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LIST OF SYMBOLS

a, b, x, y denote column vectors

A, B, N, W denote matrices

I denotes the identity matrix

, 14_
denote transpose of the vector a or matrix W

A equals by definition, denotes

for all

belongs to

{x} set with elements x

{.x /P} set with elements x possessing property P

contains

is contained in

< x = x' denotes a row vector

x > = x denotes a column vector

<x, y> denotes inner product of vectors x and y

II x II (Euclidean) norm of x

det. A = lAl determinant of the square matrix A

(t
l '

t
2

) open interval t1<t<t2

iti,t2] closed interval t1-< t <t 2

En space of ordered n-tuples of real numbers
with inner product (Euclidean n-space)

X time derivative of x(t)

w-1 denotes inverse of a square matrix W

f denotes a function

f(t) denotes the value of f at time t. This
convention is not adhered to strictly

==>- implies

is implied by

-<-4> implies and is implied by, if and only if

a identically equal over some time interval

E (x) expectation of a random variable x

E (x2) variance of a zero-mean random variable x

a.e. almost everywhere

4 approximately equal



CHARACTERIZATION AND OPTIMIZATION OF

OUTPUT-CONTROLLABLE SYSTEMS

I. INTRODUCTION

In the theory and application of automatic control,

one is often interested in controlling the outputs of a

dynamical system in a definite fashion by using suitable

inputs. The natural question is whether this can always

be done. As will be shown shortly, there are instances

where this is not possible. On the other hand, one can

have situations where outputs can be manipulated with in-

puts but the control is rather inefficient. In other words,

one may need excessive control effort or control energy to

perform the task. The latter situation leads automatically

to the question of optimization.

In the present study, attention has been confined to

the responses of systems at certain instants of time and

not over time intervals. In case of dynamical systems it

is usually not possible to change a physical variable in-

stantaneously. Such systems follow the cause and effect

rule of Newton and are often mathematically described by a

vector differential equation relating the well known physi-

cal vector called "state" to the inputs. On solving the

differential equation subject to given initial conditions,

one gets the state evolution with time. Embedded herein is

the Principle of Causality which says in essence that all
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future behavior of a real physical system is determined by

its present state and future inputs. Any information about

the past behavior is unnecessary.

The outputs or measurable variables are usually re-

lated to the state vector in some known fashion. Assuming

this knowledge, the question of output-controllability is

intimately connected with that of state-controllability.

Part of this work is concerned with an exploitation of

this basic idea.

1.1. General Considerations

The systems to be considered are all special cases of

those which can be represented by a pair of equations of

the form

X(t) = f(x(t), u(t), t)

y(t) = 2(x(t), u(t), t)

In these equations, x(t) stands for the state vector at

time t, u(t) stands for the input vector andy(t) stands

for the output vector. Because of physical considerations

and mathematical tractability, some restrictions are im-

posed on the transformations f and 2. These so-called

smoothness conditions on f and are discussed in detail

in Zadeh and Desoer (1) and Desoer (2). In this study it

is assumed that f and 2 are linear in x and u, so that



x(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)

Furthermore, the vector-valued functions of time x, u and

y are all assumed to be real. Because of this, in (1.1c)

and (1.1d) , A(t), B(t), C<(t) and D(t) represent real piece-

wise continuous matrices of appropriate dimensions. In what

follows, x is n-dimensional, u is p-dimensional and y is

q-dimensional.

With (1.1c) and (1.1d) in mind, the following basic

question can be asked: Given any initial state x(t
o

) =

x
o

, and the characterizing matrices A(t), B(t) and C(t)

()(t) = 0 in the main body of this research) can any de-

sired output y be obtained at some (possibly specified)

future time t
1
>t

o
by using a suitable control u over the

time interval [to, tl] . By suitable control one generally

means a bounded, piecewise continuous vector-valued func-

tion defined over [to, tl] . By and large, an answer to

this question exists in the control literature. Without

going into great detail, an example is cited to justify the

previous statement that such a control is not always pos-

sible. The simple one input-two output system illustrates

the point

a o 1

X =
o a

x + (1.2a)

= x (1.2b)
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where a is any real scalar and u(t) is an arbitrary real

function. If one starts with xo
= 0, then for any choice

of u(t), the two outputs are such that y1 = y2 for each t.

Thus, an arbitrary y cannot be attained.

In the remainder of this chapter, the concepts of con-

trollability, observability and canonical decomposition are

discussed. These ideas form essential background material

for Chapter II which is concerned with a study of output-

controllability and its characterization. The question of

quality of output-controllability and its optimization is

considered in Chapter III. The optimization procedure

applies to both time-invariant and time-varying systems. In

Chapter IV, a sensitivity analysis of the optimized .system

and a Mean-squared error.analysis due to parameter uncer-

tainty' is. done. In Chapter V, the effect of state feedback

on output-controllability is discussed. Finally, the

thesis is concluded with a summary.of principal results ob-

tained and suggestions for future research in Chapter VI.

1.2. State- Controllability

Since the early part of 1960, the concept of control-

lability (and its dual observability) has had profound

influence on linear system theory. Even earlier, the

mathematical implications of controllability were utilized

by the L. S. Pontriagin school of mathematicians in Russia

in their celebrated work on optimal control (3).
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Similarly, in the U.S.A., J. P. LaSalle used this notion in

his study of the time optimal control problem (4). Begin-

ning in 1960, R. E. Kalman and his associates have imparted

great physical meaning and mathematical structure to this

notion through a series of excellent papers (5, 6, 7, 8).

Other definitions of controllability have been proposed by

various authors in connection with their study of optimal

control problems. For example, Roxin (9) uses the term

"attainable" in his work on optimal control of finite di-

mensional systems not necessarily linear. However, in the

engineering world, the definitions and characterizations

due to Kalman are well known and are used in this study

whenever necessary. One starts out with the state equa-

tion (1.1c) that describes the system S.

Definition 1: The system S defined by (1.1c) is com-

pletely (state) controllable at time to if and only if any

state x at t
o

can be transferred to the origin at some

finite t >t using a suitable control u . In
1 0 L o 1

j

general, u(t) and t1 may depend on both x and to.

Remarks:

(1) The system S may be completely controllable at

t
o

and yet may not be completely controllable at T>to

For time-invariant systems, this difficulty does not arise.

(2) The above definition is concerned with transfer-

ring all possible initial states to the origin in a finite

length of time. As remarked by Kalman (10), this
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definition is most appropriate if one has the linear regu-

lator in mind. The following is an obvious extension of

Definition 1 and can be found in Zadeh and Desoer (1), and

Kreindler and Sarachik (11).

Definition 2: The system S defined by (l.lc) is com-

pletely (state) controllable at time to if and only if any

state x
0

at t
o

can be transferred to any state x -1 at some

finite ti> to using a suitable control urt -. In gen-
L 0 1J

eral, u(t) and t1 may depend on xo, xl and to.

As is obvious from Definitions 1 and 2, one always

uses the phrase "controllable at time to" in connection with

general time-varying systems. In some cases, controllabil-

ity does not depend on the initial time to and this leads

to the following:

Definition 3: The system S defined by (1.1c) is com-

pletely (state) controllable if and only if any state xo
at

t
o

can be transferred to any state x 1 at some finite

t ,>t using a suitable control u . In this defini-
1 o --Eto,ti]

tion t
o
does not play a particularly important role.

It is well known (12) that (l.lc) has the solution

t
1

x(t
1

) = (t ,t
o
)x

o
+ f tt. (t t)B(t)u(t)dt (1.3a)

- - -
t
0

The (nxn) matrix (I. t
1
,t 0) occurring in (1.3a) is non-

singular for all t1 and to and is usually called the state

transition matrix. Furthermore, it satisfies the matrix
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differential equation

d (tut.).

dt
1

,to),(tl' (to,t0) = I, the

identity matrix

Setting x(t1) = xi and using some standard properties of

the state transition matrix (1), one gets

t1
I x0 - 4 (t

o'
t
1
)x

1 1
1 f (to't)B(t)u(t)dt (1.3b)

L - to

An input u . .
that transfers (xo- 0 (to,ti)xi) at to

[to'tl]

to 0 at ti also transfers xo at to to xl at ti. In view

of this statement, Definitions 1 and 2 are equivalent (1).

If t
o

and t
1

are fixed, in order that (1.3b) is true for

arbitrary x and xieEn (the n-dimensional Euclidean space)

it is necessary and sufficient that Range L = En, where L

is the integral map on the right hand side of (1.3b) (2).

The following characterization of (state) controlla-

bility due to Kalman (6) and Kalman, Ho and Narendra (8)

is both beautiful and powerful.

Assertion 1: The system S is completely controllable

at time t
o

if and only if the (nxn) symmetric matrix

W(t0,t1) = fttl (to,t)B(t)B1(t) V(to,t)dt

is positive definite for some t1 >to.

