AN ABSTRACT OF THE THESIS OF

<u>Robert T. Parker</u> for the degree of <u>Master of Science</u> in <u>Forest Resources</u> presented on <u>August 24, 2000.</u> Title: <u>Soil Compaction in Central Oregon Volcanic Ash Soils</u> and the Subsequent Effects on Residual Ponderosa Pine Growth.

Abstract approved:

Steven D. Tesch

Although previous research in central Oregon has shown soil compaction can lead to a decline in site productivity, the subject is not understood well enough to predict the growth changes resulting from a given level of soil compaction. A study was initiated to relate the basal area, height and volume periodic annual increment (PAI) of residual, 70 to 80 year-old ponderosa pine (*Pinus ponderosa* Laws.) trees to compacted soil conditions, as measured by soil strength.

This study was superimposed on the USDA Forest Service Long Term Site Productivity Project research plots in Central Oregon and thus constrained by its design. Soil strength and tree growth were measured on six of these plots. Three plots had been thinned with a mechanical harvester and the stems removed with a grapple skidder from the plots (Complete Removal). Three other plots were thinned to similar stocking levels with the harvester, but the stems were left in place to minimize disturbance (No Removal). No true control existed for these installations as both the Complete Removal and No Removal plots were compacted by the harvester. A recording penetrometer was used to determine soil strength along systematically spaced grid points, to a depth of 24 inches. Each tree within each plot was mapped and measured for total height, diameter at breast height, and radial growth increment at diameter breast high (DBH).

The soil conditions around each residual tree were evaluated using 15, 30-, and 45-foot radius plots. The penetrometer readings that fell within each of these plots were averaged to represent the overall soil conditions affecting each tree. The Complete Removal plots had significantly higher soil strength conditions than the No Removal plots ($p \le 0.05$). The percent increases in average soil strength of the Complete Removal plots over the No Removal plots were 39, 42 and 44 percent for the 15-, 30- and 45-foot radius plots, respectively.

Potential associations between basal area, height and cubic volume PAI growth rates and replication, treatment, soil strength and other covariates were explored with general linear models. Soil strength was not a significant factor for basal area PAI or for volume PAI at the 30- and 45-foot radius. Total height and cubic volume PAI at the 15-foot radius declined significantly ($p\leq0.05$) with increasing soil strength.

The volcanic ash soils did compact as a result of the low level of mechanical thinning activity conducted on the study sites. Tree growth was statistically associated with increased soil compaction. Lack of a true control prevents full evaluation of the mechanical harvesting-related compaction; however, skidding resulted in a measurable increase in soil compaction in the Complete Removal plots. Forest management practices that lead to frequent entries appear likely to compact these volcanic ash soils. Depending on logging patterns, large areas could be impacted without careful planning. It appears that compaction effects are long-lasting and cumulative, thus the risk of reducing long-term site productivity is a concern. [©]Copyright by Robert T. Parker August 24, 2000 All Rights Reserved

SOIL COMPACTION IN CENTRAL OREGON VOLCANIC ASH SOILS AND THE SUBSEQUENT EFFECTS ON RESIDUAL PONDEROSA PINE GROWTH

by

Robert T. Parker

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of Master of Science

Presented August 24, 2000 Commencement June 2001 Master of Science thesis of Robert T. Parker presented on August 24, 2000.

APPROVED:

Major Professor, representing Forest Resources

Head of Department of Forest Resources

Dean of Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request.

Robert T. Parker, Author

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude for the steady encouragement and advice offered by my advisor, Steve Tesch, without whose instruction and guidance this project may never have been completed.

Many thanks also to Pat Cochran for his invaluable assistance with gathering and analyzing the data for this study.

The thoughtful assistance and support provided by Paul Adams and Dave Marshall was very helpful and greatly appreciated.

I would also like to thank Ann Kiser and Lisa Jeffryes for their assistance with the spatial analysis aspects of the study.

Finally, my greatest thanks go to my long-suffering and supportive family, without whom this exercise would have been meaningless.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 LITERATURE REVIEW	3
2.1 Central Oregon Volcanic Ash Soil Characteristics	3
2.2 Susceptibility to Compaction	3
2.3 Timber Harvesting and Compaction	5
2.3.1 Logging Method Comparisons2.3.2 Associated Logging Activities2.3.3 Timber Harvesting and Erosion	8
2.4 Alterations To Soil Physical Properties from Compaction	10
2.5 Measuring Soil Compaction	13
2.6 Effects of Compaction on Tree Growth	15
2.7 Recovery from Compaction Through Natural Processes	18
2.8 Management Options for Avoiding or Reducing Compaction	20
2.8.1 Designated Skid Trails to Minimize Compaction2.8.2 Organic Matter Retention to Minimize Compaction	
3.0 STUDY OBJECTIVES	24
4.0 STUDY SITE HISTORY	25

TABLE OF CONTENTS (Continued)

5.0 STUDY SITE DESCRIPTION	31
6.0 STUDY METHODS AND PROCEDURES	36
6.1 Study Design	36
6.1.1 Soil Strength Measurements6.1.2 Tree Measurements6.1.3 Tree and Soil Spatial Analysis	39
6.2 Statistical Analysis	45
7.0 RESULTS	48
7.1 Soil Strength by Treatment T-Test Analysis	50
7.2 Growth Effects Analysis	51
7.3 Predicting Growth Effects	52
7.4 Tests For Independence	54
7.5 Graphical Representation of Predicted PAI Growth as a Function of Soil Strength	56
8.0 DISCUSSION	69
9.0 CONCLUSION	80
LITERATURE CITED	82
APPENDIX	93

LIST OF TABLES

Table Page		
1.	Schematic matrix of plot design for the Bend Long-Term Site Productivity study	7
2.	Site description information for the Swede Ridge, Sugarcast and East Fort Rock study areas	2
3.	Predicted PAI growth results per treatment and replication, contrasting the differences between the lowest and highest soil strength conditions found per plot	.9
4.	Two-sample T-Tests for soil strength by treatment5	0
5.	Probability of higher F-values from the analysis of covariance for PAIs of Basal Area, Height and Volume for individual trees	2
6.	Adjusted r-squared values from the multiple linear regression models	4
7.	Pearson correlation analysis for the 30-foot radius	5
8.	Increases in soil strength with number of passes and depth7	5

LIST OF FIGURES

Fig	<u>Page</u>
1.	Typical whole-tree harvest skid trail after 3 years
2.	Skid trail on LTSP Complete Removal plot after 5 years
3.	Sampling design for penetrometer measurements
4.	Schematic diagram of penetrometer points and tree locations42
5.	Schematic diagram of individual tree plots within a study plot44
6.	The relationship between basal area PAI and soil strength at a radius of 15 feet 57
7.	The relationship between basal area PAI and soil strength at a radius of 30feet58
8.	The relationship between basal area PAI and soil strength at a radius of 45 feet 59
9.	The relationship between height PAI and soil strength at a radius of 15 feet61
10.	The relationship between height PAI and soil strength at a radius of 30 feet62
11.	The relationship between height PAI and soil strength at a radius of 45 feet63
12.	The relationship between volume PAI and soil strength at a radius of 15 feet65
13.	The relationship between volume PAI and soil strength at a radius of 30 feet66
14.	The relationship between volume PAI and soil strength at a radius of 45 feet67

Soil Compaction in Central Oregon Volcanic Ash Soils and the Subsequent Effects on Residual Ponderosa Pine Growth

1.0 INTRODUCTION

The health of forest lands in the United States and their productivity for aesthetic, environmental and forest product values is coming under increasing attention from land managers and the public alike. The influence of soil conditions on long-term forest productivity is beginning to be recognized as a significant consideration and has led the USDA Forest Service, for example, to implement a long-term, nation-wide research program to study soil and forest interactions (Powers 1990). Timber harvesting practices have been shown to affect large areas of soil, particularly when ground-based harvesting equipment is used (Snider and Miller 1985). Increasing fiber values, an emphasis on stand density control, uneven-aged management and improving machine technology make it possible to economically enter stands at relatively young ages and increase the frequency of harvest entries over time. More frequent entries and widespread machine traffic can cause large-scale and significant alterations to soil conditions, such as decreased porosity, decreased aeration, displaced or diminished organic matter and increased soil strength. In extreme cases, ground-based commercial thinning operations have been shown to result in machines traveling over 50 percent or more

of a harvest unit within a single entry (Zaborski 1989). Research has shown that the volcanic ash soils of Central Oregon are readily compacted by logging equipment and remain compacted for long periods of time, leading to reduced growth and survival of both seedlings and mature trees (Froehlich 1979, Froehich and McNabb 1984).

Powers (1990) noted, beyond conceptual models, we lack a specific understanding of what a given soil change means in terms of its long-term effect on productivity. Uncertainty and skepticism about the effects of management activities on forest soils and productivity will persist until we establish and maintain studies that will help us document and understand those effects (Miller and Hazard 1987).

The purpose of this study is to determine whether mechanical thinning operations lead to soil compaction and whether the basal area, height and volume periodic annual growth rates of ponderosa pine (*Pinus ponderosa* Laws) are influenced by compacted soil.

2.0 LITERATURE REVIEW

2.1 Central Oregon Volcanic Ash Soil Characteristics

In the Intermountain portion of the western United States, extensive areas of forestland occur on volcanic ash soils, including sites examined in this study (Geist et al. 1989). These ash-derived soils range from very fine-textured, fine-ash dominated material to coarse, well-graded pumice. Fine ash soils are noted for their very low natural bulk densities, averaging 43.6 lbs/ft³ (Geist et al. 1989). The volcanic ash soils common throughout Central Oregon are also noted for their low bulk density, high porosity, low organic matter content, low shear strength, nonplasticity and well-graded surface horizons (Cullen et al. 1991). These soils are young (7,000 to 10,000 years old), have poorly developed horizons and are relatively infertile (Youngberg and Dyrness 1963). Tree growth on these soils shows positive responses to nitrogen, phosphorus and sulfur (Cochran 1972, 1978).

2.2 Susceptibility to Compaction

Due to the low bulk densities or low weight to volume ratio typical of northwest soils, they tend to be of relatively low strength and thus are susceptible to compaction under the influence of external loads (Froehlich and McNabb 1984, Geist and Cochran 1991). The very low bulk density of volcanic ash soils has often resulted in the soils being considered as among the least susceptible soils to compaction from logging and other disturbances (McNabb 1981). However, all soils, regardless of their initial densities, will compact and their soil strength will increase in order to support heavy, non-natural loads imposed on them. Theoretically, they should compress to the same strength if subjected to the same load, although the resulting bulk densities do not have to be the same (McNabb 1981). Soil strength, or resistance to compaction and other applied energy, is dependent on several factors, such as particle size distribution, particle size shape or roughness, percent organic matter and initial porosity (Bodman and Constantin 1965, Cruse et al. 1981, Froehlich 1980, Howard et al. 1981). In general, soils that have highly graded particle size distributions, coarse particle textures, low organic matter content and high initial porosities are most susceptible to compaction, which characterize central Oregon volcanic ash soils very well.

Determining the extent to which a particular soil will compact is not a simple process. It is dependent on a complex interaction of water potential, duration of the applied external load, kneading action (resulting from the actions of tire treads and tractor tracks over the ground), and vibration. Vibration can produce much more compaction in coarse-textured soils than an equivalent static load (Larson et al. 1980, Vomocil et al. 1958, Dexter and Tanner 1974, Soehne 1958, Chancellor 1977, Froehlich and McNabb 1984).

The application of an external load increases bulk density linearly with the logarithm of the force applied, although the slope of the line tends to be a unique

property of a particular soil (Froehlich and McNabb 1984). Moisture effects susceptibility to compaction but its influence is not uniform among different soil types. In general, moisture acts as a lubricant between soil particles, resulting in reduced friction between particles so that a given force results in increased compaction (Raney et al. 1955). Thus, some soils are more susceptible to compaction at high moisture levels than when dry (Soehne 1958). The influence of soil moisture seems to be dependent on the distribution of particle size (Froehlich and McNabb 1984). Some soils, such as Central Oregon volcanic ash, compact readily at all moisture regimes (Raghaven et al. 1977, Froehlich et. al 1980).

2.3 Timber Harvesting and Compaction

Timber harvesting and related activities, including skidding logs, piling slash and mechanical site preparation with ground-based equipment have the capacity to introduce compactive external loads across harvest units. Selective logging in the Intermountain West has contributed to extensive compaction of the forest soils (Snider and Miller 1985). The frequency of skid trails in commercial thinnings can be quite high and has been found to account for 20 to 35 percent of the harvest unit surface area for a single entry (Adams 1991). Where repeated entries occur, skid trails can cover 80 percent of the surface area (Froehlich et al. 1981). Other authors have also noted the large extent to which ground-based equipment can influence soil characteristics through harvesting. Laing and Dashall, (1983) noted 42 percent of an area surveyed in eastern Washington had been impacted by machinery. Murdough and Sones (1984) found 38 percent of an area in the Oregon Cascades had experienced machine impacts. Zaborski (1989) found 54 percent of a study area in Eastern Oregon had been disturbed and 25 percent of the area had been impacted to detrimental levels. Alterations to soil physical properties, particularly bulk density and soil strength, occur quite quickly as activities are conducted. For example it has been found that 90 percent of all the compaction that ultimately occurred in a skid trail was created from the first four machine passes (Sidle and Drilca 1981). Among the variables that can influence compaction, the number of passes is the most important variable (Sidle and Drilca 1981, Weaver and Jamison 1951).

