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For over 30 years, the Implicit Monte Carlo (IMC) method has been used to

solve challenging problems in thermal radiative transfer. These problems are typi-

cally optically thick and diffusive, as a consequence of the high degree of “pseudo-

scattering” introduced to model the absorption and reemission of photons from

a tightly-coupled, radiating material. IMC has several well-known features which

could be improved: a) it can be prohibitively computationally expensive, b) it

introduces statistical noise into the material and radiation temperatures, which

may be problematic in multiphysics simulations, and c) under certain conditions,

solutions can be unphysical and numerically unstable, in that they violate a max-

imum principle – IMC calculated temperatures can be greater than the maximum

temperature used to drive the problem.

We have developed a variant of IMC called “iterative thermal emission” IMC,

which is designed to be more stable than IMC and have a reduced parameter

space in which the maximum principle is violated. ITE IMC is a more implicit

method version of the IMC in that it uses the information obtained from a series

of IMC photon histories to improve the estimate for the end of time-step material

temperature during a time step. A better estimate of the end of time-step material

temperature allows for a more implicit estimate of other temperature dependent



quantities: opacity, heat capacity, Fleck Factor (probability that a photon absorbed

during a time step is not reemitted) and the Planckian emission source.

The ITE IMC method is developed by using Taylor series expansions in material

temperature in a similar manner as the IMC method. It can be implemented in a

Monte Carlo computer code by running photon histories for several sub-steps in a

given timestep and combining the resulting data in a thoughtful way. The ITE IMC

method is then validated against 0-D and 1-D analytic solutions and compared

with traditional IMC. We perform an infinite medium stability analysis of ITE

IMC and show that it is slightly more numerically stable than traditional IMC.

We find that significantly larger time-steps can be used with ITE IMC without

violating the maximum principle, especially in problems with non-linear material

properties. We also compare ITE IMC to IMC on a two-dimensional, orthogonal

mesh, x − y geometry problem called the “crooked pipe” and show that our new

method reproduces the IMC solution. The ITE IMC method yields results with

larger variances; however, the accuracy of the solution is improved in comparison

with IMC, for a given choice of spatial and temporal grid.
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The Iterative Thermal Emission Monte Carlo Method
for Thermal Radiative Transfer

1 Introduction

All matter radiates energy in the form of photons. The energy of a photon is

equal to hν, where h is Planck’s constant and ν is the frequency. The total energy

emitted by matter per unit time emitted is proportional to the temperature of the

matter to the fourth power. This process is known as radiative heat transfer. The

consequence of this fundamental law is that at relatively low temperatures matter

does not radiate a significant amount of power. At low temperatures heat transfer

is dominated by conduction and convection–the transfer rate for both these mech-

anisms is proportional to the matter temperature to the first power. At relatively

high temperatures, radiative heat transfer is the dominant mechanism for heat

transfer. Hot matter emits photons that are then absorbed in the surrounding

material. As the surrounding material heats up it emits more photons and this

process continues until the energy deposited in the matter is equal to the energy

emitted by the matter. If emission and absorption are equal the system is said

to be in equilibrium. This mechanism for heat transfer is especially important in

very high temperature applications [12]. In astrophysics, the evolution of stars

involves extreme temperatures caused by thermonuclear fusion. Likewise, terres-

trial fusion power research involves holding high temperature material in a dense

configuration for as long as possible. Certain applications of coal power produce

high temperatures where radiative transfer needs to be taken into account [10].

Studying the environments and applications where radiative heat transfer is

significant is difficult in a laboratory setting because reproducing very high tem-

peratures is dangerous and expensive, and in some cases a violation of international
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law. Because of the difficulty associated with performing physical experiments in-

volving radiative heat transfer, high energy density problems are often simulated

on digital computers. The radiative heat transfer process can be mathematically

described with coupled sets of partial and integro-differential equations. In order

to make these equations tractable for computer simulation, assumptions are made

about the material properties and the emission process. The equations also need

to be discretized. The equations of thermal radiative transfer (TRT) are primarily

solved by deterministic methods or Monte Carlo methods. Deterministic methods

involve generating the solution (by iteration or direct solution) of a linear system

of equations formed from the operators of the TRT equations. Monte Carlo meth-

ods involve simulating the life of simulated representative photons by sampling

from probability distribution functions with pseudo-random numbers. The life of

a simulated particle is called a history. Each simulated photon moves throughout

the problem geometry, depositing its energy in the matter. The energy deposited

by each simulated photon is tallied to determine the total energy deposited in the

matter and, through an equation of state, the new material temperature. Because

the material properties are strongly dependent on temperature (the variable being

calculated by the simulation), thermal radiative transfer problems are non-linear.

A variety of methods (both deterministic and Monte Carlo) exist for solving non-

linear problems. These methods are applicable for certain problem conditions,

desired accuracy, geometries or available computing power. All of these methods

behave differently and they require analysis to ensure that they will work correctly

for a desired problem. The stability, accuracy and computational cost of Monte

Carlo methods for photon transport is an active area of research.
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1.1 Literature Review

This section gives a historical background of the use of the thermal radiative trans-

fer equations and the use of Monte Carlo methods to solve those equations. It also

includes an overview of the maximum principle in thermal radiative transfer and

the methods that have been proposed to eliminate violations of the maximum

principle.

1.1.1 High Energy Density Applications

In 1966, Zel’dovich and Razier [26] discussed the origin of the study of radiative

heat transfer: “The theory of radiative heat transfer and radiant heat exchange

was created and developed to understand processes which take place in stellar

media.” The authors add that modern high-temperature applications now require

the theory of radiative heat transfer to accurately describe heat transfer in these

systems. Zel’dovic and Razier form the equations of thermal radiative transfer and

also show how they fit into the hydrodynamic equations but they don’t discuss

techniques for solving the TRT equations.

Thermal radiative transfer is an essential part of many high energy density

systems. Z-pinch experiments use massive currents to create and study plasmas.

Most of the energy supplied in Z-pinch experiments is radiated away by the hot

plasma [1]. In inertial confinement fusion applications a target is heated with

very high energy lasers in an effort to produce fusion within the target. In the

National Ignition Facility, a cylindrical object called a hohlraum surrounds the

fusion target. The hohlraum is heated by the lasers and then reemits photons that

hit the target uniformly; this process is known as an indirect drive system [16].

Research is also ongoing on the redesign of coal power plants to use more oxygen
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in the combustion process, which will yield greater efficiency and make it easier

to capture greenhouse gases. This is known as oxy-coal combustion. Combustion

with oxygen gives a higher flame temperature so radiative heat transfer becomes

more important. In their review paper, Scheffknecht et al. [22] stated that “The

sub-models identified as being the most relevant to allow the transition to oxy-fuel

combustion are the chemical reaction and the thermal radiation models”.

1.1.2 Monte Carlo Solutions

The Monte Carlo method as a means to solve particle transport problems was

developed by Stanislaw Ulam and John Von Neumann in 1946. The basis of this

method is using random numbers to sample from probability density functions to

numerically solve the integrals in neutron transport [4]. For example, if there was

a source of neutrons uniformly distributed in a basketball in one room of a house

and human male in an adjacent room the Monte Carlo method could be used to

determine how many neutrons are absorbed in the person’s vital organs. To solve

the problem random numbers are used to assign a simulated neutron a starting

position within the basketball, an angle and a speed. The next location where

the neutron will have an interaction is also determined with random numbers.

This interaction probability is determined by the material the neutron is passing

through. If the neutron scatters its angle is sampled again. If the neutron is

absorbed the history is over and a new neutron is created in the basketball. The

neutrons that are absorbed in the body contribute to the total energy absorbed.

Any total used for calculation in Monte Carlo is called a tally. In order to get an

accurate estimate of the amount of radiation absorbed in the person’s body many

simulated neutrons need to contribute to the absorbed energy tally. This is one
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example of how Monte Carlo can be used to solve particle transport.

Monte Carlo methods were initially formulated to solve neutron transport prob-

lems but were quickly applied to other problems in physics. In 1963 Fleck [5] first

outlined the Monte Carlo method for solving the TRT equations. In this paper

he discusses the difference between solving linear and non-linear problems with

Monte Carlo and the inability to use the average values from particle histories.

