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Chapter 1

Introduction

Our goal is to build walking and running robots that can match the performance,

economy and robustness of animals. Our approach is to combine the benefits of

passive dynamics and active control. Passive dynamics refer to a mechanical

system’s natural tendency towards certain behaviors. Some robots have

demonstrated successful walking gaits using passive dynamics exclusively, with no

motors or electronics of any sort [10]. Most robots, such as Honda’s ASIMO, rely

exclusively on active control through electric motors or other actuators, ignoring or

overcoming any inherent passive dynamics.

While passive dynamics are important for energy economy, active control of some

sort is important for robustness to disturbances. The purely passive dynamic

walking robots do exhibit stable gaits, but they fall very easily with small

disturbances.

Our model includes active control of the toe force with the passive spring-mass

system, to handle unexpected disturbances while retaining the energy economy of a

purely passive system. For the purposes of this paper we constrain the system to

vertical hopping, and limit disturbances to changes in ground height and ground

stiffness. Changes in ground height occur when the ground surface unexpectedly

decreases between stance phases, comparable to stepping into an unseen hole in the

ground. Changes in ground stiffness occur when the ground unexpectedly

transforms from rigid behavior to ideal spring behavior deflecting proportionately to

4



CHAPTER 1. INTRODUCTION 5

the toe force, comparable to stepping from pavement to soft grass.

By controlling a robot’s toe forces, it is possible to obtain a desired center-of-mass

trajectory. If the toe force of a walking system is measured as a function of time,

the result is a force profile. To maximize the energetic economy of our

actively-controlled spring-mass model, the commanded toe forces match exactly the

forces that would be observed from a passive, undisturbed model. Therefore, in the

absence of any disturbances, our model behaves indistinguishably to a passive

spring mass hopper, with all of the energy economy and no motor work. However,

in the event of an unexpected disturbance, active control maintains the same toe

forces as the undisturbed system, maintaining the same center-of-mass trajectory.

This paper presents our concept for combining the benefits of passive dynamics and

active control for legged locomotion gaits, validated in simulation using realistic

values. We are now working towards validating our simulation results on robots of

our own design and construction. We hope to illustrate the basic concept on a single

degree of freedom prototype benchtop actuator, and eventually apply these ideas to

a two-joint hopping monopod. These systems are discussed briefly in the section

“Conclusions and Future Work”.



Chapter 2

Background

Our motivation for this work is based on observations of animal behavior, which are

able to walk and run at varying speeds over varying terrain. Guinea fowl are able to

accommodate for a drop in ground height by rapidly extending its leg into the

unexpected disturbance. Although the guinea fowl’s center of mass trajectory

diverges slightly from undisturbed steps, it is able to maintain dynamic stability [4].

While animals clearly use active control for running gaits, they also utilize passive

springs to store and release energy in a cyclic manner [3]. Tendons stretch during

the first part of stance, storing energy that is released during the second part of

stance to facilitate lift-off.

Figure 2.1: Motivation comes from the economy and disturbance rejection ability
of animals such as the guinea fowl. The guinea fowl is able to accommodate for the
unexpected decrease in ground surface without a significant change to its steady-state
center-of-mass motion.

6



CHAPTER 2. BACKGROUND 7

Steady-state animal running can be approximated by simple spring-mass spring

models, such as the spring-loaded inverted pendulum (SLIP). It is able to maintain

dynamic stability in the presence of ground disturbances, however, disturbances

affect the SLIP model’s center-of-mass trajectory and toe force profile. The

ARL-Monopod II uses controlled passive dynamic running to reduce its energy cost

of locomotion [1]. This robot uses active feedback control to match its hopping

trajectory with that of the system’s passive dynamics, which are modeled as a

(SLIP).

When the SLIP model encounters a decrease in ground surface, some amount of

gravitational potential energy is converted into kinetic energy as the model falls into

the disturbance. The additionally kinetic energy must then be converted into spring

potential energy, which results in increased spring deflection. On a physical system,

this can lead to springs exceeding their maximum deflection, potentially causing

damage to a real system. Disturbances can cause higher forces. Galloping horses are

already near peak force on tendons and bones [14], so remianing beneath Force

limits can be an important consideration, or small ground disturbances could result

in injury.

