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CONSTRUCTION AND NUMERICAL SIMULATION OF

A TWO-DIMENSIONAL ANALOGUE TO THE KDV

EQUATION

1. INTRODUCTION

1.1. Background on Solitary waves

In 1895, Korteweg and de Vries [22] presented a mathematical model to study

the "solitary wave" described by Scott Russell in 1844 [2],[1O],[22]. The "solitary

wave" was a disturbance consisting of a single elevated wave that had been observed

to travel an extensive distance without noticeable change of shape or speed. In fact,

the profile of such a wave was distinct from the more familiar oscillatory waves in that

it tended to be tall and thin with long, shallow troughs. Through experimentation,

Russell demonstrated existence of such waves in shallow water. Furthermore, given

an equilibrium depth 1 and wave amplitude c, he established an estimate of its

velocity as /g(1 + ce). Airy also published work in 1845 which gave a different

estimate of the speed \/7(1 + and concluded that such waves could not exist

in a permanent form. To resolve the dispute, mathematical theory needed to be

constructed. Boussinesq in 1871 obtained an equation for long waves with solitary

waves solutions. The partial differential equation developed in [22] was nonlinear and

was found to have a solitary traveling wave solution which agreed with observation.
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The partial differential equation (PDE) was derived in a formal manner as a shallow

water wave with a factor to account for surface tension and has the general form

(+ =0.

Although equation (1.1) (known as the Korteweg - de Vries or KdV equa-

tion) was originally developed in addressing a problem in Hydrodynamics, (may be

taken to represent observable properties other than surface height. It may be also

be interpreted as a small variation in velocity or pressure, leading to applications

in plasma physics, anharmonic lattices and other problems in fluid dynamics and

quantum mechanics. It has solutions strongly tied to another equation derived in

1838 by Airy while doing research in optics, and has been derived independently

in the field of optics. The interaction between waves evolving in time according to

(1.1) has been found to be of great interest. However the model is restricted to one

spatial dimension so the usefulness of the equation is limited. It cannot describe

transverse interactions (as seen in interference patterns), nor can it describe waves

with variable cross-sections.

In this thesis, we will develop a generalization of (1.1) having independent

spatial dimensions x and y and including the effects of surface tension. Both non-

linear and dispersive terms are found in (1.1) and we will see such terms in our

higher-dimensional results. Separately these properties create challenges for inter-

pretation of solutions and for numerical modeling. The interaction between these

properties produces some interesting and unexpected behavior. This introduction

is used to present definitions and discuss general properties of wave-like systems.

We first review the derivation of equations from classical mechanics that govern the
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behavior of water waves. The phenomenon of dispersion will be discussed with some

examples of one-dimensional, linear, dispersive PDE's, along with a look at the be-

havior encountered in non-linear PDE's. Non-linear dispersion theory only partially

follows from the linear case, so requires the development of further techniques. The

introduction ends with a discussion of some basics of the numerical methods needed

to model our equation.

In the second section, we focus on literature in which the KdV has been stud-

ied and other relevant background material. The original development of the KdV

equation and its solution is summarized. The linearized form is related to a function

known as Airy's integral. The Airy integral is, in fact, important in understand-

ing the behavior of the non-linear KdV solution. We continue by presenting more

recent work in which numerical experiments were used to study the development

of initial conditions evolving according to (1.1). These experiments prompted new

research into methods of solving the KdV, and closed-form multiple-wave solutions

were found. One well-known modification of (1.1) allows for "weak" distortion in

the y-direction in an effort to study this type of wave over two spatial variables. The

physical reasoning leading to the resulting equation is also discussed in the second

section. On the other hand, the derivation in this thesis will begin from the same

basic concepts from which the KdV was developed.

Section 3 consists of the development of the desired partial differential equa-

tion in a manner parallel to the original construction of the KdV. In the theory of

shallow water waves, many of the well-known results are one-dimensional. That is,

the wave propagates in one horizontal direction while the cross section is constant
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with respect to a second horizontal dimension. However, we have been able to omit

this restriction and develop a partial differential equation for a wave surface depen-

dent on two horizontal coordinates. With exception for the increase in number of

spatial dimensions, the assumptions imposed on the KdV are retained. We follow

the original method of development of (1.1), making an approximation by means of

asymptotic expansions. The resulting equation has a linear dispersive component

as well as nonlinear terms.

As there are few methods available for studying such an equation, our anal-

ysis proceeds by viewing different parts of the problem independently. The next

sections are then devoted to gaining information about the non-linear and linear

parts separately and then visualizing the behavior of various initial conditions. To

address the linear part, the Fourier transform will be applied. The resulting inte-

gral solution will be estimated through series expansion techniques described in the

literature review. In the numerical modeling of equation (1.1), we must deal with

the nonlinearity as well as the third-order term. A method that had been designed

for the equation (1.1) will be modified to accomodate the extra spatial variable.

1.2. Classical Mechanics Framework

The equations governing surface waves in shallow water are developed for

example in the classic texts of Batchelor [4], Witham [34J and Lamb [23] for example.

Using vector notation, we begin with three rectilinear coordinates x =< xi, x2, x3 >

where the horizontal coordinates are x1, x2, where (x1, x2) E R2 lie in some domain



x3

I + (x1,x2,t)

The velocity field will be

u = < u(x,t),v(x,t),w(x,t) >T,

x2

FIGURE 1.1: A wave surface.

determined by the problem. In some applications it may extend to infinity, whereas

in other scenarios it may be bounded in one or both horizontal coordinates. Under

certain circumstances the domain may be taken to be one dimensional. The vertical

coordinate is x3, and it points upward. Where it is helpful to make the notation

more compact, we may interchange x1 = x, x2 = y, X3 = z and x =< x, y, z>.

A wave surface is thus a constraint on the vertical coordinate z, with the

system generally described as follows:

5

1 is the equilibrium position of the surface above the reference plane

1 + ((x, y, t) is the free surface

b(x, y), the fixed bottom relative to the reference plane

z =

z =

z =
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where these components may also be designated by U =< Ui, u2, n3 > as with the

spatial variables.

The gradient, divergence, Laplacian and curl of vector quantities will be given

in the following notation (where the summation convention is applied):

Du Dv Dw
>

Dx Dy Dz
DuVu=

V2u

Dxi

D2Ui

Dx

Dw Dv Du Dw Dv Du

1.2.1. Physical laws throughout the body of fluid

Let a fixed set of particles constitute a material volume element V(t), with

boundary DV(t) and exterior unit normal n =< n1, n2, n3>. The fluid is considered

to be homogeneous, with parameters specific to the fluid in question:

= viscosity coefficient

p = density

= coefficient of surface tension.

In general, transport of some quantifiable property is described by an inte-

gral expression in the following manner. Suppose e(x(t), t) is an arbitrary local

observable or property per unit mass. Then

fv(t) pedV

is the total amount of e associated with the material volume V. Changes over time

in this amount are then expressed by taking the derivative with respect to time. We



have, by Reynolds' transport theorem

pOdV =
dt V(t)

7

where V is a control volume coinciding with V(t) (see, for example, [24]). The flux

of the quantity outward along the boundary due to fluid motion is the rightmost

term and applying the divergence theorem,

pe(u. n)dA
=

f V. (peu) dv. (1.3)

Within V there may be sources or sinks contributing to the net changes. These are

represented by

fQdV. (1.4)

A conservation law is a statement that (1.2) and (1.4) balance. In general form it

is given as

Iv
(pe)dv+fV.(Peu)dV=fQdV. (1.5)

The first case we consider results from setting e = 1 and Q = 0 in (1.5). The result

is the usual expression of conservation of mass when no sources or sinks are present

Iv Pt +V.(pu)dV0. (1.6)

That is, within each control volume V, the rate of change of the mass in the volume

equals the net rate of mass flux across the boundary. Noting (1.6) holds for arbitrary

volumes,

Pt+V.Pu = 0.

When the fluid is incompressible (p = const.) this reduces to

Vu=0. (1.7)

Iv
(e) dV + pe(u. n)dA, (1.2)
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To set up our second application of (1.5), let the vector quantity F denote the

forces acting "at a distance" on particles of V. Then the total of body forces acting

on V is represented by

J pFdV.

Water is usually considered to be a "Newtonian fluid", that is "linearly viscous",

and isotropic (description of mechanical properties is independent of direction). The

development of the equations of motion proceeds under these assumptions [24]. On

DV, normal and shearing stresses take effect. These include pressure and the effects

of viscosity. The first coefficient of viscosity is our parameter i and the coefficient

of bulk viscosity is the quantity X + i. Suppose the internal pressure acting on DV

is generated by the scalar function

P(x, t) = scalar pressure.

