, from 

Fig. 5.15, it appears that the peaks occur in groups of 2, 4, and 4, meaning the shell 

structure model would be a much better explanation for the data. 

The fact that devices DID, Dll, and D12 did not exhibit this apparent shell 

structure does not mean that the role of electron-electron interactions is not im­

portant. Recently, Austing et al. [177] investigated ellipsoidally deformed vertical 
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Figure 5.16: Inter-pair splitting (open squares) and intra-pair splitting (filled circles) 
plotted against the centroids of the pairs. 

quantum dots of the same type as those reported by Tarucha et al. [134]. In their 

investigation, the symmetry was perturbed and the dot energy level structure was 

calculated within the spin density functional formalism, where it was found that by 

removing the rotational symmetry of the cylindrically symmetric dots by gradual 

deformation of the shape in any lateral direction, the shell structure was gradually 

removed. As is further discussed in Section 5.9, it is suspected that this deforma­

tion actually gives rise to several distinct spatial axes of energy quantization due to 

confinement in the plane. 

5.6 Peak Shape Characterization 

Analysis of the peak shapes can lead to useful information about the quantum 

dot. In particular, if pure Coulomb blockade transport is assumed, one can make 

fits to the peak shape using Eq. 2.85 to extract the total capacitance CE and the 

capacitance of the gate being swept, CG . These values can then be compared to the 
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capacitance obtained by the peak spacing using Eq. 2.84 assuming discrete energy 

level term makes no contribution to the peak period with gate bias. 

In the quantum dots investigated in this study, the shape of the inversion gate 

sweep peaks is much more complicated than the depletion gate sweeps, and while 

they are important and will be discussed, they do not fit the Beenakker formula 

(Eq. 2.85). In contrast, for devices Dll and D12 the depletion gate sweep peaks do 

fit nicely to the Beenakker formula for low inversion gate bias. These results will be 

discussed first. 

5.6.1 DEPLETION GATE PEAK SHAPE 

The peak lineshapes were fit using Eq. 2.85 using a least squares routine. 

Figure 5.17 plots the peak fits as a function of depletion gate bias, where all depletion 

gates are tied to the same bias (experimental data points are shown as circles). The 

fits assume the temperature is constant but allow the capacitances to vary with 

gate bias. Also, since the baseline current of the peaks varies from peak to peak, an 

additional parameter is included in the fit. The values of the capacitance obtained 

from the fit are then compared to values obtained from the peak spacing using 

Eq. 2.84 in Table 5.3. Again, it is important to point out that these fits assume 

that transport is purely Coulomb blockade, meaning in particular that the peak 

periodicity in Eq. 2.84 is simplified to be 

e 
~VGS = C · (5.21) 

G 

In Fig. 5.17, only the larger peaks are fit, and smaller peaks or shoulders are indi­

cated by arrows. Also, in Table 5.3, columns labeled Clfit refer to the results of the 

fit using Eq. 2.85 while those labeled Clexp are obtained from the peak periodicity 

using Eq. 5.21. From the plunger depletion gate sweep of device D12, the capac­

itance of the plunger gate has been fit using Eq. 2.85, and the capacitance values 

have been compared to Eq. 5.21 for the peak spacing. These results are summarized 
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Figure 5.17: Current peaks from device D12 fitted to the Beenakker formula for CB 
oscillations (Eq. 2.85) for the case of all depletion gates tied. Arrows denote the 
position of shoulders or smaller peaks, which are used in the experimental calculation 
of the capacitance. Broken arrows denote shoulders. 

Table 5.3: Fit and experimental values of capacitance for all depletion gates tied 
and swept for device D12. 

peak # Gal fit (aF) Galexp (aF) GElfit (aF) 

1 3.355 5.41 23.48 

2 7.802 8.21 76.57 

3 4.255 5.18 76.57 

4 5.408 60.2 
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Table 5.4: Fit and experimental values of capacitance for the plunger gate swept for 
device D12. 

peak # GGlfit (aF) GGlexp (aF) GElfit (aF) 

1 2.865 3.15 74.03 

2 3.865 3.77 48.1 

3 1.646 5.93 28.59 

4 2.24 4.035 70.27 

in Table 5.4 Peaks from the depletion gate sweep for device Dll have also been fit 

in the same manner. In this case, however, the negative leakage current was not 

observed in the sweeps, allowing for the elimination of one of the fit parameters. 

The capacitance is estimated from the period of these peaks using Eq. 5.21 to give 

GSGA = 2.28 and 2.14 aF for the first and second peak pairs, respectively. Note that 

this is about 1/3 of the value for device D12, but is not completely surprising due to 

the differing geometry of the depletion gates. Also note that the peak spacing is a 

strong function of the inversion gate bias, with the associated capacitance increasing 

linearly with the gate bias. 

A peak from a device Dll depletion gate sweep has been fit with the Eq. 2.85, 

and an estimate of the algebraic sum of capacitances (GE ) found from the fit. The 

fit along with the original data are shown in Fig. 5.18. The value found for the 

capacitance is GE ~ 16.97 aF. 

It is important to note that that the Beenakker formula is not the only one 

which fits a line of this shape; it is also well fit by a Lorentzian of the form of 
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Figure 5.18: One peak in a depletion gate sweep of device Dll for an inversion gate 
bias of 1.955 V is fit using the Beenakker formula. For this fit, the depletion gate 
capacitance is chosen and total capacitance is the only fit parameter. 

the Breit-Wigner formula for resonant tunneling, which was originally derived to 

describe tunneling in the nuclear theory of the decay of resonant states [178, 179]. 

The expression for the transmission coefficient in the Breit-Wigner formula is 

(5.22) 

where r n is the full width at half maximum amplitude. 