2.3.1 Logging Method Comparisons

Compared to ground-based systems, other logging methods have the capability to remove harvest volumes with lower levels of ground disturbance. In general, cable logging has much less impact than ground-based vehicles (Auerlich et al. 1974, Krag et al. 1986, Allen et al. 1999). However, the disadvantage is that it costs significantly more than ground-based vehicles and is less practical on gentle ground (Powers 1974). Economically, it has been estimated that a 55 percent increase in logging costs over traditional ground-based logging costs is justifiable when the traditional logging produces maximum compaction levels (Stewart et al.

1988). However, since using cable systems on gentle ground can be twice as expensive as ground-based systems, using this approach may not be cost-effective (Stewart et al. 1988). In one survey of differing logging methods in Idaho, it was found that tractor logging disturbed on average 30 percent of the area, while ground cable systems averaged 23 percent, skyline cable systems 9 percent, and helicopter logging 4 percent (Megahan 1980). Horse logging was found to disturb only 11.8 percent of the area within the harvest unit (Garrison and Rumell 1951).

Combinations of different systems have been experimented with. In one study, a mechanical harvester and forwarder were compared to a harvester and skyline combination (Allen et al. 1999). The harvester and forwarder produced more soil compaction but the harvester and skyline system produced more soil While mechanical harvesters and skyline systems still create site disturbance. impacts, the degree of soil disturbance and compaction may not cause long-term environmental problems (McIver 1995), and may present a reasonable trade-off to traditional ground-based tractor systems. The main variables that influence compaction from logging are soil type, soil moisture, vehicle weight, depth of litter covering the soil and number of trips by the machines (Froehlich 1978). Other variables that should be considered when examining compaction are the compactive effects of the logs being skidded, the vehicle's center of gravity, ground slope and the influence of both the static and dynamic forces being created. Static ground pressure in itself is not a good predictor of compactive force (Froehlich 1980). Soil compaction is related to applied pressure, but ground pressure distribution under load is much different from static pressure, therefore the weight per contact area is not equal to the compactive force (Lysne and Burditt 1983). As an example, it has been shown that when comparing caterpillar-type tractors and rubber-tired skidders of equal static ground pressure, the tractors exerted as much as 50 percent greater dynamic pressure than the skidders (Froehlich and McNabb 1984, Clayton 1990). Even vehicles with comparatively low gross weights can cause significant compaction through the effects of vibration (Lull 1959).

2.3.2 Associated Logging Activities

Other harvest-related activities, such as piling slash and mechanical site preparation, can also introduce compactive forces to a site. Bulk density was found to increase after compaction that resulted from site preparation in northern Idaho, particularly if little logging slash was left on the soil surface (Page-Dumroese 1993). Also, as the intensity of site preparation increased, overall bulk density increased significantly, and to greater depths, in the soil profile. An additional negative impact from machine piling of slash is that large amounts of topsoil can be moved on the site and placed into the piles of slash (Glass 1976). Machine piling has been shown to result in large-scale losses and/or redistribution of organic matter (Minore and Weatherly 1988).

2.3.3 Timber Harvesting and Erosion

Soil compaction and displacement can have an impact on the erodibility of forest soils, although the results can be quite variable, depending on factors such as soil type, slope and other conditions. In some instances, the increased densification of a soil can make it more resistant to erosion since the soil particles are more resistant to movement (Greacen and Sands 1980). In other instances, soil compaction and disturbance can have the opposite effect and lead to increase in erosion due to the loss of organic matter and topsoil, decreased soil porosity and increased surface runoff (Dyrness 1965, Shetron et al. 1988). Skid trails and landings that have been compacted also frequently experience a considerable amount of soil displacement caused by the machinery. There may be some benefits to a minor amount of soil displacement and exposure of mineral soil, such as the preparation of a seedbed and reduction of competing vegetation. However, it may also lead to accelerated erosion (on steep ground), loss of productivity and disruption of the biological processes important to nutrient cycling (Clayton 1990). Finally, heavy equipment operations not only compact and displace the soil, but they also alter the soil surface through mixing and changing the thickness of the A horizon, possibly leading to increased erosion (Helms and Hipkins 1986).

2.4 Alterations to Soil Physical Properties from Compaction

Soil compaction is a general term that can be regarded as an overall description of the condition of the soil following various machine operations (Froehlich and McNabb 1984). Through compaction, many of the physical properties of a forest soil can be changed and, as a result of those changes, the growth dynamics of the forest can be altered substantially as well. Some of the significant properties that are altered through compaction are bulk density, soil strength, infiltration, aeration, macroporosity, hydraulic conductivity and cation exchange capacity.

Bulk density, or the weight to volume ratio of a soil, is a common measure of soil compaction and is readily increased as through logging activity. Forest soils typically have a low initial bulk density and therefore bulk density can increase substantially from ground-based harvest activities (Dickerson 1976, Hatchell et al. 1970, Froehlich 1978, Miles 1978). Bulk density increases proportionally with the square root of the number of machine passes and it has been noted that most of the damage occurs within the first four to six passes (Froehlich 1980, Resinger et al. 1988, Gent et al. 1984). Compaction forces the soil particles closer together and the fine particles fill in the larger pores, thus densifying the soil (Lull 1959). Soils have been shown to increase in bulk density, ranging from 16 to 40 percent (Allbrook 1986, Davis 1992, Miles 1976, Froehlich 1980, Lull 1959). As ground-based harvesting activities increase, bulk density increases to greater depths in the soil profile (Page-Dumroese 1993).

Soil strength may be defined as the ability to support an externally imposed load or alternatively, as the ability to resist penetration, as in the case with tree roots. Soils will compress under external loads until the point that they develop sufficient strength to support the load and resist further compression, regardless of natural or compacted condition (Froehlich 1979, McNabb 1981). Increases in soil strength are associated with the reduction in the number of pore spaces greater than 10 um in size and in general, the larger the pores, the more readily they are diminished by compaction (Allbrook 1985).

Soil compaction can greatly reduce soil porosity (Dickerson 1976, Moehring and Rawls 1970) and similarly lowers hydraulic conductivity (Gent et al. 1984, Reinhard 1964). Infiltration rates have been shown to decline by 40 times when soil was compacted from 2.16 to 2.70 oz./in³ (Chancellor 1977). Infiltration rates may be the soil characteristic which is most influenced by compaction. Tractor skid trails have been shown to have a 53 percent drop in macropores with a corresponding 92 percent drop in permeability requiring 619 times longer for water to enter the A horizon and 20 times longer to enter the B horizon (Lull 1959). Froehlich (1980) found that following 20 passes over a tractor skid trail, the soil macroporosity had dropped by 43 percent, while hydraulic conductivity and infiltration rates decreased 80 percent and 78 percent, respectively. As porosity and infiltration rates are reduced, the potential for increased runoff rises, leading to the possibility of less water penetrating the soil and being available for tree growth (Dickerson 1976, Froehlich 1980).

The overall effect of compaction on moisture retention is variable, depending on the specific soil involved. Moisture retention is often higher in compacted soils but it can increase or decrease depending on the particular soil (Warkentin 1971). It appears, however, that the absolute change is relatively small and unimportant compared to the other physical property changes (Froehlich and McNabb 1984). While total water storage capacity may remain unaffected or even increase, soil compaction increases the proportion of small pores. Since the movement of water from small pores to large pores acts as a barrier to soil water availability may be reduced in compacted soil because a larger proportion of the water is held in micropore space and is held at too high of tension to be available for the plants (Chancellor 1977).

One of the difficulties with soil compaction is that it tends to be a long-term phenomenon. While the soil surface layer has been shown to return to predisturbance conditions in a relatively short period of time, at depth the soil can remain compacted for at least 40 years or more (Froehlich et al. 1985, Vora 1988). The duration of compaction depends on the degree of initial change, which in turn depends on soil texture, moisture, structure, the number of machine passes, total machine loading and operator skills (Froehlich et al. 1985, Geist and Cochran 1991).

2.5 Measuring Soil Compaction

In order to study the effects of compaction, the researcher must decide how to measure the compaction that has occurred. Preferable choices are dependent on the specific questions of interest the study focuses on, the resources available, the degree of variability in the soil parameter being studied, the physical difficulties encountered accessing and sampling a site, financial limitations and the desired sampling error (Terry et al. 1981). Some of the problems associated with measuring forest soils in the field can be the physical characteristics of a site, such as steep slopes, remote access, a high degree of spatial variability and rock content (Flint and Childs 1983). The degree of variation can be particularly challenging since the variation within an area can easily be as high as that found between different areas (Aljibury and Evans 1961). Sites with a high concentration of large stone fragments are difficult to obtain samples from and also tend to be prone to high sampling errors (Cunningham and Matelski 1968). The greatest challenge to measuring soil compaction is that soil physical properties tend to interact with one another. So the researcher must be careful when examining just one property as its behavior may vary with variation in other soil properties. Also, moving from one soil type to another soil type, those properties and their interactions may change greatly (Alexander et al. 1985).

Two common measurements of compaction are bulk density and soil strength. Bulk density, or the weight to volume ratio of a soil, is a frequently used

measure of the effects of compaction and can be measured through a variety of means, such as: paraffin clod; irregular-hole; air permeability and radiation (Howard and Singer 1980).

One of the advantages of measuring bulk density is that if it is known, then it may be possible for other soil physical properties to be expressed on a volume basis (Drew 1973). However, bulk density can be difficult to measure, especially if deeper portions of the soil profile are examined. Also, if the question of interest relates to how tree roots develop, bulk density is not directly related to the effects of compaction on root growth but rather is an association (Froehlich and McNabb 1984). Finally, while bulk density is a useful indicator of soil compaction, just recording the absolute change in bulk density may not be an appropriate avenue for assessing whether significant damage has occurred. Rather, it is probably better to depict compaction as the relative change in bulk density (Clayton 1980, Froehlich 1980).

While the change to bulk density is often used to measure compaction, soil strength, the measure of compaction used in this study, tends to be ignored. Even though the volcanic ash soils in this study have lower bulk densities than other forest soil types, it still increases in strength at the same rate as other soils when compacted (Froehlich and McNabb 1984). Soil strength does have some disadvantages as it is a secondary rather than direct indicator of compaction and it is highly variable, both from point-to-point and among measuring instruments. It is influenced by more than just compaction, such as water content and soil texture (Chancellor 1977). However, it is a direct measure of a specific soil property (strength) and it offers fast and easy measurements over extensive areas. Also, it is an indicator for soil resistance to compaction as well as a direct measure of a property affecting root growth and development (Chancellor 1977, Greacen and Sands 1980).

2.6 Effects of Compaction on Tree Growth

Soil compaction has been shown to depress tree growth and can have the effect of either temporarily or permanently reducing site productivity (Haupt 1958). The effects of compaction on tree growth are a complex interaction between soil strength, water and nutrient availability and aeration (Greacen and Sands 1980). This, combined with the inherent variability between soil types, soil conditions and vegetation in disturbed sites has led to inconsistent findings among researchers. Tree growth has been shown to respond positively following intermediate harvests in ponderosa pine (Agee and Biswell 1970). However, in tree seedlings, there can be a proportional relationship between increasing bulk density and decreasing height growth (Froehlich and McNabb 1984). Seedling growth on moderate to heavily compacted soils tended to lag progressively behind seedlings tend to have more difficulty getting established in heavily compacted soils and can experience as

much as a fifty percent height reduction compared to adjacent, non-compacted sites (Steinbrenner and Gessel 1955).

Seedlings that were grown in compacted soil had markedly shorter roots and also had less secondary root branching than seedlings growing in non-compacted soil (Pearse 1958). However, there may be some variability in the effect of compaction on different tree species (Minore et al. 1969). Lodgepole pine had the highest ranking among several northwest conifers for the ability to penetrate compacted soil. Older trees may have reduced growth rates as well. A 64-year old ponderosa pine in southwest Oregon showed reduced height growth for 17 years after the soil had been compacted (Froehlich 1979). Ponderosa pine trees growing on compacted skid trails were approximately 20 percent shorter in height than similar trees growing in uncompacted soil (Helms et al. 1986). Fifteen to 25 year old stands of ponderosa pine had a mean volume loss of 40-50 percent (Clayton et al. 1987). A 60-year-old residual ponderosa pine stand in central Oregon experienced 12 percent slower basal area growth rates up to 16 years following harvest (Froehlich 1979).

In a 26-year old loblolly pine stand (*Pinus taeda*, Linneaus 1753), there was a 13 percent reduction in height growth but a 48 percent reduction in volume growth for trees growing in compacted soil (Perry 1964). Similarly, in a 32-yearold Douglas-fir stand, trees growing on compacted soil experienced a 30 percent average height growth reduction and a 55 percent reduction in volume growth compared to trees growing in uncompacted soil (Wert and Thomas 1981). In a California study, Helms and Hipkin (1986) found that ponderosa pines growing in compacted soil had growth rates equivalent to one full site class less than trees growing in uncompacted soil, a reduction of approximately 10 - 12 percent. The Bureau of Land Management in western Oregon found that heavy compaction could result in stand-level future volume losses of 12 to 15 percent, which was considered to be unacceptable and avoidable (BLM 1983).

