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Algorithms for Computing Fibonacci Numbers Quickly

Chapter 1

Introduction

1.1 Problem Definition

In the year 1202 Leonardo Pisano, sometimes referred to as Leonardo Fibonacci,

proposed a model of the growth of a rabbit population to be used as an exercise

in addition. The student is told that rabbits are immortal, rabbits mature at the

age of one month, and all pairs of fertile rabbits produce one pair of offspring each

month. The question "Starting with one fertile pair of rabbits, how many pairs of

rabbits will there be after one year?" is then posed. [9,19]

Initially there is one pair of rabbits, after the first month there will be two

pairs of rabbits, the second month three pair, the third month five pairs, the fourth

month eight pairs, the fifth month thirteen pairs and so on. The sequence of numbers

0, 1, 1, 2, 3, 5, 8, 13, ... where each number is the sum of the previous two numbers

is referred to as the Fibonacci sequence. The sequence is formally defined as:

fn-F2 = fn-F1 fn, n f3 =0, f1 =1

The Fibonacci numbers may be generalized to allow the nth number to be the

sum of the previous k numbers in the sequence. The sequence of order-k Fibonacci

numbers is defined by [15,25,33] as:

and

k 1fk= = k-3 k-2 07 fk-1J1

k

fnk = E fn-i
i =1

for n > k.
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Unless explicitly specified otherwise the term "Fibonacci numbers" refers to the

order-2 sequence of Fibonacci numbers and fn will refer to the nth element of the

order-2 Fibonacci sequence.

1.2 History

Leonardo Fibonacci first proposed the sequence of numbers named in his honor in

his book Liber Abbaci (Book of the Abacus). The rabbit problem was an exercise

in addition and not an attempt to accurately model a rabbit population. It appears

that the relation fn+2 = fn+i fn was not recognized by Fibonacci but was first

noted by Albert Girard in 1634. In 1844 G. Lame became the first person to use

the Fibonacci numbers in a "practical" application when he used the Fibonacci

sequence to prove the number of divisions needed to find the greatest common

divisor of two positive integers using the Euclidean algorithm does not exceed five

times the number of digits in the smaller of the two integers. 1 The use of the

term "Fibonacci numbers" was initiated by E. Lucas in the 1870's. Many relations

among the Fibonacci and related numbers are due to Lucas and a recurring series

first proposed by Lucas has taken his name. The Lucas numbers are defined as:

1,1+2 = 4,4_1 ln, n > 0 /0 = 2, /1 = 1

Another series, that appears later in this thesis, first described by Lucas is:

/3T1+1 = Qn 2, p = 3

giving the series 3, 7, 47, .... A more complete history of Fibonacci numbers can

be found in chapter 17 of [9].

1.3 Applications

Applications for large Fibonacci numbers do arise in computer science and routinely

appear in undergraduate data structure texts in chapters on searching, sorting,

1This proof may be found on page 62 of [29].
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and memory management [16,22,27]. Fibonacci search assumes that the list being

searched is fn 1 elements long and we know the numbers fn and In_i. The method

of dividing the list into two parts and choosing the upper or lower part depending on

a comparison is the same as the binary search. The difference is that the Fibonacci

search, instead of bisecting the list being searched at the n/2 element as the binary

search does, bisects the list at the (I:5 1)/2 element by adding or subtracting

In_i, where this is the ith split. No multiplications or divisions are required, only

additions and subtractions, to find the next bisection point. The complete algorithm

can be found in [16]. The buddy system of memory management can be generalized

to divide a block of memory of size fn+2 into two blocks of memory of sizes fn+1 and

h. It is clear that this could be further generalized to order-k Fibonacci numbers

so the division of a block of memory would yield k, instead of two, smaller blocks of

memory [22]. Polyphase merging is a method of merging large files on various tape

drives into one file. The generalized Fibonacci numbers give the optimal number

of files that should be on each tape drive for before merging begins. The order of

the Fibonacci numbers best suited for the problem depends on the number of tape

drives used to merge the files. In practice this is used to create, by internal sort

routines, the proper number of files to place on the tape drive initially to make

optimal use of the tape drives [27].

Fibonacci numbers appear in disciplines other than computer science as well.

Peter Anderson has described a family of polycSrclic aromatic hydrocarbons ( ben-

zene, naphthalene, phenanthrene, ), such that the nth member has fn_i Kekule

structures. Definitions of Kekule structures, the specific hydrocarbons under con-

sideration and the recurrence relations used appear in [2]. Joseph Lahr in his paper

"Fibonacci and Lucas numbers and the Morgan-Voyce polynomials in ladder net-

works and in electric line theory" presents an application and cites several references

of Fibonacci numbers to electrical engineering [21]. Fibonacci numbers appeared in

biology as early as 1611 in the work of Kepler on phyllotaxis and more recently Roger

Jean in his book Mathematical Approach to Pattern and Form in Plant Growth [17]

makes extensive use of the Fibonacci sequence.
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1.4 The Model of Computation

The previous work on fast algorithms to compute the Fibonacci numbers used the

standard straight line code model of computation. [10,11,15,25,32,33]. The standard

straight line model of computation uses the unifoiin cost function, that is, it assumes

that the cost of an operation is the same regardless of the size of its operands. When

the size of the operands becomes large the uniform cost assumption is no longer

valid and the variable time required to operate on large operands must be taken

into account. Since fn grows exponentially (see theorem 2.2 of [29]) with n, fn is

large for reasonable size n.

Therefore the uniform cost function is unsuitable as a measure of the time

used to compute Fibonacci numbers. The bitwise model is used to analyize and

compare the various algorithms used to compute Fibonacci numbers since the bit-

wise model reflects the logarithmic cost of operations on variable sized operands [1].

The bitwise model is used to analyize and compare the various algorithms used to

compute Fibonacci numbers. In this model all variables are assumed to be one bit

in length and all operations are logical instead of arithmetic. Under the the bitwise

model, operations on the integers i and j require at least the log i -I- log j time units

to execute.

1.5 A guide to this Thesis

Chapter two presents several methods of computing Fibonacci numbers found in

the literature and several methods that do not, as yet, appear in the literature.

Each section of the chapter will present one algorithm, a proof of correctness of

that algorithm, and possible variations of the algorithm. Chapter three presents

an analysis of the running time of each algorithm and actual running times of the

implementation of each algorithm.

In an attempt to find redundant information in the binary representation of

the Fibonacci numbers an analysis of the structure of the bits in fn was undertaken.

The methods and results of this analysis are presented in chapter four. The final
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chapter summarizes the results of this thesis and proposes future areas of research.

Appendix A contains a list of the important equations with equations numbers

where appropriate. Appendix B presents the lisp functions that implement the

major algorithms discussed in this thesis. Many variations of the algorithms and

the supporting functions are not given but are available upon request from the

author.
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Chapter 2

Methods of Computation

There are many ways to compute Fibonacci numbers. Each section of this chapter

will describe one method (and closely related methods) of computing the Fibonacci

numbers.

The following algorithms in this chapter have been seen in print: natural re-

cursive in section 2.1, repeated addition in sectior, 2.2, Binet's formula in section 2.3,

the matrix methods of Gries, Levin and Others in section 2.4, three multiply matrix

method in section 2.5.1, and binomial coefficients in section 2.7. The remaining al-

gorithms have been developed by the author and Dr. Paul Cull and are believed to

be original: extended N. N. Vorob'evs Method in section 2.6, two multiply matrix

method in section 2.5.2, generating function in section 2.8, Product of factors in

section 2.9.

2.1 Natural recursive

Several introductory programming texts introduce recursion by computing the Fi-

bonacci numbers. The function fib(n) that computes fn will return zero if n = 0,

one if n = 1 and the sum of fib(n 1) and fib(n 2) if n > 2, is proposed as the

solution. More succinctly,

fib(n) =

0

1

fib(n 1) + fib(n 2)

if0<n=0
ifn=1
if n > 2

(2.1)



fib (n)

if n = 0 return 0

else if n = 1 return 1

else return fib(n-1) fib(n-2)

Figure 2.1: Recursive algorithm to compute ffi

Order-k Fibonacci numbers can be computed using a similar method:

0 if0<n<k
kb(n) = 1 if n = k

V...i. kfib(n 0 if n > k

(2.2)

Theo'rem 2.1 The algorithm presented in figure 2.1, when given a non-negative

integer n, will correctly compute fn.

Proof Using induction on n. Base: when n = 0 the function will take the first if

and return 0 = 10. When n = 1 the function will take the second if and return 1

= fi. For the inductive step assume n > 2 and the algorithm correctly computes

fib(n 2) and fib(n 1) and show that it correctly computes fib(n). Since n > 2

the last else statement will be executed and by the assumption above fib(n 2) =

fn-2 and fib(n 1) = fn_i. The function fib(n) will return fn-2 fn_i which is the

definition of fn.

The results of each call to fib(n) could be cached to avoid the redundant com-

putations. This algorithm could easily be modified to compute order-k Fibonacci

numbers, see equation 2.2.

2.2 Repeated addition

If, instead of first computing 1,1 and fn_2 as was done in the recursive solution,

each element of the sequence fo, fi, 12, , fn was computed in order, the number
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fib (n)

previous = 0

fibonacci = 1

for loop = 2 to n

temp = fibonacci

fibonacci = fibonacci previous

previous = temp

return fibonacci

Figure 2.2: Repeated addition algorithm

of operations could be reduced. The algorithm presented in figure 2.2 computes

Fibonacci numbers in this manner.

Theorem 2.2 The algorithm presented in figure 2.2 will, when given a positive

integer n, correctly compute fn.

Proof Using induction on n. Base: when n = 1, previous will be assigned fo = 0

and fibonacci will be assigned fi = 1. The loop is not executed since n < 2 and the

value of fibonacci is returned. For the inductive step assume the algorithm correctly

computes fn_i and show that it correctly computes fn. Immediately before the last

iteration of the loop, by the assumption, fibonacci is equal to fn_i and previous is

equal to fn....2. In the last iteration of the loop the value of fn_i is stored in temp,

fibonacci is assigned the value of fn-1 + fn-21 and previous gets the value stored in

temp = fn_i. Since that was the last iteration of the loop the value of fibonacci =

fn -1 fn -2 = fn is returned.

This algorithm can easily be extended to compute order-k Fibonacci numbers

by adding the previous k numbers instead the previous two numbers. Another

addition algorithm for order-k Fibonacci numbers can be created by noticing

fn
9 fk fk

J n = 4'./ n-1 J (2.3)
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kfib (n, k)

if n < k 1 return 0

else if n < k return 1

else

k
unstore fo = 0, fi 0, 0,

for loop = k+1 to n

let ftoopk = Atop-k-i

store Akoop

remove Atop..." from storage

return Akoop

Since adding f!_i. to

we get

= 1, Ai: =1

Figure 2.3: Addition algorithm for J.!,

fn-1 fn-2 fn-3 fn-4 +

k 1 = k-k kfn-1 + A-2 + A-3 + + fn fn-k-12fn-

and subtracting f!_k_l we get

k
fn-1

fin

which is equation 2.3. This algorithm is presented in figure 2.3.