This method is explicit in temperature and uses “bundles” of photons as a single

simulated photon. The method is compared against finite difference codes that

were in use at the time.

In 1971, Fleck and Cummings [6] improved upon Fleck’s original method. In

their paper they stated that current Monte Carlo methods for radiation transport

were limited in both “flexibility and range of applicability.” The explicit meth-

ods only worked well in optically thin systems and required small time steps in

near equilibrium systems and in systems with a relatively large opacities. Fleck

and Cummings developed the Implicit Monte Carlo method, which linearizes the

TRT equations by expanding the emission temperature with a Taylor series. This

procedure introduces an effective scattering term in the radiative energy density

equation and multiplies the absorption cross section what is now called the Fleck

Factor. This Fleck Factor physically represents the probability that a photon will

be reemitted after absorption within the time step. The Implicit Monte Carlo

method proved much more useful than the old methods for a wide range of prob-

lems.

A few years later, Carter and Forest [2] developed another Implicit Monte Carlo

method that samples from an exact solution to the material energy density balance.

This method yields an exponential in the total energy emitted and an exponential
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distribution in emission time. This method also used opacity and β values from

the previous time step to determine the energy emitted and the emission time.

The Carter Forest method is more accurate than the IMC method because it

solves the material energy balance exactly. The method has not replaced the IMC

method because it is more computationally intensive due to the use of logarithms

and exponentials as well as the need to use a root solving procedure to determine

path-length of photon histories [3].

1.1.3 The Overheating Problem

In IMC simulations where initially cold matter is heated by a radiation field an

unphysical overheating of the material can occur. This unphysical overheating is

said to violate the “maximum principle”, which states that for TRT solutions the

temperature should never exceed the highest temperature in the problem. The

maximum principle was discussed and quantified by Larsen and Mercier [13] in

1987 for IMC simulations. They prove that for sufficiently small time steps the

IMC method will obey the maximum principle. They derive the time-step size

limits but they find that the limit is more restrictive than IMC results indicate.

In 2008, Wollaber [25] proposed two methods for correcting the overheating

problem: the IMC-T∗ method and the time dependent Fleck factor. The IMC-T∗

method is based on finding an average temperature, T∗, by solving a deterministic

quasi-diffusion calculation that uses information from a preliminary IMC run. An

IMC simulation is then run with the temperature dependent properties evaluated

at T∗. The time-dependent Fleck factor method (TDF-IMC) is obtained by deriv-

ing the IMC equations without making the assumption that the time-step average

values are equal to the beginning of time-step values. This time dependent Fleck
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factor reduces over heating but also increases run-time because more energy is emit-

ted and effective scattering is increased within a time-step. Wollaber also states

that when IMC-T∗ and TDF-IMC are used in tandem “substantial suppression in

the maximum principle violation...” is achieved.

McClarren and Urbatsch [15] attempt to correct the overheating nature of IMC

by integrating the linearized material energy density equation exactly. This pro-

duces a different Fleck Factor they call m∞. This m∞ factor is always smaller than

the Fleck Factor and prevents overheating, but when large time steps are used m∞

approaches zero and an unphysically small amount of heat is absorbed in the ma-

terial. They also developed a method to adaptively apply the m∞ factor if IMC

will overheat and apply the normal Fleck Factor if overheating is not expected.

Gentile [8] also introduced a modified Fleck factor to ameliorate overheating

in IMC. This modified Fleck factor, g, is derived by including the temperature

derivative of opacity when the material energy balance is expanded with a Taylor

series. Including the temperature dependence of opacity in the Fleck factor leads

to more effective scattering in heating conditions, thus reducing overheating.

Cheatham [3] also showed how including the temperature dependence of opacity

can solve the overheating problems . Cheatham employed a predictor-corrector

approach, which uses a preliminary IMC simulation to estimate the temperature

at the next time step and then updates the opacity using the average temperature

for the true IMC simulation. In heating problems, the opacity is often lower at

higher temperatures and using this approach, less energy is absorbed. This method

does require an initial IMC simulation to determine the new temperature and thus

has a potentially increased computational cost.
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1.2 Thesis Overview

The remainder of this thesis is organized in the following way:

II. In Chapter 2, the equations for thermal radiative transfer are introduced.

Each of the terms in the equations are defined and the non-linear nature of the

problem is discussed. Methodologies for solving the equations are discussed

as well as some common problems that are used to test new methods.

III. Chapter 3 is devoted to the Implicit Monte Carlo equations. Starting with

the thermal radiative transfer equations, the Implicit Monte Carlo equations

are derived. The meaning of the Fleck factor is discussed. The section ends

with details on the implementation of the IMC equations in a Monte Carlo

computer program.

IV. Chapter 4 introduces the Iterative Thermal Emission Implicit Monte Carlo

(ITE IMC) method. The ITE IMC equations are derived and the modified

terms are identified. The method for modifying a standard IMC code to use

the ITE IMC method is discussed.

V. In Chapter 5, the ITE IMC method is verified and tested on common TRT

problems. The method is validated against analytic solutions present in the

literature and a simple stability analysis is performed for the infinite medium

case. Teleportation error is quantified for the ITE IMC method and compared

to the standard IMC method. The ITE IMC method is tested on Marshak

Wave problems to establish its ability to remedy the overheating present in

IMC. The variance and overall figure of merit for the ITE IMC method are

calculated.
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VI. Chapter 6 contains a discussion of numerical results from the ITE IMC

method, and we revisit our research objectives in light of this data. The

ITE IMC method is compared and contrasted to the IMC method. Rec-

ommendations are made for further analyses and possible improvements are

suggested.



10

2 Thermal Radiative Transfer

2.1 Introduction

The Thermal Radiative Transfer (TRT) equations are described in this chapter.

The TRT equations model the physical processes of photon emission and inter-

action with material. To solve these equations with a computer simulation it is

necessary to apply a number of discretizations to the phase space associated with

the TRT equations.

2.2 Physical Processes

All matter at a temperature above absolute zero emits photons. Temperature is

a measure of the kinetic energy of a group of atoms, so at higher temperatures

there is more motion of the atoms or molecules in a material. As the protons and

electrons in an atom move they experience different forces and are accelerated. An

accelerating charge changes the electromagnetic field and results in the emission

of a photon [21]. The total energy emission rate of matter at a temperature T is

proportional to T 4. There are a number of different atomic processes that describe

the energy a photon generated in a material could have. Within the atom, photons

are emitted as electrons move from excited states down to lower energy states.

The difference between the higher energy state and the lower energy state is the

energy of the emitted photon. If a photon with an energy larger than the binding

energy of an electron in an atom interacts with the atom it may eject that electron

from the atom. If the photon causing the ejection has an energy greater than the

binding energy of the electron the electron will leave with an energy equal to the



11

difference in the photon’s energy and the electron’s binding energy. The energy of

this electron can take on a continuum of values and when it’s absorbed by another

atom it will emit a photon from a continuous spectrum. Electrons that are not

bound to an atom will also emit radiation as they travel through a material and

interact with other charged particles. This emission causes free electrons to lose

energy and slow down until they are reabsorbed by an atom or molecule. [26]

In this work the Planckian distribution is used to describe the frequency and

intensity of the photons emitted by a material. The Planckian represents matter

in an idealized state. The Planckian is:

B(ν, T ) =
2hν3

c2

1

exp( hν
kT

)− 1
, (1)

where the constants are defined in the following table.

T = material temperature
k = Boltzmann constant
a = Stefan–Boltzmann constant
c = speed of light
ν = frequency

As the matter emits photons, it loses energy. The total rate of energy loss for

the material at a given temperature is equal to Planck function integrated over all

frequencies:

B(T ) = acT 4. (2)

All photons interact with the medium they travel through. Photons can be

scattered or absorbed by the material. The probability of interacting with a mate-

rial is described by the material’s opacity, usually written as σ. The opacity is the

probability of interaction per unit distance. Opacity is a function of the photon’s

frequency and the temperature of the material.
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In order to use relatively simple equations of state to characterize the matter,

the assumption of Local Thermal Equilibrium is often made. This assumption

states that the properties of the matter are accurately described by its temperature

and that the photons are emitted according to the Planck spectrum [25].