Proof. Let t1 be the smallest t such that W has

maximal rank.

< Since .'W ( is assumed positive definite,

(1.4)
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the inverse exists. One has to find a control function

u(t), te[to,t1] such that the expression (1.3b) is valid.

By choosing in (1.3b)

u(t)= -B1(t) V(to,t)WT1(to,ti) [xo- (to,ti)xl]

(1.5)

and using (1.4), the equality is at once established.

> Let W(to,t) be positive semidefinite for all t >to.

There is no loss of generality in setting xi = 0 in (1.3b).

Also, let t = t2> to. Let x2 0 be such that

x' W(t
o'

t
2
)x

2
= 02

Define

Then

u (t) = - B' (t) (t ,t)x
2 o 2

f
t2

1111 2(t)11
2
dt = f t

t
2 .

t
o

t
o

= x2 t )x
2 o' 2 2

= 0, because of (1.6)

Since u2(t) is piecewise continuous and bounded on [to,t2],

it is, therefore, zero almost everywhere on 17to,t2]. If

the plant is completely controllable at to, then from

Definition 1 there exists an ua (t) such that

t
o

,t)B(t)B1 (t) chi

(1.6)

(1.7)

o
,t)x

2
dt

2
t
o
,t)B(t)u

1
(t)dt



And,

r

t
2112

021I t
111(011:(t) t,'(t ,t)x dt

o
0

t2

fto <ul(t)'
(t)> dt, because of (1.7)

= 0 (since u
2
(t) = 0 almost everywhere)

9

(1.8)

Because of (1.8) x2 = 0, which is a contradiction. This

contradiction proves the fact that if W(to,t) is positive

semidefinite for all t> to, the system cannot be completely

controllable.

For time-invariant systems, a simpler result is avail-

able (6, 8).

Assertion 2: A time-invariant system is completely

controllable if and only if

Rank [ B, A B, An-18] = n (1.9)

The brackets in (1.9) denote a composite matrix of n rows

and np columns.

Proof. Because of stationarity, controllability does

not depend on to. One lets to= o and t1 any positive num-

ber.

-== Let rank of (1.9) be n and yet the system not com-

pletely controllable. Then as in the second part of

Assertion 1, there exists a x1
0 such that



Or

or

x.
1
W(o

'

t )x
a

= 0

t -At -A't
1

r x'e B B'e x dt = 0
o

-I 1

ti -A't 2

f HB'e x
1

dt = 0

10

(1.10a)

(1.10b)

(1.10c)

Since the integrand in (1.10c) is non-negative and continu-

ous, it follows

-A't
B'e xl 0 , Oct!:ti (1.11)

Differentiating (1.11) n-1 times and setting t= 0, one gets

B'(Al)kx1 = 0, k = 0,1,2, ,n-1 (1.12)

Relation (1.12) implies that xl 0 is orthogonal to all

the columns of the matrix in (1.9). The rank of the com-

posite matrix cannot be n as such which is a contradiction.

-Let the system be completely controllable and yet

rank of the composite matrix in (1.9) be less than n.

There exists a non-zero vector xa
satisfying (1.12). By

the Cayley-Hamilton theorem it follows that

-A't
B'e x = 0 , for all t. (1.13)

This implies that

Or

t

1

-At -A't
f -x' e B B'e x

1
dt = 0- -

x' W(o
'

t
1
)x

1
= 0

-1

(1.14a)

(1.14b)
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Therefore, W(o,t
1

) is positive semidefinite. Since t
1
>0

is arbitrary, this contradicts complete controllability.

The notion of controllability as discussed above is

important in many ways. Controllability is needed to

prove existence of optimal control for linear systems with

quadratic performance criterion, as shown by Kalman (5).

A stronger form of controllability called "total controlla-

bility" was found to be necessary and sufficient condition

for the uniqueness of the solution to certain optimal con-

trol problems by Kreindler (13). Again, controllability

and its dual observability (to be introduced in the next

section) is needed to study stability. One also requires

some kind of uniformity conditions (Silverman and Ander-

son, 14). Finally, Roxin (9) and Marcus and Lee (15) have

used the idea of controllability in the context of non-

linear systems.

1.3. Observability

The concept of observability was introduced as a dual

to that of state-controllability by Kalman (5). Other

interpretations can be found in Zadeh and Desoer (1) and

Kreindler and Sarachik (11).

Again, one starts with the equations (1.1c) and (1.1d)

and sets u(t) = 0 and D(t) = O.

Definition 4: The free system S is completely

observable at time t
o
if and only if any state x at t

o
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can be determined uniquely from a knowledge of y(t) on

[t0,til for some finite t1> to.

In Definition 4, the phrase "observable at time to"

has been used. In some cases, observability does not de-

pend on the initial time t
o
and this leads to the following:

Definition 5: The free system S is completely ob-

servable if and only if any state x at to can be deter-

mined uniquely from a knowledge of .y(t) on [t0,t1] for

some finite t
1
>t

o

Remarks:

(1) From Definition 4 it can be interpreted that

complete observability of S at to does not imply complete

observability at T >to.

(2) In the later works of Weiss and Kalman (7), this

kind of observability has been called anti-causal observa-

bility.

(3) In Definition 5, to does not play any significant

role.

The following characterization of observability occurs

in (7, 11).

Assertion 3: The system S is completely observable

at time t
o

if and only if the (nxn) symmetric matrix

t

N(to,t_1 )
I
t0

t,t )C'(t)C(t) ' (t,t
o
)dt

is positive definite for some ti > to.

(1.15)
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Proof. Given in (11) and is omitted.

For time-invariant systems there exists the following

test of observability.

Assertion 4: A constant system is completely observ-

able if and only if

Rank [C1, A'C,
(A,)n-lc,] (1.16)

The brackets in (1.16) denote a matrix with n rows and nq

columns.

Proof. Given in (1, 11) and is omitted.

Though this discussion of the concept of observability

is short, its importance cannot be underestimated. In fact,

it is the key notion in problems connected with state

determination.

1.4. Canonical Decomposition Theorem

The canonical decomposition theorem or the canonical

structure theorem due to Gilbert (16) and Kalman (17) is a

powerful tool in linear system theory. Basically it says

that at any fixed instant of time, the components of the

state vector of a linear dynamical system with respect to

a suitable (possibly time-varying) basis or coordinate sys-

tem can be arranged in four mutually exclusive parts as

below:

Part (1): Completely controllable but unobservable

Part (2): Completely controllable and observable
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Part (3): Uncontrollable and unobservable

Part (4): Uncontrollable but completely observable

The following version of the canonical structure

theorem is due to Kalman (17).

Theorem: Consider the linear dynamical system

(1.1c-1.1d).

(i) At every fixed instant t of time, there is a

coordinate system in the state space relative to which the

state vector can be decomposed into four mutually exclusive

parts

x = (x1 ,x
2
,x

3
,x
4

)

which correspond to the scheme outlined above.

(ii) This decomposition can be achieved in many ways,

but the number of state variables n
1
(t), n

4
(t) in

each part is the same for any such decomposition.

(iii) Relative to such a choice of coordinates, the

system matrices have the canonical form

A (t) =

0

0

c(t) [ 0

Al2 A13 A14 B1 (t)

A22 (t) 0 A24 (t) B2 (t)

; B(t)=

0 A33 (t) A
34

(t) 0

0 0 A
44

(t) 0

C
2
(t) 0 C4(t)]
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Remarks:

(1) The coordinate system necessary to display the

canonical form of A(t), B(t) and C(t) will not be continu-

ous in time unless n
1
(t), n

4
(t) are constants. For

time-invariant systems this difficulty does not arise.

(2) For periodic or analytic systems the dimension

numbers n
1
(t), n

4
(t) are constants and the canonical

decomposition is continuous with respect to t.

(3) n
1
(t) + n

2
(t) + n

3
(t) + n

4
(t) = n, Vt.

In the next chapter, the time-invariant form of this

theorem will be used to establish a characterization of

output-controllability for constant systems.
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II. OUTPUT-CONTROLLABILITY AND ITS CHARACTERIZATION

The notion of output-controllability is believed to

be due to Bertram and Sarachik (18). Later, Kreindler and

Sarachik (11) studied the problem fairly thoroughly and

obtained many new results. Some different aspects of the

output-control problem have been considered by Weiss (19),

Sivan (20), Brockett (21), Brockett and Mesarovic (22) and

others.

The main result of this chapter is a characterization

of output-controllability based on the canonical structure

theorem of section 1.4.

2.1. Preliminaries

Recall the equations (1.1c) and (1.1d) defining the

system and set D(t) = O. Such plants are often called

purely dynamic. The following definitions and characteri-

zations are along the lines of Kreindler and Sarachik (11).

