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MAGNETO-CRYSTALLINE ANISOTROPY CALCULATION IN

THIN FILMS WITH DEFECTS

1. INTRODUCTION

1.1. Introduction

Magnetism is an electronically driven phenomenon that, although weak com-

pared to electrostatic effects, is subtle in its manifestations. It's origins are

quantum-mechanical and are based on the existence of the electronic spin and the

Pauli exclusion principle. It leads to a number of short and long range forces, with

both classical and quantum-mechanical effects, useful for a variety of engineering

end technical applications. In particular with the growing need to store and re-

trieve information, the body of research in science and technology has experienced

an explosive growth, and central to those pursuits is the study of magnetism as

applied to surfaces, interfaces and, in particular, thin films.

Apart from the application driven pressures, we can mention three major

advances in this field:

The development of new sample preparation techniques (Molecular Beam

Epitaxy, Metal- Organic Chemical Vapor Deposition, sputtering, lithography,

etc.) which are increasingly less expensive and which now permit the manu-

facture of single purpose devices to very accurate specifications.



The availability of better san pie characterization techniques, based mostly

on centrally located facilities. These techniques are based on x-ray, ultra-

violet, visible and infra-red photons from synchrotron and laser sources,

neutrons from reactors and electrons of a number of energies from electron

microscopes and scattering experiments.

The increasing availability of fast, operationally inexpensive and numerically

intensive computers which have permitted the calculation of a large variety

of problems related to realistic systems.

1.2. Motivation

Magnetocrystalline anisotropy of thin films has gained considerable attention

becailse of their potential application as high-density recording media. In the

past decade the areal density of magnetic recording media has doubled yearly

in laboratory conditions, due to the development of high-sensitivity GMR heads

and advanced recording media. As the density continues to increase, the thermal

stability limit for the current copper alloys used in the commercial media will be

reached in the near future and in order to continue this growth trend new metal

alloys are being developed and a better understanding of the physics behind the

anisotropy effects is required.
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2. MAGNETOCRYSTALLINE ANISOTROPY: AN OVERVIEW

In this chapter we will present definitions and two popular models for mag-

netism (Ising and Heisenberg). We will also discuss modifications to accommodate

amsotropy.

2.1. Introduction

Definition 1 (Spontaneous Magnetization) We define spontaneous magneti-

zation as the magnetization present in a sample when no external fields are applied.

When a demagnetized ferromagnetic substance is put in an increasing mag-

netic field, its magnetization increases until it finally reaches saturation magneti-

zation, when the apparent magnetization of the sample is equal to the spontaneous

magnetization. Such process is called technical magnetization because it is essen-

tially achieved by aligning the fields of the domains of the sample, and can be

distinguished from spontaneous magnetization, because when the field is reduced,

the magnetization also drops.

After the magnetization reaches the saturation value, it increases in value

proportionally to the intensity of the applied field. This effect is disturbed by

the thermal agitation of the ions and is very small even under moderately strong

magnetic fields, except at temperatures just below the Curie Point.

In 1926 Honda and Kaya [9] measured magnetization curves for single crystals

of iron and discovered that the shape of the magnetization curve is dependent on

the direction of the applied field with respect to the crystallographic axis. In fact

there are directions along which the magnetic saturation occurs at lower fields than

in others. These directions are called the directions of easy magnetization or easy



directions. This means that the magnetization is stable when pointing in any of

these directions. Conversely, there are orientations of the external field in which

the saturation is harder, that is, we require a higher field to find saturation. The

directions in which the saturation is the hardest are called the directions of hard

magnetization or simply hard directions. The dependance of the internal energy

on the direction of magnetization is called magnetocrystalline anisotropy.

Definition 2 (MAE) We define the Magnetocrystalline Anisotropy Energy as the

difference between the saturation energy of a sample when measured in the easy and

hard directions: MAE= E"Is

If we recall that m = where A is the Helmholtz free energy and H is

the external field, then if we choose the field in the direction of one of the easy

axis,

PHSAT

A(HSAT)e A(0)e
J

m(He)dHe
0

The same equation is valid for the case we take the field in the hard direction:

P HSAT

A(HSAT)Ih A(0)Ih
-J

m(Hh)dH,1
0

If we subtract the last two equations, and we remember that A(0)e = A(0)Ih

(as there is no field present) then

(HSAT pHSAT

A(HSAT)h A(HSAT)e
J

m(He)dHe
J

m(Hh)dHh
0 0

Finally we can gather both integrals into one if we define an integration

surface S limited on top by the magnetization curve in the easy axis and on the
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FIGURE 2.1. Integration area.

H
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bottom by the magnetization curve for the hard axis and C the border of this

surface:

MAE = AA
f

m(H) dH (2.1)

where i9A is the path defined by the saturation curves.

The saturation field used in the integration is chosen to be the one with

highest value, since theoretically the magnetization would be the same for both

directions at that point. In practice this is not true and a compromise must

be reached: We choose for this field of technical saturation the field when the

magnetization in the easy and hard directions are experimentally indistinguishable.



2.2. Phenomenology of Magnetic Anisotropy

Magnetic Anisotropy is defined as the dependence of the internal energy on

the direction of the spontaneous magnetization. The term in the internal energy

that reflects this dependence is generally called the Magnetocrystalline Anisotropy

Energy or Ea. Although this term is related to the MAE, it's not the same,

as it depends on the orientation of the applied magnetic field. This term has the

symmetry of the crystal. It can be affected by the application of heat or mechanical

stresses to the crystal, but we are not going to deal with that in this work.

The anisotropy energy can be expressed in terms of the direction cosines (ai,

a2, a3) of the internal magnetization with respect to the three cube edges. In cubic

crystals like iron and nickel, due to the high symmetry of the crystal the energy

Ea can be expressed in a fairly simple way: Suppose that we expand this term in a

polynomial series in a, a2 and a3. Terms that include odd powers of the cosines

must vanish by symmetry. Also the expression must be invariant to the exchange

of any 2 a, so terms of the form aa'a must have the same coefficient, for any

permutation of i, j and k. The first term (a + a + a) is always equal to 1. The

next terms (of order 4 and 6) can be manipulated to give:

Ea = Ki(aa + aa + aa) + K2aaa +... (2.2)

K1 and K2 are the anisotropy constants.

It is interesting to note that in the case of a cubic lattice, a K1 > 0 means

that the first term of 2.2 is minimized at the [100] direction, while if K1 < 0 it

does so at [111].
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Iron Nickel

K1

K2

4.8 x 10J/rn3

5 x 103J/m3

4.5 x 104J/rn3

2.34x1031/rn3

TABLE 2.1. Values of K1 and K2 for iron and nickel at room temperature.

Measuring the Magnetic Ariisotropy: The Torque Magnetometer.

The most common apparatus for measuring the MAE is the torque magne-

tometer. Basically it consists of an elastic string used to suspend a sample of the

material between the poles of a rotatable magnet. When a magnetic field is ap-

plied to the specimen, it tends to rotate to align its internal magnetization with

the external field, and the torque can be measured if the elastic constant of the

string is known. If we rotate the magnet, the torque can be measured as a function

of the crystallographic directions of the sample. This is called the magnetic torque

curve, from which we can deduce the magnetic anisotropy energy.

The torque exerted by a unit volume of the specimen is

OEa
T = (2.3)

where is the angle of deflection of the sample due to the internal magnetization

measured irì the plane of the specimen. If we confine the magnetization to the

(001) plane in a cubic crystal, we can write a1 = cosç, a2 = sinç and a3 = 0.

Then the first term of 2.2 becomes:

Ea = K1 fl2 2 (2.4)



FIGURE 2.2. Schematic of a Toque Magnetometer.

From 2.3 we have:

T = K1sin4 (2.5)

By comparing the results of the experiment with expression 2.5, we can find a

value for K1. Higher order terms are obtained by means of a Fourier analysis.

Magnetic anisotropy can also be measured by means of ferromagnetic resonance.

The resonance frequency depends on the external magnetic field, which exerts a

torque on the precessing spin system. Since the magnetic anisotropy also causes a

torque on the spin system if it points in a direction other than the easy directions,
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the resonance frequency is expected to depend on the anisotropy. For cubic ani-

sotropy and in the case the magnetization is nearly parallel to the easy direction,

the anisotropy 2.2 can be expressed by:

Ea = K1 [4
1I2 + (1 192)62]

K62 (2.6)

This is equivalent to the presence of a magnetic field Ha (anisotropy field)

parallel to the easy direction. If M8 is the magnetization, E MSHaCOS9 =

A + MsHaO then

H
2K1

a (2.7)

for the < 100 > directions. A similar calculation yields that when the magnetiza-

tion is near parallel to the < 111 > directions,

H
4K1

a
3M

(2.8)

Therefore if the field is rotated from < 100 > to < 111 >, the shift of the

resonance is changed by

= (2.9)

If we find the dependence of the resonance field on the crystallographic direction,

we can easily estimate the value of K1. This method has the advantage of not

only enabling us to measure the anisotropy of very small samples, but also offers

information on the magnitude of the local anisotropy.

2.3. Some theoretical results

In this section we will present the most popular of the models for magnetism,

the Ising model [8], the extension made by Heisen berg, and the Van Vleck appro-

ximation to anisotropy.
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2.3.1. The Ising Model

The Ising model is an attempt to simulate the structure of a ma qnetzc domain'

in a ferromagnetic substance. It's main virtue lies in tile fact that a 2-dimensional

Ising model yields the only non-trivial example of a phase transition that can be

worked out with mathematical rigor.

The system to be considered is an array of N fixed points (lattice sites) that

form an n-dimensional periodic lattice. The geometrical structure is not important

as the model works for all of them. Associated with each site is spin variable Si,

(i 1 . . . N) which can only have values of + 1 or 1. If a spin variable has a

positive value, it is said to have (spin up) and if it is negative, (spin down). For a

given set of numbers {s} the energy of the system is defined to be;

Ej{s} = Jj,jsisj Hs
where the interaction energies J and the external magnetic field H are given

constants.

For simplicity we will only sum over first neighbors in the fist sums, and we

will specialize to the case of isotropic interaction so all the interaction energies are

equal to J. Thus the energy 2.3.1 is simplified to

Ej{s} = Jss Hs (2.10)
(i,j)

If J > 0 then tile model describes ferromagnetism and when J < 0, antiferromag-

netism. In the future we will only consider J> 0.

'A magnetic domain is a group of atoms or molecules that act as a unit. The magne-
tization of a domain is the sum of the magnetic moments of each of its components all
of which are pointing in the same direction.
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2.3.1.1. The 1-dirnensioTial Ismg Model

In the one-dimensional problem we have a chain of N spins, each interacting

only with it's two nearest neighbors and the external field. The energy is then

reduced to:

E1 = Jss1 Hs (2.11)

If we impose periodic boundary conditions, we transform our chain into a ring.

The partition function of this system is;

Q1(H,T) . . exp [E(Jss+i + Hsk)] (2.12)

Following Kramers and Wannier [11], we can express 2.12 in terms of matrices:

Q1(H, T) = . . exp
{

+ H(sk + 5k+1)]
}

(2.13)

We define a 2 x 2 transfer matrix P such that its matrix elements are defined by:

< sPs' >= e15S'++81

and therefore an explicit representation of P is:

(e")P=
I

(2.14)

With these definitions and a bit of operator algebra we arrive to:

Q1(H,T) = <51pNs1 >= TrPA A + (2.15)

where A1 are the eigenvalues of P with A1 A2. Using simple algebra we arrive at

the solution for the two eigenvalues:

= e1 [cosh(iH) + sinh2(H) + e_4] (2.16)
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The Helrnholtz free energy per spin is then given by

A(H,T) = J kTlog [cosh(/H) + fsinh2(H) + e4131] (2.17)

and the magnetization per spin by

M1(H,T) =
sinlì(/311)

sinh2(H) + e-4'

(2.18)

Note that for all T > 0 M1(0,T) = 0 and there is no phase transition. This

result led Ising to believe that this model had no practical application, as it is

known that magnetic materials have a remanent magnetization at M = 0 when

the temperature is below the Curie Temperature

2.8.1.2. The 2-dimensional Problem: The Onsager Solution

In 1944 Onsager solved the two dimensional problem, in the absence of mag-

netic fields. The complete derivation is too long to include in this work but he

concluded that the Helmholtz free energy per spin is:

1
7r

aj(0,T) = log(2cosh2J) -J dlog (i + - 2sin2) (2.19)
2n

where , 2/ cosh 2 coth 25.

If we define the Curie Temperature T such that

2tanh2. = 1
kT

then kT = (2.269185)]. At this temperature all the thermodynamic functions

that are calculated from 2.19 have a singularity of some kind. If we examine the

spontaneous magnetization, calculated as the derivative of the free energy with
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FIGURE 2.3. Spontaneous magnetization in the two dimensional Ising model.

respect to H at H = 0 [15]:

0 ifT>T,
rri(0,T)

1

(2.20)

{i [sinh(2/3J)]_4}8 if T < T.

where =

This shows that at T = Tc there is indeed a phase transition: As T - Tc,

1 [sinh(213J)]4 -* 0 and rn1 -p 0 as [i3 !3C]8. So we conclude that the

critical exponent 3 = . Other critical exponents for this model, as well as for

the 3 dimensional model(not yet solved analytically) and for the Heisenberg model

(2.3.2) can be found in table 2.2

In table 2.2 we present the values for the 6 critical exponents calculated using

the 2 models discussed. The Ising model in 3D was solved using Monte Carlo [22]

and the Heisenberg model, using a high-T expansion.
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Related
Variables [5]

Isirg
(d = 2)

Ising
(d = 3) [22]

Heisenberg
(d = 3)

C(T) specific heat 0 (log) 0.119 + .006 -0.08 + .04

M(T) magnetization 1/8 0.326 + .004 0.38 + .03

(T) susceptibility 7/4 1.239 + .003 1.38 + .02

S B(M) external field 15 4.8 ± .05 4.63 + .29

G(R) correlation function 1/4 0.024 + .007 0.07 ± .06
ii (T) correlation length 1 0.627 + .002 0.715 + .02

TABLE 2.2. Critical exponents for the Ising and Heisenberg models.