2.3 TRT Equations

The TRT equations are derived in detail by Pomraning [19]. The full photon energy

balance equation is:

1

c

∂I(x, ν,Ω

∂t
) + Ω · ∇I(x, ν,Ω) = S(ν)− σa(ν)I(x, ν,Ω)+

∞∫
0

dν ′
∫
4π

dΩ
[ ν
ν ′
σs(ν

′ → ν,Ω′ · Ω)I(x, ν ′,Ω′)− σs(ν → ν ′,Ω · Ω′)I(x, ν,Ω)
]
, (3)

where the terms above are defined in the following table:

I(x,Ω, ν) = radiative intensity
Um(x, t) = material energy density

σa(x, ν, T, t) = material absorption opacity
B(ν, T, t) = Planckian emission

The equations describing the processes in the TRT can be derived in the Eulerian

or Lagrangian frame. The specific photon intensity I is the quantity of interest. I

is equal to the photon population in a differential element of phase space multiplied

by the speed of light, c. The first term is the time rate of change of I within a

differential element of phase space. The second term represents the leakage out of

a differential element of phase space. The S(ν) term is a source of photons, it is not

necessarily the Planckian but under the LTE assumption it becomes the Planckian

distribution. All events that reduce the population of photons are included in the

−σa(ν)I(ν,Ω) term. The last term represents scattering into (the positive term)

and out of (the negative term) a differential frequency and solid angle.
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The population of photons in a solid angle and frequency effects the probability

of photon absorptions and scatters. Interactions that depend upon the current

photon population are known as induced processes. This phenomenon is a result

of the Pauli Exclusion principle. The probability, P , of an interaction is increased

according to:

P ′ = P

[
1 +

c2I(x, ν,Ω, t)

2hν3

]
, (4)

where P ′ is the probability accounting for the induced process and the variables I,

Ω and ν refer to the population after the event. When Eq. (4) is included in Eq.

(3) and the LTE assumption is made the standard TRT equations are formed:

1

c

∂I(x, ν,Ω)

∂t
+ Ω · ∇I(ν,Ω) = σaB(ν, T )− σa(ν)I(ν,Ω)

+

∞∫
0

dν ′
∫
4π

dΩ

[
ν

ν ′
σs(ν

′ → ν,Ω′ · Ω)I(x, ν ′,Ω′)

[
1 +

c2I(x, ν,Ω, t)

2hν3

]]

−
∞∫

0

dν ′
∫
4π

dΩ

[
σs(ν → ν ′,Ω · Ω′)I(x, ν,Ω)

[
1 +

c2I(x, ν ′,Ω′, t)

2hν3

]]
, (5)

In Eq. (5) the source term S(ν) has been replaced by the Planckian, B(ν, T ).

The scattering terms are increased by the induced process term. The Planckian

source now includes σ′a, which comes from forcing the equilibrium intensity to

satisfy the Planck function [19].

The material energy balance is usually written as:

dUm(x, T, t)

dt
=

∞∫ 4π∫
σaI(x, ν,Ω)dΩdν −

∞∫
σaB(ν, T )dν + Sm. (6)

The first term is the time rate of change of the material energy density, Um. The

photon intensity I from the radiative energy balance in the second term is used

to calculate the total energy absorbed in the material over all photon directions
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and frequencies. The third term represents the energy loss in the material due to

Planckian emission. The last term represents all other possible energy sources into

the problem, which may come from other multiphysics processes. The material

energy balance and the radiative energy balance are coupled through the I and T

terms. The TRT equations very non-linear because the Planckian is not a linear

function of temperature. The absorption opacity is often a non-linear function of

temperature, adding to the non-linear behavior of the TRT equations. To solve the

TRT equations analytically it is necessary to linearize the temperature dependence.

This is usually done by evaluating most of the temperature dependent variables at

the previous time-step and then using simple expansions for the remaining terms.

2.4 Discrete Equations

In both Monte Carlo and deterministic methods for solving the TRT equations,

it is necessary to generate solutions on some kind of spatial grid. Using a spatial

grid means that discrete values for the variables of interest can be used instead

of continuous functions of position. The frequency ν is also treated in a discrete

manner by introducing a series of radiative energy balance equations which each

represent a frequency range. These are called the multigroup equations and they

are coupled to each other through the scattering terms. If the problem parameters

do not depend on frequency, the problem is considered “gray” and one radiative

energy balance equation can be used. Another method of dealing with frequency

is the one-group method, where parameters are frequency dependent but the ra-

diative energy balance is integrated over all frequencies and yields one equation.

In Monte Carlo methods, the photon direction is treated as a continuous variable

and is sampled from various distributions. The method for handling the non-linear
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nature of the TRT equations is often related to the various methods of time dis-

cretization [7]. In deterministic methods, the parameters can be taken at the future

time-step and then iterated until convergence. In Monte Carlo methods, the large

number of iterations would be very expensive because each iteration would involve

simulating many photon histories.

A new method of time discretization is the focus of this thesis. In this thesis

only simple orthogonal grids are used to validate new methods. The test problems

in this thesis use the gray or single group version of the TRT equations; multigroup

test problems were not considered.

2.5 Summary

The TRT equations describe the physical processes of emission and absorption

in a material. The equations discretized so they can be implemented on a grid and

solved with a deterministic or Monte Carlo method.
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3 Implicit Monte Carlo

3.1 Introduction

The thermal radiaitive transfer equations are non-linear in material energy density.

Fleck and Cummings put forth a method that linearizes the TRT equations by

approximating the emission temperature with a Taylor series. This method is

known as Implicit Monte Carlo (IMC). The derivation of the IMC equations and a

discussion on implementing the IMC method in a computer program are presented

in this section.

3.2 Derivation of IMC Equations

A derivation of the TRT equations in both Eulerian and Lagrangian frames is avail-

able in [18]. The standard TRT equations, without scattering and with functional

parameters suppressed, are:

1

c

∂I

∂t
+ Ω · ∇I + σaI =

1

4π
σaB + Sr, (7)

dUm
dt

=

∞∫ 4π∫
σaIdΩdν −

∞∫
σaBdν + Sm. (8)

Here Eq. 7 represents the radiative energy balance and Eq. (8) represents the

material energy balance. The terms above are defined with their functional pa-

rameters:
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I(x,Ω, ν, t) = radiative intensity
Um(x, t) = material energy density

σa(x, ν, T, t) = material absorption opacity
B(ν, T, t) = Planckian emission

Sr(x,Ω, ν, T, t) = source to the radiation field
Sm(x, T, t) = material energy source

c = speed of light
ν = frequency

When dealing with the TRT equations the variables Tr and Tm are often used to re-

fer to the temperature of radiation field and the material temperature respectively.

In this work, T always refers to the material temperature, which is measured in

keV. For convenience in deriving the IMC equations the source terms will be left

out and reintroduced in the final form. The material energy density, Um, in terms

of temperature and heat capacity, cV , is

Um =

∫ T

0

cV (T )dT. (9)

Eqs. (7) and (8) are coupled by the Planckian emission term B, which is a

function of frequency and the material temperature:

B(ν, T ) =
2hν3

c2

1

exp( hν
kT

)− 1
. (10)

The Planckian is often expressed as a function of the equilibrium radiative energy

density, Ur, times a probability density function in frequency at a given tempera-

ture:

B(ν, T ) = b(ν, T )acT 4 = b(ν, T )cUr, (11)

∞∫
0

b(ν, T )dν = 1. (12)

The integral over frequency in the material energy balance can now be evalu-
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ated:

∞∫
0

σa(ν, T )B(ν, T )dν =

∞∫
0

σa(ν, T )b(ν, T )acT 4dν = σa,p(T )acT 4, (13)

where σa,p is the absorption opacity weighted with the probability density function

b(ν, T ):

σa,p =

∞∫
0

σa(ν, T )b(ν, T )dν

∞∫
0

b(ν, T )dν

=

∞∫
0

σa(ν, T )b(ν, T )dν. (14)

Substituting Eq. (11) into Eqs. (7) and (8) clarifies the temperature relation-

ship in the TRT equations.

