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ABSTRACT

When a resource shifts from one player to another, e.g. due to climate change, the conservation incentive
of the player losing the resource decreases while the conservation incentive increases for the player at the
receiving end. We set up an analytical model to study how the structure of the game changes when the
shift occurs either fast or slow, or gradual or abrupt. We also investigate whether there is a self-enforcing
agreement that aligns incentives. We find that the longer the expected duration of the shift, the less
intensive the exploitation of the resource and the larger the scope for cooperation. In some cases there is
no stable agreement, even when there are only two players.

INTRODUCTION

Climate change is expected to put existing International Fisheries Agreements under severe stress [1]. We
have already observed this: The recent appearance of Atlantic Mackerel in Icelandic waters has led to the
collapse of the existing international fisheries agreement. It has brought the Nordic nations Iceland, Faroese,
Norway and the EU to the brink of a new “fish war” and the conflict over the level and distribution of fish
quotas has – to date – not been resolved. Similarly, the US-Canadian agreement on the Pacific Salmon
fisheries has repeatedly broken down after climatic regime shifts. Here, the two nations could, after some
efforts, re-establish cooperative harvesting.

On the one hand, the presumed de-stabilizing effect of climate change is not surprising: a shifting stock
distribution will increase the bargaining position of one party while it will decrease the bargaining strength
of the other party, so that the first party may want to re-negotiate to obtain a more favorable agreement. On
the other hand, it is surprising that this tension is not immediately resolved. The party receiving the resource
stock will have more conservation incentives than the party loosing the resource and the former party could
just buy out the latter party. In essence, the Coase-Theorem tells us that the allocation of initial property
rights should not matter for the possibility to achieve an efficient bargaining solution.

We address this puzzle by developing a tractable model of a dynamic non-cooperative game where the
resource is expected to change hands from one player to the next. Contrary to the benchmark game of no
shifting stock, we show that agreements are not always stable, even when there are only two players. More-
over, we explicitly consider the impact of quality of the transition dynamics: Is non-cooperative exploitation
more aggressive when the change in ownership occurs suddenly or gradually? Can cooperation more easily
be achieved when the change in ownership is fast, or when it is slow?

∗Department of Economics and CEES, Department of Biosciences. University of Oslo, PO-Box 1095, Blindern, 3017 Oslo,
Norway. E-mail: f.k.diekert@ibv.uio.no.

†Department of Economics and Management. University of Helsinki, PO-Box 27, 00014 University of Helsinki, Finland.
E-mail: emmi.e.nieminen@helsinki.fi

1

mailto:f.k.diekert@ibv.uio.no
mailto:emmi.e.nieminen@helsinki.fi


IIFET 2014 Australia Conference Proceedings

Although our model is general and our insights can be applied to any renewable resource that changes
the hands of its owner, we do couch our discussion in terms of fisheries. This is not only because of the
policy relevance of our motivating examples, but also because it helps to fix ideas. There is an immense
literature on cooperative and non-cooperative management of international fisheries [for a review see 2, 3].
One starting point is the great “fish wars” paper by Levhari and Mirman [4]. In spite of the time that has
passed since its publication, the model still proves to be a valuable workhorse for many applications, ranging
from multi-species aspects [5] to the impact of uncertainty [6].

The first paper addressing how climate change might affect the strategies of countries sharing a fish stock
with altered habitat or migration routes is from McKelvey et al. [7]. Their model, which is an extension of
the classical fish-wars model of Levhari and Mirman [4], is now known as the “split-stream model” and
forms the basis of e.g. the paper from Liu et al. [8]. Liu et al. [8] consider the distribution of the Norwegian
spring-spawning herring and study partial coalition structures. They conclude cost asymmetry improves the
stability of the grand coalition, and non-cooperation gives more conservation incentives to the major player
than the minor player. Liu and Heino [9], using the same model, compare management that takes possible
climate change effects on the stock distribution into account (proactive management) with management
that ignore these effects (reactive management). They find that the players behave symmetrically when
practicing reactive management, but proactive management encourages the player losing the stock to act
more aggressively. The herring will be in greatest danger when both players own equal shares of the stock.
This result has theoretically already been shown by Hannesson [10], who also discusses the effect of stock-
dependent costs. When harvesting costs are independent of the stock, a transition of ownership may even
lead to an extinction of the stock. In an applied age-structured model of the North-East Arctic cod fishery,
Hannesson [11] presents the counter-intuitive result that Norway may benefit when more fish is in Russian
waters, because the latter player will then have an increased conservation incentive.

