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THE X-RAY TRANSFORM

INTRODUCTION

The problem of characterizing a function on Rn, n > 2, by

means of its integrals over k-dimensional planes, 0 < k < n, is not

a new one. Radon [12] and John [8] proved that a differentiable func-

tion f with compact support in R'1 uniquely determined by

means of its integrals over the hyperplanes in the space. The Radon

transform is defined by

f()dan-1R0f(t) =
<x,0>=t

x (x)

-where 0 E Sn1 , t E R1, and an-1 is the (n-1)-dimensional sur-

face area measure in Rn. Considerable literature on the Radon

transform exists.

The lower dimensional problem, k < -2, has received less

attention. However, Helgason [6] and [7], has obtained some inter-

esting results.

In order to motivate the lower dimensional case, consider the

following situation. An object in 3-dimensional space is determined

by a density function f on the space R3, f(x) being the density

at the point x. An x-ray pictkire taken in the direction 0 provides

a function L0f on the subspace orthogonal to 0 whose value at a



point x of this subspace is the total mass along the line through x

in the direction 0. The problem is to recover a density function f

from its x-rays Lef.

If we restrict ourselves to a 2-dimensional cross section of the

3-dimensional object then the problem is exactly the Radon problem.

However, if we wish to reconstruct the object without going to cross

sections, the problem is one of integration over lines in R3 and the

Radon theory does not apply.

The above x-ray reconstruction problem has been the object of

a great deal of recent mathematical and practical research. For

example, see [4] where a bibliography of recent results is given.

Within the past year R. Guenther and K. T. Smith [5], have detected

brain tumors in a human patient by reconstructing cross sections of

the skull from ordinary x-ray data. The research in this thesis

stems from the reconstruction problem and was suggested by K. T.

Smith.

Let us put the problem in a more abstract setting. If 0 is a

direction in Rn, n >2, x is a point in the (n-1)-dimensional sub-

space orthogonal to 0 and f is an integrable function, then the

ordinary x-ray of the object with density function f in the direction

0 at x is given by



L0f(x) = f(x+t0)dt
_oo

provided that the integral exists in the Lebesgue sense. Note that

the x-ray of a function f depends on the variables (0, x) with

n-1
E S and x E r. Thus the x-ray of f is a function on the

tangent bundle T(Sn-1) to the sphere.

More generally let 7 be a k-dimensional subspace of Rn.

The x-ray of f in the direction Tr at the point x" in Tr-L- is

defined by

LTrf(x") = f(x' ")dxl
It

provided that the integral exists in the Lebesgue sense. Here, and in

general, once a subspace It is fixed, we write x = (x', x") where

x' and x" are the orthogonal projections of x on Tr and Tr-L.

The k-dimensional subspaces of form the Grassmann manifold

The x-ray of f is a function Lf(Tr, x") on a fiber bundle

T(Gn, k) with base space
Gn, k

and fibers isomorphic to Rn-k.

When k = 1 or k = n-1, Gn,k = Sn-1.

Note when k n-1, the x-ray transform is essentially the

Radon transform. In fact

3



Ref(t) L f(tO) .

eJ-

Thus in this case all results on the Radon transform carry over with

appropriate change of notation.

The central problem of this thesis is the study of the relation-

ship between a function f and the transformed function Lf.

Although one might expect the results to depend somewhat on the

magnitude of k there is a surprising difference in the results when

k < n/2. Indeed, we prove that any square integrable function. on

R is actually integrable over almost every translate of almost

every k-space, k < n/2, while an example is given of a square

integrable function on Rn which is not integrable over any k-plane,

k > n/2. We also show that when k < n/2, the x-ray transforma-

tion has a natural extension as a closed operator from a domain

Dk
C L2(R) into a certain L2 space on the fiber bundle T(Gn,k)

Again this is shown to be impossible when k > n/2. An inversion

formula is given for all k.

A characterization of the range of the Radon transform was

given by Ludwig [10]. We do the same here for the x-ray transform,

giving necessary and sufficient conditions that a function on the fiber

bundle T(Gn, k) be the x-ray of a square integrable function with

support in a given compact convex set K. Our proof fails when

k n-1, but the result holds from the work of Ludwig. However, we

4



prove more. Indeed, we show that it is possible, in some cases, to

get inside the convex hull of the support of f from the knowledge of

the x-rays when k < n-2. Finally, a characterization of the null

space of Lif is given and a few remarks are made on the relation-

ship of this theorem to the particular iterative scheme that is being

used to detect brain tumors.

5



1. DEFINITION AND FUNDAMENTAL PROPERTIES
OF THE X-RAY TRANSFORMATION

If Tr is a k-dimensional subspace of Rrl the x-ray of the

integrable function f in the direction TT at the point x" in

is defineddefined by

(1.1) L f(x") = f(x', x")dx'
it

it

provided that the integral exists in the Lebesgue sense. Here, and

in general, once a subspace it is fixed, we write x = (x', x")

where and x" are the orthogonal projections of x on Tr

and Tr-L. The k-dimensional subspaces of Rn form the Gras smann

manifold Gn, The x-ray of f is a function on a fiber bundle
Rn-k.

T(Gn, k) with base space
Gn, k

and fibers isomorphic to
-For k = 1 or k -1, Gn, k

= Sn1

Lemma (1. 2). If f is integrable on Rn, then for each

k-space L f is an integrable function on Tri and

f< f 11
Ll(Tr.L)

1 nL (R )

Proof. The proof is an immediate application of Fubini's

theorem. From (1. 1) we have

6



variable and for fixed

on 1T,

IIL f < f(xl , x") I dx1dx" =
Ilfil1(Rn)L 1 (Tr-L) L

Lemma (1.3). If p is a locally integrable function of one

yll E 7r1, p(<x", y"))LIFIf 1(x") is integrable

(1.4)
t.) I

P(<x", y">)L f ")dx" = p(<x, y">)f(x)dx.
Tr-L.

Proof. Fubinils theorem gives

p(<x", y">)L f(x")dx" = p(<x, y">)f(xl ")dxIdx"
.L. TrTr Tr Tr

p(<x,y">)f(x)dx.

