Forest Research Laboratory College of Forestry Oregon State University Corvallis, OR 97331-5704		Non-Profit Org. U.S. Postage PAID Corvallis, OR 9733 Permit No. 200
•		
	• #	

Address Correction Requested

GENERAL LANDTYPE

White fir

White fir

55

20

25

14 Jayar

Althouse

CASCADE SOILS

Inclusions

OR HEO/F76/2 .8F76 c.3 Stearns-Smith, Stephen C. Forest soil associations of southwest Oregon

Forest Soil Associations of

FORET REFEARCH LAB

Oregon State University

Southwest Oregon

Stephen C. Stearns-Smith

David W. Hann

July 1986

OREGON

Introduction

Interior southwest Oregon is a region of geologic, topographic, vegetative, and climatic diversity, a diversity that is directly reflected in the distribution and characteristics of its soil types. Geologically, the region's eastern half (Cascade Geologic Province) is composed entirely of the recent pyroclastic and extrusive volcanic rocks of the Cascades, whose predominantly gentle topography is punctuated by volcanic peaks. In contrast, the Siskiyou Mountains in the western half of the region (Siskiyou Geologic Province) are made up of older, metamorphosed volcanic and sedimentary rocks (often referred to as meta-volcanics and meta-sediments) interspersed with granitic and serpentinitic intrusions, and the topography is steep and dissected.

Blockage of marine air by the higher Siskiyou section of the Coast Range mountains results in an overall regional climate that is hotter and drier than that of the rest of western Oregon. Floristically, the region represents the transition zone from the mixed-conifer forests of northern California to the western hemlock/Douglas-fir forests common in the interior valleys of western Oregon and western Washington.

This map provides an updated and unified overview of the general soil associations within the interior southwest Oregon region. It is intended for use in general education about regional soils and landscapes and in broad-scale planning.

Compiling This Map

A number of soil surveys exist for various portions of this region, but these surveys tend to differ in scale, intensity, and mapping concept because they were originally intended for a variety of uses. These differences have made it difficult to obtain a unified overview of the soil associations of the region. Soil mapping concepts currently used by the USDA Soil Conservation Service (SCS) were chosen for this map in order to standardize and update various sources and to cross-correlate dissimilar sources (such as USDA Forest Service Soil Resource Inventories).

SCS soil association maps already existed for all of Josephine County and most of Jackson County, and these were modified to reflect updated concepts and incorporated in the present map. Mapping of areas not covered by SCS maps combined a variety of other sources including secondary soil maps, geology maps, personal communications with regional soil scientists, and soils data collected in conjunction with the OSU-FIR Southwest Oregon Growth and Yield Project. Although mapping concepts and boundaries are sure to change as more intensive surveys progress into outlying areas, this map represents the best effort with currently available information.

What is a Soil Association?

Each of the 27 soil associations listed in the legend consists of one or more major soil series or types that occur together in a distinctive pattern on the landscape. The additional, minor soil types that always exist within each association are known as inclusions, and these generally consist of soils from neighboring associations. The accompanying table provides estimated relative proportions of major soil types and inclusions within each association.

The soils of each association reflect a unique combination of geology, topography, climate, and vegetation. Although individual soils within an association may be quite different from each other, each occupies a specific spot within the association's unique landscape pattern.

Soil Characteristics and Physical Properties

College of Forestry

This table summarizes typical characteristics and physical properties of each major soil type within the associations shown on the map. These characteristics include environmental settings and accepted

ranges of elevation, slope, precipitation, and soil depth to facilitate comparison and identification. The profiles used were established by the SCS within the three-county area as typical for each soil.

hssociation number soil soil and percent occurrence of the soil soil soil and percent occurrence of the soil of th	Dominant plant series	Geologicat matorials	TOPOER ROMIC POSITION	Elevation range fruit Annual presider itmi and and the states itmi	Typical sufface	Typical subso
--	-----------------------	----------------------	-----------------------	--	-----------------	---------------