The time derivative in both the radiative energy balance and material energy

balance is then approximated by evaluating all temperature dependent properties

and the emission temperature at the future time step:

1

c

In+1 − In

∆t
+ Ω · ∇In+1 + σn+1

a In+1 =
1

4π
σn+1
a bn+1ca(T n+1)4 (15)

Un+1
m − Un

m

∆t
=

∫∫
σn+1In+1 dΩ dν − σn+1

a,p ca(T n+1)4 (16)

This is the first in a series of approximations made with the intent of linearizing the

TRT equations. These equations are implicit and their error is O(∆t2) locally and

O(∆t) globally. The next approximation is made to the material energy balance

equation: assuming that the heat capacity cV is constant over a time step changes

the material energy density balance to a temperature update equation:

Un+1
m − Un

m

∆t
≈ cnV

T n+1 − T n

∆t
=

∫∫
σn+1In+1 dΩ dν − σn+1

a,p ca(T n+1)4. (17)

Eq. (17) clearly shows how the material energy balance equation is nonlinear in

temperature. To linearize this system of equations, the right side of the Eqs. (15)
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and (17) are approximated with a Taylor series around the time tn. In abstract

terms, the equations become:

yn+1 − yn

∆t
= F (T n+1) ≈ F (T n) + ∆t

dF (T )

dT

dT

dt
+O(∆t2). (18)

Applying this expansion to Eqs. (15) and (17):

1

c

In+1 − In

∆t
+ Ω · ∇In+1 + σna I

n+1 =
1

4π
σna bca(T n)4 +

1

4π
∆tca

dσbT 4

dT

dT

dt
, (19)

cnV
T n+1 − T n

∆t
=

∫∫
σnIn+1 dΩ dν − σna,pca(T n)4 −∆tca

dσT 4

dT

dT

dt
+O(∆t2). (20)

Another set of approximations is then made to evaluate the derivative term in

Eqs. (19) and (20). The change in opacity is assumed to be negligible over a time

step; this can be a large source of error because opacity can vary as 1
T 3 (see [8] for

treatment of the opacity derivative). b(ν, T ) is also assumed to be constant over

the time step– holding b(ν, T ) constant assumes that the frequency distribution

of thermally emitted photons does not vary significantly with temperature. After

applying these two assumptions, Eqs. (19) and (20) become

1

c

In+1 − In

∆t
+Ω·∇In+1 +σna I

n+1 =
1

4π
σna b

nca(T n)4 +
1

4π
∆tσnbn4ca(T n)3dT

dt
, (21)

cnV
T n+1 − T n

∆t
=

∫∫
σnIn+1 dΩ dν − σna,pca(T n)4 −∆tσn4ca(T n)3dT

dt
. (22)

The material energy balance is now linear in T n. An expression for the dT
dt

term in the radiative energy balance is obtained by solving the material update

equation for dT
dt

and assuming that Tn+1−Tn

∆t
is equal to dT

dt
(an assumption with

error O(∆t2)). Eq. (22) solved for dT
dt

is:

dT

dt
=

1

1 + ∆tσ4ac(Tn)3

cV

1

cV

(∫∫
σnIn+1 dΩ dν − σna,pca(T n)4

)
. (23)

Substituting Eq. (23) into the Eq. (21) yields the following:

1

c

In+1 − In

∆t
+ Ω · ∇In+1 + σna I

n+1 =
1

4π
σna b

nca(T n)4
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+
1

4π

∆tσ4ac(Tn)3

cV

1 + ∆tσ4ac(Tn)3

cV

(∫∫
σnIn+1dΩdν − σna,pca(T n)4

)
bn. (24)

It is now convenient to introduce the Fleck factor, f :

f =
1

1 + ∆tσ4ac(Tn)3

cV

. (25)

Using the Fleck factor, Eq. (24) becomes:

1

c

In+1 − In

∆t
+ Ω · ∇In+1 + σna I

n+1 =
1

4π
σna b

nca(T n)4

+
1

4π
(1− f)

(∫∫
σnIn+1 dΩ dν − σna,pca(T n)4

)
bn, (26)

and simplifies to the standard radiative energy balance in the IMC equations (now

using the equilibrium radiation density term Ur = aT 4):

1

c

In+1 − In

∆t
+ Ω · ∇In+1 + σna I

n+1 =
1

4π
fσna b

ncUn
r

+
1

4π
(1− f)bn

(∫∫
σnIn+1dΩdν

)
+ Sr. (27)

Here the source term Sr is reintroduced, but it is not multiplied by the Fleck factor.

The IMC material energy balance equation is:

1

cV

T n+1 − T n

∆t
= f

(∫∫
σnIn+1 dΩ dν − σna,pcUn

r + Sm

)
. (28)

The source term in the material energy balance is multiplied by the Fleck factor

because the whole right hand side is multiplied by the Fleck factor as is shown in

Eq. (23).

3.3 Meaning of the Fleck Factor

The Fleck factor ranges between 0 and 1 for all problem parameters. As the

length of the time step used in IMC simulations approaches infinity, the Fleck
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factor approaches zero. For very small time steps, the Fleck Factor approaches

unity. The Fleck Factor is often described as the probability that an absorbed

photon is not reemitted within a time step. This is evident from the second source

terms in Eq. (27): as f approaches zero, more of the angular intensity, I, will

be redistributed according to a Planckian spectrum in energy and isotropically in

angle. This physically represents the absorption and reemission of a photon. As f

approaches unity, the scattering term vanishes and only absorptions take place. In

the material energy balance, the Fleck factor effectively decreases the amount of

energy absorbed and the amount reemitted and thus the change in temperature.

If the Fleck factor is not used, all absorbed energy in the material would remain

there throughout the time step–a non-physical approximation that would lead to

an overestimation of material temperature if a large energy source is incident on

the material [6].

3.4 Implementing the IMC Equations

In our previous derivations, the IMC equations have not been discussed in a deter-

ministic or Monte Carlo context. They could be solved using either method but

they are usually solved via Monte Carlo. The equations can be implemented in a

Monte Carlo setting because the intensity can be written as a particle density:

I(x,Ω, ν, t) = chνN(x,Ω, ν, t), (29)

where N is the density of simulated photons.

A photon can be simulated in a computer program with the use of pseudo-

random numbers and probability density functions. The life of a simulated photon

is described in Fig. (1). The simulated photon is assigned a frequency from the

Planckian distribution, a random direction vector, a random time of birth (within
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the time step) and a random location within a discrete cell. As the photon moves

through the problem it will scatter according to an exponential function:

pscatter = 1− e−(1−f)σax. (30)

To find the distance to scatter, a uniform random variate, ζ, is sampled between 0

and 1 and substituted for pscatter in Eq. (30) [14]. The distance to scatter is then

calculated by solving Eq. (30) for x:

x = − 1

(1− f)σa
ln(1− ζ). (31)

3.4.1 Non-Analog Monte Carlo

Unfortunately, no computer has the capacity to simulate the actual number of

photons present in physical problems. This is not a concern in Monte Carlo neutron

transport because the angular flux can be calculated with a source of one neutron

and then scaled to the actual problem parameters. This is not possible in thermal

radiative transfer because the quantity I depends on the energy of the photon (hν),

not just on the photon density. As a result, a non-analog Monte Carlo procedure is

used for photon transport. Each simulated photon represents many real photons:

each simulated photon is given a representative energy (sometimes called weight or

energy-weight). This energy is distinct from its frequency, which is sampled from

the Planckian distribution. The energy of each simulated photon is determined by

the number of total photon histories used in the IMC simulation. The number of

simulated photons in each discrete spatial zone in the problem is proportional to

the energy of that zone:

Nzone = Ntotal
Ezone
Etotal

. (32)
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The same procedure is used for other photon sources:

Nzone = Ntotal
Esource
Etotal

. (33)

The energy given to each simulated photon is calculated by dividing the total

energy of the zone by the number of simulated photons allocated to that zone:

Ephoton =
Ezone
Nzone

. (34)

In IMC simulations, energy deposition is usually calculated through a procedure

called absorption supression [14]. With absorption weighting, the energy absorbed

in the material is:

Eabs = Ephoton(1− e−fσax), (35)

where x is the distance traveled and Ephoton is the starting energy of the photon.

