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The purpose of this thesis was to investigate the use of weights

in least squares regression volume table construction and thereby to

determine the importance of the assumption of homogeniety of tree

volume variance. Several weighted and unweighted linear regression

equations were investigated using data from 340 Douglas-fir

Pseudotsuga menziesii (Mirb. ) Franca trees from the interior of

British Columbia, Canada. The results of the analyses showed that:

a) the variance of tree volume for large trees is up to 50 times

greater than the variance for small trees; b) the variance of tree

volume is directly related to the square of the quantity FD2H and also

the square of the quantity D2H; c) erroneous statistical conclusions

may be reached if statistical tests are carried out for unweighted

regression solutions for tree volume because of the large differences



in volume variance; d) the use of weighted least squares regression

analysis improved the volume estimate precision for all equation

forms tested.
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AN ANALYSIS OF THE WEIGHTED LEAST
SQUARES TECHNIQUE AS A METHOD FOR

THE CONSTRUCTION OF TREE VOLUME TABLES

INTRODUCTION

Assumptions of the Least Squares Technique

The least squares method of regression analysis has long been

used in tree volume table construction. In many instances, however,

the following mathematical assumptions have been considered unim-

portant:

normality: the conditional distribution of tree volume

on the independent variables must be normally distributed.

homogeniety of variance: the variance of tree volume

must be homogeneous throughout the range of the

independent variables.

randomness: sample trees must be randomly selected.

Usually none of these assumptions are satisfied in conventional

tree volume table construction. The conditional distribution of tree

volume is often skewed; the variance of tree volume is not homogen-

eous; and the sample trees are selected through a selective or syste-

matic sampling design.

If the assumptions of conditional normality and randomness in

sampling are not fulfilled, the effect is not serious in the estimation
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of the regression coefficients. The probability level of the signifi-

cance tests and the confidence lithits will be affected, however

(6, p. 2).

The assumption of homogeniety of tree volume variance is

probably the most important in tree volume table construction. If

the variance of the dependent variable is larger for some values of

the independent variable than for others, then those values with high

variance will have a disproportionate effect on the least squares esti-

mation of the regression coefficients. In addition, the confidence

limits and the tests of significance will not be accurate. Tree

volume variance is commonly much larger for bigger trees than for

smaller trees (6, p. 2, 4; 9; 10; 13).

Purpose and Scope

The purpose of this thesis is to investigate the use of weights in

least squares regression volume table construction and thereby to

determine the importance of the assumption of homogeniety of tree

volume variance. The weighted and unweighted least squares regres-

sion solutions of four common tree volume equations will be com-

pared. The importance of the variance homogeniety assumption will

be evaluated on the basis of the results obtained from these equations

using Douglas-fir Pseudotsuga menziesii (Mirb. ) Franco tree vol-

umes from the interior of the province of British Columbia, Canada.



No attempt will be made to correct for lack of conditional

normality or for non-random sampling methods. Neither will any

intensive investigation be undertaken to determine the best form of

the tree volume equation. This has been done by others (11; 17,

p. 93).

3



THE BASIC DATA

Data Collection

During the summer of 1962, the author was employed as a

forest assistant by the utilization section of the Forest Products

Laboratory of the Canada Department of Forestry at Vancouver,

British Columbia. The field work consisted of collecting data on

mature Douglas-fir Pseudotsuga. menziesii (Mirb. ) Franco from

the interior of the province of British Columbia for the purpose of

establishing a series of tree and log grading rules. Many tree vari-

ables were measured, including those necessary for the determina-

tion of total gross tree volume in cubic feet. In April 1963, the

Canada Department of Forestry made available to the author the

data for 340 of these trees. The areas of collection (Table I) were

centered near Vernon in the Okanagan Valley and Williams Lake in the

central interior of the province.

Measurements of the following variables were available on

electronic data processing punch cards: total tree height in feet,

diameter at breast height outside bark in inches, diameter inside

bark in inches at approximately 16-foot intervals throughout the

merchantable length of the tree, stump height in inches, stump

diameter in inches, merchantable length in feet, and gross



merchantable volume of the tree in cubic feet.

Table I

Source and Number of Sample Trees

Data Summarization

All of the data summarization was carried out during the

summer of 1963. Use of the I.B.M. 1620 Electronic Computer at

the University of British Columbia Computing Centre was made

whenever possible.