4He (2D) Fe Ni

c -0.014 ± .016 -0.03 ± .12 -0.04 + .12
0.34 ± .01 0.37 + .01 0.358 + .003

y 1.33 + .03 1.33 + .015 1.33 + .02

5 3.95 ± .15 4.3 + .1 4.29 + .05
ii 0.021 + .05 0.07 + .04 0.04 1 + .01

v 0.672 ± .001 0.69 ± .02 0.64 ± .1

TABLE 2.3. Critical exponents (Experimental results).

p.3.2. The Classical Heisenberg Model

In the Ising model the magnetic dipoles can only point in two directions: up

and down. But if they are allowed greater flexibility of orientations, we obtain

qualitatively different results. In the classical Heisenberg model the dipoles can

point in any direction. They are in fact 3 dimensional classical spins, s. The

energy for this model is the same as that of Ising, with the difference that now we

have vector products instead of simple scalar products:
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= Hs (2.21)

(i,j) i

where we have assumed nearest neighbors interactions and isotropy of interactions.

There are no theoretical results yet for this model, but it has been studied

using Monte Carlo calculations by several authors [22], [7], and there are results

using mean field theory and renormalization theory. For two dimensional lattices

Mermin and Wagner [21] showed that, for the Heisenberg model, there is no sponta-

neous magnetization at T> 0. Therefore there is no Curie temperature, although

the possibility of other types of singularities is not excluded. For three dimen-

sional lattices there is a Curie temperature, but the low-temperature behavior is

radically different from that of the Ising model (Ashcroft and Mermin [2]). There

are no small localized perturbations from the ground state and the changes in

spontaneous magnetization and heat capacity from their zero-temperature values

are proportional to T. At T < T there is a divergence in the magnetic suscep-

tibility as H -p 0. In this model the low-temperature heat capacity has the form

NkB + aT, where a is a constant. Results for the high temperature expansions like

the linked-cluster or the connected-graph methods are presented in the table 2.2.

These methods and other High T series are explained in [6].

Tables 2.2 and 2.3 (see [7] for a complete list of references) show the values

obtained for the critical exponents obtained theoretically for a two-dimensional and

three-dimensional Ising models and for the three dimensional Heisenberg model,

and we can compare them to the experimental results in iron, nickel and for a

2 dimensional gas. Nickel and iron are very close (within standard deviation of

each other) to the results for Ising and Heisenberg in three dimensions. For the

definition of the critical exponents and some of their properties, the reader is

directed to APPENDIX A and to [5].
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2.4. Van Vieck Approximation

The forces between the atoms which are responsible for ferroinagnetisin are

the exchange interactions Js s. As these products are clearly invariant under

rotations, this forces cannot lead to anisotropy. To explain the fact that in real life

magnetization depends on the direction, it is necessary to superpose some other

coupling as a perturbation the larger exchange interactions. The first approxima-

tion to this kind of coupling is the dipole-dipole interaction.

If all the dipoles are perfectly parallel, it has been proven that their mutual

dipole energy doesn't give any anisotropy in cubic crystals (see APPENDIX B).

However, when the dipoles are not all mutually parallel, this is no longer true.

In fact Van Vleck [10] has showed that when a perturbation calculation is carried

to the second order, there is a dependance on the direction except in the case of

complete parallelism. This latter case is an ideal one and oniy achieved at T = 0.

If we follow the derivation by Van Vleck we arrive at an interaction term:

11vv = Cj [s . s 3(s )(j si)] + )2( sf (2.22)
i>i i>i

In the first sum, the term Cs1.s3 can be absorbed in the exchange interaction

term. In fact, we can consider this as the first two terms in a Taylor expansion of

the anisotropy interaction in terms of (s s)

ak [(si . s)]k (2.23)
k=1 i>j

Note that this interaction Hamiltonian depends not only on the direction of

the spins, but also on their relative orientations. For simplicity's sake in the rest

of this work we will keep only first neighbor interactions and the first term in the
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sum, hut more terms can be added without making any significative changes to

the algorithms that will be presented. Therefore:

HVI/ = a [(si si)] (2.24)

2.5. Theoretical Results

The equation 2.22 yields several interesting results that can be handled ana-

lytically:

Sign of K1: It can be shown that K1 is negative for a face or body-centered lattice

and positive for a simple cubic lattice, if it is due solely to the dipole-dipole

member of 2.22. This is in agreement with the magnetometer measurements

mentioned in Section 2.2. The dipole-dipole coupling gives a K1 of the proper

sign for Nickel, since the latter has a face centered lattice and negative K1.

For Iron the observed sign does not agree with the dipole model, but that

may be due to the fact that it is probable that iron atoms have a spin close

to unity and thus more terms of the approximation must be used. It is

impossible to estimate a priori which term is larger, so the best that can be

done is to appeal to empirical evidence.

Magnitude of K1: If the constant K1 is due to the dipole-dipole interaction, it

should be of order A4/1OkTh2v2 per atom2, and of order A4/h3v3 if it is due

2A is the spin-orbit constant, Tc is the Curie temperature and ii is a constant of the
order of magnitude of the separation of the energy levels caused by the interaction of
the orbit with the crystalline field. Reasonable estimates are A/he 1Ocm and

kT = lO3crn
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to the quadrupoic-quadrupoic effect. This estimate is of order K1 iU is of

the order of the experimental values from table 2.1. To derive the estimate of

K1, Van Vieck calculated that the constant K1 is of the order C2/lOkTc per

atom if it is due to dipole-dipole interactions. The quantity C is the constant

of proportionality in the first term of 2.22. It should he of the same order

of magnitude A2/hu as the spin-orbit coupling in a molecular state with no

mean angular momentum. If the dipole constant arose primarily from a pure

magnetic interaction rather than from spin-orbit coupling, C would be too

small by a factor of about iO. If K1 is due to the quadrupole-quadrupole

coupling, it should be of the same order of magnitude as -y and 'y is of order

A4/h3ii3.

Temperature dependance of K1: In this regard the Van Vieck model gives

only rough qualitative results. It predicts that the anisotropy should vanish

faster than the magnetization itself as the temperature approaches T, but

the temperature variation is not as drastic as is found experimentally. In the

case of iron, the observed anisotropy varies approximately as near the

Curie point, while the computed values using the approximation are between

J5 and J6. In the case of nickel, K1 is actually over fifty times larger at 17°

than at 293°, whereas Van Vleck's calculations predict very little change in

the magnitude of K1 over this range.

A more complete and detailed description of these results can be found in

reference [10].

In 1954 Zener [17] treated the problem of the anisotropy energy for the ther-

mally perturbed spin system for very low temperatures, assuming local parallelism

in the spin system, and calculated the constant K1(T)/K1(0). He found that the
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temperature dependance of this anisotropy term for iron. He found that

[K'(T)I
1

10

[______

- (2.25)
K1(o)

where 1/ kBT/MwI (wI is the molecular field and M is the dipolar moment of

the atom). This relationship works remarkably well for iron, as Carr [20] showed

for iron. For nickel and cobalt the relationship is quadratic with the temperature,

due to the different crystal lattice configurations.
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3. SOME RESULTS IN T =0.

In this chapter we present a few simple results derived for the case T = 0.

These results will be useful as tests for tile outcome of the simulations that will be

described later.

3.1. The System

We will consider a system that consists of an array of N x N x h spins, where

N >> h to simulate a thin film. Each of these spins has a total magnetization

Si 1 and this magnetization is free to rotate in any direction.

Since N is a finite number and we want to approximate the behavior of a real

film, we will assume 2i+Njk = Sik and .sj+Nk = 8ijk This is what we call periodic

boundary conditions and basically turn a plane into a torus. On the other hand

it is important that we have a surface in the k direction so we simply leave the

boundaries open: SjjN+1 = 0 and so = 0. This is fundamental as otherwise there

is no anisotropy (see APPENDIX B) at zero temperature.

3.2. The T = 0 approximations

Let the temperature T -p 0. In this case all thermal agitation will tend

to vanish and the spins will be frozen in place. If we start from an initial state

with spins aligned, then all the spins in the film will stay aligned, no matter where

the external field is pointing to. In this case the energy can be found exactly.

From equations 2.21 and 2.23, we obtain the total energy per particle. It must be

remembered that to avoid double counting (i, j) must sum over only half of the

nearest neighbors:
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FIGURE 3.1. The system at T = 0.

e=[_JSi.Si_Si.H_a(Si.rii)(rii.Si)]
(3.1)

(ii) i=1 (i,j)

As the spins are all parallel, S2 S for all i. Then the sums simplify in the

following fashion:

J>S, Sj = JN2(3h 1) (3.2)

(i,j)

SH=N2hHS (3.3)

a(S .rj)(rj Si) = aN2(h 1) +aN2cos2(Os) (3.4)

(i,j)

where 6J is the spins azimuth angle.

The last term arises from the fact that the boundary conditions on the surface

are open, as can be seen in APPENDIX B.
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The total energy in the case of parallel spins can be written as:

f(J,a,/i) H S + cos2(Os) (3.5)

where f(J, a, Ii) is a function of the zriternal parameters of the system and of the

number of domains, and doesn't depend on the angle of the spins or the applied

field.

We aim to find the minima of the energy for a given H, as we would like to

see what the ground state of the system looks like, so we take the derivatives with

respect to 9s and

ae H sin(OH) sin(Os) Sifl(s H) (3.6)

If we set this derivative to 0 we deduce s = qii This result is important in itself

as it is telling us that there is no anisotropy effect in the XY plane, as can be

expected from the symmetry of the system. From

ae a= H sin(Os OH) + sin(20s) (3.7)

we get a transcendental equation for Os: sin(2Os) = sin(Os OH). Transcenden-

tal equations can't be solved analytically, but they can still render some interesting

results. For instance we can find a solution for the inverse:

= Os sin1 [ sin(205)] (3.8)

There are two cases that are important: Let's imagine that there is no external

field. The energy is then:

e = f(J, a, h) + cos2(Os) (3.9)

As the energy doesn't depend on it, s is not determined and that means that it

has the freedom of being anywhere in the XY plane. The minimization for 0s gives
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sin 29s = 0. Then 8 = 0, it, maxima or = a minimum. If we recall the

definitions from the previous chapter, we have found the easy and hard directions.

Let us now study the magnetization in the direction of the applied field, and

calculate it's minima.

HS
jH

(3.10)

= cos(OH Os) (3.11)

DMH F 3Ol= sin(OH O) = 0 (3.12)

so we have 2 alternatives: either 0H = Os or = 1 or to express it in terms

of the variables we know = 1 Solving the last equation, we get that

a ir 37r
v5

sin 1 / aWe find that we have extremes for Ojj =

Values of interest are when = ±1 as they are the limits of existence of

the sine. We are also interested in when 0H = ü, it. These values are reached when

H = and this is the field strength of the critical line where we see no more

minima in the range of 9

Note that if H 0 then 0s -p o VOH and that if a -* 0, then O -p °H VOJJ

If we take a look at the energy corresponding to these values of 0s and çb5 as

a function of °H, we observe that it has only one minimum, at ir/2.

If we set H = 0, we can find the easy and hard axis from 3.5, and as we

expected the hard axis is in the direction perpendicular to the film and the easy

axis is in the plane of the film.

As the temperature is 0, there is no entropy contribution to the energy and

therefore the value of MAE obtained from the integration of the magnetization
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FIGURE 3.2. Magnetization in the direction of the field.

curves is identical to the difference of the Helmholtz free energies in the easy and

hard axis measured at saturation.

MAE = (3.13)

We can also calculate the energy in the case when part of the top layer is

missing, forming a step, parallel to the y axis. In this case:

e = f(J, a, N, in, h) H S+

+
N(h + m

[(N 1) COS2(OS) + sin2(0) sin2(&)] (3.14)

We can find the extremal axis by setting the external field to 0 and looking for

the maxima and minima: We find that again the easy axis is parallel to the plane
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FIGURE 3.3. Energy versus a = 0.01 x J.

of the field and the hard is perpendicular to it, but as we now lose the azimuthal

symmetry, the easy axis is also parallel to the step.

aN
MAE=(h_l)N+m (3.15)

Last we can work on two other particular cases:

. When there is one atom in the top layer: In this case the easy

and hard axis don't change (we haven't changed the symmetry) and

MAE = aN2/[N2 (h 1) + 1]
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. When only one atom is missing on the top layer: Again the extremal axis

don't change and MAE = a(N2 1)/[N2h 1]
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FIGURE 3.5. a) Film with a step; b) Film with a single extra spin on top; c)Film
with a hole on the top layer.



28

4. THE MONTE CARLO SIMULATION

4.1. Introduction to Sampling Monte Carlo Methods

A Monte Carlo simulation is an attempt to follow the time dependence of

a model whose change does not follow a rigorous equation of motion, but rather

depends on a series of random events. This sequence of events can be simulated

by a sequence of random numbers generated to that effect. If a second, different

sequence of random numbers is generated, the simulation should yield different

results, although the average values to which it arrives should lie within some

standard deviation of each other. Examples of system frequently solved with Monte

Carlo simulations are the percolation problem in which a lattice is gradually filled

with particles placed randomly; diffusion and random walks, in which the direction

of the next step of a particle is stochastic; diffusion limited aggregation, in which a

particle executes a random walk until it encounters a 'seed' to which it sticks and

the growth of the seed mass is studied when several random walkers are released

simultaneously; etc. Monte Carlo methods are frequently used to estimate the

equilibrium properties of a model, as they calculate the thermal averages of systems

of many interacting particles.

The accuracy of a Monte Carlo estimate depends on how well the phase

space is probed, so the results improve the longer the simulation runs, unlike in

other analytic techniques for which the extension to a better accuracy may be too

difficult.

The range of physical phenomena that can be explored with Monte Carlo

simulations is very broad, as many models can be discretized either naturally

or by approximation: The motion of individual atoms can be examined directly

using random walks. Growth phenomena involving microscopic particles, since the
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masses of colloidal particles are orders of magnitude larger than the atomic masses,

the motion of these particles in liquids can be modelled as a Brownian motion. The

motion of a fluid may be studied considering blocks of fluid as individual particles,

but larger than the actual molecules forming the fluid. Large collections of inter-

acting classical particles are in general well suited to Monte Carlo modelling and

quantum particles can be studied either by transforming the system into a pseudo-

classical model, or by considering the permutation properties independently. Also

polymer growth can be studied as the simplest polymer growth model is just a

random walk.