Hannesson [12] studies the topical problem of the Northeast Atlantic mackerel stock under three differ-
ent hypothesis about what causes the shift in stock distribution. He concludes that the minor player has a
stronger bargaining position when the migration pattern is deterministic or purely random. Under a stock-
dependent migration, the major player has a threat strategy to fish down the stock to such a low level that it
does not spill over to the minor player’s zone. Another recent application to the same stock is Ellefsen [13],
which confirms that the stability of the agreement is harmed by a new entrant, and the major player in the
contract has to pay the most in order to courage the new member into the agreement. Whereas the above
studies have to rely on numerical simulations, or discuss steady-state outcomes only, we can derive analyti-
cal solutions to the feedback equilibrium by going back to the predecessor of the “split-stream model”, the
framework introduced by Levhari and Mirman [4].

Furthermore, the papers by Kwon [14] and Breton and Keoula [15, 16] are particularly relevant for our
purpose as they study the existence of self-enforcing coalitions in the Levhari-Mirman framework. They
find – as it is common in the international agreements literature [17] – coalitions of more than two or three
players are generally not stable.a Laukkanen [18, 19] studies the case of two countries under uncertainty
(albeit in a different model than ours). She concludes that cooperation can be achieved if the uncertainty is
not too high and success is more likely the more equal the two players are. Our study differs from the above
papers by considering a non-stationary situation.

In short, we contribute to the literature by offering an analytically tractable model of a dynamic game
with a shifting resource stock and we explicitly account for the pattern of the transitionary dynamics. Our
paper adds these three new insights: First, we show that even when there are only two players, cooperation
will not always be sustainable: As the ownership of the stock shifts, the player who receives the stock may
not be able to offer enough to offset the losing player’s incentives to over-harvest. Second, we show that
the scope for cooperation is not constrained by the available harvest shares, so that in contrast to the results
from Munro [20], financial side-payments (or issue-linkage in broader terms) would not help to alleviate
the strategic tension introduces by the the shifting stock distribution. Third, we show that a fast change in
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resource ownership is more detrimental than a slow change. For a given expected length of the transition, a
more sudden type of change implies a more intense non-cooperative exploitation but increases the chances
of obtaining a cooperative solution.

MODEL

The basic setup

We build on the classical model by Levhari and Mirman [4] when there are two players i = A,B applying
the same discount factor β. Time is discrete with t = 0,1,2, ... Players derive utility from consuming the
resource according to u(ci

t) = ln(ci
t). It is well known that the Levhari and Mirman [4] game has a unique

Nash equilibrium in linear strategies, and we will therefore concentrate on linear strategies. To simplify
notation, we denote player A’s extraction rate by at and player B’s extraction rate by bt (so that cA

t = atxt

and cB
t = btxt). Denote the total extraction rate by dt (so that dt ≡ at +bt).

The resource develops according to

xt+1 = M ((1−dt)xt)
α (Eq. 1)

The parameter α determines the “renewability” of the resource with α ∈ (0,1) and the smaller is α, the
stronger is the natural re-growth potential of the resource. M is a scaling parameter which has no effect
on the optimal choice of the extraction rate. It ensures that the value-function of the players remains non-
negative in all stages of the game.b For a constant exploitation rate d, the steady-state value of x is given by
x̄ = M ((1−d)M)

α

1−α .