The stress tensor describing the surface forces on a surface element has components

u u
au Pö + + + (V . u)u,

öj indicating the Kronecker delta. We will be employing the assumption that the

fluid is incompressible, so may apply the continuity equation (1.7) to get

Du Duj= P6 + +
Dxj

The sum of the surface forces on the boundary is

crjjndA

(1.8)

where the summation convention on multiple indices is assumed to hold. By ap-

plying the divergence theorem, this may be converted to a volume integral with
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integrand otherwise seen as

VP + (V. V)u + V(V. u)]

which may again be simplified by eliminating the divergence of u.

We are now in a position to describe the principle of conservation of momen-

tum. Momentum is the product of mass and velocity pu, so a momentum flux is

expressed by assigning e u in (1.3). Momentum transport is governed by New-

ton's second law, which states that the rate of change of momentum equals the

sum of forces acting on the volume, so we take Q = pF + (). Then the general

conservation law (1.5) becomes

Iv
(pu)t dV+f upu.ndA=fpF_vP+ V2udV,

or written in vector notation as

pUt + p(u V)u = pF - VP + iV2u. (1.9)

These are also well-known as the Navier-Stokes equations for an incompressible

Newtonian fluid.

In order to work with these equations, it is often assumed the fluid is irrota-

tional

Vxu=O (1.10)

as well as incompressible. Then there is a potential 1 with the property

V=u (1.11)



and Laplace's equation follows from (1.7), that is,

F=

It may be further assumed the fluid is inviscid (bL 0) and the only body force

acting on the fluid is gravity,

0

0

g

(where g is the gravitational constant). In this case, equation (1.9) is integrated

from, say x within the fluid to x0 on the boundary, to find the Bernoulli equation,

10

+ = gz - (P0 - P) + C(t),

where C(t) may be adjusted at will by reassigning

= _fc(t)dt

1.2.2. Boundary condition at the bottom

When it is supposed that the bottom is fixed at z = b(x, y), the unit normal

to the bottom pointing outward from the fluid will be

<br, b, 1 >

(1.13)

so if the bed is impermeable,

11b (Vt) = 0 on z = b(x, y).

When the bottom is flat, i.e. b(x, y) is a constant, the result is

= 0 on z=b. (1.14)

v2=0. (1.12)

nb =
+ b + 1



1.2.3. Boundary condition at the free surface

When a volume element is entirely within the fluid , the pressure P on the

boundary is taken to be constant (and P0 - P = 0), but there will be a change in

pressure across the air-water interface, denoted by

[F] = urn P(x,t) - urn P(x,t).
x*atmosphere x-. surface

When the surface is at rest, this change can be measured giving the surface tension

coefficient, 'r. Then, as the surface is moved from equilibrium, the surface tension

acts as a restoring force, dependent upon the mean curvature at each point. [F]

is then proportional to the mean curvature of the surface (see Batchelor [4] for

instance). To obtain an expression for the surface tension, we view the wave surface

at any fixed time as a manifold in R3, expressed by

z - (l+(x,y,t)) = 0 (1.15)

where t is treated as a parameter. This manifold has unit normal

n$

The mean curvature of (1.15) is computed as

3n1 an2
H(x,y) ( + )5x ay

((1 + () - (1 + ) +
1)3/2

A discussion of the differential geometry involved may be found in Boothby [6] or

Gray [13].

11

(1.16)



Replacing [P] by TH(X, y) in the momentum equation (1.13) we obtain

t + + g =

This restriction of the Bernoulli equation (1.13) to the surface is called the dynamic

free surface condition.

A second equation applies to the free surface. Consider that the free surface

(1.15) has normal velocity

T (i + + yy(1 + ) -
p (/-2 + /-2 + 1)3/2Sx

and on the interior, the normal velocity of the fluid near the surface is

II U
u(2, + v(y - w

These must be equal since the fluid does not cross the interface. Therefore,

t + ucx + vy = w. (1.18)

This constraint on the interface is called the kinematic free surface boundary con-

dition.

1.3. Some Characterizing Properties of Partial Differential
Equations

12

(1.17)

The study of equations expressing mass or momentum transport is commonly

approached by making approximations of various types. In particular the velocities,
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the free surface or the forces acting on a volume may be considered as perturbations

of a constant value. The approximation used provides insight to different properties,

such as dispersion or nonlinearity.

1.3.1. Dispersion

Dispersion is the phenomenon of individual waves in a train moving apart. In

the linear theory of arbitrary dimensions, dispersive PDE's are those which admit

elementary solutions of the form

y, t) A exp(ik. x - iw(k)t). (1.19)

Here, i = s/i, and k =< k1,. . . , k? >. k and w are related by a dispersion

relation w = w(k), obtained by substituting (1.19) into the PDE and simplifying.

In Whitham [34], a dispersive linear PDE is defined by the existence of solutions of

the form (1.19), a real dispersion relation, and

det 0.

Examples of dispersive, linear equations describing the propagation of long waves

in one dimension include:

the linear KdV + co + 5( =0 (1.20)

the linear Boussinesq Ctt - =0 (1.21)

There is much information on the behavior of the solution contained in the disper-

sion relation. The modes (k, w(k)) allow us to identify phase 6 k . x - wt,

wave number V8 = k, phase velocity c = angular frequency = w, wave

length.\ = and frequency T = . In particular, different wave numbers are iden-

tified with different speeds, and the waves of different numbers separate or disperse.
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Since these waves are linear, solutions may be superimposed so it is clear that

cosines and sines are included, as well as Fourier integrals such as

I: F(k) exp(ik . x - it)

From this expression, we see that the requirement of a real dispersion relation pre-

vents each fundamental solution from either growing or decaying since the exponent

is purely imaginary. However, the solutions described are generally a train of oscil-

latory waves. As an example, consider the linearization of the equations governing

water waves (1.12),(1.17) and (1.18) when surface tension is absent. This example

is given because it is commonly used as a reference for modeling wave behavior (see

[34]). It is the dispersion relation for the surface ((x, y, t) that is sought, and the

potential equation is considered to be dispersive in the horizontal coordinates, but

not the vertical. If we denote the horizontal coordinates as x = (x, y) and treat z

separately, we have

= Z(z)exp(ikxiwt).

Throughout the body, 0 < z < 1 + (, the potential satisfies

v2=0 (1.22)

and if we assign k = Jk + k or equivalently Laplace's equation (1.22) be-

comes the ODE

= k2Z. (1.23)

Assuming a horizontal bed, say at z = 0, the lower boundary condition (1.14) will

translate into

Z'(0) = 0. (1.24)



Now the solution to this BVP (1.23), (1.24) is

Z(z) = Acosh(kz)

for some constant A.

The surface is linearized to z = 1, and equations (1.17), (1.18) are, to first order,

= 0

= 0

which combine to give

tt+gz = 0,

from which the resulting equation for w is

w2 cosh(kl) + gk sinh ki = 0.

We now identify a real dispersion relation for the surface approximated by z = 1 as

= gktanh (kl).

is now known (up to the amplitude, A) and (is found through

( =

Solutions and dispersion relations of nonlinear systems are expected to be nat

ural extensions of the linear case, where amplitude may be included in the dispersion

relation.

15



1.3.2. Nonlinearities

Two of the effects attributed to nonlinearities are the development of shocks

and the existence of solitary wave solutions. The solitary wave is distinct from a

train of oscillatory waves (such as in the sine or cosine solutions) in that it consists

of a single elevation. Nonlinear dispersive systems may demonstrate both periodic

wave trains and solitary waves, but latter has no counterpart in linear theory [34].

A standard example used to study the difficulties encountered in non-linear PDEs

(without dispersion) is Burgers' equation

( + cx = 0. (1.25)

This is the same nonlinearity encountered in (1.1). One uses the method of charac-

teristics to solve the equation, and finds that paths on which ç remains constant will

intersect if the initial data is decreasing. When this happens, the solution becomes

multi-valued even if the initial profile was smooth. This phenomenon is called a

shock. Special techniques are required to solve or model a shock.

However, with inclusion of a viscosity term

16

(1.26)

the shocks in (1.25) do not occur. In fact, smooth solutions exist and can be

computed by transforming (1.26) into the heat equation. This is done by means of

the Hopf-Cole transformation [9], [17], as follows: Begin by introducing the change

of variable



(1.26) is transformed into

Ixt + - = 0 or

x(t+X)2_Xx) = 0.

Integration and then further substitution of

=-2log (1.27)

produces the linear heat equation

17

Solutions of the heat equation are well known, and may be found in texts on partial

differential equations such as [14]. It is instructional to note that separation of

variables produces the two ordinary differential equations

T'(t) icT(t)

X"(x) = icX(x).