Definition 6: The system S defined by (1.1) is said

to be output-controllable on [t
o,

t
1
] if and only if any

final output y can be attained at time t1 while starting

with arbitrary initial conditions x at to using a suitable

control u ito,tly

Assertion 5: The system S is output-controllable on



[to,ti] if and only if the symmetric (qxq) matrixl

t
Wy(to,t1) = C(t-

i
)ft(t - ,t) B ( t )(1.1(t ,t)d to ' (t1)

0 --

17

(2.1)

is positive definite.

Proof. Given in (11) and is omitted.

Remarks: From the form of (2.1) it is obvious that

starting at any initial state xo at to, the fact that any

final output y can be attained at t1 >to does not imply

that y can be attained at t2> ti >to. For time-invariant

systems, a simpler check'of output-controllability is

available (11, 21).

Assertion 6: A time-invariant system is completely

output-controllable if and only if

Rank [C B, C A B, C(A)n-1B]= q (2.2)

The brackets in (2.2) denote a composite matrix of q rows

and np columns.

Proof. Given in (11) and is omitted.

2.2. Output-Controllability and Canonical Structure

In this section an attempt has been made to identify

the output-controllability problem of a linear, time-

invariant system with its canonical structure. Intuitively,

one feels that the completely (state) controllable and

observable subsystem would have a key role to play here.

1Wy (t
o
,t

1
) is called the output-controllability matrix.



Consider the time-invariant system representation
2

S:
=Ax+Bu

y = C x

18

(2.3a)

(2.3b)

Case 1. Let t
o
= 0 and x(0) = 0. This is usually

called the reachability problem. Define

M (0,t ) =
t 22

(ti-t)B2B,2e/y
22

(ti-t)c,2dt
y 1

(2.4)

Assertion 7: The system S is output-controllable if

and only if the (qxq) symmetric matrix My(0,t1) in (2.4) is

positive definite for t1 " 0.

Proof. One follows the pattern of Kalman (6).

-. My (0,t
1

) be positive definite at t
1

s(). Let

y(ti) = y be the desired output. Then by choosing

2a , 22 (t-t) 21
u(t) 10 t 17, (2.5)y '

.

and recallirg the fact that x(0) = 0 and x
4

is uncontrol-

lable, one gets

x(ti) = 22 ftleA22 (t1-t)B2B, 2eA_'
22 (ti-t)c, 2dtty-1

0

(2.6a)

= (2.6b)

The last result (2.6) is a consequence of (1.1), (1.3a),

(2.4) and section 1.4.

2 In (2.3), A, B, C are assumed to have the canonical
forms.
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7_>- Let My (0,t
1

) be positive semidefinite for all t
1
>0

and yet the system S be completely output-controllable.

Then for t1 (arbitrary) >0, there exists some 2..2 0 (a

q-vector) such that

y2I117(0,t1).y2 = 0 (2.7)

Defining,
22

(t)
2
e
A' (tl-

t)C,212u
1

= B'

one gets

(2.8)

f
1Hu (ON 2

dt = r
t
1_2

e
L22 (t

1
-t)

B21312e
A'
22

(t
1
-t)

C'
2

1 I2Jo 2dt
0

= y2My(0,t1 )2:2
, by (2.4)

= 0 , by (2.7)

Since El(t) is piecewise continuous and bounded on [0,ti] ,

it is zero a.e. on [0,t11. On the other hand, if the plant

is completely output-controllable, a control function u2

exists such that

rtl 2 A
22

(t t)
y.2 = j C e 1- -B 2u2(t)dt

0

and, therefore

1112112
f
t
lu, (t)13,2eal

22
(ti-t)c,222dt

0

= f
ti

1212(t)ul(t)dt = 0

This implies 2.2 = 0, which is a contradiction.

(2.9)

(2.10)
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Since this discussion is limited to time-invariant

systems, one has as a consequence of Assertion 7 the fol-

lowing simpler test of output-controllability.

Assertion 8: A constant system is completely output-

controllable if and only if

n -1
Rank [C

2
B
2
, C

2A22 B2 ,

c2(A22) 2 B2]
(2.11)

The brackets in (2.11) represent a composite matrix of q

rows and n
2
p columns.

Proof. Because of stationarity, set to = 0. Let ti

be any positive number.

,<=1= Let the rank of (2.11) be q and yet the system not

completely output-controllable. Then, as in the second

part of Assertion 7, there exists a y2 0 such that

My(0,t1)y.2 = 0 (2.12a)

or

or

tl 2 A22It -t) 2 2 A'22(t -t) 2yce '1BB'e- 1C1 dty
2

= 0 (2.12b)
0

t
1 2 A'

22
,2 2

f 11B, e- 1 2 y211 dt = 0
0

(2.12c)

Since the integrand in (2.12c) is non-negative and contin-

uous, it follows

22
B'2e-

' (t
1
-0

C'2y2 E 0 , 0 t < ti (2.13)

Differentiating (2.13) n2-1 times and letting t-} ti from

the left, one obtains

2 22 k
B' (A' ) C2 'y.2 = 0, k = 0,1,2, n2-1 (2.14)
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From (2.14), it is concluded that 2:2 0 is orthogonal to

all the columns of the composite matrix on the left hand

side of (2.11). Therefore, the rank of the composite

matrix cannot be q which is a contradiction.

> Let the system be completely output-controllable and

yet rank of the composite matrix in (2.11) be less than q.

There exists a non-zero vector 12 satisfying (2.14). By

the Cayley-Hamilton theorem it follows that

(t1- t)C,212 = 0 , 0<t<t
1

This implies that

or

(2.15)

y'j
r

t
1
c
2eA22(ti-t)B2B,2 A' 22

(t,-t)
C'

2

2
dt = 0 (2.16a)

y2My(0,t1)1.2 = 0 (2.16b)

Therefore, My(0,t1) is a positive semidefinite matrix.

Since t1> 0 is arbitrary, this contradicts complete output-

controllability.

Case 2. Let t
o

= 0 and x(0) 0 . Because of (2.3)

and section 1.4, one has

= C2x2 + C4x4 (2.17)

Setting u = 0 ,

A44t 4
x
4 (t) = e x (0) (2.18)



and

k2(t) A222s2 a24x4

22 2 24 A
44

t
= A x + A e x4

(0)

Therefore

22

(2.19)

x2 = eA
22

t
x
2
(0) +

fteA22
k-a,A24eA

44
adax4(0)= L.

(2.20)

Finally, from (2.17)

e2 c4x4

= yl(t) = free response at time t

It is possible to calculate yl(t) because of (2.18) and

(2.20). Thus, in order to move y(0) = yo to y at a sub-

sequent time t1;>0, one only has to synthesize an input

that takes y = 0 at time t = 0 to 1 - If(ti) at time

t = tl. This problem has already been treated under

Case 1.

2.3. Example 1

Consider the canonical form (Example 2 in Kalman (17)

modified).

=Ax+Bu (2.21a)

y = C x (2.21b)

where
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2 4 1 -1 0 1

0 -1 0 1 1 1

A = B =
0 0 -3 -2 0 0

0 0 0 1 0 0

0 1 0 1

C =
2 0

0 0 1

Writing x' = [xl, x2, x3, x41, in terms of the nota-

tion of section 1.4, one has

xl = controllable and observable

Part (2) x2 =

= uncontrollable but observablex3

Part (4) x4 =

The following partitioning of the A, B, C matrices is

almost immediate

A22

A42

C2

A24
1

0

r3 -2

0 1

C
4

B
2

B
4

.r

_[
0 0

0 0
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2

The controllable and observable subspace X is of dimension

two. One forms

[c2B2, c2A22B2]

1 1 -1

1 2 3

0 1 4

-1

5

6

(2.22)

Since R has rank 2, the system defined by (2.21) is not

output-controllable.

To develop these ideas further and for the sake of

comparison, the standard test of output-controllability

(2.2) is applied to the non-canonical representation

Then

-x =Ax+Eu

Y = E

A = T A T-1

B = T

C = C T-1

(2.23a)

(2.23b)

(2.24a)

(2.24b)

(2.24c)

In (2.24), T is a constant, nonsingular matrix of appropri-

ate dimension that takes (2.23) to (2.21). Details about

T can be found in Kalman (17). Write

R =CC 11, CAB,
a(R)n-1B1

= [C B, C A B, C(A)n-1B], by (2.24)

In this example, n=4 and using A, B, C from (2.21), one has
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=

1

1

0

1

2

1

-1

3

4

-1

5

6

1

5

4

1

9

8

-1

11

12

-1

19

20

(2.25)

In (2.25), the rank of R is 2 which confirms the earlier

conclusion that (2.21) or, equivalently, (2.23) is not

output-controllable. The first four columns of R are the

same as that of R above. The last four columns yield no

additional information. Indeed, the last four columns of

R can be generated by forming the matrix

Rl r 2 22 2 2 2 22 3 2]
= C (A ) B , C (A ) B (2.26)

Furthermore, since A
22 is a (2x2) matrix it follows that

(A22)

2 = 2 I + A22

(A22 3
2 I + 3 A22

(2.27)

(2.28)

Because of (2.26), (2.27) and (2.28), it is concluded that

R contains the same information as R.