One should question why the effective capacitance, C'E, should vary so greatly 

in Table 5.3 and 5.4, and that there is such large differences in the capacitance 

Csga. This is evidence of the importance of other energy levels in the dot, as is 

the fact that there is such large variation from conductance peak to conductance 

peak. A body of evidence is beginning to come together which suggests that the 

charging energy is not the dominant energy in these dots, but rather, the electronic 

confinement energy of the dot itself. 
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5.6.2 INVERSION GATE PEAK SHAPE 

Due to the nature the inversion gate sweeps, it is not expected that their shape 

should fit the Beenakker formula (Eq. 2.85), which assumes that the chemical po­

tential in the leads (the channel on the source and drain in this case) are fixed as 

the gate is swept. However, in this case sweeping the inversion gate bias amounts 

to sweeping the chemical potential in the channel. In addition, it was shown in 

Section 5.4 that changing the inversion gate bias changes the position of the dot en­

ergy eigenvalues relative to the chemical potential in the channel. Thus, the shape 

of the conductance peaks can not be predicted by the Beenakker formula. This 

can in fact be verified for all devices by noting the asymmetry of peak shapes in 

Figs. 4.8, 4.11, 4.17, and 4.26 in Chapter 4; it is reasonable to expect a skewness in 

the shape of the peaks due to this coupling of the inversion gate bias to the channel 

chemical potential and the quantum dot energy levels with different strengths. The 

remainder of this section will be dedicated to discussing the complex nature of the 

conductance peaks in the inversion gate sweep of device D12 shown in Fig. 5.20 

in the upper pane. These sweeps show what appears to be large central conduc­

tance peaks which each have their own fine peak structure superimposed. It will be 

discussed below how such an apparent structure can be observed for two different 

fundamental types of conductance behavior in a measurement at finite tempera­

ture (which induces thermal broadening of energy levels) or finite source-drain bias 

excitation (which could lead to transport through multiple channels at once), or 

both. 

One possible peak behavior, which could be argued to model the experimen­

tal data, is a sequence of individual conductance peaks modulated by an envelope 

function, which are spaced closely enough that thermal broadening causes merg­

ing of the tails of peaks. Sequences of peaks modulated by envelope functions have 

been predicted in theory and observed experimentally. Stopa [180, 83] used Eq. 2.83 
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derived by Beenakker [114] for N-electron dots to calculate the conductance for a 

device structure with similar depletion gate geometry as those used in this work. He 

found that the conductance oscillations indeed appeared to follow an envelope func­

tion, with the relative transmission rates and level spacings changing with electron 

number. Such peaks have been experimentally observed in GaAs/AIGaAs dots by 

Staring et al. [181] and Heinzel et al. [182] in experiments where the quantum dot 

was strongly coupled to the leads (i.e. the transmission coefficient was on the order 

0.1 < T < 1) (Note: the condition of strongly coupled dots is usually presented as 

G ~ Go = 2e2 /h). They observed that the envelope function vanished with increas­

ing magnetic field. This envelope function was also seen in dots weakly coupled to 

the leads by Sakamoto et al. [183]. They also observed an envelope function in the 

presence of weak magnetic field; in moderate magnetic fields they found that the 

number of CB oscillations per period decreased as the gate voltage became more 

negative. From this observation they estimated the confining energy of the dot. 

This possibility does not agree well with the data to be presented in Section 5.7. 

On the other hand, a series of peaks with fine structure in each peak has also 

been observed in the inversion gate sweeps of devices Dll and D12, which will be 

shown to lead to two possible interpretations in terms of transport behavior. Such 

line shapes have been attributed to the transport properties of dots with a discrete 

confinement energy spectrum, and the excitation spectrum in particular. Individual 

peaks with a fine structure were observed by Johnson et al. [123] and Foxman et 

al. [124] in GaAs dots. In their experiments, the drain bias was held fixed and a gate 

bias (in these experiments a plunger gate) was swept. At low drain bias, there was 

a sequence of individual CB conductance peaks. For increasing drain bias, a fine 

structure evolved in each CB peak, with the amplitude of each fine peak decreasing 

with increasing gate voltage. This fine structure was interpreted in the following 

way: as the drain bias is increased, the window of excitation energy through which 
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Figure 5.19: a schematic of the energy spectrum is shown when the Coulomb and 
discrete energy level spacing is appreciable. With the drain bias excitation greater 
than the energy level spacings, more than one tunneling channel is allowed. Active 
channels are depicted by thick lines, and inaccessible channels are shown as thin 
dotted lines. 

tunneling may occur is increased. If the spacing between energetically accessible 

states is narrow enough, more than one tunneling channel may be accessible within 

this window. As the number of channels into and out of the dot changes, the 

conductance changes with it. For these experiments, the channels are interpreted 

as being the excited dot states. This idea is presented schematically in Fig. 5.19, 

where the active transport channels are represented by thick lines, while thin lines 

represent inactive channels which are inaccessible to electrons for tunneling. The 

ground state is represented with a circle, which is filled when the dot state is filled 

and open when the level is inaccessible for tunneling. In this picture, the Coulomb 

charging energy is much greater than the confinement energy spacing. 

A possible alternative theoretical interpretation leading to observation of fine 

structure is for the discrete energy level spacing due to confinement in the dot 

E(n + 1) - E(n) to dominate the Coulomb charging energy e2/2C, where n is some 

principal quantum number other than the dot electron occupation. In this model for 
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transport, the position of the central peaks is controlled by the confinement energy. 