The first provides growth or decay in time, and the second is a Sturm-Liouville

eigenvalue problem. The form of the solution obtained clearly relies on the initial

and boundary conditions of the problem.

In its general form, the KdV equation

(1.28)

embodies both nonlinearity and dispersion. Physically, surface tension provides a

stabilizing influence for short waves. As with the viscous Burger's equation, (1.26),
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smooth solutions to (1.28) also exist. If we consider a wave traveling along a char-

acteristic line, ((x, t) = ((x - ct) then the t-derivative in (1.28) is eliminated and

the solution

= Asech2(B(x - Ct)) (1.29)

is found, provided

B2
c1A

and
A

- 12
(1.30)

This is the solitary wave solution originally found in [22]. Because of the relation-

ship between the parameters, taller waves travel faster and are steeper.

A procedure similar to the Hopf-Cole transformation above (1.27) allowed

discovery of multiple-wave solutions of the KdV when in the form

(1.31)

The procedure is known as the Inverse Scattering Transform, and will be discussed

in the next section.

1.4. Numerical Challenges

When modeling linear dispersive equations, the dispersion relation is used to

study stability and determine if there are restrictions on the time step relative to

the spatial step. The dispersion relation allows us to isolate a mode (or wave),

and to compute wave speed, amplitude and phase for that mode. Thus, for a lin-

ear problem, we have at hand a known solution and computational errors can be
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quantified. Fourier stability analysis identifies whether growth or decay is occur-

ring in the numerical method when they do not occur in the true solution. Fourier

analysis is also applicable to multiple spatial dimensions as long as the system is

linear. In order to evaluate a method for a non-linear PDE by Fourier analysis,

we must linearize and approximate. In practice, it is often found that the nonlin-

ear term is not offset by the third derivative in the numerical method (as opposed

to the true solution), limiting the usefulness of such methods over long time periods.

Implicit methods generally provide more stability than explicit methods. How-

ever, in two spatial dimensions the matrices required quickly raise issues of storage

and computation time. We also risk smoothing out a solution by using a coarser grid.

There are some methods for specific PDE's in which the difference operators can be

split (somewhat like factoring) into two steps, each evolving one spatial dimension

for instance. One such example was reviewed by this author in [5 regarding the

use of a Hamiltonian structure to discretize the Non-linear Schrodinger equation. It

was found that the wave speed varied from known results, producing an unexpected

error unless severe restrictions were placed on the grid. That is, errors introduced

by instability and meeting storage and efficiency requirements are only some of the

issues that arise in modeling a PDE. Thorough analysis of a numerical method will

ideally address its effect on velocity and phase changes as well, comparing results

to known solutions.



2. LITERATURE

Although the KdV (1.1) was originally constructed in 1895, little progress

into finding solutions other than those given by Korteweg and de Vries was made

until 1965. In that year, numerical experiments run by Zabusky and Kruskal were

published [35]. They observed and reported some interesting interactions between

waves evolving under a variant of (1.1). After their paper, further research was

inspired and resulted in the discovery of new solutions. In this section we present

the historical development of the PDE and material needed to analyze its behavior,

along with a brief look at some of the methods of solution.

Later in this thesis, we will be developing a PDE by generalizing the method

of Korteweg and de Vries to two, rather than one, spatial dimensions. Therefore,

the details of the original paper [22] are not reproduced here as they are a special

case of our later work. Instead at this point, we give a conceptual outline of the

expansion method by which (1.1) was developed.

2.1. Asymptotic Expansions

In the introduction, equations for conservation of mass and momentum were

derived in terms of a potential VI? = u. The system was assumed to have no sources

or sinks and gravity was the only force F acting on the body. The pressure remained

constant except when crossing the fluid interface where surface tension is accounted

20
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for by the curvature function H(x, y; t). Coefficients of surface tension and density

(respectively 'r, p) have been taken to be constant and the fluid is assumed to be

inviscid (p, = 0). Under these assumptions, the equations for an incompressible and

irrotatinal fluid (1.7) and (1.9) are now restated in terms of the velocity components.

Vxu=O (2.1)

Vu=0 (2.2)

ut+(uV)u = FV(). (2.3)

On an impermeable flat bottom at z = 0 the vertical velocity component vanishes,

w(x,y,0,t) = 0. (2.4)

On the wave surface z = l+((x, y, t), we obtained the kinematic (1.18) and dynamic

(1.17) conditions

= w (2.5)

Ut + (uu + vv + ww) + g = 1Hz (2.6)

vt+(uuy+vvy+wwy)+gy = (2.7)

Progress toward understanding this system of differential equations is made

by making approximations to the velocities, u, v, w (or to the potential in some

references) and to the surface (. Power series of successive orders in z7 when z is

small are used for the approximations, terminating at the order of interest. The

power series is one type of asymptotic expansion of a function. Although the power

series is convergent for small enough z, there also exist asymptotic series which do

not converge but are still useful in giving good approximations of functions after

only a few terms. Thus, asymptotic sequences provide a tool for analysis. The
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following definition of an asymptotic expansion of a function f(z) is attributed to

Poincare and found in [7], stated in terms of complex variables for generality. Here

we restate the definition in terms of real variables.

Definition 1 Suppose we are given a domain l C with limit point i-'0. Let

there be a sequence {(v)} for which (u) 0 on a punctured neighborhood of

v0 and '/n+1 = o(75n) as ii v0. Then given coefficients a independent of v,

a,ç5(v) is an asymptotic expansion of a function f(v) if for all n,
m

f(Ii)-_ a(ii) =
n=O

The coefficients are determined by

f(z) - n=O a(v)
am = urnzi'o

The coefficients then depend on the sequences {ç(v)}, which might not be unique

for a given f.

Beyond expanding the equations (2.1)-(2.7) in terms of power series, asymp-

totic expansions are useful in interpreting formal integral solutions. One result cited

in Copson [7] regarding asymptotic behavior of the Fourier integral over a finite in-

terval is:

Theorem 1 Let h(x) be N times continuously differentiable on the interval c

x < /3. Then, as v - oc
N-i n+i dh dhI exp(ivx)h(x) dx (exp(iva) () - exp(iv/3)

dx
+ o(v_N).

dx'a n=O

The proof follows from integration by parts. Often, only the dominant term, when

n = 0, is needed to find information about the behavior of the integral.



More general integrals of the form

13

f
where f(x) is real may be treated using the method of stationary phase, also found

in [7]. In this procedure, one needs to first determine the stationary points of the

phase vf(x), i.e. where f'(x) = 0 (note that in this case, the term phase would not

be the same as when used in describing a dispersive wave). These are used to parti-

tion the interval [a, b] into closed subintervals, each closed subinterval containing no

more than one stationary point, and that stationary point occurring at an endpoint

of the subinterval. Under this construction, it is found that as v becomes large,

the dominant term of the asymptotic expansion is dependent only on the stationary

points and endpoints of the interval.

To approximate double integrals over a domain D of the form

IL
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Jones and Kline [20] provide an extension of the method of stationary phase. By

utilizing the 5-function, they begin by re-writing the integral as

fexp(ivs) h(s) ds (2.8)

where the limits of integration c and /3 are the minimum and maximum values of

f (x) over the domain, and

h(s)
=

f f (x)(s - f(x)) dx. (2.9)

Once this is done, the differentiability of h(s) must be assessed, and the integral

(2.8) is determined by critical values. The term critical value is used here to describe
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points x at which the corresponding s-value is not contained in an open interval.

Such points include local extrema, cusps and endpoints of the s-domain. After a

several transformations are applied, a series expansion of h(s) is found in the new

variables and the integral is evaluated using Erdelyi's Theorem [7], [20]:

Theorem 2 If s) is N times continuonsly differentiable for a s /3, and

0<)<1, 0<i1, then asv*oo

fexp(ivs)(s
a)(/3 - s)1(s) ds BN(v) +

where

AN(v) =

BN(v) =

N- F(n+A)
n!v' exp(i(n + ))exp(iva)dfl[(/3

n=O

F(n+) 'it dTh

fl!ViL exp(i(n - pt)) exp(iii/3)d [(s -
n=

Ni

2.2. The Equation of Korteweg and de Vries

In [22], Korteweg and de Vries investigated a model to describe a solitary

wave in a long channel. Their method proceeded in a formal manner utilizing

rapidly convergent series. The resulting equation had a solution which agreed with

observation. By considering the wave to have a constant cross section, the horizontal

coordinates reduce to x = x. It was assumed the vertical scale was small compared

with the wave length, so the horizontal velocity component u and vertical component

-



w could be expanded by power series in z (the vertical coordinate). That is,
00

u(x,z,t) =
n=0

00

w(x,z,t) = w(x, t)z.
n=0

Applying the classical assumptions of conservation of mass and momentum for an

irrotational, incompressible fluid on a flat, horizontal, impermeable bed (2.1)-(2.4),

the velocity expansions were simplified. In fact, they found they could write the coef-

ficients of each of these expansions in terms of only the first horizontal coefficient u0.