2.4. Remarks

(1) The criterion proposed in the form of Assertion

8 is not intended as a substitute for the standard test of

output-controllability (2.2). In order to use (2.11) one

needs the canonical form. If the canonical form is avail-

able, (2.11) would be simpler than (2.2) in many cases.

(2) The main object of this discussion is to explain

the role played by subsystem 2 in the context of the
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output-controllability problem. This point of view is not

emphasized in (11, 22).

(3) As a consequence of section 1.4 and Assertion 8,

it follows that S defined by (2.3) cannot be output-con-

trollable if n
2
<(q(<:n), where q is the number of (inde-

pendent) rows of C. This fact is verified in Example 1

above. In the special case of single-input systems, p = 1

and the composite matrix in (2.11) cannot have rank =

q>112.
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III. OPTIMIZATION OF AN OUTPUT-CONTROLLABLE SYSTEM

OPERATING OVER FINITE INTERVALS

As stated in the introduction, one is often interested

not only in control but also in the quality of control. In

this chapter, which forms a major part of this work, the

above question is pursued in a definite manner to be

outlined shortly To be more _specific a-system is ob-

tained that is not only output-controllable on a given

interval but also optimal with respect to a certain per-

formance criterion. The performance criterion chosen for

this study is the volume of the region (in the output space

Eq) that can be reached from the origin by using a fixed

amount of control energy. The developments apply to sta-

tionary as well as to nonstationary systems albeit with

greater difficulty. The last section of this chapter is

concerned with time-invariant systems where the relation-

ship between the optimal observation matrix C* and the

control interval has been investigated.

3.1. Problem Formulation

For convenience, the state equations for a purely

dynamic plant are repeated here

= A(t)x + B(t)u (3.1a)

Y = C(t)x (3.1b)

Consider the question of attaining an output y (an
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arbitrary q-vector with real components) at time t
1
when

the plant is in some initial state x at time to<ti. By

Assertion 5 in Chapter II, the real and symmetric matrix

Wy (t
o
,t

I
) must be positive definite if this kind of output

control is desired. It is to be noted that t
o

and t
1

are

specified in the problem itself.

Use Equations (1:3a) and (3:1b) to get

t1
= y(ti) = 2(ti)Lk (t1,t0)x0 + f (ti,t)B(t)u(t)dt]

t
o

so that
ti

- C ,t
o
)x = f C(t t ,t)B(t)u(t)dt

to 1 --

(3.2)

(3.3)

Let yl be the output at t1 due to free motion. Then

yl = C(ti) (ti,to)x (3.4)

Now, by choosing

u(t) = B'(t) e(t t)C'(t
1
)W-1(t

o'
t
1
)(V-v ) (3.5)

and substituting u in the right hand side of (3.3), the

identity in (3.3) is at once established because of (2.1).

Let

C(to) (to,t0)xo = C(to)x

= y(to)

.Yo
(3.6)

It will be shown that the minimal control energy required

for the transfer yo (at to) to y (at t1) is given by



E
min 1

= )'Wy-1 (t
o
,t

1
)(i-y

1
)
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(3.7)

Also, (3.7) is realized by using the control function u(t)

in (3.5).

Thus, to prove (3.7) one computes

t1

ft 1131(t) 112 dt =
1 <u(t) ,u(t)> dt

0
to

= (y-y
1
)1Wy1

(t
o
,t

1
) W

y
(t
o
,t

1
W
y
1

) (t
o
,t
1
)(i-y1)

= (i-y1)1141(t0,t1)(i-yi) = Emin

The expression (3.8) is usually called control energy

(3.8)

(Kalman, 6). The fact that (3.7) or (3.8) represents the

minimal control energy for the transfer yo to y is proved

below along the lines of Kalman, Ho and Narendra (8).

Let u(t) and v(t) be two control functions that carry

out the desired transfer yo to y. In addition, it is

assumed that u(t) is defined by (3.5) and u(t) - v(t) 0

on [to,til. Write

y - c(t1) (t1,t0)x = y - yl

= z1

From (3.3) one gets

t
za = f 12(t1) (t1,t)B(t)u(t)dt

t
o

,t)B(t) (t)dt
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>

Hence

or

0 = f 1C(t.i.) (ti,t)B(t) [v(t)-u(t)]dt
to

0 = ftl <C(ti) (ti)t)B(t)[V(t)..'11(t)] W"..1(to' t 1
)Z > dtyto

= 1 <[v(t)-u(t)1, B' (t) 1.1(ti,t)C1(t,)W 1(to 1
,t,)z,>dt

t y 1
0

t
= f l <[v(t)-u(t)] , u(t) > dt, by (3.5)

to

Define

a(t) = u(t)-v(t), to ( t < t1

Then
t,

v(t) ,v(t)> dt = -"<u(t)-a(t), u(t)-a(t)> dt
to

to

tl
= <u(t) ,u(t)> dt +

t
tl

f <a(t) ,a(t)> dt
to

Emin

3.2. Problem Statement and Solution

For output-controllable systems, expressions have been

derived for the minimal control energy required to transfer
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yo (at to) to y (at t1). In the light of the work done by

Kalman, Ho and Narendra (8), one can introduce some

(scalar) figures of merit w as a measure of the quality of

output-controllability. The natural candidates for w are

(1) the determinant of Wy
1
(t
o
,t

1
) and (2) the trace of

W-1 (t
o
,t

1
). In what follows, the case where w

det.W-y 1(t
o
,t

1
) is considered.

The following question can now be asked: For speci-

fied A(t), B(t), to and tl, what choice of the (qxn) matrix

C(t
1
) would minimize w? Furthermore, to make the problem

meaningful and interesting, the additional restriction is

imposed on C(ti) that its rows are independently norm-

constrained by unity. Now

w = det.W-1y (t
o
,t

1
)

= 1/det.Hy(to,t1) (3.9)

Therefore, the above minimization problem involving w is

equivalent to the maximization of det.Wy(to,ti) . To

understand the physical implications of minimizing w, one

goes back to (3.7). Let xo = 0. Then for an arbitrary

but fixed

E = v'W it t )y
min -- y 0, 1

where

(3.10)

Wy(t0,t1) = C(tl)W (to,t1)C:(t1) (3.11)



and, from (2.1)

t
W (t0,ti) = f (ti,t)B(t)131(t) It(ti,t)dt

t0

32

(3.12)

It is obvious from (3.12) that the (nxn) matrix Wx (t
o
,t,)

is real, symmetric and, at least, positive semidefinite.

Since (3.10) represents a positive definite quadratic

form (23), the ideal solution to the optimization problem

lies in the minimization of each (positive) eigenvalue of

-1Hy (to,ti) by choosing an appropriate C(ti) that satisfies

the constraint conditions mentioned before. However, by

minimizing w, one does not minimize the eigenvalues

(of W-1) individually but their product. This approach is

attractive because of the mathematical simplifications that

result and leads to satisfactory optimization in most

cases. The principal mathematical tools used in this sec-

tion are the theory of quadratic forms and the spectral

properties of real, symmetric, positive definite (and

semidefinite) matrices (Friedman, 23; Bellman, 24; Gant-

macher, 25; Courant and Hilbert, 26).

Assuming A1,A2, ,Aq to be the (not necessarily

distinct) eigenvalues and ul,u2, ,u the orthonormal_

eigenvectors of W
-1

(t
o
,t

1
), one writes

alul + a

Then, from (3.10)

= q.A1 + a2Aq

(3.13)

(3.14)



The boundary of the hyperellipsoid that can be reached

using unit control energy is obtained by solving

a2

1
N
1

+ + a 2 = 1
q q

33

(3.15)

The square of the volume V of the q-dimensional ellipsoid

is given by

q
V2 = K A

'

where K is a constant
r=1 r

Using the fact

det.W (t ,t ) = 7 Ay1
o 1 r=1

and, (3.9) gives

V2 = K det.W
y
(t
o
,t,)

(3.16)

(3.17)

(3.18)

The idea behind the proposed optimization is clear from

(3.18).