The reduction in growth rates seems to be a function of the percent of the root zone affected, the intensity of the compaction (total soil strength and extent through the soil column) and the extent of root damage. Damage on three sides of loblolly trees reduced basal area growth by 36 percent and on four sides the reduction was 43 percent (Moehring and Rawls 1970). Individual tree growth normally increases after thinning but in one example, 60 percent of the western hemlock (*Tsuga heterophylla*, Rafinesque) trees growing in heavily compacted areas actually had lower growth rates after thinning than before (Forehlich and Berglund 1976).

The decreases in growth may be partially the result of increasing soil strength causing decreased tree root growth due to the increased resistance to penetration (Sands et al. 1979). Soil strength tends to increase geometrically with increasing bulk density and tree root elongation has been shown to decrease geometrically with increasing soil strength (Sands et al. 1979, Greacen and Sands 1980). Also, mycorrhizal fungi penetration through the soil decreases significantly with increasing soil strength (Skinner and Bowen 1974). Fine roots can penetrate

compacted soil up to 1015.3 pounds per square inch (PSI) and roots also tend to differentially select areas of lower soil strength and so can follow cracks and voids through otherwise impenetrable soil (Greacen and Sands 1980). However, tree root elongation essentially ceases at soil strength levels exceeding about 435.1 PSI (Sands et al. 1979), a level easily exceeded in well-compacted skid trails and landings.

Extensive site preparation and subsequent compaction has also been observed to reduce commercial tree growth (Amaranthus et al. 1996). A number of interrelated factors may influence the observed growth differences, such as compaction, root damage and loss of organic matter. Root penetration can be severely restricted in soils where compaction has increased soil strength to levels exceeding 435.1 PSI (Sands et al. 1979). Compaction reduces the pore space needed for root penetration, leading to a reduction in the production of feeder roots where mycorrhizae form. The ability of seedlings to rapidly form root tips and mycorrhizae is critical for establishment on harsh sites (Amaranthus et al. 1996). Microbial immobilization might be slowed down due to reductions in aeration following compaction as well (Miller and Sirois 1986).

2.7 Recovery From Compaction Through Natural Processes

Although compaction may lead to declines in productivity, these effects are reversible through natural processes, given enough time for recovery (Froehlich et

al. 1985). The time involved may be fairly short as was seen in a Minnesota study where the soil recovered completely from compaction after just one winter, although the area had been harvested lightly and in dry soil conditions (Mace 1971). Other studies also show relatively fast recoveries, but frequently only the surface layers have been examined while the deeper soil recovers much more slowly (Thorud and Frissel 1976, Miles 1975). In the Oregon Coast Range, the soil bulk density at 7.9 and 11.8 inch depths was significantly higher than adjacent soil 32 years after logging, although the surface had apparently recovered (Wert and Thomas 1981). In North Carolina, skid trails were found to take at least 40 years to recover to pre-disturbance conditions and in Mississippi the recovery period was estimated to require at least 12 years in sandy soils (Perry 1964, Dickerson 1976). In another study, bulk density at 9.84 inches had not changed appreciably after 40 years time (Powers 1974). Reduced productivity losses from the displacement of soil are more difficult to quantify but may actually result in irreversible long-term impacts (Harvey et al. 1989).

The natural processes of freezing and thawing are thought to assist in the recovery of soils from compaction, but in many forested areas of central Oregon, deep snow cover early in the winter limits the amount of recovery. Also, the soils often have less than 20 percent clay content by weight, so very little shrink-swell action takes place (Page-Dumroese 1993). Sandy soils, in particular, may be less likely to recover from compaction because the processes of freezing and thawing are less effective (Greacen and Sands 1980). Freezing and thawing are thought to

not have much influence because water only expands 9 percent so, depending on the exact soil moisture content, the soil itself may only expand around 3 percent (Froehlich and McNabb 1984). Frost heaving may not change bulk density as much as previously thought. The bulk density in a Minnesota cornfield had not changed after nine years time (Blake et al. 1976). Both flora and fauna can also loosen and mix soils but their effectiveness in compacted soil is probably much reduced, although biological processes for loosening soil probably increases substantially if the soil is left covered with litter to protect the roots and soil fauna (Froehlich and McNabb 1984).

2.8 Management Options for Avoiding or Reducing Compaction

Natural processes as a means of restoring soils to a pre-disturbance condition are generally not reliable or timely aids for the forest manager. However, there are a number of management options available through which soil compaction might be avoided or, if introduced, may at least be ameliorated to some degree (Sands, Greacen and Gerard, 1979, Chancellor 1977, Gilmour 1977, Rice and Datzman 1981, Page-Dumroese 1991, Jurgensen et al. 1991, Donnelly and Shane 1986, Geist et al. 1989, Froehlich 1979, Davis 1992).

The most reliable means of eliminating or reducing soil compaction is to be diligent that it does not occur in the first place, which may be accomplished in several ways. As noted above, when utilizing ground-based skidding machines on gentle ground, very high proportions of an area can be disturbed from machine travel within a single entry. And since a high percentage of the change to soil density occurs within the first few passes with a tractor, it becomes imperative that the flow of equipment over the ground be carefully controlled and the number of entries minimized (Kroger et al. 1983).

2.8.1 Designated Skid Trails to Minimize Compaction

Designated skid trails constrain traffic to just a few trails, which then receive a high impact, but the disturbance is restricted to a small percentage of the area (Bradshaw 1979, Garland 1993). Also, multiple harvest entries result in additive growth losses over time due to increases in the percentage of the area being impacted by skid trails (Froehlich 1979, Froehlich and McNabb 1984). All skid trails should be regarded as a permanent part of the total transportation system, requiring careful thought and planning to minimize costs as well as damage to the forest resource (Garland 1993). The benefits of using designated skid trails can be substantial. Designated skid trails, combined with line pulling, resulted in only four percent of an area being disturbed compared to twenty two percent for an area without designated skid trails (Bradshaw 1979). In another study, designated trails reduced the extent of skid trail impacts by 67 percent (Froehlich et al. 1981). The effect of designated trails on volume production and costs can be variable. One

increased costs 29 percent (Bradshaw 1979). Another study (Olsen and Seifert 1984) found that the benefits of significantly reducing damage to advance regeneration and reducing the area compacted to less than 50 percent were adequate to recover the marginally increased costs.

In conjunction with designated skid trails, reducing machine travel can be greatly facilitated by falling trees in the direction of intended skid so that less movement is needed for removal (Garland 1993). In addition, the proportion of ground impacted by skidding machines can be further reduced if the skidder's winch line is pulled out to reach trees instead of driving it to each one (Bradshaw 1979).

2.8.2 Organic Matter Retention to Minimize Compaction

Another potentially effective means of reducing or minimizing compaction is to leave intact as much of the forest litter and soil organic matter as possible, including the smaller branches and tops created by the logging operations. In some harvesting systems, such as cut-to-length mechanical harvesters, the harvester strips the branches and tops the tree such that the debris forms a slash mat, which the harvester and forwarder then walk over. Keeping the machine from directly operating on the mineral soils has been shown to keep compaction to minor levels (Omberg 1969, King and Hines 1979, Shelton et al. 1988, Page-Dumroese 1993). Leaving woody residue also helps protect mineral soil from erosion (Gilmour 1977, Rice and Datzman 1981). The nutrient supply, soil microbe populations and nutrient cycling process are also facilitated by retention of the woody debris (Page-Dumroese et al. 1991, Jurgensen et al. 1991). Soil organic matter has a cushioning effect, which helps to minimize compaction (Lull 1959, Sands, Greacen and Girard 1979).

Soil compaction is considerably influenced by the level of moisture in the soil and thus needs to be considered beyond the nature of the impact itself (Sands et al. 1979). Many soils compact readily mid-way between field capacity and the wilt point, but each compaction pressure will have its' own optimum moisture content. Typically, heavy loads reach the highest increases in bulk density at low moisture content while light loads reach their highest increases in bulk density at higher moisture contents. Therefore, utilizing light equipment during dry soil conditions may be the best strategy for minimizing compact readily at all moisture regimes, so soil moisture guidelines will not be an effective management tool (McNabb 1981). In general, most forest soils will be compacted by logging equipment under both dry and wet conditions, which makes soil moisture management guidelines somewhat ineffective tools for controlling compaction (Adams undated).

Other options include using smaller, lighter equipment, operating on frozen ground or deep snow cover, soil tillage, and using either low ground pressure tires or wide tracks.

3.0 STUDY OBJECTIVES

Given the extensive body of literature indicating common management practices can lead to reduced site productivity, this study on soil compaction and residual tree growth seemed relevant. This study was undertaken to:

- 1. Develop a format for characterizing the soil strength conditions throughout a significant proportion of the rooting zone in stands of ponderosa pine.
- 2. Utilize that format to quantify the effects of mechanical harvesting equipment used during commercial thinning on the soil strength conditions of three ponderosa pine stands growing in the central Oregon volcanic ash region.
- 3. Compare those soil conditions to tree growth following harvesting, at both the individual tree and stand level.
- Provide an archival record of the soil conditions within a subset of the Bend USDA Forest Service Long-term Site Productivity Plots for future tracking and analysis of potential soil and tree growth interactions.

4.0 STUDY SITE HISTORY

Early in this century, large areas of Central Oregon were heavily harvested with a variety of logging systems, such as railroad, tractor and horse logging. These activities resulted in extensive clearcut removal of the old-growth ponderosa pine stands, which led to the development of large-scale, homogeneous secondgrowth stands. By the 1980's, progressive stand development resulted in nearly 200,000 acres of ponderosa pine approaching the risk of significant loss from mountain pine beetle (Dendroctonus ponderosa) infestation due to stagnation and competition stress.

The Deschutes National Forest initiated a timber harvest program designed to reduce the basal area per acre stocking within these stands in order to improve the vigor of the residual trees and avoid the potential for catastrophic mortality from pathogens. The goal was to manage the stands on a selective harvest basis rather than clearcutting, which would follow the recent trend throughout the West towards producing forests with more diversified structures, frequently through the use of mechanical thinning operations. In addition, it was thought that selective harvests would provide a more even flow of timber, improve timber quality, and enhance recreational, scenic, and wildlife values.

The Deschutes National Forest and the Pacific Northwest Research station realized that unique research opportunities were possible through a long-term research program. Study plots were established to provide a basis for investigating the myriad questions of interest that could be investigated (Little et al. 1988). Following is a list of some of the research that has been undertaken on these plots to date:

- 1. Effect of Management Practices on Soil Biochemical Activities.
- 2. Effects of Prescribed Fire and Silvicultural Activities on Organic Mass and Nutrient Redistribution in Ponderosa pine Ecosystems of Central Oregon.
- 3. Nutrient Relations in Second-Growth Ponderosa Pine.
- 4. Soil Nitrogen Dynamics.
- Comparison of Mechanized Systems for Thinning Ponderosa Pine and Mixed Conifer Stands.
- Effects of Intensive Harvesting and Slash Treatment on Growth, Biomass and Product Potential of Second-Growth Ponderosa Pine.

The long-term site productivity (LTSP) series of research plots were established in 1991 and the study design utilized a randomized complete block of nineteen treatments repeated in three different locations or replications on the Deschutes National forest, as shown in Table 1.

Table	1.	Schematic	matrix	of	plot	design	for	the	Bend	Long-term	Site
Produ	ctiv	vity study.									

	Remove Boles - Leave Tops & Limbs	Complete Removal Whole tree removed	No Felling	Fell, No Removal
Control	X1,1	X1,2 Treatment	X1,3	X1,4 No treatment
Broadcast Burn	X2,1	X2,2	X2,3	X2,4
Broadcast, Burn & Fertilize	X3,1	X3,2	X3,3	X3,4
Fertilize	X4,1	X4,2	X4,3	X4,4
Pile and Burn	X5,1		ł	
Pile, Burn & Fertilize	X6,1			
Crush Slash	X7,1			

This study was superimposed on the existing Bend LTSP plots because they represented several advantages. For example, the Bend Silviculture Lab had already established the plots on the ground and the tree parameters were accurately measured in 1991 and 1996. Therefore, considerable time would be saved initiating the study and taking tree measurements. Also, five years had elapsed since the treatments, which allowed the possibility for growth trends to become evident. Finally, since the information from this study could be incorporated into the existing database of other research on these plots, it presented the opportunity for continued monitoring in the future, as well as adding to the extensive research into various aspects of forest ecology in second growth ponderosa stands. Even though the Bend Silviculture Lab has been closed, the Pacific Southwest Research Lab in Redding, California has taken over responsibility for the plots and so the potential for maintaining the integrity of these study plots is good.

All of the plots incorporate stands of second growth ponderosa pine that are relatively homogeneous in age (47 to 63 years breast height), development history, aspect, slope, soil type, site potential and stocking levels (competitive stress). Also, the plots are distributed among three well-separated areas within the central Oregon volcanic ash soil region to encompass more of the natural variation.

For this study, the Control - Complete Removal plots were used in conjunction with the Control - Fell, No Removal plots since they represent the extreme ends of potential soil disturbance during mechanical thinning and were not confounded with the site preparation and fertilization treatments. Some residual compaction from the logging in the 1920's and 30's may have been detectable, but no attempt was made to do so. Each of the three areas, or replications, encompasses approximately 49 total acres. Within each replication area, 19 treatments were applied to plots approximately 0.90 acre in size each. But to provide a buffer against edge effects, measurements were only taken on a 0.40 acre area within each plot. Each pair of Complete Removal and No Removal plots were thinned in 1991 to roughly similar stocking levels to somewhat homogenize the stocking and competition stress.