The discrete levels have some degeneracy associated with, for example, spin and the 

valley symmetry within the Si band structure, as well as the degeneracy of the levels 

within the dot itself (which were observed in the calculated level structure plotted in 

Fig. 5.3). For the two types of degeneracy associated with the parent semiconductor 

Si, the degeneracy 98 x 9v would be 2 x 2 for the ~2 sub-band and 2 x 4 for the ~4 

sub-band; however, it is not clear that splitting of this degeneracy would be observ­

able. On the other hand, the calculations presented in Section 5.4 suggest that the 

splitting of degenerate dot energy levels should be appreciable. Due to the discrete 

nature of charge, the Coulomb charging energy leads to a degeneracy splitting which 

results in an observable fine structure. The degeneracy structure observed in these 

calculations is consistent with the degeneracy of a harmonic potential. Yet another 

mechanism for degeneracy splitting is through the spin interaction term in the sin­

gle particle Hamiltonian, Eq. 2.33; discussion of this possibility will be deferred to 

Section 2.3.3. 

Yet another cause for degeneracy breaking was recently simulated for the quan­

tum dot structures reported on in this work by Milicic, et al [184]. In their work, 

the background potential calculated as described in Section 5.4 was modified after 

the initial self-consistent Poisson solver by adding a randomly distributed number of 

particles to simulate an actual ion implantion profile of the dot. It was observed that 

the neatly evolving group structure, which appeared to follow the splitting of the 

harmonic oscillator level degeneracies, was modified so that some members of the 

grouping of 9 = n + 1 split levels were additionally split by some small, apparently 

random energy. These results agree very well with the experimental fine structure 

observed in the inversion gate sweeps of devices Dll and D12. 

Whatever the degeneracy breaking interaction, the shape of the current peaks 

is governed by a partial sum of the conductance through all of the tunneling channels 
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accessible in the energy window. This degeneracy breaking interpretation of the 

transport mechanism is shown schematically in Fig. 5.20. 

We can directly address several of these possibilities by considering the ex­

perimental data. In particular, the explanation of the fine structure in terms of 

tunneling through additional channels in the form of multiple excited states is elim­

inated as a possibility. Examining the data presented in Section 4.4.4, Fig. 4.23 

clearly shows that for increasing drain bias, which increases the excitation energy 

window, there are the same number of fine peaks observable up to the highest drain 

bias measured. This observation is in direct disagreement with the theory. 

The data from Section 4.4.4 does not conclusively eliminate the first explana­

tion presented, which says that this line shape is due to overlap of the tails of several 

individual peaks. The data is inconclusive because of the drain-bias and system 

temperature related energy compared to the fine structure splitting, which is on the 

order of 8E = 40 peV. While the drain bias is smaller than the thermal equilibrium 

energy, both are greater than this splitting: VDlmin ~ 100 pV, kBT ~ 362 peV > 8E. 

This means that multiple, independent channels could be accessible, and they could 

be thermally broadened such that the tails smear into each other. This leaves at 

least two possible interpretations for the line shape in the inversion gate sweeps. 

It is strongly believed that the transport in these dots is dominated by the 

discrete levels caused by electonic confinement, by the arguments presented in Sec­

tion 5.3, and supported by the calculations in section 5.4 and a simple model to be 

presented in the next section. 

Before continuing to the analysis of the conductance peak positions in the 

inversion gate- depletion gate bias plane, one should assure him or herself that 

the fine structure is reproducible if the depletion gates are instead swept with the 

inversion gate held at a fixed bias. To check this, consider the plots in Fig. 5.21, 

which shows the results of an inversion gate sweep, and two sweeps generated by 
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Figure 5.20: In the top pane, a portion of an inversion gate sweep is plotted for device 
D12. On the x-axis, the Fermi energy in the channel has been calculated in terms 
of the inversion gate bias . In the bottom panes, a schematic representing transport 
where the mechanism is transport through degenerate discrete levels. Point a (in 
the bottom left) represents the lead chemical potential just lining up with the un­
occupied degenerate level. Point b (bottom right) shows this set of degenerate levels 
broken by some degeneracy splitting interaction. 
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Figure 5.21: A comparison between the inversion gate sweep and depletion gate 
sweeps. The curves have been offset by 50 pA. Points where the fine structure are 
not seen in depletion gate sweeps are indicated by arrows. 

taking the current values from sweeps of the plunger gate bias and of all depletion 

gates tied to the same bias at their zero crossing, for each value of the inversion gate 

bias. In Fig. 5.21, the two depletion gate sweeps have their current values offset by 

5 pA from each other to better distinguish them. It is evident that while there is 

good agreement with the inversion gate sweep, some of the fine structure is missed 

by the generated sweep. At the same time, it gives clear evidence that the fine 

structure is present, and not due to any noise effect. However, it clearly shows that 

the data presented in the following section may in fact be only partially complete 

in terms of the conductance peak positions. 

5.7 Magnetic Field Dependence of Peak Position 

The evolution of the conductance peak positions in a magnetic field has re­

cently proven to be a valuable probe of the shell structure of small, few-electron 

quantum dots, allowing for the determination of the orbital quantum states in the 
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conductance spectrum. Calculations have shown that the shell structure in few­

electron quantum dots are expected to fill following Hund's rules for spin [185] even 

in the absence of magnetic fields. 

Unfortunately, due to the somewhat fragile nature of the dots studied in this 

work, only one dot (Dll) yielded any magnetoconductance data associated with 

the dot. Figure 5.22 plots a sequence of inversion gate bias sweeps (with symmet­

ric depletion gate bias configuration, gates held to ground) for increasingly larger 

magnetic field. The change of the conductance peak position is very subtle. Before 

trying to analyze this behavior, it is useful to first consider the evolution of sin­

gle, non-interacting quantum dot energy eigenvalues in a magnetic field, using the 

Darwin-Fock states described by Eq. 2.30. The first eight states have been plotted 

in Fig. 5.23 for a confinement energy of 250 /LeV (roughly the same as device DI2). 