The Fourier transform of an integrable function on Rn is

given by

(21.)_1112 e- <x, f(x)dx.
Rn

Thus if g E L1(Tr1), where Tr is a k-space, it is natural to define

"g( ) (2 k-n) /2
e

-i<x, g(x)dx, for E Trj"

7



From Lemmas (1.2) and (1.3) we derive immediately a relationship

between the Fourier transform of f and the Fourier transform of

L f.

Lemma 1.5). For each k-space Tr and integrable function f,

ki2A(L f) ( ") = (2Tr) f(t") for t" E 7r.
Tr

-itProof. The proof is immediate if one takes p(t) = e

Lemma (1. 2).

If V is any (k+1) dimensional subspace of Rn and

is an arbitrary point in Rn, - then E i for some k-space Tr

A
contained in V. Lemma (1.5) tells how to compute f( ) from

L f. Since f E L1 (Rn ) is uniquely determined by its Fourier trans-
Tr

form, f is uniquely determined by its x-rays in the directions

7 C V. Thus we have proved the following result, Gn, k(V) being

the submainfold of Gn,k consisting of the k-spaces contained in V.

Corollary (1.6). For any (k+1) dimensional subspace V of

Rn, an integrable function f on is uniquely determined by

its x-rays in the directions Gil, k(V).

Note that if k = 1, then Gn,k(V) is a great circle on the

sphere Sn-i .



Now

The preceding result can be improved upon when f has

compact support. First a well known algebraic result is needed.

Lemma (1.7). The vector space of homogeneous polynomials of

degree m in R1.1 is spanned by those polynomials of the form

<a, x>

al an
aProof- The monomials x = xl .. xn with

i=1

form a basis for the homogeneous polynomials of degree m. A

linear functional A on this vector space can be represented by

A( aaxa ) = b aaa, b EC.
0am lal=rn

= M

al a a an 1<a, x> = ( al n l n
... a)a ...a xl xn

Ial =m

where

m !
( a

1.
. a ) =

al !.
an!

If A vanishes on all polynomials of the form <a, x> then

9



al an
ba(a1... an)a1 ...an =0.

But this is a polynomial in a. Thus ba(al... an) = 0 for all a.

So b =0 for all a.
a

Lemma (1.8). A nonzero homogeneous polynomial of degree

m in Rn can vanish identically on at most m distinct hyper-

planes.

Proof. The proof is by induction on m. If m = 0, then the

result is trivial. Suppose that the result has been established for
J_m < I and that Pi vanishes on the hyperplanes 01, ., 01+1,

0. ±0., i j. Without loss of generality we may assume 01 = el'
the direction of the

x1 axis. Then PI (x) = 0 whenever xi = 0.

Thus

PI (x) =
x1Q1 -1(x)

with Q1 homogeneous of degree 1-1. But Q1 vanishes on)2 -

10\ 01_L for i = 2, ...,/+1. Since Q vanishes on a closed set
- 1

it follows that Q -1 vanishes on 0., i > 2 and the induction

hypothesis implies Q a- 0.

For any integer k > 0 let Nk be the set of k-tuples of posi-

tive integers = 1, . 1 k) such that < 2 < k.

10



J-
( 1 . 11 )

Tr

is uniquely determined by the L f coming from any fundamental
Tr

system of k-spaces for Rn.

Proof. Suppose L = 0 for a fundamental set of k-spaces

Tr, j E Nk. Formula (1.4) gives for
J

y II E

"> f(x ")dx" = Cx, y >f(x)dx = P (y")
Tr

where P is the homogeneous polynomial defined by the right hand

side of (1.11). From the assumption P vanishes on 7 ,1_ for all

Let I E Nk-1. For each j E Nk such that j = (I, jk) the space

771

is contained in IT , Thus Tri. C . Each Tr-L. is a distinct
J J 1 3

hyperplane in Tri by construction of the fundamental system. Since
1

P vanishes on Tr-!.- for all i E Nk it follows from Lemma (J..8)m J

that P vanishes on TrI, I E Nk-l Proceeding inductively itm I

easily follows from the construction of the fundamental system of

k-spaces that Pm vanishes on the hyperplanes Oi where the Oi

11

Definition (1.9). Let 0.1 be a sequence of directions in Rn

such that any (k+1) of the (). are linearly independent. For each

E Nk, let
el be the k-space generated by

, . The set {Tr :j E Nk} is called a fundamental system
1

of k-spaces for RII

Theorem (1.10). If f E L1( has com act susoort, then



12

are the directions generating the fundamental system as in Definition

(1. 9). Now Lemma (1.8) implies Pm is identically zero for all

while (1.11) and Lemma (1.7) imply f is orthogonal to all poly-

nomials. Since f has compact support, f 0 almost everywhere.

Note that if k = 1, a fundamental system is contained in any

infinite set of directions with distinct entries. Thus if f has com-

pact support, f is uniquely determined by any infinite set of

ordinary x-rays.

Remark. No function f is determined by any finite set of

x-rays. Indeed if 01, ..., 0 is a finite set of directions, C2 is
ooany open set in Rn, 4 E Co (0), and we define

P( ) = <,(31> 0m>

then

The set of all functions

[P(D)qi]A( ) =

Thus Lemma (1.5) shows that if g = P(D)kii, then

LO. g = 0, i = 1, .. , m.

Do

g P(D)Lii with if, E C (0) is obviously
0

infinite dimensional. Thus the set of functions with compact support

in any open set C2 C Rn having the same x-rays in a finite number



of directions is infinite dimensional.

Also if the assumption of compact support is dropped in

Theorem (1.10), the theorem fails even for analytic functions.

Indeed let I:0 E Cx0(Rn) with supp (I:1C B(b, 1), b 1° There
- 1exists an open set G C Sn such that for all 0 E G, 0 B(b, 1)

is empty. If ip is the inverse Fourier transform of (1), ip is

analytic and Lemma (1.5) implies Logi 0 for all 0 E G. Thus

L0
kp vanishes in a continuum of directions. In fact by choosing b

sufficiently large the x-rays of ip can be made to vanish in all
-L -directions outside of an arbitrarily small neighborhood of b rm SnI

This is the best that can be said about the vanishing of the x-rays of an

integrable function since the Fourier transform of a non-zero function

in Ll(Rn) is continuous and thus nonzero on some open set.