2.3 Binet's formula

While the following is usually called Binet's formula for fn, Knuth [19] credits A.

de Moivre with discovering that a closed form for fn, is:

fn =
1/5

(2.4)



where

and

= 1 +'
2

A2=
1

2

From equation 1.1 we can get the characteristic polynomial

with roots

SO

SO

fn =

A2 = A + 1

1 +
Al = A2 =

2 2

.fn = aA7 + bA'2'

fi = 1 = aAi + bA2

= a(Ai A2)

1
a

Al A2

1

1-hig 1---&
2 2

1

-[(1+Vg)n (1 112 2

10

(2.5)

which is the result we wanted.

Since A2 is approximately equal to 0.61803, IA 31 gets small as n increases.

Knuth [19] states that

I 1 (1 + + 0.5] , n > 0{.M 2 ) (2.6)

Capocelli and Cull [8] extend this result and show that the generalized Fibonacci

numbers are also rounded powers.
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fib (n)

compute the Nn + log n most significant bits of

0.5ireturn

Figure 2.4: Approximation of Binet's formula

fib (n)

if n = 1 fi 4 1

else fn i(fib(n/2))2

return fn

,N

Figure 2.5: Recursive Binet's approximation

Theorem 2.3 The algorithm presented in figure 2.4 correctly computes fn for the

non-negative integer n.

Proof. If log2 fn = Arn for some constant N. 1 then the result of equation 2.6 must

be correct to at least Nn bits. The first line of the algorithm computes the first

Nn + log n bits of \15-. At most, log n bits will be lost computing the nth power

since no more than one bit is lost for each multiplication and exponentiation can

be done using log n squarings. So, the first Nn bits of the result will be correct and

all but the first Nn bits are truncated.

A recursive version of the approximation of Binet's formula is given in fig-

ure 2.5.

Theorem 2.4 The algorithm presented in figure 2.5 correctly computes fn such

that n = 2k for the non-negative integer k.

Proof.

fn = (A7

1See Chapter 3 introduction for the definition of N.
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1 / 9

UO2 r- Oin 2( Al )1/42 r
v 5v 5

1 /
AV5(fn)2r- 2( 1)n + An)v5

2

(12n 2n),/ '12

1
f2n Afn )2

/
+ 2(-1)n

6 = f2n AM2

2
= (--An 1r)

0 < E<1

SO

f2n = Afn)2 +

= lAfn)21

I

)2n)

2.4 Matrix Methods of Gries, Le,rin and Others

In the late 1970's and early 1980's several papers were published on the number of

operations needed to compute generalized Fibonacci numbers [10,11,15,32,33]. The

problem addressed in these papers was to find a fast method of computing the nth el-

ement of the order-k Fibonacci sequence or, more succinctly, f k. All of these papers

used the uniform cost criteria allowing them to perform multiplication and addition

on any size operands in a constant amount of time, therefore these papers report

the running time of their algorithms as the number of multiplies, and additions

instead, as will be done here, in the number of bit operations. Table 2.1, compiled

from information by [10,12], shows the running dime, number of multiplies and the

number of additions for the algorithms presented' by [10,12,15,32,33]. Fiduccia's al-

gorithm uses the term p(k) to be the total number of arithmetic operations required
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Time to compute f!

Author Running time Multiplies Additions

Gries 0(1.5k2 log n) 0(1.5k2) 0(3k2)

Shortt e(k2 log n) 0(k2) 0(k3)

Pettrossi 0(1.50 log n) 0(1.5k3) 0(1.5k3)

Urbanek 0(10 log n) 0(k3 + 0.5k2) 0(k3 -F 0.5k2)

Fiduccia 0(1(k) log n) 0(2(k) log n) 0(p(k) log n)

Table 2.1: Running times of algorithms to compute fn

to multiply two polynomials of degree k 1. If the fast Fourier transform can be

used, the number of arithmetic operations used by Fiduccia's algorithm would be

0(k log k log n).

The algorithm that is presented by Gries and Levin [15] will be presented

here, the methods of [10,32,33] are similar.

Let

A=

and use the recurrence relation

1 1 1 1

1 0 0 0

0 1 0 0

0 0 1 0

fine,

fkn-1

fkn -2

f k +1

=A

fkn-1

fn-2

fkn-3

fnk



So, to compute fn we only need to compute An : +1 since

fnk
1

fn-1- =
An-k+1

fn-2
k

ficc-3 = °
f

fnk +1 f(1; = 0

14

By noticing that any row, except the first, of Ai is the same as the previous row

of Ai-1 Gries and Levin were able to construct an algorithm that computes Ai+1

from A and Ai by computing the bottom row of Ai+1 and copying the remaining

rows from Ai. This reduced the number of multiplies from 0(k3) to 0(k2) to do the

matrix multiply. Since An-k can be computed using 0(log n) matrix multiplies by

using repeated squaring, the time to compute Ai: using Gries and Levin's algorithm is

0(k2 log n). In the following section we will examine the order-2 Fibonacci numbers

1 1
and let the array A = which has the same form as the matrix A above.

1 0

2.5 Matrix Methods

The matrix identity

(1 1 fn÷i

1 0 In

fn

fn -1

can be used to compute Fibonacci numbers. The identity is proven by induction

on n. The base case, when n = 1, is true: fn +1 = 12 = 1, fn = f1 = 1 and

In-i = fo = 0. Assume that

and show that

0

1

n+1
( 1 1

1 0

fn+i fn

fn fn -1

(In+2 In+i

In+i In



is true.

15

(1 1 1 1 fni-1 + fn fn + fn-1

1 0 ) 1 0 fn

fn+2 fn+1

fn +1 In

By the assumption above and matrix multiplication it can be seen that

( n+11 1 ) fni-2 fn+1

1 0 fn+i fn

is true. 1

By using repeated squarings, fn could be computed using about log n matrix

multiplies. One method of computing the matrix f2ni-1 f2n

f2n f2n-1
from

( fn+i In

fn fn-1
is to compute the top row of the new matrix using four multiplies. Using equations

2.7, 2.12 and 1.1

f2n4-1 fn2+1 fn2

f2n = fn+1 fn fnfn-1

f2n-1 = f2n

all of the elements of the matrix can be computed. The following two methods will

use three and two multiplies, respectively, to compute each succeeding matrix.

2.5.1 Three Multiply Matrix Method

The three multiply matrix method is shown in Figure 2.6. The following

derivation, along with equation 2.13 below, show that f2n+1 = L2,+1+ fn2 and f2n-1 =
f72 fn_1.

12n+1 = fn+1 fn-1 + fnfn-1-2

= fn-1-1(fn-1-1 In) + In(fn+i + In)
2 f2+1

which is the result wanted.

(2.7)
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fib (n)

if n = 1 return the matrix

else

fn/2-1-1 .f./2

fn/2 fn/2-1

a +-- (fn/2+1)2

b 4 (fn/2 )2

C 4 (A/2-1)2

return the matrix

4 fib (n/2)

a +b a c
ac bd-c

Figure 2.6: Three multiply matrix algorithm

Theorem 2.5 The three multiply matrix algorithm, given a positive integer n such

that n = 2k for some non-negative integer k, correctly computes the matrix (fn-1-1 in

A A-1

(1 1Proof. Using induction on n. Base: when n = 1 the matrix returned.

Since 12 = fi = 1 and fo = 0 the base case is correct. For the inductive step

assume that the algorithm correctly computes
fn+i A

and show that it
In Ini

correctly computes
f2n+1 f2n

Equation 2.7 shows, given n, and fn2+1,
f2n f2n-1

that fj 2n-F1 and f2n -1 can be computed. Equation 1.1 shows that = f2n

or, rearranging, f2n = 12741J.2n-1 so the three multiply matrix algorithm is correct.
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fib (n)

if n = 1 return the matrix

else

(In/ 2+1 In/2

In/2 fn/2-1
fib (n/2)

fn +2 4 In/ 2+1(In/ 2+1 + 2In/ 2)

In 4-- In/2(2In/2+1 fn /2)

return the matrix
fn+2 fn fn

)fn fn+2 2fn

Figure 2.7: Two multiply matrix algorithm

2.5.2 Two Multiply Matrix Method

These matrices can be multiplied using only two multiplications using the two mul-

tiply algorithm is given in figure 2.7. To prove the two multiply matrix algorithm

is correct we need to show that f2n-F2 = fn-Fi(fn+i 2h) and f2n = fn(2/n-Fi In).

Using equation 2.12

In+1(In+1 2In) = In+i (fn fn+2)

fnfn+1 fn+1 fn+2

f2n-1-, !

and, remembering that f,+1 = fn fn -1,

fn(2fn-Fi In) = fn(fn-Ft + fn -1)

= fnIn-1-1 + fn fn -1

= f2n

(2.8)

(2.9)
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Theorem 2.6 The two multiply matrix algorithm given in figure 2.7 correctly com-

putesputes the matrix when given a positive integer n such that n = 2k.
fn fn -1

Proof Using induction on n. Base: when n = 1 the algorithm returns the matrix
( 1 1

. Since f2 = fl = 1 and fo = 0 the base case is correct. For the inductive
1 0

step assume that, when given n, the algorithm correctly computes

and show that it correctly computes (f2n+i f2n

f2n f2n-1
have f,n+1) LI) and fn_i. From equation 2.8 we can compute f2n4-2 from fn+1 and fn.

From equation 2.9 we can compute f2n given fn+i and fn. Since f2n-i-1 = f2n-I-2 f2n

and f2n-1 = f2n-F2 2f2n the two multiply matrix algorithm correctly computes

(fn+1 fn

In fni

) . From the assumption we

( 12,2+1 f2n
1

h. hn-i

2.6 Extending N. N. Vorob'ev's methods

N. N. Vorob'ev, in his book Fibonacci Numbers presents several methods of com-

puting fn. The following relationships, although surely developed many years ago

by others, are now standard relationships between Fibonacci numbers. They are

presented with Vorob'ev's name because his book [36] presents a clear and concise

derivation of the following important relationship:

fn+k = fn -1 fk + fnfk-Fi. (2.10)

This relationship will be proven by induction on k. Let the inductive hypothesis,

H(k), be: fn+k = fn-lfk fk+1. For the first base case let k = 1 giving fni-i =

fn-1 + In 12. Since fl = f2 = 1 we get fn+1 In-1 + fn which is true. For the

second base case let k = 2 giving f n+2 = fn-i f2 f3 Since f2 = 1 and *A = 2 we

get fn+2 = In-1

which is true.

