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Chapter 1: Introduction

In this dissertation work, the implementation and performance analysis of advanced

automated “hybrid” (Deterministic/Monte Carlo) variance reduction methods for

realistic radiation shielding problems that are of interest in non-proliferation applica-

tions has been studied. This chapter gives a brief introduction to the type of radiation

transport problems that are of interest in this work. A discussion of the major solution

techniques for such problems and the motivation for selecting the specific techniques

(hybrid methods) that are the research focus in this work are also presented.

1.1 Radiation transport problems for non-proliferation applications

The transport of nuclear particles in various media has been a major area of research

in nuclear reactor engineering, radiation shielding, health physics, medical physics,

remote sensing etc. There are numerous physical phenomena that influence the trans-

port of a nuclear particle and are modeled to various degrees of accuracy depending

on the application. Two major classes of problems that are of interest in nuclear sci-

ence are eigenvalue problems and Source-Detector problems. The eigenvalue problems

find application primarily in reactor design and engineering while the source-detector

(including source-region) problems find application in radiation shielding, dosimetry,
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non-proliferation monitoring and radiation therapy. In this work, our focus is on

source-detector problems for non-proliferation related applications, but the methods

developed can be easily extended to other similar applications.

Nuclear non-proliferation technologies often utilize radiation detection and spectral

analysis to identify and locate sources of radiation. In many instances, it is not fea-

sible to experimentally evaluate the performance of these technologies in the field

prior to their deployment because of the safety issues and/or financial costs involved.

Computer simulations can be used to develop the proposed technologies, and to un-

derstand the complexity of various scenarios of interest in non-proliferation science,

provided the simulations generate high-fidelity information in “reasonable” periods

of time.

Radiation transport problems are computationally challenging in that the quantities

to be determined (particle density functions or fluxes) can be extremely complicated

functions of seven independent variables: x - three position, Ω - two direction, E -

one energy, and t - one time.

Two example problems of interest to NA-22 (Office of Non-proliferation Research,

Department of Energy) are discussed here to illustrate the requirements for radiation

transport software packages. The first, illustrated in Figure 1.1, is a radiation por-

tal monitor with four separate detectors exposed to radiation from (i) environmental

sources (soil, concrete barriers, etc.), (ii) transported naturally-occurring radioactive

material (NORM), (iii) medical sources, and/or (iv) true special nuclear material
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sources. This scenario involves volumetric sources, potentially point-like sources (de-

pending on the size of the problem), and large thin planar detectors. The substantial

attenuation provided by the walls of the vehicle and its cargo likely qualifies this

problem as “deep-penetration”. Possible objectives in this analysis include design

and evaluation of candidate detection systems and the calculation of detector re-

sponse for the development of alarming algorithms. This is an optimization problem,

which will require many radiation transport simulations to achieve a “best” result.

Each simulation must be accurate and computed very quickly if the optimization

problem is to be solved in a reasonable time period.

Figure 1.1: Example radiation transport calculation - portal monitoring

A second example problem is the urban search scenario, shown in Figure 1.2. Here

the goals are to (i) locate sources of radiation in a relatively large urban area, (ii) dis-

criminate between NORM (trees, concrete), medical sources (person crossing street),
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and threat sources (van), and (iii) provide this detection information to local author-

ities for decision making and response. Simulations are used to understand minimum

detectable quantities of different materials, to evaluate candidate detection systems,

and to guide the improvement of decision-making processes. The physical size of

this problem, relative to the physical size of the detectors and threat sources, and

the presence of large thick attenuators (buildings) makes it extremely challenging to

simulate, especially from the perspective of spatial and angular resolution.

Figure 1.2: Example radiation transport calculation: urban source search scenario

Traditionally, the transport problems of the kinds described above are simulated

using deterministic methods or Monte-Carlo methods. There is also a newer breed

of methods known as hybrid methods which combine both deterministic and Monte-

Carlo techniques. A brief description of the three solution techniques will be presented

in the following sections.



5

1.2 Deterministic methods

Deterministic techniques, as the name suggests solve the transport problem numeri-

cally by employing various discretization schemes and algorithms. The most accurate

representation of neutral radiation transport is given by the Boltzmann Transport

Equation (BTE) as below,

[
1

ν(E)

d

dt
+ Ω · ∇+ σt(r, E)

]
ψ (r, E,Ω, t) = (1.1)∫

4π

dΩ′
∫ ∞

0

dE ′σs(r, E
′ → E,Ω′ · Ω)ψ (r, E ′,Ω′, t) +Q (r, E,Ω, t) ,

r − position (cm),

Ω− direction (sr),

E − energy of the particle (MeV ),

t− time (sec)

ν − neutron speed at energy E (cm/sec),

ψ − angular flux (particles/cm2/MeV/sr/sec),

σt − total macroscopic cross section about energy E and position r (cm−1/MeV ),

σs − scattering cross section for energy E ′ to E and direction Ω′ to Ω

(cm−1/MeV/sr),

Q− source (particles/cm3/MeV/sr/sec).
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In the above equation, the terms in the left describe the particle loss terms, while

the terms in the right describe the production terms. The total cross section (σt)

determines the total interaction probability of the particles with the materials they

are traveling in. The scattering cross section (σs) determines the probability of the

particles undergoing a scattering interaction with the material. The BTE in Equation

(1.1) is known as the integro-differential form of the transport equation. It describes

the forward transport of particles from the source region. There are various other

forms that are derived from this general transport equation such as the integral form,

parity form etc.

Most of the problems that are of interest in non-proliferation research are fixed source

problems as described in section 1.1. Hence the time dependent term in the BTE is

usually neglected and the steady state problem is solved. The steady state problem

itself has six different variables, two in the angular domain, three in the spatial domain

and one in the energy domain. The energy domain is usually discretized using the

multigroup scheme in which the energy domain is subdivided into a number of energy

groups with upper and lower boundaries. The angular domain is usually discretized

using what is known as the discrete ordinates approach (where the angular domain

is divided into a finite number of directions with weights to represent the entire

domain). There are also schemes that use a finite element approach to discretize

the angular domain. The scattering kernel (The first term in the right hand side of

the BTE) which models the scattering of particles from one direction to another is

represented using a Legendre polynomial expansion. Finally, the spatial co-ordinates
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are discretized using a wide variety of finite element and finite difference schemes [1].

Deterministic methods produce detailed, system-wide solutions and are computa-

tionally efficient. However, deterministic methods contain uncertainties associated

with the discretization of the independent variables (space, energy and angle) of the

transport equation and can admit solutions that exhibit non-physical features (e.g.,

ray effects and negative fluxes). This is especially the case in shielding applications.

Hence, a significant degree of insight and expertise is required to mitigate these un-

desirable characteristics and ultimately produce usable results.

1.3 Monte-Carlo methods

Monte Carlo methods are a family of stochastic simulation techniques that get their

name from the famous casinos in Monaco as coined by Von Neumann [2]. Since the

transport and interaction of radiation particles in a medium is a random process with

fixed probabilities, Monte-Carlo techniques lend themselves naturally for simulating

particle transport. They are more accurate than deterministic methods, especially

for deep penetration problems with several orders of magnitude attenuation and are

devoid of any truncation error (ideally) that are characteristic of all deterministic

methods. However, as it is true with any statistical method, the Monte Carlo meth-

ods suffer from statistical errors and large simulation times are required to obtain

a reasonable estimate of the target values (which is usually detector flux or reac-

tion rate for source-detector problems). This has led to the development of biased
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Monte-Carlo techniques which we will describe after a brief introduction to unbiased

(analog) Monte-Carlo simulations as applied to transport problems.

1.3.1 Analog Monte Carlo simulations

To model the particle transport using Monte Carlo methods, all the processes the

particle undergoes during its life, from being born (or emitted) from the source re-

gion to the various interactions it undergoes in the medium to finally being absorbed

or escape the problem boundaries are represented using probability density functions.

The probabilistic functions are determined based on the material properties (material

type, densities), the nature of the source particle (neutron or photon) and the parti-

cle’s velocity (or energy). Once the probability density functions (PDFs) are defined,

the simulation of the particle transport can proceed by using pseudo-random num-

bers to sample parameters that determine the flight of the particle and its interaction

with the medium. The following section will introduce the sampling methods for a

one-dimensional slab problem with isotropic scattering.

1.3.1.1 Sampling methods for particle transport

Let us consider a slab of length L in the x-direction. The particle simulation begins

by first sampling the source parameters such as the initial location, energy (energy
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group in multigroup problems) and direction. Let us consider a uniform unit source

distribution for a multigroup problem given by,

Qg(x, µ) = 1 for x ∈ (0, xs), µ ∈ (−1, 1) and g ∈ 1 to G. (1.2)

= 0, elsewhere

where G is the total number of energy groups, xs be some point in the slab of length

L and µ is the direction cosine of the angle θ which varies from 0 to π. The density

function for sampling a source location between 0 and xs is given by,

p(x) =
Qg(x)∫ L

0
Qg(x)dx

, (1.3)

Since we have a uniform source distribution, the above equation can be written as,

p(x) =
1∫ xs

0
dx

(1.4)

To sample an initial location xi, we convert the PDF into a CDF (Cumulative Dis-

tribution Function P (xi)) as shown below,

P (xi) =

∫ xi
0
dx∫ xs

0
dx

=
xi
xs
. (1.5)

To find xi, a random number ξ is sampled between 0 and 1 (the range of values a

CDF can take) such that,

ξ =
xi
xs
, (1.6)
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and this equation is solved for xi to yield,

xi = ξxs. (1.7)

This process of determining xi directly by sampling an uniform random number be-

tween 0 and 1 is known as sampling through inversion of the CDF. To sample an

initial energy group gi for the particle the PDF is given by,

p(g) =
Qg∑G
g=1Qg

=
1∑G

g=1Qg

(1.8)

and the corresponding equation for sampling an energy group after inverting the CDF

is

gi = ξG. (1.9)

Next step would be to sample an initial direction µi from an isotropic distribution

given by,

p(µ) =
Q(µ)∫ 1

−1
dµQ(µ)

=
1∫ 1

−1
dµ

(1.10)

and the equation for sampling a new direction is obtained after inverting the CDF to

yield,

µi = 2ξ − 1 (1.11)

where ξ is a random number.

Once the source particle’s initial location, energy and direction are sampled, the
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sampling of the next distance to collision and the type of collision follow.

p(s) = C
ψ(s)

ψ(xi)
(1.12)

where C is the normalization constant. ψ(s) is the flux determined by the equation

that describes transport through a constant medium along the trajectory of a particle

given by the reduced form of the transport equation,

dψ(s)

ds
+ σtψ(s) = 0 (1.13)

with initial condition,

ψ(0) = ψ(xi) (1.14)

The solution to this equation is,

ψ(s) = ψ(xi)e
−σts (1.15)

and the corresponding PDF is given by,

p(s) = σte
−σts (1.16)

Calculating the CDF and inverting would yield the following expression for the new

distance to collision s,

s =
−log(ξ)

σt
(1.17)
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Now, the particle should be moved to its new location xnew as calculated below

xnew = xi + sµi. (1.18)

Once the particle reaches its new location, the type of collision it undergoes should

also be sampled based on the probability of occurrence of a particular interaction (in

other words the cross section of the reaction).

In shielding applications, when a particle collides with an atom (or molecule) of

the medium, it either scatters or is captured according to some probability. The

probability that a particle collision results in a scattering event is given by

pscat =
σs
σt

(1.19)

If pscat < ξ (the sampled random number), the collision results in a scattering event;

otherwise, the particle is captured. If the particle is absorbed, it is terminated and

a new source particle will be sampled, whereas if the particle is scattered, a new

direction and a new energy group based on the scattering distribution is sampled.

For isotropic scattering, the new direction is sampled using Equation (1.18). The

new energy group gnew is then sampled using the PDF given by

p(gnew) =
σs,g,gnew

G∑
gnew=1

σs,g,gnew

. (1.20)

A new distance to collision is then sampled and the transport process continues until
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the particle is absorbed or leaks out of the problem boundaries. The sampling dis-

tribution we looked at are all directly invertible, but in problems where continuous

energy representation is used or in highly anisotropic scattering problems, the distri-

bution may not easily be invertible and in such cases other computationally heavy

sampling mechanisms such as rejection sampling are employed. The process continues

until all particle histories are simulated.

1.3.1.2 Estimating target entities

During the particle transport, a score (also known as contribution) of the distance

traveled by each particle in each region of interest is tallied. The tallies are binned in

energy group and spatial region and in some rare applications in directions. Here we

describe the most common tally that is employed in radiation transport codes, the

path-length estimator. A path-length estimator keeps track of the number of times a

particle enters the detector region and the corresponding distance it traverses within

the detector volume. The scalar flux φ (which has units particles/cm2/sec) in the

tally is then estimated using the formula,

φ =
1

V

∑
i∈T

li, (1.21)

where T is the set of all the particle’s trajectories within the desired volume and li

is the length of the i-th trajectory and V is the volume of the spatial region that is
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tallied. The average flux φest is then estimated using the law of large numbers after

simulating a relatively large number of the particles N and the corresponding scores

(li,n) are recorded,

φest =
1

N

N∑
n=1

1

V

∑
n,i∈T

li,n. (1.22)

R is the estimated relative error defined to be one estimated standard deviation of

the mean divided by the estimated mean

R =
Sφest
φest

, (1.23)

where φest is the average score in the tally and an unbiased estimate of the variance

of φest is given by,

S2
φest =

1

N − 1

(
1

N

N∑
n=1

φ2
n − φ2

est

)
. (1.24)

The statistical error in an analog Monte Carlo simulation is inversely proportional to

the square root of the particle history N . Hence, for deep penetration problems, to get

an accurate estimate of the detector response, significantly large amount of particles

need to be simulated which in turn result in large computation times. In applications

like radiation monitoring for non-proliferation purposes it is essential to have an

accurate estimate of the response variable in reasonable time. This requirement has

led to the development of variance reduction techniques that would result in lesser

computation times and increase the efficiency of the simulations.
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1.3.2 Variance reduction techniques

Variance reduction techniques have been researched right from the emergence of

Monte Carlo methods for radiation transport applications. The basic concept is

to modify the sampling distributions to selectively transport the particles towards

regions of interest (non analog) so that the variance in the measurement tally goes

down as noted in Equation (1.24). To compensate for the bias introduced in the

simulations, the concept of weight is introduced. Each particle is assigned an ini-

tial weight (w) and the weights are adjusted according to Equation 1.25 such that

the contributions made to the tally are closer to the expected value and result in a

lower variance than the analog (unbiased) simulation. This technique is also known

as importance sampling [3].

wnon−analog · PDFnon−analog = wanalog · PDFanalog. (1.25)

PDFnon−analog is the modified distribution that transports particles towards regions

of interest while PDFanalog is the natural distribution with which the particles travel.

wnon−analog and wanalog are the weights for non analog and analog Monte Carlo trans-

port, respectively. In analog Monte Carlo, the weights of the particle would remain

constant throughout their lifetime (usually wanalog = 1 for an unit volume source.)

The major difficulty in employing variance reduction techniques is the determination

of problem dependent variance reduction parameters present in the biased terms.

There are simple techniques like forced collisions and implicit capture that are based
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on the material properties of the problem and can be easily implemented [3]. But,

more sophisticated techniques like weight windows, source biasing and angular biasing

(described in chapter 2) require more information based on the tally’s position, energy

group and the material properties of all regions in the problem [4]. In the initial days,

the parameters used by the biasing techniques were determined by the users based on

their experience and using trial and error methods. Later developments lead to the

usage of a crude solution of the problem as the basis to estimate the biasing parame-

ters for the variance reduction methods. This crude solution is usually generated by

performing an analog Monte Carlo calculation over a small particle history. But, the

biasing distributions generated from an approximate Monte-Carlo simulation would

not be very accurate, while using a more refined solution would in turn affect the

overall efficiency. This led to the idea of using an approximate deterministic solution

of the problem to generate the parameters required for variance reduction techniques

in a Monte Carlo simulation. Deterministic methods are faster to solve than Monte

Carlo simulations to get a reasonable estimate of the solution and are therefore ideal

for generating the information needed in biasing methods. Thus, a new class of so-

lution techniques that use a deterministic solution to reduce the variance of Monte

Carlo simulations known as the hybrid methods (discussed in the next section) came

into existence.
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1.3.3 Hybrid methods

Hybrid methods for solving radiation transport problems have gained significant de-

velopment in the past decade. They strive to bring together the advantages of the two

traditional solution techniques for radiation transport problems, Monte Carlo simu-

lations and deterministic techniques. The resulting methods are computationally

more efficient than stand alone Monte Carlo simulations while retaining the accuracy

benefits of the Monte-Carlo simulations over deterministic solutions [5]. Therefore,

the hybrid methods are potentially capable of playing a crucial role in various non-

proliferation research and monitoring scenarios like development of new radiation

detection systems, analysis of source term associated with nuclear materials diversion

scenarios, and the prediction of radiation doses from weapons of mass destruction.

Most hybrid variance reduction methods are developed based on the benefits of solving

the adjoint problem [6] [4]. The adjoint transport equation is similar to the forward

BTE (Equation (1.1)) and is given by,

[
− 1

ν(E)

d

dt
+ Ω · ∇+ σt(r, E)

]
ψ̂ (r, E,Ω, t) =∫

4π

dΩ′
∫ ∞

0

dE ′σs(r, E → E ′,Ω · Ω′)ψ̂ (r, E ′,Ω′, t) +Qd (r, E,Ω, t) , (1.26)

where, Qd is the detector response function. According to adjoint theory, the adjoint

solution ψ̂ gives the relative importance of the corresponding phase-space region to

the detector response. Hence the adjoint solution, also known as the importance
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function, can be effectively used to implement variance reduction techniques.