Because the data were not collected for the purpose of obtaining

total gross tree volumes in cubic feet, considerable summarization

5

Locality Number of Trees

Vernon Area:

Lumby 18

Monte Lake 43

Falkiand 30

Oyama 29

Silver Creek 19

Enderby 10

Pinaus Lake 28

Williams Lake Area:

Six Mile 52

Horse Fly 51

Joes Lake 60

Total 340
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was required. The values of the variables previously named were not

available on a single set of punch cards. A computer program was

written to merge the values of these variables onto one set of punch

cards. Following merging, the total gross tree volumes in cubic

feet were calculated. This necessitated the computation of stump and

top volumes and their addition to the gross merchantable volume al-

ready available on the punch cards.

Stump volumes were calculated on the basis of a cylinder having

a diameter equal to the top diameter of the stump and a height equal

to the height of the stump. Top form was assumed to be between

paraboloid and conic frustrums. Top volumes were therefore calcu-

lated on the basis of 0. 4 times the basal area times the length of the

top. A computer program was written to perform the above compu-

tations.

Diameter measurements inside bark at 16 feet and 32 feet were

available only to the nearest inch, Thus Girard form class determi-

nations were not as precise as they could have been if diameter

measurements to the nearest tenth of an inch had been available.

The statistics of the summarized data are presented in Table II.



Table II

Statistics of Basic Data
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Variable Name Mean Standard Deviation.

Total tree volume (cu. ft.) 81.7 66. 5

DBH (in.) 21.2 6.4

Total tree height (ft. ) 94. 1 24. 2

Girard Form Class (16 ft.) .72 07

Girard Form Class (32 ft.) . 62 09



TEST EQUATIONS

Equation Form

In order to compare results of the weighted and unweighted

least squares analysis, it was necessary to determine the form of the

equation which suited the data. Several authors have investigated

this problem (11; 17, p. 93).

For the purposes of this analysis, several alternative equation

forms were desired for comparison. To facilitate the selection of

these equations, the unweighted least squares multiple linear regres-

sion program available at the University of British Columbia Com-

puting Centre was used. The five basic variables (Table II) were

assessed singly and in combination with a total of ten transformations

and combinations. In addition, several generally accepted tree

volume equations (17, p. 97) were solved (Table III). The unweighted

least squares solutions of these equations were compared according

to the residual variance and the coefficients of determination. It

was concluded that equations 1, 2, 3, and 5 in Table III could all be

considered to fit the data reasonably well. It was therefore decided

to use these four equations as test equations throughout the remainder

of the investigation.

8



* In the above equations V is volume in cubic feet, D is diameter
at breast height outside bark, H is total height, and F is Girard
Form Class. Lower case letters are coefficients which vary
according to the formula and data used.

Origin of Test Equations

Australian. T. N. Stoate (19) experimenting with data from the

South Australian Department of Forestry derived the equation form

known as the Australian Equation. Ater logarithmic expressions

proved unsuccessful in the estimation of volume of Pinus radiata,, the

joint function of basal area and height was added as a third indepen-

dent variable. Stoat&s tests of this equation were confined to trees

in the seven to ten inch diameter class. Spurr (17, p. 103) later

tested this equation and found it useful for a wide range of diameters

and species.

Schumacher. Schumacher and Hall (15) were the first

American foresters to investigate the mathematical relationship

Table III

Tree Volume Equations*

Australian V = a + bD + cH + dD H

Schumacher log V = a(log D) + b(log H) + log (c)

Combined Variable v = a + bD2H

Combined Variable Form Class V = a + bF + cD H + dFD H

Short Cut Form Class Va+bFD2H





It will be seen that almost as good a fit as any other
is obtained by using the joint function only (basal area
times height), dropping both independent variables
basal area and height. This is of interest in that
except for the deduction of a small constant, this is
the time-honoured method of the forester, the reduc-
tion of the product of basal area and height by a form
factor.

Short Cut Form Class. Spurr (17, p. 96) derived this formula

as a short form of the combined variable form class solution in a

manner analagous to the derivation of the combined variable solution.

He found it to be one of the simplest and most satisfactory of total

cubic foot tree volume equations tested.

Theory of Weighted Least Squares

A minimum of the theory and calculation procedures necessary

to carry out weighted least squares regression solutions will be pre-

sented. No attempt will be made to offer detailed proof of the least

squares theorem and the application of weights to it. The reader is

referred to (1, p. 186; 7) for this information.