Modeling the shift in ownership

To allow for a general analysis of the effect of an anticipated, but uncertain shift in ownership, we assume
that the transition of the resource from player A to player B proceeds in stages. There are a total of T stages,
and within each stage τ (where τ = 0,1, ...T ) the share of the stock that player A has access to is given by
sτ and the share of the stock that player B has access to is given by 1− sτ. In other words, the player’s
harvesting rates in a given stage τ are constrained by aτ ≤ sτ and bτ ≤ 1− sτ.

The duration of each stage is unknown, but there is a constant probability q that the systems stays in the
current stage τ and there is a constant probability 1−q that after any given period the next period starts in a
new stage with sτ+1. This setup makes the game non-stationary, but within each stage, the problem that the
players face is stationary. We make the following assumption about sτ:

sτ =
T − τ

T
(Eq. 2)

Note that this implies s0 = 1 and sT = 0, which means that player A is the sole-owner of the resource in the
first stage, that the resource shifts monotonically from A to B, and that player B will eventually become the
sole-owner of the resource. None of our results depends on the assumption that the share drops linearly.c

Denote the expected value of the time that the transition takes by Z. As the duration of each stage τ

follows a geometric distribution with mean 1
1−q , the total expected time that it takes until B is the sole-owner

is given by:

Z =
T

1−q
(Eq. 3)

This implies that the environmental change happens fast when T and q are small. Furthermore, this implies
that T is the infimum of Z. However, Z can be very large even if T = 1, just q has to be large enough. In
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this case, one would characterize the environmental change as abrupt or sudden. In contrast, one would
speak of a gradual or smooth change when T is large and q is relatively small. To distinguish the speed of
change (slow vs. fast) from its character (smooth vs. sudden) we will both analyze the case when we hold Z
fixed and change T and q to make the transition more or less smooth, and we hold T fixed and change q to
increase or decrease Z.

Before we describe the two-player non-cooperative game with a shift in stock ownership, we characterize
two benchmarks when there is no shift in the stock: optimal exploitation, and the standard non-cooperative
game between two players.

Benchmark 1: Optimal exploitation

When there are two cooperating players that share the proceeds from optimal harvesting (denote total con-
sumption by d∗), each player’s value function is:

V ∗(x) = max
d≤1

{
ln

1
2

dx+βV ∗ (M((1−d)x)α)

}
(Eq. 4)

We can use the ‘guess and verify’ method to solve for the value function. Conjecturing that V ∗= k∗ lnx+K∗,
where k∗ and K∗ are undetermined coefficients, we get:

k∗ lnx+K∗ = max
d≤1

{
ln

1
2

dx+αβk∗ ln((1−d)x)+β(k∗ lnM+K∗)
}

The first-order-condition (FOC) 1
d = αβk∗

1−d gives the preliminary function d = 1
1+αβk∗ . Inserting confirms our

conjecture about V ∗:

V ∗(x) = (1+αβk∗)︸ ︷︷ ︸
k∗

lnx− ln2+αβk∗ ln(αβk∗)− (1+αβk∗) ln(1+αβk∗)+β(k∗ lnM+K∗)︸ ︷︷ ︸
K∗

Equating coefficients gives

k∗ =
1

1−αβ
K∗ =

1
1−β

[
αβ lnαβ

1−αβ
+ ln(1−αβ)+

β lnM
1−αβ

− ln2
]

(Eq. 5)

First-best total extraction and the optimal steady state resource stock are given by:

d∗ = (1−αβ) x̄∗ = M (αβM)
α

1−α (Eq. 6)

Benchmark 2: Nash-equilibrium with no shift and full access for both players

Similarly, we remind the reader of the solution for the standard non-cooperative game without shift in
ownership of the stock. When the players use linear strategies, the Bellman equation for player A reads (the
case of player B is exactly symmetric here):

V nc,A(x) = max
a≤1−b

{
ln(ax)+βV nc,A (((1−a−b)x)α

)}
(Eq. 7)

Conjecturing that the value function V nc,A is of the form knc lnx+Knc, the problem in (Eq. 7) can be solved.
One finds:

knc =
1

1−αβ
Knc =

1
1−β

[
αβ lnαβ− ln(2−αβ)

1−αβ
+ ln(1−αβ)+

β lnM
1−αβ

]
(Eq. 8)
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Individual equilibrium extraction rate and the steady state resource stock are given by:

anc =
1−αβ

2−αβ
x̄nc = M

(
αβ

2−αβ
M
) α

1−α

(Eq. 9)

Note that knc = k∗ but Knc < K∗. Furthermore, note that anc > 1
2 d∗ and thus x̄nc < x̄∗.