There are numerous hybrid methods that have been developed in the past, but only

few simple techniques have found their way into production codes and even those are

not straight forward to implement. A classic example is the provision to implement

weight windows in MCNP (Monte Carlo N-Particle), the most common Monte Carlo

simulation tool [2]. Although this provision has existed from the inception of MCNP,

users need to be well versed with the problem in hand to develop weight windows or

rely on other deterministic tools to generate them. The associated overhead in imple-

menting these variance reduction features is often times not justifiable for the returns

in computational efficiency. There are also other sophisticated hybrid techniques that

have been tested only on restricted problems [6] [7]. In this project, one of the main

objectives is to develop a platform that uses the results of a deterministic solution in

a hybrid Monte-Carlo simulation with minimal user effort and overhead time and to

test the performance of the variance reduction techniques on realistic test problems

that are of interest to nonproliferation research.
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Chapter 2: Literature Review

In this chapter we review some of the major hybrid variance reduction approaches

that have been developed in the past and other acceleration schemes for Monte Carlo

simulations that are based on adjoint solutions.

2.1 CADIS

The Consistent Adjoint Driven Importance Sampling (CADIS) method is developed

at Oak Ridge National Labs (ORNL) and used primarily to optimize calculations

using the multigroup Monte Carlo code Monaco, by creating an importance map

based on the adjoint solution calculated with the discrete ordinates code Denovo [8],

all of which are part of the SCALE 6 package [4].

2.1.1 CADIS based weight windows

In weight windows method, the particles are biased towards regions of higher impor-

tances in the phase-space region by applying Russian roulette and splitting techniques

(described below) such that the variance in the weights of the particles traveling
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through that region is reduced. A set of weight window target values and boundaries

(upper and lower limits to perform splitting and rouletting, respectively) are con-

structed for every spatial cell and energy group. In the CADIS method, the weight

window targets are constructed based on the importance function generated by per-

forming an adjoint calculation on the problem using a deterministic tool.

In CADIS, the source q̂ for the adjoint calculation is the detector response function

σd,

q̂ (r, E) = σd (r, E) (2.1)

where σd is usually the detector material absorption cross section, a set of flux to

dose conversion factors or detector count rates per unit flux, etc. The target weight

for energy group g and spatial cell n is then inversely proportional to the importance

function and is given by,

wtarg,g,n =
C

φ̂g,n
(2.2)

where C is a constant and φ̂g,n is the adjoint scalar flux at cell n and energy group g.

The weight window boundaries (whigh and wlow) are selected based on an arbitrary

ratio of upper limit to lower limit and are usually based on trial and error as the

overall efficiency of the method is quite robust [4].

The weight of the particle is checked whenever the particle crosses a cell boundary

and whenever the particle scatters into a different energy group. If the particle’s

weight lies outside the weight window limits, the particle undergoes either splitting

or rouletting. Splitting is the process in which if the particle’s weight is above the
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upper weight window boundary, the parent particle is split into a number of daughter

particles such that the weight of each daughter is reduced and is closer to the weight

window target and the aggregate of daughter weights would equal the parent’s weight.

After splitting, each daughter particle is treated as an individual particle and the

transport process continues until all the daughters are terminated. Splitting helps

to increase the survival rate of particles appearing in regions that are more likely to

contribute to the detector tally by splitting them into a number of particles and as

a result, more particles reach the detector with lower weights that are closer to the

expected value of the tally, which in turn results in a lower variance of the estimate.

Rouletting, on the other hand, occurs when the particle’s weight is below the lower

weight window boundary. The survival probability of the particles undergoing roulet-

ting is fixed to be an arbitrary value. If the particle survives rouletting, its weight

is increased such that it is now within the weight window limits and continues travel

whereas if it fails to survive, the particle’s history is terminated. Rouletting ensures

that computation time is not wasted in tracking particles with lower weights that are

most likely not going to contribute to the detector tally.

2.1.2 CADIS based source biasing

Source biasing is a technique to ensure that particles are selectively born in the phase-

space regions that are more likely to contribute to the detector tally of interest. The

weights of the particle are adjusted to maintain a fair game. Source biasing plays a
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crucial role in ensuring the new particles are born within the weight window limits

and therefore do not undergo early termination.

The starting weight of the particle is given by the ratio of the original source distri-

bution to the modified source distribution and is defined as:

w0 =
q(r, E)

qb(r, E)
(2.3)

Using the definition for target weights in Equation (2.2), the biased distribution can

be expressed as:

qb(r, E) =
1

C
q (r, E) φ̂ (r, E) (2.4)

The biased source distribution should be normalized such that it can be converted

to a cumulative probability distribution function from which the source particles can

be sampled. This is accomplished by setting the constant C equal to the detector

response R (particles/cm3/sec). By adjoint theory [4], the detector response can be

defined as:

R =

∫ ∫
q(r, E)φ̂ (r, E) d3rdE (2.5)

The target weights can then be calculated using the formula,

wtarg,g,n =
R

φ̂g,n
(2.6)
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2.2 LIFT

The LIFT (The Local Importance Function Transform) method is based on the zero

variance problem [9] and provided an exact adjoint solution is available a single par-

ticle history should be enough to find the exact forward solution. Of course, an exact

adjoint solution is never possible and therefore the LIFT method, like the CADIS

based techniques uses the approximate adjoint based importance function to bias

the particles towards the regions of interest and yield a very low variance solution.

The LIFT method is lot more sophisticated than weight windows and bias the en-

tire physics of the particle transport. LIFT uses an adjoint angular flux expression

based on the exponential transform functional locally in each spatial cell and energy

group based on the importance function (adjoint scalar flux) and material properties.

This angular flux reconstruction helps to bias the particle in the angular domain in

addition to spatial and energy biasing. Another important idea in the LIFT method

is the construction of a biasing parameter (ρ). The biasing parameter is a vector

that points in the direction of the flux gradient within the cell and whose magnitude

determines the amount of biasing. Some important concepts of the LIFT method are

discussed below while a detailed explanation can be found in Turner [9] [6].
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2.2.1 The zero variance problem and the LIFT approximation

The Boltzmann transport equation for the forward radiation problem and the corre-

sponding adjoint problem are operated on each other to yield the transport equation

for the zero variance problem (also known as the contributon transport equation) as

given below.

Ω · ∇ξg (r,Ω) + Σt,g (r,Ω) ξg (r,Ω) =
1

4π

G∑
g′=1

∫
4π

Σs,g′→g (r,Ω) ξg′ (r,Ω′) dΩ′

+
ψ̂ (r,Ω)

4π
Q(r)δg,1, (2.7)

where,

ξg (r,Ω) = ψg (r,Ω) ψ̂g (r,Ω) . (2.8)

ψg (r,Ω) is the forward angular flux, ψ̂g (r,Ω) is the adjoint angular flux and ξg (r,Ω)

is known as the contributon flux. The boundary conditions are given by,

ξg (rb,Ω) = 0, for Ω · nb < 0, rb ∈ δD, 1 ≤ g ≤ G, (2.9)

where nb is the outward normal vector and δD is the differential volume within the

problem boundary. G is the total number of energy groups. The source is defined by,

Q(r) =


1, r ∈ Ds

0, otherwise.

(2.10)
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where Ds is the source volume.

The zero variance transport equation exhibits certain unique features which make

them ideal to optimize a Monte Carlo simulation. In a zero variance transport prob-

lem, all particles that are born in the source are absorbed only in the detector region

and no particles can leak out of the system. The effective cross sections (Σt and Σs)

for such a problem are given by,

Σt,g (r,Ω) = σt,g(r)−
1

ψ̂g(r,Ω)
Ω · ∇ψ̂g (r,Ω) (2.11)

Σs,g′→g (r,Ω′ → Ω) = σs,g′→g(r,Ω
′ · Ω)

ψ̂g(r,Ω)

ψ̂g′(r,Ω′)
(2.12)

Since we have access only to the adjoint scalar fluxes from the deterministic calcula-

tions, an expression to reconstruct the angular fluxes is essential to bias the calculation

based on the zero variance problem. The LIFT method defines the adjoint angular

flux based on the exponential transform with some modifications to account for linear

anisotropic scattering [6].

2.2.2 Expression for adjoint flux reconstruction in the LIFT method

The LIFT approximation of the adjoint angular flux for each cell is given by,

ψ̂g,n = φ̂g,nVn

[
βg,n

σs0,g→g,nbg,n(Ω)

σt,g,n − ρg,n · Ω
eρg,n·(r−rn)

]
(2.13)
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φ̂g,n is the scalar flux in group g and cell n, Vn is the volume of cell n and βg,nis the

normalization factor given by,

βg,n =

{[∫
Vn

eρg,n·(r−rn)dr

]
×
[∫

4π

σs0,g→g,nbg,n (Ω)

σt,g,n − ρg,n · Ω
dΩ

]}−1

(2.14)

and bg,n is the linear anisotropic factor given by,

bg,n (Ω) = 1 + 3µg→g,n
σt,g,n − σs0,g→g,n

|ρg,n|2
ρg,n · Ω (2.15)

ρg,n is known as the biasing parameter and is defined by,

ρg,n = σt,g,n · λg,n (2.16)

where λ is the deep penetration eigen value in the material. In the LIFT method

however, the biasing parameters are determined locally in each spatial cell and energy

group from corresponding adjoint solution. The biasing parameter is essentially a

measure of the adjoint flux gradient in the cell and therefore is a vector quantity

in three-dimensional space whose magnitude determines the amount of biasing. In

Turner’s work the biasing parameter in each spatial cell was determined using an

approximation of the adjoint flux gradient from the cell edge fluxes calculated in the

deterministic calculation. In this work, an improved method to calculate the biasing

parameter from the adjoint current and flux ratio is adopted based on Kendra and

Larsen’s work [10].
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2.3 VVR

The Variational Variance Reduction (VVR) method, developed at the University

of Michigan has proven to be an effective technique for increasing the efficiency of

Monte Carlo simulations for k-eigen value transport problems and can be extended

to source-detector problems [11] [12] [13] [14]. This method is based on a zero-order

problem that is different to the one considered in the LIFT technique and is based on

variational principles. Let us consider the following simple isotropic, mono-energetic

forward problem,

LΨ = Q (r,Ω) (2.17)

where, Q is the source term and L is the forward transport operator defined by,

LΨ = Ω · ∇Ψ(r,Ω) + σtΨ(r,Ω)− σs
∫

4π

Ψ(r,Ω)dΩ. (2.18)

The corresponding adjoint problem is,

L̂Ψ̂ = Σ (x,Ω) (2.19)

where, Σ is the detector response (and the source for the adjoint problem) and L̂ is

the adjoint transport operator defined by,

L̂Ψ̂ = −Ω · ∇Ψ̂(r,Ω) + σtΨ̂(r,Ω)− σs
∫

4π

Ψ̂(r,Ω)dΩ (2.20)
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Having defined the transport and adjoint operators, we can define variation function-

als based on adjoint theory as below,

F [Ψ̂,Ψ] =

∫
V

∫
4π

ΣΨdV dΩ−
∫
V

∫
4π

Ψ̂

(
LΨ− Q

4π

)
dV dΩ

≈ R (2.21)

This functional has several desirable properties:

• If Ψ(x,Ω) = ψ(x,Ω), then for any Ψ̂(x,Ω),

F [Ψ̂, ψ] =

∫
V

∫
4π

Σ(x)

4π
ψ(x,Ω) dΩdV = R (2.22a)

• If Ψ̂(x,Ω) = ψ̂(x,Ω), then for any Ψ(x,Ω),

F [ψ̂,Ψ] =

∫
V

∫
4π

Σ(x)

4π
Ψ(x,Ω) dΩdV

−
∫
V

∫
4π

[(
L̂ψ̂(x,Ω)

)
Ψ(x,Ω)− ψ̂(x,Ω)

Q(x)

4π

]
dΩdV

=

∫
V

∫
4π

Q(x)

4π
ψ̂(x,Ω) dΩdV

= R (2.22b)
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• If Ψ(x,Ω) = ψ(x,Ω) + δψ(x,Ω) and Ψ̂(x,Ω) = ψ̂(x,Ω) + δψ̂(x,Ω), then:

F [Ψ̂,Ψ] = F [ψ̂ + δψ̂, ψ + δψ]

=

∫
V

∫
4π

Σ

4π

[
ψ + δψ

]
dΩdV −

∫
V

∫
4π

[
ψ̂ + δψ̂

][
Lψ + Lδψ − Q

4π

]
dΩdV

=

∫
V

∫
4π

Σ

4π

[
ψ + δψ

]
dΩdV −

∫
V

∫
4π

[
ψ̂ + δψ̂

][
Lδψ

]
dΩdV

=

∫
V

∫
4π

Σ

4π

[
ψ + δψ

]
dΩdV −

∫
V

∫
4π

[
L̂ψ̂ + L̂δψ̂

][
δψ
]
dΩdV

=

∫
V

∫
4π

Σ

4π

[
ψ + δψ

]
dΩdV −

∫
V

∫
4π

[ Σ

4π
+ L̂δψ̂

][
δψ
]
dΩdV

=

∫
V

∫
4π

Σ

4π
ψ dΩdV −

∫
V

∫
4π

[
L̂δψ̂

][
δψ
]
dΩdV = R +O(δ2) (2.22c)

Therefore, if δψ̂ and δψ are small (Ψ̂ and Ψ are first-order approximations to ψ and

ψ̂ respectively), then F [Ψ̂,Ψ] is a second-order approximation of R.

In particular, suppose that in Equation (2.21), Ψ̂(x,Ω) = ψ̂(x,Ω), and Ψ(x,Ω)

is an estimate of ψ(x,Ω) obtained from a forward Monte Carlo simulation. Then,

by Eq. (2.22b), we have F [ψ̂,Ψ] = R, so we again have a zero variance method.

Unfortunately, just as before, this method requires us to have complete knowledge of

the adjoint flux ψ̂(x,Ω), so this zero variance method is just as impractical as the

one in the LIFT method.

However, as before, we can approximate this impractical zero-variance method in

ways that render it practical. Suppose that we solve a deterministic adjoint problem
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and construct representations of ψ̂(x,Ω) in each spatial cell Vj:

Ψ̂(x,Ω) = Ψ̂j(x,Ω) , x ∈ Vj . (2.23)

Then by substituting in Equation (2.21),

F [ψ̂,Ψ] =

∫
V

∫
4π

Σ

4π
Ψ dΩdV −

J∑
j=1

∫
Vj

∫
4π

Ψ̂j

[
LΨ− Q

4π

]
dΩdV,

=

∫
V

∫
4π

Σ

4π
Ψ dΩdV

−
J∑
j=1

[∫
∂Vj

∫
4π

Ω · nΨ̂jΨjdΩdS +

∫
Vj

∫
4π

(
L̂Ψ̂j

)
Ψ

]
dΩdV

+
J∑
j=1

∫
Vj

∫
4π

Ψ̂
Q

4π
dΩdV . (2.24)

The right side of this equation contains volume and surface integrals of Ψ over each

cell Vj and its surface ∂Vj. The integrands are weighted by Ψ̂j. If Ψ̂j are chosen to

be “simple” functions, then these integrals can be estimated in the natural course of

tracking Monte Carlo particles from the source to the detector. To implement this

“Variational Variance Reduction” (VVR) method, it is necessary to tally information

about the Monte Carlo particles everywhere in the system, not just in the detector

region.
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Chapter 3: Tortilla - Hybrid Methods Test Bench

To implement the hybrid methods, a multigroup Monte Carlo (MGMC) code that

works within the framework of a commercially available deterministic radiation trans-

port tool, AttilaTMwas developed at Oregon State University with help from Tran-

spire,Inc (Developers of Attila). In this project, the MGMC code is modified to

implement hybrid methods and we call the entire framework to implement hybrid

variance reduction methods as “Tortilla.”

Tortilla consists of various sub units that interact with each other in a fashion such

that the user can implement variance reduction techniques that make use of an ap-

proximate deterministic solution in a Monte-Carlo simulation. The problem geometry

and the geometric mesh needs to be defined only once to perform both the determin-

istic and Monte-Carlo calculations. The cross section libraries and source definitions

are also shared between the two calculations effortlessly using appropriate tools (Mr

mixer and XREP). The basic setup and the specific features are explained below.
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3.1 Basic architecture of the test bench

Figure 3.1 shows the basic architecture of the test bench. To perform a transport

calculation using the hybrid methods in Tortilla, the user needs to define the problem

using Attila’s project manager just like they would to run a normal deterministic

calculation in Attila. After the initial setup, the user can perform a forward or adjoint

deterministic calculation and export the resulting flux moments for future use. Both

the adjoint and forward source definitions can be created within the project manager.

All the necessary data files (geometric mesh, cross section library, etc.,) from the

deterministic calculation are exported to a new directory and the MGMC code is

then executed to perform the Monte Carlo simulation.

MrMixer 

Attila Solver 

MGMC 

Attila Mesh 
Generator 

Solid Model 

XREP 

Cross section 
Data 

Adjoint Source 
Definition 

Adjoint Flux 
Moments 

Forward 
Source 

Definition 

Simulation 
Results 

Figure 3.1: Tortilla - Basic architecture
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3.2 Computational mesh

Any deterministic solver requires a computational mesh that approximates the spa-

tial domain of the problem using simpler spatial cells in which the physical equations

are then solved. The type of mesh used and its refinement play an important role

in determining the performance of the deterministic methods. Monte Carlo simula-

tions by nature do not require a spatial mesh and a simpler definition of the different

material regions in the problem is suffice. However, for hybrid methods, the solution

generated by the deterministic calculations can be applied to the Monte Carlo sim-

ulation only if a geometric mesh is available and in previous applications [15] a fine

mesh is usually employed for generating the deterministic solution and the quantities

are then transferred to a coarser mesh for performing the Monte Carlo simulation.