As stated in the introduction, homogeniety of variance of the

dependent variable is a basic assumption in least squares estimation.

Because the least squares technique minimizes the sum of squares

of deviations from the regression line, those classes of the dependent

variable which have excessively high variance (and thus excessively

high deviations from the regression line) will have a disproportionate

11



effect on the estimation of the regression coefficients. One way to

remedy the situation is to weight the dependent variable in such a

manner that the variance is made homogeneous throughout the range

of the independent variable. The simplest way of accomplishing this

is to multiply each variable in the equation by the inverse of the vari-

ance of the dependent variable (21, p. 19.)

Consider the observation equation of the form:

= + P1x

where: y. is an independent random variable

x. is a fixed variate
1

o'
1

are regression coefficients.

Weighting. .thisequation by the inverse of the variance of the

dependent variable o2y. results in the equation:

y P x.i 0 iiT- 2 + 2
o-y1

The normal equations for a series of such observation equations can

be written as follows:

:[_ 1= 04 2

]L
oy.1 1oy.

ly.
1 1

I 2 2 0
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[1= o4] +

[y. i1 [112 [i
; I-1_I=p ;II 13 IIx. x.I 0 Ix.I 1 ix.L' iJ Lii L'

The least squares solutions of these normal equations is equivalent

to the weighted least squares solution of the equation form:

13

Solution of the above normal equations will provide an unbiased,

efficient estimate of the regression coefficients (21, p. 19).

Now if it is possible to relate the variance of the dependent vari-

able to the independent variable in some manner, solutions of the

equations can be further simplified. For example, if o2y1 can be

shown to be proportional to x12 , then the variables can be weighted

by the inverse of x12 rather than the inverse of o2y Thus:

y. P x.1_ 0 ii
2 2

a-yi cTY cJ-Y

can be written as:

yi P0 P1x

2 2 2
x. x. x.

1 1 1

which reduces to:

y. P0
_!: = - + Pix. x.

1 1

and the normal equations are:



yi = 13o +

The general theory outlined above can be expanded and applied

to multiple regression solutions if desired.

14



DATA ANAL'ISES

Tree Volume Variance Analyses

Preliminary graphical examination of the data indicated that the

volume variance was not homogeneous throughout the range of the

independent variables. A series of computer programs was written

to sort the dependent variable volume into classes according to the

various independent variables. Average volumes and volume vari-

ances for successive classes of each independent variable were calcu-

lated. Graphical analyses were then used in an attempt to find a

relationship between volume variance and one or more of the inde-

pendent variables. The relationship of volume variance to dbh,

dbh squared, height, height squared, Girard form class, DZH,

DZH sqiared and FD2H squared was examined in this manner. it

was concluded that the variance of volume was linearly associated

with only two of the variables examined- DZH squared and FDZH

squared (Figures 1, 2). This finding substantiates the results of

(6, p. 2; 13).

In order to demonstrate the application of the weighted least

squares regression method and to assess its usefulness in tree

volume estimation, weighted and unweighted least squares solutions

were solved for the test equations described on pages 9-11.

15
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Figure 1. Graph showing the relationship between residual volume variance and (FD2H)2.
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Figure 2. Graph showing the relationship between volume variance and (D2H)2.



1 1using and as weights.
(D2H)2 (FD2H)2

Short Cut Form Class Equation

The unweighted.least squares solution for this equation was:

V = 43. 28270 + 0.2169489 FD2H l0

where V = total tree volume in cubic feet times ten

F = Girard form class at 16 feet (whole number)

D = diameter at breast height outside bark in
tenths of inches

H = total tree height in feet.

There is no commonly known way to calculate confidence inter-

vals or statistical tests of this regression solution due to the lack of

homogeniety of volume variance.

The least squares solution of the weighted variables was of

the form:

+ P1
FD2H . l0 FD2H . l0

It gave the solution:

V 26.22715 + 0. 22240
FD2H l0 - FD2H 10

which when multiplied through by FD2H . l0 gives the equation:

V = 26. 22715 + 0. 22240 D2H l0

Valid significance tests and confidence intervals can be calculated for

18
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this solution. This equation turned out to be the most efficient volume

estimator. To show how some useful statistical tests can be com-

puted for the weighted least squares solutions, calculation procedures

for several statistics will be illustrated for this equation only. Some

of the statistics illustrated are not calculated for the other test

equations.

