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S2 Appendix. Details of the statistical analysis 

Statistical analysis follows standard survey sampling procedures [1], but from a continuous 

population perspective [2]. For each species, an approximate design unbiased estimator of the 

mean elevation, latitude, and annual temperature of the range of seedlings or mature trees ( ˆ
kd ) 

is given by the weighted domain sample mean (after [1], section 5.8): 
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where k indexes species and d indexes whether the estimator is for mature trees (T) or seedlings 

(S);  kd iI p is an indicator variable that takes the value of 1 if the i-th plot contains trees or 

seedlings of the k-th species or 0 otherwise;  iy p  and  ip  are the value of the variable of 

interest (latitude, elevation or temperature) and the inclusion density function in the i-th plot, 

respectively; ˆ
kdD is an estimator of the size of the domain (range of seedlings or trees of the 

species of interest); and the sum is over n,  the total sample size.  

The inclusion density function is different for plots in California or Oregon vs. Washington. The 

sample is divided into 10 spatially balanced panels, so that one panel is measured every year. In 

California and Oregon, the full 10 panels have been completed (2001-2010), yielding one plot 

every 24.0 km
2
 approximately. In Washington, however, only 9 panels are currently available 

(2002-2010), yielding one plot every 26.6 km
2
 approximately. The inclusion density function 

 ip  is derived by first calculating the selection probability density of a single plot selection, 

 if p  ([3], section 4.3): 
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where CAA , ORA , and WAA are the land areas of California, Oregon, and Washington, respectively, 

and the denominator,  10 9CA OR WAA A A     is a scaling constant to ensure that  if p  is a 

proper probability density function. Then, for a sample of size n, the inclusion density function is 

   i ip f p n  . 

The estimator in eq. (1) reduces to a weighted average of the latitude, elevation or temperature of 

the plots that contain either seedlings or trees of the species of interest.  The weight is 1 for plots 

in California and Oregon, and 10/9 for plots in Washington, thus accounting for the different 

sampling intensity. In this analysis, nonresponse is treated as if it were missing at random within 

the range of the species ([4], p. 41). However, the bias introduced by non-response is likely to be 

negligible. The non-response rate is relatively low. More importantly, the parameter of interest is 

the difference between the means of the range of seedlings and mature trees. A bias in the 

estimator of the difference would require a different non-response process affecting the range of 

seedlings and trees, which is unlikely given the large overlap between those ranges.    

An approximate estimator of the variance of this ratio estimator is ([1], eq. 5.6.10): 
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  is the numerator of eq. (1), and  v̂   and  ˆ ,c    are the 

estimated variance and covariance functions, respectively. For arbitrary estimators x̂  and ẑ , 

they are: 
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These estimators and the associated confidence intervals are obtained by treating the sample as if 

it had been selected using independent random sampling, instead of a spatially balanced design. 

Because a balanced design is more efficient than an independent sampling design in the presence 

of spatial correlation, those variance estimators would tend to be conservative and overstate the 

sampling variance [5].   

For each species, we estimated the difference in the mean elevation, latitude or annual 

temperature for the range of seedlings minus that for the range of mature trees as the difference 

between their respective domain ratio estimators: 

ˆ ˆ ˆ
k kS kT                      (7) 

The approximate variance of ˆk , using a Taylor linearization method ([6], eq. 6.9.1), is: 
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We estimated a 95% confidence interval as: 
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where 0.975z  is the 97.5 percentile of the normal distribution. 

For each species, we estimated the 5th and 95th percentiles of the distribution of temperature for 

seedlings and mature trees. First, we estimated the population distribution function ([7], p.69), 

and then calculated its inverse evaluated at 0.05 and 0.95. We computed the difference between 
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the estimator for seedlings minus that for trees and obtained 95% confidence intervals by the 

percentile bootstrap method ([8], Chapter 6).  

Estimation of mean differences across all species 

The variance of the estimator for the individual species effect differed widely among species, 

mostly due to large differences in sample sizes. Further, because the estimators were calculated 

from the same sample, they are correlated. To deal with the unequal variance and lack of 

independence, we estimated the mean difference across all species using a generalized least 

squares estimator: 
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where δ̂ is a vector of the individual species differences, ˆk , c  is a vector of 1s of the same 

length as δ̂  (46) and Σ  is the covariance matrix of δ. The variance of this estimator is: 
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We estimated the variance Σ from the sample.  An analytical expression for Σwould be 

cumbersome and difficult to obtain, so we used the bootstrap (8, Chapter 6). We took a sample 

with replacement from the 33,674 plots and computed δ̂  (eq. (7)) and the estimates of the 

difference in the 5th and 95th percentiles.  We repeated this process 20,000 times and calculated 

the covariance matrices of the bootstrap replications.  
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