In this project, one of the main objectives is to reduce the overhead associated with

generating two different computational meshes for the deterministic and Monte Carlo

part of the simulation and exchanging calculation parameters between them. Hence

it was decided to use a single mesh for both the adjoint deterministic calculation and

the forward Monte Carlo simulation. One limitation in using a single mesh is that,

the mesh size needs to be optimal such that the deterministic calculation is fairly

accurate but at the same time it does not reduce the efficiency of the Monte Carlo

simulation and the variance reduction techniques.

Attila supports the RTT mesh file format developed at Los Alamos National Lab

(LANL) [16]. There are few mesh generators like LaGrit (a public domain mesh gener-
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ator from LANL), Tetra mesh generator from ICEM CFD Engineering and ”‘Aetius”’

GUI interface (used in Attila) that can generate mesh files in the RTT format. The

mesh generated should contain arbitrarily connected tetrahedral elements so that it

could be used by the Attila solver. For our test problems the mesh is generated using

Attila’s GUI interface.

3.3 Cross section libraries

Attila can be used to solve radiation transport problems involving neutral particles

like neutrons and photons as well as charged particles like electrons. The cross sections

for a particular problem are usually generated from the master data sets using specific

cross section processing utilities like NJOY-TRANSX (from LANL) and AMPX (from

ORNL) for nuclear engineering problems and CEPXS(from SNL) for charged particle

problems. Attila can accept cross section libraries generated from these tools as long

as they are in one of the supported formats. Attila solver currently supports DTF,

AMPX-77, MENDF and BXSLIB2 formats. However, the Attila project manager

supports only the DTF format for now (version 7), but there are codes available to

convert from other formats to DTF format [16].

The mixing of material cross sections to calculate the macroscopic cross sections for

the different regions of the problem is performed within the Attila solver. The density,

atomic weights and atomic or mass fractions of the isotopes in different regions are

required during problem setup in Attila’s GUI and the rest of the calculations are



35

performed by algorithms. Further, the Attila solver also produces a material definition

file, that contains the densities and isotope fractions for a particular problem, which

could be used outside the solver to generate the material cross sections.

3.4 Source definitions

Attila provides for user input of both volumetric and boundary anisotropic, multi-

group, radiation sources. Both isotropic and anisotropic point sources can also be

described using the point source definition file. It is also possible to build a spectral

distribution within the project manager and assign them to specific regions in the

problem. A source file (in RTT format) would be generated after the calculation is

performed which can then be used by the MGMC code [16].

3.5 Deterministic solver

The deterministic solver in Attila is used to generate the forward or adjoint flux

moments for the problem. These flux moments would then be used by variance

reduction methods in the Monte Carlo simulation. Attila’s deterministic solver can

solve three dimensional transport problems using the Linearly Discontinuous (LD)

spatial differencing scheme. This is a well damped spatial differencing scheme that is

second order accurate locally and third order accurate in global quantities [17]. The
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nature of this differencing scheme is that it is not strictly positive, but oscillations

are damped and the scheme is stable. Finer meshes result in more accurate solutions,

but because of the advanced differencing scheme and the use of arbitrary tetrahedral

meshes, the number of cells required in comparison to an equivalent traditional mesh

is significantly lower.

The discretization in the angular domain is done using the discrete ordinates (SN)

method [18] and particle scattering is handled by spherical harmonics expansion of

the scattering source. Multi-group discretization is employed in the energy domain.

The resulting solution method is effective for most transport problems. In cases of

optically thick problems, there is a provision to reduce the number of source iterations

by employing the simplified diffusion synthetic acceleration (DSA) method.

The flux moments calculated in an Attila calculation are saved in a moments file that

would be imported into the MGMC code. This moments file contains all the flux

moments data at the vertices of each tetrahedral cell and the cell averaged quantities.

There are also other output edits that such as a visualization link file for GMV

(General Mesh Viewer) or Tecplot that can be requested [16].

3.6 Preprocessing routines

Before executing the Monte Carlo calculation a preprocessing script needs to be ex-

ecuted. This script would invoke the routines to calculate the macroscopic material
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cross sections (MrMixer), the cumulative probability distribution for sampling scat-

tering directions (XREP) and other routines to make sure the format of the data files

from the deterministic calculations are compatible with the MGMC code.

3.6.1 MrMixer

In Attila the cross section mixing is done entirely within the program while for exter-

nal uses a tool for mixing material cross sections known as MrMixer is used [16]. A

unique feature of MrMixer is its ability to read a file of standard material definitions

and mix these materials by volume fraction into regions. The input for MrMixer is

an XML file generated by the Attila calculation that has the material densities and

atom fractions for each region in the problem. The output from MrMixer is an HDF5

format file containing both the microscopic and the region wise macroscopic cross

sections that can be imported into the MGMC code.

3.6.2 XREP

XREP is a program developed to aid multigroup calculations in MCNP [19]. The

main purpose of this program is to eliminate the negative scattering cross sections that

may arise due to the truncation of the Legendre polynomials. X-rep uses a maximum

entropy approach to the generation of group-ta-group scattering cross sections for
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Monte Carlo. It allows for arbitrary number of scattering bins based on the scattering

cross section moments that are devoid of any ray effects and provides better accuracy

and efficiency for multigroup Monte Carlo calculations.

3.7 Multigroup Monte Carlo (MGMC) code

The multigroup Monte Carlo code is developed in C++ using an object oriented

approach and making use of open source libraries and functions for efficient imple-

mentation of the methods. Some of the important features of the code and methods

for transporting particles in the Monte Carlo simulation are discussed below.

3.7.1 Pre-defined libraries and APIs

The MGMC code is developed by making use of predefined libraries from BOOST

and Transpire. The BOOST libraries are a group of open source C++ libraries for

general purpose functions that are optimized to provide efficient operation and mem-

ory management [20] [21]. Apart from these general purpose functions, Transpire

has provided a library (which is also developed using BOOST) that contains various

APIs (Application Programmable Interface), classes and functions that take advan-

tage of the polymorphism and inheritance principles in C++. The APIs are used to

import the data files needed to implement an independent Monte Carlo simulation on
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a problem that has been setup using Attila’s project manager. These APIs enable the

MGMC code to interact seamlessly with the data from the Attila calculation. The

four main data files that are imported using the APIs into the MGMC code are the

source definition file, geometric mesh file, cross section library and the flux moments

file.

The Transpire libraries also contain predefined functions that facilitate direct access

to specific components of the data files imported through the APIs, handle vector

operations, multi-dimensional arrays and other functions that are useful for imple-

menting particle transport in three dimensions.

3.7.2 Random number generator

It was determined that the in-built pseudo random number generator in C++ pro-

duced some discrepancies in the flux values observed for large particle history and

therefore a sophisticated 64 bit random number generator developed by Mersenne

Twister is employed [22]. This allows for three different seeding options and is widely

used in many applications. It has a long period which ensures that the random num-

bers generated are highly independent (uncorrelated), a desired feature for Monte

Carlo simulations. [23].
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3.7.3 Numerical solvers

Although the analog Monte Carlo simulation does not require any numerical solutions,

some of the variance reduction techniques that are implemented require numerical

solutions and hence secant based (more efficient but not robust) and bisection (robust

but less efficient) based numerical solvers are included in the code.

3.7.4 Particle transport

In this section, the general flow of the program and specific methodologies adapted

for sampling various parameters in the Monte Carlo simulation are detailed below.

1. The first step is to sample the source particle’s location and energy group. This

is done by forming a cumulative probability distribution function based on the

source strength in each spatial cell and energy group. The location is first

sampled, followed by the energy group directly using pseudo random numbers.

2. The second step is to sample an initial position and direction within the source

cell. The initial direction is sampled isotropically using a rejection technique

described in the LANL report LA-9721-MS [24]. The initial position of the

particle within the cell in an arbitrary tetrahedral mesh is uniformly sampled

by using a random set of barycentric co-ordinates.

3. Next, the optical distance to collision is uniformly sampled from a random
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logarithmic distribution which is a function of the total cross section. From the

direction and distance to collision the new position of the particle is determined.

4. If the new position is outside the cell, the particle is moved to the cell boundary

and the distance traveled within the cell is scored in the tally. If the remaining

distance the particle needs to travel is above a lower threshold, the particle

transport continues into the new cell. If the distance to collision is below the

threshold, a new distance to collision is sampled.

5. If the new position is within the cell, the particle undergoes a collision reaction.

In order to avoid early termination of particles in highly absorbing problems, a

simple survival biasing scheme (also known as forced collisions) is employed.

6. The particle’s weight is adjusted after every collision to account for absorption

and once the weight falls below a lower threshold, a rouletting operation is

performed to determine the survival of the particle.

7. If the particle survives, the particle’s new energy group and direction are sam-

pled. The scattering bins that are calculated using XREP are used to compute

the new direction while the energy group is determined directly from a cumu-

lative probability distribution function of the group to group scattering cross

sections.

8. The above process is repeated until the particle is terminated in rouletting

scheme or reaches the problem boundary. After all the particle histories are
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simulated, the region wise flux values and statistical error are determined from

the path length tallies.
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Chapter 4: LIFT Method Implementation

In this chapter some of the major implementation details of the LIFT method in

Tortilla are presented. A more detailed description of the LIFT method can be found

in Turner’s thesis [9].

4.1 Biasing parameter calculation

The estimation of the biasing parameter ρ is one of the key components of the LIFT

implementation; the more accurate the biasing parameter, the more effective the

particle biasing and greater the efficiency of the method. One way to estimate an

accurate biasing parameter would be to calculate it based on the adjoint determin-

istic solution. In the original LIFT implementation by Turner and Larsen [6], an

expression based on the cell edge adjoint scalar fluxes was employed. In this method,

an expression for the adjoint scalar flux in the cell is constructed and its gradient is

calculated to generate the biasing parameter. A detailed procedure for implement-

ing this method on a tetrahedral grid is presented in reference [25]. This approach

calculates the biasing parameter from the adjoint scalar fluxes directly, but has its

disadvantages when applied to heterogeneous problems. At region boundaries, the

magnitude of the biasing parameter exhibits undamped oscillations and needs to be
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limited to a maximum value for the effective total cross section (Σt = σt−Ω · ρ) to

remain positive [6].

A new method to determine the biasing parameter from the adjoint current-flux ratio

(Ĵ / φ̂ method) was developed recently and was tested on a 1-D mono-energetic slab

problem [10]. The results showed that this method is more efficient than the edge-

flux based biasing parameter calculation and the magnitude of the biasing parameters

are damped near the material region boundaries. We use this method to determine

the magnitude of the biasing parameter |ρ| and determine its direction from the

definition of adjoint current. This method is based on the fact that there exists a

unique solution for each value of the scattering ratio c between 0 and 1 for the plane

geometry transport problem in a half-space defined by,

ψ̂c(x, µ) = fc (µ) e |ρ| x. (4.1)

The above equation defines the asymptotic exponential decay of the angular flux for

a given value of c. Also, both the angular function fc (µ) and the eigenvalue ρ depend

on the scattering ratio c. The adjoint current-flux ratio is given by,

|Ĵ |
φ̂

=

1∫
−1

µfc (µ) dµ

1∫
−1

fc (µ) dµ

, (4.2)

We take the magnitude of the current Ĵ and biasing parameter ρ as they are vector

quantities in a 3-D calculation. In the above equation the ratio |Ĵ |/φ̂ varies from 1 to
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0 as c varies from 0 to 1. |ρ| decreases monotonically from σt to 0 as c increases from

0 to 1. Therefore, for every value of |Ĵ |/φ̂ an unique value of |ρ| can be specified.

The angular function fc can be defined in terms of a Legendre polynomial expansion

for anisotropic scattering. The angular integrals in Equation (4.2) are then evaluated

by neglecting all the higher order polynomials in the expansion of fc to yield the

expression:

|Ĵ |
φ̂

=
Σt

|ρ|
(1− c) . (4.3)

A detailed derivation of the angular integration and calculation of the polynomial

moments are given in [26].

The |Ĵ |/φ̂ method, though slightly more complex than the edge-flux based method,

is more accurate and more importantly does not require a maximum limit on the

magnitude of the biasing parameter. To calculate the biasing parameter |ρ|, a table

of ‘k’ discrete values of |ρk| on the interval (0, σt) is generated and solved for the

corresponding values of ck using the dispersion law relation [10],

1∫
−1

fc(µ)dµ = 1, (4.4)

which after the polynomial expansion of fc results in,

1 = c

[
Lmax∑

0

alql(ν)rl(ρ)

]
, (4.5)
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where, the al are the scattering moments given by,

al =
σs,l
σs,0

, (4.6)

the rl(ρ) are integrals of the form

rl(ρ) =
2l + 1

2

∫ 1

−1

Pl(µ)

1− µ
ν

dµ , (4.7)

where Pl are the Legendre polynomials and ν = σt
ρ

. ql(ν) are polynomials given by

[26]:

q0(ν) = 1, q1(ν) = (1− c)ν, q2(ν) =

[
3

2
(1− ca1)(1− c)

]
ν2 − 1

2
, . . . (4.8)

The adjoint current-to-flux ratio at each discrete value of ‘k’ is then calculated in

terms of |ρk| and ck and a lookup table of |Ĵ |/φ̂ vs |ρk| for each cell n and energy

group g is generated. (
|Ĵ |
φ̂

)
k,n,g

=
Σt,n,g

|ρk,n,g|
(1− ck) . (4.9)

During the simulation, in each cell and energy group, the magnitude of the biasing

parameter ρn,g is calculated by interpolating from the table using the corresponding

adjoint quantities (|Ĵn,g|, φ̂n,g).

Once the magnitude is determined, the direction of the biasing parameter ρ is cal-

culated from the adjoint current Ĵ . Since the biasing parameter guides the particles

towards the detector (adjoint source), it assumes the direction of the adjoint flux
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gradient within the cell. Traditionally, the adjoint particles are thought of traveling

in reverse directions to that of the forward particles and therefore the direction of the

adjoint current is the same as the direction of adjoint flux gradient within the cell.

Therefore,

ρn,g = |ρn,g|
Ĵn,g

|Ĵn,g|
. (4.10)

However, in most production codes like Attila, the adjoint calculations are performed

by just interchanging the location of detector and source and transposing the scatter-

ing cross section matrices. In such cases care should be taken to reverse the direction

of the current to obtain the correct adjoint current direction.

4.2 Modifications for a tetrahedral mesh

The original LIFT method was implemented in a three dimensional lattice with rect-

angular Monte Carlo cells. A fine mesh was used for the adjoint calculation and a

coarse mesh for the Monte Carlo cells [15]. In our implementation we use the same

unstructured tetrahedral mesh generated for the adjoint deterministic calculation in

Attila. As a result, the evaluation of the spatial part of LIFT’s angular flux expres-

sion is modified. The evaluation of the volume integral term in the normalization

factor βg,n defined in Equation (2.14) is not straight forward for cells in an arbitrary

unstructured tetrahedral mesh. A coordinate transformation of the vertices of the

tetrahedral cells was employed to determine the volume integral terms. Figure 4.1

shows the unnormalized cell in global coordinates x,y and z and figure 4.2 shows the
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normalized tet cell in the local coordinate system defined by ε, η and ζ.

Figure 4.1: Unstructured Tet

Figure 4.2: Normalized Tet
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The volume integral in Equation (2.14) is given by,

∫
Vn

eρg,n·rdr =

∫
Vn

eρg,n·(x̂i+yĵ+zk̂)dxdydz (4.11)

This integral is hard to evaluate directly, but after coordinate transformation to a

normalized tetrahedron, the integration limits can be found fairly easily [27]. The

transformed integral is then given by,

∫
Vn

eρg,n·rdr = Det(J)eρg,n·r0
∫ 1

ε=0

∫ 1−ε

η=0

∫ 1−ε−η

ζ=0

eρg,n·Jδdεdηdζ (4.12)

where, r0, r1, r2 and r3 are the actual position vectors for nodes 1 to 4 of the tetrahe-

dral cell. They are given by,

r0 → (x0̂i+ y0ĵ + z0k̂)

r1 → (x1̂i+ y1ĵ + z1k̂)

r2 → (x2̂i+ y2ĵ + z2k̂)

r3 → (x3̂i+ y3ĵ + z3k̂)

J is the transformation Jacobian matrix and is given by,

J =


(x1 − x0) (x2 − x0) (x3 − x0)

(y1 − y0) (y2 − y0) (y3 − y0)

(z1 − z0) (z2 − z0) (z3 − z0)

 (4.13)
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δ is represented by the transformed coordinates as given below,

{δ} = (ε, η, ζ)T (4.14)

4.3 Biasing methods

4.3.1 Source biasing with angle:

The distribution qg for sampling the source particle for the transformed problem is

given by,

qg (rn,Ω) =
Qg(rn)ψ̂g (rn,Ω)∑

g

∑
n

∫
4π
Qg(rn)ψ̂g (rn,Ω) dΩdrn

(4.15)

This distribution is similar to the modified source distribution in the CADIS method

(Equation 2.3), but has an angular dependence. The starting weight of the particle

is adjusted to account for the non analog source sampling and is defined as,

ws =
R

ψ̂ (rn,Ω)
, (4.16)

where R is the detector response given by,

R =
1

4π

∑
g

∑
n

∫
Ds,n

∫
4π

Qg(rn)ψ̂g (rn,Ω) dΩdrn.
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4.3.2 Distance to collision:

The source particles are then transported within the problem geometry based on the

parameter known as the distance to collision. Distance to collision is sampled from

a probability distribution which is a function of the total cross section. The biased

distance to collision probability function is given by,

p(s) = Σt,g,ne
Σt,g,ns (4.17)

The distance to next collision s is sampled from the above function. The particle is

now moved to see if it collides or escapes the cell. If the particle escapes, the particle

is stopped at the boundary and a new distance to collision is sampled. The weight

of the particle should be adjusted to account for its escape from the cell and is given

by,

Wesc = eρg,n·(ri−rf) (4.18)

where, ri is the initial particle position and rf is the final particle position after it

reaches the boundary.