It is not expected that there should be any crossings or large kinks in the evolution 

of any conductance peak until the fourth set of levels, and only at moderate field 

of rv 2.5 T. However, it should be noted that Eq. 2.30 is valid only for perfectly 

symmetric confining potential. Austing et al [186] did a systematic experimental 

study of elliptically deformed vertical quantum dots, and found that the dependence 

of conductance peak evolution is suppressed as the dot shape is made increasingly 

asymmetric. For a dot of roughly the same ratio of major to minor dot side length, 

their data showed no major bending in the conductance peak dependence until the 

6th and 7th peaks. Because the cyclotron effective mass in Si is larger than that 

in GaAs, it is expected that in a similarly shaped Si dot the peak evolution should 

be correspondingly suppressed. The experimental findings were in good qualita­

tive agreement with the theoretical results of Madhav and Chakraborty [187] for an 

analytic model of anisotropic dots in a magnetic field. 

In fact, the observed evolution for the peak along the vertical line at YInv ~ 

2.3 V in Fig. 5.22 shows a slight bending in qualitative agreement with the findings 
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Figure 5.23: The magnetic field dependence of the single particle energy eigenvalues 
in a circularly symmetric harmonic confining potential. 

of Austing et al [186]. The peak number of the first crossing observed in Fig. 5.23 

is shifted only one position, and the relative shape qualitatively is similar to the 

experimental work for ellipsoid ally deformed dots, appropriately suppressed due to 

the greater cyclotron mass. 

From the results presented in this section, we can add an additional mechanism 

to the list of possible sources of splitting in the fine structure in the quantum dots 

Dll and D12. For sharply varying potential profiles, the term Si' [B(ri) + V'VO(ri)] 

in the single particle Hamiltonian (Eq. 2.33) could give rise to splitting due to the 

requirements of Hund's rules on spin filling of the electron shell. In particular, 

Hund's first rule states that electrons will be added to the shell in such an order 

that Sz is maximized, consistent with the Pauli exclusion principle. This effect 

could easily give rise to the fine structure observed in Dll and D12; unfortunately, 

with the absence of magnetoconductance data from device D12, it is impossible to 

confirm or exclude this possibility as the cause. 
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5.8 Effect of Finite Drain Bias 


A brief discussion of the effects of finite drain bias on dot transport are given 

in this section. Mostly, the data for finite drain bias has served to rule out some of 

the interpretations of other data sets. 

5.8.1 DRAIN BIAS SWEEPS 

Sweeps of the drain bias for constant gate bias (both inversion gate and de­

pletion gate) can give rise to steps in the drain current and oscillations in the differ­

ential conductance which are known and often-documented evidence for Coulomb 

Blockade and single-electron phenomena. However, observation of the steps (the 

so-called Coulomb staircase) is possible only when the barriers are asymmetric. For 

the asymmetrically biased device D9, there were no steps observed, but there were 

kinks in the I - V curves (as shown in Fig. 4.15 and 4.16). The kinks observed 

in the lower inversion gate bias of Fig. 4.15 disappear as the inversion gate bias is 

increased. Note that the kinks, which could be associated with conductance through 

discrete states, disappear at higher inversion gate bias; this is consistent with the 

confinement energy decreasing as inversion gate bias increases. 

Another sign of Coulomb blockade is the region of zero conductance about 

a range of source-drain bias near zero (the Coulomb gap), which is observed even 

when there is no Coulomb staircase. While there is a gap in the current at zero 

bias for device D9 (Fig. 4.15), there no gap for Dll and D12. The inset of Fig. 5.24 

shows no gap in the current around zero VDS ; these facts together provide further 

evidence that the discrete states in the dot, rather than the Coulomb charging and 

Coulomb blockade. 

These sorts of plots are presented as composites in the gate voltage-drain volt­

age plane, as in Fig. 5.25 and Fig. 5.26, which are plots of the current magnitude and 

the differential conductance versus gate bias, respectively. If transport is dominated 
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Figure 5.24: A plot of the differential conductance versus drain bias in device D12, 
showing peaks. The inset is a semi-log plot of the magnitude of the drain current 
for the same sweep showing a gap in the current about zero bias_ 

by pure Coulomb blockade, a diamond-like structure would be expected in Fig. 5.26, 

similar to that of Fig. 2.14 (although here we would have expected a skewed shape 

as sweeping the inversion gate should change both energy of electrons in the dot 

with respect to the Coulomb barrier and the energy of the electrons in the channel 

on either side of the barriers)_ However, no such structure is observed. 

Plotting the differential conductance as a function of the drain bias can also 

yield information about the discrete energy level structure in the dot [123, 124]. 

Every time a discrete level in the dot aligns with the chemical potential in the 

biased lead (drain), a peak occurs in the differential conductance. The differential 

conductance for device D12 as a function of drain bias is shown in Fig. 5.24 for fixed 

gate biases. There are clear peaks in the differential conductance, re-enforcing other 

evidence presented that the discrete states in the dot in fact have a strong influence 

on the transport- The inset of Fig. 5.24 shows a semi-log plot of the current. The 

differential conductance versus drain bias for several different values of the plunger 

http:V,pn=O.OV
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Figure 5.25: Drain current magnitude plotted versus drain bias for different values 
of the inversion gate bias on a semi-log scale. it can be seen that there are two flat 
regions of the current, and the gap about zero bias shifts in bias position as the gate 
bias increases. 
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Figure 5.27: The differential conductance for several values of the plunger gate bias. 

gate bias is shown in Fig. 5.27 for 1.6 V on the inversion gate. The density and 

range of these sweeps is too wide and short to support a composite plot showing the 

diamond structure in the Coulomb blockade regime. However, with the absence of 

other CB features, it is not expected that the modified diamond pattern similar to 

that in Fig. 2.15 would appear with more dense sweeps or greater range. 