Also, there exists an orthogonal matrix R (may depend

on t
o

and t
1

) such that

R'Wy(to,t1)11. = (3.19)

where _AL is a diagonal matrix with strictly positive

elements. Furthermore,

det.Wy (t
o
,t

1
) = det...JL

q
= 1 / , A

r=1
(3.20)

Since Wx
(t
o
,t,) in (3.12) is real, symmetric and has rank

m >q (otherwise the system would not be output-control-

lable on [tati]), there exists a nonsingular, orthogonal



matrix T (may depend on to and t1) such that

T'W T=D =

and

d
1

dm

0

0

; m > q

di. di+i
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(3.21)

w (to,t1) = 2 12 2' (3.22)

Because of (3.11) and (3.22)

wy(to,t1) = C(t1)T D 2:c1(t1) (3.23)

Using the notation

one gets

C(t

C(t )

< c

< c
2

, T =

t > t > t1 2 n

-<S1,I1> .
- <21,41-

<22,14> . . . <22,1n>

<c ,t > . . . <c t >q I q 5.7n

(3.24)

(3.25)



Therefore

W
y
(t
o
,t

1
)

d1 . . . dm<ci

d1 <22 . . . drn<22 ,_tm>

<c
I

,t > ,ti1
-1 -q

<ca,v...<2,t2>

d <c t >...d <c t > <c t c >
1 -q 2-m -1 >

,-n -qtn,-

It is to be noted that the first matrix on the right hand

side of (3.26) has its last (n - m) columns made of zeros

which are not shown explicitly. From (3.26)

35

(3.26)

det.W
y
(t
o
,t

1
) =

m
Z_ d:.<c, t >2 Z d.<c ,t .> <c ,t.>
j71, 3 j=1 1 -g

1d 3

<
=1

d4<c ,t.>2

(3.27)

It is well known that the columns of T in (3.24) span En

and are orthogonal. In this application they are assumed

to be orthonormal.

Let the rows of 2(t1) be norm-constrained as below

112111

2

" II2211
,

11

lic
411

n
2
< 1 (3.28)--

Then the problem is to maximize (3.27) subject to (3.28).

It will be shown shortly that the maximizing vectors cl,

22, , cq must all lie on the boundary of the n- dimen-

sional unit hypersphere.



Solution:

(i) Consider the scalar case q = 1

Since C(t1) = <ci = a row vector, one gets

and

Wy (t
o
,t

1
) = <cl,W (to,t1)cl>-

= a positive scalar

W
y
1
(t
o
,t

1
) = 1/ <cl,W (to,t1)94>

36

(3.29a)

(3.29b)

In this case whether one optimizes on the basis of det.

-1
Wy o

,t
1

) or trace W-y o
,t

1
), it makes no difference.

Because of (3.27) and (3.28), one arrives at the relatively

simple problem of maximizing

f(ci) = d <c ,t.>2
(3.30)

j 1 3

subject to

lc '1 >
< 1 (3.31)

In this situation, it is easy to check that the maximizing

vector c1
does lie on the boundary of the constraint

hypersphere.

By way of illustration, let q = 1, m = 3 and d d
1

d2

>d > 0. Then the optimal solution vector is c. = t1.
3 1

(ii) Consider the vector output case q >.1.

Let E be the set of all (qxn) matrices C(t1) that satisfy

the constraint conditions in (3.28). Then

2E {f(t1)1 '11-9-q1I2--
(3.32)



Also, let

2(t1)C El
Wy (t

o
,t

1
) is nonsingular 1
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(3.33)

Obviously,6D . It follows that is nonempty because of

the assumption on W (to,ti) that its rank is at least q.

One needs to find a C(ti)e Esuch that det.11y(to,t1) is a

maximum. In connection with the diagonalization shown in

(3.21), it is important to recall the conditions

m q (3.34a)

(11, d2 dq dq+1 d m> 0 (3.34b)

Also, if one chooses the vectors c 1, _2,c , c
-4

in the

subspace spanned by t1,12, ,tom, the following ortho-

gonality condition holds

<c.-1 ,t
r
> = 0, j = 1,2, ,q and (3.35)

r = q+1,q+2,

Because of (3.35), the summation index m in (3.27) can be

replaced by q. After elementary calculations

q
det.W(t

o
,t

1
) =7r. ,,(11,

-y k=1

<S1,1? <c
1

t
,-q

>12-

%'q> <c
2
,t- -q

<c t > <c >-q -q

(3.36)

While the matrix C(t1) has not been found yet, it is

obvious from the form of (3.36) that the maximizing vectors

* *

EvE2, ,c
* must lie on the boundary of the unit sphere

in En, i.e.,



11-Cl% = 1, k = 1,2,

38

,q (3.37)

Now, the elements of the first row in the determinant on

the right hand side of (3.36) are the coordinates of the

vector c with respect to an orthonormal basis {t1}
j

1

j

q
=1'

Therefore

<c
1,

t . >
2

= 1j
j=1

(3.38)

and, this is true for c ,cam. Using the Hadamard

Inequality for determinants (Courant and Hilbert, 26;

Bodewig, 27) one concludes

From (3.9)

max (det.W ) =
k=1

minmIn - 1

max(det.W
17

) 7rd
k

(3.39)

(3.40)

Furthermore, the maximum in (3.39) and the minimum in

(3.40) are achieved when the different rows of the deter-

'minant in (3.36) are orthogonal. Since ti,t2, ,tq are

fixed, the simplest choice is

C = t
1 1

q
c tq

Remarks:

(1) The choice of the 4 vectors in (3.41) is

not unique.

(3.41)
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(2) Linear independence between the rows of the

matrix C(ti) is accomplished automatically because of the

choice given by (3.41).

(3) In case q = n, a trivial situation develops.

Since det.W
Y

= (det.C) 2det.W
x

, for any control interval,

det.W
17

can be maximized by choosing the rows of the C

matrix to be (constant) orthonormal vectors. Optimization,

in this case, is independent of control interval.

3.3 Example 2

The following example shows how w = det.Wy1(t
o
,t

1
)

can be minimized according to the ideas developed in

sections 3.1 and 3.2.

The state equations read

Figure 1.

0 1 0

A =

[-1 -2

2] -)1 s12i

(3.42a)

(3.42b)



Therefore, by setting to = 0, one obtains

At e (l+t) te
t

-te
t

e
t
(1-t)

40

(3.43)

Since the plant is stationary, it is sufficient to work

with W (0,1). By definition,

1 A(1-t) A'(1-t) dt
0

W (0,1) = f e- b ble-
-x

At
Using e- from (3.43) and b from (3.42a), one gets

W (0,1) =

1 5 -2 1 -2
71, - 4 e e

1 -2 1 e
2

e

(3.44)

(3.45)

From (3.45), it is easy to see that W (0,1) is a symmetric

and positive definite matrix. Furthermore

and

2

d = -1 -
e

(3-2 r2)
l 4 4

-2
1 e

d2 - - (3+2 I-2)
2 4 4

(3.46a)

(3.46b)

In this case di >d2. Using standard matrix theory tech-

niques, the (normalized) modal matrix T is obtained

T =

1 1/2

V2 f2

1 1

(V2+1)1/2(12)1/2

2

_ 1 (V-2)11
2

(1+V2)1/2

(3.47)

The two orthonormal columns of T are called I
and t2.

2



Also,

T'Wx(0,1)T =

_

1 e
2

- (3-2 V-2) 0
4 4

0
-

I -
e2(3

+2 \r2)
4 4

In the spirit of (3.30) and (3.31), one can form the

following maximization problem

2
axm ') ]

f(c p) = Z d.<c,t.> - p(ci+c22 -1)
c.p , j=1 3 3

41

(3.48)

(3.49)

In (3.49), p, of course, represents the Lagrange Multiplier.

While usual methods can be used to solve (3.49), the prob-

lem at hand is readily solvable geometrically. Thus,

from Bodewig (27).

max <c,W (0,1)c> = d
1 -x 1

and, this maximum in (3.50) is attained by taking c along

(3.50)

1
. Therefore,

c'*
1 V2-1 1/2 1 %/2 1/2-

1
[

I-2 V2 2

3.4. Control Interval and Optimization

(3.51)

In the previous sections, the problem of maximizing

det.10117(to,t1) by an appropriate choice of C(ti) has been

considered. Since the optimal C(ti) is a function of the

structure of Wx (t
o
,t

1
), one notices the disadvantage of

this optimization. In the general time-varying case, C*

would depend on both to and tl. In case the state
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equations are stationary, the optimal C* would depend on

(t
1
-t

o
) > 0. This means even in the time-invariant case,

the optimal choice of the observation matrix C depends on

the control interval.

For the time-invariant case, setting to = 0, the

following analysis shows how the eigenvalues and eigen-

vectors of Wx(0,t1) change with the upper limit tl. In

case the control interval is slightly different from tl,

one can compute the performance degradation in terms of

control energy. As will be seen shortly, the eigenvalues

and eigenvectors satisfy coupled, first-order nonlinear

differential equations. The eigenvalue equation is a

scalar one and the eigenvector equation is a vector one.

Except in the simplest of cases, these equations can only

be solved by numerical techniques. Thus, for fixed co-

efficient matrices A and B, the optimal observation matrix

C* can be found for all possible control intervals.