4.3.3 Survival biasing:

If the particle undergoes collision within the cell, survival biasing is employed. It is a

technique used to prevent excessive particle absorption in deep shielding problems by
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allowing the particle to survive after collisions until it reaches the detector location.

The particle’s weight is again adjusted to account for its absorption probability. This

method helps to reduce the number of histories required to achieve a given accuracy.

The weight adjustment is given by the formula,

wc =

1
4π

G∑
g=1

∫
4π

Σs,g′→g (rn,Ω
′ → Ω) dΩ

Σt,g′ (rn,Ω)
(4.19)

Biased scattering After collision, the particle should undergo scattering and di-

rection change. These two actions are also biased.The new energy group is sampled

using the PDF,

p(g) =

∫
4π

Σs,g′→g (rn,Ω
′ → Ω′′) dΩ′′

G∑
g′′=1

∫
4π

Σs,g′→g′′ (rn,Ω′ → Ω′′) dΩ′′
(4.20)

The new direction is sampled using the PDF,

p (Ω) =
Σs,g′→g (rn,Ω

′ → Ω′′)∫
4π

Σs,g′→g (rn,Ω′ → Ω′′) dΩ′′
(4.21)

Rejection sampling is used to sample the new energy group and directions. The

formula for transformed scattering cross section is given by Equation (2.12).

A schematic of the various steps involved in implementing LIFT method in the

MGMC code is given in figure 4.3. Although, the MGMC code can handle higher

order scattering moments for analog and weight windows calculations using XREP
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Import scalar flux & 
current from flux 
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Sample source cell, 
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location from biased 

distributions 
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Calculate starting 
weight based on the 
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biased scattering distribution 
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No 

Yes 

Particle 
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Figure 4.3: Schematic of the LIFT procedure as implemented in MGMC

[19], the LIFT method in its current form only allows for limited linear anisotropy

as it calculates the effective scattering cross-sections based on the particle’s incoming

direction, energy group and the adjoint solution in the phase-space region [6]. In our

implementation, all the calculations employ a simple rejection sampling scheme [9]

to sample from a scattering distribution which allows for some anisotropy, such that

the comparisons on the efficiencies of the different methods are not skewed.

In the original LIFT implementation a fixed coarse mesh Cartesian grid for the for-
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ward Monte Carlo calculation was employed and the adjoint deterministic calculations

were carried out using finer meshes with sizes optimized for the type of discretization

scheme (several SN and PN methods were used). In this work, a single mesh with an

optimal size is used for both forward and adjoint calculations in order to eliminate

the overhead associated with employing two different meshes. However, for some test

cases of the mulch problem, the CADIS based weight windows method performed

better than the more sophisticated LIFT method. Since in the LIFT method, the

non-analog distributions that determine the particle transport are calculated based

on the particle’s current spatial location, energy group and direction, using a fine

mesh could potentially be a cause for the reduced efficiency of the LIFT method.

Also, the LIFT method relies more heavily on the adjoint solution as it uses the 1st

flux moments (current) in addition to the 0th moment (scalar flux) to achieve angular

biasing as opposed to CADIS based weight windows that rely only on the 0th moment

of the adjoint. But for a more accurate adjoint solution, it is often required to use

a fine mesh for the deterministic calculation. So, to test if the performance of the

hybrid methods can be improved by using a coarser mesh for the forward calculation,

an efficient nearest neighbor search algorithm and inverse distance weighting based

interpolation scheme is developed to transfer the adjoint quantities from a fine arbi-

trary tetrahedral mesh to a coarser mesh. The algorithm for this method is presented

in Appendix A.
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Chapter 5: VVR Method Implementation

The VVR method has been implemented for three-dimensional source-detector type

problems in Barrett’s dissertation [7] in a relatively simple cube problem with water as

the medium. In this implementation the angular domain is divided into octants and

the forward and adjoint flux in each octant were then used to calculate the variational

functional. Since this method is similar to a discrete ordinates (SN) discretization of

the angular domain, we will refer to it as the (S8) implementation. The VVR imple-

mentation for criticality problems were based on spherical harmonics representation

(PN) of the flux moments [12] and therefore a VVR implementation using the first

order spherical harmonic moments (P1) is also performed. The P1 implementation

is computationally faster as the functional needs to be evaluated only 0th and 1st

moments as opposed to the S2 implementation in which the functional needs to be

evaluated individually for each of the 8 octants. In both previous implementations,

isotropic scattering cross sections were assumed. In this work, the VVR function-

als are implemented with an approximation that accounts for linearly anisotropic

scattering cross sections. Also, a modified form of the functional that speeds up the

calculation of scattering source term in problems with many energy groups is adopted.
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5.1 General form of the VVR functional for source detector problems

Recall from Equations (2.19), (2.17) and (2.21), for a forward problem defined by

LΨ(r,Ω) =
Q (r,Ω)

4π
, (5.1)

where L is the forward transport operator, Ψ is the exact forward angular flux and

Q is the source and the equivalent adjoint problem defined by,

L̂Ψ̂(r,Ω) =
Σ

4π
, (5.2)

where L̂ is the adjoint transport operator, Ψ̂ is the exact adjoint angular flux and Σ (=

σaδ(rd)) is the detector response function for the forward problem. The variational

functional for detector response R is given by,

F
[
Ψ̂,Ψ

]
=

1

4π

∫
V

∫
4π

ΣΨ(r,Ω)dV dΩ

−
∫
V

∫
4π

Ψ̂(r,Ω)

(
LΨ(r,Ω)− Q(r,Ω)

4π

)
dV dΩ (5.3)

+

∮
S

∫
4π

(Ω · n) Ψ̂(rb,Ω) Ψ(rb,Ω)dSdΩ

≈ R.
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In the above functional, rb denotes the problem boundary (rb ∈ dV ). For problems

with vacuum boundary conditions,

Ψ̂(rb,Ω) = 0, for all Ω · n > 0 (5.4)

Ψ(rb,Ω) = 0, for all Ω · n < 0

and the functional reduces to,

F
[
Ψ̂,Ψ

]
=

∫
V

∫
4π

[
Σ

4π
Ψ(r,Ω)− Ψ̂(r,Ω)

(
LΨ(r,Ω)− Q(r,Ω)

4π

)]
dV dΩ (5.5)

The above functional is rewritten for a grid with J cells as:

F [ψ̂j, ψj] =
J∑
j=1

∫
Vj

∫
4π

[
Σj

4π
ψj(r,Ω)− ψ̂j(r,Ω)

(
Ljψj(r,Ω)− Qj

4π

)]
dV dΩ, (5.6)

where each cell has volume Vj. Expanding the transport operator L, the functional

can be written as:

F [ψ̂j, ψj] =
1

4π

J∑
j=1

∫
4π

∫
Vj

Σψj(r,Ω) dV dΩ

−
J∑
j=1

∫
4π

∫
Vj

ψ̂j(r,Ω)

[
Ω∇ψj(r,Ω) + σt,jψj(r,Ω)

− 1

4π

∫
4π

σs,j (Ω′ → Ω)ψj(r,Ω
′)dΩ′ − Qj

4π

]
dV dΩ. (5.7)
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Assuming the adjoint angular flux to be a piece-wise constant within each spatial cell

and moving the adjoint angular flux inside the residual term,

F [ψ̂j, ψj] =
1

4π

J∑
j=1

∫
4π

∫
Vj

Σψj(r,Ω) dV dΩ (5.8)

−
J∑
j=1

∫
4π

ψ̂j(Ω)

∫
Vj

Ω∇ψj(r,Ω) dV dΩ−
J∑
j=1

σt,j

∫
4π

ψ̂j(Ω)

∫
Vj

ψj(r,Ω) dV dΩ

+
1

4π

J∑
j=1

∫
4π

ψ̂j(Ω)

∫
Vj

∫
4π

σs,j (Ω′ → Ω)ψj(r,Ω
′)dΩ′ dV dΩ

+
J∑
j=1

∫
4π

ψ̂j(Ω)

∫
Vj

Qj

4π
dV dΩ.

Applying the divergence theorem to the streaming term, the functional reduces to:

F [ψ̂j, ψj] =
1

4π

J∑
j=1

∫
4π

∫
Vj

Σψj(r,Ω) dV dΩ (5.9)

−
J∑
j=1

∫
4π

ψ̂j(Ω)

∫
sj

(Ω · n)ψj(rs,Ω) dS dΩ

−
J∑
j=1

σt,j

∫
4π

ψ̂j(Ω)

∫
Vj

ψj(r,Ω) dV dΩ

+
1

4π

J∑
j=1

∫
4π

ψ̂j(Ω)

∫
Vj

∫
4π

σs,j (Ω′ → Ω)ψj(r,Ω
′)dΩ′

 dV dΩ

+
J∑
j=1

∫
4π

ψ̂j(Ω)

∫
Vj

Qj

4π
dV dΩ.
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where n is the outward unit normal of the surface of the cell.

5.2 VVR functional for a S2 implementation

In the S2 implementation, the angular dependence is simplified by dividing the angular

domain into 8 octants and the VVR functional can be written as,

F [ψ̂j, ψj] =
1

4π

J∑
j=1

8∑
q=1

∫
Ω∈q

∫
Vj

Σψj(r,Ω) dV dΩ (5.10)

−
J∑
j=1

8∑
q=1

ψ̂j,q

∫
Ω∈q

∫
S

(Ω · n)ψj(rs,Ω) dS dΩ

−
J∑
j=1

σt,j

8∑
q=1

ψ̂j,q

∫
Ω∈q

∫
Vj

ψj(r,Ω) dV dΩ

+
1

4π

J∑
j=1

8∑
q=1

ψ̂j,q

∫
Ω∈q

∫
Vj

 8∑
q′=1

∫
Ω∈q′

σs,j (Ω′ → Ω)ψj(r,Ω
′)dΩ′

 dV dΩ
+

J∑
j=1

8∑
q=1

∫
Ω∈q

∫
Vj

Qj

4π
ψ̂j,q dV dΩ.

where q is the octant number and,

ψ̂j,q =

∫
Ω∈q

ψ̂j(Ω)dΩ∫
Ω∈q

dΩ
=

∫
Ω∈q

ψ̂j(Ω)dΩ

π/2
. (5.11)
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The adjoint angular flux in each octant is reconstructed using an exponential function

given by,

ψj(Ω) = aje
bj ·Ω, (5.12)

where aj and bj are calculated from the expressions for adjoint scalar flux Φ̂j and

current Ĵj given by,

Φ̂j =

∫
4π

aje
bj ·ΩdΩ, (5.13)

Ĵj =

∫
4π

Ω aje
bj ·ΩdΩ. (5.14)

|bj| is calculated by solving the expression for the ratio |Ĵj|/φ̂j numerically using a

secant solver,

|Ĵj|
φ̂j

=
e|bj |

(
1− 1

|bj |

)
+ e−|bj |

(
1 + 1

|bj |

)
e|bj | − e−|bj |

(5.15)

and then bj is determined using the formula,

bj = |bj|
Ĵj

|Ĵj|
. (5.16)

aj is calculated by substituting the value of bj in Equation (5.13),

aj = 2π
Φ̂j|bj|

e|bj | − e−|bj |
. (5.17)

The average adjoint angular flux in each octant q is then determined by substituting

the values of aj and bj in Equation (5.11). The angular integration is performed

numerically using a Lebedev quadrature rule for unit sphere [28].
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The forward quantities in the functional are determined from the Monte Carlo cal-

culations using path length tallies for the fluxes and surface crossing tallies for the

surface currents in each octant as defined below,

ψj,q =

∫
Vj

∫
Ω∈q

ψ(r,Ω) dΩ dVj, (5.18)

Γj,q =

∫
Sj

∫
Ω∈q

(Ω · n)ψ(r,Ω) dΩ dSj. (5.19)

For linearly anisotropic scattering cross sections, the scattering source term in the

VVR functional is written as:

1

4π

J∑
j=1

8∑
q=1

ψ̂j,q

∫
Ω∈q

∫
Vj

 8∑
q′=1

∫
Ω∈q′

[σs,j,0 + 3σs,j,1Ω
′ ·Ω]ψj(r,Ω

′)dΩ′

 dV dΩ, (5.20)

where σs,j,0 and σs,j,1 are the 0th moment and 1st moment of the scattering cross-

section, respectively. Now, assuming a mean direction in each octant Ωq such that,

Ωq =

∫
Ω∈q

ΩdΩ∫
Ω∈q

dΩ
, (5.21)

we can write the scattering source term as,

1

4π

J∑
j=1

8∑
q=1

ψ̂j,q

 8∑
q′=1

[σs0,j + 3σs1,jΩq′ ·Ωq]

∫
Ω∈q

∫
Vj

∫
Ω∈q′

ψj(r,Ω
′)dΩ′dV dΩ

 . (5.22)
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The integration of the forward angular flux in this expression can now be replaced

using Equation (5.18) to yield,

1

4π

J∑
j=1

8∑
q=1

ψ̂j,q

 8∑
q′=1

ψj,q′ [σs0,j + 3σs1,jΩq′ ·Ωq]

∫
Ω∈q

dΩ

 . (5.23)

1

8

J∑
j=1

8∑
q=1

ψ̂j,q

[
8∑

q′=1

ψj,q′ [σs0,j + 3σs1,jΩq′ ·Ωq]

]
. (5.24)

Substituting this expression for the scattering source term and replacing the integral

adjoint and forward quantities in Equation (5.10) using the definitions in Equations

(5.11), (5.18) and (5.19), the VVR functional can be written as,

F [ψ̂j, ψj] =
Σ

4π

J∑
j=1

8∑
q=1

ψj,q (5.25)

−
J∑
j=1

8∑
q=1

ψ̂j,qΓj,q

+
J∑
j=1

σt,j

8∑
q=1

ψ̂j,qψj,q

− 1

8

J∑
j=1

8∑
q=1

ψ̂j,q

[
8∑

q′=1

ψj,q′ [σs0,j + 3σs1,jΩq′ ·Ωq]

]

−
J∑
j=1

Qj

8

8∑
q=1

ψ̂j,q.
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5.3 VVR functional for a P1 implementation

Spherical harmonics expansion of the angular fluxes for 1st polynomial degree is

defined as:

ψ(Ω) =
1∑

n=0

n∑
m=−n

φnmYnm(Ω), (5.26)

ψ̂(Ω) =
1∑

n=0

n∑
m=−n

φ̂nmYnm(Ω), (5.27)

for the forward and adjoint angular fluxes respectively. We define the spherical har-

monic polynomials for a given direction vector Ω (= Ωxî+ Ωy ĵ + Ωzk̂) as,

Y00(Ω) =
1√
4π
, Y10(Ω) =

√
3

4π
Ωx, Y11(Ω) =

√
3

4π
Ωy, Y1−1(Ω) =

√
3

4π
Ωz. (5.28)

The adjoint spherical harmonic moments in cell j are defined as,

φ̂nm,j =

∫
4π

ψ̂j(Ω)Ynm(Ω) dΩ. (5.29)

In this implementation, the adjoint flux moments are calculated deterministically

using Attila and are imported into the MGMC code. For the forward solution, we

define forward flux moments and forward surface current moments as below,

φnm,j =

∫
V

∫
4π

ψ(r,Ω)Ynm(Ω) dΩ dV, (5.30)

Γnm,j =

∮
S

∫
4π

(Ω · n)ψ(r,Ω)Ynm(Ω) dΩ dS. (5.31)
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The surface current moments defined here will be useful when applying divergence

theorem to the streaming operator in the transport term. Substituting the spherical

harmonics expansion in the VVR functional, and using the orthogonal properties

of the spherical harmonic moments, a reduced form of the VVR functional can be

derived. Here we show only the derivation of the scattering source term with linearly

anisotropic scattering and the rest of the terms in the functional are derived in the

similar fashion to the previous work done by Densmore for criticality problems [12].