5.8.2 STEPPED FINITE DRAIN BIAS 

Stepping the drain bias and sweeping the gate bias yields information about 

how increasing the drain bias (and thus the tunneling energy of the injected elec­

trons) changes the tunneling structure in the dot, and another measure of the con­

finement energy. 

The meandering of the current minimum in the drain bias-gate bias plane 

shown in Fig. 5.25 is a feature common to all of the devices measured. It was also 
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observed in the data shown in Figs. 4.9, 4.10, and 4.25 for devices D10 and D12. 

This zigzagging of the minimum may have an analogy to the Coulomb blockade 

diamond structure. 

The finite bias sweep may also be useful in determining the capacitance of 

the biased lead in quantum dots exhibiting Coulomb blockade oscillations; this 

parameter is often neglected in calculations of dot size, as it was in this work. The 

capacitance of the biased lead can be determined from the slope of the peak position 

in the drain bias-gate bias plane and the total capacitance by the relation [188] 

dVds Cg 
(5.23)

dVg C'L, - CBias 

For the dots studied in this work, this slope is negative, so the value of capacitance 

obtained in this manner is unphysical, and thus was neglected. 

As the bias is increased, features in the inversion gate and depletion gate 

sweeps become less distinct as the carrier energy becomes on the order of or greater 

than the characteristic features of the quantum system. The gross features of the 

dot conductance are clearly visible out to at least 3 m V as exhibited in device Dll 

(Fig. 4.29), and the fine structure is clearly visible in D12 to 1 m V as shown in 

Fig. 4.23. This does not suggest that the confinement energy in the dot is of that 

order; rather, it suggests that there is a finite drop between the drain and the first 

barrier, and from the second barrier to the source which is significant with respect 

to the energy drop across the dot. 

5.9 Analysis of Inversion Gate-Depletion Gate Data 

Analysis of the data presented previously in this chapter (Sections 5.4, 5.5, 

and 5.6) suggests that the conductance peak behavior is due to the presence of 

electronic confinement energy that dominates the Coulomb charging energy. The 

data presented in this section, in conjunction with the behavior of the energy level 



170 

structure found from the electrostatic calculations presented in Section 5.4 form 

perhaps the strongest argument in support of this assertion. 

5.9.1 EXPERIMENTAL ANALYSIS 

By re-plotting the peak positions shown III the composite depletion gate­

inversion gate bias figures for devices D12 and Dll (Fig. 4.19, 4.21, and 4.28) with 

the background color map removed and the inversion gate bias scaled using equa­

tion 5.6, and plotting the peak positions from the waterfall plot for device DI0 

(Fig. 4.8), we may investigate how the conductance peak positions evolve for chang­

ing depletion gate bias or channel electron energy. Plots of this dependence are 

shown for device DlO in Fig. 5.28, for device D12 in Fig. 5.29 and Fig. 5.30, and 

device Dll in Fig. 5.31. What is apparent in these plots are sequences of lines 

belonging in groups, where each member of each group has a distinguishable slope. 

Further, to some extent the members of each group appear to have a nearly uniform 

spacing along the energy axis. In the following, lines within a group whose mem­

bers have the same slope will be referred to as "branches". In Figs. 5.28-5.31 these 

branches have been emphasized by drawing a straight line through each. Generally, 

the quantum dots with square geometry have two groups of branches, while it ap­

pears that the dot with asymmetric geometry has three groups of branches. Also, 

the mean periodicity for the branches in the larger dot geometry are smaller than 

the mean periodicity of branches in smaller dot geometries. The peak positions 

which form the members of each branch can be described empirically by the simple 

expression 

(5.24) 


where the sub- or superscript i refers to the groups of branches with nearly same 

slope and spacing, while the ni refers to the branch index n in group i. likewise, 

the slope Qi refers to the slope of branches of members in group i. As described 

http:5.28-5.31
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Figure 5.28: A plot of the peak position in the energy-depletion gate bias plane for 
device DI0. Filled and open Circles denote peaks and shoulders, respectively. The 
straight lines serve as a guide to the eye. 

above, for quantum dots with square geometry, i = lor 2, while for the asymmetric 

dot geometry i = 1, 2 or 3. Aside from these general differences, it is observed 

that the monatonic evolution of conductance peaks in device DI0 becomes more 

disordered for depletion gate biases greater than about -100 meV. The values for 

the mean branch spacings Oi = nwi and the slopes for branches ni are summarized 

in Tables 5.5 and 5.6. 

5.9.2 DISCUSSION AND FURTHER ANALYSIS 

More discussion is needed in order to understand the complicated behavior of 

the conductance peaks in the inversion gate bias-depletion gate bias plane. One of 

the features of most interest is the existence of sets of branches with two different 

slopes for the symmetric quantum dot geometry and three for the asymmetric dot 

geometry. Three models are presented in the following discussion, with two of the 

possibilities being eliminated as improbable. 
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Figure 5.29: Straight lines overlaying the peak positions in Fig. 4.19. The separa­
tions along the energy axis are nw1 and nw2' 

Table 5.5: A summary of the mean and maximum level spacings for the devices 
measured, in units of meV. 

device D9 DlO Dll D12 

branch 61 62 61 62 61 62 63 61 62 

mean 

max 

0.282 NA 

0.508 NA 

0.0657 0.076 

0.085 0.189 

0.106 

0.181 

0.358 

0.489 

0.675 

0.742 

0.141 1.932 

0.445 1.932 
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Figure 5.30: Straight lines overlaying the peak positions in Fig. 4.19 for the plunger 
gate bias sweep of device D12. The separations along the energy axis are WI and 
W2. The slope of the second ladder of peaks is not constant with plunger gate bias, 
indicating that the confinement energy is dependent on the inversion gate bias. 