4.1.1. The Relationship Between Experiment, Theory, and Simulation

Simulations were developed originally to study systems so complex that there

was no solution in a closed form, like the specific behavior of a system during a

phase transition. If a model Hamiltonian is proposed that contains all the essential

physical features, then it's properties can be calculated and compared to the ex-

perimental values. If the simulation doesn't agree with experiment then the theory

can be adjusted until the three elements (theory, experiment, and simulation) are

in agreement. Once the simulation and the experiment yield similar results, the

model can be studied in a detail not possible with experimental techniques, such

as turning off certain parts of the Hamiltonian to investigate their overall effect,

simulating different boundary conditions, etc., yielding a much better understan-

ding of the model used and possibly suggesting new paths of research in both the

theory and the experiment.

Other uses of simulations are to mimic the effects of experiments that cannot

be tested, such as a reaction meltdown or nuclear war, or that the compounds
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FIGURE 4.1. Schematic view of the relationship between theory, simulation and

experiment.

investigated have not yet been found in nature. For instance in models such as

diffusion limited aggregation, there is a very large body of simulation results, but

experimental results are only now being obtained. Also unstable particles with

very short half-life can be studied, etc.

In short Theory, Simulation, and Experiment are the three corners of the

triangle shown in fig. 4.1, all with the same importance and advantages (as well

as disadvantages) and all three are important in the ultimate goal of promoting a

better understanding of Nature.'

'As the Philosopher said: The Creator had many good ideas when he was making the

Universe, but making it easy to understand was not one of them.
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. 1.2. The Monte Carlo Method and Markov Crhains

The Monte Carlo method for minimizing the Gibbs Free Energy involves

an element of chance, hence it's name. Random numbers are used to select the

configurations of the system. To appreciate how this process works, it is useful to

understand first the concept of Markov processes.

A Markov process is a rule for randomly generating a new configuration from

the one present at the moment. The important thing about this rule is that it

should only depend on the present state of the system, and it should not require

knowledge of any previous one. This rule can be expressed as a set of probabilities:

for each state a and a', there is an associated probability, P(a -* a'), that if the

system is now in the state a, it will be at the state a' i n the next step. These

probabilities satisfy the sum rule, which is just the statement that the system will

be somewhere in the next step:

P(a -* a') = 1 (4.1)

We are interested in producing a Markov chain: a sequence of states gene-

rated by a Markov process, in which the frequency of occurrence of the state a is

proportional to the associated Gibbs probability, To do this we need two more

assumptions on the probabilities P(a -* a'):

From a given starting point it must be possible to evolve the system to any

other configuration, by applying the evolution rule a sufficient number of

times.

The transition probabilities satisfy the detailed balance condition:

paP(a -# a') = pa'P(a' a) (4.2)
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One example of a transition probability that obeys these rules for any Gibbs dis-

tribution is P( -*
')

e_E), where E is the energy of the state .

Once we have chosen P, we can construct the probability W(, n) that the

configuration will appear at step ii. of the Markov chain. It can easily be proven

that if

W(cl,rI) Pc

then the W(, n + 1) is also equal to p.

It can also be proven that the difference at step n between the actual pro-

bability distribution of states and the Gibbs distribution decreases as we progress

along the chain.

. 1.3. The Metropolis Algorithm

The most important and most frequently used algorithm to generate Markov

chains is the one developed by Metropolis et al. [16]. The change in the energy of

the system as it goes from state c to c is calculated. If the change is negative,

then the new configuration is automatically accepted. If it is positive, the change

is accepted with probability In other words,

111

if <En,

P(
if Ea' > E.

where A is a normalization constant to insure that equation 4.1 is satisfied. The

detailed balance assumption and the accessibility criterions can be proven to be

satisfied if state a' is obtained from state a in a finite number of steps.

The practical implementation of this algorithm is very simple and straight-

forward, and this is one of the main reasons of it's enduring popularity and success.
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First a new configuration a' is created b some method. Then the energies of both

the old arid the new states is calculated. If the difference is negative then the new

state is accepted. If it is positive a pseudo-random number is generated and used

to accept or reject the move with probabilities given by equation 4.3

4.2. Solving The Ising Model with Monte Carlo

4..1. The Algorithm

The recipe typically used to simulate the time evolution of the Ising model

is the Metropolis algorithm 4.2, described generally in the previous section. The

initial state of the lattice (it could be 1, 2, 3 or ii dimensional) can be chosen to

be ordered, when all the spins point in the same direction, or random, that is, the

spins are chosen to point up or down depending on some random variable. Either

of these initial states has advantages, specially at low temperatures: the ordered

state is convenient when the final state one wants to arrive to is magnetized, and

the random state, when the final state is presumed to have no magnetization.

After the initial state is chosen, the algorithm chooses one spin of the lattice

and calculates the energy change (AE) corresponding to altering the state of this

spin, as well as the Boltzmann factor exp(/3AE). If the Boltzmann factor is

greater than 1 (z\E negative), it means that the new direction of the spin is

favorable from an energy point of view, and the change is accepted. If, on the

other hand, it's less than 1, the change is accepted only if it is larger than some

random number 0 < r < 1. It is in this step where the thermal effects are found.

The next step is to choose another spin and perform the same operation.

The next spin can be chosen either sequentially or randomly. On the average both
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FIGURE 4.2. Flow diagram of the Metropolis algorithm.

methods yield the same results and the user can opt for either of them taking into

account factors like processor time, ease of implementation, etc.

Measurements on the system should be taken between unrelated states, that

means that states should be statistically independent. In other words the second

state shouldn't be obtained from the first via a finite sequence of intermediate

states. This is impossible to do, as the implementation of the algorithm shows,
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FIGURE 4.3. Monte Carlo results for the spontaneous magnetization in the two
dimensional Ising model.

but the states can be rendered pseudo-independent if the sequence of states be-

tween measurements is large enough. If we call a Monte Carlo step the number

of iterations of the procedure equal to the number of sites in the system, the Se-

quence mentioned should be at least an order of magnitude larger than said step

and, depending on the system, two or three orders of magnitude larger.

Another concern when making measurements is that, depending on the tern-

perature, the system may have a considerably long relaxation time in which it goes

from the initial to the final state. This time can be reduced choosing an adequate

initial state, as is mentioned above. This consideration is not too critical for the

Ising model, as the phase space is relatively small. The special measures taken to

minimize the relaxation time for the Heisenberg model will be described in detail

later.
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In the figure 4.3, we have plotted the spontaneous magnetization of a 2-

dimensional square lattice with 100 sites per side, calculated using the algorithm

described above. If we compare it with figure2.3, we can see that they have the

same general shape although, as it is to be expected near a region of critical be-

havior, the computational noise near the critical temperature is quite noticeable.

In fact the agreement with Onsager's solution (shown in a dashed line) is quite

remarkable, and the critical temperature, is between 2J and 2.5J as it was pre-

dicted, even if the algorithm used was quite primitive by today standards and the

lattice quite small.

.2.2. Boundary Conditions and Related Concerns

One of the problems of simulating a system in a computer is how to treat

the edges of the system. There are several options: Periodic boundary conditions

where the system is basically wrapped in a d + 1 torus, free or open boundary

conditions, where the sites on the border of the system are not connected to any

other site (other than the explicit ones), mixed boundary conditions, where in

some direction we have periodic boundary conditions and in the others free, etc.

Periodic boundary conditions: As we mentioned above, periodic boun-

dary conditions wrap the system in a d + 1 torus (d is the dimensionality

of the system). In this case the last spin of each row is bonded to the first

spin in the row as if they were first neighbors. The same is true between the

top and bottom rows. This procedure eliminates all surface effects, but the

system is still characterized by a longitude L, as the maximum correlation

length is L/2 and the results differ from the results on an infinite lattice.
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FIGURE 4.4. Three examples of boundary conditions: periodic, screw-periodic

and open.
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Screw periodic boundary conditions: In this kind of boundary condition

the last spin of each row sees the first spin of the next. The main result is that

a seam is introduced in the system making the system inhomogeneous. In the

limit large number of spins this effect is negligible, but for finite systems there

will be a systematic difference with the periodic boundary conditions. This

type of boundary condition is particularly efficient when simulating systems

with dislocations.

Antiperiodic boundary conditions: These boundary conditions were in-

troduced to simulate systems with vortices. The last spin on each row is

connected with the first one anti-ferromagnetically to produce a geometry in

which vortices can exist. This is a very specialized boundary condition, and

it is only used in a limited number of cases.

Free boundary conditions: When there is no connection between the end

rows and any other row we have open or free boundary conditions. In this

case we introduce some finite size smearing effect as well as surface and corner

effects in the places where we have missing bonds.

Other boundary conditions are possible such as Mean field boundary condi

tions and Hyperspherical boundary conditions and the reader is directed to Landau

and Binder [7] for more information.

4.3. Solving the Heisenberg Model with Monte Carlo

The main difference between the Ising and Heisenberg models is that, while

the Ising spins can take only one of two values, along a single direction, the Heisen-

berg spins can point in any direction. At first sight this would make the attempt
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of solving it using a Metropolis algorithm impossible, as having an infinite set of

possible states clearly violates the first of our assumptions on the probabilities.

But working with real computers ineaiis that we are dealing with finite precision

numbers and this makes the state space finite (albeit very large).

The first of the issues we have to deal with is the generation of random vectors.

Two possibilities are immediately evident: We could generate 3 random numbers

and normalize the resulting vector to 1 or generate only 2 and use them as the

two directions of a spherical unitary vector. The problem with just generating a

cartesian vector is that even if the random number generator has a very uniform

distribution, the vectors will be concentrated in the region where at least 2 of their

components are similar (see fig 4.5). This effect is due to the normalization process,

as the absolute value function doesn't have an uniform distribution. Another

problem with this method is that we have to generate 3 random numbers, and

good generators consume a significant amount of CPU time. The second option

is more efficient, as generating an unitary vector iii spherical coordinates requires

only 2 parameters, but the price we pay is that the vectors are concentrated near

the axis of the parameter sphere, as can be observed in figure 4.5.

An elegant solution for this problem is generating two numbers in mixed

coordinates: 1 < z 1 and 0 2ir. The third parameter p can be easily

obtained from the normalization: p = z2. Then from these numbers we can

easily calculate x and y:

x = p cos

y = psin

This method gives a very uniform distribution of vectors on the surface of the

sphere, as can be seen in the example of figure 4.5. It must be remarked that



in the 3 examples of said figure, the random mimber sequences were exactly the

same, but the resulting distributions are completely different in shape.

A second question that arises from having 3-dimensional unitary vectors is

whether to use a spherical or cartesian notation as the norm for the rest of the

program. While spherical notation is very compact and practical when dealing

with paper and pencil problem (specially when dealing with rotations and figuring

the mean orientation of the sample), using it in a computer algorithm has the

disadvantage that it requires the use of trigonometric functions and these slow

down the operation of the program, in particular when a large number of vectors

must be added together.

. 3.1. Changes Made to Speed the Program

Due to the size of the sampling space the time it takes to the sample to

go from the initial to the final state (relaxation time) turns out to be very long,

specially when we deal with medium to low temperatures 2 One way to deal with

this problem is to choose carefully the initial state so that it is as close as possible

to the final state. There are several ways of ensuring that the algorithm starts from

the ideal initial state. Probably the most popular would be to start every spin in

the direction of the external field, that is start the system in a perfectly magnetized

state. The problem is that we risk locking the system in this state of saturation.

Another possible initial state is to start the system in a random configuration,

with no internal magnetization whatsoever. This is the logical choice when we

2We will consider low temperatures to be at least an order of magnitude smaller than
ambient temperature.
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FIGURE 4.5. Three methods of generating random vectors:(a) Cartesian, (b)
Spherical and (c) Mixed.
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want to study the magnetization curve, but it is not very useful otherwise. Again

we have chosen a mixed approach: In the initialization of the program the spins

are all aligned, pointing in the direction of the easy axis. Then using the Newton

method, we minimize the energy for a given to the direction of the magnetization.

Because of the competition between the anisotropy term and the field term, the

minimum energy direction will can be in between the easy axis and the direction

of the external field. This gives a good starting point to a first run of the program

where we let the system evolve for a considerable period of time, randomizing the

sample. After this long relaxation time, we use the state we arrived to as the initial

state for the next run of the algorithm. Subsequent measurements use the final

state of the system, after a run through the minimization algorithm, as the initial

state.

Another difficulty that presents itself in the systems we will consider is the

relative size of the terms in the Hamiltonian. If we examine the values found in

nature for iron (see table 4.1), we will notice that J>j) SS3 is the dominant

term, and is at least 4 orders of magnitude larger than the anisotropy term. This

produces a separation of the time scales of the evolution of the Hamiltonian, one

for the main term, an another for the anisotropy term. Fortunately the fast term

is invariant under rotations, so the Newton minimization only takes the anisotropy

and the external field into consideration. For this reason we accelerate the conver-

gence of the system by minimizing the energy before each main Monte Carlo step.

If R is the operator that rotates a vector,
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R R' R(si.sj)R1

\ (i,j) /
= (RsR') . (RsR')

(i,j)

As the recipe for the calculation of the partition function, and hence to the

determination of the temperature dependance of the system calls for the integration

of the energy over all possible orientations, it is clear that a rigid rotation of the

spins will not affect the final result. Therefore when we minimize the energy by

rotating the spins we will only feel the influence of the anisotropy term. This will

in turn accelerate the convergence of the algorithm and will insure that the effect

of the Van Vleck term will be taken into account, regardless of the difference of

relative sizes between it and the main exchange term, that would otherwise be

reflected in different time scales for their respective convergence.

In figure 4.6 we show the dependance of the energy with the angle of the

magnetization. We must notice that for the T = 0 there is a maximum at 9 = 0

and a minimum at 0 = 7r/2 corresponding to the easy and hard axis. It can be

seen that as the temperature increases these extremum change their position. Also

the difference in energy between the maximum and the minimum decreases with

growing temperature, so we must be careful when minimizing the energy, not to

reach false minima.