Considering the scattering source term in the general form of the VVR functional

presented in Equation (5.9), we have:

1

4π

J∑
j=1

∫
4π

∫
Vj

ψ̂j(Ω)

∫
4π

σs,j (Ω′ → Ω)ψj(r,Ω
′)dΩ′

 dV dΩ, (5.32)

Substituting the linearly anisotropic expansion for the scattering cross section, we

get,

1

4π

J∑
j=1

∫
4π

∫
Vj

ψ̂j(Ω)

∫
4π

(σs0,j + 3σs1,jΩ ·Ω′)ψj(r,Ω′)dΩ′
 dV dΩ, (5.33)

Treating the 0th and 1st scattering cross section moments individually, we have for

the 0th moment,

1

4π

J∑
j=1

σs0,j

∫
4π

∫
Vj

ψ̂j(Ω)

∫
4π

ψj(r,Ω
′)dΩ′

 dV dΩ, (5.34)
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From the definition of Y00 in Equation (5.28), we can write, 1 =
√

4πY00 and intro-

ducing this into the above expression, we have,

1

4π

J∑
j=1

σs0,j

∫
4π

∫
Vj

√
4πY00ψ̂j(Ω)

∫
4π

ψj(r,Ω
′)dΩ′

 dV dΩ, (5.35)

From the definition for adjoint spherical harmonic moments in Equation (5.29), we

have

1√
4π

J∑
j=1

σs0,jφ̂00,j

∫
4π

ψj(r,Ω
′)dΩ′ dV. (5.36)

Again introducing 1 =
√

4πY00 into the expression and using the definition in Equa-

tion (5.30), we get,

J∑
j=1

σs0,jφ̂00,jφ00,j. (5.37)

Now, considering the 1st scattering moment, we have,

3

4π

J∑
j=1

∫
4π

∫
Vj

ψ̂j(Ω)

∫
4π

σs1,j(Ω ·Ω′)ψj(r,Ω′)dΩ′
 dV dΩ, (5.38)

In the above expression, the constant 3
4π

and the scalar product Ω·Ω′ can be combined

and written in terms of the spherical harmonics polynomials as,

3

4π
(Ω ·Ω′) = Y10(Ω)Y10(Ω′) + Y11(Ω)Y11(Ω′) + Y1,−1(Ω)Y1,−1(Ω′), (5.39)
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using the definitions in Equation (5.28). Using this expression and the orthogonal

property of spherical harmonic moments defined by,

∫
4π

Ynm(Ω)Yn′m′(Ω)dΩ = 1, if n = n′,m = m′ (5.40)

= 0, elsewhere,

in Equation (5.38) and some algebra, the terms for the first moment of the scattering

source is given by,

J∑
j=1

σs1,j

1∑
−1

φ̂1m,jφ1m,j. (5.41)

Similarly evaluating the other terms in the VVR functional, we get,

F [ψ̂j, ψj] =
1

4π

J∑
j=1

Σjφj

−
J∑
j=1

[
1∑

n=0

n∑
m=−n

φ̂j,nmΓj,nm + σt,j

1∑
n=0

n∑
m=−n

φ̂j,nmφj,nm −
1∑

n=0

σs,n,j

n∑
m=−n

φ̂j,nmφj,nm

]

+
1

4π

J∑
j=1

Qjφ̂jVj. (5.42)
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In the above functional, the quantities φj and φ̂j are defined by,

φj =

∫
4π

1∑
n=0

n∑
m=−n

φj,nmYnm(Ω) dΩ = φ00

√
4π, (5.43)

φ̂j =

∫
4π

1∑
n=0

n∑
m=−n

φj,nmYnm(Ω) dΩ = φ̂00

√
4π. (5.44)

5.4 Computational strategy

As discussed in the previous chapter, the VVR method is a unique variance reduction

technique that does not modify the particle transport. But, to evaluate the variational

functionals, the solution quantities need to be tallied in all regions of the problem

domain. In Barrett’s implementation (early 90’s)[7], the memory write times for

tallying quantities in all regions of the problem accounted for a significant part of the

additional computational efforts necessary to implement the VVR method. However,

the memory write times do not pose significant performance bottlenecks in our present

day computers. But, the time to evaluate the VVR functional could still be significant

relative to the overall simulation time and unless the variance reduction provided by

employing the VVR method is considerable, the overall efficiency of the simulation

using VVR may not be better. Two important implementation details to efficiently

calculate the VVR functionals are presented below.
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5.4.1 Batch means estimator

Usually, in Monte Carlo simulations for source-detector type problems the contribu-

tions made to the detector tallies are stored along with their squared moments and the

mean estimate and its variance are calculated at the end of the simulation. For the

VVR method however, the VVR estimates of the detector responses cannot be eval-

uated for every particle history as it would result in calculating the VVR functional

in each spatial cell and energy group in the problem which would be computationally

very expensive. To avoid this problem, the quantities are tallied in batches, similar to

criticality problems, such that the additional computational time for evaluating the

VVR functional remains reasonable. But, the number of particles simulated in each

batch (batch size) and the number of batches required for a reasonable estimate is

problem dependent. Also, if the number of batches used is very low, the application

of Central Limit Theorem could lead to potential problems. Further, the variance

calculated for the batch means estimator could have some bias due to correlation

effects between the batches for small batch sizes [29]. The optimal batch size for each

problem is determined based on trial and error such that the bias introduced in the

variance estimate by using the batch means estimator is not significant and does not

influence the FOM calculations.
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5.4.2 Scattering source transformation

The VVR functional we derived in the previous sections did not include energy de-

pendence. If we include energy dependence, the scattering source term in the VVR

functional becomes computationally very expensive to calculate in its current form.

This is because for every energy group, the scattering source contribution from all

energy groups in the problem needs to be calculated every time the functional is

evaluated. But, since the adjoint solution is pre-calculated and is essentially constant

during the Monte Carlo calculation, we can take advantage of the properties of ad-

joint theory and compute the scattering source in each energy group only once. Lets

consider the final form of the VVR functional for the P1 implementation with energy

dependence,

F [ψ̂j, ψj] =
1

4π

J∑
j=1

G∑
g=1

Σj,gφj,g

−
J∑
j=1

G∑
g=1

[
1∑

n=0

n∑
m=−n

φ̂j,g,nmΓj,g,nm + σt,g,j

1∑
n=0

n∑
m=−n

φ̂j,g,nmφj,g,nm

]

+
J∑
j=1

1∑
n=0

n∑
m=−n

G∑
g=1

φ̂j,g,nm

G∑
g′=1

σj,s,g′→g,nφj,g′,nm

+
1

4π

J∑
j=1

G∑
g=1

Qj,gφ̂j,gVj. (5.45)

In the above functional subscript g indicates the energy group that is evaluated and

g′ represents the energy group from which particles are scattering. G is the total

number of energy groups in the cross section library. In this form of the functional,
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the scattering source of the forward problem is being weighted by the adjoint flux

moments. The speed of evaluating this functional can be expressed as O(J × G2 ×

(n + 1)2) where J is the number of cells, G is the number of groups and n is the PN

order. Now, we know from adjoint theory,

〈σsψ, ψ̂〉 = 〈ψ, σ̂sψ̂〉, (5.46)

where 〈 , 〉 is the notation for inner product over the problem domain and σ̂s, the

adjoint scattering matrix is the transpose of the forward scattering cross section

matrix σs. Using this relationship, we can rewrite the scattering source term in the

functional as ,

J∑
j=1

1∑
n=0

n∑
m=−n

G∑
g=1

φ̂j,g,nm

G∑
g′=1

σj,s,g→g′,nφj,g,nm =

J∑
j=1

1∑
n=0

n∑
m=−n

G∑
g′=1

φj,g′,nm

G∑
g=1

σj,s,g′→g,nφ̂j,g,nm

(5.47)

Since the adjoint flux is a constant, the scattering source contribution can be evaluated

during the first evaluation of the VVR functional and for remaining evaluations, the

scattering source just needs to be weighted by the new estimate of the forward flux

moments calculated in Monte Carlo. The speed for evaluating the functionals after

the first evaluation will be O(J × G × (n + 1)2). A similar transformation of the

scattering source term is done for the S2 implementation.
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Chapter 6: Test Problems and Results

6.1 Mulch photon test problem

To test the hybrid methods on realistic problems, the “Mulch Box” benchmark test

problem for photon transport is considered. The problem definition is taken from the

PNNL report containing a list of benchmark problems for non-proliferation scenarios.

It is a simple photon transport problem through a shield with total macroscopic cross-

sections that are in the range between 0.5 and 1.0 cm−1 [30]. The geometry consists

of a wooden crate containing the mulch material on a slab of concrete placed over

soil. For this problem we use a “low density” mulch material (0.266 g/cc) consisting

of C (48 wt%), H (6 wt%) and O (46 wt%). A HPGe detector modeled as a solid

cylindrical volume (62cm3) is placed to the east of the crate while a spherical Ba-

133 photon source (65 cm3) is placed to the west as shown in the Figure 6.1. The

environment is modeled as nitrogen. A 50-group cross-section library generated from

the CEPXS cross section processing utility [31] is used. The group structure of the

cross section library and the source spectrum for Ba-133 are tabulated in appendices B

and C, respectively. The adjoint problem is solved using a S6, Triangular Chebyshev-

Legendre quadrature set and linearly anisotropic scattering. DSA (Diffusion Synthetic

Acceleration) is turned off in the Attila solver because the problem’s geometry has
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high aspect ratios and multiple heterogeneous material regions. Attila’s standard

DSA option does not provide significant acceleration benefits for problems with these

characteristics [16]. A lumped finite element discretization is used for the solution

of the adjoint transport equation to attempt to minimize the presence of negative

adjoint angular fluxes. The calculations are performed on a single mesh of global size

0.3 cm, the same as that used in the PNNL report for the Attila calculation [30].

Figure 6.1: CAD model for mulch problem

Four variations of the Monte Carlo code are used to solve the forward calculation - (1)

A standard Monte Carlo implementation with implicit absorption in which the parti-

cle weights are adjusted to account for absorption reactions (Analog+IA); (2) a hybrid

Monte Carlo calculation with weight windows and source biasing (SB+WW); (3) a hy-

brid Monte Carlo calculation with the LIFT method (LIFT) and (4) a hybrid Monte

Carlo method with LIFT along with the weight windows technique (LIFT+WW).

Since implicit absorption is implemented by default in almost all production Monte
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Carlo codes [2], calculations with this variance reduction technique are referred to

as “analog” in the remainder of the dissertation. The VVR method is applied in

five different configurations. The P1 implementation of VVR is applied with the

analog calculation (VVR P1), source biasing with weight windows calculation (VVR

P1+SB+WW) and the LIFT calculation (VVR P1+LIFT). The S2 implementation of

VVR is applied with the weight windows calculation (VVR S2+WW) and LIFT with

weight windows calculation (VVR S2+LIFT+WW). The motivation for not using S2

implementation with the analog calculation is explained in the next chapter.

Two different variance reduction goals are tested to evaluate the performance of the

hybrid methods. In the first case, the goal is to optimize the detector flux across all

energy groups by driving the adjoint calculation with a group-wise unit volume source

placed in the HPGe detector. In this case, all the energy groups are given equal im-

portance resulting in groups with larger particle fluxes having smaller variances than

groups with smaller particle fluxes. For the second case, the detector absorption rate

in the lower energy groups, those with the most significant absorption cross sections,

is optimized. The reason for optimizing the reaction rates in specific energy groups

is to test the performance of the variance reduction techniques when optimizing a

specific energy and spatial tally as the detector efficiencies are often times a strong

function of energy. This is achieved by setting the adjoint source equal to the ab-

sorption cross section in groups 46 to 49. Group 50 is neglected in the calculation as

the absorption cross section of the detector is orders of magnitude greater than other

groups and having an adjoint source in group 50 might mask the importance of the
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groups above it. The efficiency of each method is quantified using the figure of merit

(FOM) defined as,

FOM =
1

r2t
, (6.1)

where r is the relative error and t is the CPU time (in seconds) for the calculation.

For the hybrid methods, the time taken for the adjoint deterministic calculations is

also included (180 seconds).

Detector Flux Rel. Error Time FOM
Analog+IA 4.01E-05 0.117 2472 0.033

VVR P1 4.53E-05 0.097 2662 0.040
SB+WW 4.81E-05 0.031 824 1.263

VVR P1+WW 5.04E-05 0.021 834 2.645
VVR S2+WW 4.73E-05 0.023 928 2.064

LIFT 5.15E-05 0.005 998 49.482
LIFT+WW 5.17E-05 0.005 955 41.885

VVR P1+LIFT 1.56E-05 0.013 1008 5.933
VVR S2+LIFT+WW 3.18E-05 0.009 1041 11.600

Table 6.1: Results for optimizing the average detector flux in all groups

The results reported are for 100 batches with a batch size of 105 particles. The results

for the case tallying the detector fluxes are shown in Table 6.1. The flux values for

the analog calculation and the SB+WW method are within the 95% confidence in-

terval of each other. The upper bound of the 95% confidence interval for the detector

flux calculated by the Analog+IA calculation is approximately 3% lower than the

lower bound of the 95% confidence interval calculated by the LIFT and LIFT+WW

methods. This difference in the LIFT results is likely due to the nature of the expo-

nential distribution in the LIFT expression which becomes highly peaked when the
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magnitude of the biasing parameter is high or the cell size is large. A more detailed

discussion on this result is included in the next chapter.

The computational time required by the hybrid methods to achieve similar statisti-

cal precision is significantly lower than the Analog+IA calculation. This results in

FOM that are at least two orders of magnitude larger for the hybrid methods when

compared to the analog calculation. The LIFT method has a FOM that is almost

fifty times greater than the SB+WW method. LIFT also performed slightly better

than the LIFT+WW method which indicates that the effect of weight windows when

combined with LIFT is actually detrimental in this test problem. Since the adjoint

problem is driven by an unit source in all groups, the deterministic solution quality is

sufficiently accurate to bias the particles towards the detector region efficiently by the

LIFT implementation alone and weight windows is actually an added computational

burden.

The VVR method yields a marginal improvement in FOM over the analog estimate

(0.03 vs 0.04). When applied with the SB+WW method, the VVR method yields

an improvement in FOM that is twice the direct estimate for the P1 implementation

and about 1.6 times the FOM for the S2 implementation of the functional. For

the LIFT method and LIFT+WW method, the VVR estimate did not lead to any

improvement in FOM. Also, the detector fluxes do not agree with the results from

the other simulations. The reason for this is that the error correction term added

to the detector response (in this case particle flux) is large when compared to the

actual detector flux estimate. The LIFT method biases the particle transport greatly
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that the errors in the solution in regions with lower importances (i.e regions from

which the particles are more likely to reach the detector) are large. Since the VVR

functional involves the global solution, the VVR estimate from the LIFT simulations

is dominated by these imprecise correction terms and fails to provide any acceleration.

Reaction Rates Rel. Error Time FOM
Analog+IA 6.00E-05 0.0870 53197 0.002

VVR P1 6.51E-05 0.287 2669 0.005
SB+WW 6.03E-05 0.01 1775 5.634

VVR P1+WW 6.22E-05 0.009 1787 6.385
VVR S2+WW 6.20E-05 0.009 1877 6.16

LIFT 6.00E-05 0.012 1586 4.168
LIFT+WW 6.10E-05 0.004 1824 40.047

VVR P1+LIFT -8.80E-05 0.075 1597 -
VVR S2+LIFT+WW 9.80E-06 0.037 1918 -

Table 6.2: Results for optimizing the total detector reaction rates in groups 46-49

For the second case, the total detector reaction rate in the last four groups (46-49),

where the absorption cross sections are large, is optimized and the results are shown

in Table 6.2. This problem is optically thick as the cross-sections in the lower groups

are larger and using the same particle histories as case 1 resulted in large errors for the

analog calculation. Therefore, a longer simulation is performed for the Analog+IA

method with 2× 108 particle histories. The value of the total detector reaction rate

in groups 46-49 for all the calculations lie within the 95% confidence interval of each

other. The slight difference in the LIFT results that is observed in first case is not

present in this calculation beacause the cross sections are much larger than the particle
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fluxes in the lower energy groups of the detector. The relative error and the FOM are

better for the SB+WW method than the LIFT method, while the LIFT+WW method

has a FOM nine times (approx.) that of the SB+WW method. The reason for the

relatively poor performance of the LIFT method in this case is the presence of higher

weight fluctuations in the contributions made to the tally. The number of particles

reaching the detector for the LIFT calculation is about a factor of five greater than

the SB+WW calculation, as expected. But, the contributions made to the tally have

a higher variance than the SB+WW calculation. The higher variance is caused by a

small number of particles that contribute to the tally by traveling through phase space

regions that have lower importances and hence a higher weight than the majority of

the particles. Ideally, this situtation should not be possible as any particle track that

leads to the detector will have higher importance. But because of the limitations in

the LIFT approximate angular flux expression, these unlikely events do infrequently

occur. For the LIFT+WW method, the weight fluctuations are suppressed to a large

extent by weight windows and this results in improved efficiency.

VVR yields an improvement in FOM twice that of the direct analog estimate. When

applied with the SB+WW method however, the improvement in FOM is very marginal

(≈ 10%) for both the P1 and S2 implementations. VVR with LIFT simulations

demonstrate a similar behavior to case 1 and did not provide any acceleration solution

convergence. Further, the VVR estimate becomes negative for the LIFT with VVR

(P1) estimate possibly due to the global errors in LIFT calculation being larger than

the estimate itself and therefore we have not reported the FOM for the VVR+LIFT
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calculations. Also, the estimations for the simulations with and without VVR are

calculated in the same simulation and the additional computational time for evaluat-

ing the VVR functional is recorded and used for calculating the FOMs in the VVR

calculations.

To test if the performance of the hybrid methods could be improved by employing a

coarser mesh for the forward Monte Carlo calculation, a coarser mesh of global size

0.8 cm is used. The adjoint solution from the 0.3 cm fine mesh is transferred to the

coarser mesh using the method described in the previous section. The computational

cost of this transfer is negligible (≈ 4 CPU seconds). The results for optimizing the

Det. Flux Rel. Error Time FOM
Analog+IA 4.02E-05 0.117 2447 0.030

VVR P1 4.53E-05 0.097 2630 0.040
SB+WW 5.03E-05 0.068 768 0.282

VVR P1+WW 5.36E-05 0.064 758 0.322
VVR S2+WW 4.96E-05 0.068 768 0.278

LIFT 5.19E-05 0.007 910 22.427
LIFT+WW 5.27E-05 0.061 755 0.356

VVR P1+LIFT -1.79E-05 0.016 911 4.288
VVR S2+LIFT+WW 1.57E-05 0.190 767 0.036

Table 6.3: Results for optimizing the average detector flux on a coarse mesh

total detector flux are shown in Table 6.3. The flux values for each of the four methods

showed behavior similar to that of the fine mesh problems. When using a coarser mesh

for optimizing the total detector flux, the analog calculation has approximately the

same execution time as that of the fine mesh calculation. This shows that the size of

the mesh does not have a significant impact on the performance of our analog Monte
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Carlo calculation. For the hybrid methods, although there is a noticeable reduction

in execution times, using a coarser mesh did not cause an increase in the FOMs. In

fact, the coarse mesh hybrid calculations resulted in smaller FOMs than the fine mesh

calculations. For the LIFT and SB+WW method, the FOM decreased by about 50%.