13
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2. LOWER DIMENSIONAL INTEGRABILITY OF Lz FUNCTIONS

The symbol L2(T(Gn,k)) will be used to designate the

measurable functions on the fiber bundle T(Gn,k) which satisfy

sg(ff' XIT)dx"dp. < co
G n, k

where la is the finite measure on
Gil, k

invariant under orthogonal

transformations [11], and normalized so that

I-L(Gn,k) = Isn-k-11

the bars denoting the appropriate area measures on the spheres.

The symbol L be used when the x-ray is acting in the

direction of a fixed k-space Tr. The total x-ray transformation will

be denoted by L.

Lemma (2.1). If g is nonnegative and measurable on the

sphere Sn - 1
, then

Gn, k
-1

Tr

g(co)doidp.
Sn - 1

g(0)d0

Proof. The integral on the left defines a continuous linear

form on the space C(Sn-1), (hence a measure on 5n-1
). This



then

Ix I g(x")dx"dp. =g(x)dx
RnG Trn, k

Proof. Using polar coordinates in the integral over Tr-1T gives

,51 x" k g(x")dx"dp,

n, k

=.C'S0 Gn, k Sn-1

The result follows from Lemma (2.1).

In terms of Fourier transforms the operator A is defined by

(2.3) (Af)A( ) If()

n-1r g(re")d0"dp.dr.

15

form is obviously finite and rotation invariant and there is only one

such up to a constant factor, namely the integral on the right. The

normalization of [1, is chosen to make the constant 1. Once the

formula is established for continuous functions it extends immediately

to nonnegative measurable functions by the standard arguments of

measure theory.

Lemma (2.2). If is nonne ative and measurable on Rn,



To avoid cumbersome notation the same symbol is used irrespective

of the space Rn, or subspace of Rn in which A acts.

Theorem (2.4). The ma (2Tr
-k/2 Ak/2L) is an isometry

from L2(Rn) into L2(T(Gn,

Proof. It is enough to establish the result on a dense subset of

L2(Rn) . If f E Cm(Rn) then clearly A(L f) is in L2().
The

0 Tr

The definition of A, (2.3), the Parseval relation on Tr-L, Lemma

(1.5), and the last lemma give

SG S
k/2 f(x")12dx"dp.

L LTr

n, k

k A 2
= (27)k 1,"1 If(,")1 "dI-1 = (2'7

Gn, k

11 112 2 n
L (R )

The space of bounded, measurable, functions which vanish out-
00side a compact subset of Rn is denoted by L0 (Rn )

The next theorem, which is a rather surprising one, is part of a

recent paper done jointly with K. T. Smith. See [13] for complete

details of the proof.

Theorem (2.5). For k < n/2 there is a constant c (de end-

in on k and n such that if f E L2(Rn then for almost ever

16



Tr EGk' LTrf is defined almost everywhere on Tr-I- by an absolutelyn,

convergent integral and

(Z. 6)

Proof. It is sufficient to prove inequality (2.6) for f E Lc); (Rn)

Indeed if this has been done and f E L2(Rn), f > 0, we can choose

an increasing sequence of functions
fn with f> 0, fn E L 00(Rn n)0

and with
fn converging to f. Inequality (2. 6) for the fn and the

monotone convergence theorem give the desired result for nonnegative

f. The result follows immediately for all f E L2(Rn).
co nAssume that f E L (R ). It is clear that0

oo 2Lf E L (Tr-L)C L2()
Tr 0

(2. 2)

S ii Lirf 11 2q dp. c2 2110
Gn, k

L (TT ) L2(R)

A 2 ,so that f E L According to Lemma

k A 2
STri. IV! fl dVdt1 <

Gn,k

and it follows that for almost every TT

E L2(71') .

Fix any such Tr. Since

f.( II) = VI I g(V)

2(n-k)q- n-2k

17



and since both f and g are in L2(7-1-) the theorem in [13] on

the Riesz transform gives that

(2.7)

where

Lf=-R a R k/2
Tr k/2 - /21 A1 L f

Tr

R ah(x) = C(n, a) S
Rn

la-nh(Y)dY, 0 < a < n.

Now, Sobolev's inequality in the space Rm [14], asserts that

R ag q C g 2

In the present case we have a = k/2 and m = n-k, so we get from

(2.7) and Sobolev's inequality that

L.TrfLq(71.)

11< C Aki2L fil ,
TT

LL(Tri-)

Squaring and integrating over Gn,k and making use of Theorem

(2.4) gives the desired result.

Remark (2.8). The function

f(x) =

is square integrable on Rn but is not integrable over any plane of

dimension >n/2.

1 1 afor = - > O.
q 2 m

-1
lx1-n/2,(loglxh >2
0, otherwise

2(n-k)q- n-2k

18



3. THE X-RAY TRANSFORM AS AN UNBOUNDED OPERATOR

We shall study the x-ra,y transformation as an unbounded

operator from L2(Rn) into L2 (T(Gn,k)). (We will usually write

L2(T) in place of L(T(Gn,k)) .) The natural domain would appear

to be the set

(3.1)
Dk {f E L2 (Rn )

Gn,
k11L f112, c1P- < }

Tr GL (Tr)

This turns out to be entirely satisfactory for k < n/2, but not for

k > /2. In the latter case, for example, we have not been able to

decide whether the operator is even closable with domain Dk.

Lemma (3.2). If fE L1 rTh L2 then f E

Dk
and

(3.3)

(3.4)

2111422 < )1(0 11-1111121 11f1122) .

L (T)

Proof. Since f E L1 L2, it follows that E L2

and an easy calculation shows that

-k /2A 2
11 10 f11< 1Sn-11 11/112,) 1111122

L L

On the other hand, Parseval's relation on Tr-L, Lemma (1. 5), and

Lemma (2.2) with g =
-k/2A10 give

19



(3. 7)

Lf1122 = (27)k SI sc ddi.
L (T)

Gn,

k -k /2A 2
= (2Tr) 11 1

f
L2

The result follows from (3. 4), Parseval's relation on Rn and the

fact that 11/f11 co 11f11

L L

Let us define

2 -k /2A 2(3.5) Dk = {f E L: I
I

f E L2} .

