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The structure and mechanics of tissues affect many important cellular functions

such as migration, differentiation, and growth. Mechanical interactions between

cells and the extracellular matrix (ECM), as well as ECM-mediated mechanical

communication between cells, plays a part in coordinating collective cellular dy-

namics during critical processes such as morphogenesis, tissue regeneration, and

immune response. Mechanical coupling and collective cell migration is particularly

important to the study of cancer progression. Collagen gels are widely used as an

in vitro model for ECM because they mimic the extracellular matrix in physi-

ological conditions. Type I collagen abounds in mammalian extracellular matrix

(ECM) and is crucial to many biophysical processes. We report experimental tech-

niques to study the structure and mechanical properties of collagen-based ECM at

the microscopic scale. We also present computational models that provide insight

into how ECM structure and mechanics depend on environmental factors and cell



activity.

While previous studies have mostly focused on bulk averaged properties, here

we provide a comprehensive and quantitative spatial-temporal characterization

of the microstructure of type I collagen-based ECM as the gelation temperature

varies. The structural characteristics including the density and nematic correla-

tion functions are obtained by analyzing confocal images of collagen gels prepared

at a wide range of gelation temperatures. As temperature increases, the gel mi-

crostructure varies from a bundled network with strong orientational correlation

between the fibers to an isotropic homogeneous network with no significant orienta-

tional correlation, as manifested by the decaying of length scales in the correlation

functions. We develop a kinetic Monte-Carlo collagen growth model to better un-

derstand how ECM microstructure depends on various environmental or kinetic

factors. We show that the nucleation rate, growth rate, and an effective hydrody-

namic alignment of collagen fibers fully determines the spatiotemporal fluctuations

of the density and orientational order of collagen gel microstructure.

Collagen gels are often characterized by their bulk rheology; however, variations

in the collagen fiber microstructure and cell adhesion forces cause the mechanical

properties to be inhomogeneous at the cellular scale. We study the mechanics

of type I collagen on the scale of tens to hundreds of microns by using holo-

graphic optical tweezers (HOT) to apply pN forces to microparticles embedded

in the collagen fiber network. We find that in response to optical forces particle

displacements are inhomogeneous, anisotropic and asymmetric. Gels prepared at

21◦C and 37◦C show qualitative difference in their micromechanical characteris-



tics. We also demonstrate that contracting cells remodel the micromechanics of

their surrounding extracellular matrix in a strain- and distance-dependent manner.

To further understand the micromechanics of cellularized extracellular matrix, we

have constructed a computational model which reproduces the main experiment

findings.

Interactions between cells and the ECM are a dynamic process, in which the

cells actively deform and remodel their surroundings. We show that 3D collagen

gels are significantly and irreversibly remodeled by cellular traction forces. In

addition we find that plasticity of collagen gels can be described in mechanical

terms, even when no cells are present. This is shown by irreversible deformation in

collagen gels due to macroscopic strain. We present a computational model that

describes collagen plasticity in terms of the sliding and merging of ECM fibers.

We have confirmed the model predictions agree with experimental results. These

results suggest that cell-induced remodeling of the ECM may enhance mechanical

coupling between cells and have a dramatic effect on cell-cell communications in

3D fibrous matrices. This could have important implications for the study of tissue

development and cancer progression.
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Mechanics of Three-Dimensional Microenvironments of Cells

1 Introduction

1.1 Overview

Mechanical interactions between the cell and the extracellular matrix play a critical

role in cell biology. The extracellular matrix (ECM) is an interconnected network

of biopolymers that provides structural support for cells and allows the diffusion

of biochemicals within tissues. The most abundant component of ECM is type

I collagen, a fibrous protein responsible for giving the ECM its material stiffness

[1]. Cells attach and move through the ECM using protein complexes that link

the ECM to the force-generating cell cytoskeleton [2]. However, these cell-ECM

adhesions also act as sensors, sending information to the cell about the structure

and mechanical properties of the surrounding matrix [1] and helping to regulate cell

behavior such as motility, morphology, and differentiation [3, 4, 5]. The stiffness

and the relative alignment of fibers in the network are particularly important

to cell function. For example, dense and rigid collagen gel can promote growth

and progression of cancer cells and tumors [6, 7]. Other important examples are

durotaxis in which cells tend move in the direction of increasing matrix stiffness

[8], and contact guidance in which cells tend to align and move in the direction of

fiber alignment [9, 10].

Cell-ECM interaction is a dynamic process in which the cell actively remodels
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the network [11] and these effects can propogate over long distances. Specifically,

tension exerted by the cells can align the fibers in the network leading to long

range force transmission [12]. Stresses transmitted by the network fibers can trig-

ger mechano-sensitive pathways of distant cells affecting behaviors such as force

generation [13] and cell-ECM adhesion [14]. These mechanical interactions be-

tween cells provides a means for communication and plays an important role in

regulating and coordinating collective cellular dynamics in a wide range of biophys-

ical processes, such as morphogenesis, tissue regeneration, and cancer progression

[15].

Due to their effect on cell behavior and communication, a significant amount of

work has been carried out to characterize the structural and mechanical properties

of biopolymer networks. Traditional models have quantified network structure us-

ing morphological descriptors such as the distribution of fiber length [16], pore-size

[17], and turbidity [18]. In addition, many studies have shown that fiber structure

influences transport properties of the network such as macromolecular diffusiv-

ity [19], and mechanical properties such as elastic moduli and stress distribution

[20, 21]. Studying these physical properties of biopolymer networks is essential for

understanding how they affect chemical and mechanical signaling between cells.

Previous studies of collagen network structure have mostly focused on bulk

averaged properties. In Chapter 2, we provide a comprehensive and quantitative

spatial-temporal characterization of the microstructure of type I collagen-based

ECM as the gelation temperature varies. Confocal reflection microscopy is used

to image the collagen network during growth and at a range of temperatures. The
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network structure, including the density and alignment of fibers, is characterized

by calculating the density correlations and nematic order correlations from the

confocal images. These functions provide information about higher order fluctua-

tions in the network structure that are overlooked by most previous studies. We

find that as temperature increases, the gel microstructure varies from a bundled

network with strong orientational correlation between the fibers to an isotropic

homogeneous network with no significant orientational correlation, as manifested

by the decaying of length scales in the correlation functions. We have also devel-

oped a kinetic Monte-Carlo collagen growth model to better understand how ECM

microstructure depends on the temperature and collagen concentration. We show

that the nucleation rate, growth rate, and an effective hydrodynamic alignment of

collagen fibers fully determines the spatiotemporal fluctuations of the density and

orientational order of collagen gel microstructure.

Mechanical properties of collagen gel is often characterized by bulk rheology;

however, variations in the collagen fiber microstructure, such as those character-

ized in Chapter 2, and cell adhesion forces cause the mechanical properties to

be inhomogeneous at the cellular scale. In Chapter 3 we present experimental

techniques for studying the mechanics of type I collagen on the scale of tens to

hundreds of microns by using holographic optical tweezers (HOT) to apply pN

forces to microparticles embedded in the collagen fiber network. The mechanics at

this microscopic scale are more directly relevant to individual cell behavior than

bulk averaged properties. We find rich mechanical behavior at the microscopic

scale, due the discrete nature of the collagen fiber network. In response to op-
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tical forces particle displacements are generally inhomogeneous, anisotropic, and

asymmetric. Consistent with the results of Chapter 2 which showed structural dif-

ferences between gels prepared at different temperatures, gels prepared at 21◦C and

37◦C show qualitative differences in their micromechanical characteristics as well.

We also demonstrate that contracting cells remodel the micromechanics of their

surrounding extracellular matrix in a strain-dependent and distance-dependent

manner. To further understand the micromechanics of cellularized extracellular

matrix, we have constructed a computational model which simulates the collagen

network using a 2D triangular lattice. The model reproduces the main experimen-

tal findings including the variations in micromechanical properties and alteration

of these properties due to active cell traction forces.

Interactions between cells and the ECM are a dynamic process, in which the

cells actively deform and remodel their surroundings. In Chapter 4 we show that

3D collagen gels are significantly and irreversibly remodeled by cellular traction

forces. In addition we find that plasticity of collagen gels can be described in me-

chanical terms. We use a parallel plate rheometer to apply a macroscopic shear

strain to collagen and find that mechanical strains can lead to irreversible deforma-

tion of the network, even without the presence of cells. In addition, bulk relaxation

kinetics are history-dependent, with the rate of relaxation and the residual strain

depending on the magnitude and duration of the applied shear strain. We also use

our technique for micromechanical characterization using optical tweezers (pre-

sented in Chapter 3) to show that microscopic remodeling leads to permanent

changes in the micromechanics of collagen ECM. To understand this ECM plas-
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ticity, we present a computational model that takes into account the sliding and

merging of ECM fibers. The model is able to confirm the experimental results

for cell-induced remodeling and macroscopic shear rheology. These results sug-

gest that cell-induced remodeling of the ECM may lead to structures that enhance

mechanical coupling between cells and have a dramatic effect on cell-cell commu-

nications in 3D fibrous matrices. Mechanical plasticity of collagen gels may have

important implications for the study of tissue development and cancer progression.

The remainder of this introduction will provide additional information on cells

and the extracellular matrix, as well as previous experimental and theoretical work

on the structure and mechanics of biopolymer networks.

1.2 Cell and Extracellular Matrix Mechanics

1.2.1 Extracellular Matrix Structure

The tissues in our bodies are groups of cells that act together for specific functions.

One major type of tissue, and the one most relevant to the research presented

in this thesis, is connective tissue. Stiffer connective tissues (like bone) provide

a structural framework for the body and softer connective tissues wrap around

organs and blood vessels, protecting and supporting them [22]. Figure 1.1 shows

a simple illustration depicting connective tissue in relation to organs and blood

vessels. We also see the epithelium, a layer of closely packed cells that line the

outer surfaces of organs and cavities within our bodies. Similarly, the endothelium
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Figure 1.1: Illustration depicting extracellular matrix in relation to epithelium,
endothelium, and connective tissues. (Image from Boundless Anatomy and Phys-
iology, boundless.com)

lines the blood vessels. Both epithelial and endothelial cells are attached to a

basement mebrane which separates them from the interstitial matrix.

Connective tissue mainly consists of the extracellular matrix (ECM) which is

made up of a network of biopolymers. The majority component of the ECM is

collagen, the most abundant protein in the human body. There are many types

of collagen, but the most common are the fibrillar types I and III. Collagen fibers

endow connective tissues with its material stiffness and are the structural scaffold

for cells living in connective tissue [1].

The most common type of cell in connective tissue are fibroblast cells, which are

responsible for building and maintaining the ECM. Fibroblasts are continuously

synthesizing new collagen fibers [23] and can also break them down through the
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Figure 1.2: Illustration showing both loose (A) and fibrous (B) connective tissue.
(Images adapted from Boundless Anatomy and Physiology, boundless.com)

secretion of certain proteases [24]. In addition to collagen, there are many other

fibers and proteins present in the ECM such as elastic fibers, made up of a core

of elastin surrounded by microfibrils. These allow tissues to extend upon loading

and recoil upon unloading [1]. As with collagen, fibroblast cells are responsible for

secreting elastin fibers to maintain the elastic properties of the ECM.

There are many types of connective tissue within the body such as loose and

fibrous connective tissue. Figure 1.2 shows an illustration of both these types of

connective tissue. In loose connective tissue (Figure 1.2A), there is much more

space between the fibers of the ECM and there are also more cells. This tissue is

flexible yet strong and is the kind that wraps around vessels and organs to protect

and support them. In fibrous connective tissue (Figure 1.2B), there are fewer cells

and the ECM fibers are very tightly packed together. The aligned fibers shown in

the figure are typical of tendons or ligaments, whereas other tissues which need to
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withstand compression from different directions (such as bone) have more random

fiber orientations. The collagen gel microenvironments discussed in the rest of

this thesis are most similar to loose extracellular matrix, although without the

additional biopolymers and proteins present in vivo.

1.2.2 Cell Adhesion and Migration

Cells anchor themselves and apply forces by forming adhesion sites which link the

cell cytoskeleton to the ECM. The cytoskeleton is a biopolymer network within

the cell that maintains its shape and also carries out many intracellular processes

[2]. The cytoskeleton is made up of different biopolymers such as microtubules,

intermediate filaments, and actin filaments. The main cytoskeletal component we

are concerned with is the actin microfilament network because it is the component

of the ECM responsible for exerting traction forces on the ECM. The motor protein

myosin is able to slide along the actin filaments, contracting the cytoskelton and

allowing the cell to apply contractile forces. Figure 1.3A-B show an image of a cell

stained for actin (magenta) and adhered to a collagen-based ECM. Figure 1.3C

illustrates a simple model of a contractile cell ahdered to an elastic ECM. The

cell applies a contractive force until it reaches equilibrium with the elastic forces

resulting from stretching the collagen fibers in the ECM. In addition to contraction,

polymerization of the actin network can create cell protrusions and exert pushing

forces on the ECM.

Actin polymerization and actin-myosin contraction is also crucial for cell motil-
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Figure 1.3: Actin cell cytoskeleton and cell contraction. (A) Zoomed in image
of the cell (actin stained magenta) adhesion to the collagen ECM (green). (B)
Image of the same cell stained with actin (magenta). (C) Simplified model of a
contracting cell in the elastic ECM. Cell adhesion sites represented by red circles.

ity. One method by which cells migrate through the ECM is by first sending out

actin protrusions which adhere to the ECM. The rear of the cell then releases

its adhesions and the actin network contracts to pull the cell body forward [25].

Other modes of migration are possible, such as lobopodia based migration in which

a large protrusion is created by intracellular pressure rather than actin polymeriza-

tion [26]. The mode of cell migration in 3D matrices is strongly dependent on the

structural and mechanical properties of its microenvironment through mechanisms
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which will be discussed in Section 1.2.3.

1.2.3 Mechanotransduction Regulates Cell Behavior

In addition to anchoring the cell to the ECM, adhesion sites also act as force sensors

capable of detecting mechanical cues from the environment through a process called

mechanotransduction. Figure 1.4 shows an example of a fibroblast cell attached

to the ECM. The zoomed in image shows a typical adhesion site where the ECM

is linked to the interior actin cytoskeleton by the integrin protein complexes. In

addition to physically linking the active cell cytoskelton to the ECM, the integrin

complexes also include force-sensitive linker proteins which can release signaling

molecules to the cell cytoplasm [1]. These can trigger signalling pathways, such

as RHO and ROCK [10, 14], which control cell activity. For example, external

tension can increase actin-myosin activity which in turn increases cell contractility

and tension [27]. This creates a positive feedback loop and leads to growth and

stability of the actin network.

Positive and negative feedback due to mechanotransduction regulates many

different cell behaviors. The morphology of cells, including the structure of the

cytoskeleton and cell-ECM adhesions, are strongly dependent on the stiffness of

the cell substrate. Cells grown on stiffer substrates can form large focal adhesions

and develop large aligned actin fibers, or stress fibers, within the cytoskeleton [4].

Matrix stiffness can also affect the differentiation of cells. Stem cells have been

shown to be extremely sensitivite to tissue-level elasticity, and will specify lineage
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Figure 1.4: Cell-ECM adhesions and mechanotransduction (from Ref. [1]).

and commit to different phenotypes based on the stiffness of their environment [5].

These effects mean that mechanical forces due to the ECM are extremely important

during morphogenesis in young embryos and throughout tissue development [28].

Cell migration can also be guided by the local ECM fiber network. It has been

shown that cells probe their environment with small protrusions, called filopodia,

before moving to occupy an area [29]. Cells have a higher tendency to move in
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the direction of larger substrate stiffness. This tendency of cells to move in the

direction of the stiffness gradient is called durotaxis, and has been demonstated in

3D collagen matrix [8]. In addition to stiffness, cells are also sensitive the alignment

of fibers in the ECM. Through contact guidance, cells tend to elongate and migrate

in the direction of local fiber alignment [9, 10].

Mechanotransduction regulates many vital cell behaviors, but defects in these

mechanisms can contribute to many different diseases, such as cancer [30]. Al-

though genetic changes initiate the beginning of cancer, biomechanical cues from

the ECM have a large impact on the behavior of tumor cells. Typical hallmarks

of cancer include unsuppressed growth, death resistance, and invasion into sur-

rounding tissues [31]. Tumors are stiffer than normal tissue because increased

cytoskeletal tension stimulates integrin signaling, increases cell-ECM adhesions,

and increases cell contractility. It has been shown that stiffer ECM can stimulate

cell growth and decreases the adhesion of cells to their neighboring cells, making

them more likely to transition to a malignant phenotype [7, 32]. Thus a deeper un-

derstanding of how mechanical cues from the ECM influence tumor cells is critical

to the study of cancer malignancy.

Mechanotrasduction provides a regulatory system of positive and negative feed-

backs that uses integrin complexes to sense physical cues from the ECM and trig-

gers molecular pathways that control cell growth and behavior. This sensitivity of

cells to the local mechanical properties of their environment is the reason why it is

so important to better understand the mechanics of cellular environments on the

microscopic scale.
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1.2.4 Cell-Cell Interactions and Collective Cell Behavior

Collective cell behavior is necessary for many biological functions. For example,

collective cell migration is required for wound healing and also cancer invasion. In

collective migration, individual cells still rely on the same actin mediated protru-

sions and mechanical cues from the ECM; however, they also need some means of

coordinating their behavior with other cells. One means of communication during

cell migration is the formation of direct cell-cell adhesions which mechanically link

the cells and provide junctions through which the cells can communicate biochemi-

cally [15]. However, cells can also interact mechanically through forces transmitted

by the ECM.

The ability of cells to transmit stresses through the ECM is highly dependent

on the fiber network geometry of the collagen matrix. Mechanical tension between

cells can lead to alignment of fibers and create fibers that carry large amounts of

stress [33]. These high stress fibers can connect distant cells and can provide a

means of mechanical communications. The stresses in fibrous ECM networks can

propogate relatively long distances (∼10µm or 10 cell diameters), longer distances

than they would be transmitted in a homogeneous material [12].

