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For a limited range of angular noise variance we

achieve good agreement between theory and simulation for

cases of negative and positive spatial correlation, as well

as for the uncorrelated case.

In this thesis we first examine the case of a non-

moving source and then apply the results to the general
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Passive Source Tracking

From Spatially Correlated Angle-of-Arrival Data

I. INTRODUCTION

SONAR and RADAR systems are used in applications

where sources have to be located over a large range. SONAR

is mainly used for underwater location which not only

includes its military implementation for submarine

location; fishery and sea-bottom geology are only two

examples for its wide range of application.

In passive Sonar systems source location is achieved

by detecting the random radiation emitted by a source and

processing of the received data. The radiation consists of

acoustic or electromagnetic waves of unknown structure.

According to the approach in Ref.1 for the two-

dimensional case, estimation requires simultaneous wave-

front angle-of-arrival measurements by at least two

separate sensors. An equivalent way is using time-of-

arrival measurements by at least three sensors.

The angles measured at the sensors can be regarded as

random variables which have a mean indicating the true

(unbiased) source location and constant, source direction

independent variance. The source location, however,

estimated from these angular data by direct calculation has

a bias and variance depending on the source-sensor geometry
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and the spatial data correlation.

It is necessary to determine these quantities before

applying a smoothing procedure to get reliable results in

estimating the source trajectory.

We concentrate in our investigation on source-sensor

geometries where the source is located at distances ranging

from very close to the sensors to about three times the

sensor separation.

A mathematical model for the stationary target

descibing estimator bias and variance and their

distribution in the x-y plane is introduced in section II.

In section III this model is tested by simulation. In

section IV we introduce a new smoothing technique which is

testet by simulating a moving target. Section V presents an

extended Kalman filter model which is compared with the new

smoothing technique by simulation. The content of this

thesis is summarized and conclusions are drawn in Section

VI. Appendix A gives the derivation of the asymmetry ratio

l/u used in the new smoothing technique. Appendix B shows

the algorithm for generating N correlated gaussian number

pairs. Appendix C lists important parts of the simulation

programms.

The simulation was done on the computer system

HP 1000 using its built-in random generators, the system

plotting software, and the system vector instruction set.
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All simulation programs are written in Standard FORTRAN 77

and with minor exceptions are applicable to other computer

systems.



II. MATHEMATICAL MODEL

In this section we present equations for the bias and

variance of source location estimators calculated from

correlated angle-of-arrival data. As can be seen from

Figure 1 the two sensors are located at X = +D and X = -D

in the x-y plane. The true source location at (xs as) and

(R,9) in Cartesian and polar coordinates, respectively.

The true source angles at sensors I and II are 0' and

81f measured counterclockwise from the positive x-

direction.

In terms of the true source position coordinates

(x
s
,y

s
) and sensor separation 2D, the true source angles at

sensors I and II are defined as follows:

2.
X

Xs + D

ys

(1)

(2)

The inversion:of (1) and (2) leads to an expression

for the true source location coordinates in terms of g e9
1 2

and D:
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AY

-D

Figure 1. Source-sensor geometry
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sin (62_ ei)
sly% (0Z -

D [cm (8Z -9,) cos (ez+ et)
sin (e2.-09,)

(3)

(4)

IzD cos2.(i9=-49)-2cos (0z-Gi) cos C6)24-00
sir?' (G2.-91)

(5)

4otv,
.cos (9z-9s) cos (6= +a,)

sin (82.÷ et)
(6)

(Note that (3) - (6) and the following equations are

expressed in terms of (02-e1) and (e2+91) to simplify their

interpretation and application in the simulation procedure.

Thus for a "broadside" source, located along the y-axis,

6
2
+ 6 1=180 degrees, for a source located on the "unit-

circle" at R=1), G
2
-19-

1-
90 degrees).

We now assume, that the source angles, detected at

sensor position I and II are "noisy" random variables ei

and g
II

with means 4
1

and G
2
(i.e. true location),

variance 52 (same for both sensors and independent of

direction and correlation coefficient f and negligible

higher moments.



The source coordinates (x,y), calculated from these

detected angles by (3) and (4), will then also be random

variables, the moments of which can be determined in terms

of the source-angle moments by expanding (x,y) into a

Taylor series about the true source location (x ,y )

s s

(Ref. 2).

Neglecting all terms involving moments higher than G2

and
5'

, mean and variance of x are given by :

D 52s;rt (02. t cos2(02,- 9,)
Immo.

f] (7)
= Xs+

Siv3 (ez - (fit)

sz
D2-6z

X
sin*lt92.- GI)

I cos 2(0 z+ 9,) cos 2. (192- 62,)

+g [Cos Z (Oz+0,) -cos Z (02.-91)]]

Similarly, mean and variance of y are :

2. erl cos 01- 93
z: Ys - cos (9z 4- 9t) cac (gz.- 91)

s; ( Gz- 6, )

cos (92.4.91) 1 1

Cf cos (92- et) -I_

(8)

(9)

7
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z 2 D2'61 cos (9:1- t) cos (ea.-01)12.
(OZ-Q,)

(00.91) 1PZ (oL-e,) -s [cos( Gt-G1).- Cos (92,4' 001

The covariance of x and y is (using (3) and (4)):

62-D1S;IA (02-+G
C q.

))/ S'ItN (Gz Oz)

(10)

cos (9,.. O) -cos (02.4(91)oos2.(9.2.-P0

r [cos (02.+6),) - cos (Gz. 62, )1
(11)

For convenience, we consider the calculated source

coordinates (x,y) as rectangular components of a two-

dimensional source location estimator (i.e. a two-

dimensional random vector) with mean (i,7) and variance S.

From (7) and (9) we get the magnitude B of the estimator
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bias (i.e., the Euclidean distance between the estimator

mean (7,Y) and the true source location (x ,y
s
)):

I/2

X - Xs ) _A [E. + F (12a)

where

ZDGZ
=

s; n3 (e2.- 01)

E = cot (92,-01) [t --Zoos (0;_+ 00 cos (e. -A,) COS2192.9/

F =, 2 COS l Ge-Bt) [con 02 4- eg) [1 +. WI. (92.- -2"s(e2-4)]

2.coz (9z+ 00 cos (92, -8,) ÷ cos' (ez- ,)

The angle 4 of the estimator bias is, from (7) and

(9):

S 4ctY:r" 7s
- xs _

tCt v1
(I- g) cos (02.--e,)

co4(62.46),)
_s;19. (o+0,) 45.s4(oz-c),) Ow.

( 12b)

Similarly from (8) and (10) the estimator variance S

(i.e., the mean-squared Euclidean distance between the



estimator (x,y) and the estimator mean (7,7)) is obtained

as:

G;tZ = QJ]

10

(13)

where H, I, J are functions of 5
2

, D, 671, 82.

As seen from (12a) and (13) the square of the

estimator bias is a quadratic function of the spatial data

correlation coefficient; the estimator variance is a linear

function of the spatial data correlation coefficient.

We can get an impression of this strong dependence ony

from Figure 2 for a particular source-sensor geometry.

If the spatial coherence length of the medium is much

larger or much smaller than the sensor separation, we can

assume that the data are uncorrelated or fully correlated,

currents in the medium or random motion of the (rigid) two-

sensor detecting device relative to the propagation medium

can result in correlation coefficients of 5 = -1 or r= +1.

The investigation of estimator bias and variance

dependencies on 5 and on the source-sensor geometry leads

to the graphs in Figures 3-7. We make use of the inverse

relations

I

ez 427 40t le%

e

(14)
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If If

/1 /1
/1/j /1

/ 1i 1

p=+I / / p-.-
/

iO / P- 1

/ 1

1/ i (X,Y) / I
(R)?) /

1

SOURCE i 1 SOURCE SOURCE
(XsA) 1 (XvYs) (Xs)Ys)

I,
v....,

/ / / 2

1 I 1 1

1 I 1 1

IC I II I.

SENSORS
JI

Figure 2: Source-location distributions for a) positively
correlated data (s7=1 +1), b) uncorrelated data (g tt: 0),
and c) negatively correlated data ( r -1).
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9 e

2. cas2.e -

12

(15)

to derive (16) - (19).

We first consider the estimator bias B.

Differentiation of (12a) with respect tof reveals that B

is a minimum when:

24

ej
M e

+. _ z c..04 z
Z.

00.0

(16)

In Figure 3 fmin is plotted against the normalized

source coordinates (x
s
/D,y

s
/D), where (R/D)

2
= (x /D)

2
+

(ys/D)2 from Figure 1. Note that imin > 0 for all source

locations except those in the region cos2e < R2/D2 < 1.