Theorem (3. 6). If k < n/2 then Dk = D and for almost
k

every k-space Tr

(L f= (27)k /2A
f

Tr

whenever f E D If k > n/2, then D D .
k k

Proof. Let 0 < k < n and assume that f E
Dk. Choose

E
CC)°

(R ) such thatn 2A A -k12"
fn f in L and

1 1 fn 10 f7n 0
A

in L2. Let fn and f be the inverse Fourier transforms of fn
A oo n

and il respectively. Since fn E CO (R ) , it follows that

fn E 1,4 (Rn), (the space of rapidly decreasing functions of Schwartz).

Lemma (1.5) and Lemma (2.2) give

a. e. on 1T,

20



(3. 8)

where
iT

(3.9)

f )A_ (270k/2/p 2
I

2

n, k LS 11(.1-Tr

= (2Tr)

L f g
Tr n Tr

is defined by

k/2Ag = (2Tr) f
Tr

s 111'n-71122
_k A 0\ 2(2Tr)nn

Gn, k L (Tr )

a. e.

on TT -I-

However when k < n/2, Theorem (2.5) shows that for almost every

Tr, and again a suitable subsequence,

L f LTrf a. e. in Tri
Tr n

It follows that for almost every IT

(3.10) = L f a. e. on Tr
Tr

Hence f E Dk. Moreover (3.9) and (3.10) show that (3.7) is valid.

Conversely suppose f E
Dk, k < n/2, and define

_,-,21x I 2 2f (x) = e ' f(x). It is easy to see that f f in L and
A 2consequently f f in L. Lemma (2.2) implies (for a suitable

21

But the last integral converges to 0 as co, so, choosing a

subsequence if necessary, we have for almost every Tr,



sequence of pis) that

(3.11) uirn = 0 for a. e.
p 0 Tr -I- I P I

and Theorem (2.6) gives (for a suitable sequence of p's) that

L fL f in for a. e. IF,
IT p TT

and hence that

(3.12) L f L f in T(iri) for a. e. it,
Ti p

where T(rr-L) denotes the tempered distributions in Tr-L. Since

the Fourier transform is a topological isomorphism on err ) and

fp
E L1, Lemma (1.5) and (3.12) give

(3. 13)

From this and (3.11) it follows that

(L f)A = (27)k
/2A

f a. e. on
Tr

for any it for which (3.11) and (3.13) hold. Since f E Dk, Lemma

ki /2A(2.2) shows that 1 1 f E L2 , and the theorem is proved for the

case k < n/2.

To prove the second part of the theorem, we construct a

k /ZI\
(2Tr) f (L f)A in ( Tr) for a. e. Tr.

22



dimension k > Assume thatn/2.

where the mks run through the integers. (For example, on the

line,
g0

= 0 on alternate intervals between integers.) Let

.. en be the unit vectors along the axes, and put

g ( ) = gk-1(x+ek) g1(x)

One may easily check that gn is not Lebesgue integrable over any

k-plane. Moreover

= (e - (e -1)go( )

which gives the desired result since

(e -1)...(e n-1)10 -11.

is bounded.

co

23

function g E L2 such that 1 1-k12',..gA E LZ but g is not Lebesgue

Theorem (3.15). The x-ra transform with domain Co

admits a closure L with domain Dk (=Dk for k < n/2 and Dk

integrable over any plane of

by

(3. 14)
g0

(x)

k >n/2 and let f(x) be the function in Remark (2.8). Define

f(x), 2mk < xk < 2mk +1, k = 1, ,n

, otherwise

0



for k > n/2).

Proof. First we show that the x-ray transformation admits a
ooclosure. Suppose that fn E

CO fn 0 in L2(Rn) and Lfn g

in L(T). We must show that g = 0. Now

urnLirfnli 22
L (T) n-00 G Ln, k

(2T)k 1im
r A

f
n

SiGn, k
Trj_ n

A
2 lim If dVdP,

II

2

00 Gn, k E n

E > 0 ,

where Lemma (1.5) and Parseval's relation on have been used.

If E > 0 is fixed and we let n co , Lemma (2. 2) gives

lk y es.

E G >n, k

it,Tiki/f\
I.' I I n

A 2
I g dt"di.t.

Gn,k 71-

Since E is arbitrary and g E L2(T) , the right-hand side can be

made arbitrarily small. Thus g = 0.
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Let Dk be the domain of L . If f E Dk ' then there exists

a sequence fn E

CO
such that fn in L2(Rn) while Lfn --

00

in L2(T). The proof of the first part of the theorem shows that for

almost every Tr, (and an appropriate subsequence if necessary),

k/2"(2Tr) fa. e. on 71
n Tr

But we also know that for an appropriate sequence of n,

fn a. e. on R

It follows that

(3.16)
gT, =

2
k /2A

a,. e. on Tr for a. e.

Since g E L2(T) , it follows from Lemma (2.2) and (3.16) that
-k/21\ 2

f E L (R11). Thus f E Dk.

Finally suppose h E Dk,
the first part of the proof of Theorem

(3.6) shows that there exists hn E (Rn) such that hn h in

L2(Rn) and Lhn converges in L2(T) Thus it suffices to show

that (Rn) C -I5k But this is immediate from (3.3). Indeed, if
00

f C (Rn), simply choose fn E
C0

such that fn f in

Ll Rn) L2(Rn), e. , in L 1 (Rn)and in L2(Rn).
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4. AN INVERSION FORMULA

-k/2From Theorem (Z. 4) we know that (2Tr) (k/2AL) is an

isometry from L2 (Rn ) into L2 (T) = L2 (T(Gn,k)) and it follows

that

- k/2 k/2(27)k [(A L) (A L)]f = f if f E L2(Rn)

k /2 *
where (A L) denotes the adjoint of (Ak/2L). In this chapter

we investigate the adjoint of the x-ray transform, L, and give an

inversion formula which shows how to recover f from Lf or Ef

whenever f E Dk .

Lemma (4.1). If
2

, then is in the domain of

L provided that

/(x) g(Tr,x")dy. E L2 (Rn )-

Gn,k

Moreover the above formula defines the adjoint operator, i.e.