But, for the LIFT+WW method, the FOM dropped below that of both SB+WW and

LIFT method. This is because of the reduced precision in the importance map (adjoint

solution), as the number of cells in the coarse mesh is approximately eight times fewer

than the fine mesh. This causes the particles biased by the LIFT method traveling

towards the detector with lower weights to be terminated before reaching the detector.

This reduced precision is expected due to the approximation of the adjoint solution

on a coarser mesh. But, the reduction in execution time must overcome the loss in

precision to justify the use of a coarser mesh for the forward calculation. Although

the computational cost of calculating the weights and the biasing parameters every

time the particle crosses a spatial cell decreases using a coarse mesh, in a problem

with significant scattering between the energy groups, the weights and the biasing

parameters are recalculated every time the particle scatters from group to group.

Even on a coarse mesh, the reduction in execution times may not be significant in

this situation. Table 6.4 shows the results for the case in which the reaction rates in

the lower groups (46-49) are optimized. The FOMs are again smaller on the coarse

mesh than on the fine mesh. The execution times for the hybrid methods are smaller

than those for the corresponding fine mesh calculations, but not significantly. The

time to evaluate the VVR functionals in the coarse mesh for all the calculations is

smaller by ≈ 100 seconds. The relative errors are slightly larger in the coarse mesh
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Reac. Rate Rel. Error Time FOM
Analog+IA 6.14E-05 0.400 2470 0.003

VVR P1 6.39E-05 0.290 2652 0.004
SB+WW 5.94E-05 0.016 1562 2.631

VVR P1+WW 6.01E-05 0.015 1564 2.728
VVR S2+WW 5.95E-05 0.015 1574 2.679

LIFT 6.01E-05 0.030 1485 0.748
LIFT+WW 6.11E-05 0.012 1267 5.481

VVR P1+LIFT -5.70E-05 0.024 1487 -
VVR S2+LIFT+WW -3.11E-05 0.074 1279 -

Table 6.4: Results for optimizing the total reaction rates in groups 46-49 on a coarser
mesh

calculation resulting in smaller FOMs. Finally, although the FOMs for the hybrid

methods are smaller in the coarse mesh calculations when compared to the fine mesh

calculations, they are still significantly larger than those for the corresponding analog

Monte Carlo calculations.

To study the effect of the quadrature set used for the SN adjoint deterministic cal-

culation on the performance of the variance reduction techniques, a quadrature mesh

refinement study is performed. The first case for optimizing the detector flux on a

geometric mesh of global size 0.3 cm is simulated using adjoint solutions generated

from S6, S8 and S10 calculations in Attila. Further, the First Scattered Distributed

Source (FSDS) solution technique is also utilized to generate highly accurate adjoint

solutions. In Attila, the FSDS option breaks the solution into uncollided and collided

components which are then added to yield the final solution [16]. The uncollided part

of the solution is calculated using a higher order S18 calculation followed by a S8 cal-

culation to determine the collided part of the solution. The FOMs for the SB+WW
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Quadrature SB+WW LIFT VVR
S6 1.309 54.809 0.040
S8 1.458 52.162 0.038
S10 1.358 43.956 0.041

FSDS,S18-S8 1.375 38.388 0.040

Table 6.5: FOMs for adjoint solutions from higher order SN and FSDS calculations

method, the LIFT method and the VVR (P1) method when using the adjoint solu-

tions calculated for different quadrature sets are given in Table 6.5. The Attila run

times, although insignificant when compared to the Monte Carlo calculation times,

are also included to calculate the FOMs. The results showed that the FOMs did not

improve by using a higher quadrature refinement for the adjoint calculations. Fur-

ther, when using the adjoint solution from the FSDS calculation there is a noticeable

drop in the efficiency of the LIFT method. Figure 6.2 shows the adjoint flux maps for

Figure 6.2: Adjoint flux for the S6 calculation and the FSDS calculation with quadra-
ture order 18 for the uncollided solution and 8 for the collided solution.

the S6 calculation and the FSDS calculation. The only noticeable differences in the
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adjoint flux values are observed on the edges of the concrete slab while the regions

that are important for the particles to reach the detector such as the mulch region

had similar flux values for both calculations. Therefore, for this mulch problem, the

S6 adjoint calculation is enough for the variance reduction methods to be efficient.

6.2 PANDA neutron test problem

The PANDA neutron problem (14.1.1) described in the PNNL report for benchmark

nonproliferation test problems [30] is simulated. This is a highly scattering problem

with a neutron source surrounded by a cylindrical polyethylene moderator region

housing multiple Helium-3 detectors. This problem is relatively easier to solve using

traditional Monte Carlo or deterministic techniques and therefore testing the hybrid

variance reduction methods on this problem will provide the opportunity to study if

there are still performance benefits to be had or if additional computational efforts

associated with the hybrid methods are detrimental to the overall efficiency of the

calculations. Two configurations of the PANDA neutron problem are simulated.

The first case had 4 detectors and the second case had 8 detectors. The cylindrical

moderator and detector geometries are approximated using a hexagonal geometry

such that the surface areas and volumes are preserved. The neutron source is a

unit volume source placed in the center of the problem geometry and the energy

distribution comes from a Cf-252 spectrum. The space between the source and the

moderator is modeled as nitrogen. The SCALE44 group neutron cross section library
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Figure 6.3: Neutron PANDA problem (CAD model)

[32] for thermal reactors in AMPX [33] format is used.

The adjoint calculation is performed with S4 Triangle Chebychev Labotto quadrature

rule and the maximum scattering order was limited to 1. The convergence criteria

for the scattering source was set to 1e-02 and DSA acceleration was turned on. For

this problem, using a higher order quadrature set did not yield any improvements

in variance reduction as expected and only resulted in increased computational time

for generating the adjoint solution. A global mesh size of 4 cm is used for both the

adjoint and forward problems. The adjoint source had a strength of unity in each

energy group and is placed in all the detectors in the problem such that the total

average detector flux is optimized using the hybrid methods. The forward Monte

Carlo simulation is performed with 105 particle histories and the estimates are tallied
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in batches with a batch size of 2000 particles.

Detector Flux Rel. Error Time FOM
Analog+IA 2.75E-04 0.0071 12 1662

VVR P1 2.75E-04 0.0067 379 59
SB+WW 2.75E-04 0.0074 368 50

VVR P1+ WW 2.75E-04 0.0070 381 54
VVR S2+WW 2.74E-04 0.0070 692 30

LIFT 2.75E-04 0.0052 374 99
LIFT+WW 2.71E-04 0.0070 377 54

VVR P1+LIFT 2.62E-04 0.0050 399 100
VVR S8+WW+LIFT 2.64E-04 0.0070 707 29

Table 6.6: Average detector flux for case 1 with 4 detectors

Table 6.6 shows the results for case 1 of the PANDA problem. As expected for this

problem the errors in the detector flux estimate are very low even for fewer particle

histories due to the nature of the problem. The FOM for the analog calculation is

two orders of magnitude higher than for the hybrid methods; however, the reason for

the poor performance of the variance reduction techniques is due to the time taken

for calculating the adjoint solution in Attila. For a highly scattering problem with

multiple detectors (which act as source locations to the adjoint calculation), the time

taken for the scattering source to converge in the deterministic calculation even with

a bigger convergence criteria and S4 quadrature order is significant (≈ 350 seconds) in

comparison to the time taken for the forward Monte Carlo simulations. The forward

problem is relatively much easier to solve due to a single unit source location in the

center of the problem geometry with optically thin material between the detector

and the source. The computational time for the Monte Carlo calculations, even with
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variance reduction techniques implemented, are relatively short (≈ 12 seconds for

analog and ≈ 35 seconds for hybrid methods except for calculations with VVR S2

method which took ≈ 300 seconds). The time to evaluate the VVR functionals in the

S2 implementation is significantly longer than the P1 implementation due to particles

reaching all the angular bins of the phase space in every batch. The error in the LIFT

method is slightly smaller than the analog calculation (0.5% for LIFT and 0.7%

for analog) while the SB+WW method and the LIFT+WW method had identical

error to the analog calculation. The VVR method provided slight improvements

over the direct estimates for the analog and SB+WW calculations. Also, unlike the

mulch problem where the VVR estimate for the LIFT calculations are unphysical, the

VVR+LIFT estimates fell within the 95% confidence interval of the LIFT results, but

did not provide any noticeable improvement in error. For the PANDA problem, the

errors in the solution are smaller across all regions of the phase space and therefore the

errors in the unimportant regions of the problem do not dominate the LIFT estimate

as they did in the mulch problem.

Detector Flux Rel. Error Time FOM
Analog+IA 2.63E-04 0.0059 17 1690

VVR P1 2.63E-04 0.0057 395 78
SB+WW 2.61E-04 0.0059 365 80

VVR P1+WW 2.61E-04 0.0048 414 107
VVR S2+WW 2.61E-04 0.0047 1042 44

LIFT 2.61E-04 0.0042 389 147
LIFT+WW 2.60E-04 0.0035 401 204

VVR P1+LIFT 2.54E-04 0.0038 438 160
VVR S2+WW+LIFT 2.53E-04 0.0038 1054 65

Table 6.7: Average detector flux for case 2 with 8 detectors



86

Table 6.6 shows the results for case 2 of the PANDA problem. The performance of

the methods is similar to that observed in case 1. The errors in the flux estimates

calculated by the LIFT calculations improved slightly over the analog calculation

(0.6% error for analog and ≈ 0.4% error for the LIFT methods). But the time

required to calculate the adjoint solution deterministically was large, such that the

overall performance did not improve.

Figures 6.4, 6.5 and 6.6 show the reduction in statistical error as a function of the

particle histories in batches with and without VVR for the analog, weight windows

and LIFT simulations for case 1 of the PANDA problem. The simulation results using

a higher quality adjoint solution from a S8 deterministic calculation is used in these

plots. There was a very small improvement in the VVR estimates by using a higher

quality adjoint, but the time for calculating the adjoint solution was very expensive

(≈ 700 seconds) and as a result the FOM did not improve. The error reduction

in the VVR estimate over the analog estimate is significant at the beginning of the

simulation and after a few batches the error of the analog calculation settles to a

value slightly above the VVR error. However, since the reduction in error is inversely

proportional to the square of the particle histories, the VVR method continues to

provide better error reduction than the direct analog estimate. VVR combined with

the weight windows calculations also shows a significant reduction in error compared

to the direct estimate in the initial batches and smaller fluctuations than the direct

estimates. Also, the S2 VVR implementation provides better error reduction than

the P1 method which is expected due to the finer angular resolution it provides for
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Figure 6.4: Reduction in statistical error for analog Monte Carlo and with VVR.
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Figure 6.5: Reduction in statistical error for source biasing with weight windows and
with VVR.
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this highly scattering problem. VVR combined with LIFT calculations did not show
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Figure 6.6: Reduction in statistical error for LIFT, LIFT with weight windows and
VVR.

a significant reduction in error over the direct flux estimates, as is evident in the

overlapping curves in figure 6.6. The LIFT+WW estimate had the smallest error

indicating that the VVR method fails to provide any benefits when coupled with the

LIFT method.

6.3 UF6 spent fuel cask test problem

The UF6 spent fuel cask test problem represents a more realistic test problem for

which experimental results exist [30]. In this research, we have only tested the per-
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formance of the hybrid methods using the photon spectrum for the decay products of

U235-U238. For a complete benchmarking of the hybrid methods with experimental

results, the photon spectrum from the fission products of other fissionable elements

like Pu-239 and the contribution from neutron spectrum of the decay products should

be simulated. Nevertheless, this initial testing using the U235-U238 spectrum helped

to gain further insights on the performance and limitations of the hybrid methods.

A 200 group photon cross section library generated using CEPXS [31] is used. Figures

6.7 and 6.8 show the top view and side view of the problem. A more detailed de-

scription of the geometry can be found in the PNNL report [30]. In the CAD model,

the cylindrical detector geometry is approximated using a hexagonal geometry while

still preserving the surface areas and volume so that number of cells in the geometric

mesh is reasonable. The adjoint calculation is driven from the NaI sensor of the mid-

dle detector with a unit energy spectrum for all energy groups. The adjoint solution

generated will help to optimize the average flux in the NaI sensor of the detector. The

UF6 in the cask is modeled as a solid block in the lower half of the cylinder while the

upper half of the cylinder is modeled as Nitrogen. A geometric mesh with a global

size of 0.1 m is used. The detector and UF6 cylinder had finer mesh regions. The

deterministic solution is generated by performing a FSDS calculation in Attila with

a S18 quadrature set for the uncollided flux and a S8 quadrature set for the collided

flux. The Triangular Chebychev Legendre quadrature rule is used.

The results for optimizing the average detector flux are shown in Table 6.8. For

this problem, the results from all the calculations are within the 95% confidence
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Figure 6.7: UF6 problem top view

interval of each other. The hybrid methods resulted in small relative errors for a

100 batches with a batch size of 104 particles. But, the relative error for the analog

calculation and the VVR P1 method remained large even after increasing the number

of particle histories by a factor of 100. The computational time for the deterministic

calculation is approximately 750 seconds. The Monte Carlo calculation times for

the hybrid methods except for the VVR method, are actually smaller than the time

taken for the adjoint calculation and they still resulted in small relative errors when

compared to the analog calculation. One important difference in the application of

the LIFT method and the LIFT+WW method for the UF6 problem is that the spatial

biasing part (path length stretching based on the exponential transform) of the LIFT

technique is not employed. This is due to the numerical restrictions caused by large
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Figure 6.8: UF6 problem side view

total cross-sections which resulted in large biasing parameters in certain regions of the

phase-space. The exponential function used for the spatial representation in LIFT

returns errors for regions with large biasing parameters when the values are outside

the numeric limits of C++. A more detailed discussion of this issue is presented in

the next chapter.

But, with only employing the angular biasing part of the LIFT method, it performed

better with a FOM almost twice that of the SB+WW method. The LIFT+WW

method performed the best for this problem with FOM that is thrice that of the

LIFT method. The reason for the efficiency of the LIFT method even without spatial

biasing is likely due to the nature of the problem. The problem has a large source
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Detector Flux Rel. Error Time FOM
Analog+IA 5.65E-03 0.335 10076 0.0009

VVR P1 6.14E-03 0.275 11014 0.0012
SB+WW 3.59E-03 0.100 865 0.1156

VVR P1+WW 4.55E-03 0.087 981 0.1347
VVR S2+WW 4.52E-03 0.088 1792 0.0721

LIFT 4.47E-03 0.058 1284 0.2315
LIFT+WW 4.82E-03 0.042 901 0.6292

VVR P1+LIFT 4.48E-03 0.066 1403 0.1651
VVR S2+WW+LIFT 4.81E-03 0.043 1824 0.2951

Table 6.8: Average detector flux in the NaI sensor for the middle detector

region and a small detector region without any shielding material in between. We

think that source biasing plays a major role in sampling source particles in regions

that are more likely to reach the detector and when combined with angular biasing,

the LIFT and the LIFT+WW methods perform efficiently even without any spatial

biasing.

The VVR method, when applied with the analog calculation and the SB+WW

method provided marginally smaller relative errors than the direct estimates. How-

ever, the additional time for evaluating the VVR functional resulted in a marginal

improvement in FOM for the P1 method and is detrimental to the efficiency of the

S2 method. When VVR is applied with the LIFT and the LIFT+WW methods, the

resulting flux values agreed with the flux values from the other calculations, but the

errors remained higher than the corresponding direct estimates. This indicates that

the benefit provided by employing the VVR functional is not helping the LIFT based

calculations.
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Chapter 7: Analysis and Conclusions

A platform to test sophisticated hybrid methods on realistic problems with reduced

overhead and user effort has been successfully developed. A multi group Monte Carlo

code that works seamlessly within the framework of the deterministic radiation trans-

port tool Attila has been developed using an object-oriented approach. The use of an

adjoint solution calculated using deterministic transport with the linear discontinuous

spatial differencing scheme for variance reduction techniques has been studied. Two

advanced automated variance reduction techniques, the LIFT method and the VVR

method, along with the CADIS based weight windows and source biasing technique

have been implemented in the test bench. The performance of the methods, both

individually and in combination, in comparison with analog Monte Carlo calculation

with only implicit capture has been studied for two realistic nonproliferation test

problems. The benefits and limitations of the two hybrid methods from this research

are described in the sections below.

7.1 Benefits and limitations of the LIFT method

The results of the hybrid methods for the mulch problem clearly showed that they

are significantly better than the analog Monte Carlo calculations where the source
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and detectors are separated by several mean free paths and the detector volume is

relatively small when compared to the overall problem dimensions. The FOMs for the

hybrid methods were at least an order of magnitude greater than those for the analog

simulations in all the cases of the mulch problem. Also, the LIFT method performs

significantly better than the weight windows method when the detector flux across

all groups is optimized. The weight windows method performs better than the LIFT

method when the detector absorption reaction rate in the four lower energy groups is

optimized. The weight fluctuations in the LIFT method that were encountered while

optimizing the reaction rates were mitigated when CADIS-based weight windows is

applied. The time spent for calculating the adjoint solution in Attila is significantly

shorter than the time needed to get reasonable estimates in the forward Monte Carlo

simulation and the total run times for LIFT calculations were still less than those of

the analog calculation.