To reduce even more the time it takes to the system to arrive to a steady

state, we use a method suggested by Landau in a personal communication. We

need to maximize the number of accepted transitions to help the system evolve

faster. One way to do this would be raising the temperature, thus increasing the
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TABLE 4.1. Magnitude of the different components of the Heisenberg Hamilto-
nian.

thermal excitation, but one of the goals of this work is to study the temperature

dependence of the MAE, and this would defeat the purpose. Instead we realize

that if the difference IS2 S is small, the change in energy will also be small, and

therefore more likely to be accepted as a valid transition, even if it doesn't lead

to a decrease in the total energy of the system. To exploit this fact we can limit

the angle of rotation between the old and new vectors. We present an example in

figure 4.7 (for simplicity's sake we use an initial vector in the Z direction, but any
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orientation is possible). In a normal situation the final state vector S will he in

any position in the sphere of radius 1, as is shown in figure 4.7 (a), and the angle

'y will have values between 0 and ir. Therefore the maximum value of S S is

2. If we limit the angle '' between the vectors, as in figure 4.7 (b), the maximum

difference will be smaller. In the example we have limited the angle to the interval

[0, 7r/2] and so the maximum difference is obtained with spin S' and will be equal

to but any limit angle is possible, although the selection must be careful, as

too small a limit will make the program to adapt to large deflections.

Other Points of Interest

Two more modifications were made to the standard Metropolis algorithm:

one subroutine to find the technical saturation point and another to find the prin-

cipal axis of symmetry.

It is easy to explain the need to find the easy and hard axis every time the

sample changes. A priori no assumption can be made regarding their direction,

although it is evident that the easy axis is in the plane of the sample and the

hard direction is perpendicular to it. On the other hand when the defects start

accumulating on the top layer of the system, we can't assume that they will stay

in the same place as the symmetry is broken in a random manner.

While the saturation point at zero temperature can be found exactly, we have

to be more creative when the temperature rises. One option is to choose an ad

hoc saturation field so large that we can insure that the saturation condition has

been reached. This approach has two disadvantages. First is that we lose a lot of

definition on the magnetization curves as we pretty much know that most of the
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coinputatioiial effort will be wasted in regions of the curves with no interest to the

calculation. Second is that entropy related effects will not be taken into account.

To solve this we opted for a bisection type scheme to find the place where

the two curves are reasonably close (a percentage of the maximum magnetization).

This approach is conveniently fast as we only take 10 iterations (more would be

redundant) to reach a satisfactory precision on the saturation point.

.3.3. Changes Made to Accommodate Defects

One last set of modifications were made to the classical Metropolis algorithm,

and it was the capability to add defects or holes to the sample in any position. This

was accomplished simply defining a logical array that declared if each position was

occupied or not. If the position was empty, the length of the spin was set to zero,

but no other action was taken. It is notable that this approach can also be useful

if we want to deal with substitutional defects, as when certain atoms are replaced

with impurities, just by setting the length to a number different than 0 and 1.
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5. MONTE CARLO TESTS

In this chapter we will describe some of the tests performed to insure that

the simulation performs adequately. These tests include tests to the program itself

and to the model. The results from Chapter 3 are used primarily as a basis of

comparison.

5.1. Testing Stability

The first test we performed was regarding the number of Monte Carlo steps

needed to achieve a stationary solution, and how limiting the angle of rotation

influenced this number.

As mentioned in Chapter 4 the system needs some time to evolve from its

initial state to the final or stationary state, which will be defined as a state that

is invariant in time, within some standard deviation. It is clear that, due to the

thermal excitation of the system, there will be fluctuations even in a stationary

state. Therefore it is not practical to expect any final state to be perfectly constant.

To solve this problem the program must calculate the value of some parameter of

the system (usually the total energy), and average it over a number of steps. As

the system approaches the steady state, the mean value will tend to a constant

and the standard deviation will be of the order of the thermal excitation.

In practice the easiest way to insure a steady state is to find the worst case

scenario (for instance when the thermal excitation is very small) and find appro-

ximately the number of steps until it reaches the final state. This number is then

used for every other calculation.

In the figure 5.1 we depict a run of the algorithm for a very low temperature

(in fact the lowest temperature used in this work). The total energy was calculated
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FIGURE 5.1. Energy vs. Time for different values of the limit £.

for every step and it is shown versus the step number. This number is congruent

with time, and can be interpreted as such. As we mentioned in section 4.3.1, the

maximum angle of deflection for individual spins during a step was limited:

< , where £ is a number between 0 and 2. This was accomplished

generating vectors and testing the difference against the existing spin. Although

this seems to be inefficient, it is the only way of incorporating the factor £ without

losing the uniformity of the spin distribution. Also shown in figure 5.1 is the energy

vs. time curve depicted for several values of the constant £.

As can be easily perceived, the smaller the limit £ is, the sooner the steady

state is achieved. There is however another factor that should be considered. While

many more changes are accepted by the Monte Carlo part of the algorithm, a large

number of possible vectors are rejected by the limiting part. As the generation of
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these random vectors consumes a significant amount of CPU time, the overall effect

is that the same number of Monte Carlo steps take longer to complete, the smaller

£ is (see figure 5.2). The average number of discarded vectors is easy to estimate

if we realize that it is proportional to the relative surfaces of the sphere and the

segment of sphere described by the limit . This ratio has a very simple expression:

N 4/2. Therefore it is a balancing act to find a limit that insures the arrival to

a steady state without rendering the process too slow to be practical.

5.2. How Reliable is it to Take Just One Example of Random Coverage?

The energy of the system depends mostly in the number of bonds between

the spins. Each spin on the bulk of the material has 6 bonds (nearest neighbors)

and those on the surface only 5. This missing bond is the one responsible for
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the existence of the irìagnetocrystalline ailisotropy as was shown iii APPENDIX

B. Therefore when more bonds are missing, as is the case when we have holes or

defects, the MAE will be a function of the average number of nearest neighbors

present. This was discussed by Taniguchi [19] who using Van Vieck's hamiltonian,

found that the anisotropy constant is a function of n2, the density of spins. This

result has a direct influence in our problem as, in random configurations of spins

on the top layer, the density does not change even if the particular distribution

does. This was further verified experimentally as is described in section 6.3

5.3. Comparison to T = 0 Results

One of the first tests of our program was to see how similar to the T = 0

results, were the ones obtained for very low temperatures. We chose for this test a

temperature of kBT J/1000 and we calculated the magnetization in the direction

of the field and the energy, both graphed versus the angle of the applied field, to

compare them with their counterparts (figs 3.2 and 3.3) from chapter 3. We found

that the shapes of the curves were remarkably similar, reproducing most of the

characteristics of the T = 0 graphs.

Also it is important to note that the values of MAE tend to the predicted

T = 0 values predicted when the temperature T -f 0 as can be seen in fig 6.10.

This behavior was also verified in the case of one atom on the top layer and in the

case of a single hole. The results are presented in figure 6.9, where the energies are

measured as multiples of the MAE at 0 temperature, to make visualization easier.
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5.4. Critical Behavior

As a further test to the model we calculated the Magnetization vs. Tempe-

rature curve at 0 external field. The shape of this curve is perfectly congruent to

the existence of a phase transition from ferromagnetism to paramagnetism, as well

as the existence of a Curie temperature. However no critical exponents can be

calculated as it would have required further modifications to the program, slowing

it even more (see [7]). As an effect of the finite size of the sample, Monte Carlo

sampling of response functions systematically underestimates them. This effect

comes from a result in probability theory that in estimating the variance s2 of a

probability distribution using n independent samples, the expectation value E(s2)

of the variance is systematically lower than the true variance a2 of the distribution,

by a factor (1 1/n). The corrections necessary for an accurate prediction of the
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critical exponents and temperatures would require the calculation of correlation

times for each system and for several sizes of each of them, significantly slowing

down the acquisition of data, although this might be an interesting line of research

for the future.
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6. RESULTS OBTAINED WITH THE CODE DEVELOPED.

6.1. Critical Behavior

Even though the critical exponents cannot be calculated from the data ob-

tamed by our Monte Carlo simulation, some conclusions can be drawn:

Looking at figure 6.1 it is remarkable how similar in shape it is to experimental

measurements of the remanent magnetization. All the characteristic of a real

material are present, even the measurement noise near the critical temperature.

If we try to fit a power law to the points near the critical temperature, we

arrive to the expression that (near T)

m 1.09 x 1.21 T154 (6.1)

This value of 3 = 0.54 is more than 40% larger than the one that can be found in

table 2.2, but is at least of the same order of magnitude, which is the best we can ask

if we take into account that the code was not optimized for the calculation of critical

exponents. The critical temperature calculated from this data is kT = 1.20803

while according to Weiss [13] ke = 1.85 for a simple cubic system.

Another conclusion that can be drawn is that the critical temperature in-

creases with the anisotropy parameter, as can be seen in figure 6.2, but the actual

dependence was not investigated any further.

6.2. Magneto-Crystalline Anisotropy Energy in the Case of a Complete
Top Layer

To have an idea of the behavior of the thin film, we calculated the change in

Magneto-crystalline anisotropy energy as a function of the temperature. This be-

havior can be seen in figure 6.3 and in figure 6.4, a detail at very low temperatures.
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It can be appreciated that the MAE depends mostly linearly on the temperature,

at least in the low temperature range and that it is mostly quadratic for the rest of

the calculated range. We should remark that this behavior is congruent with the

described by Carr [20], where for low temperatures the anisotropy energy increases

linearly.

In the case that no external fields are present, the spins lay in the average,

along the direction of the easy axis; this behavior is not significantly changed by

increasing the temperature as without the external field to break the symmetry

all sites are fundamentally equivalent. Vedmedenko [23] studied the magnetic mi-

crostructure of a monolayer of classical magnetic moments on a triangular lattice of

about 10000 magnetic spins and with open boundary conditions. The Hamiltonian

used was similar to ours, but included two extra terms K1 sin2 9 ± K2 sin4 0.
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FIGURE 6.2. Zero field magnetization versus temperature for different values of
the anisotropy parameter.

In this configuration exhibits a magnetic microstructure that is not present in our

case. This microstructure depends on the constants K1 and K2 and it is shown

that the domain walls broaden in the case K1, K2 -* 0. It is then reasonable to

assume that when the Hamiltonian is reduced to the one we used, that no walls

would be present and that the structure would be similar to ours.

In fig 6.5 we show the behavior of the anisotropy energy as a function of the

remanent magnetization of the sample. It can be seen that MAE depends quadra-

tically with the magnetization. This result can be understood if we consider that

in the range of temperatures considered (well below the Curie temperature) the

behavior of the magnetization is linear and the MAE is quadratic. From this result

we can draw the inference that the saturation field is also linear with the tempe-

rature. This can be derived by considering the MAE as being roughly the area of
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FIGURE 6.3. Magnetic anisotropy energy versus temperature (complete top
layer).

a right triangle with sides given by the saturation field and the magnetization of

the sample. As the saturation magnetization is about. equal to the remanent mag-

netization along the easy axis, MAE Hs x (MR)/2 o T and we con conclude

that

Hs x T (6.2)

This conclusion seems to be confirmed by the simulation data, but we have no

hard evidence to that effect.

6.3. Magneto-Crystalline Anisotropy Energy Calculations when the Top
Surface is Incomplete

The first result that we noticed was that the direction of the easy and hard

axis does not change with respect to the directions calculated for the complete top
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layer, no matter where the defects were located. The spins will still point along the

same direction if no external fields are present. This is due to the predominance of

the bulk material over the influence of the top surface. The oniy effect we notice

would be to make the easy axis a bit less "easy", making pulling the spins out of

the plane a bit easier. This is then the reason for the smaller magneto-crystalline

anisotropy energy observed, and it dependance with the number of atoms on the

top layer.

The next step we took was to make sure that there was an equivalence be-

tween different random configurations. We did this for 2 different temperatures

and coverages. We found that the MAE didn't change significantly and that the

standard deviation was smaller than the error derived from the thermal agitation.

In the figures 6.6 and 6.7 we show the behavior of the MAE when we change the

position of spins on the top layer. We took measurements for 20 different configu-
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FIGURE 6.5. Magnetic anisotropy energy versus remanent magnetization (com-
plete top layer).

rations and averaged the resulting energies. Two coverages were considered, 80%

and 20% 6.8 and 2 different temperatures. In the case when the surface coverage

was of 80%, the standard deviation of the mean was between .07 and .25% of the

average value, significantly lower then the error due to the thermal excitation. This

error is of about 4.3% for T = .01, arid grows with temperature, as is expected

from thermal excitations, so we can safely say that there is no need to calculate

the energies for different random patterns and that only one sample will suffice.

This step verifies that the magneto-crystalline energy depends primarily on

the average number of nearest neighbors the spins on the top layer have, and not in

the particular positions. However it should be noted that these calculations were

performed when the spins on the top layer were deposited in a random manner.

The behavior changes when the atoms are arranged regularly. It is evident that
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FIGURE 6.6. Behavior of the energy under changes in the random coverage of
the top layer (T = 0.01).

in the case when the coverage is less than 50% , there are configurations where

the spins have only one neighbor, the one on the bottom layer. Other types of

ordering will also change the average number of bonds, such as when all the spins

are grouped in one section of the layer, or forming particular distributions, such

as ridges or other regular coverages. In these cases it is expected that the MAE

will depart from Taniguchi's result [19], and this is verified in the case of a regular

distribution, although these changes are still within the expected error due to the

temperature.

To verify the computations of MAE in the case where we have only one site

occupied or only one site missing in the top layer, we performed a computation

of MAE versus temperature for both cases. The results are shown in figure 6.9,

where the energies are expressed in units of MAE(T = 0), to avoid the differences
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FIGURE 6.7. Behavior of the energy under changes in the random coverage of
the top layer (T = 0.05).

that are solely the result of a different number of complete layers in the system. A.s

can be seen the MAE neatly converges to its T 0 result confirming the validity

of our assumptions. The results of chapter 3 were also verified for the case when a

significant portion of the surface was missing. These results, shown in figure 6.10,

show that the energies calculated at T = 0 by means of our approximation, are

consistent with the Monte Carlo results to a very good degree.

An examination of figures 6.11 and 6.12 leads to the conclusion that, as it is

to he expected, the magneto-crystalline anisotropy energy grows as a function of

the portion of the surface that is missing, as can be expected. These results are

also confirmed in figures 6.13 and 6.14. Here the Magneto-crystalline anisotropy

energy was calculated as a function of the ratio defects to spins on the top layer.