= Lg.

Proof. By Theorem (3.15) it is enough to compute the adjoint
00 n oo

of the restriction of L to
Co

(R ). If f E Co , then
ooLf E L0 (T) and the use of Fubin.Ps theorem is justified in the
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following calculations. If g E L2(T) and P (x) is the projec-

tion of x on Tr4", then

oo > L f(x")g(Tr, x")dx"di.i.

Gn, k

SS f(x` x")g(Tr, x")dxIdx"dp.
1T Tr

n, k

Sf(x)g(Tr, P (x))dxdp.

Gn, k Rn Tr"1"

=f(x)( g )(Tr,P (x )dp. dxRn _L
Tr5G

g(,
k

f712dx .

1R.1.1

Since the range of L must be contained in L2(Rn) the result

follows.

eNs.
Theorem (4. 2). (Inversion Formula) If f E D and Lf = g,k

k < n/2, or L.f = g, k >n/2, then

-k k/2 k/2
(2TT) A L A g= f.

(Note that the Ak/2 on the left is acting in Rn while the Ak2/

on the right is acting on each fiber in T(Gn, k) )
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where

(4.3)

Proof. Let f and g satisfy the hypotheses of the

theorem. First we show that Ak /2g is in the domain of L. Let
h E C (Rn). Parseval's relation, Theorem (3.6), (3.16), and Lemma

0

(2.2) give that

/2<Lh, Ak/2
Ag> 2 = <(Lh ) ,(A g) A>

L-(T) Lz(T)

k" k/24
= (21T)k<i\l, 1 -1(/21.\>= (2w) <h, IV 1 f>

L2 (T) L2
(Rn

)

k A A= (21r) <h, u>
L2(Rn)

-1c/2/\
u = f

4"- A 2 nSince f EU E L (R ). Thus if u is the inverse Fourierk'

transform of u, Parseval's relation on Rn gives that

<Lh, Ak /2g> 2 = (27)k<h, u>
L (T) L2 )

00for every h E
Co (Etn ). According to Theorem (3.15) it follows that

Ak /2g is in the domain of L and that

L*Ak /2g = (27)k u.

The theorem now follows from the definition of A and (4.3).

28



5. THE SUPPORTS OF f AND Lf

If A is a subset of Rn the support function of A is

defined by

29

The support function is convex, homogeneous of degree 1, and

lower semicontinuous, with values in (-00,00]. The value +00 may

be obtained when A is unbounded.

Until further notice K will denote an n-dimensional, compact,

convex subset of Rn.

Lemma (5.2). If Tr is a k-dimensional subspace of Rn,

then x+Tr intersects K if and only if

(5.3) <x,(4> <
SK

(co) for all CO E

Proof. If x+Tr intersects K then (x+y) is in K for

some y E Tr. But if E Tr-I- then

<x, co> = <x+y, co> < SK(w).

Conversely suppose (5.3) holds. Let K" and x" be the

projections of K and x on Tr-L. Now for all u) E

<x" , 0j> = <X, W> < SK(W) =SKI, (w)

(5. 1)
SA( ) = sup < y>

yEA



Thus x" is contained in each halfspace in which con-

tains K" Since K" is closed and convex, x" is in K". Thud

x" + Tr intersects K and hence x + Tr intersects

The following is an immediate consequence of Lemma (5.2).

Corollary (5.4). If f is integrable and has support in

then L f(x") = 0 wheneverTr

<x", w> > (w) for someJ-w E 7T .

More interestingly the converse of Corollary (5.4) holds when

k < n-2.

Theorem (5.5). Let f E Ll and k < n- . If for every

k-space Tr, L f(x") = 0 for almost every x" E Tr -L- such that
Tr

X" +IT does not intersect K, then f vanishes almost ever where

outside K. The result fails when k = n-l.

Proof. Let H be a supporting hyperplane of K and let

H+
{x: <x, e> >t0} be the open half space determined by H dis-

joint from K. Define

f(x), XEH
h(x) =

, otherwise.
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If Tr is a k-dimensional subspace in it is clear that

L h(x") = 0 for a. e. x" E
Tr

for if <x", 0> < t' then x" + 7 does not intersect
H+.

On the

other hand if <x", 0> > to, then (x" +Tr) C H. and

L h(x) L f(x") = 0 for a. e. x" E H rTh Tr-L
Tr Tr

Since k < n-2, Corollary (1. 6) shows that h vanishes almost

everywhere. Thus f vanishes almost everywhere in H+. Since

H was an arbitrary supporting hyperplane of K, the result fol-

lows.

To see that the theorem fails when k n-1 it is more con-

venient to use the Radon transform notation. Recall that the Radon

transform of an integrable function f is defined by

f(x)dan- 1
(x)Ref(t) =

<x, 0>=t

where 0 E Sn-1, t E R1, and an-1 is the n-1 dimensional

Lebesgue measure. Notice that

Ref(t) =
LerLf(t0).

Thus it suffices to construct f E Ll(Rn) such that f does not have
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compact support but Ref(t) = 0, t < r < 00 for all 0.co12-nLet h be a C function on Rn which is equal to

for 1, when n > 3. When n = , let h be equal to

log Ix 1 for x > 1. Let f be obtained from h by differen-

tiation in such a manner that f is integrable but does not have com-

pact support. If A denotes the Laplacian, then

Af = Ah = 0, X >1.

Moreover

(Ref)" = R (46f) = 0, t >1,

primes denoting differentiation with respect to t. But since Ref0

is an integrable function of t, Ref 0 as t 00. Thus

Ref(t) = 0, jt >1,

and the theorem is proved.

Remark (5.6). A function g(rr, x) on T(Gn, k) vanishes in

a neighborhood of a point (Tro, xo) if there exists an open neighbor-

hood 9 ofin
Gn, k

and an open neighborhood U of x
Tr° 0

in Rn such that

g(Tr, x) = 0 for all (Tr, x) E (g X U) T(Gri,
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The function g vanishes in an E -neighborhood of (70, xo) if U

above can be chosen to contain the ball B(xo, E As usual we sa:,r f

vanishes in a neighborhood, (E -neighborhood), of a subset

A C T(Gn, k) if it vanishes in a neighborhood, (E -neighborhood),

each point of A.