The energy deposited in the material, Eabs is added to a tally and after all particles

are advanced to the end of the time step the total energy deposited and the total

energy emitted in a zone are used with an equation of state to determine the

temperature at the next time step.

3.4.2 Census Photons

Simulated photons lose energy as they move through the material in accordance

with Eq. (35). It is not practical for the program to track photons of very low

energy so at some user determined value, these photons are “destroyed” (deleted

from memory). The photons that survive until the end of the time step are placed

in census. This means that each of these photons and their energy will carry over

to the next time step and be simulated again. They all begin with a time equal

to the beginning of the time step, as opposed to emitted thermal photons which

are born uniformly at random times within the time step. There are also census
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photons on the first time step: this comes from either the radiation in equilibrium

with the material (Ur) or from some prescribed initial condition. Census photons

are thus created only on the first time step.

3.4.3 Teleportation Error

When a simulated photon is created in IMC it is assigned a random location within

a discrete spatial zone. If relatively small time steps are used in conjunction with

large spatial zones, energy can travel through the problem at superluminal speeds:

this is known as teleportation error. This problem occurs because when a photon

deposits its energy in a zone the specific location of this event is not recorded (it

is not practical from a computer memory perspective). For instance, if a photon

travels a distance x′ into a cold zone and reaches census then on the next time step

any photons created with a location x > x′ will have transported energy faster

than the speed of light. This problem stems from the use of discrete spatial zones

and leads to an incorrect wave front position in Marshak wave problems. Several

attempts have been made to rectify this unphysical characteristic of IMC [3].

3.5 Summary

In this section the IMC equations were derived from the TRT equations. The

meaning of the fleck factor and the advantages of effective scattering were dis-

cussed. A synopsis was given on solving the IMC equations with a Monte Carlo

procedure. The teleportation error associated with Monte Carlo photon simula-

tions was discussed.
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Figure 1: Flow chart describing simulated photon creation and movement (census
photons are only created on the first time step)
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4 Iterative Thermal Emission IMC

4.1 Introduction

The iterative thermal emission (ITE) version of the IMC equations is derived in

this section. A general outline is presented for implementing the ITE IMC method

in a Monte Carlo simulation.

4.2 Derivation of the ITE IMC Equations

The standard IMC equations are modified by assuming that the material tem-

perature can be divided into equal portions in a procedure similar to the Rosenbrok

method [20]. The material temperature at T n is:

T n ≡ T1 + T2 + ...+ T nN−1 + T nN = NT1, (36)

where a given ”sub temperature” Ti = T
N

for i = 1, 2...N . The material energy

balance for the first sub temperature, T1, in abstract form is:

dT1

dt
= F (T n+1

1 ) =
1

N
F (T n+1). (37)

The material energy balance for T1 can be expressed in terms of T because of the

relationship in Eq. (36). A Taylor series is used to expand F (T n+1) around T n:

dT1

dt
=

1

N
F (T n+1) ≈ 1

N

(
F (T n) +

dF

dT

dT

dt
∆t

)
≈ 1

N

(
F (T n) +

dF

dT
N
dT1

dt
∆t

)
.

(38)
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In Eq. (38) N dT1
dt

is used to represent the dT
dt

term. Eq. (38) resembles the standard

IMC derivation with a 1
N

term in front of the emission source. T n+1
1 can then be

determined from the IMC method using 1
N

of the source particles.

Now that T n+1
1 has been calculated it can be used to obtain a better estimate of

T n+1 when determining all subsequent values of T n+1
i . This more accurate estimate

of T n+1 is used in the material energy balance for T n+1
2 :

dT2

dt
=

1

N
F (T n+1) ≈ 1

N

(
F
(
T n+1

1 + T n+1
2 + (N − 2)T n+1

N

))
≈ 1

N

(
F (T n+1

1 + T n2 + (N − 2)T nN) +
dF

dT
(N − 2 + 1)

dT2

dt
∆t

) (39)

In Eq. (39), the total temperature dT
dt

is approximated with (N − 2 + 1)dT2
dt

. This

represents the derivative of all unknown sub-step values (2 through N). Solving

Eq. (39) for dT2
dt

yields:

dT2

dt
=

1

N
F
(
T n+1

1 + T n2 + (N − 2)T nN
)(

1− (N − 2 + 1)

N

dF

dT
(T n+1

1 + T n2 + (N − 2)T nN)∆t

)−1

(40)

This process is continued until T n+1
N is determined, then the sum of all the

energy deposited in each sub-step is used with an equation of state to find T n+1.

The equation for a given sub temperature Ti in the ITE IMC method is:

dTi
dt

=
1

N
F (Ti,N)

(
1− N − i+ 1

N

dF

dT
(Ti,N)∆t

)−1

, (41)

where

Ti,N =

(
i−1∑
j=1

T n+1
j

)
+ (N − i+ 1)T ni . (42)
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The Ti,N term is the current estimate for the temperature at the next time step.

Substituting Eq. (41) into the radiative energy balance equation results in the

standard IMC equations except with a slightly modified Fleck factor:

fi =
1

1 + N−i+1
N

βcσ∆t
. (43)

The Iterative Thermal Emission version of the IMC equations in 1D with 1

frequency group are:

cv
dTi
dt

= σa,p

∫
fiIidµ+

1

N
σa,pfiacT

4
i,N + fi

1

N
Sm, (44)

1

c

∂Ii
∂t

+ µ
∂Ii
∂x

+ σaIi =
1

2

1

N

(
σa,pficaT

4
i,N

)
+

1

2

∫
σa,p(1− fi)Idµ′ +

1

N
Sr. (45)

The initial condition for intensity is Ii = 1
N
In, meaning 1

N
of the census photons

are used for each Ti. cV , σ and fi are functions of temperature and use the T n+1

estimate at each sub temperature.

After all values of Ti and Ii have been determined by Monte Carlo simulation

the material temperature at the next time step, T n+1, is determined by summing

the material update equations for each Ti and Ii:

T n+1 = T n + ∆t

(
N∑
i=1

1

cv,i

∫
fiσa,iIidµ−

N∑
i=1

1

N

(
fi
cv,i

σa,p,iacT
4
i

))
. (46)

4.3 Implementing the ITE IMC Equations

An arbitrary number of iterations can be used in the ITE IMC method. If

one step is used the ITE IMC method becomes the standard IMC method. The
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main difference in implementation between ITE and IMC is the need to divide the

emission energy and the initial census energy by the total number of iterations, N .

After dividing by N the problem is run just like an IMC problem. At the end of

IMC simulation for a given Ti, Eq. (44) is used to determine the sub temperature.

The equation for T n+1
i for a given zone on the mesh is:

T n+1
x,i = T nx,i +

1

cV

[Eabs]

∆x
− 1

N

(
∆t

cv,i
fiσa,p,iacT

4
i,N

)
, (47)

where Tx,i is the material temperature in a given zone, Ti,N is from Eq. (42) and

[Eabs] is the absorption tally from the IMC simulation. The absorption tally is

the total energy absorbed in the zone, the energy density is obtained by dividing

the tally by ∆x (in more than one dimension it would be divided by the zone’s

volume). Eq. (42) is then recalculated for this zone and the emission source and

the material properties are updated for the next sub-temperature calculation.

The other difference is the need to keep a master list of census photons from all

sub-temperature calculations. After all ITE sub-steps have been run the master

list is divided up into N smaller lists using random numbers. These smaller lists

then serve as the initial condition for each sub-step.

4.4 Summary

The ITE IMC equations were derived by assuming the material temperature

can be split into sub-portions. Each sub-temperature can be solved by using the

IMC method with a modified Fleck factor. The tracking process is identical to IMC.