Recent experiments have shown that mammary acini (clusters of cells) seeded

in collagen matrix can interconnect by forming long lines of fibers between clusters

[34]. Over time, the acini disorganize as cells transition to an invasive phenotype

and break off from the cluster. Clusters that interacted with one another through

lines of collagen fibers broke up more rapidly, showing that the interactions between
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distant clusters could be stimulating cells to differentiate more rapidly. This is

further evidence that mechanical interactions are critical for cancer metastasis.

1.2.5 Cell Remodelling of the Extracellular Matrix

Cells are continually remodelling the ECM to maintain healthy tissue and organ

function. To maintain tissue homeostasis, cells move through the ECM, breaking

down old fibers and laying down new ones [1]. Over time, aging decreases the

ability of tissues to regenerate and maintain healthy function. One reason for

this is a decrease in stem cells within tissue; however, changes in ECM structure

also contribute to decreased tissue function [35]. The proper structure of the ECM

degrades, leading to an environment less hospitable to new cells, and in turn, fewer

healthy cells to repair the matrix. This degradation is apparent in the loss of skin

elasticity over time (wrinkles) and loss of muscle and bone mass. Although cell

regulation of the ECM naturally decreases over the span of a person’s life, serious

diseases, like fibrosis and cancer, can arise when cells are unable to regulate the

proper structure and stiffness of the ECM [11, 36].

Fibrotic diseases, such as pulmonary fibrosis, systemic sclerosis, and cardiovas-

cular disease, account for over 45% of deaths in the developed world [36]. Fibrosis

is the result of cells responding abnormally to some organ injury or tissue inflama-

tion. It is characterized by increased proliferation of fibroblasts, which differentiate

into myofibroblasts and synthesize excessive amounts of ECM [37]. This high den-

sity ECM dramatically alters the mechanical properties, such as tissue stiffness,



15

and further hinders organ function. In the extreme, this can lead to the formation

of scar tissue within organs such as the lungs, liver, and heart.

As mentioned above, mechanical cues from the ECM can also influence cancer

progression. Local increases in collagen density and alignment can affect cancer

cell migration and the ability of immune cells to interact with the cancer cells [11].

Remodeling of the surrounding ECM increases tissue stiffness around tumors and

further stimulates tumor growth and malignancy.

1.3 Characterization of Biopolymer Network Mechanics

1.3.1 Structural Characterization using Confocal Microscopy

Confocal microscopy is a technique commonly used for imaging the microscopic

structures of biopolymer networks. Confocal microscopy is a technique capable

of taking high-resolution 2D images deep inside a sample. Two pinholes in the

optical path remove out-of-focus light, providing excellent contrast and resolution.

In addition, blocking the out-of-focus light means only a thin region, or slice, of the

sample near the focal plane will be imaged. This allows one to take many slices at

different depths and combine them to form a 3D image of the sample, also known

as an image stack or z-stack.

A laser scanning confocal microscope (LSCM) illuminates and observes a single

spot at a time by using mirrors to scan a focused laser spot across the sample.

Detectors then collect the light which is transmitted through, reflected back, or
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fluorescently emitted from the sample. This allows researchers to stain a single

sample with multiple fluorescent dyes or labels and then image them all in sequence

using different filters or channels.

Confocal reflection microscopy (in which reflected light from the sample is col-

lected) has been used to study the self-assembly of collagen-based extracellular

matrix. These studies quantified the growth rate of the collagen network using

turbidity (total image intensity) versus time and explored the effects of collagen

concentration [18] and the inclusion of additional ECM biopolymers [38] on the

final collagen network structure.

Confocal reflection microscopy has also been used to characterize the strain-

induced alignment of collagen fibers [39]. It is shown that both colonies of cells

and purely mechanical strain of the collagen network can lead to fiber alignment,

and that this fiber alignment may be partially irreversible.

The pore size of a biopolymer network is the size of the open gaps between

discrete fibers, in which there is only the liquid solvent. One can imagine the pore

size as the diameter of the largest sphere which can fit into the network without

intersecting any fibers. Pore size has been shown to affect the molecular transport

properties of biopolymer networks [19], the ability of cells to attach and adhere

to collagen matrix [40], and the inasiveness of cells in collagen gels [17]. Confocal

microscopy has been used to quantify the pore size of biopolymer networks using

various image analysis techniques [41, 42, 43].

Computational reconstructions of real collagen networks have quantified several

key parameters for characterizing network geometry in addition to fiber density
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and pore size [16]. One is the distribution of fiber lengths within the network,

and another is the relative alignment of nearby fibers. The third, which will be

discussed further in Section 1.4.2, is the connectivity, or coordination number Z.

This quantifies the number of fibers meeting at any node in the network, and for

collagen is typically Z ≈ 3.4 [16].

1.3.2 Bulk Rheology

Many of the previous mechanical characterizations of biopolymer gels, especially

collagen, have been done by measuring the bulk rheology of the gel. Rheology

describes the mechanical response of the material under deformation and in terms

of the elastic moduli. Two of the elastic moduli for homogeneous isotropic mate-

rials are the Young’s modulus E and the shear modulus G. The Young’s modulus

quantifies the stiffness of the material under axial compression or expansion (Fig-

ure 1.5A) and the shear modulus gives the stiffness of the material under shear

deformation (Figure 1.5B). In both cases, the moduli relate the stress σ on the

surfaces to the strain ε by

σ = Eε , σ = Gε (1.1)

where the stress is defined as the force per unit area

σ = F/A. (1.2)
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Figure 1.5: Diagram of simple axial compression or expansion (A) and shear de-
formation (B). The red arrows represent the stress σ applied to the surfaces.

The strain is a dimensionless ratio of the deformation ∆L to L0, the length (for

stretch or compression, Figure 1.5A) or thickness (for shear, Figure 1.5B) of the

unstrained material.

ε = ∆L/L0 (1.3)

Previous work has been able to predict bulk elastic moduli, like the Young’s mod-

ulus, from the network structure by analyzing microscopy images of collagen net-

works [44].

Most studies of biopolymer rheology use continuous shear deformation using a

parallel plate rheometer. In these experiments, the sample is placed between the

two circular parallel plates of the rheometer. The plates are rotated relative to one

another to apply a rotational shear stress or strain to the sample. If the applied

strain is oscillatory, then the response of the gel can be quantified by the dynamic

shear modulus

G∗ = G′ + iG′′ (1.4)
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Figure 1.6: Example plot of a sinusoidal applied strain ε (green) and the resulting
stress σ (red) versus time showing the relative phase δ.

where G′ is the storage modulus and G′′ is the loss modulus. G′ characterizes

elastic response of the gel and leads to stress in phase with the applied strain. G′′

characterizes viscous response and leads to stress out of phase with the applied

strain. The relative phase δ between the strain and stress is shown in Figure 1.6

and is given by δ = tan−1(G′′/G′). Both the storage and loss moduli are generally

dependent on the frequency and magnitude of the oscillatory strain.

Measurement of the dynamic modulus has been used to characterize the self-

assembly of collagen as the storage modulus grows throughout polymerization [45].

Previous works has also been able to use structural data from confocal microscopy

to predict the dynamic shear response of collagen gel [20].

A major goal for rheological studies on collagen has been to study the nonlinear

elasticity of the networks. Collagen exhibits strain stiffening, meaning that the
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stiffness of the network increases as the strain amplitude increases. In fact, it

has been shown that nonlinear stiffening can occur as low as 10% strain and that

the storage modulus can increase by more than an order of magnitude before

network failure [46]. In addition, the nonlinear stress response of collagen is also

history-dependent, meaning that repeatedly stressing and straining the gel will

alter the mechanical properties. It has been shown that repeated straining leads

to a shift of the characteristic nonlinear stress-strain relationship to higher strains,

thus delaying the onset of strain stiffening [47].

While the above results used oscillatory shear deformations, this is not neces-

sary to characterize the nonlinear elasticity of biopolymer networks. For example,

strain stiffening can be measured by increasing the magnitude of shear strain at a

constant rate in a single direction [48]. In addition, it has been shown that holding

biopolymer gels at a fixed strain within the nonlinear regime will lead to relax-

ation of stress over time [49]. In other words, the longer you hold the biopolymer

gel at a fixed strain, the easier it gets to hold it there. This result, along with

the history-dependence shown with oscillatory strain, suggests that the structure

and mechanics of collagen gel are dynamic and can adapt to external stresses and

strains. This change in mechanical properties is fundamentally dependent on the

fiber network microstructure of biopolymer gels in which individual bonds within

the network can dynamically break, rearrange, and reform into more favorable con-

figurations. The plasticity of collagen based ECM is discussed further in Chapter

4.

Studies on the nonlinear properties of collagen are important because the non-
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linearity is thought to have an important effect on cell-ECM interactions. Highly

contractile cells can deform the surrounding network into the nonlinear regime and

this leads to different stress distributions when compared to linear deformations.

Probing this stress distribution is necessary for cells to detect the position and

orientation of neighboring cells and may be aided by the nonlinear properties of

the matrix [50].

1.3.3 Microrheology

The mechanical properties of materials can also be measured on the microscopic

scale using microrheology. Microrheology refers to techniques in which small probe

particles are embedded in samples and then the motion of these particles is ob-

served to extract the local viscous and elastic properties. In passive microrheology,

the particle motion is due only to thermal fluctuations. In one method, the par-

ticle is tracked by using a low power laser, which is focused on the particle and

then directed onto a quadrant photodiode (QPD). Deviations of the particle from

the center of the beam will change the intensity readings on the QPD, which re-

veals the particle trajectory [51]. The elastic moduli can then be calculated from

the particle trajectory using a frequency-dependent Stokes-Einstein equation. In

another method, laser interferometry microscopy is used to measure the thermal

motion and the moduli are calculated from the power spectrum of the thermal

fluctuations [52].

In addition to passive microrheology, active microrheology refers to techniques
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in which the probe particles are actively manipulated by some controlled force,

usually optical tweezers. One method for active microrheology measures the re-

sponse of micron-sized particles to an oscillating optical trapping force. Combining

this with the data from thermal motion of the same particle, they can measure

both the mechanical properties and identify nonequilibrium forces in the material

[53].

One major advantage of microrheology over conventional bulk rheology is that

the small size of the probe particles means that one can measure the elastic prop-

erties of very small sample volumes. This is particularly relevant when studying

mechanics on the microscopic scale of cells and the ECM. Active microrheology

has been used to measure the elastic modulus around individual cells embedded

within fibrin gels [54]. They report heterogeneity in the local mechanical properties

near the cell, but only for a very small number of cells and particles. In Chapter

3 we use a new active microrheology technique, using holographic optical tweezers

and video microscopy, to study heterogeneity in the micromechanical properties of

collagen-based ECM.

1.4 Semiflexible Polymer Networks

Biopolymers that make up the the ECM and the cytoskeleton tend to have very

different mechanical properties than synthetic polymers. For one, they tend to bind

together more weakly than most synthetic polymers. They also tend to be much

more rigid to bending than synthetic polymers [55]. This leads to biopolymer net-
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works having interesting mechanical properties, such as the nonlinear strain stiffen-

ing mentioned in Section 1.3.2. One characterization of the stiffness of biopolymers

is their persistence length Lp, which is the contour length at which significant bend-

ing will occur due to thermal fluctuations. Biopolymers are considered semiflexible

because their persistence length tends to be much longer than the single molecules

or proteins of which they are made. For this reason, semiflexible biopolymers can

be modeled as elastic rods which resist both bending and stretching. These individ-

ual elastic fibers can then be combined into networks to simulate bulk mechanical

properties.

1.4.1 Worm-Like Chain Model

The worm-like chain model treats individual biopolymer fibers as elastic rods which

resist both bending and stretching. When including stretching, it is typically

referred to as the extensible worm-like chain model. As shown in Figure 1.7, the

rod is modelled to have radius a, the length s defines the position along the axis

of the fiber, and the unit tangent vector ~t(s) defines the local orientation of the

fiber at position s [55].

The resistance of the fiber to bending can be described by the bending energy

Hbend =
κ

2

∫
ds

∣∣∣∣d~t(s)ds

∣∣∣∣2 (1.5)
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Figure 1.7: Diagram of biopolymer fiber modelled as an elastic rod with radius
a. The position along the axis of the fiber is s and ~t(s) is the local unit tangent
vector. (From Ref. [55]).

where κ is the bending modulus of the fiber. The unit tangent vector is given by

~t(s) =
d~r(s)

ds
(1.6)

where ~r(s) is the position of the filament relative to some arbitrary origin. For a

homogeneous rod of diameter 2a consisting of a homogeneous material, the bending

modulus should be proportional to the materials Youngs modulus E. In the case

of an elastic rod with circular cross section, the bending modulus is

κ =
π

4
Ea4. (1.7)

Using the equipartition theorem, one can use the above bending energy to show

that the persistence length for the fiber will be

Lp =
κ

kBT
(1.8)
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where T is the temperature and kB is Boltzmann’s constant.

In addition to bending, the fiber will also have a stretching energy given by

Hstretch =
µ

2

∫
ds

(
dl(s)

ds

)2

. (1.9)

The term dl/ds represents the relative change in length along the filament and the

stretch modulus is

µ = πEa2. (1.10)

The total elastic energy of the fiber is then the sum of the bending and stretching

energies integrated along the entire length s of the fiber.

1.4.2 Elastic Fiber Networks

To simulate the bulk mechanics of biopolymer gels, one can create a network

of fibers, each of which can be modelled as an elastic rod as described above.

These networks are contructed on a discrete lattice, usually a triangular or Mikado

lattice (intersecting straight lines) [48]. The total elastic energy H is calculated by

summing the bending and stretching energies of every fiber in the network

H =
∑
f

(
Hbendf +Hstretchf

)
. (1.11)

Some strain can be imposed on the network using fixed boundary conditions and

then finding the fiber structure which minimizes the total elastic energy. The
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stress is then calculated by varying the applied strain and finding the the resulting

change in the total energy of the network. The stress is defined as

σ =
1

V

∂H

∂ε
. (1.12)

The resulting relationship between stress and strain give the elastic moduli for

the simulated network. Although these simulations can be run on either 2D or

3D lattices, the 2D simulations are usually sufficient to capture the mechanical

properties observed experimentally.

One important parameter when forming these fiber lattices is the connectivity,

or coordination number z. This number represents average the number of fiber

segments which meet at any given junction. The connectivity has a large effect

on the resulting mechanics of the fiber network. For collagen matrix, a typical

connectivity is z ≈ 3.4 [16], which is important because it is below the “isostatic”

or critical connectivity. This means that the network would not be mechanically

stable if there were only spring-like stretching energies (κ = 0) [56]. The conse-

quence of the low connectivity is that collagen matrix mechanics is dominated by

the bending energy at low stesses and strains. At higher strains, the stretching

energies start to play a role and contribute to the nonlinear strain stiffening of

collagen gel. Recent simulations based on elastic fiber networks have been able to

reproduce the nonlinear elasticity seen experimentally in bulk rheology [48, 56].

In Chapters 3 and 4 we present lattice based models to better understand the

micromechanics and plasticity of collagen-based ECM.
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2 The Spatial-Temporal Characteristics of Collagen Extracellular

Matrix

In this chapter we provide a quantitative characterization of the microstructure

of type I collagen-based ECM for a range of gelation temperatures. We have

also developed a kinetic Monte-Carlo collagen growth model to better understand

how ECM microstructure depends on the temperature and collagen concentration.

We show that the nucleation rate, growth rate, and an effective hydrodynamic

alignment of collagen fibers fully determines the spatiotemporal fluctuations of the

density and orientational order of collagen gel microstructure.

The results of this work were published in the journal Soft Matter [57]. Christo-

pher Jones was in charge of all sample preparation, confocal imaging and data

collection. The data analysis code for calculating nematic order was developed by

Dan Lin. The simulation using the kinetic Monte-Carlo method was developed

by our collaborators at Arizona State University, Long Liang and Professor Yang

Jiao.

2.1 Introduction

As a major component of mammalian extracellular matrix (ECM) such as skin,

tendon, and organs, collagen I makes up about 25% of the entire protein content
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of the body [58]. Physiologically, collagen I molecules are synthesized by stromal

cells, such as fibroblasts in order to maintain the integrity of extracellular matrix.

When such functions are compromised, the human body develops several fatal

diseases, such as Ehlers-Danlos syndrom and Infantile Cortical Hyperostosis [59].

Collagen I has been widely used in tissue engineering as a scaffold protein

[60, 61] because it naturally forms gels of hierarchical structure that are friendly

to cells and growth factors [62]. Monomeric collagen I can self-assemble into fibrils

that are approximately 300 nm long and 1.5 nm in diameter. The fibrils further

bundle together to form thick fibers that are more than 1 µm long and 100 nm

in diameter. These fibers dominate the mechanical and transport properties of

collagen I gel [16, 19] and they can be directly visualized without tagging probes

using phase contrast [45, 63], confocal reflection [38, 39, 64] , or second harmonic

generation microscopy [65, 66].

The fiber networks of collagen gel natively support the adhesion of many types

of cells. As a result, it has been adapted as a popular model ECM for 2D and

and 3D cell culture. Many studies have shown that cells cultured in collagen I

gel are sensitive to the fiber matrix structure. For instance, dense and rigid gel

promotes growth of cancer cells [6, 7]. Highly-aligned collagen fibers may induce

malignant transition of mammary acini into invasive phenotypes [34]. The mi-

crostructural heterogeneity of collagen gel has also been shown to guide the cell

migration through durotaxis [8] and contact alignment [9]. In addition, the physi-

cal properties of collagen ECM such as the effective diffusion coefficient [19, 67, 68]

and stress distribution [69, 70, 12], which are respectively crucial to the chemical
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and mechanical signaling between cells, are determined by the fiber network con-

gigurations. These observations highlight the diverse mechanical cues generated

by collagen ECM, and the importance of understanding the factors that determine

the microstructures of collagen gel.