When the SLIP model encounters a decrease in ground stiffness, the series

combination of the ground stiffness and leg spring decreases. This causes a decrease

in the fundamental frequency for the equivalent spring-mass system, and a

prolonged stance phase. In contrast, biomechanics studies have shown that humans

and animals adjust their leg stiffness during hopping, running and walking to

accommodate for this type of change in ground stiffness [6]. Humans and animals

are able to set leg stiffness through a concerted effort of muscles, tendons and

ligaments [5]. The Actuator with Mechanically Adjustable Series Compliance

(AMASC) used this fact to control running gaits by adjusting leg compliance [8].

The AMASC pre-tensions springs to increase its leg’s apparent stiffness. When

hopping on a compliant surface, humans increase their leg stiffness such that the

equivalent stiffness of the series combination of the ground and leg spring is the same

for all surfaces. By maintaining an equivalent stiffness, humans are able to maintain

a toe force profile, such that their center-of-mass trajectory does not change in
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response to changes in ground stiffness. Although we do not directly control leg

stiffness, our model produces an equivalent result by maintaining a toe force profile.

There are currently several robots that have successfully taken different approaches

to dynamic running and walking. We have already mentioned Honda’s ASIMO

biped. ASIMO does not make use of passive dynamics, does not include any

compliance in its legs and, for these reasons, has a relatively high specific cost of

transport [13]. However, ASIMO has demonstrated stable walking and running

gaits. ASIMO minimizes jarring, lossy and difficult to control impacts between its

motor inertias and the ground by matching foot speed to relative ground velocity

just before leg touchdown. By comparison, Raibert’s running robots can easily

handle regular or even unexpected ground impacts with simple controllers thanks to

series elasticity in legs [12]. Boston Dynamics’s BigDog holds the current distance

record for legged vehicles at 12.8 miles [9]. Unlike ASIMO, BigDog’s legs include

series compliance. BigDog uses its leg springs only for force control. When BigDog’s

legs touchdown, its leg springs deflect and absorb energy. This energy is not

released to propel BigDog’s next step, instead legs are actively raised and relocated.

Our goal is to recycle the energy stored in leg springs to reduce the specific cost of

transport and to maintain or improve the robustness and stability.

We build upon MIT’s Series Elastic Actuator(SEA) [11]. MIT’s work demonstrated

the effectiveness of using series elasticity for force control. The SEA uses the

deflection of a spring to transform the force control problem into a position control

problem. The series elasticity reduced impulse forces on the transmission, thereby

decoupling the active elements of the robot from the load.

Compliant legs better approximate bipedal walking than vaulting over stiff legs [7].

The addition of series elasticity to the walking model results in the small

center-of-mass trajectory vertical amplitudes observed in animal walking. In

contrast, the stiff legged model produces large center-of-mass vertical amplitudes.

Compliant legs produce the characteristic M-shaped toe force profile of bipedal

walking, and provide an accurate model for the stance dynamics of running [2]. The

stiff legged model is only valid for walking gaits, and does not reproduce animal

walking as well as the compliant leg model. Introducing compliance into walking
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legs allows the same model and mechanical system to be used for both running and

walking gaits. fficiency



Chapter 3

Model

We use kinematic equations of motion to simulate our vertically hopping,

force-controlled model. The behavior of a standard spring-mass model bouncing

vertically on a flat rigid surface may be broken into identical periods (bounces).

Since we provide the model with some initial height, it simplifies our simulation to

break a period into three stages, rather than just a flight and stance phase. A

bounce is made up of a fall, stance and rise stage. Each of these stages is

well-defined for the standard spring-mass model bouncing vertically on a flat rigid

surface, and therefore, analytical solutions for the center-of-mass motion, toe-force

and spring work may be found as functions of time. During the fall and rise stages

the system behaves as a mass in free-fall. The trajectory of the system during

stance was found by solving a ordinary differential equation of the form:

Fspring(y, θ)−m · ÿ = m · g,

which is similar to the equation for a vertical, undamped spring-mass oscillator.