The surface elevation was taken as a perturbation from equilibrium depth,

z = l+(x,t)

and the initial term of u was taken to be a perturbation from a value scaled to be

\/gl

uo(x,t) =

The first estimations of u and w were inserted into the dynamic and kinematic

surface conditions (2.5), (2.6). Retaining only linear first order terms, they solved

for the velocity perturbation 3 in terms of the surface elevation (. The velocity

coefficient u0 was then approximated in terms of plus a smaller perturbation,

U0 =

25

When the surface equations (2.5), (2.6) were expanded to second order, with scalings

on r, t, the result is the KdV equation in its original form,

3 1jD 12 2 1(= -(< ++(x). (2.10)
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The parameter a is an arbitrary constant linked to the Bernoulli equation (1.13).

Although not mentioned in [22], a may be taken as zero by taking a suitably ad-

justed potential function, as was noted in the introduction. The other parameter

is a = - For a specified medium, surface tension 'r and density p are fixed,

and the equilibrium depth 1 determines the sign of a. In [22], the value at which ci

changes sign is approximately 1 = .47 cm.

Upon assumption that = 0, the equation (2.10) was integrated to find the

stationary solution

'A
C

= Asech2(x/_).
' v 4cr

(2.11)

This result is equivalent to the solution (1.29)-(1.30) which has constant profile

translated along a line. More general solutions were also found by Korteweg and/

de Vries in terms of Jacobi elliptic functions.

There are several methods for producing this PDE. A similar derivation of the

KdV equation is often cited, beginning from the same system of equations stated in

terms of the potential 1 and its power series representation (rather than expanding

the velocities), as seen in [2] or [10]. This type of approach is essentially the same

in that the water depth is assumed to be small in comparison with the wavelength

(x-scale) and the time derivatives are of higher order than the spatial derivatives.

Whitham [34] gives a derivation beginning with a variation of the dynamic surface

equation. In this, he does not use the surface tension term and the time derivative is

of the same order as the other variables. He determines a relation that will eliminate



first order terms, and then determines that if the velocity is of the form

n(x,t) =

with constraints on the coefficients C, then the Kinematic and Dynamic surface

equations will be consistent. In the next section, we will see how the equation was

re-derived in other fields using Taylor approximations to difference equations.

2.3. Numerical Experiments

2.3.1. The Fermi-Pasta-Ulam problem

In 1955 Fermi, Pasta and Ulam undertook numerical experiments to study a

one-dimensional anharmonic lattice [11]. According to Ablowitz and Segur {2, this

had been motivated in part by a question of Debye in 1914 on the role of a nonlinear

coupling on thermal conductivity. The particles on the lattice were of equal mass

m and connected by strings obeying a non-linear spring law

F() = K(/ + 2)

Here represented the difference between consecutive masses (and represented

the difference of squares of distances). a was a parameter used to determine the

degree of nonlinearity of the force between points. In their work, the continuum had

fixed ends and was discretized into 64 points. The displacement of a point from its

27



equilibrium was denoted by U and the model became

= (U1 - 2U + U_1) + a((U+i - U)2 - (U - U_1)2)

i = 1,2,...,N-1

U0 =UN 0.

Energy was taken as the sum of kinetic and potential energies. They expected

to find that the long-term behavior of the system would demonstrate an equipar-

tition of energy between the modes given smooth initial conditions. Instead their

results indicated little tendency towards mixing but rather a pattern of 'a1most-

recurrence".

2.3.2. Zabusky and Kruskal

Zabusky and Kruskal followed up in 1963 by performing numerical studies

based on the above system. They set Lx to be the grid spacing (Xk+1 - Xk) and

transformed

1K- \fm

After applying Taylor expansions of Uk+1, Uk_i about Uk, the result is the model

Utt +
12

+

A transformation to an asymptotic traveling wave solution

X=xt
T=

2

U (X,T)

28



results in the form

XT + XXX + 2xxxx + O(h2, ) = 0

which upon setting = 1x yields

,- ,-,.T+X+0XXX -

i l- 3(3 pg)

29

(2.12)

The transformation t -* a/t, x -f ax, provides a connection between the

equation (2.10) and that used by Zabusky and Kruskal (2.12) where

(2.13)

They used a leap-frog method in time, and center differences to approximate

the spatial derivative. Here, we introduce the notation for the center difference

approximations

D(Uk) = Uk+1-Uk_1

D(Uk) = Uk+2-2Uk+1+2Uk_1+Uk_2.

The non-linear factor was discretized as a spatial average over three grid points.

Specifically, the method is

Un+1 = U-1k k + 3 (Uk+i + U + U_1)D(U) + ()3DX(Uk) (2.14)

using fixed grid steps

L.x Xk+lXk

= tn+1 - tn.

Using the periodic initial conditions cos(irx), several crests developed. These

were observed to travel at different speeds (depending on height) and pass through



0
-10 0

time = 0.1625
10 0

time = 0.23125
10

8

6

4

2

0
-10 0

time = 0.3

30

10

FIGURE 2.1: Two-soliton interaction computed with the Zabusky-Kruskal method.

each other. The unexpected result was that after an interaction, the waves resumed

their shape with a phase shift, rather than evening out (refer to figure 2.1) The

authors named a wave that demonstrates this kind of behavior soliton, a term that

has come to be applied to a non-linear wave that recovers its profile and speed after

a non-linear interaction with another wave of the same type.

Although numerical solutions did eventually become discontinuous, the scheme

was more stable than might be expected considering the nonlinearity. It happens

that the spatial averaging allowed for conserved momentum and "almost-conserved"
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energy. To see what is meant, consider the discrete analog of the conservation law

(1.5). Momentum conservation is represented by the sum of the values of U over

the spatial grid. In [35], periodic boundary conditions were used, and one needs

only check

(u1 + U + U_1) (U1 - U1) = 0
k

U2 - 2U1 + 2U_1 - U_2 0

in order to establish

=

Energy at step n would be conserved if

=

but terms only cancel to O(t2). However, they had noted their periodic initial

condition tended to become discontinuous around a final time of about 1/ir, as

the nonlinear instabilities limited the time intervals over which a solution could be

computed.

2.3.3. Evaluations of the Zabusky-Kruskal scheme

A generalization of the numerical method of Zabusky and Kruskal was re-

viewed by Pen-Yu and Sanz-Serna in 1980 [30]. The spatial discretation of the

nonlinear term was treated as a weighted combination of approximations to D)

and D2). Given smooth solutions of the KdV with periodic initial conditions

and numerical solution U, they established

HC(t) - U(t)H = O(x2)
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when x -* 0 and t > 0. It is to be noted that this result was obtained by a

perturbation method rather than linearizing the KdV.

In 1981, Sanz-Serna [31] investigated some explicit methods that might im-

prove the grid restriction. With x = .02, Lt = .005 they noted a blow up at

about 3000 time steps (a final time of about 15) when the smooth initial condition

0.9sech2 (

was advanced according to the Zabusky-Kruskal scheme. A necessary grid restric-

tion /t < 3,(Ax)3 was established. In order to improve this result, Sanz-Serna

developed alternate explicit methods designed to conserve energy exactly. The first

method was a variation of the Z-K scheme, using a fixed step. It provided com-

parable accuracy and efficiency with more stability at x = .02, /.t .005 and

= .01, zt = .0005. However it required more storage and produced larger

phase errors. As an improved method, the time step was modified to create a "self-

adaptive" conservative scheme. This provided a grid restriction that was less than

Zabusky-Kruskal's by a multiplicative factor (i.e. still O(x3).

Operator splitting methods have also been investigated. One example is pro-

vided by [16]. This paper, written in 1990, considers treating the linear and non-

linear parts separately. The linear part was dealt with by either the (explicit) third

center difference or by the fast Fourier transform. The ODE that results from

the transform was solved using the (implicit) Crank-Nicholson method as explicit

methods became unstable. The nonlinear part represents a conservation law, so the

authors considered the Gudonov and ENO methods as well as a "spectral viscos-
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ity" method which is a variation of a Fourier transform method, again using the

Crank-Nicholson to solve the ODE. Results were compared for different combina-

tions of these methods, and the most accurate was the combination of FFT (with

Crank-Nicholson) and the spectral viscosity methods.