The major difference between ITE IMC and standard IMC is that the emission

temperature and temperature dependent parameters are updated after every ITE

sub-step, yielding a more implicit method.
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5 Results

5.1 Introduction

In this section the ITE IMC method is verified against analytic solutions from the

literature. A stability analysis is performed for the ITE IMC equations in 0-D and

the stability of the new method is compared to the stability of IMC. The variance

and other sources of error in the IMC and ITE IMC methods are examined and

compared. The allowable time steps and grid spacing for Marshak wave prob-

lems are determined for the IMC and ITE IMC methods and the “Crooked Pipe”

problem is simulated with an ITE IMC code.

5.2 Verification

To demonstrate that the ITE IMC method can accurately solve thermal radiative

transfer problems and that the method has been correctly implemented in a com-

puter code, several test problems were run and the results were compared to the

analytical solutions available in the literature.

5.2.1 Infinite Medium

Mosher provided a time dependent analytic solution to an infinite medium TRT

problem with constant opacitity and heat capacity [17]. This analytic solution is

unique because most analytic solutions assume a heat capacity that depends on T 3,

which linearizes the TRT equations. A 1-D test problem with reflecting boundary

conditions on both ends (an infinite medium), was simulated using the ITE IMC

method. For the test problem the constants a and c were both set to 1.0 as well
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as the physical parameters σ and cV . The initial radiation temperature Tr was set

to 2.0 and the material temperature Tm was set to 0.001.
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Figure 2: Material temperature vs. time comparing IMC and ITE IMC to the
analytic solution

The results in Figures (2) and (3) show that the IMC and ITE IMC method

both roughly satisfy the analytic solution with a slightly lower material temperature

during the transient. The IMC method is known to absorb less energy than it

should in problems where a relatively cold material is heated up by the radiation

field [3]. The lower temperature that occurs when more ITE sub-steps are used is
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Figure 3: Material temperature vs. position comparing IMC and ITE IMC to the
analytic solution near the equilibrium temperature

expected: a more accurate estimate of T n+1
m will be larger thus yielding a smaller

Fleck Factor and less overall emission and absorption. Fig. (5) shows that the

RMS error approaches zero as the time step is decreased and that the IMC and

ITE IMC method are both first order in time.

Fig. (4) shows that the IMC and ITE IMC are equivalent when one sub-step

is used in the ITE method.
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5.2.2 1-D

Su and Olson have developed test problems that have long been used to bench-

mark TRT codes. Their 1997 [23] paper provides the analytic solution for a one-

dimensional, time-dependent, linear TRT problem. The TRT equations are lin-

earized by assuming that the heat capacity is proportional to T 3
m, an approxima-

tion that was first used by Pomraning [19] and is very useful for obtaining reference

solutions. This assumption is not physical but it makes the TRT equations linear
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Figure 5: RMS error of IMC and ITE IMC with 2 sub-steps compared to Mosher
analytic vs. ∆t

in T 4. Both IMC and ITE IMC methods were used to simulate this test problem

with a = c = σ = 1.0 and cV = 4.0T 3
m. In the Su Olson problem, a source of 1.0

(representing radiation coming from material at T = 1.0) located between x = 0

andx = 0.5 is ”on” for 10.0 units of time and then turned off. The left boundary is

reflecting and the right boundary is a vacuum. Figures (6) through (8) show that

the IMC method and the ITE IMC method agree with the analytic solution and

with each other. Fig. (9) shows the RMS error for a run with zone centers that

correspond to the the x position where the Su-Olson analytic solution is available.

The error does not decrease uniformly with smaller time steps due to the error also

present from spatial discretization. If the spatial mesh is refined three times the

RMS error at t = 10.0 with ∆t = 0.05 is reduced to 7.95E− 3 for the IMC method
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and 6.82E − 3 for the ITE IMC method with four sub-steps. This is refinement

reduces the RMS error by a factor of two for the same time-step size.
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5.3 Stability Analysis

Mosher and Densmore [24] evaluated the stability of the grey IMC equations in

an infinite medium by again assuming that the heat capacity is proportional to T 3.

The IMC equations then become a system of equations that can be solved exactly

and analyzed by examining the solution at tn+1: the radiation energy density En+1

and the material energy density Un+1. The method of stability analysis used by
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Figure 7: Energy density vs. position comparing ITE to the analytic solution at
various times

Mosher and Densmore is applied to the ITE IMC equations: the same assumptions

are made and the equations are solved for each sub-step temperature and this

information is used in determining the next sub-step temperature. The motivation

for solving these equations exactly is finding the eigenvalues of the 2x2 matrix that

comes from solving the equations exactly and using a given time step ∆t:

(
En+1

Un+1

)
=

(
a(∆t) b(∆t)
c(∆t) d(∆t)

)(
E
U

)
. (48)

The eigenvalues can then be used to determine the amplification for a given time

step size ∆t.

In this analysis opacity is independent of temperature and the equations are

linearized by assuming that the material energy, U , is proportional to T 4:

U = bT 4. (49)
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Figure 8: Energy density vs. position showing the equivalence of IMC and ITE
IMC when 1 sub-step is used in the ITE method

This is equivalent to the linearization of Pomraning, where heat capacity is assumed

to vary with T 3. The assumption in Eq. (49) yields a simple relationship between

material energy and the equilibrium radiation density:

Ur = aT 4 =
a

b
U = βU (50)

The standard 0-D IMC equations in the standard backward Euler form are:

dE

dt
+ fnσncE = fnσncU

n
r , (51)
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Figure 9: Comparing the RMS error for the IMC and ITE IMC method with four
sub-steps at various times in the Su Olson problem

dU

dt
= fnσnc(E − Un

r ). (52)

A slight modification is made when using two steps of the ITE IMC method:

dE1

dt
+ fn1 σ

ncE1 = fn1 σ
ncUn+1

1,r , (53)

dU1

dt
= fn1 σ

nc(E1 − Un+1
1,r ). (54)

In the ITE IMC method Un+1
r is estimated using information from the previous

sub-steps. For the first sub-step, the ITE IMC method estimates the emission

temperature, Un+1
r,1 , with Un+1

r,1 = Un
r

2
. These equations can be solved and evaluated

at tn+1 to yield:

En+1
1 =

1

2

(
Ene−f

n
1 σ

nc(t−tn) + Un
r

(
1− e−fn1 σnc∆t

))
, (55)
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Un+1
1 =

1

2

(
Un + (En − Un

r )
(
1− e−fn1 σnc∆t)

))
. (56)

These equations can be written in a very general form:

En+1
1 =

1

2
AEn +

1

2
BUn (57)

Un+1
1 =

1

2
(1− A)En +

1

2
(1−B)Un (58)

If two steps are used in the ITE IMC method, the emission temperature for the

second sub-step is estimated as Un+1
r,2 =

Un+1
r,1 +Un

r,2

2
and Un

r,2 = Un
r

2
. The radiation

and material energy balance for the second sub-step become

dE2

dt
+ fn2 σ

ncE2 = fn2 σ
nc
Un+1
r,1 + Un

r

2

2
, (59)

dU2

dt
= fn2 σ

nc

(
E2 −

Un+1
r,1 + Un

r

2

2

)
, (60)

where Un+1
1,r is now a constant equal to βU1(tn+1) .

This system of equations is then solved to yield an expression for En+1
2 and

Un+1
2 :

En+1
2 =

(
1

2
γ2 + U1,E(

1

2
β − 1

2
βγ2)

)
E

+

(
1

4
β − 1

4
βγ2 + U1,U(

1

2
β − 1

2
βγ2)

)
U, (61)

Un+1
2 =

(
1

2
− 1

2
γ2 − U1,E(

1

2
β − 1

2
βγ2)

)
E

+

(
1

2
− 1

4
β +

1

4
βγ2 − U1,U(

1

2
β − 1

2
βγ2)

)
U. (62)

In Eqs. (61) and (62) α = −fnσnc and γ = e−α∆t. β is used to write the equation

in terms of U instead of U and Ur. Eqs. (61) and (62) can also be rewritten in a

very general form:

En+1
2 =

1

2
A′En +

1

2
B′Un, (63)
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Un+1
2 =

1

2
(1− A′)En +

1

2
(1−B′)Un. (64)

If more than two sub-steps are used in ITE IMC, the equations for any sub-step

can be written in the same general form because the Ur term for any sub-step Ui

with i > 1 is simply Ui + c where c is a constant equal to the sum of the previously

determined emission terms:

c =
i−1∑
j=1

Un+1
r,j , (65)

where j is an ITE sub-step that has already been determined and i corresponds

to the current sub-step.