NON-COOPERATIVE EQUILIBRIUM

In this section we analyze the non-cooperative equilibrium when the resource shifts owner in an uncertain,
but anticipated manner. Particular focus will be on the total extraction rate d. In general, player A’s and B’s
value functions are given by:

V A
τ (x) = max

a≤sτ

{
lnax+β

[
qV A

τ

(
M((1−d)x)α

)
+(1−q)V A

τ+1
(
M((1−d)x)α

)]}
(Eq. 10)

V B
τ (x) = max

b≤1−sτ

{
lnbx+β

[
qV B

τ

(
M((1−d)x)α

)
+(1−q)V B

τ+1
(
M((1−d)x)α

)]}
(Eq. 11)

Player A (or player B for that matter) maximizes utility from consuming a share of the resource now and
in the future. The player takes into account that with probability q, the environmental regime will stay the
same so that the future value of the game, conditional on stock development, is the same as today. With
probability 1−q, however, the environmental regime will change to the next stage and the value of the game
is then given by V A

τ+1.
To begin, we consider the general case of player A. The conjecture that V A

τ = kA
τ lnx+KA

τ leads to the
following first-order condition:

1
aτ

= αβqkA
τ

1
1−aτ−bτ

+αβ(1−q)kA
τ+1

1
1−aτ−bτ

Accordingly, we can solve for player A’s best-reply. Noting that her extraction can be limited by the acces-
sible share sτ, we have:

aτ = min

{
sτ ;

(1−bτ)

1+αβ(qkA
τ +(1−q)kA

τ+1)

}
(Eq. 12)

The general case of player B is symmetric, and hence his best-reply is:

bτ = min
{

1− sτ ;
(1−aτ)

1+αβ(qkB
τ +(1−q)kB

τ+1)

}
(Eq. 13)

We now set out to derive the structure of the coefficients ki
τ and Ki

τ. We start by equating coefficients for
player A’s value function V A

τ = kA
τ lnx+KA

τ according to (Eq. 10):

kA
τ lnx+KA

τ = lnaτx+αβq
[

kA
τ

(
ln(1−aτ−bτ)x+

1
α

lnM
)
+

1
α

KA
τ

]
+αβ(1−q)

[
kA

τ+1

(
ln(1−aτ−bτ)x+

1
α

lnM
)
+

1
α

KA
τ+1

]
⇔

kA
τ lnx+KA

τ = (1+αβ(qkA
τ +(1−q)kA

τ+1) lnx+ lnaτ

+β
[
qKA

τ +(1−q)KA
τ+1 +(qkA

τ +(1−q)kA
τ+1)(lnM+α ln(1−aτ−bτ))

]
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By equating kA
τ lnx = (1+αβ(qkA

τ +(1− q)kA
τ+1)) lnx, we get the solution for kA

τ , which is symmetric for
player B, and thus we can write the next general form:

ki
τ =

1
1−αβq︸ ︷︷ ︸

l

+
αβ(1−q)
1−αβq︸ ︷︷ ︸

m

ki
τ+1 (Eq. 14)

This linear difference equation with constant coefficients can be solvedd to give:

ki
τ =

(
αβ(1−q)
1−αβq

)T−τ[
ki

T −
1

1−αβ

]
+

1
1−αβ

(Eq. 15)

As player A will not own anything in the last stage, we have kA
T = 0. This implies that kA

τ = 1
1−αβ

(
1−
(

αβ(1−q)
1−αβq

)T−τ
)

.