We add a motor and associated reflected motor inertia to the simple spring-mass

model as illustrated in Fig. 3.1. With these additions we arrive at a single-degree of

freedom, vertically hopping model schematically the same as MIT’s Series Elastic

Actuator [11]. We use a much larger leaf spring with a higher energy density then

the torsional spring used on MIT’s SEA. Our robot uses series elasticity for both

10



CHAPTER 3. MODEL 11

force control and energy storage. We attempt to recover the energy used to

decelerate the robot mass after touchdown and use it to re-accelerate the mass

leading up to liftoff without expending motor work.

m

r

I

k

gnd

s

a

gnd

Figure 3.1: Force-controlled spring-mass model with a small reflected motor inertia
at the instant of leg touchdown on a compliant surface.

To simulate the behavior of our robot model we solve the kinematic equations for

the center-of-mass height and motor angle. The equation for the center-of-mass

acceleration is the same as for the standard spring-mass model

ÿ =
1

m
Fspring(y, θ)− g.
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The motor inertia gives rise to a second equation of motion for the angular

acceleration of the motor,

Θ̈ =
r

I
Fspring(y, θ)− 1

I
τmotor.

Because of non-linearities in the control functions, such as motor torque limits, we

are unable to find an analytical solution for the center-of-mass motion of our force

controlled robot. However, we are able to generate an approximate numerical

solution using MATLAB’s ordinary differential equation solver. The parameter

values chosen for these experiments make calculating a numerical solution slow

when using ODE45, so we simulate our experiments using MATLAB’s ODE15s

solver, which is designed for differential equations too stiff for the ODE45 solver.

Our intention is to demonstrate a concept with as many implementation details

abstracted away as possible. During simulation we switch between flight and stance

models. Control is embedded within these models such that motor torques are

generated synchronously with solver iterations. This prevents our model from being

limited by a realistic sampling frequency. Although we partition a bounce into three

stages, the fall and rise stages are described by the same model of a mass in free-fall.

Event detection is used to determine instants of leg touchdown, liftoff and maximum

height. As events occur, our simulation transitions from fall-to-stance, from

stance-to-rise and from rise to the next hop respectively. Along the way, output from

the ODE15s solver is accumulated. After three simulated hops, the center-of-mass

trajectories, toe-force profile and motor movement are plotted as functions of time.



Chapter 4

Controller

We take the idea behind the ARL-Monopod II, a SLIP model hopper, a step further

by actively controlling the passive dynamics of our system to accommodate for

ground disturbances. Our proposed model simplifies upper level control by

maintaining a regular cyclic center-of-mass trajectory during external disturbances

as if the model were hopping vertically on a flat rigid surface. Disturbances are

handled by low level controllers, leaving the upper-level controller free to

concentrate on other tasks.

In general, our simulation behaves like a simple spring-mass model without

interference from active controllers. The only time active control plays a role in our

simulation’s performance is when a ground disturbance is encountered.

During undisturbed hopping we expect our model’s motor to perform zero work.

Our model behaves like its equivalent passive spring-mass system under ideal

conditions. Our model’s spring exerts the work required to decelerate and

re-accelerate the system after leg touchdown at no cost to our system. We actively

actuate our leg in the presence of ground disturbances. This allows our robot to

follow the toe force profiles, and maintain the same center-of-mass movement as its

equivalent passive system bouncing on a flat, rigid surface.

Toe force is determined from the deflection of the series spring. The controller

generates motor torques by combining closed-loop feed-back torques. Our robot

attempts to match its toe force profile with the toe force profile of its ideal,

13



CHAPTER 4. CONTROLLER 14

undisturbed passive dynamics, which we model as a point mass bouncing on a

spring.