2fn. By replacing In-1 fn with fn+i we get fn+2 = fn -F1 + fn
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For the inductive step assume H(k) and H(k +1) are true and prove H(k+2)

is true. This gives the two equations:

fn +k = fn--ifk + fnfk-1-1

fn +k +1 = fn-ifk+i + fnfk+2

Adding these two equations gives:

fn+k + fn +k +1 = fn lfk + frifk+i + fn lfk+1 + fn fk+2

fn+k+2 = fn -1(fk fk+1) fn(fk+1 fk+2)

fn+k+2 = fn-1 fk+2 fn fk+3

The last equation is the result we are trying to prove. I

If we let k = n in equation 2.10 above we get

f2n = fn -1 fn + fnfn+4

= fn(fn-1 fn+1) (2.11)

(fn+1 fn-1)(fn-1 fn+1)

= fr2I+1 .et-1 (2.12)

This gives an interesting relationship but is not of much use, alone, in com-

puting Fibonacci numbers since it requires fn+i and fn_i, to compute f2n, and if 72

is even we can not use equation 2.12 to compute fn_1 and fn+1. By letting k = n +1

we will get a relation that will compute f2n +1 and allow us to compute both even

and odd Fibonacci numbers.

f2n+1 = fn-lfn-1-1 fnfn-1-2

= Inifn+i + In(fn-Fi + In) (2.13)

To compute f2n, n = 2k, we compute In and fn+1 using equation 2.12 and

equation 2.13. Equation 2.12 was chosen because it uses only one multiply and

equation 2.13 was chosen since it uses three Fibonacci numbers instead of four.

Figure 2.8 gives an algorithm to compute f2i using equation 2.12 and equa-

tion 2.13. The call to fib(n) will recursively compute fn/4, fn /4 +1 and fn12 and with
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fib (n)

if n = 4 return f2 = 1, = 2, f4 =3

else

fn/4) fn/4-1-15 fn/2 4 fib (n/2)

fn/2+1 fn /4- lfn /4+1 fn/4(in/4+1 fn/4)

fn 4-- in/2(fn/2-1 fn/2+1)

return fn/27 fn/2+1, fn

Figure 2.8: Extended N. N. Vorob'ev algorithm to compute fn

Figure 2.9: Call tree for 116
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these values, fn+1 can be computed (see equation 2.13) and f2 can be computed

(see equation 2.12).

Figure 2.9 shows a call tree for this algorithm and graphically shows how the

results of computing fn/2 are used to compute /n+1. To compute f16 the algorithm

first computes 18 recursively, resulting in h, h and f8. To compute f16 we need f8,

which we have and f9. To compute f9 we need h, 14, which we have as a result of

computing f8 and h which we can compute with one subtraction, 13 = f5 14.

Theorem 2.7 The algorithm in figure 2.8 correctly computes fro, A/2+1 and

n = 2k, for the integer k > 2.

Proof. Using induction on k. Base: when k 2 the algorithm returns 121 =

12 = 1, 121+1 = h = 2 and 122 = h = 3. For the inductive step assume the

algorithm correctly computes f2k-2, f2k_2+1 and f2k-i and show that it correctly

computes f2k -,, f2k-1+1 and f2k. By the assumption the first line of the else correctly

computes f2k_2, f2k-2+1 and f2k-i. From equation 2.13 we can compute f2k_14.1 and

equation 2.12 gives us f2k and then fib(n) returns f2k -1, f2k-1+1 and f2k, the desired

result. I

2.7 Binomial Coefficients

An interesting relationship between binomial coefficients and Fibonacci numbers

exists and is easiest to show when the binomial coefficients are organized as Pascal's

triangle. Binomial coefficients,

[4] lead to Pascal's triangle.

and

n!

k
k!(n-k)!, and the two following relationships

n n +1

k +1 k +1

) n:

(2.14)

(2.15)
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n

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

k 0 1 2 3 4 5

Table 2.2: Pascal's triangle

Figure 2.2 shows the binomial coefficients arranged in a table for 0 < n < 5

and 0 < k < 5. This arrangement is commenly referred to as Pascal's triangle

because a similar table appeared in the book Traite du triangle arithmetique by

Blaise Pascal in 1653. Binomial coefficients, and this particular arrangement, appear

much earlier; see [19] for a short history.

Let the nth diagonal of Pascal's triangle, dn, be defined as the sequence of

binomial coefficients:

n n 1 ) n 2 ) 0

2 n

Theorem 2.8 The sum of the nth diagonal, d, of Pascal's triangle is equal to ffl+1.

Proof Using induction on n. Base: the first base case the sum do = =1 =fi

1 0
and the second base case the sum of d1 = + = 1 = 12. For the inductive(

0 1

step we need to show for n > 2, assuming that dn_2 = fn_i and dn_1 = fn, that

do = dn_2 dn_1 = fn+1. Adding dn_2 and dn_1 we get
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( 0 0

n 2 ) n 1

( (

n 1

0

(we can replace the first term with

pairs of terms to get

n n 1

1

n

0 )

=1
O

and apply equation 2.14 to all subsequent

n 2 ) ( 1

2 n 1

( 0
Since n > 2 and = 0, the sum of do is equal to the sum of dn_2 plus the

n 1

sum of dn_i. So, since dn_2 = fn-1 and dn_2 = fn, do = 4-2 + 4-1 = In-1 + =

In+1 I

The algorithm to compute In is to take the sum of dn_1. The interesting

question is "Is there a fast way to compute binomial coefficients?". The standard

method of computing binomial coefficients is [lit]:

and

and if n < k

k)=-(;c1

=1

=0

P. Goetgheluck [14] presents an algorithm to

torization of
n

. His algorithm is presented in

1
(2.16)

1

compute the prime power fac-

figure 2.10, E is the power of
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input n, k and p

E 4 0, r 4-- 0

if p > n k then E 4 1; end.

if p > n/2 then E 4 0; end.

if p * p > n then if n mod p < k mod p then E 4 1; end.

Repeat

a 4 n mod p

n I pi

b 4 (k mod p) r

k 4 Yelp]

if a < b then E 4 E 1,r 4- 1

else r 4- 0

until n = 0

Figure 2.10: Goetgheluck'3 algorithm
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n
.

n
Knowing the factors of for all

p < n the binomial coefficient can be computed by taking the product of pr. for all

pi < n.

2.8 Generating function

We can use a generating function, G(z), to represent the entire Fibonacci sequence.

Let

G(z) = fo fiz f2z2 + = E fnzn.
n>0

zG(z) = foz1 + fiz2 f2z3

z2G(z) = foz2 fiz3 f2z4

By computing G(z) zG(z) z2G(z) we get

G(z) zG(x) z2G(z) = foz° + (fi fo)? + (12 fi fo)z2 +

(f3 f2 ft )z3 +

G(z)(1 z z2) = z +0z2 0z3 +

G(z) = z /(1 z z2)

(2.17)

(2.18)

We can evaluate the polynomial G(z) = z /(1 z z2) at the roots of
unity up 4.01 w2, ,.", getting the values vo, v1, v2, , vn_i. To find the

coefficients, the Fibonacci numbers, perform the inverse Fourier transformation. To

find a specific coefficient, fk, use only the k 1 row of the Fourier matrix, _F.

n-1
fn = E Vi

i=0

2.9 Product of Factors

The evaluation of the generating function above produced approximations of fn.

Several small terms were involved in computing the approximation and they were
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eliminated one by one since they became very small as n grew. From empirical

observations eliminating the small terms seemed to improve the approximation and

when all of the small terms were gone the results seemed to be exact Fibonacci

numbers.

The formula that was suggested is

f2' =HNi

where

= 2, /(31 = 3- (2.19)

The numbers th , , A are a factorization, although not necessarily prime, of

f2s. The Fibonacci relationship this suggests is

(Ln 2

2( -1)'

To show this is true, by equation 2.4,

f4n

f2n

and, remembering that Al A2 = 1
2

(ff2nn)

1

= A??1

2

A2n )2n ) 22(-1)n = Ar221, 2(-1)n

= (A7 A2)2 2(-1)n

= A?n 2(A1A2)n ,1n 2(-1)"

= An +

So, equation 2.20 is correct.

(2.20)

Lemma 2.1 The algorithm in figure 2.11, when given a positive integer i, correctly

computes a factorization of f21 +1.

Proof Using induction on i. Base: when i = 1 the algorithm returns a list with the

one element f2T+1 = f4 = 3 so the base case is correct. For the inductive step assume
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beta (i)

if i = 1 return the list (3)

else

temp 4 beta (i - 1)

last 4- last element of temp

newbeta 4 temp * temp - 2

return the list temp with newbeta appended to the end.

Figure 2.11: Algorithm to compute /3

fib (i)

if i = 0 return 1

else if i = 1 return 1

else

let temp = beta (i - 1)

return the product of all elements in temp

Figure 2.12: Algorithm to compute f2, using 3



28

that the algorithm correctly computes a factorization of f2. and show that for i it

correctly computes a factorization of f2,+1. Since n = 2i, i > 1, n is even and, by the
2

assumption, 7,t-;2 is computed correctly, 2.20 tells us that (I:it-112) 2( -1)n =

Since n is even (-1)n = 1 and 2( -1)n becomes -2 so the step in the algorithm

that computes newbeta is correct. So .9u- can be computed and is added as the

last element in the list temp and since the list temp, by the assumption, already

contains a factorization of fn and fn ,tja = f2n the algorithm correctly computes a

factorization of f2.+1. 1

Theorem 2.9 The algorithm in figure 2.12 corg.ectly computes fn, n = 2i, for the

non-negative integer i.

Proof If i = 0 the algorithm correctly returns f2° = f1 = 1, if i = 1 the algorithm

correctly returns f21 = f2 = 1. For i > 2 the algorithm returns the product of

the elements returned by the call to beta (i-1). By lemma 2.1 beta (j) correctly

computes a factorization of fv+i so this algorithm correctly computes fr.

The algorithm in figure 2.12 could generate the sequence of Fibonacci num-

bers

f4, fs, f16, , fr
by printing the results of each multiplication. This can be generalized to generate

the sequence

f4+k)fs+k, fie+k, , f2' +k

for any integer k using the relation

f2j+k = fk

To show this is true, by equation 2.4,

12j-Fk
(X2' A3i)

= (Ari+k
- A2`-' +k) (Ar Ari)

Or-1+k (AT1 A22.1 -2

(2.21)

2` A2i-1 12i-l-f-k 12i-11-k 12i-1 2i-j-k
A2 (a1 Ak)= Al '2 f 1 2

2i+k
A1

2'+k
A2 ()1A2) A2 (Ai A2)22 k Oki A2)



fib (n)

sI 4 [log n] 1

/3-sequence N, /31, /32, , 081-1

fl-sequence 4-- fl, f3, f7, ,

f2-sequence 4 / 2 f4 /8, , f231

fib-help (n sI fl-sequence f2-sequence)

Figure 2.13: Product of factors algorithm to compute any fn

since A1 )12 = 1

= A?i +k +k a2 + a1 (Ak1 A2)
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By choosing k = 0 we get the sequence generated by the algorithm in fig-

ure 2.12

12, 14, 18, 116,

and by choosing k = 1 we get the sequence

13, 17, 115,

The sequences

11, 13, 17, , (2.22)

and

12, ft, 18, , hi (2.23)

and equation 2.10 lead to the algorithm presented in figure 2.13

Lemma 2.2 The algorithm presented in figure 2.14 will, when given a non-negative

integer n, expo = [log ni 1, the sequence f1i 13, 17, . , f2expo_i, and the sequence

12,14, 18, , f2e., correctly compute fn.
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fib-help (n expo flseq f2seq)

if n = 0 return 0

else if n = 1 return 1

else if n = 2 return 1

else

return flseq[expo] fib-help (n 2"P°, rog(n 2"P°)1 1, flseq, f2seq)

f2seq[expo] fib-help (n 2"P° + 1 Flog(n 2"P°)1 1, flseq, f2seq)

Figure 2.14: Recursive section of algorithm to compute any fn

Proof. Using induction on n. Base: when n = 0, fo = 0 is returned, when n = 1,

fl = 1 is returned, and when n = 2, 12 = 1 is returned. For the inductive step

assume that the algorithm correctly computes fi for all 0 < j < n and show that

the algorithm correctly computes fn+1. Since the ith element of fl-sequence is f2i_1,

the ith element of the f2-sequence is f2i, and the assumption; the algorithm will

return the value f2exP°-1 fn-2exP° f2exP° fri-2exP°4-1 By equation 2.10 this is fn. I

Theorem 2.10 The algorithm presented in figure 2.13, when given an integer n,

3 < n, will corectly compute h.