To date most structural characterization of collagen gel, such as porosity [17,

40], pore-size distribution [41, 42] and turbidity [18, 38], have been mainly focused

on the bulk averaged properties. There is a lack of data to characterize the spatial

heterogeneity of the fiber network [71], and how the matrix microstructure can be

tuned. The spatial heterogeneity of collagen gel is closely related with the exis-

tence of fiber clusters, bundles of fibers which are closely aligned. In this article, by

employing sophisticated statistical morphological descriptors devised in condensed

matter physics [72] and heterogeneous material theory [73], we provide a compre-

hensive and quantitative spatial-temporal characterization of the microstructure

of type I collagen-based ECM as the gelation temperature varies. In particular,

we combine confocal microscopy and image correlation analysis to systematically

study the fibrous configurations of collagen gel. We characterize the growth kinet-

ics as well as the static microstructure of collagen gel by quantifying the spatial

fluctuations in fiber density and orientation with the density and nematic correla-

tion functions, respectively.

In order to better understand how collagen ECM microstructure depends on

the environmental and kinetic factors, we have developed a kinetic Monte-Carlo

model based on the experimental measurements to simulate the growth dynamics

of a collagen gel at fixed gelation temperatures. Our model suggests that the static
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structure of collagen gel is inherently connected with the growth kinetics. In partic-

ular, it shows that the nucleation rate, growth rate, and an effective hydrodynamic

alignment of collagen fibers fully determines the spatiotemoral fluctuations of the

density and orientational properties of collagen gel microstructure. Our model also

enables us to determine the temperature dependence of the nucleation rate and

growth rate, which are difficult to directly measure in experiments.

2.2 Results

2.2.1 Growth Dynamics of the Collagen Matrix

The spatial heterogeneity of collagen gel is closely related with the existence of

fiber clusters, bundles of fibers that are aligned closely. Figure 2.1 shows typical

confocal reflection images of collagen gel formed around room temperature, where

fiber clusters can be easily identified visually. In order to quantify the structural

evolution of collagen fibril network during gelation, we use reflection mode of laser

scanning confocal microscope (LSCM, Leica SPE) to image a 2D slice of a thick

collagen gel. Figure 2.2 demonstrate the micro-structural dynamics in a typical

gelation process. The self-assembly of collagen matrix initiates immediately from

time zero, when 2 mg/mL type I collagen in acetic acid is neutralized by NaOH

and buffered by 10 × PBS (phosphate buffered saline) at room temperature. A few

isolated fibers start to appear at random locations at around 5 minutes and move

diffusively. These initial fibers anchor the nucleation of more fibers to form clusters
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Figure 2.1: The presence of fiber clusters contributes to the structural hetero-
geneity of collagen gel. (A1-A2) Typical confocal reflection images of collagen gel
showing many fiber clusters. Two specific clusters are highlighted by the white
dashed box. (B1-B2) Zoomed in images of th collagen fiber clusters highlighted
above. The images are taken using higher magnification and low density micropar-
ticles serve as markers (yellow arrow) to help find the same cluster and and focal
plane.
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each consisting of a few distinguishable fibers. As gelation proceeds, the viscosity

and level of fiber entanglement increases. Finally, the fiber clusters are arrested and

become the quenched structural heterogeneity after the gel is fully formed (Figure

2.2A). Using template-matching methods, we calculated the corresponding nematic

field at different stages of gelation as shown in Figure 2.2B.

To characterize the spatial organization of the self-assembled fiber structure,

we measure the two-point correlation of image intensity to approximate the spatial

fluctuations in density of the gel matrix:

g(r) =
1

σ2
< Ĩ(r0)Ĩ(r0 + r) >r0

Ĩ = I− < I > , and σ2 =< Ĩ2 > (2.1)

Where I(r0) is the 8-bit gray scale image intensity and Ĩ is the image offset by its

global average. The function g(r) characterizes how likely it is that two points of

distance r apart have the same intensity (Figure 2.2C). The decay of g(r) slows

down at later time, and plateaus at around 20 minutes, consistent with the growth

dynamics of the fiber clusters. Density correlation follows a double exponential

function as g(r) = a1 exp(−l1r) + a2 exp(−l2r) with root mean square deviation

(RMSD) less than 0.02 in all our data sets (Figure 2.2C inset). The two length

scales l1 and l2 are well separated, typically differ by more than an order of magni-

tude, and are related with the thickness of each fiber and size of the fiber clusters

respectively. In the beginning, when only a few fibers exist, the dominant fluc-
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tuation is the fiber thickness l1, hence a1 >> a2. At later time, the two weight

coefficients become closer and the heterogeneous density of the self-assembled col-

lagen fiber matrix can be characterized by the length scales l1, l2, which we will

examine systematically at different gel conditions.

In addition to the density fluctuations of the collagen matrix, the fiber orien-

tations can be characterized by 2-D nematic field s(r) =
∑

n e
2iθn(r) (Figure 2.2B),

where θn(r) is the angle between a fiber at position r with respect to an arbitrary

direction (which we choose to be the horizontal axis of the image), and the extra

factor 2 makes the nematic field invariant under reflection.

To obtain the nematic field from confocal images, we have developed a template-

matching algorithm (see Materials and Methods), which converts each raw confocal

image (resolution 1024 x 1024 pixel resolution) into a 128 x 128 coarse-grained

nematic field. The spatial organization of the fiber orientations can be evaluated

by the two point correlation function of s defined as

Θ(r) = | 1

< |s|2 >
< s(r0)s∗(r0 + r) >r0 | (2.2)

where Θ(r) characterize how likely it is that two points of distance r apart have the

same orientation. Notice that only points with |s| > 0 contribute to the correlation

function. Because s(r) is intrinsically coarse-gained, Θ(r) does not depend on the

fiber thickness. Instead, it measures the directional persistence along a fiber and

co-alignment between nearby fibers. As the gel is forming, Θ(r) decays slower at

later times, because fibers elongate and form aligned “bundles,” or clusters (Figure
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Figure 2.2: The correlation analysis reveals the typical growth dynamics of type
I collagen gel. Time zero corresponds to the moment when 2 mg/mL collagen so-
lution was neutralized and maintained in 23 ◦ C. (A) Time-lapse confocal images
taken at 5, 10, 15, 20 minutes. Scale bars are 100 µm. (B) The corresponding
nematic field obtained by template matching method. The nematic field s is color
coded in the HSV space: the hue is proportional to the complex angle of s and the
value is proportional to the magnitude |s|. (C) The two-point intensity correlation
function g(r). Inset: the residual of fitting g(r) with double exponential func-
tion. (D) The two-point nematic order correlation function, dashed lines represent
double exponential fittings. Inset: the residual of double exponential fitting.
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2.2D). Θ(r) can also be approximated with a double exponential function, although

the geometric meaning is less obvious due to the coarse-graining.

2.2.2 Temperature Dependence of Collagen Matrix

After introducing the correlation functions to quantify the spatial fluctuation of

density and nematic orders, we now study collagen gel formed at different envi-

ronment temperatures T at a fixed concentration of 2 mg/mL. We made multiple

gel samples for each temperature in glass bottom microwells. For each gel sample,

we took a confocal z-stack starting from 10 µm above the glass bottom to avoid

reflection of the glass and the z-step was set to equal the axial width of the point

spread function (1.7 µm). In total for each gelation temperature we collected about

400 images in order to statistically characterize the microstructure of collagen gel.

Figure 2.3 demonstrates the density fluctuations using the 2-point correlation

function g(r). In Figure 2.3A, g(r) curves for different temperatures are grouped

by colors (blue-green-red in the order of increasing temperature) and data point

markers (circle-triangle-square-diamond in the order of increasing temperature).

As temperature increases, g(r) decays faster, which is consistent with smaller pore

sizes. Notice that the density fluctuation does not have any systematic dependence

with respect to the position of focal plane, or the distance between the glass bottom

and image plane, suggesting a weak boundary effect when forming the gel (Figure

2.3A, inset).

Figure 2.3B-C demonstrate the temperature dependence of the parameters a1,
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Figure 2.3: The temperature dependence of the collagen gel microstructure re-
vealed by density correlation function g(r). (A) (Log scale) Mean and standard
deviation of g(r) for gel formed at different temperatures and fixed concentration
(2mg/mL). Each data point is calculated by sampling ∼ 400 images from 6 gel
samples made in the same condition. Blue circle, diamond, uptriangle.. 16.1 C.
Green diamond......Inset: g(r) for a typical gel sampled at different depth and plot-
ted in the same scale of A. We take 2D slices of each gel from 10 µm to 130 µm
away from the glass bottom in 1.7 µm steps (step size equals to the width of point
spread function). Results for a typical sample are color coded by their relative
distance from the glass bottom. (B-D) The double exponential fitting parameters
a1, a2, l1, l2 for each image (dotted scattering plot), and their means and standard
deviations (solid lines and error bars).
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a2, l1, and l2 from double exponential fitting. As temperature grows, there are more

but shorter fibers, thus the weight a1 = 1− a2 increases. The parameter l1 slowly

decreases, just above the diffraction limit (≈0.4 µm) until gelation temperature is

30◦C. Therefore, the faster decay of g(r) at higher temperature is mainly due to

the decrease of l2. When T > 30◦C, however, reduced fiber thickness and length,

together with the increased gel turbidity lower image signal to noise ratio and

greatly suppress the length scale l1. In addition, we also find the length scale l2

becomes less sensitive to temperature when T < 21◦C. As we will discuss below,

this can be explained if the energy barrier for fiber growth is comparable to the

thermal energy at T ∼ 37◦C.

The systematic change of collagen gel microstructure with respect to tempera-

ture is also evident from the nematic orders. As shown in Figure 2.4A-B, at higher

temperature, the collagen fibers are shorter and more randomly oriented. As a

result, the correlation in nematic field becomes shorter ranged (Figure 2.4C). Sim-

ilar to the density correlations, the nematic fields do not systematically depend on

the depth of focal plane (Figure 2.4C, inset), therefore we consider images taken

at different depth as statistically independent.

When orientation of collagen fibers fluctuate strongly, we expect a small global

nematic order < s >= 1
N

∑
i s(ri), where the average is taken over all subregions

that contains a line. This is evident in Figure 2.4D, where the global nematic order

decreases monotonically as a function of T . The result suggests that at fixed chem-

ical composition and collagen concentration, the gel microstructure depends on the

gelation temperature in a manner that resembles ferromagnetic phase transition.
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Figure 2.4: The temperature dependence of the collagen gel microstructure re-
vealed by nematic correlation Θ(r). (A1) A typical confocal image of collagen gel
formed at 16◦C, converted to binary to enhance the contrast. (A2) The corre-
sponding nematic field of the image in A1. The nematic field s is color coded in
the HSV space: the hue is proportional to the complex angle of s and the value
is proportional to the magnitude |s|. (B1-B2) A typical confocal image and the
associated nematic field of gel formed at 33◦ C. (C) (log scale) Mean and standard
deviation of Θ(r) for gel formed at different temperatures and fixed concentration
(2 mg/mL). Each data point is calculated by sampling ≈400 images from multiple
gel samples made in the same condition. Legend: same as in Figure 2.3A. Inset:
the angle distributions of a typical gel sampled at different focal depth (10 mm to
130 mm from the glass bottom in 1.7 mm steps). The histograms of the complex
angles of s(r) for each slice are plotted in polar coordinate and are color coded
by their relative distance from the glass bottom. (D) The magnitude of global
nematic order parameter < s > as a function of temperature. Data presented here
are the results from individual images (dotted scattering plot), their means and
standard deviations (solid lines and error bars).
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Indeed, as T increases, the order parameter < s > decreases and approaches zero

continuously.

The above experiment measurements suggest that the self-assembly of colla-

gen matrix is temperature sensitive. As the gelation temperature increases, the

static microstructure of collagen gel evolves from clusters of long, aligned fibers to

uniformly distributed short, and randomly oriented fibers. Interestingly, the same

trend has been observed in connective tissues that are compromised by fibrosis [37].

To better understand the underlying physics that determines the self-assembled

collagen ECM microstructures, we have developed a computational model to link

the equilibrium gel configurations with the growth dynamics.

2.2.3 Kinetic Monte-Carlo Collagen Growth Model

To complement our experimental study of the effects of gelation temperature on the

microstructure of the collagen network, we develop a kinetic Monte-Carlo method

to simulate the gelation process. The goal of the kinetic MC method is not to

simulate the full molecular details of each collagen fiber during the gelation process,

but rather to understand, on a coarser scale, the effects of a number of controlling

factors (e.g., gelation temperature) on the final structure of the collagen network.

Specifically, we model each fiber as a spherocylinder, which is initially short and

can grow in length due to polymerization at both ends. Two fibers can form a

cross-link (corresponding to fiber entanglement in the collagen gel) if they are

sufficiently close to one another. We consider the cross-linked fibers as a cluster.
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Individual fibers and clusters of fibers can diffuse in the solution. The associated

effective diffusion coefficients depend on the size of the fiber/cluster as well as the

viscosity of the solution, which increases dramatically as the gelation proceeds [64].

We note the detailed physical interactions between the collagen monomers and the

resulting complex kinetics of the association and disassociation processes are not

incorporated, as they are in other first-principle and molecular dynamics models

for biopolymer network self-assembly and dynamics [74, 75, 76, 77]. However, we

emphasize that our meso-scale model is sufficient to reproduce the growth kinetics

of the collagen gel, as we will show in the next section.

Two key parameters in our model are the nucleation rate n and fiber growth

rate γ, both of which depend on the collagen concentration c and gelation temper-

ature T . In particular, we consider that n and γ are monotonic increasing function

of c and T . At low c and T , a small of number of fiber seeds have sufficient time

to grow in size, diffuse around and interact with one another via hydrodynamic

effects before they are cross-linked with one another. This leads to the heteroge-

neous “bundle” network structure. As c and T increase, more fiber seeds emerge

simultaneously and grow fast, which results in a more homogeneous network struc-

ture with short fibers. For a given set of c and T , we can effectively estimate the

corresponding n and γ by comparing the experimental data with simulation results.

Our simulation works as follows: Initially, n fibers seeds (short spherocylinders

with aspect ratio 2) are placed in a periodic simulation box with random positions

and orientations. We note that the initial aspect ratio of the fiber seed does not

correspond to actual aspect ratio of a monomer, but rather makes it an anisotropic
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structural unit effectively representing a fiber in the early stage of the gelation.

During each discretized time (MC) step, the following events occur:

• Each fiber grows in length via elongation at the two ends of the sphero-

cylinder. The magnitude of the elongation δLi is given by δLi = εLi, where

Li is the current length of the fiber and ε is a random number uniformly

distributed in [0, γ].

• Each individual fiber has a translational and rotational motion, whose mag-

nitudes are respectively denoted by Df
T (Li) and Df

R(Li) and are exponen-

tial functions of the fiber length Li such that Df
T (Li) ∼ exp(−Li/L0) and

Df
R(Li) ∼ exp(−Li/L0). For fibers with length Li < L∗, the random trans-

lation and rotation are applied. For fibers with Li > L∗, we consider that

the fiber motions are biased such that two long fibers have the tendency to

align with one another due to hydrodynamic effects. Specifically, the final

orientation of the moved fiber is obtained by perturbing the orientation of

the nearby reference long fiber.

• When two fibers are sufficiently close to one another, i.e., the distance df

between the axis of spherocylinders is small than ∆, the fibers form a per-

manent cross-link with probability pcl.

• A cluster of fibers can also have random translational and rotational motions,

whose magnitudes Dc
T and Dc

R are generally much smaller than those of

individual fibers.
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The values of the simulated parameters, including the nucleation rate n and

fiber growth rate γ, corresponding to various collagen concentrations and tem-

perature values employed in experiments, will be discussed and provided in the

following sections.

2.2.4 Simulated Collagen Growth Dynamics

To validate the kinetic MC method, we first employ it to simulate the growth

dynamics of the collagen matrix with collagen concentration c = 2 mg/ml and

maintained at T = 23◦C. The model parameters are determined such that the

simulated growth dynamics reproduces the experimental observations described in

previous sections. In particular, we denote the edge length of the cubic simulation

box by `0 and use it as the unit for length. We have used n = 300/`3
0 for the

nucleation rate, γ = 0.05 for the growth rate, Df
T = 0.05`0 and Df

R = 0.15π for

fiber translation and rotation, Dc
T = 0.001`0 and Dc

R = 0.05π for cluster translation

and rotation. The critical distance for cross-linking is ∆ = 0.005`0 with the cross-

linking probability pcl = 0.5. The critical fiber length beyond which fiber rotations

are biased due to hydrodynamics effects is chosen to be L∗ = 0.25`0.

Figure 2.5A shows the snapshots of simulated growing collagen network in

three dimensions at different MC steps after initialization. The specific MC steps

selected are to match the corresponding snapshots of the experimental system

shown in Figure 2.2A. To make quantitative comparison with experimental data,

we generate 2D gray scale images by convolving the 3D (binary) network with a
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Figure 2.5: The simulated growth dynamics of the collagen matrix at gelation tem-
perature T = 23oC. (A) Snapshots of simulated 3D collage network at different
MC stages. (B) Two-point intensity correlation function associated with the sim-
ulated collagen matrix at different MC stages. (C) Nematic correlation functions
associated with the simulated collagen matrix at different MC stages

point spread function represented as a Gaussian kernel. The width of the kernel is

chosen to be σ = 1.0µm, which produces reasonably smeared images that mimic

the experimental data. It is well established in heterogeneous material theory [73]

that if a system is statistically homogeneous and isotropic, the two-point statistics

computed from 2D slices of the material are representative of the full 3D structure.

On the other hand, although the nematic correlation functions Θ(r) have different

definitions in 2D and 3D systems, they both represent the degree of alignment
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between the fibers, and therefore will share the same trend as gelation temperature

varies. Thus, it is valid to compare the 3D simulation results and 2D experimental

data.