We substitute (16) into (12a) and obtain the minimum

estimator bias:

VIP:t
SSP% 2.6?

ao

R4 12rte or)

where B0 = A[E] 1/2 is the estimator bias obtained for

uncorrelated data (f=0) . In Figure 4 B. /B0 is plotted

(17)
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2
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l

Prnin
'O.9

0.75

Xt
D

2

MI

Figure 3: Data correlation coefficient () mi0
n

) for minimum
bias versus source location



against (x s/D,ys/D) . Note that on the 'Unit circle' (for

R=D) Bmin /Bo is not defined.

The maximum estimator bias B
max

is obtained by

evaluating (12a) for g :4-1 and p-1 according as to whether

gmin <0 or ymin >0, respectively.

gtvtali-X

go

go

-1

( cos.2.9 I-- Rz
WM.

2.

÷
D --21 cost 0

14

cos 2e<R 2/D2<1

(18)

elsewhere

The corresponding graphs are plotted in Figure 5.

The evaluation of (13) shows that the estimator

variance S is a linearly decreasing function of 9 outside

the 'Unit circle' (R2 /D /D ) and a linearly increasing

function of 5 inside (R 2/D 2 <1) .

For f =-1 and p+1 we obtain the maximum and minimum

variance, Smax and Smm .

'Chime. X

So
Ie
.011.

2.
3 so ; outside

(19)



15

S 2.
So

=

I + -122*-
1)

1
inside

In Figures 6 and 7 S
arm

. /S and Smax/S0 are plotted against
0

(x
s
/D,y

s
/D), which are concentric circles around the

origin.
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Xs

D

41

AM

Figure 4: Normalized minimum bias (B
min

/B
0
) versus

source location
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Bn, /80=2.1

Figure 5: Normalized maximum bias (B
max ('

/B ,J versus
source location
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0.75

10.

0.75

S So=0.25

0.5
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x3

D

Figure 6: Normalized minimum variance (Sm.
in

/S
0

) versus
source location
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2
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x.,
D

2

Figure 7: Normalized maximum variance (S
max

IS
0

) versus
source location
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III. STATIONARY TARGET: SIMULATION MODEL

As mentioned in the Introduction, the angle-of-

arrival data are perturbed by various sources. We assume

that the perturbation is caused by zero-mean additive noise

which is superimposed on the correct angle-of-arrival data.

In our simulation the noise consists of zero-mean

gaussian random variables .69
I

and aeii with joint

probability density function given by:

(2soz &09x.)
1 exp r Gt.

Ot /lb ffk 6%-2.--v -8.1' §'x)[ 2. (20)

ez z66172::

64 5Z.1

and
IV

and the correlationwhere 5 2: variances of 91,

coefficient is (-1<9 <+1).

RANDOM POSITION GENERATION

To create the angular noise (AOI ,Aerr )

we use

uncorrelated single precision random numbers (Z1 ,Z2) in the

range of -5 to +5 of gaussian distribution with standard

deviation G.: 1 and zero-mean provided by a random

generator. Appendix B shows the algorithm for generating N



correlated gaussian number pairs. The desired random

position (x,y) is calculated from the random angles e and

Bll
applying (3) and (4).

SAMPLE TEST

In order to get an impression of the distribution of

the random positions around the true source location we

calculate the statistical moments.

The expected value in x-direction is estimated by:

Al

21

(21)

The unbiased estimate of the standard deviation in x-

direction is given by:

N 1

(22)

Similarly we get expected value and standard deviation in

y-direction.

The correlation of x- and y-positions is estimated by

the unbiased correlation coefficient :

Al

N - 1
I x: -WEHE

Sx (23)
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The magnitude and direction of the random positions overall

displacement from the true source position is given by the

empiric estimator bias and estimator angle.

Similar to (12a) and (12b) we get:

B
^NM

I
+mt.%

Random Generator

'xs ) + 5-. ;

TEST PROCEDURES

(214a)

(24b)

The HP 1000 library software provides a random generator

that creates a sequence of gaussian distributed random

numbers.

The generator has to be initialized by a positive

integer number, called generator seed, that characterizes

the created sequence of numbers. This enables us to repeat

the simulation under the same (initial) conditons, if

wanted. The created sequence supposedly has zero-mean and
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unit standard deviation.

By experience we found, that the entire simuation

strongly depends on the choice of the generator seeds. In

order to keep the computation time within reasonable ranges

we have to limit the number of samples. (In the stationary

case we usually ran the simulation with 50 samples.)

Considering a practical implementation we have to deal with

a limited number of samples in a restricted period of time

as well. This however, implies that, owing to the

imperfections in the random number generation, the random

numbers and thus the whole simulation can be biased, the

condition of zero-mean noise with unit standard deviation

is no longer met.

The following test procedure was applied:

- Creation of random numbers by various calls to a

random generator

- Calculation of the moments about the origin and

moments about the mean.

Runs for different seeds confirmed that the deviation of

mean and standard deviation from the given random generator

specifications does not depend on the number of samples but

on the choice of the generator seed.

In order to get true zero-mean, unit standard
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deviation and thus independence from the generator seed, we

apply a linear transformation to the random number

sequence:

Z . (G . - /sG (25)

where G. is the original sample

G is the empiric sample mean

SG is the unbiased sample standard deviation

thus it follows

Z. is a random number with zero-mean and

unit standard deviation.

Simulation of the Stationary Target

In this part we examined the inpact of angular noise

power on the results. We tested how large the angular noise

variance can be, to maintain reasonable agreement between

theory and simulation. In order to get independence from

the source range R we define the standard deviation of the

noise in terms of the true source angles at detectors I and

II:

= A [
(26)
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where A is a normalizing constant used as simulation

parameter.

a) Comparison of Theoretical and Simulated Standard

Deviation

We calculated the ratio between theoretical and

simulated standard deviation (TSDX) and (SDX),

respectively, depending on true source location, spatial

noise correlation and variance.

Provided that the ratio TSDX/SDX is gaussian

distributed, we expect a mean value of:

ECTSDX/SDX1 = 1 (27)

and a standard deviation:

Std.dev.[TSDX/SDX] =-V2/N (28)

The estimation in y-direction follows respectively.

A representative graph is shown in Figure 8. It shows

the simulation results for a source located at the

normalized distance R=2 and angle 9=50 degrees for a

normalized noise standard deviation A in the range:.

0.01<A<0.81 which for this particular configuration
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1.0

TSDX]SDX

p-1.0

p-0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 8: Ratio between theoretical and simulated standard
deviation versus normalized spatial noise correlation
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corresponds to an average angular deviation from 0.76

degrees to 77.1 degrees and for spatial noise correlation

of
4
=4-1,

4
=-1, and y=0. Note that for decreasing spatial

noise correlation the theoretical standard deviation gets

too "optimistic".

Tests for various source locations showed that for

source locations where R>1 the theoretical estimations are

too optimistic for a normalized noise standard deviation

A>0.15. For locations within the unit circle (R<1) where

the angle difference (82-Ey is greater than 90 degrees,

there is a significant deterioration of the estimation for

A>0.05.

For source locations outside the unit circle we get a

significant improvement of the estimation, if we cut off

random positions located at larger distances from the

sensors. Best results were achieved for cutting off 5% of

the farest random positions.

b) Comparison of Theoretical and Simulated Estimator Bias

To get an impression for the deviation of the

simulated average position from the theoretical average

position, we tested the mean (absolute) deviation, M.D.,

with respect to the theoretical mean. (Ref. 3)

The mean absolute error (m.a.e) is defined to be:



EUXTA - Xal]

For gaussian mean distribution:

XTA = theoretical avg. pos.

XA = simulated avg. pos.

28

ENXTA - Xal] = .S1))(- (29)
Al

with a standard deviation of

std. dev.[IXTA - XaI] = sbX (30)

SDX = simulated std. dev.

N = # of random positions

(Y-direction follows respectively.)

The simulation conditions correspond to those in the

previous subsection.

The representative plot in Figure 9 for a source

position at the normalized distance R=2 and source angle

8=50 degrees, for a normalized noise standard deviation A

in the range: 0.01<A<0.81 and for spatial noise correlation

of fr:+1 , p-1, andf=0 shows that the simulation confirms

the assumption for the mean deviation for a limited range

of angular noise power. Various tests showed that for
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E
IXTAXAI ,--

"VNISDX
Y.,

0.1 0.2 0.3 04 0.5 0.6

Figure 9: Normalized mean absolute error versus normalized
spatial noise standard deviation
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source locations outside the unit circle (R>1) the mean

absolute error stays approximately constant at the

theoretical value given by (29) up to a normalized noise

standard deviation of A=0.3. For locations within the unit

circle the range for A is slightly smaller, again due to

larger difference angles.