1	Alluvial land		Variable	Variable	Bottoms	Variable	0–15	15-80			
SISKIYOU SOILS											
2	Brockman Inclusions	50 50	Jeffrey pine	Serpentinitic	Alluvial fans	800–2000	2–20	30–60	60+	Cobbly clay loam	Cobbly clay
3	Pearsoll Dubakella Eightlar Inclusions	40 20 15 25	Jeffr ey pine Jeffrey pine Jeffrey pine	Serpentinitic Serpentinitic Serpentinitic	Mountain sides Mountain sides Mountains, alluvial fans	750–4000 1000–4000 1350–4000	20-90 7-75 5-65	30–60 30–70 40–70	10–20 20–40 60+	Stony clay loam Very cobbly clay loam Extremely stoney clay	Extremely cobbly clay Extremely cobbly clay Very stoney clay
4	Cornutt Dubakella Inclusions	40 35 25	White fir, Douglas-fir Jeffrey pine	Meta-sed, meta-volc Serpentinitic	Mountains, alluvial fans Mountain sides	1000–4000 1000–4000	7–55 7–75	30–60 30–70	40–60 20–40	Cobbly clay loam Very cobbly clay loam	Clay Extremely cobbly clay
5	Tallowbox Shefflein Barron Inclusions	55 30 10 5	Douglas-fir, ponderosa pine Douglas-fir, ponderosa pine Douglas-fir, ponderosa pine	Granitics Granitics Granitics	Mountain sides Mountains, toeslopes Toeslopes, alluvial fans	800–4000 800–4000 800–2500	20-60 2-35 2-12	25–40 25–40 25–40	20-40 40-60 60+	Gravelly sandy loam Loam Coarse sandy loam	Gravelly sandy loam Clay loam Coarse sandy loam
6	Tethrick Lettia Inclusions	80 10 10	White fir, Douglas-fir White fir, Douglas-fir	Granitics Granitics	Mountain sides Toeslopes, alluvial fans	1500–4000 1500–4000	20–70 2–35	30–60 30–60	40–60 40–60	Gravelly sandy loam Sandy loam	Sandy loam Sandy clay loam
7	Rogue Goodwin Inclusions	55 25 20	White fir White fir	Granitics Granitics	Mountain sides Mountain sides	3600–5500 3600–5500	35–70 5–70	50–70 50–70	40–60 40–60	Gravelly coarse sandy loam Very stoney sandy loam	Gravelly coarse sandy loam Very gravelly sandy loam
8	Vannoy Caris Offenbacher Inclusions	35 25 20 20	Douglas-fir, ponderosa pine Douglas-fir, ponderosa pine Douglas-fir, ponderosa pine	Meta-sed., meta-volc. Meta-sed., meta-volc. Meta-sed., meta-volc.	Mountain sides Mountain sides Mountain sides	1000–4000 1000–4000 1000–4000	20–55 50–80 50–80	25–40 25–40 25–40	20-40 20-40 20-40	Silt loam Gravelly loam Gravelly loam	Clay loam Very gravelly loam Loam
9	Caris Offenbacher Inclusions	40 30 30	Douglas-fir, ponderosa pine Douglas-fir, ponderosa pine	Meta-sed., meta volc. Meta-sed., meta-volc.	Mountain sides Mountain sides	1000–4000 1000–4000	50–80 50–80	25–40 25–40	20–40 20–40	Gravelly loam Gravelly loam	Very gravelly loam Loam
10	Beekman Vermisa Colestine Inclusions	30 20 15 35	White fir, Douglas-fir White fir, Douglas-fir White fir, Douglas-fir	Meta-sed., meta-volc. Meta-sed., meta-volc. Meta-sed., meta-volc.	Mountain sides Mountain sides Mountain sides	1000–4000 1000–4000 1000–4000	50–100 60–100 50–80	30–60 30–60 30–60	20-40 10-20 20-40	Gravelly loam Extremely gravelly loam Gravelly loam	Very gravelly loam Very gravelly loam Gravelly clay loam
11	Goolaway Beekman Inclusions	50 20 30	White fir, Douglas-fir White fir, Douglas-fir	Evans Cr. schists Meta-sed., meta-volc.	Mountain sides Mountain sides	1500–4000 1500–4000	20–60 50–100	40–60 30–60	20–40 20–40	Silt loam Gravelly loam	Silt loam Very gravelly loam
12	Josephine Speaker Pollard Inclusions	60 20 10 10	White fir White fir White fir, Douglas-fir	Meta-sed., meta-volc. Meta-sed., meta-volc. Meta-sed., meta-volc.	Mountain sides Mountain sides Hillsides, benches	1000–4000 1000–4000 1000–4000	20–55 35–55 2–50	30–60 30–60 30–60	40–60 20–40 60+	Gravelly loam Gravelly loam Loam	Gravelly clay loam Gravelly clay loam Clay
13	Kanid High Ppt Beekman High Ppt Josephine High Ppt Inclusions	40 25 15 20	White fir, tanoak, western hemlock White fir, tanoak, western hemlock White fir, tanoak, western hemlock	Meta-sed., meta-volc. Meta-sed., meta-volc. Meta-sed., meta-volc.	Mountain sides Mountain sides Mountain sides	1000-4000 1000-4000 1000-4000	12-70 50-100 20-55	55–100 55–100 55–100	40–60 20–40 40–60	Very gravelly loam Gravelly loam Gravelly loam	Very gravelly clay loam Very gravelly loam Gravelly clay loam