Table 5.6: Summary of energy branch slopes in units of meVIV. 

DI0 Dll D12 

al -0.64 -2.363 -5.164 

a2 -1.068 -5.152 -25.137 

a3 NA -9.365 NA 
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5.9.2.1 Population of Higher 2DEG Subbands 

The first proposed model is that Pauli filling of energy eigenvalues forces elec­

trons to reside in the ~4 subband of vertical quantum confined states. For electrons 

residing in the ~4 subband, the average distance from the semiconductor-insulator 

interface would be different from electrons populating the ~2 subband. Therefore, 

electrons would experience a different lateral confinement potential, leading to a 

different confinement energy, and quite possibly causing the depletion gates to have 

a different coupling strength to the evolution of the energy eigenvalues and thus con­

ductance peak position. Since the lowest ~4 subband lies higher in energy than the 

lowest ~2-subband, it is expected that this occupation occurs at a higher inversion 

gate bias (and thus higher energy in the channel). 

This model is somewhat supported by the fact that it does seem (in the case 

of D12) that the branches with larger slope (and larger average spacing /iw) begin 

to appear at higher Fermi energy in the channel. However, two or three stronger 

pieces of evidence point against this model. First, it is estimated that the average 

spacing between branches with lower slope is less than 150 j1eV, while the lowest ~4 

subband lies at least 10-15 meV above the lowest ~2 subband. With a degeneracy 

of at least two for the electron spin, this means that at least 133 electrons could 

occupy the dot before Pauli filling forces the occupation of the lowest ~4 subband. 

In addition, since there is an asymmetry in the effective masses projecting in the 

lateral directions, it is expected that there should be two different sets of energy 

eigenvalues resulting from the kinetic term of the Hamiltonian for the lateral portion 

of the wave functions. SdH data does not show population of the ~4 subband in 

the 2DEG. 

Further, it was shown in Section 5.4 that this sort of behavior is not expected. 

This evidence suggests that Pauli filling forcing population of higher lying subbands 

is not responsible for the two slopes and spacings. 
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5.9.2.2 Asymmetric Coupling of Multiple Axes of Confinement 

Another possible model to explain the existence of multiple slopes is due to 

asymmetric changes in the device geometry, as discussed in the last section. If the 

potential profile is perturbed away from square symmetry, such that the background 

potential becomes more rectangular, two separate axes of quantization will arise with 

average level spacings mul and mu2. Note that this condition in itself only gives rise 

to two different spacings. In addition, it is necessary that the coupling be different, 

aDepll =1= aDepl2. Putting this into a parametric equation to describe the position of 

the energy levels, we have an expression like 

Enx,ny (VinY, Vdepl) = Eo - ainy Viny - ax Vdepl + nxmux - a y Vdepl + nymuy 
(5.25) 

- {(ax + ay)Vdepl + nxmux + nymuy}, 

which it can be seen can even give rise to branches with three different slopes when 

the peak positions are solved for. Note that the labeling of x and yare arbitrary, but 

encourage one to visualize different ladders (sets) of branches arising from different 

lateral quantization axes. From Eq. 5.25 that electrons occupying branches with 

ny zero, and electrons occupying branches with nx zero can give two slopes. If an 

electron occupies both branches simultaneously, there could be three slopes observed 

(due to the ax + ay-term). Also included is a term which allows for a coupling to 

the inversion gate bias, as has been seen in the energy eigenvalue calculations from 

Section 5.4. 

Simulations were performed by allowing for perturbation of both the coupling 

to the depletion gates (and thus the slopes ai), and the confinement energy (and 

thus the branch spacing mui). It can be shown that conductance peaks can arise 

from the above parameterization of the level spectrum (equation 5.25) which have 

two or three slopes for a given set of branches. In addition, it can be shown that 

this perturbation can give rise to a fine structure as well. 
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First, allow the confinement potential to be asymmetric in the x- and y- di­

rections, deviating from square symmetry in the following way: Wy = Wx (1 + 8). 

Applying this perturbation, the peak positions are found by calculating the inter­

section of the Fermi energy in the channel with the dot energy eigenvalues for a given 

branch as a function of the inversion gate and depletion gate bias. Plotting the po­

sitions of peak conductance found in this way gives the results shown in Fig. 5.32. 

This perturbation allows for branches with two different slopes for ax, a y and two 

spacings for integer values of 8, but gives rise to splitting appearing to be like the 

fine structure for 0 ::; 8 ::; 1, shown in Fig. 5.32 for 8 from zero to one. 

If the coupling is allowed to be perturbed in the same way, where a y = a x (l + 

,), then we see that for small, there appear to be only two slopes, whereas for 

larger, an additional slope emerges. This is shown in Fig. 5.33 for, from zero to 

one. The result of this simulation is that if we allow for a small 8 and " we can 

recover something which is similar to the experimental results for D12, while if, is 

larger, we get something which agrees with the experimental results for D11. 

These simple model limits give an intuitive way to show how a square sym­

metric potential can be perturbed such that the experimentally observed results are 

obtained. They allow prediction of both a fine structure and multiple slopes arising 

from the coupling of the dot energy levels with the depletion and inversion gate 

biases. What these simulations predict is the qualitative behavior of two slopes. 

The coupling perturbation model agrees with the general behavior of Dll for large 

asymmetry (r = 1.0) and of D12 for small asymmetry (r = 0.1). It does not, 

however, agree with the slopes and branch spacings seen experimentally. 

While it is important to note that these simulations give results which are not 

predicted in the calculated energy eigenvalues, it is equally important to understand 

that imperfections in the lithography and/or the presence of charged impurities in 

or near the vacinity of the quantum dot could easily cause perturbations with results 
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similar to the model here. In fact, preliminary studies at ASU including random 

impurity fluctuations indicate more complicated structure in the theoretical model. 