In the beginning, however, kA
τ will be close to the steady-state value of (Eq. 15), 1

1−αβ
, especially when T is

large. It is easy to see that kA
τ > kA

τ+1: The term in the first bracket is smaller than one (as both αβ < 1 and
q < 1 and therefore αβ−αβq < 1−αβq), and the first term will therefore decrease as the exponent gets
larger. In contrast, kB

τ is constant: Player B is the sole-owner of the resource in the last stage τ = T . This
implies that kB

T = k∗ = 1
1−αβ

and thus kB
τ = 1

1−αβ
= kB for all τ.

Note that this simplifies the expression player B’s best-reply dramatically:

bτ = min{1− sτ ; (1−aτ)(1−αβ)} (Eq. 13’)

The best-reply function of player A does not simplify. However, to remove it from clutter as well, we define
two auxiliary parameters:e

ϕ
i
τ ≡ qki

τ +(1−q)ki
τ+1 (Eq. 16)

γ
i
τ ≡

1
1+αβϕi

τ

(Eq. 17)

Although the linear coefficients KA
τ and KB

τ do not matter for the choice of the harvesting rate, we do not
to spell them out in order to fully describe the value functions. The general recursive structure for KA

τ and
KB

τ can be solved as:

KA
τ =

1
1−βq

[
lnaτ +β

(
(1−q)KA

τ+1 +ϕ
A
τ (lnM+α ln(1−dτ)

)]
(Eq. 18)

KB
τ =

1
1−βq

[
lnbτ +β

(
(1−q)KB

τ+1 +ϕ
B(lnM+α ln(1−dτ)

)]
(Eq. 19)

In contrast to (Eq. 14), we here have a difference equation where the first coefficients are not constant,
nor the same for both players. Therefore we do not solve these difference equations because writing them
down is not instructive. Nevertheless, we have the necessary building blocks in hand to describe the general
pattern of the equilibrium.

General pattern of the equilibrium

Recall that the game is stationary within each stage. However the extraction rates differ from stage to stage
as summarized in the following claim.
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Claim 1. The extraction pattern is characterized by at most three phases:

I. In the first phase, player B’s extraction rate is constrained by the share of the resource available to
him, while player A’s rate is not. Total extraction rate dτ is increasing with τ in Phase I. The individual
extraction rates are given by:

aτ = sτγ
A
τ bτ = 1− sτ (Eq. 20)

The first phase ends when sτ ≤ αβ

1−(1−αβ)γA
τ

.

II. In the second phase, neither player’s extraction rate is constrained. A’s rate is increasing and B’s rate
is decreasing with τ. The total extraction rate is increasing.

aτ =
γA

τ (1− γB)

1− γA
τ γB bτ =

γB(1− γA
τ )

1− γA
τ γB (Eq. 21)

The second phase ends when sτ ≤ αβγA
τ

1−(1−αβ)γA
τ

.

III. In the third phase, the extraction rate of player A, but not player B is constrained by the available share
of the resource. Total extraction rate is decreasing with τ.

aτ = sτ bτ = (1− sτ)γ
B (Eq. 22)

It follows immediately from Claim 1 that the harvest rate reaches its highest value at the last stage of
Phase II or at first stage of Phase III. However, it is not possible to obtain a closed-form expression for the
maximal harvest rate: The condition for the onset of Phase III, can be simplifiedf to qkA

τ +(1−q)kA
τ+1≥ τ

T−τ
.

One cannot solve for the critical τ at which equality holds because τ – taken to be a continuous variable for
the moment – enters exponentially in kA

τ but linearly in the right-hand side.
Fig. 1 illustrates the extraction rates (upper panel) and the player’s value functions (where player A is

red and player B is green). We plot three scenarios with the same expected length of the transition (Z = 10),
but different values of q and T . Note that the first and last stage are the situations where player A or player
B are the sole-owner, respectively. Consequently, the harvest rate and the value function of the respective
opponent are zero for these stages.