3600-5500 20-70

3600-5500 35-75

40-70

40-70

20-40

40--60

Very gravelly loam

Very gravelly silt loam

A soil association map can help in visualization of general soil-type distribution, and thus can provide a quick introduction to and overview of a large area. It can also provide a broad-scale planning base for various soil-related interpretations, and an indication of the range of soil characteristics that might be encountered in a given area. However, because the map's scale is small and variability is high within each association, a soil association map cannot be used to predict exact soil properties at a specific location.

Source Material

Climate

FROEHLICH, H.A., D.H. McNABB, and F. GAWEDA. 1982. Average annual precipitation, 1960–1980, in southwest Oregon. Oregon State University Extension Service, Corvallis. EM 82:020.

McNABB, D.H., H.A. FROEHLICH, and F. GAWEDA. 1982. Average dry-season precipitation in southwest Oregon, May through September. Oregon State University Extension Service, Corvallis. EM 82:026.

Geology

BEAULIEU, J., and P.W. HUGHES. 1977. Land use geology of central Jackson County, Oregon. State of Oregon, Department of Geology and Mineral Industries, Salem. Bulletin 94.

RAMP, L. 1972. Geology and mineral resources of Douglas County, Oregon. State of Oregon, Department of Geology and Mineral Industries, Salem. Bulletin 75.

RAMP, L., and N.V. PETERSON. 1979. Geology and mineral resources of Josephine County, Oregon. State of Oregon, Department of Geology and Mineral Industries, Salem. Bulletin 100.

SMITH, J.G., N.J. PAGE, M.G. JOHNSON, B.C. MORING, and F. GRAY. 1982. Geologic map of the Medford 1° x 2° Quadrangle, Oregon and California. United States Department of the Interior, Denver, Colorado. Geological Survey, Open-File Report 82-955.

WELLS, F.G. 1956. Geology of the Medford Quadrangle, Oregon-California. United States Department of the Interior, Denver, Colorado. Geological Survey, Map GQ-89.

WELLS, F.G., and D.L. PECK. 1961. Geologic map of Oregon west of the 121st meridian. United States Department of the Interior, Denver, Colorado. Geological Survey, Map I-325.