Recall

t
1 A(t -a) A'(t -G)w

x
(t ,t

1
) f e 1 B'e 1 da

t
(3.52)

In (3.52), let to = 0 and t1 = t. Also, let Al be an

eigenvalue of Wx(0,t) and vi the corresponding (normalized)

eigenvector.
3

Then

W v = A vx1 11 (3.53)

3 This notation is different from that of section 3.2.



Differentiate (3,53) with respect to t and obtain

E'x271 /4111 AlY1 7\1A

or

(4 - IA )1.7 = - (# - I;\ )vx 1 1 -x - 1 -1
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(3.54)

Premultiply both sides of (3.54) by vi and use the trans-

pose of (3.53). to get

v (W - )v = 0-1-x 1 -1

Now, by straight differentiation of W (0,t) one has

Wx =AW +Wx A' +B B'

Therefore Equation (3.55) yields

yi(A WX + + B 53.1).yi = 0

or

or

A v viA W v + A1v + vlB11 -1- -x-1 -1-x- -1 1- ---1

1
= A 11vi (A+A')v + vI13 B'vl

(3.55)

(3.56)

(3.57)

So, (3.57) is the differential equation satisfied by Al

subject to the initial condition A1(0) = 0. Since at

t = 0, WX = 0 and Al = 0, from.(3.54) and (3.57) one gets

[W - I v B'y = 0113

Using (3.56) in (3.58) one has

[L3 13:- y_i] =0

(3.58)

(3.59)

From (3.59) it is seen that v1(0) is an eigenvector of

B B'corresponding to theeigenvalue viB Bin.. This is a

nonlinear eigenvalue-eigenvector problem. Finally,
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(3.54) is the differential equation Satisfied by vi subject

to initial condition given by (3.59).

Illustration: Consider example 2 again. One has

b b' =
[0 1

Obviously, the two eigenvalues of b b' are 0 and 1. The

linearly independent and orthogonal eigenvectors can be

picked by inspection in this case.

1
(0) = eigenvector corresponding to ?\1 = 0

[1]

[0]

y2(0) = eigenvector corresponding to '2 1

0

1

Note Li(0) and v2(0) satisfy (:3.59). Computin4 Wx(0,t)

directly, one has

1 ot
2

6 6t
2

4 4
- T(l+t)

2
2

W (0,t) =

ate 1 + t 6
- (1+t)

2
7

2 4 4

In the above matrix 6 = exp(-2t). Calling

1
2

6

-zr 4
St

Z(+t)
2

the eigenvalues of Wx(0,t) are given by

to to liTt2
' 2 2 2



Using 7\1, the first column of the (normalized) modal

matrix T is

1 + Vf(l+t 2
)

(2+2t
2

+ 2V-1+t4)
v (t) =

-t

(2+2t2 + 2V1+t

as t -->- 0

lim v
1
(t) = lint

t +0 t 0

2

2

-t
2

0

)1/2_
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Similarly, using ?\2, the second column of the modal matrix

T is

v2

as t 0

- V(ii-t2)

(2-2Vr1Tt2+2t2)1/2

-t

(2 -2V77t2+2t2)1/2

lim 2
(t) =lira

t-0- 0 t÷ 0

t2
- 0

=
t
t

the minus sign with the second component of v2(0) can be

ignored without any damage. Therefore, as t -->. 0, the

normalized modal matrix becomes

1 0

T = =
0 1

Conclusion: If one calculates the eigenvectors of

xW (0,t) and lets t 0 to find the initial vectors
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17-1
(0) and Ir

2
(0), one gets the same result as obtained by

solving (3.59).

3.5. Example 3

The following scalar output control problem shows how

Equations (3.54) and (3.57) work in a simple case.

Consider

0
u

A = ax + bu

y = cx, (Icl <1)

a

Figure_ 2.

c

a(t-a)
Wx(0,t) bb ea(t-a)da

b
2
e
2at

t -2aa
d= fe

o

2a=
2
(e
2at

-1)

0Y

(3.60a)

(3.60b)

(3.61)

For this (1x1) matrix, the eigenvalue of Wx is equal to Wx

and v(t) = 1 for all t.

Applying Equation (3.57), one has

= 2aA1 + b2 , 2\00) = 0

or

b2
Yt) a(a

2at
-1)

Note (3.62) checks with (3.61).

(3.62)
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Applying Equation (3.54), one gets

;7(t) = 0, trivially (3.63)

Therefore

v(t) = 1, for all t

In this case, the optimal c* is independent of control

interval.

3.6. Conclusion

As a final point it should be mentioned that the idea

for the work reported in this chapter came from Kalman, Ho

and Narendra (8) where they introduced various measures of

the quality of controllability. In connection with output-

controllability, Kreindler and Sarachik (11) have mentioned

the possibility of using det.Wy
(t
o
,t

I
) as a figure of

merit. More recently, the question of quality has received

some attention from Brown (28), Monzingo (29), Simon and

Mitter (30) and others. However, the associated problem

of optimization has been largely ignored. The only sig-

nificant contribution in this area appears to be that of

Johnson (31) who has solved this problem for a constant,

single input-single output system using the determinant of

the controllability (observability) matrix as a figure of

merit.

It is also appropriate to point out that the problems

treated in this chapter and also by Johnson (31) are quite
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different from the standard minimal energy problems consid-

ered in Kalman (6), Bertram and Sarachik (18), Friedland

(32), Ho (33) and Lee (34).
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IV. SENSITIVITY ANALYSIS AND MEAN-SQUARED ERROR

DUE TO PARAMETER UNCERTAINTY

In the first section of this chapter, a sensitivity

analysis of the optimized system is made. The analysis

follows the classical pattern (35) in that change in the

value of det.W
17

= S2 is computed for small changes in

the elements of the C matrix. This kind of sensitivity

has been called absolute sensitivity by Rohrer and Sobral

(36) in contrast to the notion of relative sensitivity

which they introduced. Classical sensitivity was utilized

by Dorato (37) in discussing the sensitivity problem of

optimal control systems due to small variations in plant

parameters. Among others, Pagurek (38) has made signifi-

cant contribution in this area.

The remainder of the chapter is devoted to error

analysis due to the uncertain nature of plant parameters.

The uncertain parameters are assumed to be random

variables with known distributions. In practice, such

randomness of coefficients is caused either by slow aging

of components, manufacturing tolerances or simply from lack

of knowledge of more precise values of the parameters in

question. This viewpoint appears to be a realistic one and

has been adopted by several authors in recent years (39,

40, 41).



50

4.1. Sensitivity Analysis

Suppose for known coefficient matrices A(t), B(t) and

given t
o

and t
l'

the system has been optimized. In other

words, the optimal observation matrix C* (subject to the

constraints mentioned before) has been found such that

det.Wy (t
o
,t

1
) is a maximum.

Call

max det.Wy (t
o
,t

1
) = 0*

ce g
(4.1)

The question is, what happens if C Ct?

Case 1. Scalar output q=1. For notational consist-

ence, C =.&, a (lxn) row vector. Let the eigenvalties of

Wx(to,t1) be ordered and assume rank Wx(to,t1):1. Then

d1 >d2 >d3 > do >0

d
1
> 0

As shown in Chapter III,

c* = t
1

where t1 is the normalized eigenvector of Wx (t
o
,t

1
)

corresponding to di)>0. And

Now

0* = d
1

Wy (t
o
,t ) =

= a scalar

(4.2a)

(4.2h)

(4.3)

(4.4)



Because of (3.22)

W
Y

= c'T D T'c

and, one gets

= det.W

= d
1 '

<c t
1

2+ d
2 '

<c t
2
>
2
+ +d

n n
<c,t >2
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(4.5)

(4.6)

On replacing c by c+Sic in (4.6), one has for the change

60 = 2d1<c,I1> <1,c,11> + 2d <c,t >.<.6c,t > (4.7)

+ second-order terms

Imposing the conditions

<c,ti> = 61i (Kronecker delta) (4.8a)

II P 0

the following first-order approximation is obtained

SO = 2di<Ac,I4>

(4.8b)

(4.9)

For the single-output case,(4.9) gives the change in the

value of 0* for a small change Sc in c*. It is interesting

to observe that 60 in (4.9) could be positive or negative

since one does not require

(4.10)



Case 2. Vector output q > 1. Using (3.23) and

(3.24), one obtains by direct computation

Sl = det.Wy(to,ti) =

11

E <c >2d.1' y
j=1

52

< cl' t
j
>< c2' t

j
> d

j
Z <c t.>< c dj

j =1 j=1

n n
2

n

E <c t>< c t,> d, E <c t>-d Z <c t >< cq, t >d1' j 2'j j 2'J j 2'-I-q' j ji=1 i=1 i=1.

n

E c1, t>< cq, t j> d
j =1

2
< c t >< c t >d <c , t.> d.q 'j j J

j=1 j=1

(4.11)

Letting c1 c1+6c1 ( 0), one gets the new

expression

+ 6Q
1-

2[<ci,t +2 <.:ci,t3><Sci,_t_ >]dj
j=1

c t >< c t <oc t >< c ,t >]d.17i q j j
j=1

E [<c ,t ><c ,t >+<bc ,t >< c ,t >]d < c ,t >2d1,j 1,j q j j (1 j
j=1 j=1

(4.12)