Considering the upper panel of the harvest rates first, with an abrupt change in ownership (T = 2), each
phase consists of one stage (the phases are indicated by the dashed vertical lines). When the change in
ownership is smoother (T = 5 and T = 9), the duration of the phases expands and the relative changes in the
individual harvest rates become visible. In particular in Phase II, when neither player is constrained by the
share that is accessible to him, player B’s extraction rate is decreasing in anticipation that he will eventually
become the sole-owner of the resource. However, player A’s extraction rate is increasing so strongly that
the total extraction rate is increasing, too. Note that Fig. 1 nicely illustrates that the maximal harvest rate
could be at the end of phase II (as in the two left panels) or at the beginning of phase III (as in the rightmost
panel). In phase III, the harvest rate and the value function of player B approach the sole-owner benchmark.

Turning to the value function (lower panel), we see that player A’s value function is monotonously
declining and player B’s value function is increasing. Note that player A’s value function when she is a
sole-owner in stage 1 is already heavily depressed by the shadow of the future loss. The changes in q and
T have no effect on the overall shape of the trajectories of the value function, in particular player A’s initial
Net-Present Value of the fishery is the same. The reason is that Z has been kept constant in these plots and
it is only the passing of time t that matters for the Net-Present Value, no matter over how many stages τ the
shift in stock ownership occurs.
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Fig. 1: Illustration of extraction rates and value functions (α = 0.8,β = 0.95,M = 3)

Next we consider how the changes in a biological growth parameter α and a discount factor β affect the
non-cooperative extraction rates, as well as describe how the extraction rates depend on the probability q
and the number of stages T , i.e. the transition parameters which affect the expected length of the transition
period Z.

Effects of the bioeconomic and transition parameters

Claim 2. An increase in the bioeconomic parameters α and β leads to a lower total extraction rate in all
phases.

These results are intuitive. An increase in α means the natural regrowth potential of the resource be-
comes weaker, inducing the players to harvest less aggressively. By comparing (Eq. 20)-(Eq. 22) it becomes
clear, that this effect is strongest in the third phase, when player A’s harvesting is already constrained by
the available share of the resource, and weakest in the second phase when neither player’s harvesting is
constrained.

An increase in the discount factor, β, means that the players place a higher value on the future harvesting
opportunities. Therefore, a higher discount factor naturally leads to a decreased extraction rate. Again, this
effect is at weakest in the second phase.

Claim 3. An increase in q or T decreases, directly or indirectly, the total extraction rate in all phases.
Moreover, an increase in q or T may extend the absolute duration of Phase III.

In other words, the higher the probability the system stays in the current stage and the more stages there
are, the lower the total extraction rate. The intuitive reason is that player A owns more of the stock for a
longer time and therefore has higher conservation incentives. In contrast, when a shift in stock-ownership
is expected to occur in the near term, and the more severe the consequences of such a shift for player A, the
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more she would want to extract while she still can. As we know from Claim 1 above, player B’s effort to
counteract the over-harvesting from player A is not sufficiently strong to reduce total extraction.

SELF-ENFORCING COOPERATIVE AGREEMENTS

In this section, we explore whether the players can agree on sharing the gains from maximizing the joint
surplus of resource exploitation. We require that each player’s participation constraint – which is given by
his payoff in absence of cooperation – is satisfied. In other words, we analyze whether there exists some
share λ so that player A prefers obtaining that share of the socially optimal harvest rather than harvesting
non-cooperatively, and whether player B would at the same time prefer obtaining a share (1− λ) rather
than harvesting non-cooperatively.g Such an agreement is self-enforcing in the sense that player A has no
incentive to harvest non-cooperatively, given that player B harvests cooperatively, and vice-versa.