Applying cuts at sample positions of large distance

from the sensors did not result in a significant

improvement of the bias estimation.

c) Summary of the Test Results

We tested the fit of theory and simulation for

standard deviation in x-direction and y-direction and bias

for different noise variances and spatial correlation at

various source locations.

The overall range for A = Gr/ (02- 91) to get

reliable agreement is:

A < 0.15 for R > 1.0

A < 0.05 for R < 1.0

Note that hecause of the normalization (26) the maximum

allowed noise standard deviation depends on the source

location.
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Bias/Variance Distribution in the X-Y Plane

The following test was used to confirm the

theoretical distributions for estimator bias B and

estimator variance S as given by (16) - (19).

We tested for:

- Correlation coefficient 0 . for minimum bias
-min

- normalized minimum bias (Bmin/B0)

- normalized maximum bias (B
max

/B
0

)

- normalized minimum variance (Smin/So)

- normalized maximum variance (S
max /S 0

)

For every true source location in a x-y plane-array,

for fixed noise variance, and N random positions, we

calculated

- estimator bias 13(y) and variance 8(5)

for : -0.9 < 9 < +0.9 ; A = 0.1 ; N = 40

From these data we selected:

- minimum bias B min(y) B(ymin )

- max imum bias B max( )

- minimum variance Smin (y)

- max imum variance ;lax (f)
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- Smin (follows directly from Bmin)

We then normalized these estimates with respect to bias and

variance for the uncorrelated case (B0 = B(gP=0),

S
0
= S(9=0)) and displayed them in the x-y plane. The

simulated distributions can be viewed in Figures 10 - 14.

The test showed that the theoretical distribution for

estimator bias is very sensitive to biased noise that is

received at the detectors. Biased (i.e., non-zero-mean

noise) results in a spread of the estimator bias

distribution in the x-y plane. The estimator variance

distribution, however, stays relatively stable for biased

noise.

For the region within the unit dircle the simulatiuon

could not show clear results due to a not sufficiently

large resolution. We can, however assume that the

simulation tends to agree with the theoretical

distribution.
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IV. MOVING TARGET: DATA SMOOTHING

In this section we descibe an optimum trajectory

estimation (with minimum mean-squared error). A new

flexible smoothing technique is introduced which consists

of alternatively smoothing over a symmetric or asymmetric

window (Ref. 4). In general the introduced smoothing

technique is applied under the following operating

conditions:

a) The tracking data are collected at two fixed sensors

and at discrete, constant time intervals. They consist

of the true source angles plus additive zero-mean

gaussian angular white noise. The noise at both sensors

has identical time independent variance with known

x-y distribution but is possibly spatially correlated

between the sensors.

b) For the duration of the smoothing interval the source

being tracked travels at a constant (but unknown) speed

along a trajectory having constant (but unknown) radius

of curvature.

As we know, the angular detection of the source location

introduces a bias depending on the spatial noise
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correlation between the two sensors. Therefore the data

must be corrected in order to get an unbiased trajectory

estimate.

Our smoothing procedure consists of two steps:

1) The apparent source locations are calculated for each

pair of measured angular data. For these locations the

bias is removed, so that the data correspond to the

true source locations plus zero-mean two-dimensional

noise.

2) Smoothing is now performed over sequences of unbiased

noisy data points. The sequences are of constant

length, limited by how well condition b) (i.e. constant

speed and radius of curvature) is met.

In practice, assuming that the target travels at

approximately constant speed and along a circular

trajectory, the algorithm performs asymmetric smoothing,

thereby permanently calculating the distance travelled from

the previously smoothed position to the most recently

smoothed target position and comparing it with the average

distance travelled between the already smoothed locations

during the smoothing interval. This avoids out of range

positions caused by the nature of the asymmetric part of

the smoothing procedure in the vicinity of points of
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inflection (i.e., infinite radius of curvature, for example

where the target changes from a clockwise circular

trajectory to a counterclockwise one) or in the case where

the target travels along a straight line). In the case

where the travelled distance exceeds a certain range we

apply a conventional symmetric smoothing procedure. (Refer

to "Smoothing Procedures ".

BIAS REMOVAL

To remove the measurement bias caused by the angular

detection, each apparent source location (xi,yi) calculated

from the angular pair (Gli, 82.1) by (3) and (4) must be

corrected by subtracting the corresponding bias components

calculated for the same data pair by (12a) and (12b). The

unbiased source estimates are:

x©; -- a; cos EI
(31a,b)

The resulting data point (X ofY0i) thus represents

the true source location corresponding to the i'th angular

data point, plus zero-mean two-dimensional noise.

In order to carry out the bias removal as given in
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(31a,b), it should be noted that bias magnitude B and

angle ' are functions of the angular noise variance CC
2
and

the spatial correlation coefficient g. Owing to

difficulties in estimating these quantities from the

angular data, we have to assume these properties by

experience. This can be done by estimating noise variance

and spatial correlation for various stationary sources in

the vicinity of the sensors thereby taking track of the

physical quantities of the transmission medium like sound

velocity and water temperature. The x-y distribution of

these quantities have to be stored in order to apply them

in the bias calculation. Otherwise we have to carry out the

bias removal under the assumption that noise variance and

spatial correlation are known and constant in the x-y

plane.

SMOOTHING PROCEDURES

Conventional smoothing techniques consist of

averaging data points in a symmetric "window" about the

point of interest, according to some weighing law (e.g.

rectangular window). Such symmetric smoothing, however,

leads to a new bias due to trajectory curvature.

We make use of a new "asymmetric" smoothing procedure

in which two subsets of the symmetric data are averaged
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individually in order to obtain two regression lines. By

properly proportioning the subsets about the data point of

interest, the intersection of these regression lines is, to

a very good approximation, an unbiased estimate of the true

target location. The residual trajectory bias error for

this procedure is about an order of magnitude smaller than

the bias obtained with conventinal (symmetric) smoothing,

provided that the total smoothed arc does not exceed a

complete circle (i.e. 360 degrees). The optimum assymmetry

ratio 1/u of the arc length about the point of interest is

51+ 2, a deviation of about 15% from the optimum does not

substantially increase the residual bias. (For the

derivation of the asymmetry ratio refer to appendix A.)

To get more insight in the smoothing procdure, assume

that the successive data points (X0i,Y0), calculated from

the angle-of-arrival data and corrected for bias, are

arranged sequentially in the order in which they were

generated in time. Around the point of interest (X
P

,Y F) we

devide the calculated target locations into two sequences

of data points each 1 positions long. Sequence 1 runs from

i=p-1 to i=p+u, and sequence 2 runs from i=p-u to

i=p+1, where 1=(.,V-3"+ 2)u. For each sequence we then

determine its regression line.

LINE 1: (Y-Y
1

) = m
1
( X-X

1
) ( 32 )



where

and

.1111111

X
I

e+ u 3 e+ Yo;
lap-e

x

CY1

Cxyt

43

( 33 )

(34)

(35)

)71 7"/ (36)

xyi%-
t

t r2" 2"
I

(The + sign in m
1

is choosen such that m,/Cxyi, > 0.)

Similarly, for sequence 2 we have

LINE 2: (Y -Y2) = m
2
( X-X 2)

(37)

(38)

where Y2, X
2
and m

2
are calculated by equations identical

to (33) - (37), except that the summations run from i=p-u



to i=p+1.

The intersection of LINE 1 and LINE 2 is the

estimated source location corresponding to the pith data

point (X ,Y ).
sp sp

Thus,

X - ( 572.XS
rytz -

rn z

(7; el X ) nns Xsp,t I

Or

(Y2. tletzXa.) vv,z. xap

44

(39)

(40)

Schematically, the procedure is shown in Figure 15.