Proof. The three sequences /3-sequence, fl-sequence, and f2-sequence can be correctly

computed using equations 2.19 and 2.21. By lemma 2.2, the algorithm correctly

computes h.
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Chapter 3

Results and Analysis

M (n) will be used for the number of bit operations used to multiply two n bit

numbers. For most of the analysis it will be assumed that n2 bit operations are

used to do multiplication although better algorithms are known. The I multiply

algorithm presented in [1] is 0(7/10423) bit operations and the Schiinhage-Strassen

integer multiplication algorithm, also in [1], uses 0(n log n log log n) bit operations.

These algorithms are not generally used for multiplication since, although they are

asymptotically faster than the standard n2 multiplication, they are slower for typical

size numbers. Some of the faster algorithms are capable of computing Fibonacci

numbers well over 105 bits in length, large enough so that the advantage of the

Imultiply algorithm, and probably the Schonhage-Strassen integer multiplication

algorithm, would be evident. The a multiply algorithm was implemented and a

significant increase in speed resulted (about a factor of 7 for the largest Fibonacci

numbers).

The number of bit operations used by an algorithm to solve a problem of size

n will be represented as T (n). To facilitate counting the number of bit operations

used to compute fn the number of bits in fn must be known. Since

Anfn=

the number of bits used to represent fn is log2 fn or about log2 Ali. We will use Nn

to represent the number of bits in the nth Fibonacci number where N. is a constant.

Nn = log2 Ai = n log2 Ai (3.1)

So Ar = log2 Al ti 0.69424.
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3.1 Natural recursive

The number of bit operations required to compute fn using the algorithm in fig-

ure 2.1 is the sum of the number of bit operations to compute fn_1 plus the number

of bit operations to compute fn_2 plus the number of bit operations to add f.--1

and fn_2. This gives the recurrence relation

with initial conditions

Tn = Tn-1 Tn-2 N.12

To = 0

= 0

Since this is a linear constant coefficient difference equation the general solution can

be written
k

X = V + E ai Ari`

i=i

where v is the particular solution, Ai is the ith root of the characteristic polynomial

of the difference equation, and the a's are constants.

Solving the recurrence relation, we find the roots of the characteristic poly-

nomial.

A2 1 = 0
1 +

2

1 -V75
A2

2

Find the particular solution

Vn = CiArn + C2

(Ci.A.rn + C2) (CiAr(n 1) + C2) (CiAl (n 2) + C2) = Nn

Cl = 1
C2 = -3Ar



Solve the following two equations for al and a2

To Vo = ai A? + a2A2°

a2A1

Giving

(3 4 3A1

A2 - Al

N (4 3A1)o2 =
112

Let /3 = Ar (3 If .11,) So
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Tn = + (3.Al #),V22. Arn 3.Ar (3.2)

Since 0 < /3 < 3 both al and a2 are positive. Since 0 < al, 0 < a2, 1 < A2 < 0,
and 1.5 < < 2 the number of bit operations used by the algorithm in figure 2.1

is 0(An. Since Al > 1.5 and this algorithm is exponential in n, it is unlikely to be

useful for large n.

3.2 Repeated addition

Using the algorithm presented in Figure 2.2 each 2 < i < n, is computed with

the addition fi = fi-i + fi_2. Each of these additions uses Ar(n 1) bit operations

so the total number of bit operations needed to compute fn is

T(n) = T(n 1) + Ar(n 1), T(0) = 0, T(1) = 0

E Ar(i 1)
i=2

n-2
= + 1)

i=0

((n 2)2 (n 1))
.Ar(n 1)

= Ar n2 n)
2 2) (3.3)
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For the generalized Fibonacci numbers, fn, a similar algorithm using k ad-

ditions at each step will use about Ari-cf'2 bit operations.
2

Tk(n) = Tk(n 1) (k 1)Ar(n 1), T(0) = 0, T(1) = 0

1)
i=2

((k 1)(n
2

2)(n
+ 1)

((k 21)n2 (k 1)n)
2

(3.4)

When k = 2 (the Fibonacci numbers) we get

T2(n) = Ar
(n2 n)

2 2

the same as equation 3.3 above.

The algorithm presented in Figure 2.3 for computation of f4e decreases the

number of bit operations by a factor of (k 1)/2. The value of .Ar will be different

for different values of k so when k 2 the constant will be denoted NI. Ark will

always be less than one. Since the multiply is by two, a shift can be used instead

and the computation of the next Alf will use two /1/1(n 1) bit instructions, a shift

and a subtract.

Tk(n) Tk(n 1) + 2.1111(n 1), T(0) = 0, T(1) = 0

= 2Ark(i 1)
i=2
n-2

2.Ark(i + 1)
i=0

n-2
= 2Nk(n- 1) +2Nk >i

i=o

(n 2)(n 1))
= 2 A r k 1 +

2

= Ark(n2

3.3 Binet's Formula

(3.5)

There are three operations that must be considered to count the bits operations

needed to compute fn using the algorithm presented in figure 2.4. The Ain + log n
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bits of the square root of five must be computed, an Ain + log n bit number must

be exponentiated to the nth power, and a Nn + log n bit division must be done.

The can be computed using log Ain-Flog n iterations of Newton's method

[13]. Each iteration of Newton's method requires a division and the length of the

significant result doubles with each iteration. It will be assumed that a division

requires n2 bit operations, denoted as D(n).

T(n) = T(n12)-F D(Ain12)
(Nn)2 (Nn)2 (Ain)2

4 16 64
(Ain)2

221

= (Nn)2 t (1)8

(Ain)2
3

(3.6)

During each log i iterations of the exponentiation, only the most significant

Nn + log n bits need be kept. Therefore the time needed to perform the exponen-

tiation is log n(Afn + log n)2 bit operations.

The operands for the final division are Ain bits and Ain + log n bits so the

division will take less than (\n + log n)2 bit ope7ations.

the total number of bit operations using the algorithm presented in figure 2.4

will be dominated by the log n(Ain + log n)2 bit operations used by the exponenti-

ation giving O(log n M(n)) bit operations.

3.4 Matrix Multiplication Methods

In this section, and the next, the matrix algorithms and the extended N. N. Vorob'ev

algorithm will be analyzed producing a sequence of the number of bit operations

to compute fn from 8(n3 )2 down to 5( 1N)2. Similar methods are used to find the

running time for each of the algorithms in this section and the next so one general

introduction is presented here and the specifics' for each algorithm is presented in

the appropriate sections.
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All of the algorithms use some number of additions and some other number

of multiplications. Since the additions can be done in time linear with respect to the

size of the operands and it will be assumed that multiplication requires n2 time for

operands of size n, the bit operations resulting :rom the additions will be ignored

and only those resulting from multiplications will be counted.

The simple matrix multiplication algorithm introduced in the first course in

linear algebra requires row column multiplications of size n/2 for a resulting matrix

with elements of size n. In the case of computing

An =
( 1 1 ) fn+i fn

1 0 fn -1

this method would require eight multiplications of size n/2 to compute the matrix

(In+i In

fn fn -1

from the matrix

(fn/2+1 fn/ 2

fn/2 fn/2-1

by squaring the second matrix. The number of bit operations needed to compute

the matrix containing fn using the above method with eight multiplies is 8.M(nAr)
3

T (n) = T (n /2) + 8M (Ar n / 2)

= 8M(A1 n/2) 8M(Afn /4) 8M(JVn /8) +
8(Nn)2 8(Nn)2 8(.?1in)2

4 16 64

= 8(Nn)2
4

= 8(Nn)2

8(Arn)2

3
(3.7)

Since we can compute the first row of An+1 from An using four multiplications

and the second row can be computed using only an addition and four multiplications
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are needed. Using a sequence of operations similar to those above we get 4.m(nAr)
3

bit operations.

T(n) = T(n12)-1- 4M(Arn/ 2)
4(Arn)2

3

3.4.1 Three Multiply Matrix Method

(3.8)

The three multiply matrix method presented in figure 2.6 performs three half size

multiplies, three additions, and calls itself recursively with half size arguments.

Since we are ignoring the additions we get M(nAr) bit operations.

T(n) = T(n12)+3M(Arn12)

= 3M(Ain/2) 3M(Arn1 4) + 3M(Arn/8) +
3(Nn)2 3(Ain)2 3(Nn)2

4 16 64
3(Ain)2=

2211=1

= 3(Nn) (1)1
4

= 3(.Arn)2 1
3

(./Vn)2 (3.9)

3.4.2 Two Multiply Matrix Method

The two multiply matrix method presented in figure 2.7 does two half size multiplies,

four additions, one shift, and calls itself recursively with a half size argument. The
2 M(Arn)number of bit operations used by this algorithm is 3

T(n) = T(n /2) 2M(Arn/2)

= 2M(Ain/2) 2M(Ain/4) 2M(Arn/8) +
2(Arn)2 2(Ain)2 2(.Afn)2

4 16 64
2(Arn)2= - 2211=1



(1)'= 2(.Arn)2E
4

= 2(Nn)2

32(.Afn)2

3

3.5 Extended N. N. Vorob'ev's Method

38

(3.10)

By using the results of computing f21 to compute f2i+1 the algorithm presented in

figure 2.8 is able to replace one 2 bit multiply with two a bit multiplies each time

it is called. The extended N. N. Vorob'ev algorithm uses m(Ar2 n) bit operations.