Confidence limits for the estimated mean volume for any given

value of the independent variable can be calculated with the following

formula (12, p. 287);
I 1 (X0-X)2

C.L. MSE
+ ss

where t = percentage point of student's t distribution.

MSE= mean square residual variance from the
analysis of variance.

n = the number of observations

X0 = selected value of X for which the C. L.
is desired

= mean of all X's

SSX the corrected sum of squares of the X's.

Using values from the weighted least squares solution, the 95 percent

confidence limit for the estimated mean V/FD2H l0 for the mean

value of l/FD2H . l0 would be:

1 96 / /
1 (.00048 - 00048)2

.000943
k .000048376 .0032636



It must be realized that this limit is applicable only to the

transformed variables used in, the weighted solution. If expressed as

a percent of the estimated V/FD2H 10, however, it can then be

applied to the actual values of volume. The confidence limit

0032636 is 1. 389 percent of the estimated V/FD2H lO where

l/FD2H . lO = . 00048, and thus the confidence interval for V

is ±1. 389 percent of the estimated V where FD2H . lO 1/. 00048.

Confidence limits for various values of FD2H 10 are tabulated

in Table IV.

A confidence limit for p, the regression parameter for slope

in the weighted regression can be calculated from the formula

(12, p. 282):

C.L.

where the symbols are defined on page 19. Using values from the

weighted least squares solution, the 95 percent confidence interval

for p0 is:

,J,0009,43
26. 22715 ±1.96 .000048376 = 17. 5737 to 34. 8805

The confidence limit for p1, the intercept in the weighted least

squares solution, is identical to the percent confidence limit calcu-

lated for the estimated V/FD2H . 1O at the mean value of the

independent variable on page 19. This is 1. 389 percent. Thus for

the weighted least squares solution, the 95 percent confidence

20



interval for ii is:

.22240 ±1. 389 percent or .21931 to .22549

Tolerance limits, the range in which a single estimate of vol-

ume for any given value of the independent variable is expected to

lie, can be calculated with the formula (21, p. 99):

T.L. =tJMSE 1+ ssx

where symbols are defined on page 19. Using values from the

weighted least squares solution, the 95 percent tolerance limit for

the single estimated V/FD2H'. 10-i for the mean value of

l/FD2H. 10 would be:
I 2'

l.96J.000943j1 i (.00048 - .00048) = .06028000048376

Expressed as a percentage of the estimated V/FD2H l0 where

1/ FD2H . lO = . 00048, this is a 25. 65 percent. Tolerance limits

for various values of FD2H i05 are tabulated in Table IV.

The weighted least squares regression line, and confidence

and tolerance intervals are presented graphically in Figure 3. The

significance of the regression is tested by the analysis of variance

in the conventional manner in Table V.

Australian Equation

The unweighted least squares solution of this equation form was:

V -183. 7896 + .0013 l32D2 + 3. 037306H + 1. 30492D2H l0

i + (X0

21



Table IV

Confidence and Tolerance Limits for
Weighted Short Cut Form Class Equation

* mean value

Table V

Analysis of Variance for Weighted
Regression of Volume on FD2H

* significant at the . 01 percent level

22

2FD H 10
Estimated
Volume

95% Confidence
Limit - %

95% Tolerance
Limit -

833 21.1 2.77 23.87

1000 24.8 2.24 24.31

1250 30.4 1.76 24.79

1667 39.6 1.44 25.32

* 2080 49.0 .1.39 25.65

2500 58. 2 1. 43 25. 88

5000 114 1.78 26.50

10000 225 2.19 26.84

20000 447 2.21 26.99

Source D.F. SumSquares MeanSquare F

Regression 1 0. 03788 0. 03788 40. 17*

Residual 338 0.31879 0.00094

Total 339 0.35667
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Figure 3. Regression line, confidence intervals, and tolerance intervals
for weighted short cut form class regression solution
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There is no commonly known way to calculate confidence inter-

vals or statistical tests of this solution due to the lack of homogeniety

of variance.

The least squares solution of the weighted variables is of the

form:

V Po p1D 2H
+ 33

D2H . l0- D2H . l0 D2H . l0- D2H io-

It gives the solution:

V 29.57737 .00210D2 .40744H
D2H. l0 - D2H. lO

+
D2H io- + D2H l0

+ 1.7202

which when multiplied through by D2H l0 gives the solution:

V 29. 57737 + .002 10D2 + .4074414 + 1. 7202D2H

Valid significance tests and confidence intervals for this solution can

be calculated by simple expansion of the formulae illustrated for the

short cut formula. The analysis of variance is presented in Table

VII. The standard error of the volume estimate for the mean values

of the independent variables is presented in Table VI.