The results agree with the predictions made for the 0 temperature case where the
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FIGURE 6.8. Behavior of the energy under changes in the random coverage of
the top layer with a 20% coverage (T = 0.01).

MAE was inversely proportional to this ratio. In the limit of very low temperatures

the values predicted are also congruent with those found by the simulation.

We have found no adequate explanation for the noticeable steps that can be

seen in those graphs. Our estimate is that they originate in the determination of

the saturation point and that if we estimated it with better precision they would

disappear. Another possibility is that there is a flaw in the integration subroutines,

needing more data points for a better approximation of the energies1. The overall

shape of the curves would tend to agree with the predicted results for 0-temperature

1We discovered after all the data for these graphs was collected that there was a small
systematic error in the calculation of the energy integrals. However this did no change
the fundamental shape of the curves, adding only a constant number to all the results.
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FIGURE 6.9. Magnetic anisotropy for the case where there is a single hole or spin
on the top layer.

that, as can be seen in Chapter 3 is of the form:

MAE O(
1

(6.3)
Ax+B

where A and B depend on the dimensions of the sample and, possibly, on the

temperature.

It has been shown that the anisotropy field (and hence the magneto-crystalline

anisotropy in thin Co-Ni-Fe-N films increases with decreasing film thickness (see

Kim et al [24]. Although they present no results for fractional thickness, that is

when the top layer is increasing so that the thickness of the film increases from h

to h + 1 layers, their result seems to verify the behavior we see in this case. The

same result was presented by Bottoni [25], but for Co Cr Pt Ta/Cr V thin films.

The reader can also verify this experimental result in the study Wang et al [26]

U
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FIGURE 6.10. MAE vs. Temperature for different coverages of the top layer.

made of La088 Sr01 Mn 03 films. In a study of films ranging from a thickness

of iOoA (ultra thin) to 2500A they found a remarkable increase of the anisotropy

energy, that also verifies the notion that a fractional increase on the number of

layers should reduce the magneto-crystalline energy.
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FIGURE 6.13. Magnetic anisotropy energy as a function of the missing lines.
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7. DISCUSSION, CONCLUSIONS AND FUTURE DIRECTION OF
DEVELOPMENT

7.1. Discussion

In this chapter we will discuss the meaning of the results shown in Chapter 6.

The first important outcome of our research is the fact that the Curie Tem-

perature of the film rises as the anisotropy constant increases, even if we couldn't

find the exact functional form of this dependance. We have not found this result

in the literature but we expect it to be of importance for the development of new

magnetic materials.

Then we noticed the quadratic dependance of the MAE on the temperature

and on the rernanent magnetization. In this aspect we extend the result derived by

Carr [20] who predicted that, at low temperatures, the temperature dependance

of the MAE should be linear. This is indeed true for our system too but as we get

closer to the Curie temperature, the functional relationship tends more an more

to a parabola. This would indicate that the magnetic anisotropy is still present at

higher temperatures than expected by previous calculations. Another conclusion

that can be derived is that the technical saturation field is also proportional to the

temperature.

The reason we didn't find any evidence of the existence of domains is twofold.

First we have to remember that the system is not large enough to really develop

them, and a larger sample must be explored. Also the periodic boundary condi-

tions on the XY preclude the existence of any domains, as there is translational

symmetry and therefore, as any site must be equivalent to any other, the spins are

on the average parallel.
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When the top layer was incomplete we verified the results that state that

the particular disposition of the atoms shouldn't influence the calculation of the

anisotropy energy. This result due to Taniguchi [19], was obtained for the case of a

single layer of spins of two different classes, hut it is applicable here if we consider

one of the atom classes to have no magnetic moment. We determined that the

difference between configurations is smaller than the thermal excitation error and

hence too small to matter.

We also verified our own calculations regarding the anisotropy energy for the

cases of a hole, a single atom and a step. In all these cases, the magneto-crystalline

anisotropy tends to the correct value when the temperature tends to zero. That

means that the spins tend to be aligned as the temperature decreases, as is to be

expected, and as we presumed for the zero temperature calculations. These results

were also verified for the calculation of the parallel magnetization (M1 = M. ft)

where we see the same kind of behavior we observed for zero temperature, with

minima appearing at the correct values if the applied field was above a certain

limit, determined by our equations.

Also we determined that the MAE grows as a function of the coverage of the

top layer as our 0-temperature results predicted. For very low temperatures the

simulation results are also consistent with the theory and confirm our assumptions.

These results were obtained for the case where the disposition of the atoms was

random and where they were ordered. As was expected there was a very small

difference between them, although it is noticeable. This would support the hy-

pothesis that a film with more surface defects is more anisotropic and would aid

in the development of materials with higher anisotropy.
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7.2. Conclusions

We have successfully developed the code for the treatment of thin films with

defects and for the computation of the Magneto-crystalline Anisotropy Energy,

using the Classical Heisenberg model with a Van Vieck anisotropy perturbation.

The critical behavior of the model is consistent with that of real materials,

and it is shown that the critical temperature and exponent increases with the

anisotropy parameter of the Hamiltonian, although this couldn't be quantified

precisely, due to the poor precision of the Monte Carlo results near the critical

point. As was mentioned before, the program itself should be modified extensively

before more accurate computations of these parameters can be made.

The MAE is shown to be dependant on the temperature and the T = 0 model,

proposed in chapter 3, has been proven correct to a very good measure. Also it

has been shown that it depends on the number of missing sites on the top layer,

not in the particular disposition of said sites, except for the case when they are

all grouped together, as the average distance is minimized in that case and that

predisposes the system to a different kind of ordering on the surface.

7.3. Expected Direction of Future Development.

In this section we will discuss some of the possible directions that research

using the algorithm and code developed in this work may take.

7.8.1. Parallel Computations

One of the ways of making the algorithm run significantly faster is to modify

it to work in a cluster of parallel computers. This will have the advantage of
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making larger system viable in terms of memory and speed. As it is now it takes

an average of 8 hours to obtain one single measurement of the magneto-crystalline

anisotropy energy, for a system of 15000 spins. It is logical to expect this time to

be significantly reduced if instead of one workstation the load is distributed among

a set of 4 or 16 working in parallel, each taking up a portion of the work.

7.3.2. 2nd Neighbors and Other Terms in the Harniltonian

As was mentioned for simplicity reasons we only included nearest neighbor

interaction and only the first term in the Van Vleck multipole expansion. An

easy way to obtain more accurate results is to add the second nearest neighbors

to the energy expression. The disadvantage of this approach is the inclusion of

more external parameters and making the process somewhat more involved. But

the benefit would be seen when we treat samples with a very sparsely populated

upper layer, as there would be a better chance that some interaction will be seen

between the sites that are occupied.

Before adding any more terms to the Hamiltonian the program should be

modified a bit. We have used a layer of vacancies to simulate the open boundary

condition on the Z axis, for reasons of convenience. But if we are to consider

interactions of longer range, then this is not enough of a buffer to avoid undesirable

interactions between the top and bottom layers. Therefore it will be required to

make the open boundary condition more explicit in the future.

To add more terms of the multipole expansion one has to remember that they

decay in magnitude as powers of the interatomic distance, so it may be necessary

to take a longer evolution time to see their actual effect on the calculated energies.

This may prove to be too much for the program, as the other terms are orders
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of magnitude larger and it is possible that the influence of these perturbations is

smaller than the numeric capabilities of the average computer.

7.8.8. Roughness

One interesting topic to research is that of the dependance of the magneto-

crystalline anisotropy energy with the surface roughness. We can define the rough-

ness parameter as being proportional to the number of ridges on the surface and

inversely proportional to the surface covered. As is shown in figure 7.1 for the

same coverage there can be different ways of covering the surface, and vice-versa.

A preliminary calculation (not shown) indicates that the MAE would increase

with the number of ridges (for constant surface coverage), but more work should

be dedicated to this topic before advancing any conclusions.

7.3.4. Substitutions

In all previous chapters the only defects considered were empty sites, or holes,

in the top layer (surface) of the film. After the modifications suggested in sec-

tion 7.3.2 it will be possible to treat substitutions, that is spins whose absolute

values are not 1 or 0, without much trouble. The main difference will be that the

matrix def (see APPENDIX C) will point to spins of some absolute value different

from 0 (hole) or 1.

7.8.5. Other Geometries

Apart from the simple cubic geometry used for this work, other crystal ge-

ometries are possible, just by a judicious definition of the defects matrix def
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FIGURE 7.1. Surface roughness as a function of the number of ridges and the
area.
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cubic

fcc

bcc

FIGURE 7.2. From simple cubic crystals to FCC and BCC.

(see APPENDIX C). We can characterize each site of the lattice by 3 integer

numbers that denote its position in the (X, Y, Z) directions. Let's call these num-

bers (7111, rn, m3). If we mark as defects the ones in which in1 + in2 + 7713 is odd

we obtain an fcc crystal. The bcc crystal is a bit more complicated. First we have

to eliminate all sites that have at least one of in1, in2 or 1713 even. Then for all of

the remaining sites we have to add the one that is directly diagonal to it. What

we have done basically is to consider a cubic lattice with a basis, a common way

of viewing bcc latices.
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APPENDIX



APPENDIX A. Notes regarding critical exponents.

We will briefly discuss phase transitions and their relationship to critical

exponents.

We say that a system has had a phase transition when it undergoes a pre-

cipitous change in one or more of it's properties. The classical example is water

that solidifies at 273.15°I< and boils at 373. 15°K'. These are examples of first order

phase transitions, as the initial and final states are distinct, occur at separate re-

gions of the thermodynamic configuration space and involve latent heat. In many

first order transitions, such as the water-vapor transition, there is a region in which,

if the parameters are just right, the latent heat vanishes. These values define the

Critical point. For example, for the water-vapor transition Pc = O.0323g cm3,

= 647°K. At T> T the water and the vapor cease to be separate entities. and

the phase transition ceases to be of first order.

In a second order or continnons phase transition, the transition occurs be-

tween contiguous states in the thermodynamic configuration space. These phase

transitions don't involve latent heat and are characterized by order parameters,

thermodynamic quantities that exhibit divergent fluctuations. An example of this

kind of transition is the ferromagnetic-paramagnetic transition that occurs at the

Curie Temperature, Tc (T = 1043°K for iron).

'These temperatures are measured at a pressure of one standard atmosphere
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Al. Critical Exponents

The vanishing of the latent heat does not ensure that the specific heat changes

as a smooth function of the temperature or that it is even finite. In fact it often

diverges in the neighborhood of Te as c ' TCHa. This number , that

characterizes this part of the phase transition is called a critical exponent, and

is one of a set of such exponents that describe the singular behavior of some

interesting quantities in a continuous transition.

As a matter of fact c can be defined in a more mathematically precise manner:

Let be the lowest derivative of c that diverges as a power of T L.l in the

limit T -f T, and let it diverge as T_k, then = k n.

Other thermodynamic quantities diverge at a continuous phase transition:

For example in a ferromagnetic-paramagnetic transition the susceptibility XT

am/3B (T T) and m0 tends to zero as m0 (T T). At T itself, m

becomes proportional to a power of B specifically m '-i Bh/o. All these quantities

have parallels in the liquid-vapor transition and indeed , 'y and 5 are all critical

exponents.

A.2. The order parameter

We will define the order parameter,, as a quantity whose thermal average on

one side of the phase transition vanishes and moves away from zero on the other

side.

The order parameter may fluctuate on both sides of the phase transition, but

we are only interested in its thermal average, that is it's value is averaged over a

long period of equilibrium at constant temperature.
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For example in a liquid-gas transition we will commonly use as the order

parameter the difference (x) = p(x) pgas(X). Above T the order parameter

fluctuates around zero, but below it fluctuates around a positive number. In a

ferromagnetic-parainagnetic transition, the most adequate order parameter is the

instantaneous mean magnetization in a small region near x. Thus the order pa-

rameter is now a vector field instead of a simple function.

A.S. Correlation functions

We define the two-point correlation function as the thermal average of the

product of the order parameters evaluated at those two points.

= ((x)(y)) (Al)

In general the two-point correlation function often depends only on the dif-

ference x y, so it is customary to write it as:

= ((0)(r)) (A2)

where r = x y.

As well below L G2 becomes large for all values of the argument (due

to the increased correlation length) we define the connected two-point correlation

function:

= ((0)çb(r)) (A3)

Above T () is zero so C is identical to C2 and both measure the degree

of coordination of the order parameter at different points. Below T C reflects

only the fluctuations in the order parameter.
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Experiments show that for r 0, C2(r) is small for both small and large

T/TC. Furthermore, when T T and if r is large compared with intermolecular

distances, we can write it in an asymptotic form:

1G2(r)
rd_2+?1

(A4)

where d is the dimnensionality of the system and ij is another critical exponent.

Away from T we have

C2(r) exp(r/) (A5)

for r large and 0 TC/TC < 1. The characteristic length is called the

correlation length. The correlation length diverges as the system approaches T

and it has been found empirically that:

ITTi (A6)

where i is yet another critical exponent.

A.4. Universality

It is surprising that systems as different as the liquid-gas transition and the

ferromagnetic-paramagnetic transition have critical exponents that are identical

within experimental error. This phenomenon, where very dissimilar systems ex-

hibit the same critical exponents is called universality. One of the chief goals of

the theory of phase transitions is to explain how different systems with very dif-

ferent physics yield the same critical exponents, for there is a paradox here: On

one hand inter-atomic forces are responsible for the existence of phase transitions;

on the other the details of these forces cannot play any role in determining the

critical exponents, since these stay the same when the atoms, and therefore the

interactions between them, change.
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APPENDIX B. Dipole-dipole coupling in the case of periodic boundary
conditions

Let's consider un operator R that rotates a vector a solid angle ft Let us

examine how the different parts of the hamiltonian 2.22 change if we rotate all the

spins by the same solid angle. Furthermore let's suppose that there is no external

field present.