Soils

Very gravelly loam

Extremely gravelly silt loam

BADURA, G.J., and P.N. JAHN. 1977. Soil resource inventory for the Rogue River National Forest. USDA Forest Service, Pacific Northwest Region, Portland, Oregon.

BORINE, R. 1983. Soil survey of Josephine County, Oregon. USDA Soil Conservation Service in cooperation with the USDA Forest Service, USDI Bureau of Land Management, and Oregon Agricultural Experiment Station, Portland, Oregon.

DeMOULIN, L.A., J.A. POMERENING, and B.R. THOMAS. 1975. Soil inventory of the Medford BLM District. USDI Bureau of Land Management, Oregon State Office, Portland, Oregon.

HOLLORAN, D.M. 1982. Galesville Dam watershed soil survey. Douglas County Commissioners, Roseburg, Oregon. Unpublished.

15	Langel Brader Debenger Inclusions	45 30 10 15	Douglas-fir, ponderosa pine Ponderosa pine Ponderosa pine	Sandstones Sandstones Sandstones	Hillsides Hillsides Hillsides, alluvial fans	1200–2500 1200–2500 1000–2500	1-40 1-40 1-40	18–30 18–30 18–30	20-40 12-20 20-40	Loam Loam Loam	Clay Loam Clay loam
16	Carney Coker Inclusions	60 20 20	White oak White oak	Tuffs, andesites Tuffs, andesites	Hillsides, alluvial fans Alluvial fans, basins	1200–4000 1200–4000	1–35 0–12	18–35 18–30	20–40 60+	Clay Clay	Clay Clay
17	Medco McMullin McNull Inclusions	40 30 15 15	White oak, ponderosa pine White oak, ponderosa pine Douglas-fir, ponderosa pine	Tuffs, andesites Tuffs, andesites Tuffs, andesites	Hillsides Ridges Mountain sides	1500–4000 400–4200 1500–4000	1–35 2–60 12–60	20–35 20–40 20–40	20–40 12–20 20–40	Cobbly clay loam Gravelly loam Loam	Clay Gravelly clay loam Cobbly clay
18	McNull Medco High Ppt Inclusions	55 25 20	Douglas-fir, ponderosa pine Douglas-fir, ponderosa pine	Tuffs, andesites Tuffs, andesites	Mountain sides Mountain sides	1500–4000 1500–4000	1260 12-35	20–40 35–40	20–40 20–40	Loam Cobbly clay loam	Cobbly clay Clay
19	Straight Freezener Inclusions	50 30 20	Douglas-fir, white fir White fir, Douglas-fir	Tuffs, andesites Tuffs, andesites	Mountain sides Mountain sides	1500–4000 1500–4000	12–70 1–60	35–55 30–60	20–40 60+	Very gravelly loam Gravelly loam	Very gravelly loam Clay
20	Freezener Geppert Inclusions	50 40 10	White fir, Douglas-fir White fir, Douglas-fir	Andesites, tuffs Andesites, tuffs	Mountain sides Mountain sides	1500–4000 1500–4000	1–60 1–70	30–60 25–55	60+ 20–40	Gravelly loam Very cobbly loam	Clay Extremely cobbly clay loam
21	Hukill Geppert Inclusions	65 25 10	White fir, Douglas-fir White fir, Douglas-fir	Andesitic mudflows Andesites, tuffs	Plateaus Mountain sides	2000–3000 1500–4000	1–12 1–70	25–45 25–55	40–60 20–40	Gravelly clay loam Very cobbly loam	Gravelly clay Extremely cobbly clay loam
22	Dumont Coyata Inclusions	50 40 10	White fir, western hemlock White fir, western hemlock	Andesites Andesites	Mountain sides Mountain sides	1500–4000 1500–4000	1–60 1–60	35–60 35–60	60+ 20–40	Gravelly loam Gravelly loam	Clay Very cobbly clay loam
23	Tatouche Bybee Inclusions	60 30 10	White fir White fir	Tuffs, andesites Tuffs, andesites	Mountain sides Mountain sides	3600–5800 3600–5500	12–65 1–35	30–50 30–50	60+ 60+	Gravelly loam Loam	Clay Clay
24	Farva Pinehurst Inclusions	60 15 25	White fir White fir	Andesites Andesites	Mountain sides Mountain sides	3600–5500 4000–6000	370 150	30–55 30–55	20–40 60+	Very cobbly loam Loam	Extremely cobbly loam Clay loam
25	Rustlerpeak Farva Inclusions	45 40 15	White fir, Shasta red fir White fir, western hemlock	Andesites Andesites	Mountain sides Mountain sides	4000–55002 3600–5000 ³	3–70 3–70	40–60 40–60	20–40 20–40	Very cobbly loam Very cobbly loam	Extremely cobbly loam Extremely cobbly loam
26	Crater Lake Alcot Barr Inclusions	45 30 20 5	White fir, western hemlock White fir, western hemlock White fir, western hemlock	Ash, pumice Ash, pumice Sandy outwash	Flats, escarpments Flats, escarpments Terraces	2500–4500 2500–4500 2500–4500	0–60 0–60 0–3	40–60 40–60 40–60	60+ 60+ 60+	Gravelly sandy loam Gravelly sandy loam Gravelly loamy sand	Gravelly sandy loam Extremely cobbly sandy loam Gravelly sand
27	Cryic soils of the Cascades		Shasta red fir, mountain hemlock	Andesites, ash	Mountain sides	5000+	5–70	50–70			_
	Cryic soils of the Siskiyous		Shasta red fir, mountain hemlock	Meta-sed., granitics	Mountain sides	5000+	5–90	4570		·	