Combined Variable Equation

The unweighted least squares solution of this equation form is:

V = 63. 29641 + 1.512046 D2H l0

There is no commonly known way to calculate confidence intervals

or statistical tests of this solution due to the lack of homogeniety of

volume variance.



Table VI

Standard Error of Estimates of Single Tree
Volumes for Test Equations

Table VII

Analysis of Variance for Weighted Regression
of Volume on D2, H, and D2H

* significant at the . 01 percent level

25

Equation
Standard Error

(% of mean tree volume)

Short cut form class
unweighted 14. 1

weighted 13. 0

Australian
unweighted 20. 4

weighted 17. 2

Combined Variable

unweighted 21. 2

weighted 17. 6

Schumacher

logarithmic 20. 7

Source D.F. SumSquares MeanSquare F

Regression 3 0.04661 0.015537 18.253*

Residual 336 0.28600 0.000852

Total 339 0. 33261



The least squares solution of the weighted variables is of the

form:

v Po
D2H. l0 - D2H. io-4 +

which gives the solution:

V 31.98409 + 1.5875
D2H io- - D2H . io-4

which when multiplied through by D2H . 10 is equal to:

V = 31. 98409 + 1.5875 D2H 10

Valid significance tests and confidencelimits can be calculated

for this solution. The analysis of variance is presented in Table VIII.

The standard error of the volume estimate for the mean value of the

independent variable is presented in Table VI.

Schumacher' s Equation

One way of minimizing the problem of non-homogeniety of

variance is to use the logarithms of tree volume (6, p. 3). Schu-

macher's equation is an example of the use of logarithms in the

estimation of tree volume. The main disadvantage of this method

is that the estimation of the arithmetic mean is replaced by the

estimation of the geometric mean. Because the arithmetic mean is

always larger than the geometric mean this equation always under-

estimates volume (6, p. 3). A second disadvantage of this method

is that the standard error of estimate is based upon the variation of

26



logarithms and it must be converted to natural values. Several for-

mulae have been suggested to approximate this conversion (9; 17,

p. 273).

Although the least squares analysis and statistical tests are

valid for the logarithmic solution, the transformation of the results

to natural values is approximate. Because of the wide use of

Schumacher's equation it was used as a test equation in these

analyses.

The solution for the data is:

log V = -3. 389054 + 1.71705 log D + 1. 134824 log H

The analysis of variance in logarithmic form is presented in Table

IX. The standard error of estimate, calculated directly from the

predicted transformed values of the equation is presented in Table

VI.

27



Table VIII

Analysis of Variance for Weighted Regression
of Volume on

Source D.F. SumSquares MeanSquare F

Regression 1 0. 02884 0. 02884 32. 40*

Residual 338 0. 30377 0. 00089

Total 339 0.33261

* significant at the . 01 percent level

Table IX

Analysis of Variance for Regression of
Log Volume on Log D and Log H

Source D.F. SumSquares MeanSquare F

Regression 2 31.557619 15.7768 2209.5*

Residual 337 2.406651 .0071414

Total 339 33. 96427 0.1001896

* significant at the . 01 percent level

28



DISCUSSION

In assessing the accuracy and utility of tree volume equations

several methods are available. The aggregate deviation (2) is the

difference between the sum of the actual volumes and the sum of the

estimated volumes expressed as a percentage of the latter. It is used

extensively in checking the bias of volume tables constructed by

graphical methods and alignment charts. It is generally not used in

tables constructed by least square analysis, because the least

squares technique itself insures that the aggregate deviation approxi-

mates zero.

The average deviation is simply the arithmetic sum of the

absolute values of the differences between actual and estimated vol-

umes expressed as a percentage of the sum of the estimated volumes.

It is primarily an indication of the variability of the data used in the

volume table construction. Although the average deviation has been

used for many years as a check on volume table construction, its

statistical significance cannot be assessed. In modern volume table

construction this is an important criterion.