If U is a subset of Rn and 6) is a subset of
Gn, k, we

define

u = (Pxu) T(Gn, k)

Note U consists of the pairs (Tr, x) with ir E9 and

X E CU r1 j-)

The idea for the proof of the next theorem comes from Lemma

(3.1) in [10]. The importance of the theorem is that it shows that it is

possible in some cases to get inside the convex hull of the support of

f from a knowledge of its x-rays in dimensions k < n-2.

Theorem (5.7). Let
Tro

be a k-space k < n-1, and V be

an open, connected, unbounded subset of
Tr-L0 . If f E C

co

0

( R n ) and

Lf vanishes in a neighborhood of Tr [E) V then f vanishes on
0

Tro

Proof. Without loss of generality assume that Tro = [e1, ek].

Choose neighborhoods N1, Nk of el, ..., ek such that
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whenever w = (w1 wk) E NiX xNk, then Trw = [w1, ,
in a subspace of dimension k. Now if y E Rn, define

00 00

L f(y) =
s

f(y+tiwi+. .+tkwk)dti...dtk
-00

Note

(5. 8)

where

a = (al, ak) and I al =

i=1

1

Lwf(Y) = Lw1 nWk wf(Y")

Since Lf vanishes in a neighborhood of Tro ar V, (5.8) shows that

Lwf vanishes in a neighborhood of each point (y, w1 wk)
with

+V), w. b.e. E N.. If w.w. ) E N. and
1 1 1 1. 1 1

+ V is fixed, then

a aal 2
a a a

= )( ) (L f(y))w w
w

Iw=(e
1,

. , ek)21 ki/aal a
a

k goo

l
f(y+tlw1+...+t w ) t ...dtk

\ wi w .ki -00 -00
k k

w=(ei, ek)

00 00 a
ak

a
f1

= . . t1 . . . tk (y+tiel++tkek)dti...dtkax I-00 -00

Letting vary in Tro + V we have

y E (1T

TrO



Thus

(5.9) Pa(Y)

a I as 00 a1 a

I a c: t1 tkkf(y+tlel . . +tkek)dt1...dt = O.
- CO

a a

s: tkkf(y+t e, +t e )dkk tl' ° *dtk

35

is a polynomial of degree less than
I al in yi in the domain

+
Since yi was arbitrary Pa(Y) is a polynomial in each of

its variables separately and it follows that Pa(y) is a polynomial

in y in the domain Tr + V. If we choose r > 0 such that
0

supp f C B(0, r) then

f 0 on [Tro + (V \ B(0, r))] C Tro + V.

It follows that the polynomials Pa(Y) vanish on an open subset of

Tr0
+ V. Since V is connected the polynomials vanish identically

on
Tr0

+ V. But then (5.9) shows that for all y E V, the function

f(y+t le 1+ . . +tkek) is orthogonal to all polynomials in the variables

t1' tk. Since f has compact support, f vanishes on Tr + V.
0

The convolution of two integrable functions f and h is

given by



and it is well known that

n /2A /\
(f*g)A = (27) f g.

Thus it follows from Lemma (1.5) that

(5.10)

Corollar

f *h(x) = f(y)h(x-y)dy

LTr(f *g) = LTrf (L g).7

Theorem (3. 6) shows that when k < n/2 and f E Dk, formula

(5.10) holds almost everywhere on Tri for almost every

5.11). Let E L1(Rn) have com act su ort and

V, 70 be as in Theorem (5. 7 . Assume in addition that for suffi-

ciently large integers n > 0

(5.12) Vn = {x" E V d(x", rroi \V) > 1/n)

(where d denotes distance), is an o en, unbounded, connected sub-

36

set of V. Then if Lf vanishes in a neighborhood of 7 El V, f
0

vanishes almost everywhere on
Tr0

+ V.

Proof. Let El) E Cx0(Rn) be nonnegative, have support in the

unit ball, and satisfy



If

4)(x)dx = 1.

(x) p -11(x /p), p >0

oo
then 4) *f is in C, has support in B(0, p) + supp

0

f f n
in L1 (R ) as p 0.

Since Vn n B(0, r+1) is compact and contained in V, Lf

vanishes in an E -neighborhood of
Tr0

El (Vn n B(0, r+1))

ciently small E ( n ) > 0. From (5.10) we have

(5. 13) L( *f)(x") = L (y")L f(x"-y")dy" .
1T p Tr p Tr

If Ix > r +1 and 0 < p < 1, then Ix" - y"1 > r for all

y" E B(0, p) and Corollary (5.4) implies

L(4 *f)(x") =0.
Tr p

If Ix "1 < r+1 and X" E TT-1- Lf vanishes in an E -neighborhood of
0

(Tro,x") and (5.13) shows that L( *f)(x") vanishes if
1T p

and

37

For n > 0 sufficiently large, Vn in (5.12) is an open, unbounded,

connected subset of V. Suppose that f has support in B(0, r).

for suffi-



0 < p < E < 1 and Tr is sufficiently close to
Tro.

Now Theorem

(5.7) implies that 10p *f vanishes on
Tro

+ V. Letting n go to

infinity we get the desired result.

Remark (5.14). The assumption of the unboundedness of

is necessary. Indeed consider the function with support in the

f(x) =

If Tr =[e , ek], 0 < r < 1, and

<V= E Tr-Hx.1 r, j = (n-k+1),

then L f vanishes in a neighborhood of Tr 0 V while f does not
Tr

vanish on Tr + V.

Corollary (5.13). If f E L1 (Rnhas compact support and for

each (n-1)-dimensional subspace ii, L f(x") = 0 whenever x" + IT
Tr

does not intersect K, then f vanishes almost everywhere out-

side K.