Un+1 and En+1 are determined by summing the values for Un+1
i and En+1

i over

all the sub-steps. Using the general forms of those equations yields

En+1 = (A+ A′)En + (B +B′)Un (66)

Un+1 = ((1− A) + (1− A′))En + ((1−B) + (1−B′))En (67)

This system of equations again simplifies to the form:

En+1 = CEn +DUn (68)

Un+1 = (1− C)En + (1−D)Un (69)

Any 2 x 2 system of equations that can be written in this form will have the

same eigenvalues:

λ1 = 1, λ2 = C −D. (70)

The stability can then be determined such that |C − D| is maintained less than

unity. The ITE method for an arbitrary number of steps results in an equation
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like Eqs. (68) and (69) and thus the ITE method eigenvalues always have the same

form.

An expression for |C − D| can be determined for any number of sub-steps

when using the ITE method in 0-D. Consider sub-step i of an ITE method with N

sub-steps:

dEi
dt

+ fni σ
ncEi = fni σ

ncUn+1
r,i , (71)

dUi
dt

= fni σ
nc(Ei − Un+1

r,i ), (72)

where Un+1
r,i is now a function of all the previous time steps:

Un+1
r,i =

Un+1
r,1 + Un+1

r,2 + ...+ Un+1
r,i−1 + (N−i)Un

r

N

N
. (73)

The equations for En+1
i and Un+1

i are:

En+1
i =

(
1

N
γi + UC,E(

1

N
β − 1

N
βγi)

)
E

+

(
N − i+ 1

N2
β − N − i+ 1

N2
βγi + UC,U(

1

N
β − 1

N
βγi)

)
U, (74)

Un+1
i =

(
1

N
−
(

1

N
γi + UC,E(

1

N
β − 1

N
βγi)

))
E

+

(
1

N
−
(
N − i+ 1

N2
β − N − i+ 1

N2
βγi + UC,U(

1

N
β − 1

N
βγi)

))
U, (75)

where

UC,E = U1,E + U2,E + ...+ Ui−1,E, (76)

and

UC,U = U1,U + U2,U + ...+ Ui−1,U . (77)

These UC values represent the coefficients in front of E and U in each Ui equation

(Ei equations are only used when calculating the total En+1). The N − i+ 1 terms

come from the addition of the Ui+1...UN values that have not yet been determined
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and are thus approximated as Un
r

N
. Because Ui and Ei depend on all the previous

sub-steps, Eqs. (74) and (75) can be used recursively to find the numerical values of

the coefficients for Ui and Ei. When i = 1, Eqs. (55) and (56) are used to calculate

the coefficients. The stability of the system is determined from |C −D| < 1 where

C and D are:

C = (E1,E + E2,E + ...+ EN−1,E + EN,E), (78)

D = (E1,U + E2,U + ...+ EN−1,U + EN,U), (79)

where Ei,E and Ei,U are coefficients multiplying the respective E and U terms in

the En+1
i equation.

5.3.1 Numerical Results

The second eigenvalue, λ2, was numerically calculated with a = c = σ = 1 and

β = 3 for various values of ∆t. The results are shown in Figure (10). For all

values of ∆t, |λ2| < 1 and for ∆t < 2.1 the solution is monotonic (0 < λ2 < 1).

The ITE IMC method is monotonic over the same time step range as the standard

IMC method. For time steps greater than 2.1, the eigenvalue decreases slightly

as more ITE sub-steps are used. IMC and ITE IMC simulations were performed

for ∆t = 0.235 and ∆t = 50.0 with an initial radiation density E0 = 1000 and an

initial material energy density U0 = 0.0. Figures (11) through (13) show E and

U as a function of time. Figure (11) shows that for positive eigenvalues, IMC and

ITE IMC generate solutions that compare very well with the predicted solution

and with each other (they have the same λ2). For ∆t = 50.0, the IMC and ITE

IMC simulation values again compare well with the predicted values. In Figure

(13), the smaller predicted λ2 value for the ITE IMC method with four sub-steps

is evident in the slightly less oscillatory nature of the solution.
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Figure 10: λ2 values vs. ITE IMC steps for various ∆t values

5.3.2 Teleportation Error

The teleportation error associated with ITE IMC method was determined using

the method presented by Cheatham [3]. This test problem is grey and 1D with

cV = 4.0T 3, a = c = 1.0 (the problem is unitless) and σ = 100.0. Vacuum boundary

conditions are imposed on both sides and a plane source of 1.0 is placed at the left

boundary. The results are compared at t = 10.0 with an IMC simulation that used

∆x = 0.01 and ∆t = 0.05. To investigate the behavior of the teleportation error,

∆x will be increased relative to the reference solution or ∆t will be decreased.
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Figure 11: Radiative and material energy density vs. time for ∆t = 0.235

Figure (14) shows how energy is transferred further into the problem as ∆t is

decreased. The ITE IMC method has a higher material temperature relative to

the reference solution. Photon teleportation results because the emission location

of a photon is sampled uniformly over a cell. The ITE IMC method emits photons

multiple times during a time step, which means that uniform position sampling

occurs multiple times during a time step. Figure (15) compares the teleportation

error for different numbers of ITE IMC sub-steps. As the number of sub-steps is

increased, the overheating due to teleportation also increases. The teleportation
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Figure 12: Radiative and material energy density vs. time for ∆t = 50.0

error does not increase indefinitely as ITE IMC sub-steps are increased. This is

likely because at some point the amount of energy traveling faster than light is

negligible.

5.4 Marshak Wave

The ITE IMC method is especially useful in Marshak wave problems, where vi-

olations of the maximum principle are most likely to occur. The Marshak wave

problem from Larsen and Mercier’s paper [13] was simulated with both IMC and
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ITE IMC methods. In the Marshak wave problem, the opacity is proportional

to 1
T 3 , meaning that cold regions will have a very small mean free path. As the

material heats up it becomes more transparent to photons. The IMC method does

not update its temperature dependent properties during the time step and so the

cold material will be very opaque throughout the time step and too much energy

will be absorbed if the time step is relatively large. The ITE IMC method updates

the temperature dependent properties at the end of each sub-step, thus allowing

the material to become more transparent throughout the time step.
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The IMC and ITE IMC simulations were used the physical parameters and

boundary conditions from the following table:

σa(T ) = 15
π4

27
T 3

cV = 0.0081181 jk
keVcm3

T0 = 0.001 keV
TB = 1.0 keV
c = 300.0 cm

shake

a = 0.013720160 jk
cm3keV4

Results at various temporal points in the problem are shown in Figures (16)

and (17). Both figures show that the ITE IMC method allows more energy to
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enter the problem while maintaining all material temperatures below the boundary

temperature.

A script was developed to determine the conditions under which IMC and

ITE IMC first violate the maximum principle: the Marshak wave problem was

simulated with constant grid spacing and a small time step. The time step was

gradually increased until a violation of the maximum principle occurred. This

procedure was used to generate the data in Figure (18). Figure (18) shows that
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the ITE IMC method always allows for larger time steps without violating the

maximum principle for any level of grid spacing. The longer time steps allowed by

the ITE IMC method come at the expense of an increased variance in the material

temperature.
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Figure 16: Material temperature vs. position at the end of one time step where
∆t = 0.04 shakes and ∆x = 0.4 cm

5.5 Crooked Pipe Problem

The crooked pipe test problem was designed by Graziani and LeBlanc in 2000 [9].