With the acceptance of the least squares technique, the standard

error of the estimate, also known as the standard deviation from

regression, has become the standard measure of the precision of a

29
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volume table equation (17, P. 75). This is the mean of the squares

of the deviations of the actual from the estimated volumes. It may be

calculated by squaring the deviations of each individual value from its

estimate, but in least squares solutions it is commonly computed

directly from the sums of squares and sums of products of the inde-

pendent and dependent variables.

Another measure of statistical precision sometimes used in

volume table construction is the correlation coefficient or the coeffi-

cient of determination, which is the square of the correlation coeffi-

cient. These values provide a relative measure of precision, but one

which is strongly influenced by the assumption of bivariate normality.

Bivariate normality is almost always absent in the basic data used in

the construction of volume tables. For this reason the correlation

coefficient has not been used as a test of precision in this analysis.

Standard errors of estimate in percent of mean tree volume

were compared to assess the precision of the various test equations

used in this analysis. These have been previously tabulated for all

test solutions in Table VI on page 25. In each test equation, the

standard error of estimate was considerably reduced when the

weighted solution was used.

To show the effect of weighting on the least squares analysis,

the percent deviations of the estimated volumes from the actual vol-

umes were plotted over actual volume for weighted and unweighted
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solutions of each test equation (Appendices 1, 2, 3, 4). Also the

estimated volumes for each test equation solution for various classes

of actual volumes were arranged in tabular form for comparison pur-

poses (Appendix 5).

Examination of the above graphs and tables indicates that the

use of weights resulted in an improved fit in the smaller volume

classes and a correction of the tendency in the unweighted solutions

to overfit the equation to the larger volume classes.

In every case, the weighted least squares solution lowered the

intercept and raised the slope compared to the unweighted solution.

This suggests the possibility that the true regression line might be

curved, although no curvilinearity could be detected in a graphical

examination of the data. As mentioned previously, several authors

have conducted intensive investigations into tree volume equation

form, but only for unweighted solutions. Further research should be

conducted to reconsider the best equation function in the light of a

weighted analysis.

Some interesting results were observed when, in the course of

the assessment of the precision of the test equations, analyses of

variance were compared for the weighted and unweighted solutions.

In every equation, the "F" statistics or variance ratios calculated for

the unweighted solutions were much higher than for the comparable

weighted solutions (Table X). The reason for the extremely high



'T." statistics in the unweighted solutions appears to be the lack of

variance homogeniety. As illustrated in Figures 1 and 2, the vari-

ance for large tree volumes is up to 50 times greater than the vari-

ance for small tree volumes. The analyses of variance for the un-

weighted solutions are therefore not valid. Although in these test

equations, the discrepancy in the "F" statistics was not large enough

to result in erroneous statistical conclusions, they show clearly that

it would be quite possible to obtain an indicated highly significant

"F" statistic for an unweighted least squares solution, when in fact

the true "F" statistic obtained from a weighted solution would show

the regression to be not significant.

Table X

"F" Statistics or Variance Ratios for
Weighted and IJnweighted Test Equation Solutions

"F" Statistic

,3 2

Because the weighted short cut form class solution had the low-

est standard error of estimate and fitted the data throughout the range

better than any of the other test equations, a volume table for two-

inch diameter classes and ten-foot height classes was constructed

from this equation for the average form class of the data (Appendix 6).

Equation Weighted Equation Unweighted Equation

Short cut form class 40. 17 10, 938

Australian 18. 25 1, 673

Combined variable 32. 40 4, 634



CONCLUSION

The least squares method of regression analysis is valid only

if the assumptions of conditional normality, homogeniety of variance,

and randomness in sampling are fulfilled. In tree volume table con-

struction the most important assumption is probably the homogeniety

of variance. From the results of this study it is concluded that:

The variance of tree volume for large trees is up to

50 times greater than the variance of tree volume for

small trees.

The variance of tree volume is directly related to the

square of the quantity D2H and also the square of the

quantity FD2H.

Erroneous statistical conclusions may be reached if

statistical tests are carried out for unweighted regres-

sion solutions for tree volume because of the large

differences in volume variance.