Figure 2.5B shows the two-point intensity correlation g(r) at different gelation

times (i.e., MC stages). The simulated density correlation functions can also be

fitted very well with double exponential functions, i.e., f(r) = a1 exp(−r/l1) +

a2 exp(−r/l2). Similar to the experimental data, both l1 and l2 increase as gelation

proceeds. The simulated nematic correlation function Θ(r) also possesses a growing

length scale, which again is consistent with the experimental data. The agreement

between the simulation and experimental results clearly demonstrates the validity

and utility of kinetic Monte-Carlo growth model in modeling the collagen matrix.

2.2.5 Simulated Collagen Temperature Dependence

After validating the kinetic MC method with experiments, we now apply the sim-

ulations to better understand the observed temperature dependence of collagen

matrix. In particular, we propose the following scenario for the experimental ob-

servation: At low gelation temperature T , the fiber nucleation rate is low. Thus, a

small of number of fiber seeds (small nucleation rate) have sufficient time to grow

in size, diffuse around and interact with one another before they are cross-linked

with one another. At the point of cross-linking, the near-neighbor long fibers have

developed a high level of orientational correlation (i.e., the tendency to be aligned

with one another) due to hydrodynamic effects. This will lead to a heterogeneous
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network full of clusters of fibers. At high gelation temperature T , many fiber seeds

emerge simultaneously due to the high nucleation rate. In addition, the growth

rate is also higher. In this case, a percolating network quickly forms because

cross-linking occurs before significant orientational ordering can be achieved. This

results in a homogeneous network structure with short fibers.

In order to verify the proposed scenario, we employ kinetic Monte-Carlo simu-

lations and use least mean square fittings to search for the optimized set of n and

γ at each temperature so that the density correlation function g(r) of simulated

network best matches the corresponding experimental data. This allows us to ob-

tain the temperature dependence of the nucleation rate and growth rate, which we

will elaborate on below.

Figure 2.6A shows the snapshots of the 3D collagen network corresponding to

different temperatures. It can be clearly seen that as the gelation temperature

increases, the network structure becomes more homogeneous, composed of shorter

fibers with less orientational correlation. Also shown are the intensity correlation

function g(r) (Figure 2.6B) and the nematic correlation function Θ(r) (Figure

2.6C).

The double-exponential fitting parameters (a1, a2, l1 and l2) and the global

nematic order parameter < s > as a function of temperature are shown in Figure

2.7A-D. Similar to the experimental results, the length scales in g and Θ decrease

as T increase, indicating a decrease in the degree of spatial and orientational corre-

lation between the fibers in the network. In addition, for the intensity correlation

function g, the weighting parameter a1 increases with increasing T while a2 de-
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Figure 2.6: Effects of temperature on the collagen network via simulation. (A)
Snapshots of simulated 3D collagen networks formed at different gelation temper-
atures. (B) Two-point intensity correlation functions corresponding to different
collagen networks. (C) Nematic correlation functions corresponding to different
collagen networks. The color scheme and symbols for different temperatures are
the same as in Figure 2.3.

creases, indicating a decay of short-range correlation (e.g., that between bundles of

fibers), which is consistent with experimental observations. Finally, the simulated

nematic order parameter < s > decreases with temperature and almost vanishes at

36◦C, suggesting a continuous phase transition at the vicinity of this temperature.

The good agreements between simulation and experimental results strongly sup-

port our proposed mechanisms for the temperature dependence of collagen network
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microstructures.

Figure 2.7: The effect of gelation temperature T on the simulated fitting parame-
ters a1, a2, l1 and l2 for g(r) as well as the global nematic order parameter < s >.

Our kinetic MC model also provides further insights on the temperature de-

pendence of the parameters n and γ, which govern the gelation kinetics as well as

the static microstructure. As shown in Figure 2.8, the nucleation rate exhibits an

exponential dependence on the gelation temperature,

n = A1exp[−A2/(T − A3)] (2.3)

where A1 = 2223`−3 is a scaling parameter and A2 = 11.6◦C is an effective nucle-

ation barrier, which could depend on the chemical composition and concentration

of the collagen, and A3 = 13.2◦C. This functional form is consistent with the pre-

diction from classic nucleation theory [72]. Similarly, the growth rate also exhibits

an exponential albeit weaker dependence on T, as shown in Figure 2.5B,

γ = B1exp[−B2/(T −B3)] (2.4)
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where B1 = 0.12, B2 = 8.93◦C, and B3 = 10.6◦C. This suggests that it is energet-

ically favorable to elongate an existing fiber rather than creating a new one. As

a result, the microstructure of collagen based ECM is more heterogeneous when

formed at lower temperature.

Figure 2.8: Effects of temperature on the nucleation rate n (A) and growth rate γ as
obtained from simulation (B). Both parameters exhibit an exponential dependence
on the gelation temperature.

2.3 Discussion

In this article, we report the correlation-based microstructure characterization of

collagen gel over a broad range of gelation temperatures. The two point correlation

function g(r) characterizes the spatial fluctuation of collagen fiber density, and can

be further parameterized to obtain fiber thickness as well as fiber cluster sizes. We

have demonstrated that as temperature increases, collagen fibers become shorter

and form smaller clusters, resulting in a faster decay of the density correlations.



49

The result is consistent with smaller pore sizes at higher temperature, which has

also been observed for collagen gel formed at higher concentration [17, 43].

In order to obtain the orientations of collagen fibers, we have developed a

template-matching algorithm to calculate the coarse-gained nematic field directly

from confocal reflection images. We have demonstrated that as temperature in-

creases, the global nematic order decreases and Θ(r), the spatial correlation of ne-

matic field also decays faster. This means that increasing temperature will lead to

be more randomly oriented fibers, and the local structure becomes more isotropic.

The correlation-based microstructure characterization presented here provides

more detailed information than the global characterizations, such as pore size dis-

tribution [43]. However, neither the correlation functions, nor the pore size distri-

bution uniquely determine the configuration of a collagen fiber network. Inspired

by the close relation between growth dynamics and the equilibrium structures

[18, 45, 78], we have developed a kinetic Monte-Carlo model based on the experi-

ment measurements to simulate the growth dynamics of a collagen gel at specific

gelation temperatures. Our model is validated by successfully reproducing the en-

tire growth kinetics of collagen gel and suggests that the static structure of collagen

gel is inherently connected with the growth kinetics. With our model, we showed

that the nucleation rate, growth rate, and an effective hydrodynamic alignment of

collagen fibers fully determines the spatiotemporal fluctuations of the density and

orientational order of the collagen gel microstructure. Our model also enables us

to determine the temperature dependence of the nucleation rate and growth rate,

which are difficult to directly measure in experiments.
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The structure of collagen gel determines the mechanical and transport proper-

ties of the fibrous ECM [16, 19], both of which are key to the collagen-based tissue

engineering [61, 79]. It is therefore of great interest to study the quantitative

relations between microstructure characterization, the permeability, and rheology

properties of collagen gel. The microstructures of collagen ECM in physiological

settings are also closely related with the disease states of connective tissue. For

instance, the shorter and less oriented fibers we observed at higher temperature

resembles the collagen contracture in fibrosis [37]; longer and oriented collagen

fibers have been recently shown to promote invasive transition of mammary acini

[34]. These observations suggest an interesting future direction to apply our exper-

iment characterization and simulation model to in vivo systems. In addition, our

combined experimental and numerical study suggests that the gel microstructure

can be tuned in a controllable fashion by varying a few environmental parameters.

This would enable one to produce engineered gel structures for guided cellular

behaviors.

2.4 Materials and Methods

2.4.1 Preparing Collagen Gel

Gels were prepared from high-concentration rat tail collagen I in acetic acid (Corn-

ing, 10.08 mg/ml). The collagen was diluted with dH2O, 10×PBS (phosphate

buffered saline), and 0.1 N NaOH to a final concentration of 2 mg/ml and a pH of
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7.4. The temperature at which the collagen gel formed was regulated using a stage

top incubator (ibidi Heating System, Universal Fit) equipped with an external tem-

perature sensor (themo-couple type K). The temperature was set 30-60 minutes

prior to the addition of collagen to allow the incubator to equilibrate. Preparation

of the collagen solution was carried out on ice to prevent early gelation and two

different methods were used to add the solution to the incubator.

The first method was used for experiments on the collagen growth dynamics

in which imaging must begin immediately after the addition of collagen. Less

than 60 seconds after neutralizing the collagen, the solution was injected through

plastic tubing (Tygon S-54-HL, 0.04” ID) onto a glass bottom dish (ibidi µ-dish

35 mm) positioned above the microscope objective. Use of the plastic tube allows

the collagen to be placed in the incubator without removing the lid and preserves

the thermal equilibrium.

The second method was used for experiments on the temperature dependence

of gel formation in which multiple gel samples were prepared at the same tem-

perature from the same collagen solution. An 8 well µ-slide (ibidi) was placed in

the incubator during equilibration with one of the wells containing the external

temperature sensor. For gel formation below 23◦ C, the incubator was placed in a

4◦ C refrigerator, and for temperatures of 23◦ and above, the incubator was located

on the lab bench at room temperature. After neutralizing the collagen solution,

the lid of the incubator was removed and the remaining 7 wells were filled with

collagen. The time elapsed between neutralization and replacement of the incu-

bator lid varied between samples but was always less than 3 minutes. Removal of
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the lid and addition of a larger total volume of collagen temporarly disrupts the

thermal equilibrium of the system so the temperature was monitored closely via

a thermo sensor in contact with the microwells next to the gel sample. Typical

temperature versus time curves for these experiments are provided in Figure 2.9.

After the initial temperature drop due to the storage temperature of reagents, our

setup maintained the gelation temperature within 0.3◦ C. Collagen samples were

given at least one hour to fully gel before imaging.
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Figure 2.9: Typical temperature versus time recordings during gelation of collagen
samples. For most samples there is an initial decrease in the temperature due to
the brief removal of the incubator lid. Sample temperature returns to the initial
value within 10-15 minutes and then fluctuates by less than 0.3◦ C.



53

2.4.2 Microscopy

Confocal reflection microscopy images of the collagen gels were taken using an

inverted laser scanning confocal microscope (LSCM, Leica TCS SPE) with a 20×

oil immersion objective. Samples were illuminated with a 532 nm laser and re-

flected light passed through a 30/70 RT filter and confocal pinhole before being

collected by a photomultiplier tube detector (PMT). The scan size was 1024×1024

pixels (367µm×367µm) and reflected light intensity was collected as 8-bit gray

scale images.

For imaging collagen growth dynamics, the microscope was equipped with an on

stage incubator and the system was allowed at least 30 minutes for the temperature

to equilibrate. Prior to the adding the collagen, the focal plane was set to the top

surface of the glass µ-dish. The collagen was then injected into the incubator

through a plastic tube such that the solution filled the area of the µ-dish directly

above the objective. Immediately after addition of the collagen, the focal plane was

moved approximately 50 µm into the sample and images were taken at one scan per

second for 40-60 minutes. The time elapsed between collagen neutralization and

the first scan was less than 1 minute 30 seconds. For multi-well collagen samples,

one confocal z-stack was taken for each well with the first scan ≈10 µm above the

glass to avoid reflection interference. 100 scans were taken per well with a 1 µm

z-step size between each scan.
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2.4.3 Calculating Nematic Field by Template-Matching Method

To calculate the nematic order of a test image, we have developed a template-

matching method which includes three consecutive steps:

First, a series of template images with the same pixel resolution as the test

image are generated. Each template image contains one line described by the

equation x sin θ − y cos θ = b where the origin of coordinate system is set at the

center of the template image. For a pixel whose distance is d from the line x sin θ−

y cos θ = b, the intensity is set to be e−
d2

σ2 , where σ = 0.5 pixel. For the 8 x 8 test

images used in this study, we have generated 1800 templatesDb,θ(i, j) for b ∈ [−2, 2]

(in step of 0.5 pixel) and θ ∈ [0, 180) (in step of 1 degree).

Next, we calculate the similarity score R(b, θ) between the test image T (i, j)

and the template images Db,θ(i, j) as

R(b, θ) =

∑
i,j T (i, j) ∗Db,θ(i, j)

I(i, j) ∗Db,θ(i, j)
(2.5)

here I(i, j) is a matrix whose elements are all ones’.

Finally, the nematic order s for the test image is calculated as

s =
∑
θ

R(b, θ)e2iθ (2.6)

For a typical confocal image with pixel resolution 1024 x 1024, we divide it into

128 x 128 subregions, with each subregion being a 8 x 8 test image. The template-

matching is applied to each subregion and collected to construct the coarse-gained
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nematic field s(r).
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3 Micromechanics of Cellularized Biopolymer Networks

In this chapter we study the mechanics of type I collagen on the scale of tens to

hundreds of microns by using holographic optical tweezers (HOT). We demonstrate

that contracting cells remodel the micromechanics of their surrounding extracel-

lular matrix and have constructed a computational model which reproduces the

main experimental findings.

This work was published in the Proceedings of the National Academy of Sci-

ences [80]. Christopher Jones contributed to the experimental portion of this work

by preparing all samples, collecting, and analyzing data. Matt Cibula, in Professor

David McIntyre’s lab, developed the HOT system and contributed equally to mi-

cromechanical data acquisition and analysis. Emma Krnacik aided actin staining

and confocal microscopy. Jingchen Feng in Professor Herbert Levines group at

Rice University developed the computational models.

3.1 Introduction

The mechanical properties of the extracellular matrix (ECM) play a central role

in developmental biology [81], tissue homeostasis and remodeling [61]. Alteration

of the ECM elasticity is a signature of many diseases such as pulmonary and atrial

fibrosis, Ehlers-Danlos syndrome, and infantile cortical hyperostosis [36, 59]. The
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mechanical cues from the ECM also strongly correlate with the clinical prognosis

of various types of cancers [31].

In recent years, many studies have shown that to mimic the physiological con-

ditions in vitro, mechanical cues from a truly 3D ECM are necessary [82]. Type I

collagen gel has gained popularity as arguably the most employed in vitro model

of a 3D ECM [61]. As the most abundant protein in animal tissue, and accounting

for 25% of the human whole-body protein content [58], type I collagen is a major

component of the ECM in skin, tendon and organs. Despite its lack of biochem-

ical complexity compared with live tissue, reconstituted type I collagen gel has

been successfully employed to provide mechanistic insights into processes such as

morphogenesis [83], wound repair [84] and cell migration [85]. In particular, the

rheology and especially the rigidity of collagen gel have been shown to tune the

growth and migratory phenotypes of cancer cells in vitro [26, 32].

Structurally, collagen gels are formed by fibrous networks, and typically have

pore sizes of a few to tens of microns [17, 40, 43]. The typical size of these structural

discontinuities is comparable to the size of cells and is much larger than cell-ECM

adhesion complexes [86, 87]. It is therefore expected that a cell senses the mi-

cromechanical properties of its surrounding matrix, rather than the macroscopic

rheology of the ECM [29, 87]. While many studies have focused on the (nonlinear)

bulk rheology of empty and cellularized collagen ECM [20, 44, 69, 70], the mi-

cromechanics of the porous biopolymer network is largely unexplored, presumably

due to the lack of direct experimental measurements.

In this chapter, we report direct experimental measurements and computational
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models on the mechanical response of empty and cellularized type I collagen gel of

different architectures. Previously we have demonstrated that as the gelation tem-

perature increases, the resulting collagen gel experiences a phase transition from

highly heterogeneous long fiber clusters to homogeneously distributed short fiber

mesh [57]. As we demonstrate, the microscopic architecture strongly affects the

micromechanics of the collagen gel. Furthermore, we study the effects of embedded

fibroblast cells and breast cancer cells on the micromechanics of collagen fiber net-

works. These experimental measurements have led us to develop a computational

model of realistic biopolymer networks. Our results provide a largely overlooked

perspective on the studies of 3D cell-ECM mechanical interactions.

3.2 Results

3.2.1 Micromechanics of Collagen Gel

To measure the micromechanical response of the collagen gel, we apply optical

forces to 3-µm-diameter polystyrene beads embedded in the gel and record the

resulting motion with holographic video microscopy. We use a computer-controlled

spatial light modulator to manipulate the laser beam (1064 nm wavelength) and

displace the optical trap away from the equilibrium position of the embedded

particle [88]. We turn the optical trap on and off using an external shutter while

recording video microscopy of the bead’s motion. The beads are illuminated with

a partially coherent light source at 625 nm, which generates concentric diffraction
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patterns that allow us to track the particle trajectories at high resolution [89, 90].

Figure 3.1A shows a confocal reflection microscopy (CRM [38, 57]) image of a

bead embedded in a collagen gel (prepared at room temperature, see Material and

Methods) and the inset shows one frame of the transmitted light video microscopy

for the same bead. We analyze each video frame to obtain a time series of the bead’s

mechanical response in two dimensions, as shown in Figure 3.1B. In this case, the

particle is manipulated by displacing the optical trap 0.725 µm in the +x direction

relative to the equilibrium position of the particle. This time series illustrates

several features of our system and of the collagen mechanical response: particle

displacements are determined with sub 10-nm resolution, particle displacement has

components parallel and perpendicular to the direction of the trap displacement,

and the residual motion during the displaced (trap on) times is smaller than the

residual motion during the equilibrium (trap off) times, indicating that the trap

suppresses the particle’s Brownian motion.

