

Available Information and Data Gaps: Birds, Bats, Marine Mammals, Sea Turtles and Threatened & Endangered Species

Pacific OCS Region

November 28, 2012 • Corvallis, Oregon

Sea Turtle Baseline

Species

- Leatherback and Loggerhead Sea Turtles most likely off Oregon
- Green and Olive Ridley Sea Turtles could occur
- All listed under Endangered Species Act
 - Leatherback Critical Habitat

Occurrence

- Tropical; all uncommon north of Mexico
- Migrate to offshore waters to feed
 - Summer upwelling
 - Benthic and pelagic organisms
- Gillnet fishery impacts
- Leatherbacks <1,700 in west coast U.S. waters

Marine Mammal Baseline

Cetaceans

- 24 species
 - 7 baleen whales; 17 toothed whales
 - Blue, Fin, Humpback, Sei, North Pacific Right, Orca, and Sperm ESA listed

Pinnipeds

- 6 species
 - Steller Sea Lion ESA listed (CH)
 - Guadalupe Fur Seal ESA listed
- Sea otter ESA listed; stragglers from WA
- Broad-scale distribution and habitat, and population status known for most species
- Human-related threats ship strikes, entanglement, others

© David Pereksta

© David Pereksta

Bats

- Little information on offshore bat occurrence
- Migratory species most likely and most vulnerable (e.g., Hoary Bat)
- Farallon and Channel Islands have bat presence
 - Low wind speeds, low moon illumination, and relatively high degrees of cloud cover predicted arrivals and departures
 - Low barometric pressure predicted arrivals
- Mid-Aug late Sep

Birds

- Surveys have identified a diversity of species or species groups on OCS
- Nearshore and shoreline species
 - Sea ducks, loons, grebes, shorebirds, gulls, terns
 - Western Snowy Plover & Marbled Murrelet ESA listed
- Pelagic species primarily 8-35 miles offshore
 - 29 species including tubenoses, skuas, alcids
 - Pelagic shorebirds, terns, gulls
- Changing status
 - Short-tailed Albatross & Hawaiian Petrel ESA listed
 - Rare but increasing
 - Knowledge of distribution changing...occurring off Oregon

© David Pereksta

Pelagic Bird Presence and Abundance

Semi-monthly bar chart of seabird abundance off Oregon

(primarily 8-35 miles offshore)

Ke	y
	absent or very rare: less than annual
E	rare: a few expected on less than half the trips
	uncommon: expected in low numbers on 50-75% of the trips
	common: expected in good numbers on most trips

Species	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Laysan Albatross	_				-						-	
Black-footed Albatross				_						_		
Northern Fulmar	\neg \vdash											
Pink-footed Shearwater							_			_		
Flesh-footed Shearwater			_					_		_		
Buller's Shearwater									-			-
Sooty Shearwater		-		_				_				
Short-tailed Shearwater	\neg \vdash											
Manx Shearwater												
Leach's Storm-Petrel												
Fork-tailed Storm-Petrel				=								
Red-necked Phalarope				_	_		_			=		
Red Phalarope				_	-	-						
South Polar Skua					_			-		_		
Pomarine Jaeger				_	=						-	
Parasitic Jaeger	\neg						=			=		
Long-tailed Jaeger							-	_	-	-		
Black-legged Kittiwake	\neg \vdash	_		_	_				-	-		
Sabine's Gull			_								\vdash	
Common Tern						-						
Arctic Tern							-	_		=		
Common Murre*	\neg					=					=	
Pigeon Guillemot*												
Cassin's Auklet	\neg											
Marbled Murrelet*	\neg											
Ancient Murrelet				_				- 6				
Xantus's Murrelet	\neg							_				
Rhinoceros Auklet	\neg					\vdash	=					
Tufted Puffin			_									

© David Pereksta

Renewable Energy Effects – Birds, Bats, Mammals & Turtles

Activities

- Construction and operational phases
- Vessel traffic, seismic surveys, foundation and cable installation
- Turbine operation, foundation protection, cables, vessels

Effects

- Collision and entanglement; barotrauma in bats
- Prey base and habitat alteration/creation; trash ingestion in turtles
- Displacement and movement barriers
- EMF effects
- Light attraction
- Pollution
- Noise impacts
 - Masking of sounds, displacement, behavioral changes, physical impairment, mortality

Eco Effects of Wave Energy Development Workshop - Gaps

Marine Birds

- Spatial and temporal abundance of birds
- Bird activity at night
- Important areas of bird activity that should be avoided
- Important migration patterns
- Potential effects on seabird prey

Marine Mammals

- Fundamental baseline data migration routes & home ranges
- Immediate monitoring of cetaceans to understand interactions
 - Videography
 - Beachings
 - Tagging
 - Vessel surveys

Sea Turtles

- Evaluate seasonal use of the OCS including post-hatchling stages
- Noise and EMF effects
- Comprehensive population estimates
 - Difficult due to solitary nature and wide distribution