2.4. Behavior and Known Solutions

The traveling wave solution (2.11) of the KdV not only propagates without

change of form, but it also has been shown that waves with the sech2 profile interact

elastically with each other. That is, after interaction, the wave profile remained as

before, with only a change in phase [35]. The findings that periodic initial conditions

evolved into a series of such waves is in part explained by examining the linearized

equation.

2.4.1. The dispersive effect

The linear part of the KdV Equation with initial condition

(xxx = 0

((x,0)

may be solved by Fourier Transform. That is,

1

J (o() I exp(ik(x - ij) + k3t)) dk dj.
27r -00 1-00

(2.15)

(2.16)
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If the initial condition is taken to be a delta, then ((x, t) reduces to the Airy integral

(a type of Bessel function)

if 13
A(z) - / cos(sz + s )ds. (2.17)

7tj0

having substituted z = (3t/ and s = (3t)1/3k. This integral is a solution of the

differential equation studied by Airy (1838) in the context of optics

Ai"(z) - z Ai(z) 0. (2.18)

Analysis of (2.17) is an aid in studying the KdV itself [8]. The use of asymptotic

expansions to identify the dominant term is discussed in [7] [15], yielding for large

z and arg z <
2z312

Ai(z) exp( ),
2

and also
2 3/2Ai(z) sin(z + -)
3 4

(2.19)

(2.20)

Referring to figure (2.2), we see that waves traveling to the right decay and

those traveling to the left oscillate.

Asymptotic methods also provide the approximation for large x > 0

and for large x < 0

2 x3'4 2x32 ir
Ai(z)dz - cos

3 1/2 ( +).

fX
1 x3/4 2x312

- 2u'/ exp(

In particular, the if the wave travels leftward it develops oscillatory motion, while

solitons are generated with the rightward motion.

(2.21)

(2.22)
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FIGURE 2.2: The Airy function

2.4.2. The Inverse Scattering Transform

It was found in {26] that the assignment

2 + (2.23)

brings teh KdV equation (1.31) into the form

(2 + )(t - + ) =0.

Progress is made by working with the relation (2.23) rather than the resulting PDE

(2.24). Note that under the change of variables

x -f x-6At

15
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(2.24)



equation (1.31) is left invariant. If the additional assignment

is made in the Riccati equation (2.23), we obtain the linear, time-independent

Schrödinger equation

xx + (X - = 0. (2.25)

The method of solution of (1.31) through the use of (2.25) was developed by Miura,

Gardner, et. al. in [12] and is known as the Inverse Scattering Transform. This

method has been used to solve many problems in one spatial dimension, but the

theory has not been satisfactorily extended to a higher number of spatial dimensions.

The solution of (2.25) is comprised of the discrete spectrum

N
c(0) exp(8kt - ic)

m=1

and the continuous spectrum

00

f b(ri, 0) exp(i(8ic3t +

One should take a moment to compare these terms to the Airy integral (2.17). The

solution of the linear equation (2.25), (t) (c), is the sum of these two expressions.

To translate back to the original equation (1.31), one solves for K(t)(x, y) in the

integral equation
00

K(t)(x, y) + (t)(X + y) + / (t)(Y + z)K(t) (x, z)dz 0.

Once K is known, the solution to (1.31) is

(x,t) = 2K(x,x).
dx

36
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In the case b(,c, 0) = 0 (termed reftectionless) there is no contribution from the

continuous spectrum. Then the inverse scattering method produces multiple wave

solutions that develop a sech2 profile upon interaction, but with relationships be-

tween amplitude phase and speed dependent upon the number of waves interacting.

In particular, N soliton solutions develop from initial profile

N(N + 1)sech2(x). (2.26)

2.4.3. Restrictions on the initial condition

In response to the discovery of the Inverse Scattering Transform as a means

to solve the KdV, Cohen [8] studied the effect of rate of decay of initial conditions

on the resulting solutions. She demonstrated the initial value problem for (2.15) is

solved by the Fourier solution, and established decay rates of this solution. These

solutions were related back to the KdV, finding the initial datum (ix, 0) = Co(x)

determines the smoothness of the solution. She placed the following requirements

on the initial data:

o E C3(R)

is piecewise of class C4(R)

decays at an algebraic rate for j 4

2.5. Two-Dimensional Extensions

2.5.1. The Sjöstrand problem

The time-independent problem

X[V21 = 0
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was studied by Sjöstrand in 1936 [32] and by von Wolfersdorf in 1970 [33]. Von

Wolfersdorf looked at the more general form

[V2] =
ax

where F is linear in L and its derivatives, with coefficients dependent on x, y. The

problem was approached by working in the complex plane, and does not generalize

to the time-dependent case.

2.5.2. The K-P equation

There are a few equations which extend the KdV to two horizontal dimensions.

One such was developed by Kadomtsev and Petviashvili in [21] and known as the

K-P equation:

y, t) = 2,c2sech2[ic(x + )y - (4k2 + 3)2)t + 5)]

(2.27)

This equation is derived through physical reasoning under the assumption of "weak"

transverse motion. Specifically, one begins with the KdV equation and adds a cor-

rection term to account for weak y-coordinate dependence, such as a bending distor-

tion. Although the equation was originally developed to model waves with a weak

phase and amplitude variations in the y-direction, it has subsequently been used to

fit data from fully two dimensional, periodic shallow water waves [18].

Like the KdV, the K-P equation has been studied by means of the Inverse

Scattering Transform [2]. This method yields soliton solutions through an analyt-

ical process. Solutions to (2.27) include the essentially one-dimensional solution

traveling at an angle to the y-axis
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and the "two line-soliton" solution

32
2321nF(x,y,t)

1 + exp(ii) + exp(772) + exp(1 + i2 + Al2)

4(i - - - 2)2
4(k1 + k2)2 - ( -

Neither of these solutions decay as (x2 + 2)'/2 -+ oc. It is clear the first takes

the form of KdV solution, and away from the interaction in the latter example the

waves tend toward a sech2 profile (see [1]).

It is possible to derive a PDE of this form using series expansion methods

as with the KdV (see, for example [1]). To do this, one starts with the equations

governing water waves under the assumption that the y-scale is small compared to

the x-scale.

(x,y,t) =

F(x, y, t) =

=

exp (Al2)
=
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3. DEVELOPMENT

We proceed to derive an equation for a two-dimensional wave in a manner

analogous to the approximation method presented in [22] and outlined in the intro-

duction.

3.1. Power Series Expansions of the Velocities

The fluid is incompressible (1.7), irrotational (1.10) and homogeneous. Recall

that throughout the body, the velocities 'a, v, w are governed by the following

relations:

wy-vz 0 (3.1)

= 0 (3.2)

= 0 (3.3)

= 0. (3.4)

The bottom is a horizontal plane taken as z = 0 and there is no vertical flow out of

the bed, 50 (1.14) is applied to get

w(x, y, 0, t) = 0. (3.5)
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Assuming all functions to be "smooth enough", and the vertical scale in z to be

small, there are power series expansions of the velocities

To comply with the condition that the bed is impermeable (3.5), w0 = 0 in (3.8).

By equating coefficients of powers of z when these power series are substituted into

the relations described by (3.1) and (3.2) we see

Un+1

vn+1 =

1
w --{(u) + (v_i)]

n

for n > 1. Therefore,

(3.9)

(3.10)

Next w may be written in terms of u, v,,, by using the relation determined by con-

servation of mass. Computing the derivatives of expansions (3.6)-(3.8), combining

according to (3.4) and equating coefficients of powers of z yields

(3.11)

00

u(x,y,z,t) = zu(x, y, t) (3.6)
n=O

00

v(x,y,z,t) = fv(x,y,t) (3.7)
n=O
00

w(x,y,z,t) = zw(x, y, t). (3.8)

00

w= ( + (vi)]z.
n=1

Since w0 = 0, we see from (3.9) and (3.10) that u1 = v1 = 0. Moreover, by re-

peatedly applying (3.9)-(3.11), w2 = u241 = 0 for all n. That is, the odd

terms drop out of the horizontal velocity components. Additionally, all even terms
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w2 are zero. This leaves u0 and v0 undetermined, but non-zero if the system is to

have two horizontal components of velocity.

Expressions for the remaining u and v can be obtained in terms of in terms

of v0 and n0 by combining the equations (3.9)-(3.1O) with (3.11):

1 [(u_1) + (v_i)J
n(n + 1)

1
[(u1) + (vn_i)y].n(n + 1)

The irrotational assumption (3.3) implies

=

for all i-i, and substitution of this to the prior expressions leaves

1
Un+1 = n(n + 1)

[(u_1) + (un-i)yy]

1
vn+1 -

n(n + 1) [(v_1) + (v_i)].