Its purpose is to test the validity of radiation transport codes in non-diffusive

conditions. In the crooked pipe problem there are two types of material regions:

an optically thin region with a lower heat capacity and an optically thick region

with a high heat capacity. The thin region is the pipe and it is embedded within

the thick material. The problem described by Graziani and LeBlanc is solved in
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Figure 17: Material temperature vs. position after at t = 0.16 shakes where
∆t = 0.04 shakes and ∆x = 0.4 cm

curvilinear r-z geometry: we consider a Cartesian, x-y geometry version. The pipe

has four 90 degree turns as it runs from x = 0 to x = 7.0 cm. Radiation cannot

travel around corners because it does not diffuse. In a scattering medium it can be

described with diffusion equations but in optically thin systems this assumption is

not valid. A 0.5 keV source is placed at x = 0 and vacuum boundaries are imposed

at x = 0, y = 2.0 cm and x = 7.0 cm. We impose a reflecting boundary at y = 0.
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Figure 18: First violations of the maximum principle for Standard IMC and the
ITE IMC Method

Other parameters are shown in the following table:

σthick = 2000 cm−1

σthin = 0.2 cm−1

cV thick = 0.1 jk
keVcm3

cV thin = 0.0001 jk
keVcm3

T0 = 0.05 keV
TB = 0.5 keV
∆t = 0.001 shakes

Photons = 50000
c = 300.0 cm

shake

a = 0.013720160 jk
cm3keV4

The temperature is plotted at 5 points within the “pipe”: Point 1: x = 0.25

cm, y = 0, Point 2: x = 2.75 cm, y = 0, Point 3: x = 3.5 cm, y = 1.25 cm, Point

4: x = 4.25 cm, y = 0, and Point 5: x = 6.75 cm, y = 0 cm.

A heat map that illustrates the geometry of the crooked pipe problem is shown
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for the ITE method with 4 sub-steps in Figure (19). In Figure (20) the IMC and

ITE IMC results are compared side by side. Figure (21) shows the temperature

at the 5 points for the IMC and ITE IMC methods. The larger variance with

time is expected because as more energy enters the problem the same number of

photons are used to simulate that energy so each zone on the mesh will receive less

photons. Figure (21) also shows a rough agreement between IMC and ITE IMC

in the crooked pipe problem. The large variance in material temperature present

in the ITE IMC method is visible in Figure (20). The ITE IMC temperature

slightly lags behind the IMC solution, possibly due to teleportation into the opaque

material.

Figure 19: Material temperature vs. position for the ITE IMC method at t ≈ 4.0sh

5.6 Figure of Merit

The figure of merit (FOM) for Monte Carlo problems is defined by the variance of

the result and the run time:

FOM =
1

tσ2
, (80)

where σ2 is the variance of the answer (usually the material or radiation tempera-

ture) and t is the run time. Shorter run times and smaller variance yields a larger

FOM.
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Figure 20: Material temperature vs. position at t = 2.5 shakes for IMC (top) and
ITE IMC (bottom)

The variance of the material temperature of a zone in the IMC method is related

to the variance of the absorption tally, I.

σ2(T ) =
1

N − 1
(

1

N

N∑
i=1

I2
i − I2). (81)

Where Ii is the energy deposited in one event and I is the total energy absorbed.

The material temperature variance for a zone in ITE IMC method is:

σT =
K∑
k=1

(
1

cV Vcell
σI)

2. (82)

K is the total number of ITE sub-steps Vcell is the volume of the mesh zone.

To compare the FOM for the IMC and ITE IMC methods, both methods were

used to solve the 0-D problem from Mosher [17]. In both problems a = c = 1.0 so

the time and temperature are unitless. The same problem parameters were used in

the FOM test and the 0D verification test but the IMC method used ∆t = 0.1 and
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Figure 21: Material temperature vs. time for the five examined points in crooked
pipe problem

the ITE method with 4 sub-steps used ∆t = 0.3. These values correspond to the

smallest time step that does not violate the maximum principle for each method.

The problem was simulated ten times with 100000 photons and the variance was

compared at t = 0.12. Table (1) shows the results of the FOM test. Fig. (22)

shows that the IMC method overheats when ∆t = 0.3 is used.

When parts of the problem are near equilibrium the Fleck factor does not vary

with time. In these conditions the ITE IMC Fleck factor, found in Eq. (43), will

be equal to the IMC Fleck factor in the first sub-step and less than the IMC Fleck

factor for all other sub-steps. This means that the ITE IMC will have less effective

scattering at near equilibrium conditions and will run faster than traditional IMC.

An infinite medium problem was run with the matter and radiation at equilibrium

with Tm = 2.0 keV. The problem was run with 4 ITE sub-steps, ∆t = 1.0 sh,
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Method Run Time (s) Variance FOM
IMC 3.691 9.085 E-10 2.98 E8

ITE(4) 1.207 8.8974 E-9 9.31 E7

Table 1: Results for FOM test, average of ten runs

Method Run Time (s) Avg. Fleck Factor Variance FOM
IMC 49.94 0.7072 8.172 E-11 2.45 E8

ITE(4) 42.74 0.1318 8.868 E-10 2.64 E7

Table 2: Results for equilibrium FOM test, average of three runs

tend = 10 sh and 100000 photons. The variance and run time are compared in

Table (2). The average Fleck factor listed in Table (2) represents the average of

the four different Fleck factors that result from each of four sub-steps of ITE IMC.

Figure (23) shows the results of the 0D problem and the variance associated with

the ITE IMC.

5.7 Summary

The ITE IMC method has been shown to correctly solve common TRT test

problems. The stability of the method was also explored and found to be similar to

the IMC method. ITE IMC was shown to allow larger time steps for Marshak wave

problems and it physically allows energy to penetrate further into the problem. The

figure of merit for the ITE IMC method was found to be smaller than the IMC

method.
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6 Conclusions

6.1 Introduction

The ITE IMC method has been shown to obey the maximum principle for a wider

range of problem parameters than standard IMC. It has been validated in 0-D,

1-D and 2-D problems and with linear and non-linear problem parameters. The

teleportation problem present in IMC simulations is exacerbated with the use of

ITE IMC. The envelope of time steps that obey the maximum principle for the

Marshak wave problem has been mapped.

6.2 Iterative Thermal Emission IMC

To evaluate the results, the ITE IMC method is compared with traditional IMC,

which is the standard for Monte Carlo photon transport. The ITE IMC method

presents one possible solution to the overheating problem present in IMC simula-

tions. By using more sub-steps of the ITE IMC method, the simulation can be

performed using larger time steps without violating the maximum principle and

the end result can be obtained more quickly. Currently, the variance of the ITE

IMC method will always be larger than the IMC results when the same number of

particles are used. This is because several energy absorption tallies are combined

in ITE IMC compared to the single absorption tally in the IMC method. The

ITE IMC method has a different Fleck factor than standard IMC and if part of

the problem is near equilibrium the ITE IMC method will always have a smaller

Fleck factor and thus less effective scattering. This smaller Fleck factor leads to

faster run times for ITE IMC of about 14% in an infinite medium test problem
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at equilibrium. In problems where large zones are used, the teleportation error

manifested as higher temperatures further into a 1D problem, is larger when ITE

IMC is used. The teleportation error is made worse when more ITE sub-steps are

used.

6.3 Overall Conclusions and Future Work

The ITE IMC method can be used to reduce overall simulation time by allowing

longer time steps without violating the maximum principle. The reduced run time

comes at the cost of an increase in variance relative to the IMC method. Future

work could be done to improve the variance and teleportation errors associated

with ITE IMC. Variance reduction techniques like global weight windows [25] and

symbolic weights [11] could be used with ITE IMC method to reduce variance.

There are several methods for correcting teleportation error and their efficacy with

the IMC method has been tested [3]. These methods could be useful in reducing

teleportation error in ITE IMC simulations.

ITE IMC provides a larger stability envelop for Marshak wave problems. Cur-

rently work is being done to characterize the time step limits on other common

TRT problems. ITE IMC could prove to be even more useful at reducing overheat-

ing in other classes of problems. The ITE IMC method could also be implemented

in 3D and tested on benchmark problems in that geometry.
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