H{s} = J A (s r)(rj s) (Bi)
<i,i> <i,i>

If we look at the first term of the equation, it is evident that

s.s=(Rs).(Rs)

= sR'

= Si Si

it is invariant under rotations. On the other hand we can't say anything about the

second term, except in the case when all the spins are parallel. Then:

(s rj)(r s.) = (s'

if we remember that we are using a simple cubic lattice and summing over nearest

neighbors, then

(s rj)(r s) = [(s)2 + (4)2 + (s)2] = n (B2)
<i,i>

so no matter where the spins are pointing, the result is always the same: the

total number of spins. This is not true if in any direction we have open boundary

conditions as one of the sums will not add to one.
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APPENDIX C. The Program and Subroutines

C. 1. The Main Proqram

In this part of the program all variables are initialized, the main symmetry

axis are found as well as the technical saturation point.

C.1.1. Variables

pi: ir.

ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

ndef: Total number of spins.

jj: Number of missing lines in the upper layer.

co: Logical variable that indicates if there is need of a long thermalization

time or not.

MaPI: Matrix (ndirn x ndim x h x 3) where the spins are stored.

yplane: Four dimensional vector that contains the external parameters (field

and anisotropy constant) when the This matrix will be used when the field

is along the easy axis.

easy: Direction of easy magnetization (9, ç5).

MaPe: Matrix (ndim x ndirn x h x 3) where the spins are stored. This

matrix will be used when the field is along the hard axis. field is along the

easy axis.
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yperp: Four dimensional vector that contains the external parameters (field

and anisotropy constant) when the field is along the hard axis.

. hard: Direction of hard magnetization (0, ).

def: Logical matrix (ndim x ridim x h) that

dd: Auxiliary vector for the definition of the holes. Contains the information

about the presence of a spin or a hole.

T, beta: Temperature; beta = 1/T.

any: Anisotropy constant.

BO: Magnitude of the external field.

BOhigh, BOmed, BOlow: Fields used in the search for the technical satu-

ration field. The field found is stored in BUrned.

X: Initial direction.

mdif: Difference in the magnetization on the easy and hard axis (SM, UAM).

edif: Difference in the energy on the easy and hard axis (AE, aE).

integral: MAE.

m3: Magnetization.

i, j, k, 1, du, point: Counters.

urn, tel, te2, vector: Auxiliary variables
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C. 1.2. Subroutines called

lfllt(fldefects, dd, defects, IVlatrix, X) Initializes a (n x n x h x 3) matrix that

contains all the spins of the system.

Input ndefects. total number of spins.

dd: auxiliary vector that contains the positions of the defects.

X: initial direction of the spins.

Output defects: logical (n x n x h) matrix. If the site is occupied the

corresponding value of the matrix is . true., and . false. if it isn't.

. Matrix: (n x n x h x 3) matrix that contains the spins of the system.

fimin(Matrix, y) Subroutine that finds the minimum of the energy by rotating

all the spins together.

Input Matrix: System matrix.

y: External parameters.

Output Matrix: Minimized (rotated) system matrix

mag(Matrix, m) Calculates the total magnetization (per spin) of the system.

Input Matrix: System matrix

Output m: 3 dimensional vector that contains the total magnetization

per spin of the system.

sph(V) Transforms a cartesian vector into a spherical one.

Input V: Cartesian vector.

Output V: Spherical vector.



func(MatrixE, MatrixH, 1J,, yj, , defects, defects, CO, Am, Ae)

Calculates the difference of energy and magnetization between the

system in the hard axis and the system in the easy axis.

Input MatrixE: System matrix in the easy axis.

MatrixH: System matrix in the hard axis.

YE: External parameters in the easy axis.

YH: External parameters in the hard axis.

3: 1/T, inverse of the temperature.

defects: Matrix that contains the defects.

fldefects: Number of atoms not counting the defects.

co: Logical variable that if . true. takes a long thermalization time

and a short one if it is . false..

Output Am: Difference between the magnetization in the hard and

easy axis.

A: Difference between the energy in the hard and easy axis.

integration(vector,step,integral) Integrates a function whose values are stored

in vector.

Input vector: Vector that contains the values of a function.

step: Ax

Output integral.

C.1.3. Functions called

drand48 Pseudo-random number calculator
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C.1.. Output files

energy.dat: Evolution of Ae with the external field.

Mparalel.dat: Evolution of L with the external field.

magna.dat: Evolution of the technical saturation point with temperature.

energy-vs-BO.dat: Evolution of the energy with the remanent magnetization.

energy-vs-T.dat: Evolution of the energy with temperature.

hard.dat: Positions of the hard axis versus the number of missing lines.

easy.dat: Positions of the easy axis versus the number of missing lines.

C.1.5. The Main Program

Program Integral

implicit none

integer*4 h,i,j,l,k,ndef,jj,ti,du,ndim

parameter (ndim=50 ,h=7)

logical co,def(ndim,ndim,h)

Integer*4 dd(ndim*ndim*h,3), point

real*8 drand48, tel, te2

real*8 yplane(4),MaP1(ndim, ndim,h,3),beta,y(4)

real*8 yperp(4), MaPe(ndim, ndim,h,3),easy(2) ,hard(2)

real*8 T,a.ny,pi,X(2),BOhigh,BOmed,BOlow,m3(3)

real*8 BO,mdif(2) ,edif(2) ,lim,vector(51) ,integral

coimnon/cpi/pi

Open(ll, File='energy.dat', Status='Old')

Open(12, File='Mparalel.dat', Status='Old')

Open(13, File='magna.dat', Status='Old')

Open(14, File='energy_vs_BO.dat', Status='Old')

Open(l5, File='energy_vs_T.dat', Status='Old')

Open(16, File='hard.dat', Status='Old')

Upen(l7, File='easy.dat', Status'Old')

do i=l,5l



vector(i)=O OdO

end do

write(*,*) 'Enter jj'

read(*,*) jj

any=O.O1

y(4)rany

y(3)0.0d0
y(2)=0.OdO

y(1)=O.OdO

co= false.

do k=h,1,-1

do j=1,ndim

do l=1,ndim

du= (h-k) *ndim*ndim+ (j -1) *ndim+l

dd(du, 1)=l

dd(du,2)j

dd (du, 3) k

def(l,j ,k)=.true.

end do

end do

end do

cccccc ccc ccccccccccccccccccccccccccccccccccccccccccccccccc
c shuffling

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
do i=1,ndim*ndim

tel=dd(i, 1)

te2=dd(i ,2)

point=drand48() * (ndim*ndim-i)+i

dd(i, 1)dd (point, 1)

dd(i,2)=dd(point,2)

dd(point, 1)tel

dd(point ,2)=te2

end do

do 10101 jj=O, ndim ,3

write(*,*) "Starting jj= ",jj

pi=4*ata.n(1 .dO)

x(1)0.OdO
x(2)=O.OdO

ndef=(ndim+j J) *ndim

call mit (ndef , dd, def , Mapi , x)

call mit (ndef , dd , def ,Mape ,x)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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c Find the easy and hard directions

cccccc cccccccccc cccccc ccc cccc cc c c c c c cccccc ccccccc ccccccc cccc

call fimin(Mapl,y)

call rnag(Mapl,m3)

call sph(m3)

easy ( 1) =m3 (2)

easy (2) =m3 (3)

call fimax(Mape ,y)

call mag(Mape,m3)

call sph(m3)

hard(1)=m3(2)

hard (2) =rn3 (3)

write(*,*) "hard" ,hard

write(*,*) "easy" ,easy

write(16,*) jj,hard

write(17,*) j,j,easy

do 10101 T=0.01, .51,.05

write(*,*) "Starting T= ",T

if (T.ne.0) then

bet a= l/T

else

beta=1d30

endif

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Find the Technical Saturation point

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
write(*,*) 'Searching for the saturation field'

co= . true.

B0=any

yplane (4) =any

yperp (4) =any

yplane(1)B0
yperp(1)=B0

yplane(2)=easy(1)

yperp(2)=hard(1)

yplane (3) =easy(2)

yperp(3)hard(2)

call func(Mapl,MaPe,yplane,yperp,beta,def,ndef,co,Mdif,edif)

lim=abs(mdif (1))+Mdif (2) *2

yperp(3)0.OdO

yplane(1)0.OdO

B0low=0



90

BOhigh2*any/ (h-i)

call init(ndef ,dd,def,Mapl,easy)

call mit (ndef , dd, def , Mape,easy)

do i=i,i0

Bomed=(BOlow+Bohigh) /2

yplane(1)=BOmed

yperp (1) =B0med

yplaiie(2)=easy(i)

yperp(2)=hard(1)

yplane(3)=easy(2)

yperp(3)=hard(2)

call func(Mapl,MaPe,yplane,yperp,beta,def ,ndef,co,Mdif,edif)

If (abs(Mdif(i)).le.lim+Mdif(2).or.Mdif(i).le.0)

then

Bohigh=BOmed

call mit (ndef , dd , def , Mape ,hard)

else

BOlow=BOmed

endif

end do

write(*,*) 'Saturation Field = ',BOmed

write(13,*) T,BOined

x(1)=O.OdO

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Calculate the Magnetization curves

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
call unit (ndef ,dd , def , Mapl ,easy)

call unit (ndef , def , Mape ,easy)

co=. false.

do ti= 0,20

BO=B0med/20*t i

yplane(i)=BO

yperp(i)B0
yplane(2)=easy(1)

yperp(2)=rhard(1)

yplane(3)=easy(2)

yperp(3)=hard(2)

call func(Mapl,MaPe,yplane,yperp,beta,def,ndef,co,Mdif,edif)

vector(ti+i)=Mdif(i)

write(12,*) B0,Mduf

write(i1,*) B0,edif

end do
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call integration(vector,BOmed/20, integral)

write(14,*) vector(1) ,integral

write(15,*) T,integral

write(11

10101 write(12,*)

write(13, *)

irite(14, *)

write(15, *)

end
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C. 2. Initialization Subroutine

This subroutine initializes all the main variables and matrices. It first sets

the system matrix with all its spins in the direction indicated by the vector x and

modulus 1. Then it takes the position of the defects from the dd vectors and sets

up the logical matrix mdef, and sets the corresponding spins in the system matrix

to 0.

C.2.1. Variables

Input: dd: Defects auxiliary matrix.

ndef: Total number of spins.

x: Initial direction.

Output Ma: System matrix after time evolution.

mdef: Energy after minimization (E, a).

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

ml, m2, m3: Position of the site.

i, j, k, 1: Counters.

C.2.2. The subroutine

Subroutine init(ndef , dd , def ,Ma, x)

Implicit none

Inteer*4 ndim,h

Parameter (ndim=50 , h=7)

Integer*4 ml,m2,m3, i, j, 1, k
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Integer*4 ndef, dd(ndim*ndim*h,3)

Logical def (ndim , ndim , h)

Real*8 Ma(ndim, ndim,h,3)

Real*8 x(2)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Start the Matrix

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
do 50 i=1,ndim

do 49 j=1,ndiin

do 49 k=1,h

Ma(i,j ,k,3)=cos(x(1))

Ma(i,j ,k, 1)sin(x(1))*cos(x(2))

Ma(i,j ,k,2)rrsin(x(1))*sin(x(2))

End do

End do

End do

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Initialize the defects

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
do 51 l=1,ndef

ml=dd(l, 1)

m2=dd(l ,2)

m3=dd(l ,3)

def(ml ,m2,m3)=.false.

Ma(ml,m2,m3,1)= 0.

Ma(ml,m2,m3,2)= 0.

Ma(ml,m2,m3,3)= 0.

End do

Return

End
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C.3. Calculate the Magnet izatzon and Energy differences.

This subroutine invokes matrix twice to calculate the energy and magnetiza-

tion in the hard and easy axis and then calculates the difference. First it transforms

the y vector that is originally expressed in spherical coordinates into cartesian, as

is required by matrix. After the energies and magnetizations are calculated, the

subroutine calculates the differences and their standard deviations.

C.3.1. Variables

Input: Mal: System matrix in the easy axis.

Ma2: System matrix in the hard axis.

def: Defects matrix.

yl: External parameters for the easy axis.

y2: External parameters for the hard axis.

beta: Inverse temperature.

ndef: Total number of spins.

x: Initial direction.

co: Logical variable that is . true. if the Matrix subroutine has not

been used yet and .false. otherwise.

Output Mal: System matrix in the easy axis after evolution.

Ma2: System matrix in the hard axis after evolution.

Mdif: Difference between the magnetization in the easy axis and the

magnetization in the hard axis. The magnetization values refer to the

two different systems.
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. edif: Difference between the energy in the easy axis system and the

energy in the haid axis system.

Internal ndim: Number of sites in the X and Y directions.

. h: Number of sites in the Z direction.

B: External field.

Ml, M2: Magnetization in system 1 and 2 respectively.

m3, m4: Auxiliary magnetization vectors.

enel, ene2: Energy in system 1 and 2 respectively.

ha, ea: Normalized vectors in the hard and easy directions respectively.

haha, eaea: Square norms.

C.3.2. Functions Called

dot(x,y): Scalar product.

Input: x: 3 dimensional cartesian vector.

y: 3 dimensional cartesian vector.

C.3.3. The Subroutine

subroutine Func(Mal,Ma2,Y1,Y2,beta,def,ndef,co,Mdif,edif)

Implicit none

Integer*4 ndef ,ndim,h,k

Parameter (ndim=50 ,h7)

Logical co ,def (ndim,ndim,h)

Real*8 yl(4),Mal(ndim, ndim,h,3),M1(3,2),enel(2)

Real*8 y2(4),Ma2(ndim, ndim,h,3),M2(3,2),ene2(2)

Real*8 beta,Mdif(2),edif(2),m3(3),m4(3)

Real*8 ha(3), ea(3), dot, eaea, haha, b
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External dot

b=yl(1)

ea(1)1
ha(1)=1

ea(2)=y1(2)

ha (2) =y2 (2)

ea(3)=yl (3)

ha (3) y2 (3)

call cart(ha)

call cart(ea)

yyl(1)=b*ea(1)

yy2(1)=b*ha(1)

yyl(2)=b*ea(2)

yy2(2)=b*ha(2)

yyl(3)=b*ea(3)

yy2(3)=b*ha(3)

yyl (4)=yl (4)

yy2(4)=y2(4)

call matrix(Mal,def,ndef,beta,yl,enel,M1,co)

call matrix(Ma2,def,ndef,beta,y2,ene2,M2,co)

co= . true.

m3(1)=M1(1,1)

m3(2)=M1(2, 1)

m3(3)=M1(3, 1)

m4 (1) =M2 (1, 1)

m4(2)=M2(2, 1)

m4(3)=M2(3, 1)

haha=dot (ha,ha)

eaea=dot(ea, ea)

Mdif(2)=O.OdO
Mdif (1)=dot (m3, ea) /sqrt(eaea) -dot (m4 ,ha) /sqrt (haha)

do k=1,3
Mdif(2)=Mdif (2)+(ha(k)*M1(k 2))**2/haha

Mdif(2)=Mdif(2)+(ea(k)*M2(k,2))**2/eaea

end do

Mdif (2)=sqrt (Mdif (2))

edif(1)=enel(1)-ene2(1)

edif(2)=sqrt (enel(2)**2+ene2(2)**2)

end



97

C. . The V[azrz Subroutine

This is where the Monte Carlo steps take place. The system is first brought to

equilibrium making it evolve for a number of steps. If it is the first time it invoked,

the thermalization process lasts for 5000 steps, otherwise just 500 is enough. After

each step the energy is minimized with respect to the direction of the magnetiza-

tion. This accelerates the convergence to a stable state, by reducing the influence

of the isotropic term. Then 50 more measurements are taken in which the energy

and magnetic moments are calculated.