At the time the study was initiated, the goal was to continue thinning the plots at 10-year intervals, as that was considered to be the optimal prescription. Both the Complete Removal and No Removal plots were mechanically thinned with a small feller-buncher during the summer months of 1991. The Complete Removal plots were subsequently skidded with a rubber-tired grapple skidder. The Fell, No Removal plots were not skidded. No further harvesting activity has been conducted in the study areas since the initial treatment in 1991 and none is planned for 2001.

Prior to treatment, the stand age, trees per acre and basal area per acre stocking were estimated for all plots. Following treatment, the variables measured were:

- 1. Stems per acre.
- 2. Tree DBH.
- 3. Tree total height (Ht).
- 4. Length of crown.
- 5. Crown width.
- 6. Volume of woody residue.
- 7. Understory composition, by percent and basal area by species.

- 8. Surface soil bulk density and nutrient content (N,P,S, and C).
- 9. Tree foliar concentrations of N.

Following the treatments in 1991, the region experienced unusually droughty conditions through 1995. Then, in 1992, 1994 and 1996, the Pandora moth caterpillars (*Coloradia Pandora* Blake) heavily defoliated many areas in central Oregon, including the study areas. The defoliation did not appear to result in noticeable mortality on any of the study plots. It is likely these two agents resulted in lower than expected tree growth during the time between when the stands were treated and later remeasured in 1996. The treatments appeared to have created very little stem damage, thus it is not likely to have affected the growth results.

5.0 STUDY SITE DESCRIPTION

The study area is located east of the Oregon Cascade Mountains in what is known as the high desert region. Elevation of the plots range from 4500 ft. to 5200 ft. and the local climate is noted for a wide range of both annual (90-100 F. in summer to -20 to -30 F. in winter) and diurnal (90+ F. daytime to <20 degrees nighttime) temperatures. Precipitation is low, averaging as low as 17 inches annually, much of which is in the form of winter snow. The three areas are described in Table 2.

	SWEDE		E. FORT
SITE INFORMATION	RIDGE	SUGARCAST	ROCK
DISTANCE (miles).*	9.5	14.8	14.3
BEARING (degrees) *	235	192	156
LATITUDE	43° 50' 56"	43° 50' 08"	43º 50' 16"
LONGITUDE	121º 20' 43"	121° 20' 07"	121º 10' 06"
ELEVATION (Feet)	4500 - 4800	4500 - 4700	4800 - 5200
PRECIPITATION	18-30"	20-30"	14-17"
SITE CLASS	5	4 to 5	5 to 6
SITE INDEX (Meyers)	65 to 85	70 to 90	50 to 70
AVG. PRE-TRTMNT B. AREA/AC CR&NR**	142 Sq. Feet	140 Sq. Feet	100 Sq. Feet
AVG. PRE-TRTMNT TREES/ACRE - CR&NR	316 Trees	286 Trees	195 Trees
AVG. PRE-TRTMNT DBH CR&NR	9.1 Inches	9.5 Inches	9.7 Inches
POST-TRTMNT BASAL AREA/ACRE - C.R.	116 Sq. Feet	70 Sq. Feet	65 Sq. Feet
POST-TRTMNT BASAL AREA/ACRE - N.R.	104 Sq. Feet	62 Sq. Feet	81 Sq. Feet
POST-TRTMNT TREES/ACRE - COMPLETE R.	123	69	79
POST-TRTMNT TREES/ACRE - NO REMOVAL	123	53	73
POST-TREATMENT SPACING - COMPLETE R.	19 X 19 Feet	25 X 25 Feet	23 X 23 Feet
POST-TREATMENT SPACING - NO REMOVAL	19 X 19 Feet	29 x 29 Feet	24 X 24 Feet
AVERAGE DBH - COMPLETE REMOVAL	12.1 Inches	12.5 Inches	11.3 Inches
AVERAGE DBH - NO REMOVAL	11.6 Inches	12.0 Inches	12.6 Inches
AVERAGE HEIGHT - COMP. REMOVAL	57.9 Feet	58.7 Feet	46.6 Feet
AVERAGE HEIGHT - NO REMOVAL	61.0 Feet	64.5 Feet	50.6 Feet
SURFACE SOIL	Cryandepts	Cryorthents	Cryorthents
SURFACE SOIL DEPTH	24 to 60"	24 to 50"	20 to 40"
BURIED SOIL	Cobbly sandy loam	Sandy loam	Sandy loam
VEGETATION			
Bitterbrush (Purshia tridentata)	Х	Х	Х
Bottlebrush squirreltail (Sitanion hystrix)		х	
Cheatgrass (Bromus tectorum)			Х
Idaho fescue (Festuca idahoensis)	Х		Х
Manzanita (Arctostaphylos patula)	Х	х	
Rabbitbrush (Chrysothamnus viscidiflorus)	Х		х
Ross sedge (Carex rosii)	X	х	
Snowbrush (Ceanothus velutinus)	X	х	
Western needlegrass (Stipa occidentalis)		Х	
*Note: Distances and bearings are from the Deschutes National States (National States) (National State	tional Forest Super	visors office in Bend	, OR.
** CR - Complete Removal NR - No Removal			

Table 2. Site description information for the Swede Ridge, Sugarcast and EastFort Rock study areas.

The soils for the three study areas are primarily composed of volcanic ash deposited as a result of Mt. Mazama eruptions approximately 7,000 to 10,000 years ago. Typical soils on the Swede Ridge site are well drained Cryandepts, derived from air-laid pumice/lava colluvium and tuft, with loamy coarse sand and coarse sandy loam textures (Volland 1985). The Sugar cast soils are well drained Cryorthents, derived from Mazama air-laid or flow pumice over lava or outwash, with loamy coarse sand and sandy loam textures (Volland 1985). The East Fort Rock soils are also well-drained Cryorthents, derived from Mazama air-laid or flow pumice over lava or outwash, with loamy coarse sand and sandy loam textures (Volland 1985). The East Fort Rock soils are also well-drained Cryorthents, derived from Mazama air-laid/lava colluvium and cinders with a loamy coarse sand texture (Volland 1985). Slopes range from 0 percent to 25 percent but generally average less than 10 percent. The volcanic ash surface soils overlay a range of deeper material, from glacial till in the Swede Ridge area to bedrock composed of hard basalts, andesites or rhyolites in the Sugar Cast and East Fort Rock areas (Larson 1976).

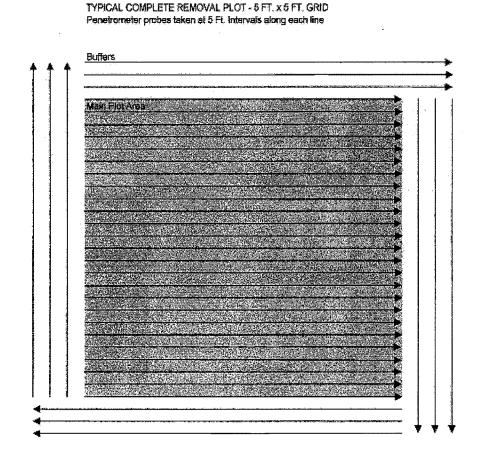
Most of the physiographic site variables, biomass and nutrient capital distributions would be quantified well enough that analysis of covariance could be utilized to isolate site differences from other possible sources of variation. These factors could potentially strengthen comparisons made between the results of this study to other stands within the volcanic ash region.

The logging methodology used to reduce stocking generally did not create site impacts that were visually apparent. The total fiber volume removed was fairly low and it seems few passes were required by the harvesting and skidding equipment to remove the trees. The exact harvesting equipment used is not known, but was probably much smaller machines than the large mechanized harvesting equipment commonly used today, which can weigh in excess of 60,000 lbs. Although the harvesters used on these study plots were probably smaller, they probably had relatively smaller tracks, and thus the ground pressures may have been similar to larger equipment. But sites logged with the large machines tend to have very pronounced skid trails that are compacted to much higher levels than were found on the Long-Term Site Productivity Plots. When surveying the three complete removal study plots, it was frequently difficult to determine where the skid trails had been. Figure 1 visually contrasts the differences in site impacts resulting from the two harvesting intensities. Figure 1. Typical whole-tree harvest Figure 2. Skid trail on LTSP Complete skid trail after 3 years.

Removal plots after 5 years.

Both of these units were thinned with mechanical harvesters, however the wholetree harvest system likely utilized much larger equipment and removed substantially more volume from the site.

6.0 STUDY METHODS AND PROCEDURES


6.1 Study Design.

The Bend Long Term Site Productivity plots were not originally designed to study the relationships between soil strength conditions and tree growth. However, since the plots were already established, and growth data were available for the various treatments, a design examining soil conditions was superimposed on the existing design.

6.1.1 Soil Strength Measurements.

During the summer months of 1995 and 1996, each of the six plots chosen for the study was surveyed with a recording penetrometer to determine soil strength conditions. Variation in soil moisture may lead to variations in resistance to penetration, thus leading to variable penetrometer readings. However, since the soil strength measurements were taken from mid- to late summer, the moisture conditions did not vary substantially and probably did not introduce excessive variability in the results. Of the nineteen treatment options per replication, only two of the four control plots were utilized since they were not confounded with slash treatment or fertilization treatments. On the three plots that had been mechanically thinned and skidded with rubber-tired skidders (Complete Removal), five foot by five-foot grids were established across the units to sample soil strength. Ten-foot by ten-foot grids were used on the plots in which the trees had been felled with mechanical harvesters, but not removed (No Removal). A wider spacing was utilized on the No Removal plots since no skidding equipment had impacted the site and the variability in soil strength conditions appeared to be much less than on the Complete Removal plots. In addition, a fifteen-foot buffer around each plot was also surveyed in order to capture more complete rooting environment information for trees near the plot edges.

The grids were established by driving metal stakes into the ground on two opposite sides of the plots at five or ten-foot intervals, as appropriate for the treatment. Each stake was then numbered with flagging such that the stakes on both sides of the plot at the starting point were numbered '1' and the subsequent stakes followed in matching numerical order. A cloth measuring tape was then stretched between each pair of matching numbered stakes and a penetrometer reading was taken at each five or ten foot interval along the tape, depending on the plot type. All plot lines were started from the same side of the plot. Approximately 1,100 individual probes were required for each Complete Removal plot, while the No Removal plots required approximately 250. Figure 3 is a schematic of a typical plot layout.

Figure 3 – Sampling design for penetrometer measurements.

Before a penetrometer measurement was taken, all slash, litter and duff was lightly scraped aside so that the probe only measured the resistance in the ash soil. At each grid intersection point, the recording penetrometer measured soil strength down through the soil profile to a depth of 24 inches. Soil strength was recorded in kilopascals of resistance at 1 inch intervals through the soil profile. Each penetration file was stored within the penetrometers' internal memory and identified by a unique number. These files were later downloaded into a personal computer for analysis. For the purposes of this study, each penetrometer reading was assumed to represent the soil conditions for the entire soil volume represented by that grid point. Each grid point represented 50 cubic feet of soil volume on the Complete Removal plots and 200 cubic feet on the No Removal plots. Therefore, the penetrometer results should only be regarded as an approximate indication of overall soil strength since the tip of the probe only represents a one-half- inch-wide measuring point and is therefore sampling a small percentage of the actual total soil volume. However, the observed variability in soil strength conditions was coarse enough that the grids appeared to adequately capture that variation.

6.1.2 Tree Measurements.

Initial condition tree data (post-treatment) was collected when the plots were set up in 1991 and the tree data information was remeasured during the summer of 1996. The data collected included tree identification number, DBH, total height, crown height, crown width, and percent defoliation by the pandora moth. DBH measurements were made with a steel diameter tape to the nearest 1/10th inch. Basal area was calculated for all trees using these measurements and the formula Basal Area = (DBH²) (.005454154). The height of every tree was measured with an optical dendrometer. Percent defoliation was an ocular estimate of the defoliation that occurred on the top half and bottom half of the crowns in 1992, 1994 and 1996. The percentages for the three defoliation events were then averaged.

Volumes were determined from local volume tables created for the LTSP plots, which were calculated for each of the three replications using equations derived from 95 trees (five trees in each of the nineteen plots). For each tree used in the volume calculations, diameters were measured using an optical dendrometer at various intervals along the bole. Calipers were used to determine the diameters at stump height and at 4.5 feet to assess tree taper. Total volume (V) was determined from these measurements using Grosenbaugh's (1964) STX program, with a modification for determining bark thickness along the bole (Grosenbaugh 1964, Cochran 1976 and 1978). These volumes were then related to DBH and height using the formula: logV = a + b(ln DBH) + c(ln Ht) (Schumacher and Hall 1933).

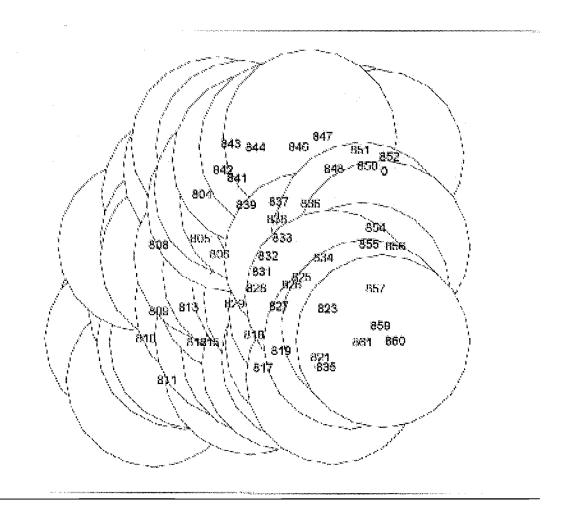
The five measure trees per plot used for volume calculations were chosen by first selecting the largest and the smallest trees per plot. The remaining trees were selected randomly from the remaining diameter classes. In this way, the full range of diameter classes was represented. All diameter and height measurements were made at the beginning of 1991 and in the fall of 1996. The measurements for estimating volume were made in the late summers of 1992 and 1996. The periodic annual increments were determined by dividing the total growth for the period by the number of intervening years.