Now v and u, can be recursively expressed in terms of ü = u0 and ii v0 and the

equations (3.6)-(3.8) for u, v and w are reduced to

= u - -- (f + u) + (u + 2ü + u) + (3.12)

v = (3.13)

w z(ü +3)+ (3.14)

vn+1

Un+1



3.2. Expansion of the Surface Equations

Constraints on the surface, z = 1 + ( were developed in the introduction.

Restated, these boundary conditions are

o

o

recalling H(x, y, t) is the curvature function given in (1.16), and

0 = + u + v( - w.

At this point, it will simplify notation to use the Laplacian in 2 variables,

32 32

V2 3x2+3y2

since all equations will now restricted to the surface. Substitution of the velocity

expansions (3.12)-(3.14) into the dynamic surface equations (3.15), (3.16) gives

o = + uü + + g - iV2C
(1+ )2

(V2 + V2) + ... (3.18)
p 2

o = Vt + UU + y + 9 - IV22 (1 +)2 (uv2u + V22) + ... (3.19)

and (3.17) is expressed as

o = + + + (i + )(u + ) (vu + v2) + (3.20)

3.2.1. Linear first approximation

The wave surface and velocities are expanded to first order by setting

1 + ((x, y, t) (3.21)

q + /3(x, y, t) (3.22)

r-i-'y(x,y,t). (3.23)

43

(3.17)

z =

u(x, y, t) =

(x,y,t) =

(3.15)

(3.16)
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The constants q and r are the horizontal components of the mean current. These

are scaled to satisfy q2 + r2 = gi. In our first approximation, we will find expressions

for /3 and 'y, which will then be used to form a second approximation.

As an aside, we take a moment to examine a first approximation to the surface

equations assuming the independent variables are all of the same order. Then the

first derivative terms of equations (3.18)-(3.20) are

= 0(c) (3.24)

'Yt + g( + q/3 + ryy = 0(c) (3.25)

C + l(/3 + ) + q + = 0(c). (3.26)

Choosing a transformation

= xqt (3.27)

= yrt (3.28)

= t, (3.29)

the resulting system can be represented as a matrix operator

8 0 8\ 8r8

- R = 0. (3.30)g0 q0 q0j
j0 10

Solutions of this system are kernels of the operator

a a a 32 32 32
- q3,. - r)(z - gl(32 + 32)) (3.31)

In this form, two well-known equations appear. The first operator is a linearization

of an advection equation

0 = - (u() - (v).
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This is equivalent to the case 0 in the original system before the transformations

(3.27) were applied. It would have a steady solution travelling in the direction of a

characteristic line. The second operator is the wave equation,

= g1V.72

which also has well-known solutions, including radially symmetric waves, as seen in

texts on mathematical physics such as [14].

3.2.2. Scaling of the independent variables

The KdV equation (2.10) was constructed to approximate slow variations, so

instead of having the independent variables of the same order, we apply the scaling

x ' (3.32)

y - (3.33)

t , 3/2t (3.34)

This choice weights the equations so that in the linear case, the wave will be sta-

tionary as in [22], and so that higher order derivatives will be higher orders of .

Substituting the velocity approximations (3.21)-(3.23) into the series expansions of

the surface equations (3.18)-(3.20) along with the scaling (3.32)-(3.34) and elimi-

nating constants, the first approximations to the surface equations become

= (9(E3/2) (3.35)

g(+q13+r'y = 0(f3/2) (3.36)

= O(3/2) (3.37)

Immediately from (3.35) and (3.36), or from the integrated form of these equations,

= (q+r). (3.38)
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Recall, any constant of integration or functions of t alone may be taken as zero by

adjusting the potential in the Bernoulli equation (1.13). At this point, the relation

(3.38) along with the expectation that (at first order) velocity depends on wave

height suggests we may take /3 = A1ç and 'y = A2(. This is essentially a statement

that the fluid velocity components are dependent on wave height at this order.

Replacement in (3.37) gives

(q + lA1)C + (r + lA2)C (9(3/2) (3.39)

Thus, the Q(3/2) terms of both the surface equations will vanish if

13 = -

= ic.
3.2.3. Second approximation

Using the representations of /3, 'y in terms of (, we aim to find a quasi-linear

equation in terms of c and its derivatives of order three or less. We continue to the

next approximation assuming the coordinates have been scaled according to (3.32)-

(3.34) as before. A small perturbation to the velocity components (3.22), (3.23) is

added to give

u q - + f213(x, ey, t) (3.40)

= r - + E2(Ex, y, t) (3.41)

z l+C(x,y,t). (3.42)



For reference, the velocities now take on the form

u

=

2'-w = + r) + + - l - - -

The approximations (3.40), (3.41), (3.42) are substituted into (3.18), (3.19) and

(3.20). Because of the choice of 3 and 'y in the first approximation, the terms up to

order 0(5/2) vanish leaving

T- t + x + x - -v2 L(qv2 + rV27) + q
p 2

0(c512) Yt + y + y
- YV2 - (qV2 + rV) +

Q(5/2) = + () + - (V2 + V2) + + F7

or by replacing 3 = - and 'y = - and combining terms with q2 + r2 = gi,

Q(5/2) - + + ( - 1)V( + q (3.43)

Q(5/2) _(t + + (ç - T)V2 + (3.44)

Q(5/2)
Ct - CCx - + L(q2 + rV2C) + + l. (3.45)

At this point, it is apparent that each of the surface equations have assumed a form

similar to a KdV equation with crossderivative terms and a perturbation. These

equations can be combined so that the /3 and terms are eliminated. Thus, in

the case neither q nor r is zero, our final equation is of the form

Q(5/2)
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0 = 3qr( + + a1(xx + C) + 2CCy + 2(Cx + (3.46)



where the coefficients are

_(gl+2q2)

a2 = _(gl+2r2)

7- l(2q + 3r2)(Ti = rl( )
p 6

'7- l(3q2 - 2r2)= ql( ).p o

Independent variables, as well as (, are easily scaled to change the coefficients if

desired.

3.3. An Alternate Derivation without Surface Tension

The third derivative term will appear in the equation even when surface ten-

sion has been neglected, due to the form of the velocity expansions. Following the

method of Whitham [34] but as in the prior section, incorporating two spatial vari-

ables, we give an outline of the procedure.

Variables are scaled

- 1/2
X l2 X

- 1/2Y -f lE Y
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so the equations for the potential read

O<z<1+1(

=O z=O

so the expansion of is

The derivatives of 1 are taken to be dependent on ( and its derivatives:

=

= A2 + i7 + E2.

Now, on the surface z = 1 + the scaled kinematic surface condition is re-written

as

O(1f2, ) = ( + [(1 + 1x]x + [(1 + iy]y - 2[V2(V2)]

= [ + A1 + A2(] + c[ + + 2(A - 1( + A2C)]

+2[x + y (AiV2 + A2v2)].

The x- and y-derivatives of the dynamic surface condition (without surface tension)

become (respectively)

= {A1( + (] + + A(( + A1A2(] - 2[A1V2(t +

= [A2 + (} + + A1A2( + A} - c2[A2V2( + ].

In order to make the 0(1) terms drop out of the kinematic equation, let

O(E1) =

49
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and use this for substitutions in the O() and O(2) terms. Combined with making

the first terms in the dynamic equation O(), we must require

A+A2 - 1.-
The next step is to make the O() terms consistent, but not necessarily zero,

between the kinematic and dynamic equations. The representations

i3A1C

- A2(C

allow us to recognize that we need /3 and 'y (2. Now

(a(2)
+ ( + 2((A1( + A2)

a(Ai + A2() + A1(A1 + A2)

bC(A1 + A2) + A2((A1 + A2()

will all represent the same expressions if

A1(A1-2)2
P - 2(1+A1)

A2(A2-2)2
- 2(1+A2)

The same procedure is applied to the 0(E2) terms,

+ - + A2C2)

- A1V2ç

-
to find these equations are consistent if

A1(3A1 +
6(A1 + 1)

A2(3A2 + l)V2(
6(1+ A2)

'3

'7



4. RESULTS

The differential equation derived in the preceeding section

t + CCX + 2CCy + a1V2C + 0

is non-linear and third order, making it unlikely that an explicit solution can be iden-

tified. The method of inverse scattering that provided solutions for the Korteweg-de

Vries equation was developed for the case of one spatial dimension, and it is not

clear how it would generalize to the current case. Instead, we approach the problem

by splitting the equation into linear and non-linear parts for further study. The

notation follows that in prior sections, indicating vectors by bold print and vector

elements by subscripts, such as k =< k1, k2 > and kj = (k + k)1"2.