, 1 < <n defined by

1, 0 <x1 <1

-1, -1 < x < 0

Proof. Set k = (n-1) in Corollary (5.11). In this case the set

V is a half line. Thus
Tr0

+ V is a halfspace. Corollary (5.11)

38
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implies that f vanishes almost everywhere on each halfspace not

containing K. Since K is convex we are done.
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6. THE RANGE OF L

Ludwig [101, and later Lax and Phillips [ 9 ] , derived necessary

and sufficient conditions that a measurable function 0,o, 0 sn-1,

t E R be the Radon transform of a square integrable function with

support in an n-dimensional, compact, convex set. The same is done

here for the operator L. Although our proof fails in the case of

hyperplanes, Ludwig's theorem establishes the result. Moreover

when k < n-2 Corollary (5.11) gives a characterization of the sup--
port of f which, in some cases, is sharper than the convex hull

f.

nLemma (6.1). If f E L1 (R) has compact support and

y E R then

(6.2) P (y) =<y, x">m L
7 f(x")dx", y E Tr,

J-
11

is- inde endent of the choice of the k-s ace. Tr C Moreover asTr

varies in Gn, k the integrals a homogsneotzspolL-

nornial of degree m on Rn

Proof. Taking p(t) tm in Lemma (1.3) gives

Pm(y) < , x">m L f(x")dx" = <y, x>mf(x)dx.
Tr -I-
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m!

41

The integral on the right is independent of 7 and obviously defines

a homogeneous polynomial of degree m on Rn

Let f E L1(Rn) have compact support. We investigate the

polynomials

(6. 3)
Pm( ) = Pm(f, = <x, f(x)dx, E Rn.

Rn

These can also be defined for E Cn simply by replacing by

in (6.3). Lemmas (6.4) and (6. 6) were established by K. T. Smith in

an unpublished paper where he gives a new proof of Ludwig's theorem.

Lemma (6.4 . If f E L1 (Rn ) has compact support, then the

Fourier transform of f extends to a complex analytic function on

with the expansion

oo

-mPm( )
(6.5) = (27)-n/2

m=-0

Proof. The extension of the Fourier transform is given by the

Laplace transform

AfR) (27)-n/2 -i<x,
e f(x)dx .



The integral converges absolutely for every En even after

differentiating under the integral sign, and does determine an entire

function on Tn.

On the other hand if the support of f is contained in B(0, r),

then from (6.3)

1Pm()1 <WI I

This shows that the series on the right of (6.5) converges absolutely

for every En and also determines an entire function. Thus to

prove (6. 5) it is enough to show it for g E Rn, as two distinct

entire functions cannot agree on Rn

a aIf 0 is a direction in Rn and D ( ) thenagi agn

Taylor's formula gives

oo

f(TO) = <0, D>rn ?1(0)Till
m!

m---0

while

Pm(0)
(2T)n/2(<x, 0>m f(xi

))n I

(27)11(<0,D>mlf\)(0) -

Comparison of the two gives formula (6.5) for = T 0.

The following theorem of Smith gives a characterization of the
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possible sequence of polynomials P that can arise from a square

integrable function f with support in B(0, r).

Lemma (6.6). Let {13 } be a sequence of polynomials such

that

c) The sum

Q fx < r,
1 -

P is homogeneous of degree m-m

Pm() < ill for all m and all E

-m
P ( )

IY1

m!

integrable on Rn.

Then there is a square integrable f with support in the ball B(0, r)

such that Pm() = Pm(f, for all

Proof. Define the entire function f by the formula (6.5).
A

According to c), f is square integrable on the real space, so it is

the Fourier transform of a square integrable f, and the problem is

to show that f has support in B(0, r). By virtue of b)

141 <(Z7) c-11/2
rl 11+' +1.1

e < cle

By the Paley-Wiener theorem [3] f must vanish outside the cube

(which converges by b) is square

i = 1, By a rotation of coordinates Q

becomes any cube that circumscribes B(0, r), so f must vanish

outside the ball.

43



The Sobolev space Hs,

consists of those functions g(Tr,x) satisfying

ilgis=g ) IgTr(V)12dVd1J- <
11 2 s A

Gn, k

These spaces will be denoted Hs(T(Gn,k)) or HS(T).

Theorem (6.7 . Let Tr, x be a measurable function on

T(Gn, k). There exists a square integrable function

in K such that for every Tr,

if and only if

g E Hk (T)

a_<y,x> g (x)dx,
Tr

k-space

grals define a homogeneous polynomial of degree m

in Rn.

L f g
7 Tr

g(Tr,x) = 0 whenever x + Tr does not meet K.

there exists a constant c > 0 such that

g < c
L (Tr-L)

a. e. on Tr -I-

s > 0, on the fiber bundle T(G

for all 1T G
n , k

y E Tr-L, is independent of the

n, k

Tr C yL_ and as 7 varies in Gn,k these inte--

44
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Proof. When k = n-1, this is the theorem of Ludwig [10], and

our proof fails. We prove the theorem when k < n-2. The necessity

of the conditions has already been shown. We proceed to establish

the sufficiency.

For each Tr and E Rn Tri, define

(6.8) P ( ) =Tr,m

Condition (ii) shows that

( ) = P ( ) if E TrtcmTrt.772/M

Moreover (iii), (iv), and Lemma (6.4) give that

oo _rn,
i P ( )A7T , M(6.9) g ( ) = (2Tr)(k-n)/2

Tr m!
m=0

Now condition (ii) implies that

(6.10)

<x, g (x)dx .
Tr

Tr

-n/Pm( ) = (2Tr) ZP,Tr

for each Tr.

is a homogeneous polynomial of degree 111 on R. We claim that

the polynomials P satisfy the conditions of Lemma (6.6). We

have already shown that (a) holds. Moreover (6.10), (6.9), (i), and



Lemma 2.2) show that

00

(6.11) f( ) =
i-mP (

m!

is square integrable on Rn. Thus (c) also holds. To establish (b)

in Lemma (6.6), note that each polynomial P
ril

has a unique

extension to

Tri-='RE E 'IT , E 1T j

given by writing in place of in (6.8). If K C B(0, r), then

(iii) and (iv) imply that

pTr mg) I < crm I
E

G

Moreover since P = (27)-n/2P on Tr, it follows that the
TT

(Enunique extension of P to agrees with P on
111 Tr /71

nThus if E is perpendicular to a real k-space, then

I Prn( I < I Pit, =I.( I < Crnil OM

But {x e Rn: <x, = 0} is a subspace of dimension > . Thus

(b) of Lemma (6.6) is satisfied. Now, if f is the inverse Fourier
Atransform of f, Lemma (6.6) implies that f has support in the
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ball B(0, r). Consequently, Lemma (1.5), (6.11), (6.10), and (6.9)

give that for each 7

1c/2^ A(L f) (2Tr) f = g
Tr

Thus Lf = g. The fact that f has support in K follows from

Theorem (5.5).

on



7. THE NULL SPACE OF

Let K be a fixed compact subset of Rn. We denote the

square integrable functions on Rn with support in K by L2(K).