6.1.3 Tree and Soil Data Spatial Analysis.

In order to relate each tree to the soil conditions surrounding it, all the trees in each plot were mapped during the penetrometer data collection process. When the transects were laid out with the cloth tapes, the location of a tree was identified by its distance down the transect line closest to that tree and the starting point and also the distance to the right of and perpendicular to the transect line. In this way, each penetrometer point and each tree could be mapped in a spatial analysis program for future analysis.

Figure 4 is a typical plot map showing the numbered penetrometer points, which are indicated by the 'star' map symbols. Tree locations are indicated by the 'tree' symbols.

Figure 4. Schematic diagram of penetrometer points and tree locations.


×211 <u>→</u> 212	+213	47 14	#216	-216	#217		4010	-020	+021	4000	- 	- 10°20 -	ム ウウボ	-
	ومري سيتغيث	. 1	ومرو والمتركمين	- jengen 1 fan	و الا متطور ال	ويدور متقادها	- 	, program in the	yr annafin 3	भारताः तीम तीव	t : This ton a Carrier" i	Totanka 3		19
a 210 ★ 13	+27			· .	· .						** *67			• • • • •
209 12	★ 26	* 10	# 54	****	* 82	1.006	* 110	\$ 124	* 138	* 152	+166	₩15 0	* 195	42
1 (4 , HUS)	#25	₩ 19	4 53		5 6 11 (841	ा स ्चा5	★1 09	# \$23	* 137	X 151	* 16t	#179	p	# 2
10 ¥10	42 4	1 638	\$52			્રેસ્ટ્રીય	* 108	* 122	* 136	★ 150	* 164	# 178	#1 92	42
1 208 4 9	# 23	* 87	* 51	*6 5	***	* 93	Å107	*1 24	★ 135	★ 149	* 163	* 177 ·	* 191	* 2
205 #8	1 22	* 36	4 50	464	*78	# 85	₩ #1115	4120	≜1 34	* 148	4162;	🍋 7 B -	M 90	#2
204 🛪	`# 21	* 35		* 33055	#77	#0 1	* 106	*1 19	*133	*147	* 181	m 75	1 189	R
203 45	₩20	# 34	1999 av	··· ·	*		* 104	* †18	*1 32	* 140	*160	*1 74	* 185	#2
202-15	* 10	# 33	*17	-85 1	1 75	#8 9	* 2	1402) Mag	} ★1 31	-1 146	M 59	1 73	4 197	# 2
201 🖬	*18	*32	* 18	*60 ‡	# 74	*6 8	* 102	*116	* 130	·主: ★第444	*1 68-	# 172 ·	* 196	#2
200.43	₩ 17	431	495	± 59			# 101	★1 15	⊀1 29	₩ \$43	₩57	*1 71 ·	x1 85	*2
r199-12	418	4 80/{	ents [.]	1,66	1072 1) 465	4 100	*1 14	¥i₩s	± 142	41 66	M 711	X 184	12
r1 98 w 1	₩15	+29	★13	# 57	x 5 ⁻ 1	*85	**88	ni 13	∦ 82 ‡8	1 35	★ 155	★ 169 ·	x 183	Ŕ
697	★ {4	4 28	4 42	# 56	+70	# 24	*9 8	≭ 112	★ 126	★ 1Â0	*1 54	#16 8 •	r 182	*
256 4255			****							موريد وروي			unata nataria.	

In order to relate the growth rate of each tree to the average soil strength conditions around it, spatial analysis software was utilized. The grid for a plot was drawn and each intersection point was assigned the unique file number for the penetrometer probe that had been taken at that point. The map grid points were then linked to a spreadsheet file that contained the penetrometer soil strength data. Each individual probe file contained 24 soil strength measurements taken as the probe was pushed through the soil to a maximum depth of 24 inches (Appendix A - Table 1). The average of those 24 readings was used to represent the soil strength

value for a particular grid point. In some instances, sub-surface rock or tree roots prevented the penetrometer from penetrating the full 24 inches. In those cases, the probe was moved six inches in a random direction until either a full probe could be made or it was determined too much interference existed at that point and a partial probe was accepted. For probes that did not achieve full depth, the penetrometer assigned values of zero for the uncompleted portion of the probe. These files were later edited in the spreadsheet so the average soil strength values only considered the depths actually achieved.

Once the penetrometer point data was set in a map, the tree locations were drawn and numbered appropriately. Then each tree was linked to an outside spreadsheet data file containing its basal area, height and volume periodic annual growth information. The spatial analysis program was then utilized to draw a 15foot radius circle around each tree. The software identified the penetrometer files within each circle and a unique soil strength file was created for each tree that represented their average (Appendix A - Table 2). The same process was reiterated using 30- and 45-foot-radius circles around each tree. Fifteen, 30-and 45-foot-radii were used as an attempt to determine if increasing the volume of soil sampled would better detect alterations to the rooting environment. Since ponderosa pine roots can extend up to five times the width of the crown, the 45-foot radius should encompass most of the rooting zone (USDA Handbook 654 1990) Figure 5 illustrates a plot in which 45-foot radius plots have been established around each tree.

The soil strength values for all the probes within a given radius were averaged to perform the statistical analysis. As a result, some of the inherent soil strength variability was lost or masked. Tables 1, 2, and 3 in Appendix A are provided to show that variability. Table 1 shows the raw penetrometer data that was collected with the recording penetrometer for the East Fort Rock - Complete Removal plot. Table 2 shows how the averaged individual penetrometer probes were then combined to provide average soil strength readings for each tree. Finally, Appendix A - Table 3 shows the plot-level and individual tree average soil strength values for the 15, 30- and 45-foot radius tree plots.

6.2 Statistical Analysis

This study was designed to test two null hypotheses:

- 1. No significant differences in soil strength existed between the complete removal and fell, no removal plots.
- 2. Soil strength conditions had no influence on basal area, height or volume periodic annual increment (PAI) growth.

An additional goal of the study was to provide a basis for predicting ponderosa pine periodic annual increment growth rates for a given average soil strength value in volcanic ash pumice soil types.

It was determined that the first hypothesis could be tested with a t-test that would combine the soil strength data from all three Complete Removal plots and compare that to the No Removal plots soil strength data.

General linear models, or GLMs were used to test the second hypothesis. The analysis was multivariate, i.e., it looked at the effects of soil compaction on three separate growth response variables: basal area, height and volume periodic annual increment. Therefore, separate GLM analyses were performed for each.

The models were a function of treatment and the average soil strength conditions around each tree and the covariate variables, which were: initial tree size, initial tree size squared, and percent defoliation from the pandora moth. The initial tree size parameters for the basal area PAI, height PAI and volume PAI models were basal area, height and volume, respectively. To take into account the possibility that growth might be curvilinear with increasing tree size, the initial tree size squared variables were included in the model. The average soil strength conditions were defined as the total volume of soil around each tree to a depth of 24 inches and to a radius of 15, 30 or 45 feet. For each of the basal area, height and volume PAI analyses, separate models were performed for the three radii to determine if increasing the volume of soil examined would increase the sensitivity for detecting soil compaction. Also, GLMs were utilized because they provide Type III, or Yates' weighted sum of squares. With Type III, the variation associated with each variable in the analysis is adjusted for and independent of all other variables, so the model indicates the importance of each variable relative to all other variables. Multiple linear regression provides Type II sum of squares where each variable is not independent, but instead is influenced by the other variables in the model. Therefore, GLMs were more appropriate for determining the significance of the main variables of interest, soil strength and treatment.

Multiple linear regression models were developed to predict the basal area, height and volume PAIs for each tree. The differences between the actual and predicted PAIs of paired trees were compared through a Pearson Correlation analysis. The correlation analysis was required because when the study was initiated, it was necessary to assume that the growth response of each tree was independent of all other trees. There was no alternative but to utilize the Complete Removal and No Removal plots within the LTSP study and the limited number of trees within them. The limited scope of the six plots did not allow for only measuring widely separated individual trees, independent of adjacent trees. Therefore, the study design and analysis was conducted as if the trees were independent, but with the understanding that if they ultimately were not, the analysis might be compromised. The models would have too many degrees of freedom and the error sum of squares would be too small, possibly leading to inappropriately rejecting the null hypothesis when, in fact, there was no significant difference.

Multiple linear regression analyses were also required to develop the desired predictive capabilities which could be used to create graphs that would help to interpret the results of the GLMs, and possibly provide the basis for a management monitoring tool as well.

7.0 **RESULTS**

This study found that mechanical commercial thinning operations significantly altered the soil physical properties of the volcanic ash soils, as measured by increases in soil strength. And, those increases in average soil strength conditions were associated with significant height PAI growth reductions at the 15, 30-, and 45-foot radius, as well as volume growth changes at the 15-foot radius ($p\leq0.05$). Possible basal area PAI and other volume PAI growth differences were suggested, but were not statistically significant (Table 3). Because the models predict PAIs for individual trees, the per acre estimates were derived by multiplying the average annual increment per tree times the number of trees on a plot, and then scaling the result up to a per acre growth rate.

ſ			Soil Strength	Predicted Basa	Area PAI	I
BASAL AREA PAI	Soil Strength	Tree	% Increase	Square Ft. Per		Growth
Complete Removal	Lowest PSI	Highest PSI	Low to High	Low Strgth	High Strgth	%Difference
East Fort Rock	200.96	279.52	39%	1.88	0.74	
Sugarcast	184.45	244.15	32%	1.73	1.78	3%
Swede Ridge	220.97	328.03	48%	2.03	1.08	-47%
No Removal	7					
East Fort Rock	146.42	179.04	22%	0.62	0.64	3%
Sugarcast	164.29	184.13	12%	0.93	0.26	-72%
Swede Ridge	149.57	211.65	42%	1.67	0.80	-52%
			C-11 Ct	D	-14041	ł
HEIGHT PAI		(T	Soil Strength	Predicted Hei		C
	Soil Strength		% Increase	In Feet per		Growth
Complete Removal	Lowest PSI	Highest PSI	Low to High	Low Strgth	High Strgth	%Difference
East Fort Rock	200.96	279.52	39%	0.684	0.218	
Sugarcast	184.45	244.15	32%	0.664	0.496	
Swede Ridge	220.97	328.03	48%	0.700	0.654	-7%
No Removal]					
East Fort Rock	146.42	174.04	19%	0.494	0.242	
Sugarcast	164.29	184.13	12%	0.746	-0.137	-102%
Swede Ridge	149.57	211.65	42%	1.14	0.931	-18%
			Soil Strength	Predicted Vol		
VOLUME PAI	Soil Strength	/Tree	% Increase	Cubic Feet Per	Acre Basis	Growth
Complete Removal	Lowest PSI	Highest PSI	Low to High	Low Strgth	High Strgth	%Difference
East Fort Rock	200.95	279.52	39%	42.48	20.83	-51%
Sugarcast	184.45	244.15	32%	54.12	49.16	-9%
Swede Ridge	220.97	328.03	48%	59.66	55.10	-8%
No Removal]					
East Fort Rock	146.42	179.04	22%	22.46	15.11	-33%
Sugarcast	164.29	184.13	12%	19.80	11.82	-40%
Swede Ridge	149.57	211.65	42%	67.59	61.20	-9%
* - Soil Strength was						
** - Soil Strength was	a significant me	odel variable at	the 0.10 probabi	lity level.		

Table 3. Predicted growth results per treatment and replication, contrasting the differences between the lowest and highest soil strength conditions found per plot.

7.1 Soil Strength by Treatment T-Test Analysis

The first question of interest was whether a significant difference in soil strength existed between the Complete Removal and No Removal plots. Twosample t-tests were performed, comparing the soil strength means of the three Complete Removal plots to the soil strength means of the three No Removal plots. The Complete Removal plots were significantly different ($p \le 0.05$) from the No Removal plots for the 15, 30- and 45-foot radius tree plot sizes (Table 4).

		15 Ft. Radiı	15		30 Ft. Radiu	IS	45 Ft. Radius		
	Complete	Pooled	No	Complete	Pooled	No	Complete	Pooled	No
	Removal	Variance	Removal	Removal	Variance	Removal	Removal	Variance	Removal
Mean Soil Strength (PSI)	247.0		177.5	248.2		175.1	- 249.5		173.8
Variance	1628.6	854.2	47.7	1245.2	691.0	136.8	1162.1	634.0	105.9
Observations	3.0		3.0	3.0		3.0	3.0		3.0
df	4.0			4.0			4.0		
t Statistic	2.9			3.4			3.7		
P(T<=t) one-tail	0.022			0.014			0.011		
t Critical one-tail	2.13			2.13			2.13		
Percent difference	39%			42%			44%		

 Table 4. Two-sample T-Tests for Soil Strength by Treatment.

For the fifteen foot, thirty foot and forty-five foot radius plots, the percent increase in average soil strength for the Complete Removal plots over the No Removal plots was 39, 42 and 44 percent, respectively.