As mentioned above the flexible nature of the

proposed smoothing technique takes effect in the vicinity

of points of inflection where both regression lines are

parallel or nearly so. Thus the intersection of LINE 1 and

LINE 2 is far off the point of interest. In this case the

conditions for smoothing over a symmetric window by

averaging data points around the point of interest are met

to get an unbiased estimation of the source location. The

window size includes the same number of data points as used

for the asymmetric smoothing. Thus for the sequence of data

points ranging from i=p-1 to i=p+1 we get:



°

0 LINE 1

RESIDUAL BIAS: E
D a

a
Eg a

LINE 2
321

.
lt4F----SOURCE TRAJECTORY

(RADIUS R)

SEQUENCE I .C-15)4 -4a SEQUENCE 2
POINT TO BE SMOOTHED

Figure 15: Asymmetric smoothing procedure
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(41)

(42)

As an indicator of the point of inflection we control the

speed of the target in the smoothing interval by

calculating the average distance travelled. Assuming that

the target keeps its speed approximately constant, by

experience we choose the decision level RM for switching

from asymmetric smoothing to symmetric smoothing to RM=2

(i.e., the just travelled distance obtained with asymmetric

smoothing Da exceeds twice the average distance D). Then,

in order to avoid wrong decisions we compare both distances

(i.e., the distance from the previous smoothed position to

the positions, estimated with asymmetric, Da, and symmetric

smoothing Ds) with the average distance D and chose the

estimated source location for which the travelled distance

is closer to the average distance D. The flowgraph in

Figure 16 summarizes the smoothing procedure realized in a

computer simulation.

One can show (see Ref. 4) that for the assumed

conditions for constant speed and trajectory curvature, the
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optimum smoothing arc is that for which the total mean

square error

S (E..)e=
2e

48

(143)

is minimum. (S is the variance of the data points from the

true trajectory, as given by (13), E/R is the residual bias

error.)

For a smoothing arc no longer than 180 degrees and

optimum 1/u, differentiation of (43) leads to the condition

S Re
or+ = 3. g2.[DF-- (144)

where D is the average distance travelled by the source in

the time interval between successive data points and R is

the radius of curvature. If D and R are at least

approximately known (44) provides a good estimate of the

optimum number of data points (2160t + 1) over which

smoothing should be performed. If we do not have this

information available or the target violates the condition

of constant velocity or it does not follow a true circular

trajectory several runs for increasing smoothing arc length
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have to be performed and the estimated trajectories

displayed in order to judge for the "best fit". Another way

is by repeatedly smoothing over already smoothed positions

in order to improve the trajectory estimate.

SIMULATION RESULTS

The smoothing technique was tested in several

simulation runs for different trajectories. Figures 17, 18,

and 19 show the simulation for a true circular trajectory

(R=2.0, 2 circle segments of Al=80 degrees each, stepwidth

DAL=2.0 degrees) in the case of positively correlated,

uncorrelated, and negatively correlated data. It can be

seen, that in general the estimated trajectory is a good

approximation of the true trajectory. Figure 20 shows the

recorded data of the simulation run in Figure 19. Numbers

in row BML not equal to zero indicate where the algorithm

switched from asymmetric smoothing to smoothing over a

symmetric window in order to avoid positions out of range

(which for instance would have occured at target

position 16).

The simulation run also shows some inaccuracies

(like a suddenly backwards travelling target) which could

be excluded in a more sophisticated algorithm. A more

detailed investigation of apparently "backward" travelling
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targets (e.g. at target position 63) showed that these

erroneous positions only appear when the algorithm switches

from smoothing over a symmetric window to asymmetric

smoothing and vice versa.

We further tested the adaptability of the algorithm

concentrating on trajectories where the radius of curvature

changes constantly. As a practical example we assume a

sensor configuration where several sensors are arranged

along a straight line, each sensor 200 m apart. The sensors

active for source location are those for which the target

distance is a minimum. Thus when a target leaves the area

of one sensor pair, detection is handed over to the next

sensor pair. Additionally, assume a target travelling at a

velocity of 10 m/s along a fixed trajectory. (For the

observer target velocity and trajectory are unknown.) The

data are collected at a fixed rate and were smoothed using

a constant smoothing interval.

For the simulation we asumed a trajectory given by

Y = -0.08X3 + 0.04X2 + 0.42X + 1.5 (45)

(all distances are normalized with respect to half the

sensor separation.) Concentrating only on a two-sensor

configuration, the area of interest was chosen slightly

larger than required by a multisensor configuration. Also,

the nature of the asymmetric smoothing technique requires
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enough source positions ahead of the first smoothed

position. Thus we chose the area of interest to

-2.0<X<+2.5. The sampling rate was 2.5/sec. Figures 21, 22,

and 23 show the simulated run for constant angular noise

standard deviation and constant spatial correlation

coefficient

Ci = 0.03 Figure 21

(5' = 0.03 Figure 22

Ei = 0.03 Figure 23

(The dashed lines connected the unsmoothed source positions

in the order they were detected in time.) Note, that the

dashed lines actually indicate an unsmoothed trajectory,

"seen" from the sensors. In all three cases, in the

vicinity of X=1.4 the estimated trajectory deviates from

the true trajectory because in this range the smoothing

algorithm mainly used symmetric averaging. However, if we

consider the distribution of the detected positions around

the true trajectory, we can conclude that the smoothed

trajectory is a sufficiently accurate estimate of the true

trajectory.



01
 z

0 
C

A E
0
 
0

U
J
 
0

I
 
I
I
N 0 C
D

"
1

2
.
0

0
 
0

T
R
U
E
 
T
R
A
J
E
C
T
O
R
Y
;

E
S
T
I
M
A
T
E
D
 
T
R
A
J
E
C
T
O
R
Y
:

i

,

.

X
.

;

\ /

i

*
S
M
G
*

I
1
=
 
4
5

C
O
U
R
S
E

0
.
0

D
E
T
E
C
T
I
O
N
 
A
T
 
S
E
N
S
O
R
S
;
 
B
I
A
S
 
R
E
M
O
V
A
L
;

S
M
.

R
A
N
G
E
:

3
1

S
I
=
 
.
0
3
0
 
R
H
O
=
1
.
0
0
 
T
A
V
=

.
 
1
1
D
I
V
 
/
S
E
C
 
S
A
R
=
 
2
.
5
/
S
E
C

F
C
T
.
s
Y
=
1
.
5
0
*
 
.
4
2
*
X
*
4
.
-
1
÷
 
.
0
4
*
X
*
*
2
÷
.
0
8
*
X
*
*
3
+

R
M
=
2
.
0

T
R
A
N
=

2
.
0

0
.
0
D
E
G
R



G
t

(f
)

i
i
 
E

oc
n

.
5

0
0

W
 
0

k
,
1
0 I
I
 
C
M

o
 
1
:
1
)

0
 
C
M 0 -
f 5

2
. 0

0 0

T
R
U
E
 
T
R
A
J
E
C
T
O
R
Y
:

E
S
T
I
M
A
T
E
D
 
T
R
A
J
E
C
T
O
R
Y
:

\ \
.

.

--
.

" 1,
.IN

.
Z

/
.

-.
...

...
.. 

--
 '.

...
.'

/7
.

/
.

1/
.

\Z

///
'

\Y
-
2
.
0

-
K
-
S
M
9
4
.

I
1
=
 
4
5

C
O
U
R
S
E

0
.
0

2
.
0

D
E
T
E
C
T
I
O
N
 
A
T
 
S
E
N
S
O
R
S
;
 
B
I
A
S
 
R
E
M
O
V
A
L
:
 
S
M
.

R
A
N
G
E
:
 
3
1
 
R
M
=
2
.
 
0

S
 
I
=

.
0
3
0
 
R
H
O
=
0
.
 
0
0
 
T
A
V
=

.
1
1
D
 
I
 
V
/
S
E
C
 
S
A
R
=
 
2
.
 
5
/
S
E
C
 
T
R
A
N
=

0
.
 
O
D
E
G
R

F
C
T
.

:
Y
=
1
.
 
5
0
-
I
-

.
4
2
-
*
X
0
*
-
0
.
-
1
4
-

.
0
4
-
m
-
X
-
K
 
t
i
2
4
-
-
.
 
O
B

O
P
X

0,
4
.
3
1
-



U
]

0
0

0
 
0

L
A
)

ct O
R

I
I

I
-
,

O
ci 0

C
D

 'I ct
- 0 9 0 C
D 0 C
D D
J

2
. 0

0 0

T
R
U
E
 
T
R
A
J
E
C
T
O
R
Y
;

E
S
T
I
M
A
T
E
D
 
T
R
A
J
E
C
T
O
R
Y
;

\ \
x

x

x
.

,
\ /

.
.

.
'

...
. .

...
...

..
P
...

.

/
'

V
i

Z
.
.
/

'
'
'

xx

x
x

x

-

\ /
i

2
.
0

0
.
0

*
S
M
9
*
 
D
E
T
E
C
T
I
O
N
 
A
T
 
S
E
N
S
O
R
S
;
 
B
I
A
S
 
R
E
M
O
V
A
L
;

S
M
.

R
A
N
G
E
;

3
1

I
1
=
 
4
5
 
S
I
=

.
0
3
0
 
R
H
0
=
-
1
.
 
0
 
T
A
V
=

.
1
1
D
 
I
 
V
/
S
E
C
 
S
A
R
=
 
2
.
 