The application of the LIFT method to the mulch test problem has helped to identify

some of the limitations of the method that were not clearly understood when it was

applied to simple test problems [15]. One of the major limitations is the ability to

include higher order scattering moments in the LIFT method. For the scattering dis-

tributions to remain positive, the cosine of the scattering angle is limited to one-third,

allowing for limited linear anisotropy as suggested in the earlier implementation [15].

However, even after restricting the value of the scattering cosine, negative adjoint

angular fluxes were encountered for the mulch calculation. The cause of the negative

angular fluxes was traced to the linearly anisotropic factor present in LIFT’s angular
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flux definition. In Equation (2.13) a spatially continuous expression based on the ad-

joint scalar flux and material properties is used to construct the local adjoint angular

flux. The anisotropic factor in the angular flux expression, defined in Equation (2.15)

is,

bg (Ω) = 1 + 3µg→g
σt,g − σs0,g→g
|ρg|2

ρg ·Ω (7.1)

For the linearly anisotropic factor to be positive, (i.e, bg > 0 for all Ω ∈ 4π), the

following condition should be satisfied,

µg→g
σt,g − σs0,g→g
|ρg|

<
1

3
.

This condition imposes additional limitations in representing the adjoint angular flux.

Even with restricted average scattering cosines (µg→g < 1/3), in certain energy groups

where σt,g >> σs0,g→g, it is possible for the above condition to be violated. To preserve

positivity, one can either restrict the magnitude of the biasing parameter ρg or use an

isotropic representation of adjoint angular flux. For the mulch problem, an isotropic

representation of adjoint flux performed better than having limits on the biasing

parameter. This condition arises due to the LIFT expression being derived from the

assumption of a 1-group problem for each energy group [6]. In future work, it would

be beneficial to investigate the possibility of including an additional term to account

for the presence of other energy groups while still retaining the simplistic nature of

the expression.

Another potential cause for bias in the LIFT results was identified due to the nature
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of the exponential function used to represent the spatial distribution of the adjoint

flux locally within each cell. The spatial component of the adjoint flux within each

cell is expressed by:

ψ̂(r) = φ̂nVn
e ρ · (r−rn)∫

Vn

e ρ · (r−rn)d3r
, (7.2)

where n is the spatial cell number and φn is the average adjoint scalar flux, Vn is the

volume and rn is the centroid of the cell. The range of the exponential function when

the value of the biasing parameter is large or the spatial cell is large is many orders

of magnitude. Since the expression is normalized by its integral in the denominator,

it is a density function which becomes highly peaked when the argument of the

exponential is large. The quantities sampled from such a peaked distribution tend

to be biased as they do not converge to the expected value of the distribution in

reasonable number of samples. We performed a calculation with only the angular

biasing part of the LIFT method, ignoring the exponential function and the results

fell within the 95% confidence interval of the analog estimate. In the test problem,

where the reaction rates in the lower groups are optimized, we also tallied the total

detector fluxes for comparison to the first case (The type of adjoint solution should

only affect the efficiency of the calculation and not the result). We discovered that

the weight windows method converged to flux values similar to those obtained when

the flux in all groups was optimized, although the error was higher as expected. For

the LIFT cases, the detector fluxes were actually lower than the analog estimate

(4.4E-05 [LIFT], 4.7E-05 [Analog+IA]) by approximately the same amount as they

were higher for the first case (5.1e-05 [LIFT]). The fluxes for the calculation with
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only angular biasing and without the exponential transform agreed well for both

cases (4.93E-05 [case 1], 4.99E-05 [case 2]). In future work, it is desirable to have

a spatial function that exhibits smaller variations and at the same time remains

positive and easy to sample. A linear form of the spatial function was considered for

highly scattering problems in previous work [9], but was not recommended due to

significantly increased computational time. It would be beneficial to investigate this

further for realistic test problems using Tortilla.

Although the LIFT method exhibits minimal weight fluctuations for the most part

when compared to the analog calculation and weight windows calculations, some

outliers in the weight contributions to the detector are encountered, especially for

the problem in which the four group reaction rates were optimized. These outliers

occur very rarely and are due to inaccurate reconstruction of the importance function

in certain regions of the phase space in LIFT. This affects the performance of the

LIFT method as the error slightly increases whenever there is a larger than usual

contribution to the tally, but eventually this effect diminishes.

For the PANDA problem, the LIFT method did not provide any performance ben-

efits over the analog Monte Carlo calculation. The reduction in error for the LIFT

calculations was very slight in comparison with the analog calculation. But, the time

to calculate the adjoint solution in Attila for the PANDA cases was much longer

than the Monte Carlo run times, yielding a much smaller Figure of Merit. This is

because there are multiple detector locations in the problem and a highly scattering

moderator region. The computational cost to generate the adjoint solution is much
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more significant than the marginal reduction in error and time savings in the Monte

Carlo calculation achieved by applying the LIFT technique. There could still be some

potential benefits from applying the LIFT method if the adjoint solution is calculated

via Monte Carlo calculation for such highly scattering problems.

For the UF6 problem, the LIFT method was applied with a restriction. This restric-

tion was due to the nature of the exponential function used for the spatial represen-

tation of adjoint angular flux. In regions with large total cross section, the biasing

parameter becomes large and this causes numerical handling issues. A restriction on

the biasing parameter’s magnitude (|ρ|) was made such that the value returned by the

exponential function remains within the allowed numerical limits of C++, but this

resulted in reduced biasing in optically thick regions of the problem. The computa-

tional time for calculating the modified distributions necessary to achieve path-length

stretching in the LIFT implementation remains constant irrespective of the amount

of the magnitude of |ρ|. Therefore restricting |ρ| yields a method with poor efficiency.

However, the LIFT method with only the angular biasing part performed efficiently

for this problem and using an alternative spatial representation could be potentially

more efficient.

7.2 Benefits and limitations of the VVR method

For the mulch problem and the UF6 problem, the VVR method yielded an improve-

ment in the FOM when used in conjunction with the analog calculation, and the
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source biasing and weight windows (SB+WW) calculation. Also, the time required

to evaluate the VVR functional was a small fraction of the overall computational

time for the P1 implementation and the more involved S2 implementation. These

improvements in error are similar to what Barrett reported for her 3D calculations

[7]. For the PANDA problem, even though the VVR estimates had smaller variances

than the direct estimates, the time required to evaluate the functionals was a signif-

icant portion of the run time, especially for the S2 implementation. This is because

in a highly scattering problem, all the angular bins in the phase space contribute to

every batch and therefore evaluating the VVR functional becomes expensive. For the

mulch and UF6 problems, it is likely that many regions of the phase space did not

contribute to estimates in a given batch and therefore the time for evaluating the

functional was not significant.

The VVR method did not provide error reduction and produced highly biased es-

timates when applied with the LIFT method for all the problems. To study this

behavior of the VVR method, recall from chapter 2 Equation (2.22c), we can write

the VVR estimate for detector response as:

F [ψ, ψ̂] = R + dψdψ̂ (7.3)

dψ̂ is the truncation error from the deterministic adjoint calculation and is a constant

in phase space for all particle batches. The quantity dψ represents the error in the

forward solution globally. The VVR method achieves error reduction by using the

estimate of the global forward solution and adjoint solution to add a correction term
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to the direct detector response estimate which yields an VVR estimate that is closer

to the actual detector response. Provided a reasonable estimate of the global forward

and adjoint solutions are available, the correction term will ensure that the variability

in the VVR estimate is smaller than the variability of the direct detector response

estimate. However, in a complex problem (both in geometry and energy) with a

small detector response, the second order correction term can become dominant and

cause bias in the result. Two conditions under which the bias occurs are encountered

during this research. The first condition occurred when VVR was used with an analog

Monte Carlo calculation for the mulch problem. When a small batch size was used,

the detector flux remained zero for several batches and the errors in the global flux

estimate were also large resulting in a negative value for the detector response. One

way to mitigate this would be to increase the batch size such that the error in all parts

of the phase space is reasonable and the detector response is not zero. But this would

mean, for a fixed number of particle histories, the number of batches will be very small

and calculating the variance from a small number of samples would result in a bias.

The other solution is to use VVR with other variance reduction techniques. When

variance reduction techniques are applied, more particles would reach the detector

and even for a smaller batch size, a reasonable estimate of the detector response will

be calculated, avoiding the possibility of negative estimates of the detector response.

This was the case when VVR was applied with weight windows.

However, when VVR was applied with the LIFT method, negative VVR estimates

were again encountered as seen in the results for the mulch problem. The reason
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for this is that the LIFT method biases the particles heavily such that the errors in

the high importance regions are much smaller, while the error in the low importance

regions remain large resulting in global forward error estimates that are much larger

(dψ >> 0) and the magnitude of the second order error correction is dominant

(|dψdψ̂| >> R). This is the reason for the negative VVR estimates for the LIFT

calculations of the mulch problem. For the PANDA problem, the dψdψ̂ term remained

smaller than the detector response due to the fact that most regions of the problem

had high importance and therefore a reasonable forward estimate was available in

all regions of the phase space. It also appears that the weight windows method did

not exhibit such behavior because of splitting which will cause some particles to still

reach the lower importance regions of phase space, while in the LIFT method the

particles traveling in the low important regions are more likely to get terminated.

To illustrate this phenomenon, the relative errors in the total detector flux for the

different material regions of the mulch problem from the analog, the weight windows

and the LIFT calculations are plotted in Figure 7.1. As observed from the plot, the

errors are much smaller than the LIFT method for the analog and weight windows

calculations in all regions of the problem except the detector, whereas the error for

the detector region is smallest for the LIFT calculation. The plot also shows that

the errors for the weight windows method are relatively smaller in all regions of the

problem unlike the LIFT method which yields significant error reduction only in

the detector region. Therefore, it is fair to conclude that the VVR method works

optimally when applied with weight windows calculations.
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Figure 7.1: Region wise errors for the mulch problem case 1

7.3 Future work

In the future, besides serving as a platform for improving the existing hybrid methods,

Tortilla can be modified to test other more complex test problems and new hybrid

transport algorithms. Two such future extensions are discussed below.

7.3.1 Continuous energy Monte Carlo

In the MGMC code, as the name indicates, the energy domain is discretized using the

multigroup approach. There are applications in which a continuous representation of
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the energy domain is essential and most of the Monte Carlo calculations in production

codes like MCNP are performed in continuous energy domain. Some of the variance

reduction methods like the CADIS based weight windows lend themselves directly for

continuous energy Monte Carlo calculations. However, methods like LIFT have been

tested only in Multigroup calculations and the feasibility of extending these methods

to continuous energy calculations needs to be analyzed.

One of the major challenges in implementing a continuous energy calculation in Tor-

tilla is the ability to read from continuous energy cross section libraries and using

them in the particle transport routines. Since our test bench is developed around

a deterministic tool, the APIs can read only those cross sections that are in the

multigroup format. A separate module to import the continuous cross-section data

into the Monte Carlo code is required. One possible approach would be to make use

of the cross section APIs that are developed for the open source continuous energy

Monte Carlo code, OpenMC [34]. The OpenMC code package is developed in C++

to solve reactor criticality calculations. The cross section format used by OpenMC

is ACE. The ACE format contains continuous-energy cross sections for the following

types of reactions: elastic scattering, fission (or first-chance fission, second-chance fis-

sion, etc.), inelastic scattering, (n,xn), (n,γ), and various other absorption reactions.

OpenMC also includes sophisticated look up techniques to fetch the appropriate cross

section data for particle transport.

Another major modification that should be done to the test bench to accommodate

continuous energy Monte Carlo would be the sampling distributions for secondary
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angle and energy after every scattering collision. OpenMC employs various techniques

to sample the scattering angle and energy depending on the reaction type. They

include simply isotropic sampling, sampling from equiprobable bins and sampling

from tabular distributions. The routines that perform these methods are available

and could be modified to work with Tortilla.

7.3.2 Implementing adaptive Monte Carlo algorithms

There have been significant research efforts in the area of adaptive Monte Carlo meth-

ods that could achieve exponential convergence and these methods have only been

tested on limited problem with fewer dimensions [35] [36]. Tortilla, due to its mod-

ular nature can serve as the right platform to implement and test these methods on

complex problems. Further, the deterministic solution available from Attila could

be used as the initial starting point for the learning algorithms. This in turn would

result in fewer batches to achieve the desired error levels rather than starting with

zero information. Also, adaptive methods can be used to improve the accuracy of

the biasing parameters from the forward solution in the previous batches. The major

modification in implementing these algorithms would be in configuring the appropri-

ate tallies, the sampling distributions based on the methods used and of course the

algorithms itself.
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Appendix A: Algorithm for transferring solution quantities between

arbitrary tetrahedral meshes

The algorithm used for transferring the adjoint solution quantities from a fine arbi-

trary tetrahedral mesh to a coarser mesh is described below:

1. The fine mesh solution quantities for each tetrahedral cell (average flux and cur-

rents) and the vertices (cell vertex flux and currents) are extracted from the flux

moments output generated by Attila. Since Attila uses a linear discontinuous

spatial discretization scheme, the vertices in the mesh can have more than one

solution quantity. In such cases, the average of all the solutions at the vertex is

calculated.

2. A stack of the position vectors of the “cell centers” and “vertices” (we will

refer to them as nodes) in the fine mesh along with their corresponding solution

quantities is created.

3. A stack of the position vectors of the cell centers in the coarse mesh is also

created.

4. A “K-D search tree” [37] is then constructed using the stack of position vectors

in the fine mesh.
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5. For each cell in the coarse mesh, the longest distance between the cell center

and its vertices is determined.

6. The nearest neighbor search algorithm is then invoked to perform a radius search

for the distance calculated in the previous step. The search algorithm returns

the nodes in the fine mesh that lie within the imaginary sphere constructed

around the tetrahedral cell.

7. The nodes returned by the search algorithm are then evaluated to determine if

they are within the cell boundaries. The nodes that lie within the coarse mesh

cell and those that lie outside are stored in two different arrays along with their

respective distances to the cell center.

8. The search procedure is repeated for all the coarse mesh cells and resulting fine

mesh nodes are stored in arrays as described in the previous step.

9. For all the coarse mesh cells that have at least one spatial node of the fine mesh

within the cell boundaries, the coarse mesh solution is determined by a direct

average of the fine mesh solution quantities at all the nodes within the cell.

10. For coarse mesh cells that have no fine mesh nodes within the cell, an inverse

distance weighting based interpolation scheme is employed. The nodes that were

determined to lie outside the cell boundaries are invoked and their distances to

the coarse mesh cell center are used to determine weights for each node. The

coarse mesh solution is then calculated by taking a weighted average of the
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solution quantities at the nodes.

11. If there are no fine mesh nodes within the imaginary sphere around the coarse

mesh cell, the nearest neighbor search is invoked again to determine a fixed

number of closest nodes in the fine mesh.

12. The solution for that cell is then interpolated by a similar inverse distance

weighting scheme described previously.

The search algorithm used in the above procedure comes from the ANN(Approximate

Nearest Neighbor) C++ library [37]. ANN supports data structures and algorithms

for both exact and approximate nearest neighbor searching in arbitrarily high di-

mensions. The library implements a number of different data structures, based on

kd-trees and box-decomposition trees, and employs a couple of different search strate-

gies. Currently we only employ the exact search features of this library and the search

times are very quick for our purposes. For larger problems, the approximate search

algorithms could be turned on, provided the overhead is high enough to justify the

resulting loss in accuracy. For inverse distance weighting, we employ the fairly stan-

dard procedure to determine the weights based on the distances. The formula for

determining the weights is given by,

wi(r, r
′) =

1

dist (r, r′)p
, (A.1)

where p determines the influence of the points that are away from the point at which

the solution is interpolated. Higher values for p places stronger influence on points
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closer to the interpolation point while a weaker influence on the points further away.