T(n) = T(n/2) M(Arn/2) 2M(Ain/4)

111 (Ain/2) 3M(Arn/4) 3M(Arn/8) +
(Nn)2 3(Nn)2 3(Nn)2

4 16 64
(Nn)2 cx, 3(Nn)2

4 1=2 22s

4
3(Nn)2 (1)i(Nn)2

(Arn)2 3(Nn)2
4 I 12

(Nn )2

2

3.6 Product of Factors

(3.11)

The product of factors algorithm presented in section 2.9 uses two multiplies at each

recursive call. One multiply is to compute Oi_i by squaring a n/4 bit number and

the other is to compute fit by multiplying Oi_i by the product of /31,02, , 0i-2

both n/2 bit numbers. The number of bit operations this algorithm uses to compute

the nth Fibonacci number is 5.111(Arn)12

T(n) = T (n I 2) + (.Ar n 12) + AI (N. 7 11 4)



= M(Ain12)+2M(Arn14) +2M(Arn18) +
(Ar n)2 2(JVn)2 2(JVn)2. + -I- +

4 16 64
(Ar

4

n)2. + 2(Nn)2 2 E (4)
i=2

\ 2 (Ain)2
= kjv4n)

12
+ 2 '

5(Ain)2
12

3.7 fn for any n using Product of Factors

The algorithm in Figure 2.13 computes the three sequences

01, 021 /331 13i

13, 17, 115, , f2,--1

ft, 18, 116, , hi
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(3.12)

for i = rlog2 n1 1. The worst case for computing these sequences is n = 2` + 1

where the size of i3i is about half of the size of fn with /2. -1 and f2. about the same

size as fn. The best case for this computation is n = 2i, where is about one

fourth the size of fn with f2.-1 and f2. half of the size of fn. We will see that the

best and worst cases are switched for the second phase of this algorithm.

In the worst case the number of bit operations for the the first phase, com-

puting the three sequences, of the algorithm presented in figure 2.13 is

T(n) = T(n12)+2M(Arn) M(Ain12)

2M(.Arn) 3M(Arn12) + 3M(Ain14) +
3(Air)2 3(Nn)2

= 2(Arn)2 +
16

2(Arn)2 E) 3(Ar2:)2

= 2(.Arn)2 3(A1n)2 t
= 2(A.rn)2 + (N.n)2
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= 3(Nn)2 (3.13)

In the second phase of the algorithm (the call to fib-help) the various values

of the two sequences are multiplied together to get fn. In this phase the worst case

will be when the numbers being multiplied together are about the same size, or

about one half the length of fn. The number of bit operations for the second phase

is at most

T(n) T(n /2) 2M(Ain/2)

= 2M(.Arn/2) 2M(Arn/4) 2M(Arn/8) +
2(Ain)2 2(Nn)2 2(Nn)2

4 16 64
2(Nn)2=

4-4 22ii=1

= 20(.71)2 ct° (1)i
i=i 4

= 2(Nn)2.1

2(Nn)2
3

(3.14)

So, the worst case number of bit operations for the algorithm presented in figure 2.13

is certainly less than 11(ji(lit 23

3.8 Matrix Method of Gries and Levin

The algorithm of Gries and Levin presented in section 2.4 exponentiates the k x k

matrix A using only k2 multiplications at each step. Each iteration of the algorithm

doubles n so only log n iterations are required to compute fn. This leads to the

equation

Tk(n) = Tk(n 12) k2 M(Arn 12)

= k2M(ArnI2)+ k2111(Ain14)-F k2M(ArnI8) +
k2(Nn)2 k2(A/72)2 k2(Ain)2

4 16 64
(1 y

= k2(Nn)2 4/



k2(Ain)2
3

For k = 2 (the fibonacci sequence)

T2(n) =
4( Arn)2

Or
4.M (N n)

3

3.9 Binomial Coefficients
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(3.15)

(3.16)

Computing fn+i by taking the sum of the nth diagonal of Pascal's triangle requires

computing the n +1 binomial coefficients in the nth diagonal. The two methods pre-

sented in section 2.7 will be analyized, but since the optimal method of computing

binomial coefficients is not known there may be better algorithms.

Using the standard method of computing binomial coefficients, see equa-

tion 2.16, requires computing k(n k) ii2- elements of Pascal's triangle. There are

k(n k) elements added to compute but since Pascal's triangle is symmet-

rical, Equation 2.15 only the elements on one side of the center of Pascal's triangle

need to be computed. From the diagram in figure 3.1 it can be seen that the largest

number of elements will need to be computed when k = 'it. These elements also

have the largest values since they are closest to the center of Pascal's triangle. The

total number of elements of Pascal's triangle that need to be computed in order to
n

compute
( )

is
k

and when k =
2

12'-

n(n k)
(n In/2 ki)2

4

n2 (n Li 1)

2

2 4

=

=

n2 n2

2 4
n2

4
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Figure 3.1: Elements of Pascal's triangle used to compute a binomial coefficient
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So, in the worst case, there are 74 elements to be added and each of these elements

must be less than n bits long since the sum of the nth row of Pascal's triangle is

equal to 2n or

tz. n =
k

therefore at most 11: bit operations need to be done to compute

nk

To compute fn a complete diagonal of Pascal's triangle must be computed.

Since the diagonal rises to the right all of the elements in the nth diagonal will be

computed if
2n

is computed. This will take, at most, IV = n3 bit operations

to compute. Clearly, this is a gross overestimate of the time required to compute

f by taking the sum of the nth diagonal of Pascal's triangle.

A different way to compute binomial coefficients is with Goetgheluck's al-

gorithm. Each call to the function given in figure 2.10 performs logy n iterations.

During each iteration two divisions of the same size are done, the size decreasing

by a factor of p each iterations. The number of bit operations done by one call is

less than

log,, n

E2 -7 P
= Pt

logy n

E 2 n.pi 1

n n n
n + + + + + 1pl p2 p3

Since the sum will be the largest when the prime number, p = 2, a call to the

function in figure 2.10 will take no more than

n n n
+

2
+

4
+

8
+ 1

= 2n

bit operations. There will be at most n 1 calls made to the function, so the resulting

number of bit operations is < n2.

1The actual number is the number of primes < n or about iongn calls, but this is a slight under-

estimate and using n will not change the order.
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Once the factors are computed they must be multiplied together to form

the binomial coefficient. In the worst case we would have to multiply two half size

numbers to get the result, and four quarter size numbers to get the two half size

numbers and so on.

T(n) = 2T(n/2) M(n/2)

M(n/2) 2M(n/4) 4M(n/8) +
n2 n2 n2

4
+

16
+

32
+

n2 (4 )i

n2

3

Adding the time to compute the factors and the time to multiply the factors, we

get the time to compute a binomial coefficient < 4+2.

To compute fn+i, the N1 binomial coefficients of the dth diagonal need to

be computed.

T(n) La 3
i=n/2

n/2 /1) 2

3 2)
4 71/2 n2

3 4-4 4

4 0(2 +1)('21+1) n3\
3 6 2

n3 5n2
n

Again, this is gross overestimate of the number of bit operations needed to

compute fro.i and is not useful to compare with number of bit operations needed

to compute fn+i using the standard method.
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Algorithm Constant

Repeated Addition 4.223 E -6

Product of Factors (any fn) 3.273 E -8

Binet's Formula (any fn,) 1.06 E -1

Binet's formula (fn, n = 2k) 7.038 E 5

Product of Factors (A, n = 2k) 1.633 E 8

3 Multiply Matrix 3.950 E 8

2 Multiply Matrix 2.667 E 8

Extended Vorob'ev 1.983 E 8

Table 3.1: Constants for algorithms to compute fn

3.10 Actual running times

All of the algorithms discussed in chapters two and three have been implemented

in Ibuki common lisp, formerly Kyoto common lisp (KCL), on a Sequent Balance

21000. The functions are divided into two groups, those that compute fn for any n

and those that compute fn, n = 2k where k is an integer. Each function computed

fn, where n was successive powers of two, until the function used more than five

minutes of CPU time. The results for the functions that computed fn for any n are

given in Table 3.2 and for the functions that computed fn, n = 2k where k is an

integer, are given in Table 3.3 and Table 3.4.

A constant was computed for each algorithm that would make the actual

running time of the algorithm equal to the computed running time derived earlier

in this chapter. The constants were computed by dividing the actual running time of

the largest Fibonacci number computed by the number of bit operations predicted

by the analysis. Table 3.1 presents these constants.
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log n

Repeated

Addition

Product; of

Factors

comp r act

Binet's

Formula

comp actcomp act

2 0.00-0.00 0.00-0.00 3.82-0.08

3 0.00-0.00 0.00-0.02 12.82-0.13

4 0.00-0.02 0.00-0.02 42.40-1.60

5 0.00-0.00 0.00-0.02 145.11-44.28

6 0.02-0.03 0.00-0.03 519.43-519.43

7 0.07-0.07 0.00-0.05 na-na

8 0.28-0.22 0.00-0,05 na-na

9 1.10-0.62 0.01-0,08 na-na

10 4.42-5.17 0.03-0.17 na-na

11 17.71-16.73 0.14-3.28 na-na

12 70.84-71.30 0.55-6.97 na-na

13 283.39-279.52 2.20-9.60 na-na

14 1133.62-1133.62 8.79-17.45 na-na

15 na-na 35.14-49.92 na-na

16 na-na 140.57-154.40 na-na

17 na-na 562.28-562.28 na-na

Table 3.2: Running time to compute fn for any n in CPU seconds
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log n

Binet's

formula

Product of

Factors

comp act comp act

2 0.00-0.02 0.00-0.00

3 0.01-0.02 0.00-0.02

4 0.03-0.03 0.00-0.00

5 0.10-0.05 0.00-0.00

6 0.34-0.13 0.00-0.00

7 1.28-0.75 0.00-0.00

8 4.91-14.83 0.00-0.02

9 19.10-11.10 0.00-0.02

10 75.25-77.82 0.01-0.05

11 298.38-287.70 0.07-0.12

12 1187.73-1187.73 0.27-0.37

13 na-na 1.10-1.23

14 na-na 4.38-4.60

15 na-na 17.53-17.77

16 na-na 70.12-73.98

17 na-na 280.47-280.22

18 na-na 1121.88-1121.87

Table 3.3: Running time to compute fn, n = 2k, in CPU seconds, part 1
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log n

3 Multiply

Matrix

2 Multiply

Matrix

Extended

Vorob'ev

comp act comp act comp act

2 0.00-0.02 0.00-0.02 0.00-0.00

3 0.00-0.02 0.00-0.00 0.00-0.00

4 0.00-0.00 0.00-0.02 0.00-0.02

5 0.00-0.00 0.00-0.00 0.00-0.00

6 0.00-0.02 0.00-0.02 0.00-0.00

7 0.00-0.03 0.00-0.03 0.00-0.02

8 0.00-0.05 0.00-0.05 0.00-0.03

9 0.01-0.05 0.01-0.05 0.01-0.03

10 0.04-0.10 0.03-0.10 0.02-0.07

11 0.17-0.28 0.11-0.25 0.08-0.18

12 0.66-0.83 0.45-0.70 0.33-0.47

13 2.65-2.92 1.79-5.62 1.33-1.58

14 10.60-14.52 7.16-7.77 5.32-9.23

15 42.41-42.85 28.63-29.35 21.29-21.63

16 169.66-172.65 114.54-117.97 85.17-84.98

17 678.63-678.63 458.15-458.15 340.68-340.68

Table 3.4: Running time to compute fn, n = 2k, in CPU seconds, part 2
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Chapter 4

Redundant Information

Since so few of the integers are Fibonacci numbers we would expect redundant

information in the integer representation of the Fibonacci numbers. If we could

understand the structure of this redundancy, we could take advantage of it in com-

puting fn by using a representation using fewer bits than the integers. This chapter

will present three compression methods that were run on a string of bits represent-

ing the sequence of ascending Fibonacci numbers. The results of compressing the

Fibonacci sequence yielded no insights into any redundant structure that might ex-

ist in the Fibonacci sequence. The compression algorithms behaved as they would

if given a random sequence of bits to compress, so the bits of the Fibonacci se-

quence were tested as a random sequence. The three tests for randomness that

were performed indicated that the sequence of bits was random.