5
/
S
E
C

C
O
U
R
S
E
 
F
C
T
.
 
1
 
Y
=
1
.
 
5
0
1
-

.
4
2
*
X
*

4,
1

-.
-

.
0
4
*
X
*
*
2
-
*
-
-
.

E
as

-x
-x

>
,
 
*
3
+

2
.
0

R
M
=
2
.
0

T
R
A
N
=

0
.
 
O
D
E
G
R



V. KALMAN FILTERING

To evaluate the performance of the new tracking

algorithm, we compare it with Kalman filtering.

We assume the same operating conditions as for the

above tracking procedure. This leads to a discrete time

signal model with the state vector consisting of the x-y

positions, the trajectory angle, the rate of change of the

trajectory angle, and the target velocity. Thus, we select

as a state vector:

59

(46)

where x
k

y
k

denote the position coordinates of the target

Pk

at time tk

is the trajectory angle at time tk measured

counterclockwise with respect to the positive

x-axis.

K
is the rate of change of the trajectory angle

at time t
k'

V4 is the target velocity along the trajectory

at time t
k'
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In order to meet the condition of constant radius of

curvature and constant target velocity over the time

interval T
s

(i.e. the smoothing interval for the new

smoothing method) f3 and v have to stay approximately

constant. But since we include all of the past history for

evaluating the Kalman filter parameters and at the same

time assume that the target is maneuvering, we have to

allow the trajectory parameters to change slightly. This is

done by introducing an artifical error to the states

consisting of gaussian white noise, which is uncorrelated

between the states.

Under these conditions the process can be modeled as

follows:

Xt<4.1 Vk G.T cosPk 4- lo./)(

Vkl.t Yk 4- Vk tarS1v-pt< 4- 1."/.

We.Pk+t ft ilk t 112NT 1-

11141-1 4- IA)

1,c+i Vk Wt,

(47a)

(47b)

(47c)

(47d)

(47e)

where A.T is the time interval between measurements. The

covariance matrix Q for the wk vector is given by:

(48)

The measured target positions are calculated from the
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measurement data at sensors I and II by (3) and (4) and are

corrected for the measurement bias by (31a) and (31b). Thus

the measured position used for the trajectory estimation

represents the true source location at time tk plus zero-

mean two-dimensional noise. We choose as the data vector:

;4.

The measurement can be modeled as follows:

where

T-.

o o o
O 0

(49)

(50)

(51)

and r
k
denotes the noise perturbation of the measurement of

Hx The covariance matrix R for the 7. vector is given by:

CX X)/

6"
owe

(52)

where G.
2 2

' y
and C

xy
are calculated by (8), (10), and (11),X

respectively. Since these parameters practically vary with
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the position data used for their calculation, the question

may arise, which source location should be used. There are

three types of source locations available: the random

position, calculated from the angle-of-arrival data at

sensors I and II; the source location, obtained after bias

correction by (31a) and (31b); the source position,

predicted by means of the Kalman filter equations, which

depend on the past process information. Chosing type one

where the parameters of the covariance matrix are

calculated from the raw angular data detected by sensors I

and II and assuming a sufficiently smooth target

trajectory, we introduce a larger uncertainity about the

measured source locations. This leads to a decreased Kalman

gain, by means of which the filter puts less weight on the

measurements. This however, also diminishes the

adaptability of the filter to changing trajectory

conditions. In practice this could mean that once the

filter has chosen a erroneous trajectory it cannot readily

get back to the correct trajectory. Despite that, the

chosen approach promises to further increase the

"filtering" features of the Kalman filter algorithm,

especially in a Sonar implementation in which we have to

deal with data that were received in an inhomogeneous

medium.

Equations (47) and (50) lead to the following

nonlinear state space model:



5-(#k+ I = -FL( SZk)

1. a 1- 5EL, 1k

63

(53a,b)

where rk = (5x1) process state vector at time tk.

fk(70 = the state transition function at time tk.

wk (5x1) noise vector, assumed to be white

(uncorrelated) noise with known covariance

structure and constant for any time tk.

z
k
= (2x1) measurement vector at time tk

H
k

(2x5) matrix giving the ideal (noiseless)

connection between the measurement and the state

vector

Following the' linearization approach in Ref. 5, fk(Ik) can

be expanded into a Taylor series around the conditional

A
means xk :

where

sz) -F ulzk) + F ()C# -4Z )
k k

(54)

AO A
X = X44

(55)
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Neglecting higher order terms leads to the following

linearized state equations.

)(14.44 = F Xu + f
k

(5Z F
k k

(56a,b)

= 1.4

Thus the Kalman filter recursive equations can be derived

(Ref. 6):

Kalman gain:

-1r T
HT LI-111 H + Rk]

Updating the estimate with measurement

xi< = x14 + 14k H Xd.".]
L

Error covariance for updated estimate:

[i

Projecting ahead:

A_
X k+ 1-4 -1k 5( k

(57)

(58)

(59)

(60)



P i=a F P FT Qk+I k k k k
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( 61 )

The Kalman filter algorithm has to be entered with a prior

A-
estimate x

k
and its error covariance Pk.

Assuming that the target has minimum turning radius,

we introduce an additional controlling feature to the

Kalman filter model. For that purpose, we calculate the

trajectory radius of curvature at time tk directly after

the state vector was updated by the measurement. The radius

of curvature is determined by:

Nek eal
( 62 )

2 sinft, 4r

where vk and pk are the updated states 4 and 5 at time tk.

When the calculated radius of curvature falls below a

certain limit (which is specified by the minimum radius of

curvature R
min

) P k
(state 4) is set to a temporary maximum

value calculated by means of the inverse relation (using a

Power series expansion of sin-1 and neglecting terms of 5th

order and higher (Ref. 7)):

V
k 24 R1 (63)



This additional feature should lead to a much smoother

trajectory estimate.

SIMULATION RESULTS

66

In order to get a direct comparison with the smoothing

procedure introduced in section IV we apply the Kalman

filter under the same operating conditions. Again we make

use of the sufficiently smooth trajectory which was given

by (U5) and performed the simulation for the correlation

coefficients of +1.0, 0.0, and -1.0.

As already mentioned, the chosen state model cannot

precisely describe every trajectory parameter. Thus, we

have to allow the trajectory parameters to change slightly.

The Covariance matrix Q for the state model is set to:

Qu 10-g

022. =z. 10
-s

Qaa 2.

044 4,8-10-s
Q =2 '1D-17

As a prior estimate for 1; , make the following

assumptions:
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a) States 1 and 2 are set to the first detected source

location, which was corrected for bias

b) State 3 (the trajectory angle) is set to zero

c) State 4 (the rate of change of the trajectory angle) is

set to a maximum value, determined by means of an

assumed maximum target velocity vmax and Rmin

d) State 5 (the target speed) is set to vmax

As a prior estimate of the error covariance matrix Pc,

we assume the error to be zero at the beginning of the

process.

Thus,

X as

le*

Xet

YOE

0
Vmax

0

The simulation results can be viewed in Figures 24, 25, and

26.

The simulation for y :41 .0 and G =0.03 (Figure 24)

shows that after a settling time the filter gives an

unbiased trajectory estimate comparable to the trajectory

estimate we obtained with the smoothing technique.

The simulation for f=0.0 and T=0.03 (Figure 25) shows

that for the uncorrelated case the filter needs much more
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time to settle. Despite of the fact that the introduced

additional damping factor by means of a minimum radius

already leads to a slight improvement of smoothness, the

estimated trajectory is still very coarse.

In order to get fairly reasonable simulation results

for the case of negative spatial noise correlation, the

angular noise had to be limited to G =0.01. Despite of

relative small noise the filter starts to become unstable

in the vicinity of X=0.7 (Figure 26).
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72

VI. SUMMARY AND CONCLUSIONS

We derived and tested an approach for the post-

detection of a point-source trajectory in an isotropic,

stationary medium. A mathematical model, describing

stationary target locations which are estimated from angle-

of-arrival measurements detected at two sensors, was

described and tested. The angular data were regarded as

random variables whose mean indicates the true (unbiased)

source location and whose variance is constant, direction

independent. The angular noise may be spatially correlated

between the sensors with correlation coefficients ranging

from -1.0<9<+1.0. The source location estimated from the

angular data has a bias and variance depending on the

source-sensor geometry and spatial noise correlation.

We first examined the mathematical model by

simulating a stationary target at various locations in the

simulation plane.