Force control using series elastic elements, provides disturbance rejection. Our

force-controlled, spring-mass model is schematically the same as MIT’s Series Elastic

Actuator[11]. However, we use a much larger spring that is used for both energy

storage, and as part of the natural dynamics of the system. Since we attempt to

match our model’s toe force profile to that of an equivalent undisturbed spring-mass

model, its center of mass movement approximates that of the undisturbed model.

When our model encounters an unexpected change in ground height, the leg quickly

extends or retracts such that the phase and amplitude of the toe force profile match

those of the undisturbed passive dynamics. When our model encounters an

unexpected change in ground stiffness, the leg extends gradually during stance.

We actively control spring deflection, which corresponds to toe force. In simulation

we assume an ideal linear spring with known spring coefficient, such that the spring

force may be easily calculated from the spring deflection. Although our physical

robot uses fiberglass leaf springs with non-linear performance, we can generate

lookup tables to approximate spring force as a function of spring deflection. The

relationship between spring force and deflection is of no significance to our

controller, as long as the spring force can be determined from measuring the spring

deflection.

The controller attempts to match the model’s toe force with the force profile that

would be generated by an ideal, undisturbed spring-mass system. To accomplish

this goal, the motor torque is calculated by combining torques from three

independent controllers. This way, the leg spring exhibits all of the robot behavior,

and the motor does no work, when there are no external disturbances. The motor

torque, τmotor, is calculated as follows,

τmotor = τcompensate + τerror + τretract.

The first controller generates a torque, τcompensate, to exactly balance the torques

applied by the spring on the motor shaft, as shown in Fig. 4.1. This allows the
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second controller to treat the motor as an independent inertia and control its

position through basic PD control, applying τerror based on the error between a

desired motor position and its measured position. A third controller generates a

torque, τretract, that returns the leg to its initial length by resetting the motor

position after liftoff.

When our model senses that it has left the ground, this third controller uses a

second PD controller to return the leg to its original length. Our model responds to

ground disturbances by actuating its leg, which leads to changes in leg length and

motor velocity at lift-off. Without active motor position control during flight, our

model could touchdown unexpectedly, or with the motor already spinning. If either

of these scenarios occur, the result is a large amount of wasted energy and deviation

from the equivalent passive model. Large motor torques are needed to rapidly

actuate the leg when an unexpected touchdown or touchdown with motor velocity

occurs.
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Chapter 5

Experiments

We compare, in simulation, a passive spring-mass model hopping vertically with our

force-controlled spring-mass model. Both are subject to disturbances in ground

height and ground stiffness. We expect the actively controlled system to show better

disturbance rejection, while still utilizing passive dynamics to minimize necessary

motor work. On a rigid, flat surface the passive dynamics of our model give it the

same behavior as the simple spring-mass model. However, in the real world the

ground is rarely ideal, and we therefore introduce active control to accommodate for

ground disturbances. The ground disturbances we investigate are unexpected drops

in ground height and changes in ground stiffness. To better demonstrate the

feasibility of disturbance rejection on our model in simulation, we choose somewhat

arbitrary, but realistic values for a moderately-sized robot using a commercially

available motor.

The first type of disturbance we investigate is a sudden decrease in ground surface

during the flight phase. For this experiment the ground height unexpectedly drops

by 5cm after one undisturbed hop. There are no “sensors” that allow the model to

change its control strategy, it has no forewarning of this change in ground surface.

The model then takes one hop on the lower ground surface, before the ground

surface returns to its regular height for a third hop. The model is restricted to

movement on the vertical axis, and simulation results are plotted as functions of

time. We subject the standard spring-mass model to the same disturbance, and use

17
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its performance as a baseline for comparison to evaluate the disturbance rejection

ability of our force-controlled model.