Marine Mammals

- Site-specific baseline data on occurrence, distribution, behavior
- Site-specific acoustic effects low frequency sensitivity
 - Harbor seals, baleen whales, harbor porpoises
- Impacts on gray whales
- Acoustics
 - Ambient sounds at potential wave energy facilities
 - Hearing sensitivity and response of cetaceans and pinnipeds

Birds

- Site-specific seasonal distribution and abundance scale
- Seasonal density maps
 - Feeding, breeding, high use areas, migration routes, colony flight pathways
- Dodging behavior
- Migration corridors
 - Distance from shore, timing, passage height, each with weather/climate
- Prey consumption to determine energetic consequences
- Model energetic needs
 Effects of EMF, noise, lights and structures; collision risk

© David Pereksta

Atlantic Wind Energy Workshop – Gaps

Marine Birds and Bats

- Nocturnal movement patterns
- Migration routes and shortcuts
- Sensitivity analysis
- Distribution data
- Abundance data
- Decision support tool

Fine Scale Focal Area Transects

Broad Scale Transects

Submerped Lands Act Boundary (SLA)

Oregon Ocean Stewardship Area

Seabird & Marine Mammal Surveys

© David Pereksta

Seabird and Marine Mammal Surveys

0 15 30 60 Miles

Seabird and Marine Mammal Surveys

- Distribution, abundance and habitats of marine species
- Validate and enhance aerial survey data for indicator, breeding and migratory species
- 12 surveys completed 2010-2012
 - 20 year comparison to surveys in 1989-1990 and other products

Vulnerability index for scaling possible adverse effects of renewable energy projects on seabirds – Pacific OCS

- Analyze data on flight height as a function of wind speed and species
- Develop sensitivity index that ranks key vulnerability factors
- Use results to inform siting and operation of facilities

Pilot Studies in the Atlantic

Acoustic/Thermographic Monitoring

- Combination detection device that can verify recorded vocalizations to species via simultaneous thermal imagery
- Information on bird presence near OCS structures
 - Circadian, seasonal, annual, weather-related

Aerial High-Definition Imaging

- Minimize error and disturbance to birds
- Evaluate combinations of aircraft type and hi-def camera type, mounting systems, and onboard recording systems
- Determine effective sampling schemes
- Recommend sampling design and cost estimates

Summary of Knowledge

- Collected, reviewed, and compiled post-1977 information
 - San Francisco Bay to Grays Harbor
- Easy electronic access and retrieval of all information collected
- Identified data gaps

Protocols for Baseline Studies and Monitoring

- Guidance on consistent approach to collecting baseline and preconstruction information prior to offshore renewable projects
- Guidance on the stressors to monitor and methodologies

Effects of EMFs on Elasmobranchs & Other Marine Species

- Summarized EMF sensitivity of marine organisms
- Identified knowledge gaps, research priorities, potential mitigations

Using Ongoing Activities as Surrogates

- Identify and analyze data from ongoing projects (surrogates) with similar stressors and receptors
 - EMF from operating power cables; marine mammals and anadromous fishes
 - Mooring of aquaculture and buoys; marine mammal entanglement
- Other appropriate surrogates may be identified

Predicting Consequences of Wave Energy Absorption on Nearshore Ecosystems

- Develop statistical model that predicts potential effects of wave energy absorption from marine renewable energy facilities
- Needed to predict how siting of wave energy facilities may generate detectable changes in nearshore, especially kelp forests

OSU Northwest National Renewable Energy Center

Study on Wind Power Affect on Birds & Bats

- Three-year study on impacts of offshore wind energy development
- Develop instruments to measure how turbines affect birds and bats
 - Instruments to tune out flying debris; focus on wildlife
- Relevant to onshore and offshore wind turbines

Ideas for Potential Future Studies

Data Synthesis and Predictive modeling of seabird distribution - Pacific OCS

- Identify, collect and synthesize data from all available marine bird surveys along the U.S. Pacific OCS
- Develop a predictive statistical model of seabird distribution
- Produce high-resolution predictions of seabird abundance patterns

© David Pereksta

Summary

Birds, Bats, Marine Mammals, Sea Turtles and T&E Species

- Varying amounts of baseline information for offshore species
- Seasonal variability and abundance generally known at broad scale
- Need to fill gaps on site specifics, densities, and effects
- Studies have been completed, in process or planned to fill gaps;
 however, there are still gaps to be addressed

© David Pereksta

Pacific OCS Region Contact

David M. Pereksta

Avian Biologist
Bureau of Ocean Energy Management
Pacific OCS Region
805-389-7830
david.pereksta@boem.gov

www.boem.gov

http://www.boem.gov/About-BOEM/BOEM-Regions/Pacific-Region/Index.aspx

http://www.boem.gov/Environmental-Stewardship/Environmental-Studies/Pacific-Region/Pacific-Studies.aspx