We then introduced a tracking algorithm which

operates under the assumption that the target trajectory

has constant but unknown radius of curvature and the target

is travelling at constant but unknown speed. The algorithm

alternatively uses asymmetric and conventional symmetric

smoothing to determine the target trajectories. Asymmetric

smoothing is obtained by individually averaging two subsets
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of symmetric data in order to obtain two regression lines.

The intersection of these two regression lines leads to an

unbiased estimate of the true target location. This

algorithm can also to a limited extend (i.e. with a time

delay) be applied to on-line tracking.

We finally performed extended Kalman filtering in

order to compare it with the introduced smoothing algorithm

for trajectory estimation.

The conclusions are as follows:

1) The simulation showed that for a limited range of

angular noise standard deviation, the mathematical model is

a realistic description of a source-sensor configuration in

an isotropic, stationary medium.

2) The introduced smoothing algorithm proved to

perform a very good trajectory estimate. The simulation

further showed that the smoothing algorithm is very robust

to strong angular noise perturbations received by the two

sensors.

3) Comparing the trajectory estimates achieved from

the introduced smoothing method and from a conventional

extended Kalman filter shows that despite the striking

simplicity of the smoothing method, the introduced

smoothing algorithm surpasses a relatively sophisticated

Kalman filter model.
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To continue the investigation of passive source

tracking from spatially correlated angle-of-arrival data,

we could analyse the impact of higher moments of noise

variance and correlation coefficient on estimator bias and

variance. Chosing a different approach for the stationary

case, estimating the source position by means of the median

value (i.e., arranging N source locations calculated from

the angle-of-arrival data in the order of increasing

distance from the detectors and then taking the N/2-th

position as the estimated source location) promises to make

the estimation of bias and variance less sensitive to

positions out of range.

The smoothing procedure could be further improved by

an algorithm that eliminates positions that indicate

"backwards" travelling targets. Repeatedly smoothing over

already smoothed positions should lead to a much smoother

trajectory estimate.
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APPENDIX A: Derivation of the Ratio 1/u

Assume the configuration of the circle segment shown in

Figure 27. The following derivation leads to the ratio 1/u

of the distances AB and BC, such that the circle segment is

approximated by a regression line with minimum mean squared

error.

A Cartesian coordinate system is chosen, such that

the circle center is located at Y=0 and the segment center

of gravity is located at X=0. Under these assumptions the

regression line can be expressed by the following equation:

rrt s R cosp (64)

where m = const, R = radius of curvature, 0= angle between

the y-axis and point B.

Define the error as the distance between a particular

location on the circle segment and the regression line

measured perpendicular to the regression line:

e Pr)

The mean squared error

a [ez1 a [2.1 E

(65)

(66)



is minimum for

Under the condition that the target locations are

uniformly distributed along the trajectory, E[y] can be

expressed as

cx

E [7] = R cos 96 -I- vi

0

leading to (using (64))

E[71
s;n R cos p

J 0(

Expanding sin-I and cos-I into a Power series and

neglecting terms of forth order and higher (Ref. 7)

sin oc [0( cosp
3!

leads to the condition

.4- 2

2!J

77

(67)

(68)

(69)

(70)

(71)



and finally (using (71)) to the asymmetry ratio 1/u of

Cc

is

2.

2

78

(72)
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Figure 27: Approximation of a circle segment by a
regression line
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APPENDIX B: Generation of Correlated Gaussian Number Pairs

The following algorithm generates N correlated

Gaussian number pairs:

Given: 447 :AZ = 0

=Seri =
correlation coefficient g

1) Generate random numbers:

Z1 ... Z1 Z1 = Z2 = 0

Z2 ... Z2 5
Z1

= G.Z2 = 1

(Generation by call to subroutine GAUSS) *

2) Generate correlated random numbers:

R1 ... R1

R2 ... R2

R1 = J1 - y 21 Z2 + 1Z1

R2 = Z1

3) Generate random noise

= S R
I

G. R2
II



4) Calculate random angles

0I=

B
II

81

*) Subroutine GAUSS creates two sequences of random numbers

each created by various calls to a random generator. The

sequences are normalized to zeromean and unit standard

deviation. (Refer to section "Test procedures" and to the

listing of subroutine GAUSS in Appendix C.)
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APPENDIX C

The following program was used to create the distributions

of estimator bias and variance in the x-y plane.

FTN7X,I
PROGRAM PLOT
REAL Z1(100),Z2(100),B(19),YD(30), S(19),XM(6)
INTEGER XN,YN,R(30,30),BMI(30,30),BMA(30,30),

1SMI(30,30),SMA(30,30)
PI=3.141592654

C
C **** DATA INPUT ****************************************

C

1000 WRITE(1,1)
1 FORMAT("RANGE: 0 < X <= XMAX XMAX <7.. 2.8",/,8X,

1"0 < Y <="," YMAX YMAX <= 2.8",/,"XMAX = ?")
READ*,XMAX
WRITE(1,2)

2 FORMAT("YMAX = ?")
READ*,YMAX
WRITE(1,3)

3 FORMAT("ENTER STEPWIDTH: STEP >= 0.1")
READ*,STEP
WRITE(1,4)

4 FORMAT("ENTER RATIO STANDARD DEV. TO ANGLE"
1" DIFFERENCE: A = ?")
READ*,A
WRITE(1,5)

5 FORMAT("ENTER SAMPLE SIZE: N = ?")
READ*,N
WRITE(1,6)

6 FORMAT("ENTER RANDOM GENERATOR BASIS: I1 = ?")
READ*,I1

C

C **** INITALIZATION *************************************
C

CALL GAUSS(I1,Z1,Z2,N)
XN=INT(XMAX/STEP)
YN=INT(YMAX/STEP)

C
C **** MAIN CALCULATION LOOP *****************************
C

DO 100 I=1,YN
Y=FLOAT(I)*STEP
WRITE(1,101)Y
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101 FORMAT(" Y = ",F4.2)
DO 200 J =O,XN
X=FLOAT(J)*STEP
TO1=ATAN(Y/(1.+X))
T02=ATAN(Y/(X-1.))
IF(X .LT. 1.0) T02=T02+PI
SIGMA=A*(T02-T01)
DO 300 K=1,19
RH0=-1.+FLOAT(K)*.1
CALL RADAT(Z1,Z2,SIGMA,T01,T02, BIAS,SDX,SDY,X,Y,RHO,

1N)
B(K)=BIAS

300 S(K)=SDX*SDX+SDY*SDY
BMIN=B(1)
BMAX=B(1)
RMIN=1
SMIN=S(1)
SMAX=S(1)
DO 400 K=2,19
IF(BMIN .LE. B(K)) GO TO 401
BMIN=B(K)
RMIN=K

401 IF(BMAX .LT. B(K)) BMAX=B(K)
IF(SMAX .LT. S(K)) SMAX=S(K)

400 IF SMIN .GT. S(K)) SMIN=S(K)
R(J,1)=RMIN
BMI(J,I)=INT(100.*BMIN/B(10))
BMA(J,I)=INT(10.*BMAX/B(10))
SMI(J,I)=INT(100.*SMIN/S(10))
SMA(J,I)=INT(10.*SMAX/S(10))

200 CONTINUE
100 CONTINUE

WRITE(6,500)11,A
500 FORMAT(1H1,"PLOT DATA CORRELATION COEFFICIENT (RMIN)"

1" FOR MINIMUM BIAS VS. SOURCE LOCATION",//," RANDOM "
2"GENERATOR BASIS: I1 =",13," RATIO STD. TO ANGLE "
3"DIFF.: A =",F4.2,//,"VALUES: 1 <=> RHO= -0.9
4" 19 <=> RHO= +0.9",////)
DO 510 I=YN,1,-1
YD(I)=STEP*FLOAT(I)
WRITE(6,520)YD(I),R(J,I),J=0,XN)

520 FORMAT(1X,F3.1," ",15(12,4X))
WRITE(6,525)

525 FORMAT(5X,"*",/,5X,"*",/,5X,"")
510 CONTINUE

DO 515 1=1,6
XM(I)=FLOAT(I)*2.5*STEP

515 CONTINUE
WRITE(6,530)(XM(I),I=1,6)

530 FORMAT(1X,"0.0",1X,120(""),/,7X,"*",6(14X,"*"),/,6X,
1"0.0",6(12X,F3.1))
WRITE(6,540)I1,A
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540 FORMAT(1H1,"PLOT NORMALIZED MINIMUM BIAS (BMIN/B0)"
1" VS. SOURCE LOCATION",//," DATA PRINTED ARE 100
2"TIMES THE ACTUAL VALUES $$: ACTUAL VAULE >=1.0"
3//," RANDOM GENERATOR BASIS: I1=",I3,/" RATIO STD."
4" TO ANGLE DIFF.: A=",F4.2,////)
DO 550 I=YN,1,-1
WRITE(6,520)YD(I),(BMI(J,I),J=0,XN)
WRITE(6,525)