It is well known that self-enforcing cooperative agreements of more than a few players are very difficult
to form [14, 16]. Here we show that even two players may not be able to coordinate on the first-best if the
stock shifts from one player to the other. This is especially remarkable because two players can always form
a self-enforcing agreement in the baseline case of no stock shift.h

To clearly distinguish the different continuation values, we denote the player’s value function in the non-
cooperative Nash equilibrium at stage τ by V nc,A

τ (xt) and V nc,B
τ (xt), respectively. In contrast, V coop,i

τ (λ,xt)
describes the value of cooperation for player i, given the share λ and the current resource stock xt . The
function V i

τ+1(xt+1) is generic value of the game in the next stage (where it is a priori not known whether
cooperative or non-cooperative play will dominate). Below, we show that the game remains stationary within
each stage. As a consequence, non-cooperation in one stage does not necessarily imply non-cooperation in
an earlier stage.

Recalling that d∗ denotes the socially optimal harvest rate, we have:

V coop,A
τ (λ,xt) = ln(λd∗xt)+β

(
qV coop,A

τ (λ,xt+1)+(1−q)V A
τ (xt+1)

)
V coop,B

τ (λ,xt) = ln((1−λ)d∗xt)+β

(
qV coop,B

τ (λ,xt+1)+(1−q)V B
τ (xt+1)

)
A cooperative agreement can be reached if condition (Eq. 23) holds.

V coop,A
τ (λ,xt)≥V nc,A

τ (xt) and V coop,B
τ (λ,xt)≥V nc,B

τ (xt) (Eq. 23)

This setting effectively allows financial side-payments (to the extent that it makes sense to talk of finan-
cial side-payments in the Levhari and Mirman model) as the players’ constraints on the share that they can
actually harvest are not taken into account in this setup. However, we show below that constraining the play-
ers’ instantaneous payoffs to what they can maximally harvest does not curtail the scope for cooperation.i

Clearly, V coop,A
τ (λ,xt) is increasing in λ and V coop,B

τ (λ,xt) is decreasing in λ. Let therefore λA
min ∈ (0,1]

be the minimum share of the optimal harvest that player A would be willing to accept in order to approve
cooperative management. Similarly, let λB

max ∈ (0,1] the maximum share that player B would be willing to
give to player A and still harvest cooperatively. Accordingly, we can define the scope for cooperation by:

Γ≡
{

λ
B
max−λ

A
min;0

}
(Eq. 24)

Claim 4. The scope for cooperation vanishes as αβ→ 1. But if Γ > 0, λA
min and λB

max are given by (Eq. 25)

9
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and (Eq. 26), respectively, and cooperation possibilities are not constrained by the available harvest shares.

λ
A
min =

aτ

1−αβ

(
1−aτ−bτ

αβ

)αβϕA
τ

(Eq. 25)

λ
B
max = 1− bτ

1−αβ

(
1−aτ−bτ

αβ

)αβϕB

(Eq. 26)

As it is clear from equation (Eq. 25) and (Eq. 26), the scope for cooperation depends in a complicated
way on the parameters α and β. In Fig. 2, we therefore illustrate how the scope for collaboration depends
on these parameters and on q and T . We plot a grid of 100x100 combinations of αβ between 0.5 and 0.9
(on the x-axis) and q between 0.5 and 0.9 (on the y-axis) and check for each combination whether Γ > 0 in
all stages. If yes, we color that box green, if not, we color it red. We do so for three different values of T .
The pattern that emerges is that the scope for cooperation is a little larger when T = 5 rather than T = 15,
but these changes are small compared to the detrimental impact of increasing the bionomic parameters αβ

or increasing q (the latter result again showing that a more gradual change is conducive to cooperation).
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Fig. 2: Parameter values for which it is possible to have cooperation in all stages

Now Fig. 2 only considers whether there was any stage in which there would be no scope for collab-
oration. In Fig. 3 we then shows how the bargaining set changes over the different stages of the game. In
particular, it becomes obvious how the scope for collaboration is compressed at the end and the beginning
of the transition phase. This is not surprising, as it is here that both players have the strongest bargaining
positions. Towards the end, for example, player A has nothing left to loose, but also player B has little in-
centive to give him much as player A’s harvest share is constrained anyway. Furthermore, Fig. 3 illustrates
how player A’s bargaining strength is declining over the different stages, though not in a monotonic fashion.
Indeed, the changes from one stage to the next can be quite large, especially in the beginning or the end.
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Fig. 3: Illustration of bargaining set at different stages (α = 0.6,β = 0.95)