The solution quantities (φr) are determined using the formula below,

φr =

∑
i∈N wiφi∑
i∈N wi

. (A.2)
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Appendix B: Mulch - Source spectrum and energy group structure

Table B1: Ba-133 Source spectrum

Energy Group Source Strength

3 8.9160E-02

6 6.2150E-01

12 1.8400E-01

16 7.0850E-02

21 4.5960E-03

26 5.9780E-03

35 3.4180E-01

37 3.1800E-02

41 2.1690E-02

44 4.3950E-02

46 1.7970E-01

48 1.0130E+00
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Table B2: Energy group structure for the mulch problem

Group High E. (MeV) Low E. (MeV) Group High E. (MeV) Low E. (MeV)

1 4.0000E-01 3.9215E-01 26 1.7067E-01 1.5986E-01

2 3.9215E-01 3.8434E-01 27 1.5986E-01 1.4924E-01

3 3.8434E-01 3.8334E-01 28 1.4924E-01 1.3883E-01

4 3.8334E-01 3.6985E-01 29 1.3883E-01 1.2865E-01

5 3.6985E-01 3.5650E-01 30 1.2865E-01 1.1869E-01

6 3.5650E-01 3.5550E-01 31 1.1869E-01 1.0898E-01

7 3.5550E-01 3.4488E-01 32 1.0898E-01 9.9532E-02

8 3.4488E-01 3.3435E-01 33 9.9532E-02 9.0361E-02

9 3.3435E-01 3.2392E-01 34 9.0361E-02 8.1489E-02

10 3.2392E-01 3.1358E-01 35 8.1489E-02 8.0489E-02

11 3.1358E-01 3.0335E-01 36 8.0489E-02 8.0112E-02

12 3.0335E-01 3.0235E-01 37 8.0112E-02 7.9112E-02

13 3.0235E-01 2.9379E-01 38 7.9112E-02 7.1416E-02

14 2.9379E-01 2.8530E-01 39 7.1416E-02 6.3934E-02

15 2.8530E-01 2.7689E-01 40 6.3934E-02 5.6682E-02

16 2.7689E-01 2.7589E-01 41 5.6682E-02 4.9677E-02

17 2.7589E-01 2.6357E-01 42 4.9677E-02 4.2942E-02

18 2.6357E-01 2.5139E-01 43 4.2942E-02 3.6506E-02

19 2.5139E-01 2.3937E-01 44 3.6506E-02 3.5506E-02



116

20 2.3937E-01 2.2750E-01 45 3.5506E-02 3.5467E-02

21 2.2750E-01 2.1579E-01 46 3.5467E-02 3.4467E-02

22 2.1579E-01 2.0425E-01 47 3.4467E-02 3.1473E-02

23 2.0425E-01 1.9288E-01 48 3.1473E-02 3.0473E-02

24 1.9288E-01 1.8168E-01 49 3.0473E-02 2.5000E-02

25 1.8168E-01 1.7067E-01 50 2.5000E-02 1.0000E-03
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Appendix C: PANDA - Source spectrum and energy group structure

Table C1: Cf-252 spectrum

Energy Group Source Strength Energy Group Source Strength

1 1.78E-02 24 7.70E-09

2 2.31E-02 25 3.75E-09

3 3.98E-02 26 2.25E-09

4 2.12E-01 27 2.50E-10

5 6.14E-02 28 2.50E-10

6 1.47E-02 29 2.50E-10

7 8.23E-02 30 5.00E-10

8 1.28E-01 31 2.50E-10

9 1.46E-01 32 2.50E-10

10 1.65E-01 33 2.50E-10

11 8.57E-02 34 5.00E-10

12 1.19E-02 35 5.00E-10

13 8.43E-04 36 3.00E-10

14 9.86E-04 37 2.00E-10

15 7.90E-05 38 1.00E-10
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16 4.50E-06 39 1.00E-10

17 7.00E-07 40 4.70E-11

18 2.00E-07 41 1.53E-10

19 1.90E-08 42 2.50E-11

20 2.10E-08 43 4.50E-11

21 1.25E-08

22 1.75E-08

23 1.23E-08

Table C2: Energy group structure for the PANDA problem

Group High E. (MeV) Low E. (MeV) Group High E. (MeV) Low E. (MeV)

1 2.00E+01 8.19E+00 24 1.77E-06 1.00E-06

2 8.19E+00 6.43E+00 25 1.00E-06 6.25E-07

3 6.43E+00 4.80E+00 26 6.25E-07 4.00E-07

4 4.80E+00 3.00E+00 27 4.00E-07 3.75E-07

5 3.00E+00 2.48E+00 28 3.75E-07 3.50E-07

6 2.48E+00 2.35E+00 29 3.50E-07 3.25E-07

7 2.35E+00 1.85E+00 30 3.25E-07 2.75E-07

8 1.85E+00 1.40E+00 31 2.75E-07 2.50E-07

9 1.40E+00 9.00E-01 32 2.50E-07 2.25E-07
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10 9.00E-01 4.00E-01 33 2.25E-07 2.00E-07

11 4.00E-01 1.00E-01 34 2.00E-07 1.50E-07

12 1.00E-01 2.50E-02 35 1.50E-07 1.00E-07

13 2.50E-02 1.70E-02 36 1.00E-07 7.00E-08

14 1.70E-02 3.00E-03 37 7.00E-08 5.00E-08

15 3.00E-03 5.50E-04 38 5.00E-08 4.00E-08

16 5.50E-04 1.00E-04 39 4.00E-08 3.00E-08

17 1.00E-04 3.00E-05 40 3.00E-08 2.53E-08

18 3.00E-05 1.00E-05 41 2.53E-08 1.00E-08

19 1.00E-05 8.10E-06 42 1.00E-08 7.50E-09

20 8.10E-06 6.00E-06 43 7.50E-09 3.00E-09

21 6.00E-06 4.75E-06

22 4.75E-06 3.00E-06

23 3.00E-06 1.77E-06
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Appendix D: UF6 - Source spectrum and energy group structure

Table C1: U235-U238 photon spectrum

Energy Group Source Strength Energy Group Source Strength

1 3.69E-16 93 1.31E-03

2 3.65E-16 94 5.80E-05

3 3.60E-16 95 5.16E-05

4 3.55E-16 96 5.80E-05

5 3.51E-16 97 3.89E-04

6 3.46E-16 98 5.80E-05

7 3.41E-16 99 9.76E-04

8 3.37E-16 100 9.60E-04

9 3.31E-16 101 5.80E-05

10 3.27E-16 102 3.98E-04

11 3.22E-16 103 5.80E-05

12 3.17E-16 104 1.23E-03

13 3.12E-16 105 1.20E-03

14 3.07E-16 106 1.18E-03

15 3.02E-16 107 1.15E-03
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16 2.40E-04 108 1.13E-03

17 3.93E-04 109 1.10E-03

18 3.87E-04 110 5.80E-05

19 3.80E-04 111 1.14E-03

20 3.72E-04 112 1.11E-03

21 3.65E-04 113 1.08E-03

22 8.09E-06 114 5.80E-05

23 5.01E-05 115 1.04E-03

24 8.09E-06 116 1.02E-03

25 2.85E-04 117 9.95E-04

26 8.09E-06 118 9.73E-04

27 2.64E-04 119 9.52E-04

28 2.61E-04 120 9.30E-04

29 8.09E-06 121 9.07E-04

30 2.18E-04 122 8.85E-04

31 8.09E-06 123 8.62E-04

32 3.06E-04 124 8.39E-04

33 3.01E-04 125 4.19E-02

34 2.96E-04 126 4.07E-02

35 2.92E-04 127 3.95E-02

36 2.87E-04 128 3.82E-02

37 8.09E-06 129 3.70E-02

38 1.73E-04 130 3.57E-02
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39 1.71E-04 131 3.44E-02

40 8.09E-06 132 2.98E-03

41 3.00E-04 133 3.06E-02

42 2.96E-04 134 2.98E-02

43 8.09E-06 135 2.89E-02

44 2.93E-04 136 2.98E-03

45 4.63E-03 137 2.59E-02

46 4.64E-03 138 2.52E-02

47 4.56E-03 139 2.45E-02

48 4.48E-03 140 2.39E-02

49 4.39E-03 141 2.98E-03

50 4.32E-03 142 2.07E-02

51 1.33E-04 143 2.98E-03

52 4.44E-03 144 2.42E-02

53 4.36E-03 145 2.36E-02

54 4.28E-03 146 2.28E-02

55 4.20E-03 147 2.21E-02

56 4.11E-03 148 2.98E-03

57 4.02E-03 149 2.09E-02

58 1.33E-04 150 2.03E-02

59 3.48E-03 151 1.96E-02

60 3.42E-03 152 2.98E-03

61 1.33E-04 153 1.58E-02
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62 1.29E-04 154 1.53E-02

63 1.33E-04 155 1.49E-02

64 2.43E-03 156 2.98E-03

65 1.33E-04 157 3.19E-03

66 6.63E-06 158 2.98E-03

67 1.33E-04 159 2.29E-03

68 3.58E-04 160 2.98E-03

69 1.33E-04 161 1.76E-02

70 2.96E-03 162 1.69E-02

71 1.33E-04 163 2.98E-03

72 1.91E-03 164 4.68E-03

73 1.33E-04 165 2.98E-03

74 2.27E-04 166 6.31E-04

75 1.33E-04 167 2.98E-03

76 4.22E-04 168 2.60E-03

77 1.33E-04 169 2.98E-03

78 2.94E-03 170 1.28E-02

79 2.89E-03 171 1.24E-02

80 1.33E-04 172 2.98E-03

81 6.13E-04 173 1.26E-02

82 1.33E-04 174 1.21E-02

83 1.98E-03 175 2.98E-03

84 1.33E-04 176 9.95E-03
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85 3.99E-04 177 9.64E-03

86 1.33E-04 178 9.33E-03

87 5.55E-04 179 2.98E-03

88 5.80E-05 180 1.00E-02

89 4.65E-04 181 9.67E-03

90 5.80E-05 182 9.30E-03

91 1.10E-03 183 8.93E-03

92 5.80E-05 184 1.49E-04

Table C2: Energy group structure for the UF6 problem

Group High E. (MeV) Low E. (MeV) Group High E. (MeV) Low E. (MeV)

1 3.00E+00 2.94E+00 101 6.99E-01 6.98E-01

2 2.94E+00 2.88E+00 102 6.98E-01 6.91E-01

3 2.88E+00 2.82E+00 103 6.91E-01 6.90E-01

4 2.82E+00 2.76E+00 104 6.90E-01 6.69E-01

5 2.76E+00 2.70E+00 105 6.69E-01 6.49E-01

6 2.70E+00 2.64E+00 106 6.49E-01 6.28E-01

7 2.64E+00 2.59E+00 107 6.28E-01 6.08E-01

8 2.59E+00 2.53E+00 108 6.08E-01 5.89E-01

9 2.53E+00 2.47E+00 109 5.89E-01 5.70E-01

10 2.47E+00 2.42E+00 110 5.70E-01 5.69E-01

11 2.42E+00 2.37E+00 111 5.69E-01 5.49E-01



125

12 2.37E+00 2.31E+00 112 5.49E-01 5.30E-01

13 2.31E+00 2.26E+00 113 5.30E-01 5.12E-01

14 2.26E+00 2.21E+00 114 5.12E-01 5.11E-01

15 2.21E+00 2.16E+00 115 5.11E-01 4.93E-01

16 2.16E+00 2.11E+00 116 4.93E-01 4.75E-01

17 2.11E+00 2.06E+00 117 4.75E-01 4.58E-01

18 2.06E+00 2.01E+00 118 4.58E-01 4.41E-01

19 2.01E+00 1.97E+00 119 4.41E-01 4.25E-01

20 1.97E+00 1.92E+00 120 4.25E-01 4.09E-01

21 1.92E+00 1.88E+00 121 4.09E-01 3.93E-01

22 1.88E+00 1.87E+00 122 3.93E-01 3.78E-01

23 1.87E+00 1.87E+00 123 3.78E-01 3.63E-01

24 1.87E+00 1.87E+00 124 3.63E-01 3.48E-01

25 1.87E+00 1.83E+00 125 3.48E-01 3.34E-01

26 1.83E+00 1.83E+00 126 3.34E-01 3.21E-01

27 1.83E+00 1.80E+00 127 3.21E-01 3.07E-01

28 1.80E+00 1.77E+00 128 3.07E-01 2.95E-01

29 1.77E+00 1.77E+00 129 2.95E-01 2.82E-01

30 1.77E+00 1.74E+00 130 2.82E-01 2.70E-01

31 1.74E+00 1.74E+00 131 2.70E-01 2.59E-01

32 1.74E+00 1.70E+00 132 2.59E-01 2.58E-01

33 1.70E+00 1.66E+00 133 2.58E-01 2.47E-01

34 1.66E+00 1.63E+00 134 2.47E-01 2.37E-01
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35 1.63E+00 1.59E+00 135 2.37E-01 2.28E-01

36 1.59E+00 1.55E+00 136 2.28E-01 2.27E-01

37 1.55E+00 1.55E+00 137 2.27E-01 2.18E-01

38 1.55E+00 1.53E+00 138 2.18E-01 2.10E-01

39 1.53E+00 1.51E+00 139 2.10E-01 2.01E-01

40 1.51E+00 1.51E+00 140 2.01E-01 1.93E-01

41 1.51E+00 1.47E+00 141 1.93E-01 1.92E-01

42 1.47E+00 1.44E+00 142 1.92E-01 1.85E-01

43 1.44E+00 1.43E+00 143 1.85E-01 1.84E-01

44 1.43E+00 1.40E+00 144 1.84E-01 1.76E-01

45 1.40E+00 1.36E+00 145 1.76E-01 1.68E-01

46 1.36E+00 1.33E+00 146 1.68E-01 1.61E-01

47 1.33E+00 1.29E+00 147 1.61E-01 1.53E-01

48 1.29E+00 1.26E+00 148 1.53E-01 1.52E-01

49 1.26E+00 1.23E+00 149 1.52E-01 1.45E-01

50 1.23E+00 1.19E+00 150 1.45E-01 1.38E-01

51 1.19E+00 1.19E+00 151 1.38E-01 1.32E-01

52 1.19E+00 1.16E+00 152 1.32E-01 1.31E-01

53 1.16E+00 1.13E+00 153 1.31E-01 1.26E-01

54 1.13E+00 1.09E+00 154 1.26E-01 1.20E-01

55 1.09E+00 1.06E+00 155 1.20E-01 1.15E-01

56 1.06E+00 1.03E+00 156 1.15E-01 1.14E-01

57 1.03E+00 1.00E+00 157 1.14E-01 1.13E-01
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58 1.00E+00 1.00E+00 158 1.13E-01 1.12E-01

59 1.00E+00 9.74E-01 159 1.12E-01 1.12E-01

60 9.74E-01 9.48E-01 160 1.12E-01 1.11E-01

61 9.48E-01 9.47E-01 161 1.11E-01 1.05E-01

62 9.47E-01 9.47E-01 162 1.05E-01 9.89E-02

63 9.47E-01 9.46E-01 163 9.89E-02 9.79E-02

64 9.46E-01 9.27E-01 164 9.79E-02 9.64E-02

65 9.27E-01 9.26E-01 165 9.64E-02 9.54E-02

66 9.26E-01 9.26E-01 166 9.54E-02 9.52E-02

67 9.26E-01 9.25E-01 167 9.52E-02 9.42E-02

68 9.25E-01 9.22E-01 168 9.42E-02 9.33E-02

69 9.22E-01 9.21E-01 169 9.33E-02 9.23E-02

70 9.21E-01 8.99E-01 170 9.23E-02 8.80E-02

71 8.99E-01 8.98E-01 171 8.80E-02 8.38E-02

72 8.98E-01 8.84E-01 172 8.38E-02 8.28E-02

73 8.84E-01 8.83E-01 173 8.28E-02 7.86E-02

74 8.83E-01 8.81E-01 174 7.86E-02 7.45E-02

75 8.81E-01 8.80E-01 175 7.45E-02 7.35E-02

76 8.80E-01 8.77E-01 176 7.35E-02 7.02E-02

77 8.77E-01 8.76E-01 177 7.02E-02 6.69E-02

78 8.76E-01 8.54E-01 178 6.69E-02 6.38E-02

79 8.54E-01 8.32E-01 179 6.38E-02 6.28E-02

80 8.32E-01 8.31E-01 180 6.28E-02 5.94E-02
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81 8.31E-01 8.26E-01 181 5.94E-02 5.62E-02

82 8.26E-01 8.25E-01 182 5.62E-02 5.31E-02

83 8.25E-01 8.10E-01 183 5.31E-02 5.01E-02

84 8.10E-01 8.09E-01 184 5.01E-02 4.91E-02

85 8.09E-01 8.06E-01 185 4.91E-02 4.56E-02

86 8.06E-01 8.05E-01 186 4.56E-02 4.23E-02

87 8.05E-01 7.96E-01 187 4.23E-02 3.91E-02

88 7.96E-01 7.95E-01 188 3.91E-02 3.60E-02

89 7.95E-01 7.87E-01 189 3.60E-02 3.31E-02

90 7.87E-01 7.86E-01 190 3.31E-02 3.03E-02

91 7.86E-01 7.67E-01 191 3.03E-02 2.76E-02

92 7.67E-01 7.66E-01 192 2.76E-02 2.51E-02

93 7.66E-01 7.43E-01 193 2.51E-02 2.26E-02

94 7.43E-01 7.42E-01 194 2.26E-02 2.04E-02

95 7.42E-01 7.41E-01 195 2.04E-02 1.83E-02

96 7.41E-01 7.40E-01 196 1.83E-02 1.63E-02

97 7.40E-01 7.34E-01 197 1.63E-02 1.45E-02

98 7.34E-01 7.33E-01 198 1.45E-02 1.28E-02

99 7.33E-01 7.16E-01 199 1.28E-02 1.13E-02

100 7.16E-01 6.99E-01 200 1.13E-02 1.00E-02




	Introduction
	Radiation transport problems for non-proliferation applications
	Deterministic methods
	Monte-Carlo methods
	Analog Monte Carlo simulations
	Variance reduction techniques
	Hybrid methods


	Literature Review
	CADIS
	CADIS based weight windows
	CADIS based source biasing

	LIFT
	The zero variance problem and the LIFT approximation
	Expression for adjoint flux reconstruction in the LIFT method

	VVR

	Tortilla - Hybrid Methods Test Bench
	Basic architecture of the test bench
	Computational mesh
	Cross section libraries
	Source definitions
	Deterministic solver
	Preprocessing routines
	MrMixer
	XREP

	Multigroup Monte Carlo (MGMC) code
	Pre-defined libraries and APIs
	Random number generator
	Numerical solvers
	Particle transport


	LIFT Method Implementation
	Biasing parameter calculation
	Modifications for a tetrahedral mesh
	Biasing methods
	Source biasing with angle:
	Distance to collision:
	Survival biasing:


	VVR Method Implementation
	General form of the VVR functional for source detector problems
	VVR functional for a  implementation
	VVR functional for a  implementation
	Computational strategy
	Batch means estimator
	Scattering source transformation


	Test Problems and Results
	Mulch photon test problem
	PANDA neutron test problem
	 spent fuel cask test problem

	Analysis and Conclusions
	Benefits and limitations of the LIFT method
	Benefits and limitations of the VVR method
	Future work
	Continuous energy Monte Carlo
	Implementing adaptive Monte Carlo algorithms


	Bibliography
	Appendices
	Algorithm for transferring solution quantities between arbitrary tetrahedral meshes
	Mulch - Source spectrum and energy group structure
	PANDA - Source spectrum and energy group structure
	 - Source spectrum and energy group structure