7.2 Growth Effects Analysis

The second null hypothesis was that there was no correlation between soil strength and tree growth. This was tested with General Linear Models analysis of covariance (SAS Institute, 1988). For each tree, the soil strength conditions were first estimated for a volume of soil defined by a 15-foot radius around that tree. This data was correlated with the basal area PAI, height PAI and volume PAI growth for that tree. The analysis was then repeated for soil volumes defined by the 30- and 45-foot radii. The three soil volumes were analyzed as a sensitivity analysis to determine whether examining an increasing proportion of the total rooting environment would more accurately detect alterations to soil conditions. Analysis of covariance showed that the covariates (basal area, height and volume), covariates squared and percent defoliation by the pandora moth were statistically significant in all cases at a p<0.05 level. The main variables of interest, soil strength and treatment, were significant for height PAI at the 15, 30- and 45-foot radii (p<0.05). Soil strength was also significant for volume PAI at the 15-foot radius, but was not significant for the 30- and 45-foot radius. Soil strength was not significant for basal area PAI. Replication, or area, was also significant only for height PAI. Similarly, the interaction terms are also only significant for height PAI (Table 5).

		Basal Area			Height			Vjolume	
VARIABLE	15 Ft.	30 Ft.	45 Ft.	15 Ft.	30 Ft.	45 Ft.	15 Ft.	30 Ft.	45 Ft.
Covariate	0.0001	0.0001	0.0001	0.0356	0.0076	0.0010	0.0001	0.0001	0.0001
Covariate Squared	0.0014	0.0015	0.0012	0.0495	0.0115	0.0019	0.0001	0.0001	0.0001
Percent Defoliation	0.0001	0.0001	0.0001	0.0002	0.0003	0.0012	0.0001	0.0001	0.0001
Soil Strength	0.2533	0.0691	0.1534	0.0001	0.0001	0.0001	0.0135	0.0589	0.0510
Treatment	0.6139	0.9053	0.8891	0.0371	0.0014	0.0027	0.4344	0.8358	0.8295
Repetition	0.2426	0.1995	0.4359	0.0261	0.0020	0.0031	0.1149	0.2915	0.1836
Soil Strength*Rep	0.6810	0.5649	0.8069	0.0033	0.0004	0.0010	0.1874	0.3979	0.2809
Repetition*Treatment	0.5529	0.2153	0.3603	0.0886	0.0014	0.0135	0.2736	0.3151	0.6578
Soil Strength*Treatment	0.4845	0.4462	0.6357	0.0138	0.0003	0.0008	0.0685	0.3544	0.4343
S. Strength*Rep*Trtmt	0.2593	0.1679	0.4421	0.0213	0.0007	0.0075	0.0530	0.2806	0.7061
Model Degrees of Freedom	14	14	14	14	14	14	14	14	14
Error Degrees of Freedom	233	233	233	233	233	233	233	233	233
Corrected total Deg. Of F.	247	247	247	247	247	247	247	247	247
R-Squared	0.620329	0.616912	0.612928	0.561702	0.577247	0.57321	0.670454	0.665064	0.666176
C.V.	41.91831	42.10651	42.32487	47.2013	46.35669	46.5776	39.53984	39.86185	39.79566
Root MSE	0.0046674	0.0046884	0.004713	0.227404	0.223335	0.2244	0.143622	0.144792	0.144551
PAI Mean-FtSq./Feet/CuFt	0.0111345	0.0011135	0.011345	0.481774	0.481774	0.48177	0.363234	0.363234	0.363234
Note: Significant variables are	highlighted. P	≤0.05							

Table 5. Probability of higher F-values from the analysis of covariance forPAIs of Basal Area, Height and Volume for individual trees.

7.3 Predicting Growth Effects

Because the dependent variable height PAI exhibited significant and

quantitative associations to changing soil strength values, multiple linear regression models were used to describe those responses and to obtain predicted growth rates used in the Pearson correlation coefficient analysis. The regression models were also utilized to graphically describe the height growth and soil strength relationships. Although not significant, basal area PAIs and 30- and 45-foot radius volume PAIs appeared to differ with changing soil strength and were also graphed to indicate potential effects. These models individually analyzed the PAI responses of basal area, height and volume to increasing soil strength, the main variable of interest, as well as the covariates (tree size, tree size squared and percent defoliation), treatment, repetition and interaction terms that were combinations of treatment, repetition and soil strength. There was a wide range of soil strength values on both the treated plots as well as the control plots, and all trees in the study were used to develop the regressions, with each tree forming a tree growth and soil strength relationship. Since the No Removal plots had been thinned with mechanical harvesters but not skidded, some compaction occurred on these plots as well. Thus, they did not represent a true control for the study.

As shown in Table 6, the r-squared values indicate the models reasonably account for the variability. Other research has shown that r-squared values for tree growth prediction models typically fall between .4 and .6, so the models for this study seem to predict tree growth well (Hann and Larson 1990). However, the main variable of interest, soil strength, is significant ($p \le 0.05$) only for height PAI and volume PAI at the 15-foot radius. Therefore, interpretations based on soil strength are limited.

Basa	l Area PAI		Height PAI			Vol	ume PAI	
15 ft.	30 ft.	45 ft.	15 ft. 30 ft. 45 ft.		15 ft.	30 ft.	45 ft.	
0.5975	0.6169	0.5897	0.5354	0.5518	0.5476	0.6507	0.6449	0.6461

 Table 6. Adjusted r-squared values from the multiple linear regression models.

7.4 Tests for Independence

The study was initiated under the assumption that the growth response of each tree to the soil condition environment was independent of all other trees and the statistical analyses were made under that assumption. Pearson correlation analysis tests (SAS Institute, 1988) were utilized to assess the validity of the assumption of independence, using the 30-foot radius soil strength data. It was assumed that if no significant relationship existed at the 30-foot radius, then none would exist for the 15-foot radius data, which was essentially a subset of the 30foot data. A separate correlation analysis was not performed using the 45-foot soil data. However, it may be more likely for a correlation to exist at the 45-foot radius due an increasing potential for root overlap. For this analysis, each tree was first paired with its closest adjacent tree. Then the differences between the actual and predicted PAIs of one tree were compared to the differences between the actual and predicted PAIs of its paired tree to determine whether the differences were significantly correlated. The results of the paired tree comparisons are shown in Table 7.

	$\text{Prob} \ge 0.05$	R value	R squared
Basal Area PAI	0.1116	0.14850	0.0021
Height PAI	0.3868	0.08109	0.0066
Volume PAI	0.0135	0.22880	0.0524

Table 7. Pearson Correlation Analysis for the 30-Foot Radius.

The analysis shows that the error in predicted and actual basal area and height growth of paired trees was not significantly correlated at the 30-foot radius, assuming a $p\leq0.05$ significance level. However, volume is shown as significant and suggests a correlation exists. Since basal area was the most accurately and precisely measured variable used in the study, a high degree of confidence exists for the indication of no correlation. Tree heights were probably not quite as accurately and precisely measured. Since each tree, however, was measured with an optical dendrometer, it is reasonable to have a high level of confidence in the accuracy of both the tree heights and the indication of no correlation. Tree volume was likely the least precise variable since it was calculated, rather than measured, using Grosenbaugh's (1964) STX program with a modification for determining bark thickness along the bole (Grosenbaugh 1964, Cochran 1976 and 1978). Therefore, less confidence is placed in the correlation analysis for volume. So the

independence assumption was assumed as valid in interpreting the results from the GLM analysis.

7.5 Graphical Representation of Predicted PAI Growth as a Function of Soil Strength

To help interpret the results of the GLMs, the regression models were utilized to predict height PAI using the 15-, 30- and 45-footradii and volume PAI for the 15-foot radius, which were significantly correlated with soil strength. Although basal area PAI and volume PAI for the 30- and 45- foot radii were not significantly correlated with soil strength, the same procedure was utilized to look at the potential growth trends associated with increasing soil strength. In this procedure, the PAIs per plot were predicted, first assuming all trees were growing at the lowest average soil strength values. The predicted PAIs for the lowest and highest soil strength conditions were used as anchor points and a line connecting the two points was then graphed. When the regression models were used to determine those endpoints, the average covariate values per plot were used.

The relationship between basal area PAI and increasing soil strength appeared to differ with treatment and area (Figures 6, 7, and 8).

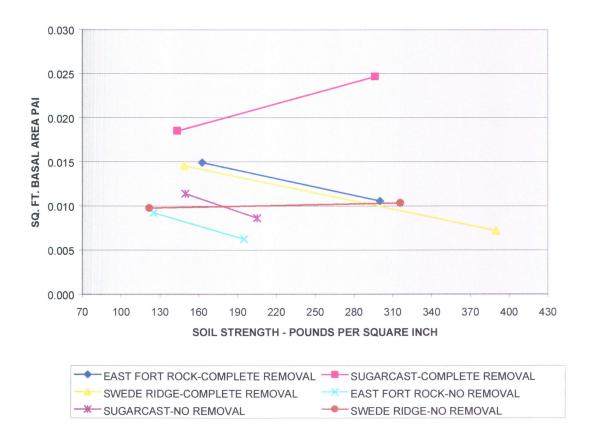


Figure 6. The relationship between Basal Area PAI and soil strength at a radius of 15 feet.

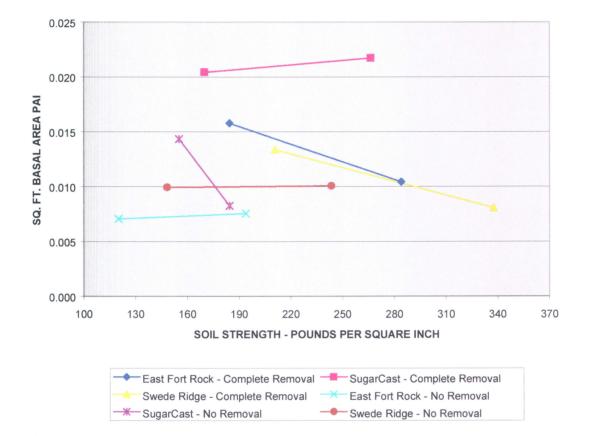


Figure 7. The relationship between Basal Area PAI and soil strength at a radius of 30 feet.

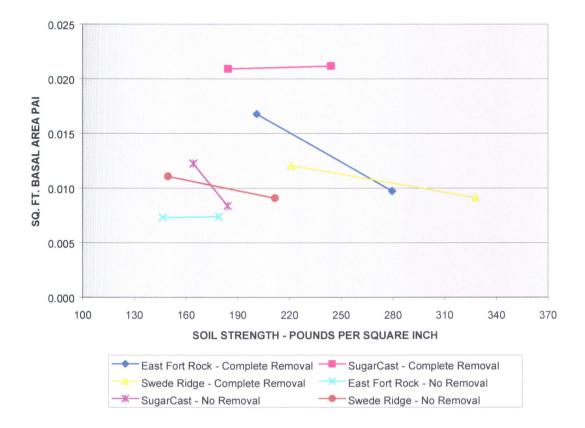


Figure 8. The relationship between Basal Area PAI and soil strength at a radius of 45 feet.

The soil strength variable was not statistically significant ($p \le 0.05$) for basal area in the GLM models so the graphs for basal area PAI may only be considered as potential indications of growth effects from compaction. Basal area PAI seemed to show a somewhat inconsistent relationship with soil strength. For example, the East Fort Rock - Complete Removal is negative for all three radii while the East Fort Rock - No Removal is negative at the 15-foot radius and approximately neutral for the 30- and 45-foot radii. The Sugar Cast - Complete Removal graph shows a positive trend for all three radii, but becomes more neutral as the radius increases. The Sugar Cast - No Removal is distinctly negative throughout. The Swede Ridge - Complete Removal is negative for all three radii but the Swede Ridge - No Removal plot is slightly positive at 15 and 30 feet, but negative at 45 feet. So, as the radius increases from 15 to 45 feet, basal area PAIs generally trend towards a negative or neutral association with increasing soil strength.

Soil strength was significant for height growth and height PAI appears to have the most consistent relationship among the three response variables and increasing soil strength (Figures 9,10 and 11).

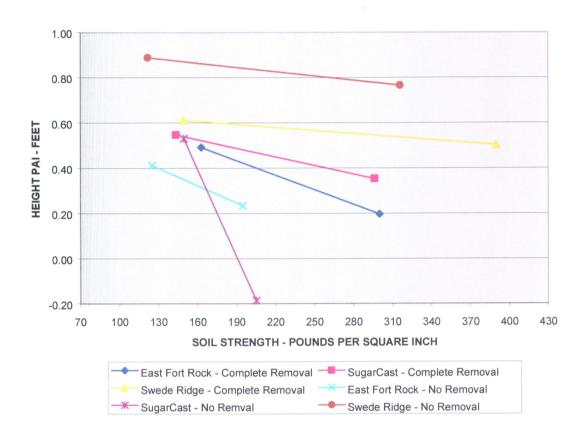


Figure 9. The relationship between Height PAI and soil strength at a radius of 15 feet.

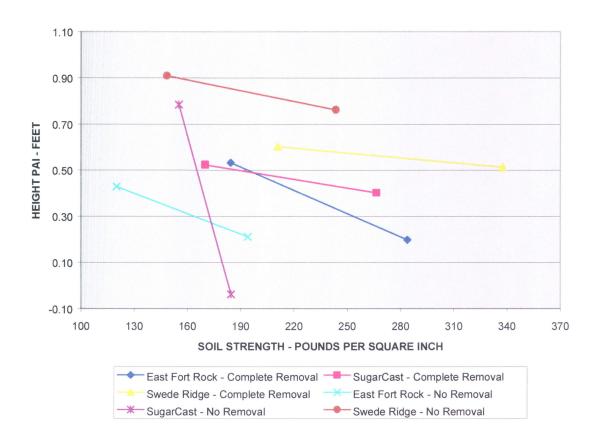


Figure 10. The relationship between Height PAI and soil strength at a radius of 30 Feet.