To date, the model presented here related to asymmetric deformation of the dot 

geometry seems most plausible model accounting for the experimental results. 

5.9.3 SIMULATIONS USING THEORETICAL CALCULATIONS 

It is a relatively straightforward procedure to invert the calculated energy level 

structure presented in Section 5.4 to obtain the predicted conductance peak positions 

in the inversion gate-depletion gate bias plane. Assuming that a conductance peak 

results from the chemical potential in the channel aligning with an allowed energy 

level within the quantum dot, one must simply solve for the crossings of the energy 

eigenvalues in the dot with the chemical potential in the channel for each inversion 

gate bias, using Eq. 5.6 to scale the bias with Fermi energy of the 2DEG. In practice, 

the solution for these values is obtained by linearly interpolating for the energy 

levels for successive depletion gate bias values, which was performed by S. Milicic 

at ASU. Figure 5.34 shows such a plot of the predicted conductance peak spectrum 

obtained from an inversion of the data in Fig. 5.3 for the symmetric biasing of 

a 200 nm dot. It appears that the degeneracy structure that was evident in the 

energy level spectrum is shifted so that the number of nearly degenerate members 

of each group changes, and that the splitting is nearly regular as the inversion gate 

bias is changed. In addition, some of the levels are predicted to be degenerate 

in the peak conductance spectrum, but split as the depletion gate bias is made 

increasingly positive. What one would expect to observe then at finite temperature 

is a dominant, broadened peak in which these degenerate or very nearly degenerate 

levels are concurrent, due to overlap of the tails of these peaks in the peak spectrum, 

and are thus indistinguishable from one another. 
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Figure 5.34: Simulated peak conductance positions for a symmetric 200 nm quantum 
dot with symmetric biasing conditions. 

Figure 5.35 shows a plot of the predicted peak conductance positions based 

on the data plotted in Fig. 5.7 for the asymmetric (plunger) bias case. As expected, 

the asymmetry in the biasing condition leads to a crossing in the peak branch 

spectrum observed in Fig. 5.35 due to the breaking of the symmetry. It appears that 

two groups of branches are observed, with each group having nearly equal slopes 

and nearly equal branch to branch spacing. These two groups may be identified 

as states arising from quantization either parallel or perpendicular to the plunger 

direction. Since the plunger effectively changes the dimension of the dot in one 

direction primarily; states associated with this direction of confinement are more 

sensitive to plunger bias, leading to two sets of slopes. 

Figure 5.36 shows a plot of the conductance peak positions for a symmetrically 

biased quantum dot with an asymmetric 100 x 200 nm geometry in the inversion 

gate bias-depletion gate bias plane. 
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Figure 5.35: A plot of the predicted peak conductance positions based on the energy 
level calculations for an asymmetrically biased symmetric 200 nm quantum dot. 

Unexpectedly, there is no real evidence of a crossing behavior in the theoretical 

curves, even though one would expect such behavior based on the arguments of the 

preceeding paragraph. 
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Figure 5.36: A plot of the predicted conductance peak positions for an asymmetric 
dot geometry biased symmetrically. 
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6. CONCLUSION AND FUTURE WORK 


6.1 Conclusions 

The simplest conclusion that can be drawn from this work is that it is possible 

to fabricate quantum dots using modern CMOS technology, and, with the excep­

tion of the minimum feature sizes required to define the depletion gate structures, 

all dimensions are achievable in present day CMOS processes. These devices are 

functional without using more expensive SOl substrates as have been used in other 

similar devices. However, it is equally valid to conclude that before more depth 

in understanding of the quantum effects observed in this project can be achieved, 

a more robust architecture must be implemented. Discussion of this topic will be 

deferred until the section on future work, Section 6.2. 

The transport measurements were taken with biasing conditions such that the 

channel was biased in the regime from the onset of weak inversion to just around the 

onset of strong inversion, and the depletion gates and drain are biased so that the 

dot transport is in the tunneling regime. One of the main findings of this work is that 

the transport features are more consistent with the discrete confinement energies 

rather than Coulomb blockade effects due to single electron charging. The values for 

dot radii given by assuming that the peak splitting is due to electronic confinement 

are more consistent with the lithographic dimensions than the radii found assuming 

pure Coulomb blockade, although it is clear that a better model must be found for 

the dot self-capacitance. The large variations in the equivalent capacitance, GE , 

the large variation in the peak amplitudes (in consectutive peaks), and the lack of a 

Coulomb gap in the current around zero source-drain bias also support this assertion. 

It is distinctly possible that the transport could be some combination of Coulomb 

blockade and discrete confinement energy-controlled tunneling. By sweeping the 
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inversion gates and depletion gates independently, what appears to be an energy 

level spectrum is mapped out, showing the effects of decreasing the bottom of the 

ladder of energy levels with the inversion gate, while increasing the confinement 

energy with the depletion gates. 

Calculations of the quantum dot energy level using a self-consistent Schrodinger­

Poisson solver confirmed that electrostatic confinement should be appreciable in dots 

of this dimension and shape, although of somewhat greater value than observed in 

the experimental data. These calculated energy levels behaved in a manner consis­

tent with the observed experimental evolution of peaks in the VInv - VDepl plane. 

These calculations also showed that some lifting of degeneracy (where the degener­

acy is the same as that for energy levels for a harmonic potential) in the dot are 

expected; this degeneracy breaking could explain the fine structure observed in the 

inversion gate sweeps, as well as multiple slopes in the data, although the experi­

mentally observed fine structure is not as regular as the calculations predict. Still 

more recent calculations have shown that the presence of discrete dopant impurities 

can in fact modify the calculated degeneracy splitting to show results more consis­

tent with the observed fine structure. These calculations do predict multiple slopes 

in the asymmetric bias case. They do not predict the multiple slopes of groups of 

branches observed in the actual physically drawn asymmetric device. 