Recalling,the condition (3.41)

<c. ,t.3 > = 6.. (Kronecker delta), i=1,2,....,q

j=1,2,....,n

(4.12) simplifies to

r * 2
+2<b_ci ,ti> . .<Aci <

0*-+.60 =

<5c ,t ><c*,
-- 1 -q -q

t
-q q

<c*,t >2d-q q

d
1 1
+2d <6c

l'
t
1
> d

2
<6c

l'
t
2
>...d

q
< ac

d < ,t > d
2

d3<bci,I3> 0

dq<6o 1
,t-q> 0 dq-

t >

53

(4.13)

To evaluate (4.13),

multiply row 2 by <aci,t2> and subtract from row 1

multiply row 3 by <6c1,t3> and subtract from row 1.

multiply row q by <6c, ,tq > and subtract from row 1

Then

52*4-601 = [d1+2d1<oci,t1>-d2<ac , . -dq<Lc1
2

(4.14)

Once again assuming that the second-order terms can be

ignored, (4.14) reduces to



or

n*-Foni = {di+2(31<sc1 ,Li>1

q
60,1 = 27r dk < c

1'11>
k=1
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(4.15)

From (4.15) one gets the first-order change 801 in the

value of 2* when the first row of the C* matrix changes

by 6c1.

To derive a general expression for the change 60 when

all the rows of the C* matrix change independently (and, of

course, by small amounts) one proceeds as below

0 = det.Wy = f(c1,22, ,cam)

= a scalar function of q vectors

If the vectors c1'2'c ,cq change independently, then

in terms of the gradients of 0 with respect to ci,

22
,c , the change in 0

AO = <6 cA0_ > + +< Oc ,M2c > (4.16)
q -q

To get the change in n*, (4.16) has to be evaluated

at C = C. Following the steps used in obtaining (4.15),

the general expression is

q
60 = 2r

k
d
kt.
r<c5c

l'
t-1>4-<c5c 2 ,t-2> 14§...cci,Le] (4.17)

=1

Finally, (4.17) shows only first-order effects and its

goodness is determined by how effectively the second-order

terms can be thrown away.



4.2. Mean-Squared Error (Uncertain A)

In this section, the situation is considered where

the A matrix is fixed but its knowledge uncertain. It is

assumed that the matrix A is made up of random variables

with known distribution.

Consider the two single input-single output constant

systems S* and S

u

where

S*
u0>- S

Y5_.

55

*
= A x + bu

S* : (4.18)

Yi = q131

and

A = A x + bu
S : (4.19)

Y2 cx

The problem is to reach a specified point y in the

output space E
1 at t = t1 when starting from zero initial

conditions (x0=0) at t = t 't 1'
Furthermore, it is

assumed that

A = A + Oa (4.20)

where Oa is a (nxn) matrix of random variables with mean
*

0 and finite variances and A is the nominal or mean value

of A.

For S*, in order to get yi(ti) = y, one simply

chooses

u*(t) = biel-1""t1-t)c 147y-1(t0 ,t
1

)il" (4.21)
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w (t t ) ef
t

Wel.* (t1-"dt c (4.22)y o' 1
t
o

In the single-output case, Wy (t
o
,t

1
) given by (4.22) turns

out to be a positive real number. For the control function

u*(t) in (4.21), the energy required for the transfer

yi(to)=0 y1(t1) = y is minimal and given by

-1-
= 17 W

Emin
-2= v /Y

(4.23)

The energy expression (4.23) can be optimized in the spirit

of Chapter III. Thus

min (Emin) = y
2
/d1 (4.24)

En(11.2111(1)

where d
1
is the largest (positive) eigenvalue of Wx (t

o
,t,)

and

t
1 A (t -t) A'

*
(t -t)

W (t ,t ) = f e 1 b b'e 1 dtx o 1

(4.25)

In order to achieve the minimal Emin given by (4.24), one

has to choose c along the eigenvector of Wx(to,ti) corre-

sponding to the largest eigenvalue dl. Call it c*. It is

understood that c* has unit length. In what follows, it

is assumed that in (4.18), (4.19), (4.21) and (4.22)

C = C (4.26)

*
Suppose now one uses the control function u(t) in
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(4.21) to steer the output y2 of S. Then

* 1 A(t -t)
Jo

A*(t -t) * -1
Y2(ti) = SI f e 1 b ie- 1 c W ,-y (t

o
t
1
)dt

0

(4.27)

In order to simplify (4.27), the following assumptions

are made which are somewhat restrictive

1. A* and oa. commute

2 - II aall <<II A* II almost surely. II A112 = =a2.
ij

13

3. Elements of &a are independent random variables

with mean zero and finite variances.

Because of assumptions 1 and 2 and (4.20)

A(t,-t)e- = I+(t
1
-t)A+(t

1
-t)

2 2/21+ +(t
1
-t)

n n

= [I+(ti-t)A*+(ti-t)
2
A-*2 /21.+....+(ti-t)nA*3/n1.+..]

+[(t
1
-t)6a+(t

1
-t)2A*(5a+(t

1
-t)3A*2/21 6a+

In the second bracket on the right hand side, assumption 1

has been used and all higher powers of oa have been ignored

in view of assumption 2. Therefore

A(t -t) . A*(t -t)
e 1 = e 1 [I + 6a(ti-t)] (4.28)

An approximate expression similar to (4.28) has been used

by Farison (42) in a different context.

Using (4.28) in (4.27) one has



r 1 A
*
(t -t)- .* (t1-t)

y2 (ti) =SI *
i e- 1 LI+6a(t -t) b'eA-

o 1

c*W (t
o
,t

1
)Y dt

y
_1

and
t

y2 (t1)-Y. = C*(5a f
1e-A

*
(t

1
-t) (t -t)b b'e- dt

A' (t -t) *_

1
s y/di

t
o
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(4.29)

Note from (4.22) and (4.25)

Wy(to,t1) = f*I.Wto,t1)c*

Calling y the (nxn) matrix inside brackets in (4.29), one

has

,

ci
A1*(tit)t

0

ti A*(ti-t)(t
= ft 1

_t)b h

Then

(4.30)

172(t1)-i = cAa1.2*Y/di (4.31)

Square (4.31) to obtain

(Y2 (ti) -Y)2 = Yc */I Oa' (c*c *).ka X.c*i/df.

= YE' */,' (La' 6a) y c*Y/c4.; (s*c *) =

(4.32)

Take the expectation of (4.32) to get

- - - 2
E (y2 (t 1)-y)

2 , *
yc E (6 a' 16 6a)/c

*y/d
1

(4.33)

In (4.33), the matrix / can be found numerically or other-

wise. Oa and q.9 are (nxn) matrices. Writing



one gets

6 a =

=

a. . a
-1 -n

, a matrix of n cols.

a 16a a'ta . alb a
-n1 1 -1

a2.

a2 (1.2-
. an

ko a
--n -1 a-41T' (-1-2.

. a1Y, a
-n-n-

Taking expectation of (4.34) one has

'-E(aiy9 al)

E(6a'(e) 6a) =
E (te) a2)

E(al6 a
-n -n
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(4.34)

(4.35)

In (4.35), all off-diagonal terms are necessarily zero

because of assumption 3.

Using the fact that for any square matrix A

x'A x = Trace A(x x')

one obtains from (4.35)

[Trace E (alai)

E (6 a l';').5a) =

Traced E (a a')

(4.36)



Let

E(2kak) = Pk, k = 1,2, ,n

= (nxn) covariance matrix (43)

Then the diagonal matrix on the right hand side of (4.36)

can be written in terms of p p1'2'
Finally, letting

172(t1)
Ey

60

= error in the output of S at t = t1

one notes E- is a random variable of mean zero. Also, for

fixed y, the expression (4.33) gives the variance of E-
Y

or, equivalently, the mean-squared error due to A matrix

tolerance. Applying the Chebychev Inequality (44)

oa)2c*ir2/
Pr[lEl> a>01 < c'*11E(6a1 (4.37)

Under very special conditions, for example when

Ex(to,ti) has repeated eigenvalues, several c vectors may

be available which are all solutions to the optimization

problem. Then the one that minimizes (4.37) could be

picked. In general, sharp results cannot be expected

through the use of the Chebychev Inequality.

4.3. Mean-Squared Error (Uncertain b)

Finally, the case is considered where b is a random

vector with known distribution.

Again the two single input-single output constant

systems S* and S are considered. These are defined by
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= A x + b*u
S*: (4.38)

y = c'x

k A x + bu
S : (4.39)

y = c'x

In this section it is assumed that

b = (513 +b* (4.40)

where ób is a column of independent random variables with

mean zero and finite variances and b* is the nominal or

mean value of b.

As before, the problem is to reach a specified point

y in the output space E
1 at t = t

1
when starting from zero

initial conditions (x =0) at t = to< t1.