Lemma (7.1). For each k-space, Tr, the transformation L

is continuous from L2(K) into L2 (Tr .)

Proof. Let f E L2(K) and let x denote the characteristic

function of K. Lemma ( 1 . ) shows that for each Tr, f(x', x") E L2(n)

for almost every x" E Thus we may use the Cauchy Schwarz

inequality in L2(IT) and we have

ILf II2? =S IL fl 2dX"
TT

L 1-1- Tr1

= X(xl,xll)f(x',xu)dx1I2 dx"
71-1- IT

/Z
< Oci,x")dx1)1 ( If(x',x")I 2dxf)1 /

IT IT Tr

< C(k,K)IIf 1122

where

C(k, K) = sup x(x x u)dx
E TT it

Theorem(7.Z). The null space is a closed subspace of

2dx"
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2L (K)
2L (K) that are constant in the direction Tr, or more precisel on_

the intersection of k-planes in the direction ir with K.

Proof. Lemma (7.1) shows that Lir
It

is closed. Without loss of generality assume It = [e1,. , . , ek]. A

function h is constant on k-planes in the direction It if and only

if h is a function of x" = (0...0, x , ,x ) alone. Suppose that

where
k+1 n

f Xh X is the characteristic function of K and h is a

function of x" alone. If g E then
Tr

<g,f> = S.
n

gxhd hçgdxd h1 O,
R Tr TT

since the inner integral is L g(x") .7

Suppose f EV/ft It is sufficient to find a function h of x"

alone such that

SO

is Continuous SO

L f = L Xh
TT 7T

Indeed if such an h is found, then

L (f-xh) = 0,

f Xh cflL But by the above xh ILL So (f-xh) E IL.
L7 lv

Thus f = xh,

whose orthogonal complement consists of the functions in
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To find h note that

L f L xh
Tr Tr

if and only if

(7.3) f(x x")dx =
Tr

X (x', x")h(x")dx1 = 6(x ")h(x")

50

where 6(x") LX II

Define h(x) by the above formula. We need only show that

xh E L2 (K). Now

(7.4) 1 Xh 1dx = S,5 XIII2dxidx!'
1T Tr

SiTi.II II5(x )1h(x )12dx .

But since xf = f, 7.3) and the Cauchy-Schwarz inequality give

(6( "))2 1 h(x") 1
2

= Xf(xl x")dx? 1 2 < 6(x") slf, 2dx1 .

Tr Tr

It follows from (7.4) that

s1 xh 1 2dx .
_11f1122 nRn L (R )



and we are done.

We now describe an iterative scheme due to Kacmarz [2] that is

being used to detect brain tumors. In the brain tumor work the

method is used in two dimensions to reconstruct cross sections. The

method is general and is presented here for functions in Rn and

k-planes.

Suppose that K is a compact subset of Rn, that f E L2(K),

and that the x-rays
L11

f, i 1, are known. Let P. be

the projection on the closed plane f + in L2(K). Let
Tr

f E L2(K) be an arbitrary initial guess and define0

fl = Pifl -1 i mod(J).

The characterization of the null space in Theorem (7.2) shows that

L f (x") = f(x"), i i mod(J),
Tr. Tr.

and f - f1 is constant on planes with direction Tr.1-

If P = P3.. P1, then a theorem of Amemiya and Ando [1],

shows that

Pnf P f strongly as n 00,0 GM 0

where
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crn. = (f+cn )

i=1
r.

and Pam_ is the projection on cr)1..

Thus the iterative scheme of projections converges strongly

to the projection of the initial guess, fo, onto the plane cM.



53

BIBLIOGRAPHY

Amemiya, I. , and Ando, T. , Convergence of random products of
contractions in Hilbert space. Szeged (26) (1965), p. 239-244.

Durand, E., Solutions Numeriques des Equations Algebriques.
Tome II, p. 120, Masson, (1960), (Paris).

Gelfand, I. M. , Graev, M.I. , and Vilenkin, N., Generalized
Functions. Vol. 5, (1962), (Moscow).

Gordon, R. , and Herman, G. T, Three dimensional reconstruc-
tion from projections: a review of algorithms. International
Review of Cytology, ed. Bourne, G.H. and Danielli, J.R. , (1973),
(Academic Press, New York).

Guenther, R. , and Smith, K. T. , Reconstruction of objects from
x-rays and the location of brain tumors. (to appear)

b. Helgason, S Differential operators on homogeneous spaces.
Acta. Math. (1965), p. 239-299.

, The Radon transform on Euclidean spaces,
compact two-point homogeneous spaces and Grossmann manifolds.
Acta Math. (1965), p. 153-180.

John, F. , Bestimmung einer Function aus ihren Integralen aber
gewisse Mannigfaligkeiten. Math. Ann. 100 (1934), p. 488-520.

Lax, P.D. , and Phillips, 8. , The Paley-Wiener theorem for
the Radon transform. Comm. on Pure and Applied Math. , (1970),
Vol. XXIII, p. 409-424.

Ludwig, D., The Radon transform on Euclidean space. Comm.
on Pure and Applied Math., (1966), Vol. XIX, p. 49-81.

Nachbin, L., The Haar Integral, Van Nostrand, Princeton,
N. J. , (1965).

Radon, J., Uber die Bestimmung von Functionen durch ihre
Integralwerte rings gewisser Manigfaltigkeiten. Ber. Verk.
Sachs, Akad. Wiss. Leipzig, Math. -Nat. Kl. , 69, (1917),
p. 262-277.



54

Smith, KT , and Solmon, D.C. , Lower dimensional integrability
of L2 functions. (to appear).

Sobolev, S. L, , Sur un Theoreme de l'analyse fonctionelle.
C.R. Ac. Sci., U.R.S.S., Vol. 29, (1938), p. 5-9.