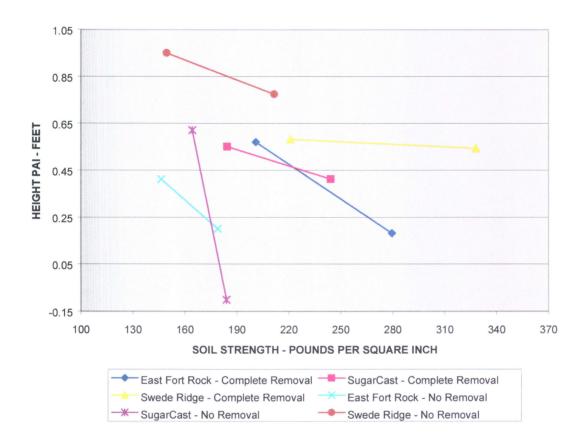


Figure 11. The relationship between Height PAI and soil strength at a radius of 45 feet.

All plots indicate a negative correlation between height PAI and increasing soil strength and the Sugar Cast - No Removal plots actually indicates a negative growth rate at the higher soil strength values. However, the actual plot data does not agree with the predicted growth rate, but instead shows a slightly positive rate of height growth, approximately .165 feet per year. Although positive, it is still considerably lower than the other five plots, which range from .245 to .839 feet per

considerably lower than the other five plots, which range from .245 to .839 feet per year growth. It appears that the growth rates decline over fairly short ranges in soil strength conditions. It should be emphasized that the soil strength values are averages, which tends to obscure the inherent variability within the penetrometer data.

Figures 12, 13, and 14 depict the predicted change in cubic volume PAI for each of the six study plots at the 15, 30- and 45-foot plot radii.

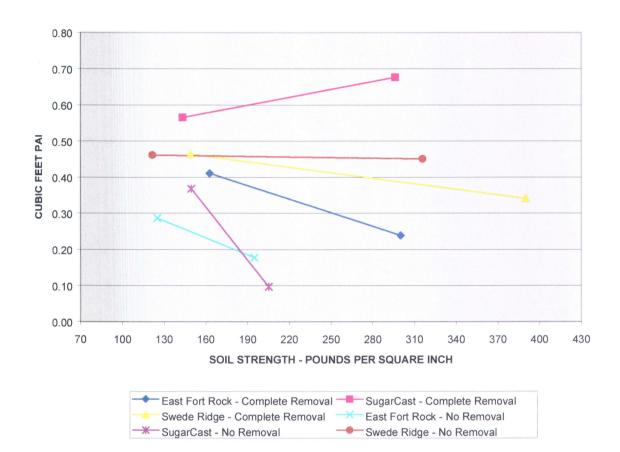


Figure 12. The relationship between Volume PAI and soil strength at a radius of 15 Feet.

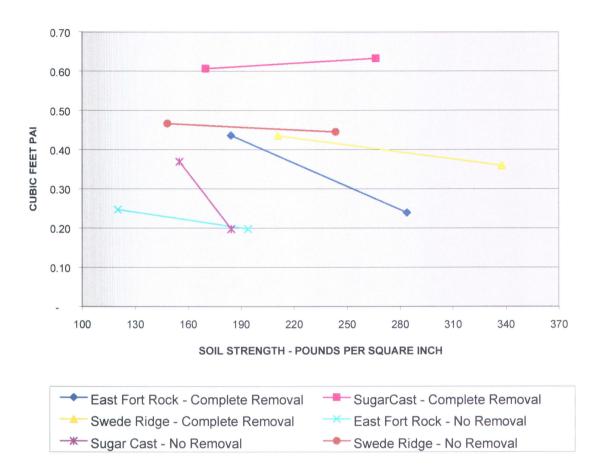


Figure 13. The relationship between Volume PAI and soil strength at a radius of 30 Feet.

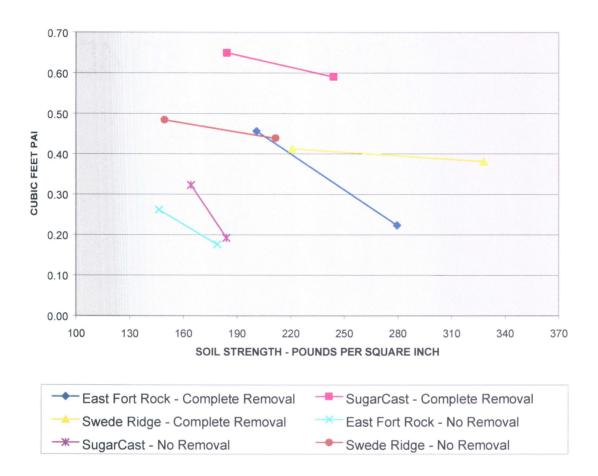


Figure 14. The relationship between Volume PAI and soil strength at a radius of 45 Feet.

The soil strength variable was only significant ($p \le 0.05$) for volume PAI at the 15-foot radius, so the graphs for the 30- and 45-foot radii should only be considered as potential outcomes. Soil strength would have been significant at the $p \le 0.10$ level for the 30- and 45-foot radii. At the 45-foot radius, volume PAI appears to decrease with increasing soil strength for all six plots. In the case of the East Fort Rock – Complete Removal plot, the decline in volume PAI is apparently over 40 percent (.46 to .22 cubic feet/year). With the exception of the Sugar Cast - Complete Removal plot, volume growth appears to decrease with increasing soil strength at the 15- and 30-foot radii as well. A possible explanation for the Sugar Cast exceptions is that in the regression model, the relative strength of the soil strength variable increases as the plot radius increases, which possibly results from a more complete examination of the total rooting environment in the larger radii. The graphs indicate that the No Removal control plots have lower soil strength values than the Complete Removal plots overall, and the range between the lowest and highest values are lower as well. However, the apparent level of growth differences appears to be generally similar for each of the Complete Removal and No Removal pairs.

8.0 **DISCUSSION**

These results seem to support other research, which indicates central Oregon volcanic ash soils compact readily (Froehlich 1979). In some studies, this was associated with measurable height and volume growth losses in ponderosa pine forests (Froehlich 1979, Helms et al. 1986, Clayton et a. 1987). In this study, only height PAI and volume PAI at the 15-foot radius were significantly related to soil strength. Basal area PAI and volume PAI at the 30- and 45-foot radius were not significantly related to soil strength. Although the graphs from the results of the regression analyses generally indicated reduced growth rates, the results were inconsistent. This also reflects previous research, which has shown inconsistent results between studies (Agee and Biswell 1970). One explanation for the inconsistencies may be that other variables effecting growth, such as initial tree size and pandora moth defoliation, had a much greater influence than did soil strength. Other growth variables not accounted for in this study, such as canopy position, crown ratio and competitive stress, likely had much greater importance to the growth trends than did soil strength.

Another possible explanation may be that while soil strength was the measure of compaction used in the study, compaction actually implies a complex interaction of alterations to the soil. For example, in addition to increasing soil strength, there may be a reduction in water supply, nutrients and aeration, as well as mechanical damage to the roots (Greacen and Sands 1980). The changes to each of

these factors and how they impact tree growth may well be highly variable from site to site. Unfortunately, it was beyond the scope of this study to try to separate those influences.

There were some advantages to superimposing this study on the existing LTSP plots. However, there were disadvantages as well. Most importantly, there was no true control group for the study. Ideally, the No Removal plots would have had no machine activity occur in the thinning process, so that theoretically, there would have been no compaction created when the LTSP study was initiated. But the No Removal plots were also thinned mechanically, thus the only difference between the No Removal and Complete Removal plots was that the felled trees on the No Removal plots were not removed with skidders. Secondly, there were an insufficient number of plots to have the duplication necessary to incorporate a plot-level competitive stress index into the GLM analyses. When such an index was attempted in the analysis, there was only one treatment per replication, thus the degrees of freedom for the competitive stress index was zero. Therefore, an important growth variable could not be utilized. If time had allowed, it may have been preferable to estimate a competitive stress index for each individual tree.

The results of the study were somewhat unexpected in that, during the process of measuring soil strength, the Complete Removal plots did not visually appear or physically feel more compacted than the No Removal plots. However, the penetrometer results showed the soil conditions between the two treatments were distinctly different. This observation may have some implications for the reliability of casual methods of assessing compaction.

The stands in this study could be considered predisposed to soil disturbance related site productivity declines due to the wide spread and shallow lateral rooting systems exhibited by ponderosa pine. It has been noted that, in some soils, 435.1 PSI tends to be an upper limit threshold beyond which fine roots are unable to penetrate the soil. (Graecen and Sands 1980). Other research has noted that fine root volume declines precipitously as soil strength increases even marginally above undisturbed levels (Sands 1981). A significant loss of fine root volume at average soil strength conditions less than the hypothesized 435.1 PSI threshold may explain the growth differences suggested by this study. Whether these differences are due to restrictions on root growth, reduced moisture availability, mechanical damage to the roots, a loss of soil organic matter, a combination of these, or other mechanisms, is difficult to determine. However, an association between increasing soil disturbance from mechanical thinning and reduced tree height growth seems to be indicated.

One of the study goals was to design a process for measuring soil strength conditions for a majority of the rooting environment over an extensive area, which for these plots was approximately one-half acre each. The process used for the study seemed to work well. Fortunately, access to all six of the plots was good and the terrain and soil conditions were favorable for using the recording penetrometer. The soils tended to be quite uniform in texture, with few large stone fragments. Only rarely did large subsurface stones or other obstructions interfere with taking soil measurements. Measuring soil strength with the penetrometer seemed preferable to using only bulk density measurements, either with a core sampler or nuclear probe, given the time and personnel constraints of the study. Using a core sampler would have been much too slow and cumbersome for covering large areas intensively. A core sampler seemed particularly inadequate for attempting to sample continuously down through the soil profile to a depth of at least 24 inches.

Many older bulk density studies are restricted to just the upper few inches of the soil profile. This was unacceptable for two reasons. For one, the first two to four inches of volcanic ash soil seem to reverse compaction effects in a short period of time, probably through frost heaving. This would misrepresent the bulk of the soil profile, which is known to remain compacted for long periods of time (Wert and Thomas 1981). The other was the desire to look at a large percentage of the rooting environment. Bulk density measurements would have required extensive excavation to reach the lower soil layers. Also, the nuclear probe was judged to be inadequate not only due to a lack of availability and training as well as licensing issues, but was too slow to intensively measure the extensive plot areas involved. However, a nuclear probe measures a large soil volume per measurement, thus the variability from point to point might be less.

The Complete Removal plots required approximately 1000 individual probes with the recording penetrometer. This took about two to three days to accomplish, but provided an electronic record that reasonably represented the soil conditions over a total volume of nearly 1900 cubic yards. This seemed be an accurate representation because the soil strength variability in undisturbed soil was very low; so as long as the grid was tight enough to detect those areas disturbed by logging activities, the site was described adequately. An extensive survey of this magnitude would have been impractical with other methodologies. An additional benefit of the recording penetrometer was that all the soil probe files could be transferred to a personal computer and brought together in a spatial analysis program, along with the tree data. As a result, it was a relatively simple process to perform the analysis required by this study.

As noted previously, ponderosa pine trees tend to have shallow, widespreading, lateral root systems. As a result ponderosa pines are potentially exposed to substantial mechanical damage from logging operations, as well as degradation of the rooting environment. Fortunately, these risks can be ameliorated through silvicultural prescriptions, careful harvest planning and layout, and selection of logging processes and equipment. When designing a management prescription, emphasis can be placed on minimizing the number of entries over time since each entry will likely increase both the extent of soil disturbance across the site as well as the intensity of disturbance on areas previously impacted (Adams 1991, Froehlich 1980, Zaborski 1989).

Equipment choices and harvest planning can play a crucial role by defining the operational standards required of the operators. For example, harvesters with extension booms can minimize machine travel and thus site impacts compared to feller-buncher machines that must travel up to each tree. Also, management plans can require a desired minimum spacing between skid trails, restrict machine travel to only designated skid trails and specify appropriate size and spacing limits for landings. The success of these plans can be assured by identifying in the field where the skid trails and landings should be located as well as providing adequate supervision to enforce the provisions of the contract.

Equipment selection and harvesting methods can strongly influence site impacts. Another study parallel to this one was initiated to examine the alterations to soil conditions created by current mechanical harvesting practices. The results are summarized in Table 8, which contrasts whole-tree mechanical thinning systems to a cut-to-length system. Table 8 examines the changes in soil strength resulting from the estimated number of passes by both harvesters and skidders. As each penetrometer probe was taken, the amount of machine activity at that point was estimated and the probe classified into one of four categories: no disturbance; one to two passes; three to five passes or main skid trails. The soil probe data were further summarized at four soil depth categories in order to describe how soil strength changed with depth. These were: 0-6 inches; 6.1 to 12 inches; 12.1 to 18 inches and 18.1 to 24 inches¹.

¹Unpublished data, available on file with the author.