To complete our characterization of the micromechanical response of an em-

bedded bead, we repeat the above measurements with the optical trap displaced

in the −x, +y, and −y directions in the image plane. The collected results for

the four directions are shown in Figure 3.1C, where each dot represents data from

one video frame. Most frames correspond to either the displaced case (trap on)

or the equilibrium case (trap off), but some frames do record transition states in

between. By fitting the time series to a pulse function, we reduce the influence

of these transition states with the result that each video yields one data point

representing the mean displacement of the particle from its equilibrium position.
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Figure 3.1: A typical micromechanical measurement of collagen gel. (A) Confocal
reflectance image of a 3-µm-diameter particle embedded in a collagen matrix. The
collagen gel was formed at 21 ◦C and featured distinct fiber clusters dispersed in
a fluid medium. The inset shows one frame of the video used to track the particle
displacement. (B) Time series showing the particle displacement in response to a
pulsed 22 pN/µm optical trap placed 0.725 µm away from the particle equilibrium
position in the +x-direction. (C) 2D trajectory map of the particle response to
optical traps positioned 0.725 µm away (from the particle equilibrium position)
in the +x (red), +y (green), −x (blue), and −y (pink) directions. The circles
represent the mean displacements determined by fits of the time series to a pulse
function. (D) 2D trajectory map of a particle response to optical traps positioned
in 24 evenly distributed orientations. Inset: 2D trajectory map of another particle
in the same sample. These measurements are done in the same way as in (C) except
for more directions probed instead of only four. Colors of the particle trajectories
represent the orientations of the trap positions.
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The displacement ∆d includes components both parallel and perpendicular to the

trap displacement. The data for this particle illustrate that the response of the

collagen gel is off-axis, anisotropic, and asymmetric. As shown in Figure 3.1D,

these features are not a result of particular choice of measurement axis, but indeed

represent the complex micromechanical properties of the collagen network.

We repeat the measurements described in Figure 3.1A-C for ≈100 particles in

each collagen gel sample. The particles are seeded at a density of ≈ 2× 105mm−3

and all measured particles are within a 200 x 150 x 20 µm3 volume. The particle

density is chosen to minimize particle aggregation and disruption of the native gel

structure, while still offering high resolution of the spatial variations of the network

micromechanics.

To characterize the distribution of micromechanical properties in each gel sam-

ple, we define three quantities that summarize the results. For a given particle and

trap location, we define the compliance Ji as

Ji = 6πa
∆d
‖
i

F
‖
i

(3.1)

where i = 1− 4 refers to one of the four trap locations, a = 1.5 µm is the particle

radius, ∆d
‖
i is the component of the particle displacement along the direction of

the trap displacement, F
‖
i = kt(dt −∆d

‖
i ) is the parallel component of the applied

force, kt ≈ 22 pN/µm is the harmonic optical trap stiffness, and dt = 0.725 µm is

the distance of the trap from the particle’s equilibrium position. The average of
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the four measurements gives the local compliance:

J =
1

4

∑
i

Ji (3.2)

For a linear elastic material, this definition reduces to the standard definition of

compliance, which is the inverse of the shear modulus.

To quantify the anisotropic response, we define the anisotropy A as the dimen-

sionless quantity

A =
1

4J
(Max[Ji]−Min[Ji]). (3.3)

To quantify the off-axis response of the particles to the applied forces, we define

the directional off-axis angle

θi = tan−1

(
∆d⊥i

∆d
‖
i

)
(3.4)

where positive angles are measured counterclockwise from the trap displacement

to the particle displacement. We also define the off-axis angle for a given particle

to be the maximum of its directional off-axis angles.

θ = Max[|θi|] (3.5)

In order to investigate the effect of network architecture on collagen gel mi-

cromechanics, we examine two types of collagen gels prepared under different con-
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ditions: one with collagen concentration of 1.5 mg/ml and grown at 37◦C, the other

with the same concentration but grown at 21◦C with increased ionic strength. Fig-

ure 3.2 shows the representative results for one gel of each type. Sample to sample

variations do not change the qualitative behaviors reported below. Consistent with

our previous results [57], different gelation temperatures lead to visible differences

in the microstructure of the collagen fiber network, as seen in Figure 3.2A. At

37◦C, the collagen network is composed of short and thin fibers that form a nearly

homogeneous mesh with a typical pore size of ∼ 1µm. At 21◦C, the collagen gel

contains thick fiber clusters and the gaps between fiber clusters are on the order

of tens of microns.

These structural differences cause the two gels to have significantly different

micromechanical properties. Figure 3.2B shows normalized histograms (probability

distribution) for the local compliance J of the two gels. The gel formed at 37◦C

has a compliance J that is narrowly distributed around the average value. The gel

formed at 21◦C, in contrast, has a broadly distributed local compliance.

In addition to the compliance J , the anisotropy of the local mechanical response

also exhibits a systematic dependence on the collagen network architecture. As

shown in Figure 3.2C, the distribution of the anisotropy A peaks at 0.1 for gels

formed at 37◦C. For 21◦C gels, the anisotropy peaks around 0.18, and may take

extreme values as high as 0.5. For both gels, the directions of maximum (or mini-

mum) compliance are evenly distributed among ±x̂, ±ŷ, suggesting that the gels

are macroscopically isotropic random networks. Note that in our definition, an

anisotropy of 0.5 means the compliance measured locally along different directions
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Figure 3.2: Statistical distributions of micromechanical properties. (A) Confocal
reflection images of 1.5 mg/mL collagen gels grown at 37◦C and 21◦C, with (right)
and without (left) the embedded probing particles. (B) Normalized histograms
ρ(J) of compliance J for collagen gels grown at 37◦C (upper panel, red) and 21◦C
(lower panel, blue). (C) Normalized histograms ρ(A) of anisotropy A for collagen
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are fit well by a normal distributions (mean and standard deviation: µθ37 = −1.39◦,
σθ37 = 11.2◦; µθ21 = 0.64◦, σθ21 = 23.6◦).
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may differ by twice as much as the average. Also note that because we are mea-

suring displacement in only four directions, A is a lower bound of the compliance

anisotropy. As a result, the large discrepancies between compliances measured in

different directions further demonstrate the rich micromechanical properties be-

yond the expectations for a continuous elastic medium.

When probing an isotropic random biopolymer network at scales much larger

than its structure discontinuity, we expect the mechanical response to be parallel to

the probing force, or θ = 0. This is no longer true in the case of micromechanics.

As shown in Figure 3.2D, for gels formed at 37◦C, the off-axis angles tend to

be smaller, the distribution peaks around 10 degrees and has a tail extending to

more than 30 degrees. For gels formed at 21◦C, the off-axis angles tend to be

greater. The distribution peaks at 30 degrees and broadly covers the range from

0 to extreme values as high as 70 degrees. Unlike θ, the probability distributions

of θi are symmetric and well approximated by normal distributions, as shown in

the inset of Figure 3.2D. A surprising observation revealed by Figure 3.2D is that

there is a significant fraction of probes with off-axis displacements larger than

on-axis displacements (θ >45 degrees), suggesting that the ECM may be locally

auxetic. Since many types of cells have mechanosensitive membrane receptors

that are sensitive to shear stress [91], a large off-axis angle means the cellular

contraction force in the normal direction may activate these shear-sensing receptors

as well. To our knowledge this is a new type of mechano-feedback between cells

and their ECM. Further investigation is necessary to uncover its implications to

the 3D cellular dynamics. Another interesting observation by comparing Figure
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3.2C and Figure 3.2D is that the shapes of the distribution functions for A and

θ are similar. The normalized correlation coefficients between A and θ are higher

than 0.4 for both types of gels, suggesting that micromechanical anisotropy and

off-axis response in collagen are closely related. On the other hand, neither A nor

θ is strongly correlated with the local compliance J (correlation coefficients <0.1

for both types of gels). These results suggest that A and θ are good measures of

the geometric configuration of the ECM network, while J is mainly determined by

the elastic modulus of fibers and their cross-links.

In addition, we also test gels formed with growth medium at 37◦C which lead

to structural and mechanical properties different from either of the conditions de-

scribed previously. The characterization of these conditions are particularly rele-

vant because all cell-populated collagen samples are prepared with growth medium

at 37◦C. Figure 3.3A shows confocal reflection images of two gels, one with and

one without particles. Structurally, the collagen network has longer fibers than the

high temperature DI water samples, but the fibers are still much shorter and more

homogeneous than the low temperature gels. Figure 3.3B-D show the results of

micromechanical measurements, and again the properties are in between those of

the previously described collagen samples. We see broader distributions and over-

all higher compliance, anisotropy, and off-axis angle than for the DI water sample.

It has been shown that in addition to temperature and pH, ionic strength during

gelation also has a large effect on the structural and bulk mechanical properties

of collagen gel [92]. Our results show higher similarity between gels prepared with

growth medium at different temperature than those prepared at the same temper-
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Figure 3.3: A typical micromechanical measurement of collagen gel prepared at
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for anisotropy A.
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ature with different solvents. This suggests that ionic strength during gelation also

has a strong effect on the local micromechanics of collagen gel.

To further investigate the spatial fluctuations of the micromechanical properties

of collagen gel, we generate spatial maps of J , A, and θ with a Gaussian kernel.

For each gel, we use particles within a 10 µm range in z direction to generate

spatial maps using Gaussian weighted averages:

U(x, y) =< exp(−(x− xi)2 + (y − yi)2

2σ2
U i > (3.6)

where xi, yi represent the position of probing particle i, U i represents one of the

micromechanical properties (J , A or θ) measured for particle i, and σ =10µm.

Fig. 3.4 compares the spatial maps for gels formed at 37◦C and 21◦C. Due to the

finite density of probing particles, these maps are low-pass-filtered representations

of the spatial distributions. Nonetheless, it is evident that gels formed at lower

temperature have greater spatial variations compared with gels formed at higher

temperature. Also note that the anisotropy A and the off-axis angle θ are spatially

correlated.

3.2.2 Cell Traction Forces Alter ECM Micromechanics

When the collagen matrix is populated by cells, the cellular traction forces may

deform the local network microstructures. Therefore we expect the micromechan-

ical properties of a cellularized collagen gel to be remodeled by embedded cells
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Figure 3.4: Spatial maps of compliance (top), anisotropy (middle), and off-axis
angle (bottom) of collagen networks grown at 21◦C (left side) and 37◦C (right
side). Scale bar is 50 µm. The value at the location of each particle is fixed and
the region between particles is interpolated using a Gaussian kernel as a function of
the distance from each particle. Gels formed at 21◦C network demonstrate greater
spatial fluctuations of all three micromechanical properties.



70

[54, 93, 94]. To test this hypothesis, we seed strongly contracting mesenchymal

cells (mouse fibroblast cells NIH 3T3 and human breast cancer cells MDA-MB-231)

in the collagen matrix at low density and measure the micromechanical response

around a single isolated cell. Figure 3.5A shows the actin cytoskeleton of a MDA-

MB-231 cell in a 3D collagen matrix. Unlike in 2D cultures, stress fibers are not

apparent and polymerized actin (as labeled by phallotoxins) is concentrated at

the cell membrane. The cell exhibits small membrane protrusions that are actin-

rich and presumably stabilized by cell-ECM adhesions (Figure 3.5A arrows). We

measure the displacement of probing particles around each cell when perturbed

by HOT as described above. To further elucidate the role of the cell contraction

forces, we measure the mechanical response of each particle before and after we

biochemically disrupt the cell actin cytoskeleton with cytochalasin D, which sup-

presses the contraction forces and restores the collagen network to a stress-free

state. From these measurements, we calculate the local compliance Jcell and Jfree

before and after cytochalasin D treatment, as well as Acell, Afree, θcell, θfree. We

have repeated the experiment on 7 samples (3 NIH 3T3 and 4 MDA-MB-231) with

more than 100 probing particles in total.

We find that the effect of cells on the local compliance is spatially dependent.

Figure 3.5B shows the spatial variation of the change of local compliance |∆J |
Jfree

(r),

where ∆J = Jcell−Jfree and r is the distance between the probing particle and cell

membrane as determined from confocal image stacks. The change of compliance

gradually decrease as r increases, and remains significant (∼ 20%) as far as 80 µm

away from the cell. When r is small (r < 10 µm), the change of local compliance
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Figure 3.5: ECM micromechanical properties are remodeled by cell contraction
forces. (A) 3D reconstruction of a MDA-MB-231 cell embedded in a collagen
matrix based on its F-actin immunofluorescence. Insets show the confocal slices
with simultaneous imaging of actin (red) and collagen fibers (green) of the same

cell. Scale bars: 50 µm. (B) Relative change of local compliance ( |∆J |
Jfree

) as a

function of probe-to-cell distance (r). Inset: cumulative probability of ∆J
Jfree

(red),

and ∆A (blue). A vertical line intersects the two curves at |∆J |
Jfree

= 0 and ∆A = 0.

Error bars are standard deviations.

is suppressed by the mechanical property of the cell itself, which is more rigid than

the local collagen matrix. This explains the non-monotonic trend shown in Figure

3.5B, and is also confirmed by numerical simulations below. We have also obtained

statistics of changes in the local mechanical properties. As shown in the inset of

Figure 3.5B, from the cumulative probability of ∆J
Jfree

(red), and ∆A (blue), we find

that the cells tend to stiffen their local ECM (>65% probes), and increase ECM

anisotropy (>62% probes).

To further elucidate the role of cell contraction forces in remodeling the local

mechanics of the ECM, we have measured the strain field generated by the cells
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embedded in collagen gels with 3D particle tracking velocimetry (see Materials

and Methods below). A typical result is shown in Figure 3.6A. Two confocal slices

at different depths are plotted with (2D projections) contours of strain magnitude

and arrows of deformation field. To facilitate imaging, we have fluorescently la-

beled the cells as shown in the top slice. The strain field is not symmetric, and

is strongly correlated with the cell morphology [95]. The magnitude of the strain

field represents the change of microstructure, and we expect that larger strain cor-

relates with more significant changes of micromechanical properties. Indeed, as

shown in Figure 3.6B, the relative change of compliance |∆J |
Jfree

increases monoton-

ically with strain magnitude. At the same time, larger strain also increases the

micromechanical anisotropy (Figure 3.6B inset). From these results, it is evident

that cells actively remodel the micromechanics of their 3D ECM. These effects

propagate as far as ∼ 80 µm away from the cell, mediated by the strain fields

generated by cellular contraction forces.

3.2.3 Simulated Biopolymer Network Micromechanics

In order to provide fundamental understanding of the micromechanical measure-

ments, we have developed a 2D lattice-based computational model. Our model is

constructed on a triangular lattice. As described previously [55, 96, 69], triangu-

lar lattice models have successfully reproduced many bulk mechanical features of

biopolymer networks, such as strain stiffening, the bending-stretching transition

and shear-induced fiber alignment. However, the utility of triangular lattice models
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A B 

Figure 3.6: Cell remodeling of ECM micromechanical properties is modulated by
local strain magnitude. (A) Two confocal slices of a typical sample. The slices
are separate by 12.5 µm apart along the optical axis. The top slice shows the
fluorescently labeled cell (white on black background) and the strain magnitude
contours. The bottom slice shows the bright-field (non-descanned channel) image
of the same cell (outlined in black curve) and the deformation field caused by cell
contraction forces. The color of the contours and the arrows are scaled linearly
(blue to yellow) with the magnitude of strain field (0 to 11%) and the deformation

field (0 to 3 µm). (B) Relative change of the local compliance ( |∆J |
Jfree

) as a function

of local strain magnitude. Inset: ∆A as a function of local strain magnitude. Error
bars are standard deviations.

in understanding ECM micromechanics has not been reported to our knowledge.

The network construction has been described in detail previously [96, 97].

Briefly, on a regular triangular lattice, each bond is of length a and is present with

probability p. Straight lines in this lattice, which have average length (1−p)−1, are

identified as fibers with stretching stiffness k and bending stiffness κ. The lattice
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sites are freely rotating crosslinks. The Hamiltonian of the entire network is:

Eelastic =
k

2a

∑
〈ij〉

gij(|Rij| − a)2 +
κ

2a

∑
〈ijk〉

gijgjk∆θ
2
ijk (3.7)

where gij = 1 for bonds that are present and 0 for removed ones. The first term is

the stretching energy; |Rij| is the distance between sites i and j in the deformed

state. The second term is the bending energy; 〈ijk〉 labels three consecutive sites

along a straight line in the reference state, and ∆θijk is the change of angle along the

fiber. We vary the value of the relative bending stiffness κ/(ka2), ranging from 10−4

to 10−2. This is consistent with what is expected for actual collagen fibers, because

the ratio κ/(ka2) is of the order of (d/a)2, where d and a are the diameter and mesh

size obtained when modeling the fibers as simple elastic rods [70]. Previous studies

report an average connectivity (number of fiber segments meeting at a junction)

of z ≈ 3.4; therefore, we set p = 0.55 ≈ 3.4/6 in our model [16, 48]. To simulate

collagen networks of qualitatively different microstructures, following the above

construction, we apply the Metropolis-Hastings algorithm , which controls network

heterogeneity through an effective temperature Teff . Consistent with our previous

experimental results [57], at higher effective temperature, the network consists of

short and thin fibers. At low effective temperatures, the network contains thick

fiber clusters. Generally, the heterogeneity of the network monotonically decreases

as Teff increases.

We model a probing particle as a circular hole in the lattice network with its

boundary connecting to neighboring bonds (Figure 3.7A), and the optical trap as a
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Figure 3.7: Simulation results of the micromechanics of biopolymer networks. (A)
The micromechanical response of the network. Whole simulation network is 150
× 150 bound length. A probing particle (centered at the pink dot) embedded in
a stress-free network (gray dash lines) moves to a new equilibrium position (black
dot and blue circle) and deforms its surrounding matrix (red lines) in response to
the force of an optical trap (centered at green star). (B) Normalized histogram of
compliance J for lattice network grown at high effective temperature (Teff = 50,
upper panel) and at low effective temperature (Teff = 10, lower panel). (C)
Normalized histogram of anisotropy A for a lattice network grown at Teff = 50
(upper panel) and Teff = 10 (lower panel). (D) Normalized histogram of off-axis
angles θ for a lattice network grown at Teff = 50 (upper panel) and Teff = 10
(lower panel).
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quadratic potential well: Etrap = 1
2
kp ·∆L2. Thus the total Hamiltonian becomes:

Etotal = Eelastic + Etrap. The equilibrium state of the network is calculated by

applying the conjugate gradient (CG) method, which allows us to extract particle

displacements analogous to those measured directly in the experiments. As shown

in Figure 3.7B-D, the distributions of compliance J , anisotropy A and off-axis angle

θ for networks formed at two different effective temperatures demonstrate the same

trends as the experimental results, and to some extent agree quantitatively with

Figure 3.2B-D. Moreover, we find in our simulations that networks formed at lower

Teff have greater spatial variations in their micromechanical properties, which is

consistent with the experimental measurements.