C..1. Variables

Input: Ma: System matrix.

def: Defects matrix.

ndef: Total number of spins.

beta: Inverse temperature.

y: External parameters.

co: Logical variable that indicates if this is the first time that thermal-

ization occurs.

Output Ma: System matrix after time evolution.

energ: Energy after minimization (E, a).

May: Magnetization of the system (M, o).

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.
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ml, mri2, m3: Position of the site to test.

i, j: Counters.

jcount: Counter that registers the number of actual changes in the

energy.

. endi: Number of thermalization Monte Carlo steps.

B, any: External parameters.

fracoc: Fractional occupation.

Moment: IViagnetization of the system.

del: Change in the energy.

C..2. Subrontines called

fimin(Matrix, y) Subroutine that finds the minimum of the energy by rotating

all the spins together.

Input Matrix: System matrix.

y: External parameters.

Output Matrix: Minimized (rotated) system matrix

mag(Matrix, m) Calculates the total magnetization (per spin) of the system.

Input Matrix: System matrix

Output m: 3 dimensional vector that contains the total magnetization

per spin of the system.

change(Ma,y,ml,m2,m3,/E1,del,Moment) : Changes the spin of the site if it is

favorable or if the Boltzmann factor is less than a random number.
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Input I\'Ia: System matrix.

y: External parameters.

ml, m2, m3: Position of the particular site to be tested.

: Inverse temperature.

Output Moment: 3 dimensional vector that contains the total magnetization

per spin of the system.

. del: Change in energy.

C.LS. Functions called

Energy(Ma,y) : Calculates the energy of the system.

Input Matrix: System matrix

Output y: External parameters.

The subroutine

subroutine matrix (Na,def ,ndef,beta,y,energ,Mav, co)

Implicit none

Integer*4 ndim, h

parameter (ndim=50, h=7)

Integer*4 ml, m2, m3, 1, j

Tnt eger*4 j count , ndef , step , endi

logical def(ndim,ndim,h) ,co

Real*8 Ma(ndim, ndim, h, 3), B(3), E, Mav(3,2), Eav(2)

Real*8 beta, any, del, Moment(3)

Real*8 Energy, fracoc, energ(2),y(4)

external function energy

step=O

B (1) =Y (1)

B(2)=Y(2)

B(3) =Y(3)
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any=Y(4)

fracoc=h*ndim*ndim

fracoc=1 OdO/(fracoc-ndef)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c bringing to equilibrium

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
call fimin(ma,y)

call mag(Ma,moment)

moment (1) =moment (1) /fracoc

moment (2)=moment (2) /fracoc

moment (3)=moment (3)/fracoc

endi=5000

if (co.eq. .true.) then

endi=500

end if

E=Energy(Ma, y)

do i=1,endi

step=step+1

do ml=1,ndim

do m2=1,ndim

do m3=1,h

if (def(ml,m2,m3).eq. .true.) then

call change(Ma,y,ml,m2,m3,beta,del,Moment)

E=E+del*fracoc

end if

end do

end do

end do

end do

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Averaging

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Eav ( 1) =0 dO

Eav(2)=0 dO

May (1, 1) =0 dO

Nav(2, 1)=0.dO

May (3 , 1) =0 dO

May ( 1, 2) =0 dO

May (2 , 2) =0 dO

May (3 , 2) =0 dO

j count=0

do j=1,50
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do 1=1,5

do m11,ndim
do m2=1,ndim

do m31,h
If (def(ml,m2,m3).eq. .true) then

call change(Ma,y,ml,m2,m3,beta,del,Moment)
Er=E+del*fracoc

end if

end do

end do

end do

end do

j count=j count+1

Eav(1)=Eav(1) + E

Eav(2)=Eav(2) + E**2

Mav(1,1)= Mav(1,1)+Moment(1)

Mav(1,2)= Mav(1,2)+Noment(1)*Moment(1)

Mav(2, 1)= Mav(2, 1)+Moment(2)

Mav(2,2)= Mav(2,2)+Moment(2)*Moment(2)

Mav(3,1)= Mav(3,1)+Moment(3)

Mav(3,2)= Mav(3,2)+Moment(3)*Moment(3)

end do

Eav(1)=Eav(1)/(j count)

Eav(2)=sqrt((Eav(2)-jcount*F

Mav(1, 1)=Nav(1, 1)/(jcount)

Mav(1 ,2)=sqrt((Mav(1 ,2)-jco'.

Mav(2, 1)=Mav(2, 1)/(jcount)

Mav(2 ,2)=sqrt((Mav(2 ,2)-j coi

Mav(3, 1)=Mav(3, 1)/(jcount)

Mav(3, 2)=sqrt((Mav(3, 2)-jcoi

energ(1)=Eav(1)

energ(2)=Eav(2)

Mav(1 , 1)=Mav(1, 1)*fracoc

Mav(2, 1)Mav(2, 1)*fracoc

Mav(3, 1)=Mav(3, 1)*fracoc

Mav(1 ,2)Mav(1 ,2)*fracoc

Mav(2 ,2)=Mav(2, 2)*fracoc

Mav(3, 2)=Mav (3, 2)*fracoc

Format(i5,4f 15.8)

Return

End
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C.5. The Change Subroutine

In this subroutine a vector from the main matrix is rotated by an arbitrary

angle and the change in the energy of the system is calculated. If the change

reduces the total energy, or if the Boltzrnann factor is larger than some random

number, the change is accepted. The first thing calculated is the aleatory rotation

angle, and it is tested that it lies inside a segment of sphere, as is explained in

Section 4.3.1

C.5.1. Variables

Input: M: System matrix.

y: External parameters.

ml, m2, m3: Position of the spin to be tested.

beta: Inverse temperature.

moment: Magnetization.

Output Ma: System matrix after a one spin change.

del: Change in the energy.

moment: Magnetization after the change

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

mnl, mn2, mn3, mpl, mp2, mp3: Position of the neighboring sites.

xl, x2, x3: The spin to be changed

vi, v2, v3: Random change vector.
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del, (le2, de3: Difference between the original and the new spiis.

radius: Absolute value of the random vector.

phi: Random angle.

hi, b2, b3: External field.

. any: Anisotropy constant.

W: Boltzmann factor.

C.5.?. Functions Called

drand48 Random number generator.

C. 5.3. The Subroutine

Subroutine change(Ma,y,ml ,m2,m3,beta,DEL,Moment)
Implicit none
Integer*4 ndim, h
Paranieter(ndim=50, h 7)
Integer*4 ml,m2,m3,mnl,mxi2,mpl,mp2,mn3,mp3
Real*8 Ma(ndim,ndim,h,3), y(4) ,radius,any
Real*8 drand48, pi, DEL,del,de2,de3,W,Moment(3),phi,beta
Real*8 bi ,b2,b3,xl ,x2,x3,vl ,v2,v3
corninon/cpi/pi
xl=Ma(ml ,m2,m3, 1)
x2=Ma(ml ,m2 ,m3,2)
x3=Ma(ml ,m2,m3,3)
del=1 .OdO
de2=1 OdO
de3=1 OdO

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Find a vector in the permitted region
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

do while (del*del+de2*de2+de3*de3 . ge .2. OdO)
v3=2*drand48O-1
radius=sqrt (1-v3*v3)
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phi=2*pi*drand48()
vlradius*cos (phi)
v2=radius*sin (phi)
del=vl-xl
de2=v2-x2
de3=v3-x3

end do
cccccccccccccccccccccccccccccccccccccccccccccc ccc ccccccccccc
c Boundary condition.
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

B l=y (1)
B2=y(2)
B3=y(3)
any=y(4)
inn 1 =m 1 + 1

mn2=zn2+ 1

mn3=m3+1
mpl =m 1-1

mp2=m2-1
mp3=m3- 1

if ( mpl.eq.O ) mpl=ndim
if C mp2.eq.O ) mp2=ndim
if ( mp3.eq.O ) mp3=h
if C inl.e4.ndim ) mnl=1
if ( m2.eq.ndim ) mn2=1
if ( m3.eq.h ) mn3=1

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Calculate the change of energy
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DEL=O.
DEL = DEL-(Ma(mpl,m2,m3,1)+Ma(mnl,m2,m3,1))*del*(1+any)
DEL = DEL-(Ma(ml ,mp23m3, 1)+Ma(ml ,inn2,m3, 1))*del

DEL = DEL-(Ma(ml,m2,mp3,1)+Ma(ml,m2,mn3,1))*del
DEL = DEL-(Na(mpl,m2,m3,2)+Na(mnl,ni2,ni3,2))*de2
DEL = DEL-(Ma(ml,mp2,m3,2)+Ma(ml,mn2,m3,2))*de2*(1+any)
DEL = DEL-(Ma(ml,m2,mp3,2)+Na(ml,m2,xnn3,2))*de2
DEL = DEL-(Ma(mp1,m2m3,3)+Ma(mn1,m2,m3,3))*de3
DEL DEL (Ma(ml,mp2,m3,3)+Ma(ml,mn2,m3,3))*de3
DEL = DEL-(Ma(ml,m2,mp3,3)+Ma(ml,m2,mn3,3))*de3*(1+any)
DEL = DEL-(del*B1+de2*B2+de3*B3)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Calculate the Boltzmann factor
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
if ( DEL .le. 0 ) then

W=1.OdO

else

W=exp (-DEL*beta) -drand48 0
end if

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c Change the spin if the Boltzmann factor is favorable

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
if (w.ge.0) then

Moment(1)=Moment(1)+del
Moment (2) =Moment (2) +de2

Moment (3) =Moment (3) +de3

Ma(ml ,m2,m3, 1)=V1

Ma(ml ,m2,m3,2)=v2

Ma(ml ,m2,m3,3)=v3

else

DEL=0.OdO

end if

return

end
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C. 6. Magnetization of the System

This subroutine averages all the spins in the system to calculate the magne-

tization per spin.

C.6.1. Variables

Input: Ma: System matrix.

Output . m: Magnetization.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

i, j, k, 1: Auxiliary counters.

co: Counter.

V: Auxiliary vector.

mod: Auxiliary vector's absolute value.

C.6.2. The subroutine

Subroutine Mag (Ma, m)

Implicit none

Integer*4 ndim,h,i,j,k,l,co

Parameter (ndim=50 ,h=7)

Real*8 Ma(ndim,ndim,h,3) ,V(3) ,m(3) ,mod

1) =0 . dO

m (2) =0 . dO

m(3)=O.dO

co=0

do i=1,ndim

do j=1,ndim

do k=1,h
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do 1=1,3

V(1)=Ma(i,j ,k,1)

End do

mod=sqrt (V ( 1) (2) (3) **2)

if (mod.gt.1.Od-1O) coco+1

m (1) =m (1) +v (1)

m (2) =m (2) (2)

m (3) =m (3) (3)

end do

end do

end do

m (1) m (1) / Co

m (2) m (2) / CO

m(3)m(3)/Co
Return

End
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C.7. Energy of the System

Calculates the total energy per spin of the system.

Input: Ma: System matrix.

y: External parameters.

Output Energy: Energy of the system.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

i, j, k, 1: Counters.

inext, lnext, knext: Auxiliary counters.

co: Counter (number of spins).

V: Auxiliary vector

mod: Auxiliary vector V's absolute value.

E, el: Intermediate energies.

C.7.1. The function.

Real*8 Function Energy(Ma,y)

Implicit none

Integer*4 ndim, h

Parameter (ndim=50 ,h=7)

Integer*4 1, j, 1, inext, lnext

Integer*4 k, knext, co

Real*8 E, el,mod,v(3)

Real*8 Ma(ndim,ndim,h,3) ,y(4)

E=O

co=O

do i=1,ndim

do l=1,ndim
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do k=1,h

do j=1,3

V(j)=Ma(i,1,k,j)

end do

mod=sqrt(v(1) **2+v(2)**2+v(3)**2)

if (mod.gt.1.Od-1O) co=co+1

inext=i+1

if ( inext .gt.ndim ) inext=1

lnext=1+1

if ( lnext .gt.ndim ) lnext=1

knext=k+1

if ( knext .gt.h ) knext=1

el=O

do j=l,3

el=el-V(j)*Ma(inext ,1,k,j)

el=el-V(j)*Ma(i,lnext,k,j)

el=el-V(j)*Ma(i , 1 ,knext , j)

el=el-y(j) *V(j)

end do
E=E+el-y(4)*V(1)*Ma(inext ,1,k, 1)

E=E-y(4)*V(2)*Ma(i , lnext ,k, 2)

E=E-y(4)*V(3)*Ma(i ,1,knext,3)

end do

end do

end do

energy=e/co

Return

End
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C. 8. The Mnimtzatwn Subroutine

This subroutine minimizes the energy of the system with respect to the di-

rection of the total magnetization. It uses a simple Newton type scheme in the

two dimensional space of the angles.

C.8.1. Variables

Input: M: System matrix.

ex: External parameters.