The final section of this chapter looks at the Fibonacci numbers in a different

arrangement, instead of placing the binary representation of the Fibonacci numbers

end to end, a binary sequence was constructed from the bth bit of each Fibonacci

number. Arranging the Fibonacci numbers in this manner shows that the bth bit

forms a cycle of length 3 2b. Unfortunately, the cycle length is exponential in b,

the bit position, and since the number of bits in fn grows linearly with n, the cycles

seem to only be useful in computing the lower bits in fn. If we could compute

the value of the mth bit in the bth cycle quickly (i.e., without computing the entire

cycle) we might be able to compute fn quickly. Redundancy in the bth cycle was

investigated and found but efforts to explain it have not yet been successful. This

is described in the final section of this chapter.
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4.1 Compression

The sequence of bits that will be compressed is obtained by writing, in binary, each

Fibonacci number end to end. The bits of each ff, are written in reverse order, that

is the most significant bit is to the right. The start of the sequence would be

fl f2 13 f4 15 f6

1 1 2 3 5 8

1 1 01 11 101 0001

1101111010001

The bits of the individual fn are in reverse order so that when the sequence is read

from left to right the low order bit of fn will be read first, but the order should not

be important as long as it is consistent.

The sequence of Fibonacci numbers were made available to the data com-

pression algorithms in two forms, one bit at a time or one byte at a time. When

a compression function requests the next source character, the leftmost unused bit

(byte) in the sequence is removed from the sequence and is returned to the calling

function. The next Fibonacci number is computed when the current source of bits

(bytes) have been exhausted. This allows the possibility of analyzing very long

sequences.

Terry Welch [38] discusses four types of redundancy: character distribution,

character repetition, high usage patterns, and positional. If some characters appear

more frequently than others in a sequence that ; equence is said to have character

distribution redundancy. For example, in the English language the characters 'e'

and ' occur with greater frequency than the character 'z'. Character repetition

redundancy occurs when the same character appears several times in succession.

Frequently, files with fixed size records will use a blank, or some other distinguished

character, to fill the records; these filler blanks are frequently a source of character

repetition redundancy. High usage pattern redundancy is an extension of character

distribution redundancy, instead of noting that some individual characters appear
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Compression Ratio

k integer r Fibonacci random

128 0.508 0.821 0.533 0.533

256 0.577 2.667 0.520 0.561

512 0.569 2.510 0.520 0.547

1024 0.580 2.081 0.527 0.537

2048 0.616 2.216 0.524 0.532

4096 0.639 2.306 0.531 0.527

8192 0.680 2.421 0.530 0.534

16384 0.712 2.447 0.531 0.530

32768 0.747 2.496 0.532 0.531

Table 4.1: Compression ratios of Ziv-Lempel for various sources

more frequently than others, it is noted that some groups of characters appears more

frequently than other groups of characters. A sequence is positionally redundant

when the same character appears at the same position in each block of data. An

example of positional redundancy would be a file containing a list of numbers of the

form "XXXX.YY" since the '.' always appears as the fifth character. Positional

redundancy will be important in section 4.3.

4.1.1 Ziv Lempel Compression

The Ziv Lempel (ZL) compression algorithm, [40,41,42], along with the LZW com-

pression algorithm, [38], will be considered and the results of applying them to the

sequence of Fibonacci bits will be discussed in this section.

A formal description and analysis of the Ziv Lempel compression algorithm

is in [41], what follows is an informal presentaton of the algorithm. If we have a

array of characters, S, of length k and an integer j, 1 < j < k, then we can match,

character by character, the string at S[1] with the string starting at S[j]. Let L(i)
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Compression Ratio

k integer 2' Fibonacci random

128 0.731 1.438 0.677 0.703

256 0.776 2.393 0.753 0.755

512 0.806 3.483 0.791 0.782

1024 0.861 4.697 0.811 0.811

2048 0.838 6.564 0.841 0.830

4096 0.848 8.480 0.842 0.842

8192 0.854 11.977 0.851 0.849

16384 0.866 15.326 0.859 0.858

32768 0.870 21.530 0.868 0.867

Table 4.2: Compression ratios of the modified Lempel-Ziv-Welch algorithm

Compression Ratio

k integer 2' Fibonacci random

128 0.871 1.707 0.871 0.871

256 0.880 3.413 0.880 0.880

512 0.838 5.069 0.839 0.845

1024 0.815 7.758 0.809 0.805

2048 0.783 11.253 0.763 0.765

4096 0.749 16.190 0.725 0.725

8192 0.721 22.506 0.698 0.694

16384 0.718 30.972 0.678 0.678

32768 na 43.691 na na

Table 4.3: Compression ratios for Unix Ziv-Lempel implementation
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1. Initilize the array of characters, B

2. Compute the largest reproducible extension

3. Generate the code word

4. If not done update the array B and goto step 2

Figure 4.1: Pseudo-code for ZL compression algorithm

be the length of this match where the strings being matched start at location i and

j 1. For example, let S contain 00101011 and let j = 3 so we have

001 01011

So L(1) = 1 since S[1] = S[4] and S[2] S[5]; L(2) = 4 since S[2] = S[4], S[3] =

S[5], S[4] = S[6], S[5] = S[7], and S[6] 0 S[8]; L[3] = 0 since S[3] 0 S[4]. The largest

reproducible extension is the longest substring of S starting at j 1 that matches

with some substring of S starting between 1 and j. That is, the string starting at

location p such that L(p) = maxi<i<p L(i). Knowing p, called the pointer of the

reproduction, and the length of the reproductio:1, 1, we can store just p, 1 and S[j]

instead of the substring S[j]...S[j+1].

An outline of the ZL algorithm is given in figure 4.1. The first step is to

initilize the array B with zeros followed by the first characters from the source

where j is the position of the last 0, see [41] for details about the position of j in

B. The second step is to compute the largest reproducible extension as discussed

above.

The third step in the algorithm is to compute the code word Ci composed

of three parts Cil, Ci2, and Ci3. Cal will represent pi, Cie will represent the length

of the longest reproducible extension, 1, and C'13 will be the character immediately

following the reproducible extension. Again, representation details may be found

in [41].

The final step is to shift out the first 1 characters in the buffer B and add

1 characters from the source to the end of the buffer. The cycle of executing steps
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two, three, and four continues until there are no more characters from the source.

Various sequences were compressed: the sequence formed by concatenating

the binary representation of the non-negative integers, the sequence formed by con-

catenating the binary representations of 2' for i = 0, i = 1, i = 2, ..., the sequence

formed by concatenating the binary representation of fn for n = 0, n = 1, n = 2, ...,

and the sequence formed by concatenating the binary representation of the num-

bers generated by the random number generator in Ibuki common lisp. In Table 4.1

through Table 4.4, k is the number of bits in the sequence that were compressed.

The compression ratio is the size of the input file divided by the size of the resulting

compressed file. A compression ratio that is greater than one indicates the com-

pressed file is smaller than the original file. A compression ration that is less than

one indicates that the compressed file is larger than the original file.

Three versions of the Ziv-Lempel algorithm we used to compress the four

sequences. The first version is a direct implementation of the Ziv-Lempel algorithm

presented in [41]. There are several parameters that need to be set for this algorithm,

two that have a large effect on the compression ration are the size of the array B,

and j, the position in B to start looking for the reproducible extension. The size of

B was 96 and j was 32. Since a pointer into the first [B1 j elements of B must be

stored in binary IBI j should be a power of two and since the length of the longest

possible extension, 1, must be less than or equal to j, j should also be a power of

two. The values of 96 and 32 were selected from all of the reasonable combinations

of j = 2' and IBI j = 2v for 2 < x, y < 12, x < y. The results of running the

Ziv-Lempel compression program using other values for x and y are available upon

request.

The compression ratios for the direct implementation of the Ziv-Lempel

algorithm are presented in figure 4.1. The integers do not compress well, they

actually expand, but as k increases the compression ratio improves. This is because

the leading bits of the successive numbers remain the same for some time and the

algorithm exploits this high usage redundancy. Since the sequence of 2n is mostly

zeros, it should be easily compressible. The results show that the compression ratio
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Compression Ratio

k integer 2" Fibonacci random

128 0.908 2.723 0.914 0.914

256 0.911 4.491 0.921 0.911

512 0.961 5.447 0.919 0.919

1024 0.985 6.206 0.923 0.921

2048 1.009 6.759 0.938 0.941

4096 0.998 7.186 0.957 0.958

8192 1.008 7.441 0.972 0.972

16384 1.026 7.620 0.983 0.984

32768 na 7.743 na na

Table 4.4: Compression ratios of the dynamic Huffman code algorithm

does not get much higher than 2.5 due to the choice of the parameters s and y that

was made above. The Fibonacci sequence and random number sequence behave

remarkably similarly, neither compressing well.

The modified Lempel-Ziv-Welch implementation and the Unix Ziv-Lempel

implementation both showed similar compression ratio patterns as above. The

results are presented in table 4.2 and table 4.3. Since neither of these algorithms

use a static buffer they are capable of taking better advantage of the long strings of

zeros in the sequence of 2n. Again, note the similarity of compression ratios of the

Fibonacci sequence and the random sequence.

4.1.2 Dynamic Huffman Codes

The standard Huffman encoding algorithm scans the data twice, the first time to

find the frequencies of each of the characters in the message, and a second time to

encode the message. First, a tree is constructed with each of the characters in the

message assigned to a leaf with the leaf is assigned a weight proportional to the



store the k leaves in a list L

While L contains at least two nodes do

remove the two nodes x and y of smallest weight from 1

create a new node p and make p the parent of x and y

p's weight 4-- x's weight + y's weight

insert p into L

end

Figure 4.2: Huffman's algorithm to compute letter frequencies
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frequency that character appeared in the message. An algorithm to construct this

Huffman tree from [35] is given in figure 4.2. The result of this algorithm is a single

node that is a root of a binary tree with minimum weighted external path length

among all binary trees for the given leaves [35].

When traversing the Huffman tree choosing a branch to the left is represented

by a zero and choosing a branch to the right is represented by a one. The second

pass over the data creates the coded message by emitting the path that would be

traversed in the Huffman tree from the root to the leaf representing the character.