To simulate a cellularized collagen network, we model a contracting cell as an

ellipse (aspect ratio 5:1 as obtained from typical cell morphology in experiments)

embedded in the network and shorten the bond lengths isotropically of any bonds

inside the ellipse [33, 98] (Figure 3.8A). Similar to our experimental measurements,

we have compared the micromechanical compliance with (Jcell) and without cell

contraction (Jfree). As shown in Figure 3.8B, the relative change of compliance

|∆J |
Jfree

measured at varying distances from the cell agrees well with the experimental

results. This non-monotonic behavior can be explained by the intrinsic rigidity

of the cell, which exists even in the absence of contractive forces. Employing

our computational model, we have further examined the directional dependence

of |∆J |
Jfree

. As shown in Figure 3.8C-D, similar trends are observed along both the

long and short axes. However, the magnitudes differ by as much as 50%. This

difference explains the relatively large error bar in Figure 3.8B.
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Figure 3.8: Simulation results of the cellularized collagen network micromechanics.
(A) The equilibrium configuration of a cellularized network. The green ellipse in
the center stands for a contractive cell. The blue dashed lines divide the whole
space into four parts. Top and bottom parts are in the short axis direction, left
and right parts are in the long axis direction. (B) Relative change of compliance

J , |∆J |
Jfree

as a function of distance r (in units of bond length a) from the cell. (C)
|∆J |
Jfree

as a function of distance in the short axis direction ( rs/a). (D) |∆J |
Jfree

as a

function of distance in the long axis direction (rl/a).
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The above results demonstrate that triangular lattice models and their exten-

sions capture the main features of the micromechanics of cellularized collagen gel.

The rich micromechanical properties are intrinsically tied to the microstructure of

the fiber network, as well as the stress states determined by the dynamic cell-ECM

interactions.

3.3 Discussion

We have reported on the experimental and computational studies to elucidate

the micromechanics of cellularized collagen networks. We have demonstrated that

when probing scales smaller than the structure discreteness, rich mechanical prop-

erties are observed beyond the predictions of micro or bulk rheology. Although

these properties are microscopic measurables, they are determined by the net-

work configuration on a larger scale (∼20 times the mesh size determined from

simulation). Therefore, the ECM microstructure has a significant effect on ECM

micromechanical characteristics, as we have confirmed both experimentally and by

simulation. In particular, the sharply distributed micromechanical compliance J

for collagen gels grown at 37 ◦C agrees with the value measured from bulk rhe-

ology (such as in [48]). In these cases, gel pore sizes are typically smaller than

the probing particles, and we expect the continuous medium assumption together

with equation (3.1) to be a good approximation. However, for collagen gels which

have large spatial heterogeneities and pore sizes, the bulk rheology becomes a poor

predictor of micromechanics. Indeed, while gels grown at 21 ◦C typically have a
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smaller bulk compliance compared with 37 ◦C gels [20, 48], the average of microme-

chanical compliance shows the opposite. The breakdown of continuum assumption

is evident from the broad distribution of J shown in Figure 3.2. In this case, we

expect that bulk rheology and micromechanics probe different physical properties

of the collagen network.

We have shown that a relatively simple model of collagen gels can capture

many features of the experimental data. The model is based on a two-dimensional

lattice and is not meant to be a precise match to the three-dimensional sample.

Instead, it serves as a way to make sense of the general properties of fiber-based

bending-dominated elastic systems. These systems have well-understood macro-

scopic properties such as strain stiffening and nonlinear differential Poisson ratios

that emerge from this model class, and we show here for the first time that the

micromechanical properties can also be successfully modeled, both with and with-

out embedded cells. Of particular interest is the difference between high and low

temperature gels, seen both in the data and in our simulations; there is a pro-

nounced increase in local mechanical variability for the gels that are created at

low temperature, connected to their increased structural variability. We should

note that the model underpredicts the extent of this variability for the compliance

data. This may be due to the fact that in our model the bonds have a fixed elastic

response independent of temperature, which results in a temperature-independent

average compliance, as opposed to the net change in mean compliance seen in the

data. Our focus here is on the variance for which the model does reflect the correct

physics resulting from the differing network heterogeneity.
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We have applied a 2D model rather than 3D in this study for computational

complexity consideration. It is worth noting that continuum elasticity in 2D allows

mechanical perturbation to propagate longer range than its counterpart in 3D. This

possibly suggests an overestimation of the range of the effects shown in Figure

3.8. However, previous studies on the break-down of continuum elasticity in fiber

matrices have shown anomalous, long-range deviations from continuum elasticity

in 2D matrices [99, 100]. Therefore it is natural to expect the fiber nature could

also result in long-range non-continuum effects in 3D. In this sense, our 2D model

is enlightening to understand micromechanics of real 3D biopolymer networks.

When collagen gels are populated by contractive cells, the micromechanical

properties are significantly altered locally. For NIH 3T3 and MDA-MB-231 cells,

the effects can be seen as far as 100 µm away for gels at collagen density of 2

mg/ml. This is consistent with the observation that bulk rheology of collagen gels

is modified at high embedding cell densities [44]. The micromechanical remodeling

is highly correlated with the strain field created by the cellular contraction forces,

thus further illustrating the close structure-property relation at microscopic scales.

Reciprocally, micromechanics, more directly than the bulk rheology of ECM, reg-

ulates the morphology, migration, proliferation and differentiation of embedded

cells [101, 102]. Therefore we expect that micromechanical heterogeneity is a key

factor that contributes to the heterogeneous cellular behaviors observed even in

the same 3D culture environment [103, 104]. Our experimental and computational

approaches provide a novel way of further investigating these effects.
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3.4 Materials and Methods

3.4.1 Preparing and imaging collagen gel

Collagen gels are prepared from high-concentration rat tail collagen I in acetic

acid (Corning, 10-11 mg/ml). The collagen is diluted with dH2O (for 21 ◦C gel)

or DMEM growth medium (for 37 ◦C gel), 10×PBS, and 0.1 N NaOH to a final

concentration of 1.5 mg/ml and a pH of 7.4. Confocal reflection microscopy images

of the collagen gels are taken using an inverted laser scanning confocal microscope

(LSCM, Leica TCS SPE) with either a 20× or 40× oil immersion objective.

3.4.2 3D cell culture and staining

NIH 3T3 mouse fibroblast and MBA-MB-231 human breast cancer cells are sus-

pended at very low density in neutralized collagen solutions. The suspension is

then immediately transfered to gridded glass bottom dishes (ibidi µ-dish Grid-50)

and incubated in a tissue culture incubator (37 ◦C, 5% CO2) for at least 24 hours

before staining or micromechanical measurements. Actin staining is done using

Alexa Fluor 488 phalloidin dye (Life Technologies) on fixed samples. For cellular-

ized collagen gel, micromechanical measurements with active cell traction forces are

followed by staining the cell using CellTracker Green dye (Life Technologies). We

then perform confocal imaging before and after cytochalasin D (Sigma Aldrich, 10

µg/ml in PBS) treatment for 1-2 hours. Micromechanical measurements are then

conducted again with the same probing particles.
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3.4.3 Holographic optical tweezers calibration

A holographic optical tweezers system with a 1064-nm trapping laser and a 100X,

1.6 NA, oil-immersion objective is used for micromechanical measurements [88].

Video microscopy measurements are taken with the sample illuminated by a red

LED and recorded at 60 fps, while the displaced trap is pulsed at 0.7 Hz by a

mechanical shutter. To determine the location of the particle, the video microscopy

images are analyzed with a tracking algorithm based on the radial symmetry of the

particle’s image [90]. The particle trajectories are then fitted using a built in pulse

fitting function in MATLAB (MathWorks, Inc.) to obtain the mean displacements.

The micromechanical measurements described in the main text require pre-

cise control over the magnitude and direction of the applied trapping force. For

small trap displacements, the force is approximated as linearly proportional to the

displacement of the trap relative to the particle. We calculate the force in the

direction of the trap as F = kt(dt −∆d‖), where kt is the stiffness of the trap, dt

is the displacement of the trap from the equilibrium position of the particle, and

∆d‖ is the displacement of the particle in the direction of the trap displacement.

We carry out three calibration experiments, one to determine the stiffness of the

trap, another to determine the appropriate trap displacement, and the final to test

the precision of the direction of applied forces.

The stiffness of the trap is determined using the Equipartition method [105].

We trap a 3 µm particle in water and observe the Brownian motion due to thermal

fluctuations. A video of the trapped particle is recorded at 60 frames per second for
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Figure 3.9: Calibration of holographic optical trap stiffness. (A) XY trajectory
of the Brownian motion of a 3 µm diameter sphere trapped in water at 35%
laser power. (B) Histogram of the x position of the particle showing a Gaussian
distribution with a standard deviation of σx = 0.0313µm.

approximately 1 minute 30 seconds (roughly 5000 total frames). Figure 3.9A shows

the Brownian motion of a typical particle. According the Equipartition theorem,

the thermal energy is equal to the average potential energy of the particle with

1
2
kbT for each degree of freedom in the motion. Treating the optical trap as a har-

monic potential well, we get 1
2
kbT = 1

2
kt〈x2〉, where kb is the Boltzmann constant,

T is the absolute temperature of the water, and 〈x2〉 is the variance, or square

of the standard deviation σx, of the spatial fluctuations (〈x〉 = 0). We seperate

the Brownian motion into the x and y components and fit each with a Gaussian

distribution to find the standard deviation. Figure 3.9B shows a histogram of fluc-

tuations in the x direction for a typical particle. The standard deviations for both

directions are σx = 31.3 nm and σy = 33.1 nm. Using an absolute temperature of

294 K, this gives stiffnesses of kx = 4.159 pN/µm and ky = 3.72 pN/µm. Finally,
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although micromechanical measurements were carried out at 60% laser power, this

calibration was done at 35% power to increase the observed Brownian motion.

This increase in power increases the intensity of the beam by a factor of 5.348, so

rescaling the stiffnesses we get kx = 22.24 pN/µm and ky = 19.98 pN/µm.

While the calibration was done in water, the micromechanical measurements

were done in collagen gels. For the gels used in our experiments, collagen only

makes less than 2% of the total mass while the rest is mainly water. Therefore

we expect the trap stiffness in water and in collagen gels are very close. Indeed,

from the recent turbidity data of collagen gel (∼ 1 cm−1[18]), we estimate that the

scattering of light at 50 µm depth will cause less than 1% reduction in the trap

stiffness in collagen gel.

To determine the appropriate trap displacement, we perform a calibration on

particles embedded in a homogeneous collagen gel. We center the trap on the

particle, then increase the trap displacement in the +x direction in increments of

0.096 µm. The particle displacement as a function of trap displacement is plotted

in Figure 3.10A. The particle response increases roughly linearly until it reaches a

maximum at a trap displacement of 1.35 µm. For our linear model of the trapping

force to be valid, we chose a trap displacement of 0.725 µm for all micromechanical

measurements, safely within the approximately linear region and represented by

the vertical dashed line in Figure 3.10A. Also, note that y displacements were

minimal as a highly isotropic particle was chosen for this calibration.

Next we focus on the linear region of trap displacements to explore the linearity

of collagen response. Figure 3.10B shows particle displacement in the x direction
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Figure 3.10: Calibration of holographic optical trap stiffness. (A) Plot of particle
dispacement vs. trap displacement for a 3 µm particle embedded in a homogeneous
1.5 mg/ml collagen gel. Trap is displaced in the +x direction and the particle re-
sponse is seperated into x and y displacement. The vertical dashed line represents
a trap displacement of 0.725 µm which is the trap displacement used for all mi-
cromechanical measurements. (B) Plot of particle displacement vs. force with a
linear fit passing through the origin. The vertical dashed line is at 14.5 pN, corre-
sponding to a trap displacement of 0.725 µm. Inset: Plot of ∆x/F (inverse spring
constant) vs. particle displacement. The horizontal line represents 4.71 nm/µm,
the slope of the linear fit to the experimental data. Error bars in C and D represent
standard deviation of particle displacements.
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∆x vs force F for trap displacements in the range 0.288 µm to 1.056 µm. F

represents both the trapping force and the elastic force from the collagen which

are equal in magnitude once the particle reaches its displaced position. We see that

the particle displacement is quite linear with respect to force in this region and a

linear fit to the experimental data is performed in MATLAB. The fit is restricted to

pass through the origin and has a slope of 4.71 nm/pN (R2 = 0.9712) which is the

apparent inverse spring constant ∆x/F of the collagen around this particle. The

dashed vertical line shows a force of 14.5 pN corresponding to a trap displacement

of 0.725 µm. The inset of Figure 3.10B shows ∆x/F for each different particle

displacement with the horizontal line representing 4.71 nm/pN, the value obtained

from the linear fit. The average difference between the individual ∆x/F and the

fitted value is less than 5%. The results suggest that for the range of particle

displacements we used in our experiments, the micromechanics is not dependent

on the probing force.

Finally, we calibrate the directional precision with which we can apply forces to

particles embedded in collagen. Our holographic optical tweezers use a computer-

controlled spatial light modulator to control the location of optical traps. The

holograms are calculated in LabView using software based on ’Blue Tweezers’

from the University of Glasgow [106] and allow precise control of trap position

in real time. We carry out the calibration in water by calculating trap positions

displaced by 0.725 µm from the center location at various angles. The trap position

relative to the center is calculated using polar coordinates with ρ = 0.725 µm and

ϕ defined as the angle counter clockwise from the +x direction. We increase ϕ
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Figure 3.11: Calibration of angular and radial precision of trap displacement with
holographic optical tweezers. (A) XY trajectories of a particle trapped in water,
with the center spot representing the undisplaced trap position and outer spots
representing the trap displaced holographically at different angles around the center
spot. The trap displacement angle ϕ is defined as the angle couterclockwise from
the +x direction. The trap angle is increased by 15◦ steps and the radial trap
displacement ρ is 0.7250 µm. (B) Difference between trap angle and expected
angle. (C) Difference between trap displacement and expected displacement.

in 15◦ increments and compare the actual mean position of the particle with the

calculated trap location. Figure 3.11A compares the calculated and actual trap

positions for all angles. Figure 3.11B shows the difference δϕ between the actual

trap angle and the expected angle. Overall, there is an average angular shift of

-1.6◦ with a maximum difference of -3.6◦. In addition, we compare the measured

displacement ρ with the expected value of 0.725 µm and find a maximum difference

of 35 nm. The difference δρ is plotted in Figure 3.11C. Overall, we expect these

small errors in the spatial precision of the trap location have a negligable effect on

micromechanical measurement.
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3.4.4 Three-Dimensional Particle Tracking

In order to measure the 3D strain field caused by the cell contraction forces, we

obtain confocal image stacks before and after cells are treated by cytochalasin D

and utilize the non-descanned (NDS) channel (Figure 3.12A). To determine the

3D particle centers, we first determine the 2-D particle centers in all image slices,

together with the integrated intensity associated with each 2-D particle center

(Figure 3.12B, [107]). The result of this step can be labeled as Si = [xi, yi, zi, Ii],

where zi is an integer number (slice number) times the scanning step (0.5 µm).

xi, yi, Ii are the coordinates and integrated intensity of 2D particle centers [108]

which are detected in the slice corresponding to zi, and i is the index of all 2D

particle centers in all z-slices. Fig. S3.12B shows a typical image slice with its

corresponding 2D centers labeled with blue circles. Since the same particle will

appear in several consecutive slices, we then search in the collection {Si} that

belong to the same particle. To do this, we notice that 2D projection of particle-

to-particle distance is more than 10 pixels (1.7 µm) in all our samples, while the

errors in 2-D particle locations is less than 0.5 pixels [108]. Therefore we consider

Si and Sj belong to the same group if

√
(xi − xj)2 + (yi − yj)2 < 0.34 µm, |zi − zj| < 0.4 µm (3.8)

We have checked the effectiveness of these criteria by visually inspecting the

image slices. We have confirmed that each group of {Si} corresponds to exactly one

particle in the gel. Now to determine the actual 3D center [Xα, Yα, Zα] of particle
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Figure 3.12: 3D particle tracking to measure the strain field. (A) Overlay of non-
descanned (NDS) and fluorescent channels of a confocal slice. The arrowed line
represents the distance between a probe particle to the cell. (B-C) Example of
3D particle localization from the confocal image stack. (B) X-Y positions are first
determined at subpixel resolution (blue circles). (C) The z position of a particle is
determined by fitting the particle intensity profile I(z) (blue curve) with a Gaussian
function (red). Only three points around the maximum of I(z) are included in the
fitting, and z position of the particle is defined as the center of the Gaussian
function. Red crosses in (B) indicate particles whose rounded z-position is in the
shown confocal slice. (D) Deformation field obtained by associating 3D particle
centers before and after cytochalasin D treatment.
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α, consider its corresponding group {Si}, i ∈ α. We use the weighted average to

calculate Xα =
∑
i∈α xiIi∑
i∈α Ii

, Yα =
∑
i∈α yiIi∑
i∈α Ii

. To determine Zα, note that the intensity

profile along z direction I(z) = Ii(zi), i ∈ α has a characteristic bell shape (Figure

3.12C). We fit the three points around the maximum of the intensity profile I(z)

with a Gaussian function and determine Zα to be the center of the Gaussian fitting

(Figure 3.12D). Such three-point Gaussian fitting has been widely used in particle

image velocimetry to obtain sub-pixel (less than 0.5 µm in our case) resolutions

[109].