A simple model was presented, however, which showed that by allowing the 

spherically symmetric confinement to be split into two slightly different, indepen­

dent confinement strengths oriented in two spatial directions allowed for qualitative 

reproduction of both the fine structure and multiple slopes observed in the exper­

imental data. The model allows for asymmetry in both the confinement strength 

and the coupling of the bottom of the energy eigenvalue ladders, while independence 

between the two allows for x-like, y-like, and x+y-like ladders for three independent 

ladders of levels. This model is supported by the observation that apparent groups 
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of branches with three slopes occur for the asymmetric device, while there are only 

two apparent groups of branches for either of the two size symmetrical dots. This 

asymmetry is simulated in the numerical asymmetrical bias (plunger) simulation. 

This good qualitative agreement between the presented empirical model, the 

simulations based on theoretical calculations, and the experimental data in the 

Vinv - VDepl make the best evidence that the discrete energy level structure in the 

dot dominates Coulomb blockade in transport properties. 

6.2 Future Work 

Although a number of experiments have recently been reported on Si quan­

tum dots, there remain large gaps in the knowledge of Si quantum dot systems. 

Particularly lacking are results specific to the multiple valley nature of the Si band 

structure. In the following, I propose future work, which should be performed in 

order to narrow these gaps, both experimental and theoretical. 

6.2.1 EXPERIMENTAL 

Before specific experiments are performed, the device structure which was 

used during this work must be modified to provide a much longer lifetime. In all 

devices measured, the devices failed far before a complete set of experiments could 

be performed on them. One of the weakest points in the device structure is the 

deposited gate oxide between the depletion gates and the inversion gate, which is 

prone to dielectric breakdown. A proposed improvement to this weak link is to 

replace the RPECVD process with a low temperature LPCVD oxide using TEOS, 

which results in a much higher density and thus more robust oxide quality. Since 

this is a rather slow process in terms of deposition rate, the thermal load could 

be reduced if this were a composite oxide, where the first part was LPCVD and 

the second part were RPECVD. In addition, there is a problem with charge in this 
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oxide layer. Preconditioning the surface prior to deposition with an oxide plasma 

treatment has been used to reduce this problem. The metal in the depletion gates 

could be protected by depositing a thin silicon layer by electron beam evaporation 

after the chrome is deposited. Additional improvement to the oxides can be obtained 

by using a local oxidation process to make the field oxide, or LOCOS process. This 

process allows for a more gradual profile for the metal layers to cover. 

An additional limitation is the low overall channel conductance, which can 

be alleviated by creating a much more favorable channel geometry. By widening 

the channel, the overall conductance should be enhanced. Shortening the channel is 

more challenging, as it would require a careful study of MOS properties to determine 

the shortest length that could be used while still avoiding effects from the drain 

depletion region, high fields across the device, and allows de-phasing of injected 

carriers. In addition to this, better lithography tools would be required to allow for 

a large enough number of electrical contacts to connect to the active region. 

Assuming these modifications lead to better performing and more robust de­

vices, several experiments are very important in understanding the behavior of the 

devices: 

• 	 In order to understand the spin states of a few electron quantum dot, magnetic 

field studies of the conductance peaks must be obtained; specifically sweeps in 

both the inversion gate-magnetic field plane and the depletion gate-magnetic 

field plane. 

• 	 Plunger gate sweeps and sweeps of opposing depletion gate pairs for all of the 

dot geometries will allow a better understanding of the effect of the asymmetry 

in the dots. 

• 	 Large ranges of bias voltages must be taken to see where patterns break down 

in the evolution of the level spectroscopy. 
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• More complete sweeps of the differential conductance in the drain bias-plunger 

gate bias will yield more information about the evolution of levels in the dot. 

Larger drain bias and larger plunger gate biases are needed. 

• 	 The temperature dependence should be probed. Particularly, going to a lower 

temperature should allow for a much better resolution of the shapes of the 

minor peaks. The temperature dependence of the width and amplitudes of 

conductance peaks would be useful. 

• 	 Several additional sizes of dots should be fabricated to investigate the transi­

tion from a two dimensional continuum of states to fully discrete states within 

the dot, and also the onset of Coulomb blockade. Ideally this would be a con­

tinuous range of dots from 200 nm to the limit where conductance peaks are 

no longer observable, but practically this would include incremental increase 

to the regimes of two dimensional-one dimensional transition and to the limit 

where conductance peaks are no longer observable. 

Beyond these experiments, optical experiments have not been performed, but 

in principle should be possible with a modification to the device structure (albeit a 

major one). By replacing the Al in the inversion gate with a conducting transparent 

oxide, such as ATO or ITO, and fabricating an ensemble of dots instead of a single 

dot, it should be possible to study at radiation absorption in these dots. In addition, 

other experiments could be performed to investigate whether selection rules were 

broken allowing optical transitions forbidden in bulk but allowed in the quantized 

systems. 

By fabricating ensembles of dots, it should also be possible to measure the 

magnetization and the heat capacity, getting at the level structure, as proposed by 

Maksym and Chakraborty[66, 95] 
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6.2.2 THEORETICAL 

Theoretical progress is being made on understanding the electronic structure 

and transport in Si quantum dots. However, more thorough transport calculations 

must be developed to support the findings of the research in this work. 

Some calculations of the energy level structure for these quantum dots have 

been completed. However, the spin orbit interaction has not been taken into account, 

and some attempt should be made to calculate the splittings coming from the valley­

orbit interaction, extending the theory for inversion layers and the bulk. 

The second type of calculation should integrate the results of the first (the 

electronic structure) into the transport properties of the dot. These two calculations 

should support the findings of this work, and point out where future work is needed. 
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