550 CONTINUE
WRITE(6,530)(XM(I),I=1,6)
WRITE(6,560)I1,A

560 FORMAT(1H1,"PLOT NORMALIZED MAXIMUM BIAS (BMAX/B0)"
1" VS. SOURCE LOCATION",//," DATA PRINTED ARE 10
2"TIMES THE ACTUAL VALUES $$: ACTUAL VALUE >= "

3"1.0",//," RANDOM GENERATOR BASIS:",I3,/" RATIO "
LOSTD. TO ANGLE DIFF.: A=",F4.2,////)
DO 570 I=YN,1,-1
WRITE(6,520)YD(I),(BMA(J,I),J=0,XN)
WRITE(6,525)

570 CONTINUE
WRITE(6,530)(XM(I),I=1,6)
WRITE(6,580)I1,A

580 FORMAT(1H1,"PLOT NORMALIZED MINIMUM VARIANCE "
1"(SMIN/S0) VS. SOURCE LOACTION",//," DATA PRINTED"
2" ARE 100 TIMES THE ACTUAL VALUES $$: ACTUAL "
3"VALUE >= 1.0",//," RANDOM GENERATOR BASIS: I1=",I3,
4" RATIO STD. TO ANGLE DIFF.: A=",4.2,////)
DO 581 I=YN,1,-1
WRITE(6,520)YD(I),(SMI(J,I),J=0,XN)
WRITE(6,525)

581 CONTINUE
WRITE(6,530)(XM(I),I=1,6)
WRITE(6,590)I1,A

590 FORMAT(1H1,"PLOT NORMALIZED MAXIMUM VARIANCE "
1"(SMAX/S0) VS. SOURCE LOCATION",//," DATA PRINTED"
2" ARE 10 TIMES THE ACTUAL VALUES $$: ACTUAL "
3"VALUE >= 10.0"//," RANDOM GENERATOR BASIS: I1=",I3,
4" RATIO STD. TO ANGLE DIFF.: A=",F4.2,////)
DO 591 I=YN,1,-1
WRITE(6,520) YD(I),(SMA(J,I),J=0,XN)
WRITE(6,525)

591 CONTINUE
WRITE(6,530)(XM(I),I=1,6)
WRITE(1,600)

600 FORMAT(" NEW DATA ? YES = 1 NO = 0")
READ*,L
IF(L)610,610,1000

610 STOP
END
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C

C **** RANDOM POSITION GENERATION AND CALCULATION OF BIAS *
C AND VARIANCE
C

SUBROUTINE RADAT(Z1,Z2,SIGMA,T01,T02,BIAS,SDX,SDY,XS,
1YS,RHO,N)
REAL X(100),Y(100),Z1(100),Z(200)

C * INITIALIZATION *
SUMX=0.
SUMY=0.
SUMSX =O.
SUMSY =O.

C * CREATION OF RANDOM POSITIONS *
DO 10 I=1,N
D=SQRT(1.0-RHO*RHO)
R1=D*Z2(I)+RHO*Z1(I)
DT1=Z1(I)*SIGMA
DT2=R1*SIGMA
T1=T01+DT1
T2=T02+DT2
X(I)=SIN(T1+T2)/SIN(T2-T1)

10 Y(I)=(COS(T2-T1)-COS(T2+T1))/SIN(T2-T1)
C * CALCULATION OF BIAS AND VARIANCE *

DO 20 I=1,N
SUMX=SUMX+X(I)
SUMY=SUMY+Y(I)
SUMSX=SUMSX+X(I)*X(I)

20 SUMSY=SUMSY+Y(I)*Y(I)
XA=SUMX/FLOAT(N)
YA=SUMY/FLOAT(N)
SDX=SQRT((SUMSX-XA*XA*FLOAT(N))/FLOAT(N-1))
SDY=SQRT((SUMSY-YA*YA*FLOAT(N))/FLOAT(N-1))
BIAS=SQRT((XA-XS)**2+(YA-YS)**2)
RETURN
END

C

C **** GENERATION OF UNBIASED RANDOM NUMBERS *************
C WITH STD. DEV. = 1.0
C

SUBROUTINE GAUSS(I1,Z1,Z2,N)
REAL G1(100),G2(100),Z1(100),Z2(100)
INTEGER I1,N

C * INTIALIZING GENERATORS *
CALL SSEED(I1)

C * GENERATION OF RANDOM NUMBERS *
S1=.0
S2=.0
SS1=.0
SS2=.0
DO 10 I=1,N
G1(I)=GRAN(1)
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G2(I)=GRAN(2)
S1=S1+G1(I)
S2=S2+G2(I)
SS1=SS1+01(I)*G1(I)

10 SS2=SS2+G2(I)*G2(I)
GA1=S1/FLOAT(N)
GA2=S2/FLOAT(N)
GS1=(SS1-FLOAT(N)*GA1*GA1)/FLOAT(N-1)
GS2=(SS2-FLOAT(N)*GA2*GA2)/FLOAT(N-1)
DO 20 I=1,N
Z1(I)=G1(I)/SQRT(GS1)-GA1

20 Z2(I)=G2(I)/SQRT(GS2)-GA2
RETURN
END

The flexible smoothing technique introduced in section IV

uses the following FORTRAN commands:

C

C **** SMOOTHING PROCEDURE ********************************
C

B=SQRT(3.0)+2.0
WRITE(1,13)

13 FORMAT(" # OF LOWER POSITIONS TO BE SMOOTHED ?
1"M>=4 ")
READ*,M
NB=INT(FLOAT(M)/B)
WRITE(1,14)

14 FORMAT(" RATIO DISTANCE TO PREVIOUS POSITION it

1"TO AVER.DISTANCE: RM=? ")
READ*,RM
DO 250 I=1,M
XS(I)=XR(I)
YS(I)=YR(I)

250 CONTINUE
DO 260 I=N-M+1,N
XS(I)=XR(I)
YS(I)=YR(I)

260 CONTINUE
DO 270 I=1,N

270 BML(I)=0.0
BS=.0
DO 280 I=2,M
BM=SQRTUXS(I)-XS(I-1))**2+(YS(I)-YS(I-1))**2)
BS=BS+BM

280 CONTINUE
C

C *** ASYMMETRIC SMOOTHING: ******************************
C INTERSECTION OF TWO REGRESSIONLINES
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DO 300 I=M+1,N-M
L=I-M
H=I+NB
CALL RLINE (XR,YR,L,H,M1,XA1,YA1,SIGMA,RHO)
H=I+M
L=I-NB
CALL RLINE (XR,YR,L,H,M2,XA2,YA2,SIGMA,RHO)
XNL=(M1*XA1-M2*XA2+YA2-YA1)/(M1-M2)
YNL=YA1-M1*XA1+M1*XNL

C * SPEED CONTROL: DECISION LEVEL *
BMNL(I)=SQRT((XNL-XS(I-1))**2+(YNL-YS(I-1))**2)
BMA(I)=BS/FLOAT(M-1)
IF(BMNL(I) .LT. RM*BMA(I)) GOTO 320

C

C **** SMOOTHING OVER A SYMMETRIC WINDOW ****************
C

SUMX=.0
SUMY=.0
DO 310 L=I-M,I+M
CALL BIREM(L,RHO,SIGMA,XUB,YUB,XR,YR)
SUMX=SUMX+XUB
SUMY=SUMY+YUB

310 CONTINUE
J=2*M+1
XL=SUMX/FLOAT(J)
YL=SUMY/FLOAT(J)

C * SECOND SPEED CONTROL:
C DECISION FOR ASYMMETRIC OR SYMMETRIC SMOOTHING

BML(I)=SQRT((XL-XS(I-1))**2+(YL-YS(I-1))**2)
IF(BML(I) .GT. BMNL(I)) GOTO 320
XS(I)=XL
YS(I)=YL
BS=BS+BML(I)
GOTO 325

320 XS(I)=XNL
YS(I)=YNL
BS=BS+BMNL(I)

325 IS=I-M
ISP=IS+1
BS=BS-SQRT((XS(ISP)-XS(IS))**2+(YS(ISP)-YS(IS))**2)

300 CONTINUE

C

C **** REGRESSION LINE ***********************************
C

SUBROUTINE RLINE (XR,YR,L,H,MS,XA,YA,SIGMA,RHO)
REAL XR(300),YR(300),MS,XA,YA,RHO,SIGMA
INTEGER L,H,J,IS
SUMX=.0
SUMY=.0
SUMXY=.0
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SUMSX=.0
SUMSY=.0
DO 120 IS=L,H
CALL BIREM(IS,RHO,SIGMA,XUB,YUB,XR,YR)
SUMX=SUMX+XUB
SUMY=SUMY+YUB
SUMXY=SUMXY+XUB*YUB
SUMSX=SUMSX+XUB*XUB
SUMSY=SUMSY+YUB*YUB