Using the above method, we determine the 3D particle centers before and af-

ter cytochalasin D treatment. We then apply the Crocker-Grier algorithm [108],

which associates the 3D particle centers before and after cytochalasin D treatment

(Figure 3.12D), therefore obtaining the deformation field D(r) sampled at all the

3D particle centers. To further calculate the strain field εij, we will need to cal-

culate the numerical derivatives εij = 1
2
(∂Di
∂rj

+ ∂Dj
∂ri

), where i, j label 3D spatial

dimensions. To this end, we first interpolated the deformation field onto a fine

regular grid lattice (grid spacing 0.17 µm) using natural neighbor interpolation

[110], which provides a C1 smooth approximation of D(r). We then take direct

numeric derivatives on the regular grid to obtain the approximated εij.
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4 Stress-Induced Plasticity of Dynamic Biopolymer Networks

In this chapter we show that 3D collagen gels are significantly and irreversibly

remodeled by cellular traction forces, as well as by macroscopic strains. To un-

derstand this ECM plasticity, we present a computational model that takes into

account the sliding and merging of ECM fibers.

This work is currently in preparation for publication in Nature Communica-

tions. Christopher Jones performed and analyzed all bulk rheology experiments

and contributed to micromechanical data collection and performed micromechan-

ical data analysis. Jihan Kim prepared all collagen bundle samples, carried out

confocal imaging, developed microstretcher and contributed to micromechanical

data collection. Jingchen Feng and Prof. Herbert Levine at Rice University devel-

oped the computational model in collaboration with Prof. Xiaming Mao and Prof.

Leonard Sander at the University of Michigan.

4.1 Introduction

Interactions between cells and the extracellular matrix (ECM) are crucial to main-

tain the integrity of our living tissues [111]. The main structural component of

ECM in connective tissue is a matrix of collagen fibers [58], and this matrix is

constantly remodeled by the cells living within it [112, 113]. Tissue homeostasis is
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a continuous process in which new collagen fibers are synthesized [23] and existing

fibers are degraded [24]. This can be due to a regular process of tissue homeostasis,

or as a response to inflammation and wounding,

Cells also interact with the collagen matrix physically and probe the nonlinear

elasticity [50, 114] and viscoelasticity [115, 116] of the ECM. These physical inter-

actions are generally considered to cause small deformations, and therefore to be

completely reversible. For example, a fundamental assumption of the widely em-

ployed 3D traction force microscopy is that once cell-generated forces are released,

the matrix will bounce back to its non-stressed configuration [117, 118]. In this

paper we will show that the assumptions of small and reversible deformations are

not always valid when studying cells in collagen ECM.

As an example, recent experiments have reported densified, aligned collagen

fibers between clusters of cancer cells [34, 119]. These observations suggest that

collective contraction between cell clusters may cause large deformations in the

ECM. While these experiment dealt with clusters composed of multiple cells, we

find mechanical interactions between a single pair of breast cancer cells alone can

significantly increase the local fiber density and alignment of reconstituted collagen

matrices. Other workers [120] have also demonstrated the irreversible alignment

of fibers near contracting cells. We will show that these large deformations are

irreversible, history dependent, and significantly change the ECM micromechan-

ics. The observed ECM remodeling is purely mechanical, without the creation or

degradation of ECM fibers by cells.

We present a computational model, based on the dynamics of cross-links and
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fiber entanglement. We allow cross-links to slide if there is sufficient force on the

node. This allows irreversible remodeling. Our approach is similar to that of Nam

et. al [49]. However, in that work, a mean-field approach was used for the network

remodeling. Instead we take a different approach of fully capturing the complex

disordered network structure, because biopolymer networks are strongly disordered

networks and the disorder is important in many phenomena. We dynamically

update the network locally and characterize the geometry of a pair of interacting

cells in the disordered fiber network. Our model gives agreement with cellular

experiments, elucidates microscopic details of force and energy distributions in

disordered plastic networks.

We also used a parallel plate rheometer to apply macroscopic shear strain and

find rich bulk rheology beyond the widely accepted viscoelasticity of a collagen

matrix [121, 64, 122]. Specifically, we find that the bulk relaxation kinetics of

collagen depend on both the magnitude and duration of the applied shear strain.

Agreement between the model predictions and experiments suggests a novel

mechanism that contributes to a dynamic, reconfigurable ECM without the need

for chemical modifications.
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4.2 Results

4.2.1 Cell Traction Forces Irreversibly Remodel ECM

Traction forces exerted by live cells lead to irreversible remodeling of the surround-

ing ECM. Figure 4.1A shows an example where two breast cancer cells (MDA-MB-

231) are embedded in a type-I collagen gel. Immediately after the gelation process

completes, the cells start to generate traction forces which deform the local ECM.

Using confocal reflectance imaging, we find that the matrix microstructure is most

significantly remodeled between the cells, a region we will refer to as a collagen

bundle. A collagen bundle consists of aligned, and densified collagen fibers (Fig-

ure 4.1A) connecting the cell pair. Collagen bundles can also form between larger

groups of cells as shown in Figure 4.1B. In fact, bundles are generally present

between all cell pairs which are within ∼80 µm distance.

A common assumption in cell mechanics is that once a traction force is re-

leased, the matrix will relax to its original stress-free state. Indeed, when the cell

traction forces are released by Cytochalasin-D treatment, the density (quantified

by relative intensity in confocal images) of the collagen bundles decreases. How-

ever, removing the mechanical stress does not fully remove the collagen bundles.

Instead, a significant amount of residual strain remains in the regions of collagen

bundles.

To further investigate the mechanical origin of collagen bundles, we have de-

veloped a microstretching device, which generates local mechanical deformation in

3D collagen matrix similar to a cell pair (Figure 4.2A). When extensional stress
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A B 

20 µm 20 µm 

Figure 4.1: Cell traction forces irreversibly induce the formation of collagen bun-
dles. (A) Confocal reflection image of the collagen matrix showing a collagen
bundle (arrow) between two MDA-MB-231 cells. (B) Collagen bundles simulta-
neously form between multiple cell pairs. Red: GFP-labeled MDA-MB-231 cells.
Green: reflectance image of collagen fibers.

is applied for a short period of time, the matrix will almost fully recover to its

original configuration (Figure 4.2B). When the dwell time of the applied stress is

increased, regions of densified fibers persist even after the stress is released (Fig-

ure 4.2C). These observations suggest that formation of collagen bundles and the

history-dependent plastic ECM remodeling have a purely mechanical origin.

4.2.2 Computational Model of Cell-Induced ECM Remodeling

We hypothesize that the observed plasticity of the collagen matrix is a result of the

irreversible dynamics of cross-links and fiber entanglement. To test the hypothesis,
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Figure 4.2: (A) Micro-stetcher uses a programmable syringe pump (New Era).
Two needle tips are submerged simultaneously in a collagen gel while the gel is
formed. One metal needle is connected to the syringe pump which can be controlled
by submicron range and the other needle tip is fixed. CellTak (Corning) is used
to treat all contact surfaces. (B1,C1) show the unstressed configurations, where
initial positions of two needle tips are indicated with red dashed circles. (B2,C2)
The configurations of the matrix deformed by moving one of the needles along the
direction shown by the yellow arrows. After dwell time Td of 10 and 60 minutes,
the needles are moved back to their original positions. (B3) Short dwell time (10
min) allows the matrix to almost fully return to the initial configuration. (C3)
Longer dwell time (60 min) leads to irreversible reorganization of collagen fibers
as highlighted in the white rectangle.
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we have developed a computational model based on a diluted triangular lattice.

We treat the collagen matrix as an athermal network of fibers that resist bending

and stretching [69, 123, 124]. Using experimentally derived stretching and bending

moduli of fibers [48], and the coordination number of the network [16], we construct

a minimal representation of the matrix. The linear and nonlinear elasticity of this

model has been extensively studied. It is known that in the linear regime, the

elastic energy is dominated by bending energy of the fibers, because the network

has lower connectivity than at the central-force isostatic point [123, 124]. As the

model is deformed beyond the linear elasticity regime, the elastic energy becomes

stretching dominated, and the shear modulus increases by more than an order

of magnitude (strain-stiffening), in good agreement with observations of various

biopolymer gels [48, 56, 70, 124].

In contrast to previous models that assume static network connections, we

consider the cross-links between fibers to be dynamic: when the force loaded on

a cross-link exceeds a threshold, two fibers will have a probability to detach and

reconnect to lower the elastic energy, or a branching fiber has a probability to

peel apart further at the branching point, which we call “sliding”. In addition,

we consider the merging of adjacent fibers within a critical distance, which can

be either due to fiber entanglement or chemical bond formation. Both “sliding”

events and “merging” events are intrinsically irreversible and contribute to the

plasticity of the model network.

We first test if the model reproduces the observed properties of our collagen

bundles. Because experiments observe mostly rounded cells, we model contractive
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cells as circles embedded in the network and isotropically shorten all fibers inside

the circle by the fraction β. The contracted cell size a in proportion to the matrix

pore size has been chosen to be consistent with experimental measured cell radius

(17.2±2.6µm) and pore size (3.0±0.7 µm).

At T = 0 (immediately after cell contraction), the network configuration is

determined by minimizing the elastic energy and no sliding or merging events are

allowed to occur (Figure 4.3A). Every half-minute thereafter we allow all possi-

ble sliding events to occur deterministically and all merging events to occur with

probability Pmerging. This approach is based on the assumption that the time scale

of sliding events is much faster than that of merging events. After roughly 15

minutes of maturation time, sliding causes the fibers to continuously flow into the

central region between the cells, as we observe in the formation of collagen bundles

(Figure 4.3B). Sliding events significantly increase the fiber density in the bundle

as compared with purely elastic deformations.

Our model also allows us to examine the irreversibility of the collagen bundles.

To this end, we have varied the contractility (β) and maturation time Tm, and

measured the density increase in the bundle region. We find that the irreversibility

of ECM builds up as a function of maturation time Tm. Intriguingly, the sliding

events and merging events play separate roles. The former mainly contributes to

the enhanced fiber concentration before releasing cell traction forces, and the later

mainly contributes to the irreversibility of collagen bundle formation.
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Figure 4.3: Simulation of collagen bundle formation by contracting cell pairs. (A)
The network configuration in an elastic model (without any sliding or merging
events.) (B) The network configuration predicted by our plastic model.

4.2.3 Macroscopic Remodeling and Relaxation of Collagen

Although the collagen bundles are localized structural features in the fibrous net-

work, we expect their mechanistic origin, namely the sliding and merging events

may have a profound impact on the bulk properties of the collagen matrix. To

examine this effect, we studied the history-dependence of the relaxation dynamics

of the model networks under macroscopic shear deformation using a parallel plate

rheometer. We held the matrix at an initial shear strain for a dwell time of Td to

allow plastic reconfiguration. We then released the boundary stress and monitored

the strain relaxation as a function of time ε(t) (see Materials and Methods 4.4.2

and 4.4.3).

Since both viscoelastic and plastic dynamics are present, we begin by studying
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Figure 4.4: Bulk relaxation experiments show strain relaxation kinetics ε(t)−ε(∞)
depend on the initial strain, and at small initial strains, the relaxation follows a
single exponential function. ε(∞) is the residual strain after relaxation.

the relaxation from small initial strains. In this case stress is also small and we

expect few sliding events and mostly viscoelastic relaxation. Indeed, we find that

up to ε0 <5%, the strain kinetics can be well characterized by a single exponential

function with a time scale τv ≈ 30 seconds, presumably determined by viscoelas-

ticity of the matrix. This is shown in Figure 4.4 by plotting ε(t) in log scale.

However, when the initial strain approaches a threshold (≈ 10%) of linear elastic-

ity, or beyond, a single exponential is no longer sufficient. Under such conditions

we expect the relaxation to be dominated by viscoelasticity at short time scales

and plasticity at longer time scales.

Indeed, as shown in Figure 4.5A, when collagen matrices relax from 20% initial

strain, the relaxation kinetics fit well with double-exponential functions ε(t) =
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a exp(−t/τv) + b exp(−t/τp) + εr. Here τv =29.6 sec is independent of the dwell

time Td (see Materials and Methods 4.4.4), and matches well with the viscoelastic

time scale obtained from small strain relaxation kinetics in Figure 4.4. Consistent

with our model assumption, τp is well separated from τv by an order of magnitude.

We also use our microscopic model, based on sliding and merging of fibers, to

simulate the bulk relaxation. As in the experiment, a 20% strain is applied for

some Td. Once the network is released the shear strain drops from ε0 =20% to a

non-zero value ε(0+) due to purely elastic relaxation. Because we do not consider

viscosity effects in our model, this initial drop happens instantaneously. In a real

collagen matrix, viscoelasticity due to the collagen-solution interaction and fila-

ment entanglement necessarily exist. However it is known that the viscoelasticity

time scale is below 1 min and much shorter than the plasticity time scale we discuss

here [125, 126]. Thus we ignore viscoelasticity in our modeling and only focus on

plastic events including sliding and merging.

We find the subsequent decay of strain follows a single exponential function

ε(t) = (ε(0+) − εr) exp(−t/τp) + εr for t > 0 and that the decay is slower with

increasing dwell time, Td, (Figure 4.5B). Because longer dwell time, Td, allows

the network to reduce the number of high-stress bonds through sliding events, we

expect a negative correlation between Td and 1/τp, the rate of plastic relaxation.

Indeed, we have confirmed that both τp and εr increase monotonically with longer

dwell time Td (Figure 4.5C-D), as predicted by the model.

We also ran experiments in which a new sample was used for each dwell time

so that no residual strain or alignment of fibers from previous strains will affect
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Figure 4.5: Bulk relaxation kinetics of collagen matrices. (A) Experiments show
strain relaxation kinetics depends on the dwell time Td. Colors of the symbols
(blue to green) correspond to the increasing dwell time of 1, 2, 4, 7, 10, 15, 20
minutes. Red lines are fit to double exponential functions ε(t) = a exp(−t/τv) +
b exp(−t/τp)+εr. Here τv is independent of dwell time Td, τp and εr are allowed to
vary with Td. Inset: zoom-in to the initial phase of the relaxation. (B) Simulated
strain decay kinetics with 20% initial strain and varying dwell times Td = 1, 2,
6, 10, 16, 20 minutes. The dashed lines are fits to a single exponential. (C) The
plastic time scale τp as a function of dwell time Tm. (F) The residual strain εr
as a function of dwell time Td. Errorbars in (C) and (D) are means and standard
deviations from eight different samples, three experimental and five simulated.
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the relaxation dynamics. Figure 4.6A shows the curves for relaxation from a 20%

strain applied for five different dwell times from 1 to 20 minutes. No global τ1 was

used due to every experiment being run on a new sample. Instead, each recovery

curve was independently fit for both time constants. The experiment was run on

three independent samples for each dwell time. Figure 4.6B shows the second time

constant τ2, and Figure 4.6C shows the residual strain εr averaged over the three

experiments. Error bars show the standard deviation. The results are qualitatively

the same as Figure 4.5 in which a single sample was used for each dwell time, with

the second time constant and the residual strain both increasing with dwell time.

Together, the experimental and computational results show that the collagen

matrix exhibits history-dependent strain relaxation, and that the relaxed state is

a permanent reconfiguration of the original matrix.

4.2.4 Plastic Deformation Alters ECM Micromechanics

After demonstrating the effects of microscopic plasticity on the structural remod-

eling of collagen ECM at both cellular and macroscopic scales, we have also ex-

amined the accompanying changes in the ECM micromechanical properties using

similar methods as described in Chapter 3 [80]. To this end, we have embedded

probe microparticles in collagen matrices together with MDA-MB-231 cells. Af-

ter more than 3 hours of mauration time we released the cell traction forces with

Cytocytochalasin-D, leaving only the plastic deformations. Using holographic op-

tical tweezers [127], we measured the directional compliance J(θ) from probe par-
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Figure 4.6: Characterization of relaxation dynamics when a new sample is used
for every dwell time. (A) Strain recovery curves from 20% strain applied for 1,
5, 10, 15, and 20 minutes. All curves are from different samples which had not
been previously strained. (B) Second time constant τ2 versus dwell time. (C)
Residual strain εr versus dwell time. Error bars show standard deviation of three
independent experiments.

ticles within 80 µm of collagen bundles. Here θ represents the direction along

which small optical forces (∼ pN) are applied. J(θ) is defined as J(θ) = 6πa∆dθ
Fθ

,

where a is the particle radius, ∆dθ and Fθ are the particle displacement and optical

force in the θ direction respectively (Figure). For linear elastic materials, J(θ) is

equal to the elastic compliance. Figure 4.7 illustrates the definition of a directional

compliance based on the particle displacement caused by the optical trap.

For each probe particle around the collagen bundle, we measured the directional
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optical trap probe particle

original probe particle location 

Figure 4.7: Illustration of directional compliance. The angle θ is the direction of
the optical trap displacement. The directional complance is calculated using the
component of the particle displacement in the direction of the trap (∆d|| = ∆dθ).

compliance at 30 degree increments in θ, and the resulted directional compliance

J(θ) was fitted with an ellipse (compliance ellipse) using J as a polar distance. The

aspect ratio of the compliance ellipse quantifies the local mechanical anisotropy.

Typical results for three different particles are shown in Figure 4.8.