For S*, in order to get yi(ti) = y, one chooses

u*(t) = b'*Ai(t1-"c Wlft ty 0, 1/Y

with

r
t1 A(t -t) * * A1(t -t)

W (t t ) = c'j e 1 b b' e 1 dty o' 1 t
o

(4.41)

(4.42)

As discussed in the previous section, in order to optimize

S* in the sense of control energy, one chooses c along the

eigenvector of Wx(to,ti) corresponding to the largest

positive eigenvalue d
1

and

14(t0,t1) = it
r
t
1 , (t1-"dte
A(t

°
0

Therefore, for the transfer yi(to) = 0 yi(ti) = y

(4.43)



min (Emin
) = y2/d

1

En (II II "._v 1)

and, as usual (see previous section)

C = C

qed 1
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(4.44)

(4.45a)

(4.45b)

In the following discussion it will be assumed that in

(4.38), (4.39), (4.41), and (4.42) the condition (4.45)

applies.

If one uses u*(t) in (4.41) to steer the output y2 of

S, then

or

or

Note

Let

r
t
1

Y2 (ti) = S:j eA(t 1
-t) bu*(t)dt

t
o

tA(t
y2 (ti) cy

le- 1-
t ) (b*+:5b)bi*el(t1-t)c 1A1-1x 7-- dt

to

= jy+c
,r
t
1 eA(t,-t)(514b,*eL1(t-1 -t) 1cidt -/d

1
t
0

y2(y_i c,f t

le L
t

(tl-t)cidteibY/d
1

101*X(ti-t)c = a (t)

= a scalar function of time

172(t1)-17 6i

= a random variable with mean zero

(4.46)

(4.47)



Then

where

t
1 A (t -t)

E- = e 1 a (t)dt6b y-/d1
t
o

c'S'ob(Y/c11)

S' f
t

1eL(t1.-t)a (t)dt
t

= a (nxn) matrix which is linear in c

Square (4.48) to obtain

2
E-y = ób')S c(i/d

1
)2

Take the expectation of (4.50) to get

-Ee_2 = c'S'E(6136b1)S c(yd ) 2

Calling

E(6b6b1) = B, the (nxn) covariance matrix

one has.

2
EEy = (S c)1B(S c)(y/di)

2
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(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

Finally, (4.52) gives the mean-squared error due to

uncertainty in b. No critical assumptions were made in

deriving it and as such it is an exact expression.
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V. OUTPUT-CONTROLLABILITY AND FEEDBACK

For linear time-invariant systems, the relationship

between output-controllability and feedback deserves some

attention. A topic of great current interest is to control

the dynamics of a plant through state or output feedback

(21, 45, 46, 47).

It is well known that if one starts with a control-

lable and observable system and applies state feedback, the

feedback system need not be completely observable (21).

The obvious question is: "What happens to output-control-

lability under state or output feedback?" Surprisingly,

very little can be found in the literature in this context

(48). In view of the preceding statement about loss of

observability and developments in Chapter II, it appears

that output-controllability (especially in the case of

multi-output systems) need not be feedback invariant. In

what follows, an answer to this question is provided for a

particular class of systems. In this case, it is shown

that output-controllability is not affected by (state)

feedback.

5.1. Effect of State Feedback

Consider a single-input, multi-output (state) con-

trollable system

X = A x + bu
S :

y = C x
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where x is an n-vector, u is a scalar and y is a q-vector.

Theorem: S is output-controllable under state feed-

back if and only if S is output-controllable under no feed-

back.

Before proving the theorem, the following preliminary

result due to Tuel (49) is recalled.

Preliminary result: Since the pair (A, b) in (5.1a)

is controllable, there exists a nonsingular transformation

T that takes (5.1a) to the phase-variable form

x = A x + bu (5.2a)

- -
y = C x (5.2b)

with

0 1 0 0 0

0 0 1 0 0

= E = (5.3)

0 0 0 1

-ann
-a

n-1 n-2
-a

1_
1

The elements of the last row of A are obtained from the

characteristic polynomial of A in (5.1a).

Without loss of generality, it is assumed that A and

b in (5.1a) have the form in (5.3). In case of state feed-

back, i.e., with u replaced by u - k'x, where k' is an

arbitrary (lxn) row vector with real elements, (state)

controllability is preserved.

To show this, one considers the feedback state equa-

tion



k = - b k') x + bu

It is easy to check the controllability of the pair

- b k',b) by forming the matrix
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(5.4)

P = [b,(A-b k')b, , (A-b
lb

(5.5)

and finding its rank. Let

= [kn,kn_i, ,k2,k11 (5.6)

Because of the special forms of A and b given by (5.3), the

columns of the matrix P are easily obtained by direct com-

putation and are found to be linearly independent. In

other words, the matrix P is nonsingular. Thus, for arbi-

trary k', the pair (A - b k',b) is completely controllable.

Therefore,

(A,b) c. c. .t=4> (A - b k',b) c. c.

where c. c. . completely controllable.

and

The main theorem can now be proved. Define

,C A
n-1

101 = C Pk = [C b,C A b, (5.7)

n-1
R = [ C b ,C (A-b k' )b, ,C(A-bk' ) C P (5.8)

On account of the preliminary result, both P and P are

nonsingular.

Proof: P has full rank n < P has full rank n

CP=khas rankq-< > CP=Rhas rank q

where q (< n) is the number of rows of C. Because of the

assumptions on (5.1)



67

S is output-controllable under feedback

S is output-controllable under no feedback

The next example shows how output-controllability remains

invariant under feedback and what happens to the control-

lable observable subspace which plays a vital role in the

output-controllability problem as discussed in Chapter II.

5.2. Example 4

x = A x + bu
S :

y= C x

Let

1 0 3

0 1 0

A = 0 2 3 b = 1 , C =
1 0 0

0 0 3 1

S is completely controllable and observable. It is also

output-controllable. Consider state feedback with

k' = [0, 0, 3] . Now

1 0 0

A - b k' = 0 2 0

0 0 0

so that

Q =

C

C(A-b k')

C(A-b k')
2

0

1

0

1

0

1

1

0

2

0

4

0

0

0

0

0

0

0
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Note the observability matrix Q has rank 2. The feedback

system is unobservable. The unobservable vector is

z' = [0. O. a 1, a 0. The dimension of the control-

lable and observable subspace has been reduced from

three to two and cannot be reduced any more no matter what

k' is used. This is because of the structure of C.

Compute

R = [C b,C(A-b k')b,C(A-b k') 2b

Notice R has rank 2 and the feedback system is output-

controllable. This is consistent with the results in

Chapter II. Since the dimension of the controllable and

observable subspace is never less than two (feedback or

not), the system remains output-controllable under state

feedback.



VI. CONCLUSIONS AND EXTENSIONS

6.1. Summary
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In this research some aspects of the output-controlla-

bility problem have been studied. The main contribution of

the second chapter was a characterization of output-

controllability for linear time-invariant systems. In the

third chapter, a way of assigning a numerical value to the

quality of output-controllability was discussed and an

optimization carried out in detail. A sensitivity analysis

of the optimized system was made in the fourth chapter.

The problem of parameter uncertainty was considered and

expressions for mean-squared error for single input-single

output systems were derived. The effect of state feedback

on output-controllability was briefly considered in the

fifth chapter.

6.2. Future Research

(1) The most important problem related to this re-

search is an optimization based on Trace W-1 (t
o
,t

1
). The

significance of this optimization is discussed below.

Let x
o

= 0.

Consider the question of reaching points y on the

boundary E of a closed unit hypersphere U in Eq. Since y

is on the boundary

<y,y> = 1 , V y s B (6.1)
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Also, y is the unit normal to the surface of B. Now, the

average minimal control energy for reaching points on B is

co' = f y'W lyds/f ds
B

(6.2)

where ds is an element of surface area around y. Using

standard inner product notation, one has

U)' = f < w 1y,y> ds/f <y,y> ds
B Y

(6.3)

The divergence theorem can be used to replace the surface

integrals in (6.3) by volume integrals over U. Using the

fact that for any square matrix A

div.(A x) = Trace A (6.4)

the following expression is obtained for co' in (6.3). Thus

= (Trace W l )./r
U
du/(Trace Iq U)f du

= Trace W
Y
1/q (6.5)

since is is a (qxq) identity matrix. The significance of

.

Trace W
17

-1
is clear from (6.5). Other meanings can be

found in Kalman, Ho and Narendra (8). Some results of

Aoki and Staley (50) may be useful in this study.

(2) While the main optimization problem treated in

Chapter III does not require the system to be time-

invariant, there are other results which apply only to the

stationary situation. An attempt to extend these to the

time-varying case may be worthwhile.

(3) In section 3.4, the relationship between control
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interval and optimization has been briefly investigated.

This topic deserves further study. Indeed, one should be

able to build an adaptive loop to take care of changing

situations.
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