The use of weighted least squares regression analysis

improved the volume estimate precision for all equation

forms tested.
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Appendix 5

Actual Tree Volumes and Estimated Tree Volumes for Test Equations

Actual Volume Cubic Feet No. of
Trees

Estimated Volume1 Cubic Feet

FD2H Australian
SchumacherClass Interval Average Unweighted Weighted Unweighted Weighted Unweighted Weighted

10.0- 19.9 15.8 17 22.3 20.0 19.6 18.3 16.2 19.9 18.7
20.0- 29.9 25.1 40 29.4 27.4 27.3 26.2 25.2 27.1 26.4
30.0 - 39.9 34.4 41 38.4 36.9 36.1 35.2 37.2 37.0 36.7
40.0- 49.9 43.3 29 47.9 46.9 46.2 45.5 48.2 47.0 47.0
50.0- 59.9 55.2 33 58.5 58.0 56.9 56.6 60.1 58.2 58.1
60.0 - 69.9 64.4 25 65.3 65. 1 62, 8 62.6 65.9 64.4 64.2
70.0- 79.9 74.7 37 75.4 75.7 75.8 75.9 76.5 75.0 74.3
80.0- 89.9 86.1 15 85.8 86.7 87.9 88.3 88.4 86.8 85.9
90.0- 99.9 94.5 13 87.8 88.7 90.6 91.1 91.3 89.3 88.3

100 - 109 105.0 16 101.8 103.5 103.5 104.3 103.8 102.5 100.4
110 - 119 117.5 4 111.4 113.5 115.9 117.0 117.4 115.4 114.6
120 - 129 125.1 14 112.8 115.0 117.1 118.2 117.6 116.3 114.8
130 - *39 134.9 10 126.2 129. 1 128.7 130. 1 129.6 129.5 126.4
140 - 149 143.1 6 123.2 125.9 130.9 132.4 129.1 127.8 126.0
150 - 159 153.3 5 158.1 162.5 154.1 156.2 157.8 160.3 152.1
160 - 169 165.2 6 164.3 169.0 165.9 168.2 163.1 165.2 155.4
170 -209 188.2 11 180.5 186.1 184.7 187.6 181.5 185.4 175.9'
210 -249 232.7 6 224.2 232.0 225.0 228.8 222.0 230.7 214.1
250 -289 274.6 5 271.1 281.2 267.4 272.3 268.5 282.6 260.7
290 -329 293.6 4 288.6 299.5 305.1 311.0 285.7 302.2 279.4
330 - + 414.2 3 396.8 413.1 411.6 420.1 385.9 414.8 369.6



*Table shows volume in cubic feet of entire stem inside bark, including stump and top,
without allowance for breakage, defect or trim for Girard form class . 72 . Heavy lines
indicate extent of basic data. Equation used: V = 2. 622715 + 0. 22240 FD2H . i06

Appendix 6.

Volume Table for Douglas Fir*

Total Height in Feet No. of
70 80 90 100 110 120 130 140 150 160 170 180 190 Trees

17 19 20 314 15

19 21 23 26 28 30 33 18
25 28 31 34 37 40 43 47 31
31 35 40 44 48 52 56 60 42
39 44 49 54 60 65 69( 75 80 41
47 54 60 67 73 79 86 92
57 65 72 80 88 96 103 111 119 127 48
67 76 86 95 104 113 127 132 141 150 32
78 89 100 111 122 132 1143 154 165 176 186 20
90 103 116 128 141 153 166 178 191 203 216 18

103 118 132 147 161 L175 190 204 219 233 248 262 10
117 134 150 167 183 1991 216 232 249 265 281 297 8
132 151 169 188 206

J

225 243 262 [280 299 317 336 354 8

148 169 189 j 210 331 252 272 293 314 335 355 376 397 6

164 188 211 234 257 280 303 326 349 373 396 419 442 3

207 233 259 284 310 336 361 387 412 438 464 489 2

229 257 285 313 342 370 398 426 454 483 511 539 2

251 282 313 344 375 406 437 468 499 530 560 592 0
308 341 375 409 443 511 545 579 612 646 1

dbh 10 20 30 40 50

2 2.7 2.7 2.8 2.9
4 2.9 3.1 3.4 3.6
6 3.2 3.8 4.3 4.9 5.5
8 3.6 4.7 5.7 6.7 7.7

10 4.2 5.8 7.4 9.0 11

12 4.9 7.2 9.5 12 14
14 8.9 12 15 18

16 11 15 19 23
18 13 18 23 29
20 22 28 35
22 26 34 41
24 30 40 49
26 46 57
28 53 65
30 60 J75
32 85
34
36
38
40
42
44
46

60

8.8
12

16

21

27

1
41

49
58

68
78

89
101

114
127

1