The second type of ground disturbance we investigate is a decrease in ground

stiffness. For this experiment the ground unexpectedly changes from being perfectly

inelastic to behaving like an ideal spring, with a spring coefficient of 10kN/m. As

the model touches down, the ground depresses proportionately to the model’s toe

force. The net result is that the model experiences a spring stiffness equal to the

series combination of its leg spring with the ground stiffness.

parameter value description

y0 22.75cm initial CoM height

ygnd(t) 0 or −5cm ground heights

m 10kg robot mass

I 1 rad
N ·m·s2 reflected

motor inertia

r 40cm transmission

output radius

G 17.25 : 1 transmission

gearing ratio

τlim ±25N ·m motor torque limits

θ0 0 initial motor position

k 10kN
m

robot spring

coefficient

kgnd(t) 10kN
m

or ∞ ground spring

coefficients

ls 10cm unstretched robot

spring length

la 5cm initial actuator length



Chapter 6

Simulations

We test the disturbance rejection ability of our force-controlled model against the

standard spring-mass model in simulation. We expect ground disturbances to result

in a temporary change in hopping height and a permanent shift in hopping phase

for the standard spring-mass model. However, we expect our force-controlled model

to accommodate for ground disturbances, and to closely follow the toe force profiles

and center-of-mass trajectory of the undisturbed system.

6.1 Ground Height Disturbance

For the standard spring-mass model, variations in ground height affect the toe force

profile and center-of-mass trajectory, as illustrated in Fig. 6.2 and Fig. 6.1

respectively. When the spring-mass model encounters a drop in ground height, it

remains in free-fall for longer than if the ground had been at its previous height.

Since the system remains in free-fall for longer, it touches down with greater

velocity, and the toe force profile exceeds that of the undisturbed model. During

stance, the model behaves like a spring-mass oscillator. The natural frequency for a

spring-mass oscillator is independent of initial conditions, and therefore, the

duration of the stance phase is not affected by changes in ground height. However,

the passive model touches down later when it encounters a drop in ground height so

it must also lift-off later. The net result of a temporary drop in ground height is a

19
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Figure 6.1: Comparison between the center-of-mass trajectories of the standard,
vertically-hopping, spring-mass and force-controlled models encountering an unex-
pected decrease in ground surface.

permanent shift in hopping phase for the simple model.

In contrast to the uncontrolled spring-mass model, the toe force profile for the

force-controlled spring mass model is roughly maintained despite changes in ground

height. When the force-controlled spring-mass model encounters an unexpected

drop in ground height it begins to follow a force trajectory. Because the ground

provides no reaction force against the toe, the leg accelerates towards the ground

until it makes contact, as shown in Fig. 6.3. The center of mass trajectory depends

upon the force profile through the double integral of the toe force. Unexpected

changes in ground height do not significantly affect the toe force profile, and

therefore, reduce deviation between the center-of-mass trajectory for the
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Figure 6.2: Comparison between the toe force profiles of the standard, vertically-
hopping, spring-mass and force-controlled models encountering an unexpected de-
crease in ground surface.

force-controlled model and the equivalent, undisturbed, passive system as compared

to the uncontrolled spring-mass model subjected to the same experiment.
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6.2 Ground Stiffness Disturbance
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Figure 6.4: Comparison between the center-of-mass trajectories of the standard,
vertically-hopping, spring-mass and force-controlled models encountering an unex-
pected decrease in ground stiffness.

For the standard spring-mass model, variations in ground stiffness affect the

center-of-mass trajectory, as shown in Fig. 6.4. When the spring-mass model

encounters a decrease in ground stiffness, its spring combines in series with the

ground spring. The equivalent leg stiffness is less than the leg stiffness of the model

alone, so the natural frequency for the equivalent spring-mass oscillator is decreased.

The duration of the stance phase therefore increases when the ground compliance

increases. However, the spring work over the stance phase remains constant, so the

peak force decreases, as shown in Fig. 6.5, as the length of stance increases, such
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Figure 6.5: Comparison between the toe force profiles of the standard, vertically-
hopping, spring-mass and force-controlled models encountering an unexpected de-
crease in ground stiffness.

that the total energy of the system remains constant.