Output M: Matrix rotated to the position that minimizes the energy.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

small: Measure of smallness.

i: Counters.

imax: Maximum number of iterations.

fnew: Change in the energy

x: Initial direction

xnew: Direction of the Gradient

xti, xphy: Increment in the variables.

del: Increment.

grad: Gradient.

m3: Magnetization.
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C.8.2. Functions called

delta(M, dir, ex: Calculate the change in energy in the direction dir

Input: M: System matrix.

dir: Direction of change.

ex: External parameters.

grad(M,ex,del) Calculate the gradient

Input: M: System matrix.

cx: External parameters.

del: Increment.

C.8.3. The subroutine

Subroutine fimin(M, ex)

Implicit none

Integer*4 imax , ndim,h

Real*8 small

Parameter (ndim5O,h7 ,imax500, small4.d-7)

Integer*4 i

Real*8 M(ndim,ndim,h,3), ex(4), pi

Real*8 Fnew, xnew(2), x(2), delta, del, grad, m3(3)

Real*8 gr(2), mod, ti, phi, xti(2), xphi(2)

External delta, grad

Coinmon/cpi/pi

x(1)=O.OdO
x(2)=O . OdO

call mag(M,m3)

del=pi/40 OdO

do i=1,imax

xti(1)=del

xti(2)=O.OdO

xphi(1)=O.OdO

xphi (2)del
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gr(1)=delta(M,xti ,ex)/del

gr(2)=delta(M,xphi ,ex)/del

mod=grad(M, ex ,del)

if (mod.gt.small) then

xnew(1)=-del*gr(1)/mod

xnew(2)=-del*gr(2)/mod

fnew=delta(M,xnew, ex)

if (fnew.ge.0) then

del=del/2. OdO

else

call rotate(M,xnew)

x( 1) =x ( 1) +xnew( 1)

x (2) (2) +xnew (2)

call orient(x(1),x(2))

end if

if (del.lt.small) goto 110

else

goto 110

end if

end do

110 Continue

Return

End
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C.9. The Aiaxzmizat,ou. Submut?le

This is fundamentally the same subroutine as fimin, but adapted to finding

a maximum instead of a mnimiimum.

C.9.1. Variables

Input: M: System matrix.

ex: External parameters.

Output M: Matrix rotated to the position that minimizes the energy.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites ill the Z direction.

small: Measure of smallness.

i: Counters.

imax: Maximum number of iterations.

fnew: Change in the energy

x: Initial direction

xnew: Direction of the Gradient

xti, xphy: Increment in the variables.

del: Increment.

grad: Gradient.

m3: Magnetization.
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C. 9.2. Fnn,ctions called

delta(M, dir, ex: Calculate the change in energy in the direction dir

Input: M: System matrix.

dir: Direction of change.

. cx: External parameters.

grad(M,ex,del) Calculate the gradient

Input: M: System matrix.

. ex: External parameters.

del: Increment.

C.9.3. The subroutine

subroutine fimax(M, ex)

Implicit none

Integer*4 imax,ndixn,1i

Real*8 small

Parameter (ndim=50,h=7 ,imax=500, small=1.d-7)

Integer*4 i

Real*8 M(ndim,ndim,h,3), ex(4), pi

Real*8 Fnew, xnew(2), x(2), delta, del, grad, m3(3)

Real*8 gr(2), mod, ti, phi, xti(2), xphi(2)

External delta, grad

x(1)0.OdO
x(2)=O.OdO

compenergy (M, ex)

del=pi/40.OdO

do i=1,imax

xti(1)=del

xti(2)=O.OdO

xphi(1)=O . OdO

xphi(2)del
gr(1)=delta(M,xti ,ex)/del
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gr(2)=delta(M, xphi , ex)/del

mod=grad(M, ex ,del)

if (mod.gt.small) then

xnew(1)=del*gr(1)/mod

xnew(2)=del*gr(2)/mod

fnew=delta(M, xnew, ex)

if (fnew.le.0) then

del=del/2. OdO

else

Call rotate(M,xnew)

x( 1) =x (1) +xnew( 1)

x (2) =x (2) +xnew (2)

call orient(x(1) ,x(2))

endif

if (del.lt.small) goto 110

else

goto 110

endif

end do

continue

return

end
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C.1O. Rotate a Matrix

This subroutine rotates the system matrix as a whole.

C.1O.1. Variables

Input: M: System matrix.

x: Angles of rotation.

Output M: Rotated system matrix.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

i, j, k: Auxiliary counters.

s: Auxiliary vector.

C.1O.2. Subroutines called

rot(x, y): Rotate a single vector

Input: x: Vector to he rotated.

y: Angles of rotation.

Output x: Rotated vector.

C. 10.3. The subroutine

Subroutine rotate (M, x)

Implicit none

Integer*4 h,i,j,k,ndim

Parameter (ndim=50 , h7)
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Real*8 x(2),M(ndim,ndim,h,3),s(3)

do i=1,h

do j=1,ndim

do k=1,ndim

s(1)M(k,j,i,1)

s(2)=M(k,j ,i,2)

s(3)M(k,j ,i,3)

call rot(s,x)

M(k,j ,i,1)=s(1)

M(k,j ,i,2)=s(2)

M(k,j ,i,3)s(3)

End do

End do

End do

Return

End
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Cli. Change in Energy by a Rotatwn,

Calculates the change of energy when there is a rotation of the whole matrix.

C. 11.1. Variables

Input: M: System matrix.

. ex: External parameters.

. r: Rotation vector.

Output delta: Energy of the system.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

small: Measure of smallness.

i, j, k, 1: Counters.

inext, jnext, knext: Auxiliary counters.

co: Counter (number of spins).

V, Vi, Vj, Vk: Auxiliary vectors

B: External field.

mod: Auxiliary vector V's absolute value.

E, el: Intermediate energies.

C. 11.2. Functions called

dot(x,y): Scalar product.
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Input: x: 3 dimensional cartesian vector.

. y: 3 dimensional cartesian vector.

C.11.3. The function.

Real*8 Function delta(M,r,ex)

Implicit none

Integer*4 i, j, 1, ndim, inext, jnext,h

Integer*4 k, knext,co

Parameter (ndim=50 , h=7)

Real*8 M(ndim,ndim,h,3), e2, el, delta, small

Parameter( small=1 . Od-lO)

Real*8 v(3),vi(3),vj(3),vk(3),r(2),ex(4),dot,b(3)

Real*8 rv(3) ,rvi(3) ,rvj(3) ,rvk(3) ,dl(3)

Real*8 mod

External dot

delta=O . OdO

el=O.dO

e2=O.dO

co=O

do i=1,ndim

do j=1,ndim

do k=1,h

inext=i+1

if ( inext .gt.ndim ) inext=1

jnext=j+1

If ( jnext .gt.ndim ) jnext=1

knext=k+1

if ( knext .t.h ) knext=1

do 1=1,3

B(l)=ex(l)

v(l)=M(i,j ,k,l)

rv(1)=v(l)

vi(l)=M(inext,j ,k,l)

rvi(l)=vi(l)

vj(l)=N(i,jnext,k,l)

rvj (1)=vj (1)

vk(l)=M(i,j ,knext,l)

rvk(l)=vk(l)

end do
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modsqrt (v(1) **2+v(2)**2+v(3) **2)

if (mod.gt.1.Od-1O) co=co+1

call rot(rv,r)

call rot(rvi,r)

call rot(rvj,r)

call rot(rvk,r)

call diff(v,rv,dl)

el=el+dot(dl ,B)

e2=e2+ex(4)*(v(1)*vi(1)-rv(1)*rvi(1))

e2=e2+ex(4)*(v(2)*vj (2)-rv(2)*rvj (2))

e2=e2+ex(4) *(v(3) *vk(3) -rv(3) *rvk(3))

end do

end do

end do

delta(el+e2)/co
Return

End
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C. 1. Calculate the Crathent of the Energy by a Rotation

It is necessary during the minimization (maximization) subroutine to calcu-

late the gradient of the energy, with respect to the angles 9 and .

C.12.1. Variables

Input: M: System matrix.

ex: External parameters.

del: Distance increment (in radians).

Output grad: Gradient's absolute value.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

xti: Iiicrernent in 9.

xphi: Increment in .

mod: Gradient's absolute value.

gr: Gradient.

C.12.2. Functions Called

delta Calculates the change in energy.

C.12.3. The Function

Real*8 function gradO'l,ex,del)
Implicit none
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Integer*4 h, ndim

Parameter (ndim=50 , h=7)

Real*8 ex(4),M(ndim,ndim,h,3),xti(2),xphi(2),mod

Real*8 delta, gr(2), del

External function delta

xti(1)=del

xti(2)=O.OdO

xphi(1)0 .OdO

xphi(2)=del

gr(1)=delta(M,xti, ex)/del

gr(2)=delta(M,xphi , ex)/del

mod=sqrt (gr(1) **2+r(2)**2)

grad=mod

Return
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C. 13. Integration Subroutzne

This subroutine integrates a function evaluated at regular intervals using the

Simpson rule.

C.13.1. Variables

Input: data: Vector that contains the values of the function to be integrated,

measured at regular intervals.

int: x.

Output inte: Integral.

Internal ndim: Number of sites in the X and Y directions.

h: Number of sites in the Z direction.

i: Auxiliary counter.

fim, fi, fip: Auxiliary variables.

C.13.2. The subroutine

Subroutine Integration(data, mt , inte)

Implicit none

Integer*4 I

Real*8 inte,fim,fi,fip,int,data(51)

inte=O . OdO

fim=data(1)

do i=2,1O,2

fi=data(i)

fip=data(i+1)

inte=inte+f im+4*f j+f ip

fim=fip

end do

inte=inte*int/3
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Return

End



C. 14. Miscellaneous Subroutines.

C. 14.1. Spherical to cartesian coordinates.

Input: V: 3-dimensional vector in cartesian coordinates.

Output: V: 3-dimensional vector iii spherical coordinates.

Internal: x, y, z: Auxiliary variables.

Th&Subroutine:

Subroutine cart (v)

Implicit none

Real*8 x,y,z,v(3)

z=v(1)*cos(v(2))

x=v(1) *sjn(v(2) ) *cos(v(3))

yv(1) *sin(v(2) ) *sin(v(3))

v (1) =x

v (2) =y

v(3)=z

Return

End

C.14.2. Cartesian to spherical coordinates.

Input: V: 3-dimensional vector in spherical coordinates.

Output: V: 3-dimensional vector in cartesian coordinates.

Internal: mod, theta, phi: Auxiliary variables.

rant.
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The subroutine calls orient to check that the angles are in the proper quad-

The'Subroutine:
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Subroutine sph(v)

Implicit none

Real*8 mod, theta, phi, v(3),pi

Comnion/cpi/pi

mod=sqrt (v( 1) (2) **2+v (3) **2)

if (mod.lt.ld-1O) then

theta=O . dO

phi=O . OdO

else

theta=acos (v (3) /mod)

if (abs(theta).lt.1.Od-1O) then

phi=O . OdO

theta=O. OdO

else

if (abs(theta-pi) . it. 1. Od-lO) then

phi=O. OdO

thet a=pi

else

phi=atan2(v(2) ,v(1))

end if

end if

end if

v(1)=mod

v(2)=theta

v(3)=phi

call orient(v(2) ,v(3))

Return

End

C.1.S. Calculate the sum of 2 cartesian vector

Input: . x: 3-dimensional vector in cartesian coordinates.

y: 3-dimensional vector in cartesian coordinates.

Output: s: 3-dimensional vector in spherical coordinates.

Internal: i: Counter.

The'Subroutine:



127

Subroutine sum(x,y,$)

Implicit none

Real*8 x(3) ,y(3) ,s(3)

Integer*4 i

do i=1,3

s(i)=x(i)+y(i)

End do

Return

End

C. LL4. Calculate the difference between 2 cartesian vectors

Input: . x: 3-dimensional vector in cartesian coordinates.

. y: 3-dimensional vector in cartesian coordinates.

Output: . 5: 3-dimensional vector in spherical coordinates.

Internal: i: Counter.

The' Subroutine:

Subroutine diff(x,y,$)

Implicit none

Real*8 x(3),y(3),s(3)

Integer*4 i

do 1=1,3

s(i)=x(i)-y(i)

end do

Return

End

C.1.5. Check that the angular part of a spherical vector is in the correct
direction

Input: theta:

phi: Azimuth angle.



128

Output: theta:

phi: Azimuth angle.

The Subroutine:

Subroutine orient(theta,phi)

Real*8 theta,phi,pi

Comnion/cpi/pi

if (theta.lt.0) then

theta=-theta

phi=phi+pi

end if

if (theta.gt.pi) then

theta=2*pi-theta

phi=phi+pi

end if

if (phi.lt.0) phi=2*pi+phi

if (phi.gt.2*pi) phi=phi-2*pi

if (abs(theta).lt.1.Od-1O) then

theta=O . OdO

phi=O. OdO

end if

if (abs(theta-pi) . it. 1 . Od-lO) then

thetapi
phi=O . OdO

end if

Return

End

C.14.6. Rotate a 3 dimensional vector

Input: x: 3-dimensional vector in cartesian coordinates.

r: 2-dimensional vector that contains the angles of rotation.

Output: x: rotated 3-dimensional vector in cartesian coordinates.

Internal: small: Parameter that is a measure of how small a number has to

be to be considered 0.
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The subroutine calls the auxiliary subroutnies cart, sph and orient

Thea Subroutine:

Subroutine rot(x,r)

Implicit none

Real*8 x(3) ,r(2) ,pi,small

Connnon/cpi/pi

Parameter (small=1 . Od-lO)

call sph(x)

if (abs(x(1)).gt.small) then

x (2) =x (2) +r (1)

x(3)=x(3)+r(2)

else

x(1)=O.OdO

x(2)=O . OdO

x(3)=O.OdO

end if

call orient(x(2) ,x(3))

call cart(x)

Return

End

C. 14. 7. Calculate the scalar product between 2 cartesian vectors (Function)

Input: . x: 3-dimensional vector in cartesian coordinates.

. y: 3-dimensional vector in cartesian coordinates.

Output: dot: Scalar product.

Internal: i: Counter.

d: Auxiliary variable.

The'Function:

Real*8 Function dot(x,y)

Implicit none

Real*8 d,dot,x(3),y(3)
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Integer*4 ±

d=O.OdO

do ±=1,3

d=d+x(±)*y(i)

end do

dot =d

Return

End