To use this algorithm the encoder first transmits the Huffman tree and then

the encoded message. The decoder, or receiver, will construct the tree sent to it

and then follow the string of zeros and ones going left or right in the Huffman

tree as appropriate until reaching a leaf and emitting the character associated with

that leaf. The decoder then starts at the root of the tree again to decode the next

character and so on until the entire message is decoded.

A disadvantage to this two pass Huffman compression algorithm is the ne-

cessity to first transmit the Huffman tree and then encode the text. A dynamic

Huffman compression algorithm will create the Huffman tree on the fly as the mes-

sage is being encoded. The frequencys used to encode the kth character are the

frequencies of the previous k 1 characters. The encoder and decoder of the mes-



57

sage both build the tree at the same time, as the text is sent. A disadvantage of

using the one pass Huffman compression algorithm is that the beginning of the mes-

sage is not encoded efficiently since there is little information about the distribution

of the characters in the text. For long sequences of uniformly distributed characters

this is not a problem since the algorithm relatively quickly "learns" the distribution

of the characters, but, if the message is short or the character distribution changes

in the message then the compression will be poor since the algorithm never has an

accurate Huffman tree to work from.

For the purpose of extracting redundant information in a long sequence,

either method will be satisfactory. The compact command in the BSD 4.2 Unix

operating system compresses file using the dynamic Huffman compression algorithm

briefly described above. The sequences were written to a file and then used as input

to compact. The results of this type of compression on the sequences are presented

in table 4.4. Again, as with the various version of ZivLempel compression, the

compression ratios of the Fibonacci numbers and the random numbers are very

close.

4.2 Testing for Randomness

Compression of the Fibonacci sequence using the standard methods that were tried

did not reveal any redundant information in the binary representation of the Fi-

bonacci numbers. Since the methods of compression that were used were designed to

remove redundant information from non-random sequences (there is no redundant

information in a random sequence) and no compression was found, the sequence

of Fibonacci numbers was tested for randomness. Three tests were chosen: the

equidistribution test, the serial test, and the Wald-Wolfowitz test. Each method

was implemented and at least three sequences were tested: a sequence of pseudo-

random numbers generated by the random function of Ibuki Common Lisp using

the linear congruential method, a sequence consisting of a single character, and a

sequence of Fibonacci numbers. The results are presented in table 4.5, table 4.6,
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Equidistribution

X2/di

k Fibonacci Random Non-Random

1000 0.995 0.901 1000

1500 1.115 0.846 1500

2000 1.033 1.049 2000

2500 0.893 0.985 2500

3000 0.979 1.048 3000

3500 0.953 0.903 3500

4000 1.034 0.974 4000

4500 0.974 0.914 4500

5000 0.968 0.980 5000

5500 1.010 1.194 5500

6000 1.027 1.002 6000

Table 4.5: Equidistribution test for randomness

and table 4.7.

4.2.1 Equidistribution

The equidistribution test or frequency test, tests the sequence of numbers for uni-

form distribution between 0 and d. For each number r, 0 < r < d, a count, Cr,

of the number of occurrences of r in the sequence is kept and should be evenly

distributed. To test the evenness of the distribution, apply the chi-square test with

the probability of forfor each r.

Table 4.5 gives the value of x21 df where df equals the degrees of freedom for

the number of occurrences each of the 256 possible eight bit words using n, from 1000

to 6000. The hypothesis that we are testing is that each of the 256 possible eight bit

words is equally likely to occur. For n = 1000 if 0.899 < x2/df < 1.11 then we can
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Serial test

x2/4f

k Fibonacci Random Non-Random

300 0.952 0.921 90820

600 0.921 0.905 big

900 0.937 0.952 big

1200 0.937 0.889 big

1500 0.921 0.937 big

1800 0.937 0.905 big

2100 0.952 0.937 big

2400 0.873 0.857 big

2700 0.921 0.937 big

3000 0.937 0.921 big

3300 0.921 0.921 big

Table 4.6: Serial test for randomness
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Wald-Wolfowitz test

Z

k Fibonacci Random Non-Random

1000 -9.237 -7.907 22327

2000 -12.419 -15.353 big

3000 -16.457 -14.433 big

4000 -20.429 -20.986 big

5000 -22.163 -22.643 big

6000 -22.691 -25.529 big

7000 -26.864 -26.742 big

8000 -27.650 -28.411 big

9000 -30.172 -29.052 big

10000 -29.988 -30.278 big

11000 -32.031 -30.988 big

Table 4.7: Wald-Wolfowitz test for randomness
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not reject the hypothesis at the 99% level that the words are equally distributed.

The hypothesis can be rejected, that is, the words are not equally distributed, for

several entries in the table at the 99% level. The Fibonacci sequence when n =

1500 and n = 2500 and the random sequence when n = 1500, n = 3500, n = 4500,

and n = 5500.

4.2.2 Serial Test

Equal distribution is not enough to be reasonably sure that a sequence of numbers

is random. The sequence of numbers 1, 2, 3, 1, 2, 3, 1, 2, 3, is equally

distributed but not random. The serial test will measure the frequency of pairs of

numbers following one another. For each pair of numbers r1 and r2, 0 < r1, r2 < d

a count Cr1, of the number of occurrences of r1 immediately followed by r2 is kept

and should be evenly distributed over the d2 pairs of r1 and r2. To test the evenness

of the distribution, the chi-square test was applied with the probability of 17 for

each category. Similar tests can be conducted using triples or quadruples of numbers

instead of pairs, but the number of categories quickly becomes unmanageable.

Table 4.6 gives the value of x2/df for the number of occurrences of each pair

of words that appear in order. The number of words examined ranged from 300 to

3300 in increments of 300. Again, the hypothesis that the number of occurrences

of word pairs is equally distributed, can be rejected at the 99% level in only a few

entries of table 4.6. The hypothesis can be rejected in the Fibonacci column when

n = 2400 and in the random column when n = 1200 and n = 2400.

4.2.3 Wald-Wolfowitz Total Number of Runs Test

The Wald-Wolfowitz total number of runs test, [28], examines the grouping of similar

objects in the sequence. Let a run be defined as a consecutive group of characters

from the sequence,
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such that 3k-1 sk, sk = sk+1 = = sk+n_2 and Sk+n_1 sk4.,. For

example, the bits 001111001 have four runs, two runs of zeros of length two each

and two runs of ones of lengths four and one. A random sequence of characters will

likely not have each character grouped together, Icor is it likely to have the character

perfectly shuffled, the Wald-Wolfowitz will meas...xe this grouping.

Table 4.7 gives the value of z for the Wald-Wolfowitz test with the number

of bits examined equal to n. The values for z indicate that the number of runs

is different than what we should expect if they were random. At the 99% level

the values should be between -2.326 and 2.326. The values of z for the Fibonacci

sequence of bits is similar to the values of z for the random sequence and different

from the non-random sequence, a sequence of all ones.

4.3 Cycles in the b Bit of fn

Let the sequence .tai be the sequence formed by concatenating the ith bit of fn for n

from 0 to oo. The bits to the left of the left most one bit of fn are assumed to be

zeros. If the ith bit of fn is examined independently of the the other bits a cycle is

apparent. For i = 0 the sequence Bo is

011011011011011...

Similar sequences appear for other i as well.

Theorem 4.1 The cycle length of the sequence Bn is 3 2n .

Proof. Since
(

3.2n
1 1 1 f3.2n-F1 1 1

1 0 fo = 0 f3 2n
) if

1 0

3.2"

(1 0
= I then f3.2n+1 mod 2n+1 = fl and f3.2n mod 2n+1 f0.

0 1

It will be shown that

3.2n

( 1 1

1 0
mod 2n+1 =

( 1 0
= I.

mod 271+1



SO

1 0

3.2"

( 3 2

2 1

= 2 1 1 1 0

( 1 0 ) 0 1

2A + /

= (2A + /)2n

(2A)° 2) (2A)1
0

2n )
1

(2A)2n-1 2n (2A)2n ( 2n )
2n

= I + (2A)2n + + (2A)2n-12n (2A)2n
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and this mod 27/44 is I. I

These cycles also appear in the generalized Fibonacci numbers. Let Blie be

the sequence formed by concatenating the ith bit of f! for n from 0 to oo.

Theorem 4.2 The cycle length of the sequence 13! is (k + 1) r.

1 1 1 1

1 0 0 0

Proof. Let L= 0 1 0 0

0 0 1 0

It will be shown that

since

L(K+1)2n mod 2n+1 = I.

fn = 2 k _
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Ln

Ln
Ln-k-1

Lk+1

(Lk+1)2n

2Ln-1 Ln-k-1

Ln-1 Ln-k-1
= 2 Ln-k-1 Ln-k-1

= 2Lk I

= (2Lk I)2n

= (2Lk)° ( 2n ) (2e)1 ( 2n ) + +

(
-1

2n
(2Lk)2n

2n 1 )
(2Lk)2n + + (2e)2n-1271 + (2.0)2n

and this mod 2n+1 is I. Therefore

/ \ (K1-1)2n
1 1 1 1

1 0 0 0

0 1 0 0 mod 2n+1 =

0 0 1 0

If the entire cycle must be computed to find the nth element the cycle this

method will be useful only in computing the low order bits since the cycle lengths

grow exponentially with the bit position. If there were a way to directly compute

the nth bit of the cycle Bi we might be able to construct an algorithm to compute

fn using fewer bit operations than is currently known.

There are patterns in the Bi sequeneces, but they are not well understood

yet. The observations of these patterns is presented in the limited detail that they

are known. The patterns that are discussed break the cycle into six bit groups that

place one on top of the other with the least significant bit in the upper left corner

of the pile. Table 4.8 shows the bit patterns for 51,52, 83, 84, and 135 where j is

the jth group of six bits in the cycle.
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i B1 B2 83 B4 135

0 000110 000001 000000 000000 000000

1 011010 000110

2 011101

3 001011 001011

4 101011 101011

5 100110

6 111101

7 110001 110001 110001

8 011011 011011 011011

9 011101

10 000110

11 010000 010000

12 110000 110000

13 111101

14 100110

15 101010 101010 101010

Table 4.8: Repeated patterns in Bi
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Let 8; (j) be the jth group of 6 bits of the sequence B. From table 4.8 it can

be seen that

and also

83(0) = 84(0) = 85(0) = 000000

83(1) = 84(3) = 85(7) = 110001

83(2) = 84(4) = 85(8) = 011011

83(3) = 84(7) = 85(15) = 101010

84(1) = 85(3) = 001011

84(2) = 85(4) = 101011

84(5) = 85(11) = 010000

84(6) = 135(12) = 110000

If this pattern continued then

but actually

86(0) = 85(0) 86(3) = 85(1) 86(4) = 85(2)

86(7) = 85(3) 86(8) = 85(4) 86(11) = 85(5)

136(12) = 85(6) 86(15) = 85(7) 86(13) = 85(8)

86(0) = 85(0) 86(4) = 85(1) 86(3) = 85(2)

86(8) = 85(3) 86(7) = 85(4) 86(12) = 85(5)

86(11) = 55(6) 86(16) = 135(7) 86(15) = 85(8)

The six bit segments 86(4 i 1) and 86(4 i) are switched in positions relative to

what was predicted from earlier observations for 1 < i < 7. When 87 was examined

it also exhibited the same patterns, including the switch, along with one higher level
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switch. Presumably, 138 shows that same patterns as 137 with one further switch and

so on.