In contrast, the force controlled model maintains the toe force profile of the

equivalent undisturbed spring-mass model despite changes in ground stiffness. The

force controlled model compensates for the decrease in its equivalent leg stiffness by

actuating the leg during the stance phase, refer to Fig. 6.6. During the first half of

the stance phase, the leg gradually extends, increasing the rate of spring

compression. The leg is then gradually retracted during the second half of the

stance phase causing the spring to decompress more rapidly. The result of this leg

actuation is a toe force profile that approximates the toe force profile of the passive

undisturbed model. As with the ground height disturbance experiment, unexpected

changes in ground stiffness do not significantly affect the center-of-mass trajectory,

because the center-of-mass trajectory is directly related to the toe force.
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Figure 6.6: Motor torque, angle, velocity, power, and spring power for the vertically-
hopping, force-controlled model encountering an unexpected decrease in ground stiff-
ness.



Chapter 7

Conclusions and Future Work

We have shown in simulation that active force control combined with a correctly

sized leg spring yields good disturbance rejection, while maintaining the economy of

a completely passive system. The toe force profiles for our force-controlled

spring-mass model closely follow those predicted for the equivalent spring-mass

system bouncing vertically on a flat rigid surface. Because our simulated robot

closely replicates the toe force of its inherent passive dynamics, its center-of-mass

movement approximately follows that of the ideal system bouncing vertically on a

flat, rigid surface, despite unexpected changes in ground height and ground stiffness.

The uncontrolled spring-mass model does not actively respond to unexpected

ground disturbances, but our force-controlled model is able to compensate for

external perturbations. When the uncontrolled spring-mass model encounters a

decrease in ground surface, more of the model’s gravitational potential energy is

converted into kinetic and finally spring potential energy. In contrast, our robot

extends its leg rapidly at the expected instant of leg touchdown maintaining a toe

force profile and center-of-mass trajectory that is the same as for the standard

spring-mass model. When the uncontrolled spring-mass model encounters

unexpected ground compliance, the peak force decreases, while the duration of the

stance phase is prolonged, such that the total energy of the system remains

constant. Our force-controlled model is able to compensate for ground stiffness

disturbances by gradually extending its leg during the first part of stance, and then

26
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retracting it during the second part such that a toe force profile and center-of-mass

trajectory are maintained.

Our simulation has uncovered some unexpected control issues related to using a PD

controller on spring force. When our robot encounters a drop in ground height,

there is a delay between when toe touchdown is expected to occur, and when

ground contact is actually achieved. As the leg accelerates towards the ground, the

actual toe force of our robot overshoots the desired toe force, despite our efforts to

critically damp the system.

Without an integral controller there is some steady state error that decreases, but is

never eliminated, as the proportional control coefficient is increased. This error

causes the magnitude of the actual toe force profile to never quite reach the desired

level. This small error in the toe force integrates over the stance phase of a hop for

the ground stiffness experiment causing a gradual loss in center-of-mass height. This

can be compensated for by measuring the lost energy and adding it back by scaling

the force profile, or some other method.

Figure 7.1: Single-joint force controlled actuator with rotating arm.

We will validate these simulation results on a new prototype. We have designed and

built a rotating arm, force-controlled actuator, Fig. 7.1. We are constructing a

fixture that will convert the torque output of this rotational system into a linear

force. We will then attempt to replicate the hopping behavior and disturbance

rejection demonstrated in simulation.
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We have begun working on a design of a two-joint monopod named ATRIAS, see

Fig. 7.2, adapted from the single joint platform. The goal of this two

degree-of-freedom system will be to add disturbance rejection capability to the

already proven SLIP model. Once we have demonstrated our design in simulation,

we will attempt to extend our controller to the physical system. The parameter

values chosen for simulations included in this paper roughly match values taken

from our design for ATRIAS.

Figure 7.2: Current ATRIAS design. Rendering of monopod with two force-controlled
joints and series compliance.

The long-term goal of this work is to design, simulate and build a biped capable of

efficient and robust dynamic walking and running gaits. Our biped will be

composed of two ATRIAS legs joined at the hip. We hope to be able to match the

ground disturbance rejection performance of the single-legged platform.
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