CONCLUSION

We have studied by an analytic model how two players exploit a fish stock if it shifts from one player to
another with different paces, and under which conditions it is possible to obtain a self-enforcing agreement.
We found that a longer expected time of the shift, an increase in the player’s valuation of the future and
a decrease in the renewability of the stock imply less intensive exploitation of the resource. Furthermore,
two players may not be able to coordinate on the first-best agreement, whereas they can always form a self-
enforcing agreement in a case without a shift. In general, the slower the shift is, the larger the scope for
cooperation. More sudden shift implies higher intensity of non-cooperative exploitation, but increases the
chances of obtaining a cooperative solution. The cooperative incentives vanish when the regrowth potential
of the resource is low simultaneously with a high discount factor.
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ENDNOTES
aLess pessimistic results are sometimes obtained under alternative model structures [21] or the use of “farsighted” instead of

Nash conjectures [22, 16].
bLet imin be the lowest extraction rate of player i and let dmax be the largest equilibrium total extraction rate. Then a condition

that guarantees non-negative objective function values is iminM ((1−dmax)M)
α

1−α ≥ 1 for i = A,B.
cThis assumption does ease the exposition considerably, but one could always introduce a non-linearity in the transition dynam-

ics by replacing sτ =
T−τ

T with the requirement that s0 = 1;sτ ≥ sτ+1 and sT = 0 (which is strictly speaking all we need for our
proofs), or by making q depend on the specific stage (so that qτ is not necessarily the same as qτ+1).

dWe refer to a standard mathematic textbook for economists e.g. Sydsæter et al. [23, p.391]. To see the solution more clearly, it is
useful to change variables so that we start counting from the terminal stage T . That is, we introduce a new variable n = 0,1,2, ... so
that n= 0≡ τ= T . This means that equation (Eq. 14) is written as: ki

n+1 = l+mki
n which can be solved to get ki

n =mnk0+ l(∑(mn)).

As we have a geometric series in the brackets, the solution of the equation can be rewritten as: ki
n =

l(1−mn)
1−m + mk0 ⇔ ki

n =

mn[k0− l
1−m ]+ l

1−m , where l
1−m = 1

1−αβq
1

1− αβ(1−q)
1−αβq

= 1
1−αβq

1
(1−αβq)−αβ(1−q)

1−αβq

= 1
1−αβq−αβ+αβq = 1

1−αβ
.

eDirect insertion shows that for i = B we have γB = 1−αβ. In the Appendix, we give an overview over all fundamental and
derived parameters and how the latter change with changes in the former.

f

sτ ≤
αβγA

τ

1− (1−αβ)γA
τ

⇔
(

1− (1−αβ)γA
τ

) T − τ

T
≤ αβγ

A
τ

⇔ T − τ

γA
τ

− (T − τ)(1−αβ)≤ αβT ⇔ (T − τ)(1+αβϕ
A
τ )−T + τ−αβτ≤ 0 ⇔ ϕ

A
τ ≤

τ

T − τ

gThat is, we assume that at any time t, the players perceive the Nash equilibrium described in section as the only alternative to
a cooperative agreement for that stage. In essence, the players follow a grim trigger strategy within each stage. We do not require
that the threat of non-cooperative play is renegotiation-proof.

hConsider K∗ from equation (Eq. 5) and Knc from equation (Eq. 8). A cooperative agreement is self-enforcing if K∗−Knc =
ln(2−αβ)

1−αβ
− ln2 > 0, which is true for all αβ ∈ (0,1).

iThis stands in interesting contrast to the classical work from Munro [20] on cooperative agreements for transboundary stocks.
But again, we are quick to point out that the distinction between quota-swaps and financial side-payments does not have an obvious
counterpart in the utility-based model of Levhari and Mirman [4].
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