4.1. Non-linear Part

In the case where the coefficients 0j are negligible or the third derivatives

become small compared to the ci, the non-linear terms dominate. The method of

characteristics allows us to solve the non-linear part,

( + i(C + a2( = 0. (4.1)

51



52

In the case of constant solutions along a parameterized curve (x('r), y(), t('r)), the

characteristic equations are

=0
=

= a2(T)

=1.

d

dT
dx
d
dy

d
dt
d'r

These equations are integrated with respect to on 0 T s to find

ç(s) =

x(s) = x0+a1ç0s

y(s) = yo+a2Cos

t(s) t0 + s.

Let t0 0, and any initial value of ((x0, Yo) follows a line parameterized by

= <a1(o,a2o > s+ < xo,yo>

The initial data then is always transported along a line parallel to <at, a2 >, and

characteristics through initial values v0 = (x0, Yo) and v1 = (x1, yl) will intersect

only if v1 - v0 is parallel to < a1, a2 >. It then relies on the linear part to create

interaction between these lines.

4.2. Linear Part

The linear part consists of the third-order spatial derivatives

+ a1(S + ,) + + () = 0.
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Immediately, a fundamental solution of the form exp(ik. x - i(k)t) can be found

since this is a dispersive equation. We are interested in the behavior of the super-

position of such waves. The analysis will be more direct if the coordinate system is

rotated through an angle

o = tan'().
U2

After also scaling the time variable, the PDE is simplified to

(t+v2x=o. (4.2)

Let an arbitrary initial condition be

((x, 0) = Co(x). (4.3)

Then an integral expression for the solution is obtained via Fourier Transform:

1
°

(k,t)
= _J J (x,t)exp(ik.x)dx.

lv

Thus, assuming appropriate decay rates and differentiability, the initial value prob-

lem (4.2), (4.3) is transformed to

ç0(k) =

which has solution

iw(k)
:0

f f2ir oo -00

(k,t) ç20exp(iw(k)t)

where w(k) satisfies the (real) dispersion relation

w(ki, k2) = k1jkU2. (4.4)



It follows that the original problem has a formal integral solution

1
p00 p00

((x, t) (_)2 J J exp(i(k x - w(k)t))(J J o(i) exp(ii k)di1)dk.
71 -00 -00 00 -00

The order of integration may be reversed

C(x,t) -

where

1
p00

)2 / / Co(ij)Idii
271 J_00J_00

p00

I = JJ exp(ik. <x - r> iw(k)t) dk. (4.5)
-00 -00

The argument of the exponent is a cubic function in k, and this integral can

be manipulated into an Airy integral through a change of variables. Let

1k1=
(12t)'/3 (ei + e2)

- (12t)1/3 (ei - e2)

so the argument becomes

i[ - ((X_1)+V'(Y_]2))e ((X 1)- (Y-72)) + + lc3l
(12t)1/3 (12t)'/3 2]

and the differential becomes

dk=

We now can represent (4.5) as the product

P00

I = Jexp(i(v11 + ))d1 f exp(i(v22 + ))d2 (4.6)
-00

((X-1)+(Y-2))
(12t)1/3

112
((X-1)\/(Y?72))

(12t)1/3

2/d
(12t)2/3
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so the general solution becomes

1(x,t) = (2)2 J J (oAi(v1)Ai(v2) di'

(12t)'/3
(v1 + v2) + ,

(12t)'/3 ('1'- v2)+y).
2

Thus, we expect the linear part of the PDE to provide a smoothing effect analagous

to the case of one spatial dimension.
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The given substitution can also be used to change the variable of the outer integral

(4.7)

71

dij

=

=

(12t)'/3
(v1+v2)+x

2

(12t)'/3 (v1 v2)+y2/
(12t)2/3

di'
2



5. NUMERICAL EXPLORATION

In the previous section, the analytical behavior of the equation

+ a1(( + a2(C + aiVx + a2V2Cy 0

was discussed. We would expect that non-linear terms would produce steep wave

fronts (especially in the direction of < a1, a2 >, while third-derivative terms produce

a smoothing effect. When these balance in the one-dimensional case, solitons are

formed. In this section, we first describe a numerical method and then proceed to

generate some examples to study the behavior of various initial conditions.

5.1. Numerical Method

Here, an explicit method is preferred because of demands on storage for the

case of two spatial dimensions. However it is acknowledged that there are limitations

on such methods. We will follow the method of Zabusky and Kruskal, generalizing

it to include the mixed third derivatives. The spatial grid will be

XO<Xk<XK fork=1,...,K-1

Yo<y1<YL forl=1,...,L-1,

where constant intervals

=

Y1Y1-i

will be assumed. In fact, due to the x - y symmetry of the equation, it is appropriate

to adopt a square spatial mesh so that = L. We treat these symbols as
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interchangeable, but retain the separate notation to the extent that it serves as a

reminder of which coordinate is being referred to. The time steps will also be held

equal for

to<tn<tN forn=1,...,N.

Assign the approximation at each grid point and time t as

n
k,l

When given an expression involving oniy one time level, the superscript may be

omitted.

All space and time derivatives will be approximated by center differences. The

notation to be used for these discretizations follows the pattern

D1I fl\x'. kU - k+1,l - k-1,l

= U11 - 2U1 +

The time derivative will also be a center difference, following the same pattern.

The third derivative terms are then approximated by a composition of difference

operators such as

:xCkYlfl
Periodic boundary conditions will be adopted. In the notation for central differences

laid forth above, using 'Aye' to denote the spatial average used for the nonlinear

term, the model difference equation is

c1 a1
= D + 2(x) [D(D + D)](U1)

+[a2 D+ U2 D(D+D)](U1)Ave.
2/ay 2(Ly)3
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However, there is still a concern regarding treatment of the non-linear term. We

chose to generalize the method of Zabusky and Kruskal because the conservation

properties appear to be helpful in getting reasonable numerical results, but there

is more than one approach to the discretization Ave Uk,l. For example, consider

two possibilitiesone method using a five-point average spread out in both x- and

y- directions (as with the Laplacian difference approximation), and the other using

distinct three-point averagesthe first over i-values and the second over y-values.

method 1: Ave = + Uk,1+1 + Uk,l + Uk_1,l + Uk,1_1)

method 2: Aver = + Uk,1 + Uk_li)

Ave = + Uk,1 + Uk,i_l)

Recall that conservation of momentum occurred in the Zabiisky-Kruskal scheme be-

cause sum of the spatial discretization was zero. We begin by checking the sum of the

non-linear terms of method 1 over both sets of indices, treating terms individually

>k >l(Uk+1,1 + Uk,i+l + Uk,i + Uk_l,i + Uk,i_1)(Uk+1,i - Uk_l,i).

Now, it is already known from the original work by Zabusky and Kruskal that

+ Uk,i + Uk_l,l)(Uk+l,l - Uk_1,i) = 0

so the sum left to compute is

>k >1(Uk,1+l + Uk,i_l)(Uk+l,i - Uk_l,j).

However, these terms do not cancel each other out, so method 1 does not conserve

momentum.
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On the other hand, it is direct to confirm that method 2 will retain the mo-

mentum conservation properties as it is the sum of one Z-K method in y and one in

x along with some mixed derivative linear terms. The sum of the DD terms is

U1,11 - 2Uk+1,l + Uk+1,1_1 - Uk_1,1+1 + 2Uk_1,1 - Uk_li_i

which clearly cancels when summed over k. Method 2 is then chosen for the spatial

average term.

5.1.1. Truncation Error

Both the first and second center differences are well known to be second or-

der accurate, as found by Taylor series expansions. It is possible to compute the

truncation error of this method without linearizing, as follows:

(Xk+i, ) = ((xk,.,.) ± (X(xk, .)x + XX(xk, ., .
(x)

± xxXk,
2!

(5.1)

The center difference D then cancels even order terms, and the sum over three

horizontal grid points cancels the odd order terms, leaving

[AveJ{D] = [(3(xk,.,.) + O(x)2)][(2x)(x(xk,.,.) + O(x)2)J

= 2(zx)( + O(Lx)2).

Thus, Taylor series expansion of these approximations to the non-linear terms gives

a truncation error of O(x)2 + O(y)2 and for the time step the error is O(Lt)2.

That is, the method is 2nd order accurate.