If this pattern of switching could be understood we would have a method of

computing the nth bit of 13, for each bit i in fn. This appears promising since the

cycle 13, can be entered, at most, six bits from the bit we want, and starting with

the low order bits we can use addition to compute those missing six bit positions.

This method could be applied iteratively to compute each bit in fn.

The incentive to investigate this method is that it appears that it may be

possible to compute the ith bit of fn in constant time. If this were the case we could

compute fn in linear time. This is still very speculative and unsuccessful to date.
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Chapter 5

Conclusions and Future Research

This thesis has presented several algorithms for computing Fibonacci numbers. Ta-

ble 5.1 lists the algorithms and the number of bit operations the algorithm uses to

compute fn.

A few of the algorithms developed led naturally to computing fr, for any

positive n, but most algorithms more naturally compute fn for n = 2i. The fastest

algorithm for computing f, n = 2i, the product of factors algorithm, was used to

develope a fast algorithm to compute fn for any n.

The additive algorithms must add n numbers, each Arn bits long, using

about Ain2 bit operations. The multiplicative algorithms usually multiply q_ bit

numbers to compute the nth Fibonacci number using about, with our assumption

that multiplication uses n2 bit operations, (Arn)2 bit operations. Since Ar < 1 the

multiplicative algorithms will, when n is big enough, be faster than the additive

algorithms.

Several versions of the Ziv Lempel compression algorithm and dynamic Huff-

man code compression algorithm failed to compress the sequence of bits generated

by concatenating the binary representation of the Fibonacci numbers. The sequence

of bits behaved similarly to the random bits generated using the linear congruential

method in three tests of randomness.

Further research needs to be done on the patterns that appear in the bth bit

of fn. Understanding of these patters may lead to an in:7rovement in the order of

the number of bit operations used to compute fn. Another method of computing

the Fibonacci numbers that was not discussed here but may lead to a fast algorithm
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Algorithm

Name

number of

bit-operations

fn for any n

or n = 2' section new

Natural Recursive Co(A7) any n 2.1 no

Repeated addition 0 (Ar (74 I)) any n 2.2 no

Binet's Formula 0 ((JVn + log n)2) n = 2' 2.3 no

Extending Vorob'ev 0 (i.nri 2) n = 2` 2.4 yes_i
k 2 )

3 Multiply Matrix 0 ((.Ain)2) n = 2' 2.6.1 no

2 Multiply Matrix 0 (a nicLLi 2) n = 2' 2.6.2 yesk 3 f
Binomial Coefficients 0(n3) any n 2.8 no

Product of Factors 0 ( .Au'.LLI.2) n = 2' 2.10 yesk 12 J

Product of Factors 0 (3(Arn)2) any n 2.10 yes

Gries and Levin f! 0 ( k2 (Ai n = 2' 2.5 nok nip)
Generalized addition ./.4` 0 (Ar(n2 n)) any n 2.2 yes

Table 5.1: Summary of bit operation complexity using n2 multiply



70

is computing the number of nodes in a complete AVL tree. It might be possible

to recursively remove the top part of the AVL tree, the part that is a binary tree,

leaving several smaller AVL trees.

Finally, the applicability of these methods to computing f! and eventually

to more general recurrence relations should be investigated.
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Appendix A

List of Fibonacci Relations

fn-I-2 = fn+1 fn n > 0, fo = 0, fl = 1

fn = 2f1:-1

fn = (i+ig I=2)
= 1* (11;/g)n + 0.5i , n 0

( 1 ) fn -1

fn+i fn1 1

f2n-1-1 = +

fni-i(fn+i + 2fn) = f2n+2

fn(2fn+1 fn) = f2n

fn+k = fnifk + fnfk+i

f2n =

f2n+1 = fnifn+i + fn(fn +1 + fn)

G(z) = z/(1 z z2)

(.1:)2 2( -1)n =

f2i-Fk fk

Nn = log2 al =

151:1 = (k + 1) 2n

1.1

2.3

2.5

2.6

2.7

2.8

2.9

2.10

2.12

2.13

2.18

2.20

2.21

3.1

74
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Appendix B

Lisp Functions

B.1 Natural Recursion

(defun rec-fib (n)

(cond ((= n 1) 1)

((= n 0) 0)

(t (+ (rec-fib (- n 1)) (rec-fib (- n 2))))))

B.2 Repeated Addition

(defun add-fib (n)

(cond ((eq n 1) 1)

((eq n 0) 0)

(t

(prog (previ prev2 next)

(setq previ 0)

(setq prev2 1)

(return (do ((i n (- i 1))) ((= i 1) prev2)

(setq next (+ previ prev2))

(setq previ prev2)

(setq prev2 next)))))))

B.3 Binet's Formula

(defun binet-fib-help (i)

(* (- (expt (/ (+ 1 sqrt5) 2) i)

(expt (/ (- 1 sqrt5) 2) i))

inverted_sqrt5))

(defun binet-fib (i)
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(setq sqrt5 (my-sqrt 5 (/ 1 (ash 1 i)))) ; Get the i most significant

(setq inverted_sqrt5 (/ 1 sqrt5)) ; bits of \( sqrt{5} \)

(binet-fib-help i))

(defun fib (n)

(cond ((eql 4 n) 3)

(t (ceiling (* (square (fib (/ n 2))) (sqrt 5))))))

B.4 N. N. Vorob'ev's Methods

(defun nnv2-fib (i)

(cond ((= 0 i) 0)

((= 2 i) 1)

((oddp i) (add-fib i))

(t (- (square (nnv2-fib (+ (/ i 2) 1)))

(square (nnv2-fib (- (/ i 2) 1)))))))

(defun nnv3-fib (i)

(cond ((= 0 i) 0)

((not (= 0 (mod i 3))) (add-fib i))

(t (- (+ (expt (nnv3-fib (+ (/ i 3) 1)) 3)

(expt (nnv3-fib (/ i 3)) 3))

(expt (nnv3-fib (- (/ i 3) 1)) 3)))))

(defun nnv4-fib (i)

(cond ((eql i 1) '(1 (0 1)))

(t (let* ((fiba (nnv4-fib (/ i 2)))

(fibb (let* ((1st (cadr fiba))

(n (car 1st)

(np1 (cadr 1st))

(nm1 (- np1 n)))

(+ (* nml npl)

(* n

(+ np1 n))))))

(list (* (car fiba) (+ fibb (- fibb (car fiba))))

(list (car fiba) fibb))))))
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B.5 Matrix Methods

B.5.1 Three Multiply Matrix Method

(defun mat-fib (i)

(cond ((eq 1 i) '((1 1) (1 0)))

(t (mat-square (mat-fib (/ i 2))))))

(defun mat-square (mat)

(prog (n+1 n n-1)

(setq n+1 (square (car (car mat))))

(setq n (square (car (car (cdr mat)))))

(setq n-1 (square (car (cdr (car (cdr mat))))))

(return (list (list (+ n+1 n) (setq temp (- n+1 n-1)))

(list temp (+ n n-1))))))

B.5.2 Two Multiply Matrix Method

(defun mat2-fib (i)

(cond ((eq 1 i) '((1 1) (1 0)))

(t (mat2-square (mat2-fib (ash i -1))))))

(defun mat2-square (mat)

(prog (alpha beta

(old-alpha (caar mat))

(old-beta (cadar mat)))

(setq alpha (* old-alpha

(+ old-alpha

(ash old-beta 1))))

(setq beta (* old-beta

(- (ash old-alpha 1)

old-beta)))

(return (list (list (setq temp (- alpha beta))

beta)

(list beta

(- temp beta))))))

B.6 Generating Function

(defun beta (i)

(cond ((eq 1 i) '(3))
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(t (prog (temp)

(setq temp (beta (- i 1)))

(return (push (- (* (car temp) (car temp)) 2) temp))))))

(defun gf2-fib (i)

(cond ((= 0 i) 1)

((= 1 i) 1)

(t (apply '* (beta (- i 1))))))

(defun gf4-fib (n) (gf4-fib-help (round (log n 2))))

(defun gf4-fib-help (n m o)

(let ((b 3)

(limit (- n 1)))

(do ((i 1 (+ i 1))) ((>= i limit) m)

(setf b (- (* b b) 2))

(setf m (- (* m b) o)))))

(defun anyf (n)

(let ((a0 3) (s0 0)

(al 2) (sl 1)

(b 3)

(alpha0-list '(3 1)) (alphal-list '(2 1))

(limit (- (integer-length n) 1)))

(do ((i 2 (+ i 1))) ((>= i limit) t)

(setf b (- (* b b) 2))

(push (setf a0 (- (* a0 b) s0)) alpha0-list)

(push (setf al (- (* al b) sl)) alphal-list))

(anyf-help n

limit

(reverse alpha0-list)

(reverse alphal-list))))

(defun anyf-help (n q alpha0-list alphal-list)

(cond ((eql n 0) 0)

((eql n 1) 1)

((eql n 2) 1)

(t (+ (* (nth (- q 1) alphal-list)

(anyf-help (setf n (- n (ash 1 q)))

(- (integer-length n) 1)
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alpha0-list

alphal- list))

(* (nth (- q 1) alpha0-list)

(anyf-help (incf n)

(- (integer-length n) 1)

alpha0-list

alphal-list))))))

B.7 Binomial Coefficients

(defun std2-binomial (n k)

(prog ((binom 1))

(return (do ((i n (- i 1)) (j k (- j 1))) ((= j 0) binom)

(setq binom (* (/ i j) binom))))))

(defun mult2-binomial (n k)

(cond ((= k 0) 1)

((= k 1) n)

(t (/ (apply '* (gen-values n (- n k)))

(apply '* (gen-values k 1))))))

B.8 Generalized Fibonacci Numbers

(defun kfib (n k)

(prog ((mem (append '(1 1) (make-list (- k 1) :initial-element '0)))

(limit (- n k)))

(return (do ((i 1 (+ i 1))) ((> i limit) (car mem))

(setq mem (nbutlast (nconc (list (- (ash (car mem) 1)

(car (last mem))))

mem)))))))

(defun gries-expo (mat n)

(do ((i 0 (+ i 1))) ((>= i n) mat)

(gries-square mat)))

(defun gries-square (mat)

(let ((new-bottom (vector-mat-mult (car mat) (cdr mat))))

(rplca mat new-bottom)

(mapcar #'(lambda (elem 1st)
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(nsubstitute-if elem #'t 1st :count 1 :from-end t))

new-bottom

(cdr mat))))