Meta-sed., meta-volc. Mountain sides

Meta-sed., meta-volc. Mountain sides

¹ A <u>plant series</u> as referenced here is an aggregation of ecological plant associations with the same climax dominant species. Plant series referred to in this publication are those defined by Atzet et al. (1983) and Atzet and Wheeler (1984).

² North aspects.

³ South aspects.

USDA SOIL CONSERVATION SERVICE. Soil survey of Jackson County area, Oregon. USDA Soil Conservation Service in cooperation with the USDI Bureau of Land Management and Oregon Agricultural Experiment Station, Portland, Oregon. In progress.

USDA SOIL CONSERVATION SERVICE. Soil survey of Douglas County, Oregon. USDA Soil Conservation Service in cooperation with the USDI Bureau of Land Management and Oregon Agricultural Experiment Station, Portland, Oregon. In progress.

MEYER, L.C., and M.D. AMARANTHUS. 1979. Soil resource inventory for the Siskiyou National Forest. USDA Forest Service, Pacific Northwest Region, Portland, Oregon.

Vegetation

ATZET, T., and D. WHEELER. 1984. Preliminary plant associations of the Siskiyou Mountain Province. USDA Forest Service, Pacific Northwest Region, Area 5 Ecological Program, Portland, Oregon. Unpublished report.

ATZET, T., D. WHEELER, J. FRANKLIN, and B. SMITH. 1983. Vegetation classification in southwest Oregon: A preliminary report. Oregon State University, Corvallis. FIR Report 4(4):6-8.

Acknowledgments

This map was produced in conjunction with the Forestry Intensified Research (FIR) Program's Southwest Oregon Growth and Yield Project, a cooperative effort among Oregon State University, the USDA Forest Service, and the USDI Bureau of Land Management (BLM), with special assistance from Boise-Cascade Corporation and Medford Corporation. The authors thank the many local soil scientists associated with the BLM, the Forest Service, and the USDA Soil Conservation Service for their input, especially Roger Borine, David Johnson, and Duane Setness.

The Authors

Stephen C. Stearns-Smith is Senior Research Assistant and David W. Hann is Associate Professor, Department of Forest Management, Oregon State University.