5.1.2. Linear Stability Analysis

A guideline for choosing relative sizes of the time and spatial increments is

established by considering the stable Fourier modes

U1 = exp(i(jxk+e2ylwtfl)). (5.2)

This information is used to find a necessary (but not always sufficient) condition

on t in terms of L\x for stability. This method was used in [31] to obtain the

refinement path for the one-dimensional case. As reported in Section 2, the relation

could be simplified to /t =

Recall that our increments are fixed, and zx = L.y When (5.2) is substituted

into the linearized difference equation

2D(U1) = [2X1 + a2D) + 2( )3(U1DX + a2D)(D + D)] (L,)

there will immediately be a common factor of exp(i(elxk + 2Y1 - wt72)). Neglecting

this term, the contributions from the difference operators are

D - exp(iwt) - exp(iwt)

= 21 sin(wt) (5.4)

a1D + 2i(a1 sin(e1x) + 2 sin(e2y)). (5.5)

The third order terms are a bit more involved, but reduce to
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(uiD + u2D)(D + D) -

2i(o1 sin(eix) + c12 sin(2Ly))(2 cos(eiAx) + 2 cos(e2y) - 4). (5.6)
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Substitution of (5.4)-(5.6) into the difference formula (5.3) and multiplying by lAx

leaves

Ax3 sin(wAt) = MAx sin(iAx) + 2 sin(e2Ay)]

+ 2 [ai sin(e1Ax) + a2 sin(2Ay)] [cos(eiAx) + cos(e2Ay) - 4].

The result given by Sanz-Serna [31] essentialy set M = 0 and maximized

sin (j Ax) (cos (2) Ax) - 1) . We approach the problem by considering the first and

third order terms separately. The first order terms will be the least restrictive:

Ax3 < AtAx2M(ci + a2)l,

so a refinement path would be At = However, the third-order terms pose

a more restrictive condition.

Ax3 < 2Ata1 sin(iAx)(cos(eiAx) - 1 + cos(2Ay) - 1)j

+2Ata2 sin(e2Ay)(cos(2Ay) - 1 + cos(eiAx) - 1)!

3\/< 2At( +2)jai+o2

or At 2Lx3
(3v+4)kri+or

5.2. Tests and Examples

It is easily established that any solution of the KdV (such as the Jacobi el-

liptic function solutions) also solve the equation we have derived by virtue of y-

independence. This provides one means to test a numerical method. That is, we

can compare the current method to known results from cases of one spatial dimen-

sion.
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Once the method is implemented, we first generate a parallel translation of the (1-

dimensional) 2-soliton as a test. Here we use non-linear coefficients a1 = 1, a2 = 0,

third order coefficients a1 = .0222, a2 = 0 and initial condition 3sech2(J11 (x 1)).

The grid size is set with equal spacing Lx = = 1/40 and time step t = .005.

See figure (5.1). The results in this case suggest the y-derivative approximations do

not introduce errors if we model a soliton solution of the KdV that is independent

of y. That is, method appears to be comparable to the original Zabusky-Kruskal

method.

5.2.1. Line Solitons

We first look at solutions with a single argument:

(=

2\ fil
(Xt + (aiXx + a2Xy) + (aiXx + a2Xy)(X + XY}

Whenever x is linear in the independent variables, the wave retains its shape while

being translated along a line in the x - y plane and the PDE reduces to

c(' + (aiki + a2k2)((' + (a1ki + a2k2)(k + k)( = 0

where' indicates the derivative with respect to x = kix+k2yct. Direct integration

yields

_ + (k1 + a2k2)(2 + (aiki + a2k2)(k + k)(" = 0.
2

0.

The constant of integration is taken as 0 since the solution of interest and its deriva-

tives decay rapidly as -f oo. The next step is to multiply by (' and integrate



00 0o
FIGURE 5.1: A one-dimensional two-soliton demonstrates that cross-derivative
terms do not introduce unexpected error.
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t=0 t= 0.665

00 00

t= 1.3317 t= 1.9983



again

(1k1 +a2k2)3
(a1ki 0.

6

If the gradients of the system are to be real and remain bounded, (()2 must remain

positive and bounded. Considering this reveals that the surface height can only vary

between = 0 and = akk Solving for (' we obtain a solution analogous to

that in [22]

((x,y,t) = Asech2(kix+k2yet)

provided A, k1, k2, c are related by

A
12(k+k)(aiki+a2k2)

o1k1 + cE2k2

c = 4(a1ki+u2k2)(k+k).
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This type of wave will be called a line soliton. The distinction between this case

and the prior example is that line solitons may intersect at arbitrary angles.

We give two examples of this type of interaction. In both, x = = 1/50

and t = .001. Two line solitons of amplitude 1 that run perpendicular to each other

are given as the initial condition, but the coefficients are varied. For the first case,

shown in 5.2, we have set ci = 1, a1 = .0222 and o2 a2 = 0. Note that the speed

at which the higher area (from the intersection) travels faster, but in the same di-

rection as the line-soliton.

In the second case, shown in 5.3 we have set a1 = a2 \//2 and a1 a2 =

.0222. Here, the new coefficients cause the "lump" from the original intersection to
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-0.5 -0.5 -0.5 -0.5

FIGURE 5.2: Intersecting line solitons of initial amplitude 1 with motion parallel
to one of the initial waves.
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0.5
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t=0 t= 0.4

-0.5 -0.5 -0.5 -0.5

t= 0.8 t=1.2
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0.5

-0.5 -0.5 -0.5 -0.5

FIGURE 5.3: Intersecting line solitons of initial amplitude 1 with diagonal.

move at a diagonal faster than the intersection itself. We also see a change in the

shape of the "lump", becoming taller and narrower, but reversing the change as it

approaches the intersection again around t = 2.7.

5.2.2. Lump Initial Conditions

Now that the extension of the Zabusky-Kruskal method to two spatial dimen-

sions has been tested on line solitons, we wish to investigate initial conditions that

0.5

0.5
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t=0 t= 0.9

-0.5 -0.5 -0.5 -0.5

t=1.8 t= 2.7



are radially symmetric versions of the N-solitons. That is,

N(N + 1)2(\/1)
2

where we have assigned s = (a + a)1/2 and R = (x2 +

Keeping the coefficients as before, the grid size is set at Ax = Ay = 1/50

and time step is reset to At = .001. The initial profile is determined by (5.7) with

N = 1. In figure (5.4), the initial lump is seen to be moving left, with a change in

the surface where the lump has passed. We make note that no disturbance was seen

when using the one-dimensional method to model the 1- or 2-soliton (see figure (2.1))

Modifying the equation so = = and a1 = a2 = .0222(g), we find the

same single lump initial condition produces figure 5.5. In this example, Ax

At = .0005 and the final time is tf = 10.

Moving on to the case N = 2 with = a2 1 and a1 = a2 = (.0222) gives

a lump which separates into 2, the taller moving faster. This behavior is similar

to the one-dimensional 2-soliton, except there appears to be some growth. The ini-

tial condition for figure 5.6 is 3sech2(\/R) with Ax = 1/40, At = .001 and tf = 3.

Adjusting the initial amplitude to .4 with a1 = a2 = 1, a1 = a2 = .0222,

Ax Ay = At = .0005 produces the wave seen in figure 5.7. Note that this

example has been run to an extended time t = 30 without blowup.
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(5.7)
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t= 0 t= 1

00 00

t 2 t= 3

00 00

FIGURE 5.4: Radially symmetric initial condition, amplitude 1



00 00
FIGURE 5.5: Radially symmetric initial condition, amplitude 1 with diagonal mo-
tion
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to t= 3.333

30 00

t 6.6663 t 9.997
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t=0 t= 1

00 0 0

t= 2 t 3

00 00
FIGURE 5.6: Radially symmetric initial condition with initial amplitude 3, analo-
gous to the two-soliton.
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FIGURE 5.7: .4sech2 solution decays.
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t=0 t= 10

-0.5 -0.5 -0.5 -0.5

t= 20 t= 30



6. CONCLUSIONS

A non-linear, third order differential equation describing a surface in two spa-

tial dimensions has been constructed, beginning with the equations governing water

waves. It is possible to derive this equation either with or without an accounting

for surface tension. The equation resembles the sum of two KdV equationsone in

x and one in y. It also resembles the KdV in that it represents long waves of small

amplitude relative to the depth of the fluid. The result is distinguished from the

KdV in that it carries cross-derivative terms and and can describe a wave

surface rather than just a profile.

The non-linear terms of the equation essentially represent the inviscid Burgers

equation. This would indicate a tendency to develop shocks. As with the one-

dimensional KdV, the third order dispersive terms appear to compensate for steep

gradients given appropriate initial conditions. Numerical runs on variety of initial

conditions were performed to find that there are both line solutions and lump solu-

tions that appear to behave as solitons.
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