120 CONTINUE
J=H-L+1
XA=SUMX/FLOAT(J)
YA=SUMY/FLOAT(J)
SSX=SUMSX/FLOAT(J)-XA**2
SSY=SUMSY/FLOAT(J)-YA**2
RSXY=SUMXY/FLOAT(J)-XA*YA
D=SSY-SSX
C=SQRT(1.+(2.*RSXY/D)**2)
IF(D .LE. 0.0) C=-1.*C
MS=D*(1.0+C)/(2.*RSXY)
RETURN
END

C
C **** BIAS REMOVAL **************************************
C

SUBROUTINE BIREM(I,RHO,SIGMA,XUB,YUB,XR,YR)
REAL T1,T2,XR(300),YR(300),XUB,YUB,RHO,SIGMA
PI=3.141592654
T1=ATAN(YR(I)/(1.+XR(I)))
T2=ATAN(YR(I)/(XR(I)-1.))
IF((XR(I) .LT. 1.) .AND. (YR(I) .GE. .0))T2=T2+PI
IF((XR(I) .LT. 1.) .AND. (YR(I) .LT. .0))T2 =T2 -PI
IF((XR(I) .LT. -1.) .AND. (YR(I) .GE. .0))T1=T1+PI
IF((XR(I) .LT. -1.) .AND. (YR(I) .GE. .0))T1 =T1 -PI

DI=T2-T1
SU=T2+T1
B=2.*SIGMA**2/(SIN(DI))**3
E=(COS(DI))**2*(1.-2.*(COS(SU))*COS(DI)+(COS(DI))**2)
F=2.*COS(DI)*(COS(SU)*(1.+(COS(DI))**2)-2.*COS(DI))
G=1.-2.*COS(SU)*COS(DI)+(COS(DI))**2
BIAS=B*SQRT(E+RHO*F+RHO*RHO*G)
CON=(1.-RHO)*COS(DI)
DIN=SIN(SU)*((COS(DI))**2-RHO)
DEL=ATAN(CON/DIN-1./TAN(SU))
XUB=XR(I)-BIAS*COS(DEL)
YUB=YR(I)-BIAS*SIN(DEL)
RETURN
END
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The Kalman filter introduced in section V consists of the

following FORTRAN commands:

C

C **** KALMAN FILTERING **********************************
C

SUBROUTINE KALM (N,RHO,SIGMA,SR,XS,YS,XR,YR,RMIN,
1VMAX)
REAL PH(5,5),PHT(5,5),U5(5,5),R(2,2),Q(5,5),P(5,5),
1PM(5,5),KA(5,2),Z(2),X(5),XM(5),XR(301),YR(301),
2XS(301),YS(301),DUM(5,5),DUV(2),DU52(5,2),DU22(2,2),
3DU22H(2,2),DUV5(5),H(2,5),HT(5,2),DUMH(5,5)

C * PREPARATION OF MATRICIES **********
CALL VMOV(0.,O,U5,1,25)
CALL VMOV(1.,O,U5,6,5)
CALL VMOV(0.,0,PH,1,25)
CALL VMOV(1.,0,PH,6,5)
PH(1,3)=1./SR
PHT(4,3)=PH(3,4)
CALL VMOV(0.,0,Q,1,25)
Q(1,1)=.00002
Q(2,2)=.00002
Q(3,3)=.00002
Q(4,4)=.00008
Q(5,5)=.00002
CALL VMOV(0.,0,H,1,10)
H(1,1)=1.
H(2,2)=1.
CALL VMOV(0.,0,HT,1,10)
HT(1,1)=1.
HT(2,2)=1.

C * INITIALIZATION ********************
K=1
CALL BIREM(K,RHO,SIGMA,XUB,YUB,XR,YR)
XM(1)=XUB
XM(2)=YUB
XM(3)=0.
XM(4)=VMAX/RMIN
XM(5)=VMAX
CALL VMOV(0.,0,PM,1,25)
DO 100 K=1,N

C * KALMAN GAIN ************************
CALL MULT(PM,HT,DU52,5,5,2)
CALL MULT(H,DU52,DU22,2,5,2)
CALL COV(K,RHO,SIGMA,R,XR,YR)
CALL VADD(DU22,1,R,1,DU22,1,4)
S=DU22(1,1)*DU22(2,2)-DU22(1,2)*DU22(2,1)
DU22H(1,1)=DU22(2,2)
DU22H(1,2)=-DU22(1,2)
DU22H(2,1)=-DU22(2,1)
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DU22H(2,2)=DU22(1,1)
SI=1./S
CALL VSMY(SI,DU22H,1,DU22,1,4)
CALL MULT(HT,DU22,DU52,5,2,2)
CALL MULT(PM,DU52,KA,5,5,2)

C * UPDATE ESTIMATE ********************
CALL MULT(H,XM,DUV,2,5,1)
CALL BIREM(K,RHO,SIGMA,XUB,YUB,XR,YR)
Z(1)=XUB
Z(2)=YUB
CALL VSUB(Z,1,DUV,1,DUV,1,2)
CALL MULT(KA,DUV,DUV5,5,2,1)
CALL VADD(XM,1,DUV5,1,X,1,5)
RAD=X(5)*PH(3,4)*.5/SIN(.5*X(4)*PH(3,4))
IF(RAD .LE. RMIN) X(4)=X(5)/RMIN+X(5)**3*PH(3,4)**3/
1RMIN**3/24.

C * ERROR COVARIANCE *******************
CALL MULT(KA,H,DUM,5,2,5)
CALL VSUB(U5,1,DUM,1,DUM,1,25)
CALL MULT(DUM,PM,P,5,5,5)

C * PROJECT AHEAD **********************
PH(2,5)=PH(3,4)*SIN(X(3))
PH(1,5)=PH(3,4)*COS(X(3))
PH(1,3)=-X(5)*PH(2,5)
PH(2,3)=X(5)*PH(1,5)
PHT(5,1)=PH(1,5)
PHT(5,2)=PH(2,5)
PHT(3,1):PH(1,3)
PHT(3,2)=PH(2,3)
XM(1)=X(1)+X(5)*PH(3,4)*COS(X(3))
XM(2)=X(2)+X(5)*PH(3,4)*SIN(X(3))
XM(3)=X(3)+X(4)*PH(3,4)
XM(4)=X(4)
XM(5)=X(5)
CALL MULT(P,PHT,DUM,5,5,5)
CALL MULT(PH,DUM,DUMH,5,5,5)
CALL VADD(DUMH,1,Q,1,PM,1,25)
XS(K)=X(1)

100 YS(K)=X(2)
RETURN
END

C

C **** MATRIX MULTIPLICATION *****************************
C

SUBROUTINE MULT(A,B,C,N,M,L)
REAL A(N,M),B(M,L),C(N,L),DUM(5,5)
DO 100 J=1,L
DO 200 I=1,N

200 CALL VMPY(A(I,1),N,B(1,J),1,DUM(I,1),4,M)
DO 100 I=1,N

100 CALL VSUM(C(I,J),DUM(I,1),4,M)
RETURN
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END
C

C **** MEASUREMENT COVARIANCE MATRIX *********************
C

SUBROUTINE COV(K,RHO,SIGMA,R,XR,YR)
REAL R(2,2),XR(301),YR(301)
CALL BIREM(K,RHO,SIGMA,XUB,YUB,XR,YR)
SU=ATAN(2.*XUB*YUB/(XUB*XUB-YUB*YUB-1.))
DI=ATAN(2.*YUB/(XUB*XUB+YUB*YUB-1.))
SP=SIN(SU)
SM=SIN(DI)
CP=COS(SU)
CM=COS(DI)
C2P=COS(2.*SU)
C2M=COS(2.*DI)
SM3=SM**3
SM4=SM*SM3
SSGMA=SIGMA*SIGMA
R(1,1)=SSGMA/SM4*(1.-C2P*C2M+RHO*(C2P-C2M))
R(2,2)=2.*SSGMA/SM4*((1.-CP*CM)**2+(SP*SM)**2-RHO*
1((CM-CP)**2))
R(2,1)=2.*SP/SM4*(CM-CP*C2M+RHO*(CP-CM))*SSGMA
R(1,2)=R(2,1)
RETURN
END