The characteristics of J(θ) show that the presence of collagen bundles sig-

nificantly contributes to the micromechanical heterogenity in the ECM. Figure

4.9A shows typical measurements around a collagen bundle (green line) between

two MDA-MB-231 cells (white outlines). To better visualize the spatial pattern

of the micromechanics, in Figure 4.9A we overlaid the confocal reflection image

with the measured directional compliance (magenta dots) and their elliptical fits

(red dashed lines). The compliance is scaled linearly into a closed curve centered

around each probe particle (the scaling factor is indicated by the bottom right
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0.1 Pa-1 J(θ) 

Figure 4.8: Polar compliance plots for three typical particles embedded around
collagen bundles. The black circles represent the origin of the polar coordinate
system for each particle. The red dots represent the directional compliance J(θ),
with the polar angle giving the direction of the trap and the radial distance from
the origin showing the magnitude of the compliance in that direction. Blue lines
show the result of fitting J(θ) with an ellipse. Dashed blue lines are major and
minor axes of the fitted ellipse.

circle). We find the particle on the collagen bundle gives a highly anisotropic local

compliance, with approximately twice more compliance in the direction perpen-

dicular to the bundle than parallel. This is expected because collagen bundles

consist of aligned fibers whose bending elasticity is softer compared with stretch-

ing. Moving away from collagen bundle, the micromechanical compliance becomes

increasingly isotropic. This is evident from Figure 4.9A, and is also confirmed by

sampling multiple bundles. Fig. 4.9B shows the aspect ratios of the compliance

ellipses at various particle-to-bundle distances d. Close to collagen bundles (d < 25

µm), the aspect ratio is significantly higher than the values measured further away

(25 ≤ d < 50 µm and 50 ≤ d < 75 µm) from the bundles.



107

A B directional compliance 

3 

distance (μm) 
0 70 30 

ellipse fit 

collagen bundle 

cell outline 

0.5 𝑃𝑎−1 

2 

1 
as

p
ec

t 
ra

ti
o

 

P=0.003 

n. s. 

Figure 4.9: The micromechanics of collagen ECM in the vicinity of cell-induced
collagen bundles after traction forces are released. (A) The confocal reflection
image and directional compliance given by five probe particles around a collagen
bundle in a typical experiment. The compliance is scaled linearly into real space
such that an isotropic response of 0.5 Pa−1 would be plotted as a ring with the
size of the bottom right circle. Magenta dots: experimentally measured directional
compliance. Red circles: the compliance ellipse, i.e. the elliptical fit to the magenta
dots. White dashed lines: outlines of MDA-MB-231 cells after Cytocytochalasin-D
treatment. Green line: the location of collagen bundle. Scale bar: 50 µm. (B)
The aspect ratios of the compliance ellipses at varying particle-to-bundle distances
d. Symbols of different colors correspond to results measured around different
bundles. We divide all the data into three groups d < 25 µm, 25 ≤ d < 50 µm,
and 50 ≤ d < 75 µm. Errorbars represent the means and standard deviations of
each group. ANOVA analysis shows that the aspect ratios close to the collagen
bundles (d < 25 µm) are significantly higher than the values further away.
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4.3 Discussion

We have demonstrated that traction forces from cell pairs are capable of locally

remodeling 3D collagen ECM into densified, aligned fiber bundles. Rather than

being small perturbations to the ECM, as typically assumed for the cell traction

forces, fiber density in the bundle region increases dramatically (by as much as

150 %), which is comparable with previous observations of ECM remodeling by

clusters of cells [34, 119]. The micromechanics of the ECM is also significantly

modified, with greater mechanical anisotropy close to the collagen bundles. These

results suggest that collagen ECM is highly susceptible to mechanical remodeling

by the cells.

While the formation of collagen bundles would occur for reversible elastic de-

formations, either linear or non-linear [70], we find that collagen bundles persist

even after cell traction forces are removed. Therefore the collagen bundles are

cell-induced permanent deformations of the ECM, which is only possible if the

collagen matrix is plastic. To understand the implications of ECM plasticity, we

devised a computational model based on irreversible sliding and merging of fibers

under stress in a model network. Our model not only reproduces the irreversible

structural remodeling by cell traction forces, but also agrees with bulk rheological

measurements on collagen gels.

While sliding and merging events produce good agreement with experiment, we

could also consider other sources of ECM plasticity. Each collagen fiber consists

of several weakly bound parallel fibrils. Stretching of fibers causes sliding between
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fibrils, which permanently lengthen the fiber. Intrafibrillar sliding has been shown

to contribute the history-dependent elasticity of collagen gels, particularly when

the gels are probed under repeated stress-relaxation cycles [47]. Although fiber

lengthening is likely to occur in our experiments, it does not explain the densified

and aligned collagen bundles between cells, nor would it lead to residual strains

after bulk shearing. However, the collagen matrix used in our study is a network of

fibers that interact noncovalently. Weak interactions, such as hydrogen bonds and

electrostatic interactions allow force-dependent unbinding and rebinding between

collagen fibers [49], which is similar to the sliding events we have proposed here.

These dynamic bonds have been shown to contribute to the plasticity of collagen

matrix in vitro, as well as for isolated mouse tissues [120]. Interestingly, while it

was found that higher strain magnitude leads to faster stress relaxation in collagen

matrix [49], we show that the strain relaxation is slowed down by longer dwell time.

This apparent contrast highlights the complex strain-stress relation of collagen

matrices, a very direct consequence of plasticity.

As the major component of connective tissues, and a semiflexible, subisostatic

polymer network, the collagen matrix demonstrates nonlinear elasticity which can

be controlled by external stress or strain [124]. This mechanical reconfigurability

is further expanded by the stress-activated plasticity reported here. We expect

future studies will take advantage of these effects to establish collagen matrix

as a mechanically programmable material which has excellent biocompatibility

[61, 128]. The plasticity of collagen matrix also implies a new mode of 3D cell-cell

interaction in tissues: the collagen bundle from a pair of cells poses microstructural
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guidance to nearby cells through contact guidance [129, 130, 131]; and at the same

time creates micromechanical guidance to nearby cells through durotaxis [132, 133].

Such interactions are nonlocal and long-lasting, and we expect them to have direct

impact on the multicellular dynamics in various physiological processes such as

cancer metastasis, wound healing and embryo development [134].

4.4 Materials and Methods

4.4.1 Sample preparation and imaging

Cell-embedded collagen gels are prepared by diluting and neutralizing high concen-

tration type-I collagen solution (10 mg/ml, Corning) with NaOH, cell suspension,

growth medium, and 10X PBS into 1.5 mg/ml. The neutralized solution is imme-

diately placed in a tissue culture incubator (NuAire) to polymerize at 37 ◦C for 40

minutes.

To image the fluorescently-labeled MDA-MB-231 cells cultured in collagen gel,

we use a laser point-scanning confocal microscope (Leica SPE) equipped with an

stage-top incubator (ibidi). Both fluorescent and reflection channels are imaged

with either 20X or 40X oil immersion lenses as described previously [135]. The

samples are kept in the tissue culture incubator until the time to image. It usually

takes less than 10 minutes to locate the collagen bundles under the microscope.

To release cell traction force, we dilute Cytochalasin-D (Sigma-Aldrich) with

PBS to a 1:1000 ratio and add directly to the 3D culture samples. We allow 2



111

hours to complete the treatment before washing the sample with growth medium.

4.4.2 Collagen Rheology

We prepare the gel between the two parallel plates of an AR-2000 or AR-G2 stress-

controlled rheometer (TA Instruments) at 37 ◦C and concentration of 1.5 mg/ml.

A Peltier plate with solvent trap is used and the edges of the sample are sealed

with silicone oil to prevent evaporation. The plates are stainless-steel, and surface

treated with CellTak (Corning) to ensure binding to the collagen.

We monitor the gelation of each sample by measuring the shear modulus once

per minute using a small amplitude oscillatory shear strain. We begin taking data

immediately after the neutralized collagen solution is added to the pre-heated

plates of the rheometer, and each sample gels for at least 90 minutes total. Figure

4.10A shows the shear modulus vs time during gelation for a typical collagen

sample.

To characterize the nonlinear elasticity of a collagen gel, we measure the shear

modulus versus strain amplitude for strains up to 100% (Figure 4.10B). All mea-

surements were taken at a frequency of 1 Hz. Strain stiffening begins around 10%

strain shown by an increase in the modulus. The modulus continuously increases

with strain amplitude until around 60% strain. At this point the modulus suddenly

decreases indicating network yield. The vertical dashed line if Figure 4.10B shows

20% strain, the magnitude used for the experiments on recovery versus dwell time

described in the main text. This strain is just inside the beginning of the nonlinear
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Figure 4.10: (A) Temporal characterization of the gelation process for a typical
collagen gel. The complex shear modulus is measured once per minute using a
0.5% oscillatory strain with a frequency of 1 Hz and the total gelation time is
90 minutes. (B) Shear modulus versus strain amplitude. Strain stiffening begins
to appear around 10% strain and the sample yield is around 60%. The vertical
dashed line shows 20% strain.

elastic region.

4.4.3 Measurement of the Bulk Relaxation Kinetics

To explore the effects of collagen plasticity on the relaxation dynamics of collagen

gel, we designed in experiment in which we apply a fixed strain for some dwell

time Td. After this dwell time, the stress σ is set to zero and the strain ε is

recorded for the recovery of the gel. Figure 4.11A shows a single strain, dwell,

and recovery cycle for a typical experiment. To measure the dependence of strain

relaxation on dwell time, these cycles are repeated on the same sample for various

dwell times. Figure 4.11B shows a typical experiment in which the strain is applied
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Figure 4.11: Strain versus time for typical history-dependent relaxation experi-
ments. (A) Single strain, dwell, recovery cycle showing the recovery time Td and
the residual strain εr. (B) Repeated strain, dwell, recovery cycles with increasing
dwell time. Red lines indicate parts when a fixed strain is applied, and blue lines
indicate when stress is set to zero (σ = 0) and the recovery strain is measured.

repeatedly. Typically, the dwell time starts from 1 minute and gradually increases

to 20 minutes for each given sample. The initial strains are applied by shearing the

sample at 1% per second, until reaching the desired strain magnitudes. For each

dwell time, we allow 15 minutes of relaxation before bringing the sample back to

the desired strain.
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4.4.4 Fitting Bulk Relaxation Kinetics

To fit the relaxation kinetics, we use the Matlab nonlinear curve fitting package to

fit the strain versus time to a double exponential function ε(t) = a exp(−t/τv) +

b exp(−t/τp) + εr.

Of the two time constants characterizing the strain recovery of collagen gel,

only the larger time constant, τ2 should depend on the dwell time. The smaller

time constant, τ1, should be the same for all recovery curves. To find a single

τ1 which best fits the data, we fix τ1 to be the same for all dwell times, fit each

recovery curve for the remaining parameters, and then calculate the total mean

squared error. We define the total mean squared error (MSEtot) as the sum of the

individual mean squared error for each dwell time. So MSEtot =
∑
MSETd and

MSETd = 1
n

∑n
i=1(ε̂i − εi)2, where Td is the dwell time, ε is the data and ε̂ is the

fit. By repeating this for many different τ1, we find a single global τ1 which best

fits all the data. Figure 4.12 shows the total mean squared error versus τ1 for a

typical experiment. The red circle in the figure shows the chosen τ1, which does

indeed give a global minimum for the error.
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5 Conclusion

We have presented new experimental and computational results on the structure

and mechanics of the extracellular matrix (ECM) at the microsopic scale. Mechan-

ical cues from the ECM have a large effect on many important cell processes such

as growth and migration. Cells directly probe the local properties of the collagen

fiber network, thus micromechanics of the ECM have a more direct effect on cell

behavior than bulk averaged properties of the matrix. The results of this research

contribute to the fundamental understanding of cell-ECM interactions and also

provide techniques that can be used for further studies.

In Chapter 2 we used confocal reflection microscopy along with image analysis

based on spatial correlations to characterize the structure of type I collagen gels.

Using the density and nematic order correlation functions we were able to quantify

geometric properties of the matrix as well as how they fluctuate spatially. The

double exponential decay of the density correlation function revealed two length

scales, the shorter corresponding to the thickness of individual collagen fibers and

the longer corresponding to the size of fiber clusters. The nematic order provided

a means of quantifying the degree of alignment between nearby fibers. These

properties are not revealed in collagen characterizations based on pore size or

turbidity. We studied the effect of gelation temperature on the final structure of

the collagen gel and find that collagen formed at high temperature has short thin
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fibers, small clusters distributed relatively homogeneously, and a very small degree

of local alignment. However, fiber networks formed at low temperature are very

heterogeneous with large aligned fiber clusters.

We presented a computational model for collagen growth to explain these re-

sults. The model is based on the nucleation of small fiber seeds, which diffuse

around and grow, until they bind with other fibers into clusters. These clusters

in turn diffuse, grow, and bind with one another until the final network struc-

ture is achieved. In addition, nearby collagen fibers have a tendency to align

with one another due to hydrodynamic effects. The nucleation and growth rates

both monotonically increase with temperature, meaning that at higher tempera-

ture many seeds form and grow quickly and do not have as much time to align or

cluster together. At low temperature, fibers form and grow slowly, meaning they

have more time to diffuse around and interact to form larger aligned clusters.

These results demonstrate the effect of environmental conditions during gela-

tion on the final network structure and may suggest the possibility of tuning the

properties of collagen gels. By varying temperature during gelation, one is able

to control the microstructure of the ECM. These changes would in turn affect cell

behaviors, like migration. In addition, pH also has an effect on the growth of the

collagen network. This was not studied in our characterization, but could be a

topic for further investigation. Also, flow within the collagen solution during gela-

tion has also been shown to produce aligned collagen fibers. Through the combined

control of collagen concentration, temperature, pH, and flow, one may be able to

engineer collagen gels capable of guiding cell behavior.
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In Chapter 3 we extended our study of collagen-based ECM from purely struc-

tural to mechanical. We used holographic optical tweezers (HOT) to probe micro-

scopic particles embedded in the collagen gel and revealed rich mechanics beyond

the typical rheological measurements. Specifically, we find a directional dependence

to the local compliance that is anisotropic and asymmetric. This mechanical re-

sponse is due to the discrete fibers that make up the collagen matrix and is highly

dependent on the network microstructure.

We characterized gels made at different temperatures to show that ECM mi-

crostructure has a strong effect on the micromechanical response. High temper-

ature gels, which are relatively homogeneous and have a small pore size, show

a tight distribution of local compliance and a smaller variance in anisotropy. In

this case, the approximation of a continuous linearly elastic material does fairly

well to represent the local mechanics. However, in low temperature gels which are

very heterogeneous and have a large pore size, we get a very broad distribution

of micromechanical responses. This means that any bulk measurement would be

a poor predictor for the local mechanics. The variablility of the cell microenvi-

ronment means that each cell may experience a very different network compliance

and could lead to diverse cell behavior within the same 3D collagen matrix.

We showed that active cell traction forces altered the local micromechanics,

and these effects can be detected as far away as ∼100µm from the cell. This

means that cells could detect changes in the environment due to nearby cells,

providing a means of mechanical communication. The change in micromechanics

was closely correlated with the local cell-induced strain, again highlighting the
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close relationship between network structure and mechanics. We also presented

a simple 2D lattice based model for collagen gel which is able to reproduce the

experimental results for both cell free and cell-populated collagen gels.

In Chapter 4 we extended our mechanical characterization of biopolymer net-

works to study the plasiticity of collagen-based ECM. We showed that single pairs

of cells are able to pull collagen into densified and aligned bundles. While purely

elastic effects could account for an increase in density and fiber alignment between

contracting cells, it cannot account for the fact that the collagen bundles are per-

manent, meaning they remain even after removing cell traction forces. Nor could

elastic effects alone account for the magnitude of increase in density (as much as

150%) as collagen appears to flow into the region between the cells. We have used

the HOT system described in Chapter 3 to measure the micromechanics around

the collagen bundles and found that the plastic deformations significantly alter

the micromechanics. Specifically, we find a higher degree of anisotropy close to the

bundles, consistent with a higher degree of alignment of the collagen fibers.

We have shown that plastic deformation of collagen is purely mechanical, and

can occur even in the absense of cells. To further investigate the mechanical nature

of collagen plasticity, we performed macroscopic shear experiments using a parallel

plate rheometer. By applying a shear strain above the linear elastic limit of the

collagen gel we were able to show that macroscopic strain does lead to irreversible

deformation. In addition, we showed that the bulk relaxation of collagen is history-

dependent such that the residual strain and the relaxation dynamics depend on

the dwell time for which the strain was applied.
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To explain ECM plasticity, we presented a model based on the sliding and

merging of fibers within the collagen matrix. Weak bonds between fibers, such

as hydrogen bonds and electrostatic interactions, are able to break when under

enough stress, allowing the fibers to slide to a lower stress state. At a longer

time scale, merging of fibers occurs as bonds reform. This microscopic model

for biopolymer plasticity was able to reproduce the results of both cell-induced

formation of collagen bundles and the relaxation kinetics of bulk collagen under

shear strain. The model explains why the relaxation rate decreases with dwell time.

When the strain is applied for longer periods, more of the high stress bonds will

break. When the external stress is removed and the collagen is free to relax, there

are fewer stressed bonds wanting to restore it to the original equilibrium position.

Thus, the rate of relaxation is slower. In addition, some of the bonds that broke

under stress will be able to form new bonds, meaning that the new equilibrium

configuration of the network will change. This causes the residual strain.

The above results show that the structure and mechanics of biopolymer net-

works can be significantly and irreversibly affected by external stress and strain.

Together with the environmental factors previously mentioned, stress-induces plas-

ticity opens new possibilities for engineering cell microenvironments. In addition

to having excellent biocompatibility, collagen material properties can be tuned by

mechanical means, even after the gel has fully polymerized.

Finally, collagen plasticity has huge implication for 3D cell communication and

migration. The formation of permanent collagen bundles can form a direct line for

mechanical interactions between cells. For example, the increase in fiber density in
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the collagen bundles may be able to direct cell migration through durotaxis, and

the fiber alignment may direct cells through contact guidance. Future studies will

be needed to investigate the effects of ECM remodeling on cell behavior.

Mechanical interactions between cells and their microenvironments are both

complex and dynamic. At the same time that cells are sensing and responding to

their surroundings, they are actively remodeling the structure and mechanics of

the extracellular matrix. This continual process is critical for tissue homeostasis

and collective cell behaviors. Future research into the fundamental mechanics of

cell adhesion and migration is critical if we are to better understand biological

processes like cancer progression and metastasis.
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