UNIT NAME AND	Soil D	epth Categor	ies in Inches		Percent	Percent
ACTIVITY LEVEL	0-6.0	6.1-12	12.1-18	18.1-24	Undist.	in Trails
North Canal, Timco	Soil Stren	gth in Lbs. P	er Square In		61%	39%
Undisturbed soil	79	176	237	266		
1-2 Passes	168	365	398	418		
3-5 Passes	263	455	459	454		
Main Trails	389	672	644	605		
Section 33, Timco					37%	63%
Undisturbed soil	47	119	161	189		
1-2 Passes	79	243	314	338		
3-5 Passes	112	407	455	451		
Main Trails	252	571	581	544		
West Haner, John Deere					32%	68%
Undisturbed soil	67	146	202	229		
1-2 Passes	105	272	321	322		
3-5 Passes	133	420	473	450		
Main Trails	180	492	573	495		
East Haner, John Deere						
Undisturbed soil	46	133	173	202	29%	71%
1-2 Passes	62	200	256	292		
3-5 Passes	90	342	392	428		
Main Trails	156	531	514	494		
InBetween, Hydro-Axe					36%	64%
Undisturbed soil	60	139	188	231		
1-2 Passes	139	313	350	364		
3-5 Passes	223	507	513	494		
Main Trails	281	529	576	528		
Sisters, TimberJack					88%	12%
Undisturbed soil	126	176	204	262		
Skid Trail	179	327	286	283		
Timco & John Deere systems					r hot-saw	
Hydro-axe system. Four rubb						
TimberJack system. Six-whe	el harveste	r with cut-to-	length proces	ssor head.		

Table 8. Increases in soil strength with number of passes and depth.

The first five harvest units listed were all mechanically, whole-tree harvested between 1994 and 1997. The operations utilized large Timco, John Deere and TimberJack boom-type harvesters and either grapple skidders or caterpillar tractors. These units had large percentages of the ground disturbed by harvesting, ranging from 39 to 71 percent of the unit surface area impacted by machine travel. Designated skid trails were not enforced and machine travel off of the main skid trails was extensive. Soil strength increased markedly with only 1 to 2 passes and continued to increase rapidly with additional disturbance. Additionally, nearly all litter and soil organic matter in the soil A horizon was removed from the main skid trails, thus making the soil more susceptible to compaction as well as reducing nutrient availability.

The table does not address the landings, but the whole-tree style of logging requires large landings in which to limb, top, sort, deck, and load the logs. In contrast, the Sisters unit, which was logged in 1997 with cut-to-length equipment, had significantly less area in skid trails and the level of compaction in the trails was much less as well. Cut-to-length systems limb and top the trees in the woods, depositing much of the material in front of the machine, which creates a slash mat for it to walk over, thus elevating it off the ground and reducing compaction. Also, not only were the natural litter and organic layers protected, the residual logging slash left on site helped assure nutrient retention. Table 8 clearly shows a dramatic reduction in the percent of the area impacted as well as much reduced soil strength compared to the whole-tree systems. Also, cut-to-length systems usually require significantly fewer and smaller landings since space is not required for the delimbing and topping operations, which create large slash piles. The statistical analysis for this study utilized the average soil strength information as an indicator of the overall rooting environment quality. The soil strength readings for each individual penetrometer probe were averaged to create an average soil strength value for that point. Similarly, all of the individual probes within either a 15, 30- or 45-foot radius soil study area were averaged to create an average soil strength value to represent the rooting environment around a tree. Using these average values tended to mask the full range of variability found in the soil strength conditions. Tables 1, 2 and 3 in Appendix A are provided to highlight that variability. The averaged information may explain some of the apparent anomalies in the data analysis, such as rapid PAI growth decreases over apparently minor increases in soil strength.

As explained previously, each penetrometer probe represented a volume of soil 2 feet deep and either five-foot or ten-foot square, depending on the treatment type. When the spatial analysis software was used to identify which penetrometer probes fell within either the 15, 30- or 45-foot radius soil analysis plots for individual trees, each probe that fell within the plot was assumed to represent the full 5 X 5 or 10 X 10 foot area. However, probes that lay towards the edge of the plot and were intersected by the plot circumference would actually represent only that portion of the soil volume within the plot circumference. A means to estimate the true soil volume for these probes was determined to be beyond the capabilities of the software and therefore, the analysis was forced to accept that compromise.

An examination of all the various graphs (Figures 6 through 14) does not seem to reveal an obvious treatment effect. A possible explanation for this is that although the Complete Removal and No Removal plots were treated differently, the treatments were not completely unique. Both treatments had a large range of soil strength values that tended to overlap. The No Removal plots had trees with high soil strength environments and the Complete Removals had trees with low soil strength environments. However, the mean soil strength for the Complete Removal plots was considerably higher than that of the No Removal plots, so on average, they would be expected to experience greater overall declines in height growth rates.

If the significant differences in height growth are determined to be sufficient reason to minimize soil compaction, the question then becomes what would be an appropriate management response to prevent or ameliorate the potential changes to site productivity. Reversing compaction through treatments such as subsoiling are expensive and, when attempted in areas with residual trees left in place, present a substantial risk of extensive mechanical damage to the roots, as well as the risk of facilitating the initiation and spread of root diseases. Determining whether or not subsoiling is appropriate should depend on a careful environmental as well as financial analysis. The uncertain growth benefits may not justify either the substantial financial investment or the risk of other damage. Forest managers should instead focus on prevention, since it has been shown that compaction can be reduced to acceptable levels for reasonable costs through thoughtful, well-planned stewardship practices.

Future study should include a continuing survey of the six study plots through time to determine if the apparent growth reductions increase, decrease, or stay the same. Similarly, it would be interesting to monitor the soil strength conditions to find whether natural processes will ameliorate compaction in soils that are not strongly affected by freezing and thawing. It would also be interesting to attempt to differentiate the effects of mechanical damage to the roots, resistance to root penetration and the loss of organic matter. Other questions of interest are how soil disturbance influences other components and functions of the ecosystem, such as soil biota, understory vegetation, moisture, and nutrient cycling. Finally, an attempt could be made to correlate the growth response to soil strength conditions found in this study to the other tree variables that influence growth response to density management, such as canopy position, crown ratio and competitive stress as individually measured for each tree.

9.0 CONCLUSION

Mechanical thinning operations with feller-bunchers and rubber-tired skidders created significant levels of soil compaction, as measured by soil strength. A significant reduction in height growth was correlated with increasing soil strength. Volume growth at the 15-foot radius was also significantly correlated with increasing soil strength. Basal area growth differences were suggestive, but not significant. This study seems to support previous research that had also indicated soil compaction may lead to a decline in ponderosa pine growth. However, it must be noted that because tree growth response to compaction is highly variable, depending on the specific tree species and soil type involved, the results of this study should only be applied to ponderosa pines growing in the central Oregon volcanic ash soils. And, given the degree of variability found in this study, caution may be advised even when applying the results to other sites in Central Oregon. It should also be noted that a decline in site productivity is not the only potential result of soil disturbance. For example, exposing mineral soil may facilitate the establishment of natural ponderosa pine regeneration. Other forest management objectives may also be a reasonable trade-off for limited site impacts. such as increased protection from losses due to insect and disease infestations, or wildfire. Nevertheless, management practices may lead to frequent entries that compact the soil both extensively and intensively. Because these effects are long lasting and cumulative, the risk of reducing long-term site productivity remains a concern.

LITERATURE CITED

- Adams, P.W. 1991. Soil compaction on woodland properties. EC 1109. Oregon State University Extension Service, Corvallis, OR.
- Adams, P. W. Undated. Using moisture to manage soil compaction. Unpublished handout. Forest Engineering Dept., Oregon State University, Corvallis. 2p.
- Agee, J.K., H.H. Biswell. 1970. Some effects of thinning and fertilization on ponderosa pine and understory vegetation. J. Forest. 68 (11): 709-711. Nov.
- Allen, M.M., M. Taratoot and P. Adams. 1999. Soil compaction and disturbance from skyline and mechanized partial cuttings for multiple resource objectives in western and northeastern Oregon, U.S.A. In: Proceedings of the International Mountain Logging and 10th Pacific Northwest Skyline Symposium. Edited by John Sessions and Woodam Chung. Corvallis, Or.
- Alexander, E.B., J.A. Helms and C. Hipkin. 1985. A comparison of Steinbrenner air permeameter pressure loss and surface soil porosity for predicting the effects of soil compaction on tree growth in two pine plantations. USDA For. Serv. Earth Resour. Note 5. 19p.
- Aljibury, F.K. and D.D. Evans. 1961. Soil sampling for moisture retention and bulk density measurements. Soil Science Society of America Proceedings 25:180-183.
- Allbrook, R.F. 1986. Effect of skid trail compaction on volcanic soil in central Oregon. Soil Sci. Soc. Am. J. 50:1344-1346.
- Amaranthus, M.P., D.S. Page-Dumroese, A. Harvey, Efren Cazres, and L.F. Bednar. 1996. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. USDA Forest Service Pacific Northwest Research Station, Research Paper PNW-RP-494.
- Archer, J.R. and P.D. Smith. 1972. The relation between bulk density, available water capacity and air capacity of soils. J.Soil. Sci. 23, 475-80.

- Auerlich, D.E., N.K. Johnson, and H.A. Froehlich. 1974. Tractors or skylines: what's best for thinning young-growth Douglas-fir. For. Ind. 101(12):42-45.
- Blake, G.R., W.W. Nelson, and R.R. Allmaras. 1976. Persistence of subsoil compaction in a mollisol. Soil Sci. Soc. Am. J. 40:943-948.
- BL M, 1983. Instruction Memorandum No. OR-83-662
- Bodman, G.B. and G.K. Constantin. 1965. Influence of particle size distribution in soil compaction. Hilgardia 36:567-591.
- Bradshaw, G. 1979. Preplanned skid trails and winching versus conventional harvesting on a partial cut. Oregon State University, School of Forestry. Research Note 62.
- Chancellor, W.J. 1977. Effects of compaction on soil strength. In: Compaction of Agricultural Soils. Am. Soc. Agric. Eng. pp.190-213.
- Clayton, J.L., G. Kellogg and N. Forrester. 1987. Soil disturbance-tree growth relations in Central Idaho clearcuts. USDA Forest Service, Intermountain Research Station, Research Note INT-372, Ogden, Utah. 6pp.
- Clayton, J.L. 1990. Soil disturbance resulting from skidding logs on granitic soils in central Idaho. USDA Forest Service Intermountain Research Station Research Paper INT-436.
- Cochran, P.H. 1972. Temperature and soil fertility affect lodgepole and ponderosa pine seedling growth. Forest Science 18:132-134.
- Cochran, P.H. 1976. Predicting wood volumes for ponderosa pine from outside bark measurements. Res. Note PNW-238. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 8 p.
- Cochran, P.H. 1978. Response of a pole-size ponderosa pine stand to nitrogen, phosphorus, and sulfur. USDA Forest Service Research note PNW-319. Portland, OR: PNW 8p.
- Cruse, R.M., D.K. Cassel and F.G. Averette. 1980. Effect of particle surface roughness on densification of coarse-textured soils. Soil Sci. Soc. Am. J. 52:512-516.

- Cullen, S.J., C. Montagne and H. Ferguson. 1991. Timber harvest trafficking and soil compaction in western Montana. Soil Sci. Soc. Am. J. 55:1416-1421.
- Cunningham, R.L. and R.P. Matelski. 1968. Bulk density measurements on certain soils high in coarse fragments. Soil Science Society of America Proceedings 32:109-111.
- Danfors, B. 1974. Compaction in the subsoil. Swed. Inst. Agric. Eng. Spec. Publ. No.5.
- Davis, S. 1992. Effectiveness of a winged subsoiler in ameliorating a compacted clayey forest soil. Bureau of Land Management. Internal Memo. Eugene, OR.
- Dickerson, B.P. 1976. Soil compaction after tree-length skidding in Northern Mississippi. Soil Sci. Soc. Am. Proc. 40:965-966.
- Donnelly, J.R. and J.B. Shane. 1986. Forest ecosystem responses to artificially induced soil compaction. Canadian Journal of Forest Research. 16: 750-754.
- Drew, L.A. 1973. Bulk density estimation based on organic matter content of some Minnesota soils. Minnesota Forestry Research Notes. No. 243.
- Dyrness, C. T. 1965. Soil surface condition following tractor and high-lead logging in the Oregon Cascades. Journal of Forestry 63:272-275
- Eagleman, J.R. and V.C. Jamison. 1962. Soil Layering and compaction effects on unsaturated moisture movement. Soil Science Society Proceedings 1962. p 519-522.
- Flint, A.L. and S. Childs. 1983. Development and calibration of an irregular hole bulk density device. Soil Sci. Soc. Am. J. 48:374-378.
- Flint, A.L. 1983. Soil physical properties and available water capacity of southwest Oregon forest soils. M.S. Thesis. Oregon State University, Corvallis.
- Froehlich, H.A. 1973. The impact of even-age forest management on physical properties of soils. In Even-age management symposium. Oregon State University School of Forestry, Corvallis, OR. Edited by R.K. Hermann and D.P. Lavender. pp. 190-220.

- Froehlich, H.A. 1979. Soil compaction from logging equipment: effects on growth of young ponderosa Pine. J. Soil Water Conserv. 34:276-278.
- Froehlich, H.A. 1979a. Douglas-fir and ponderosa pine seedling growth in skid trails. <u>In:</u> Final report to USDI Bureau of Land Management, Contract 53500-CT4-5(N). Oregon State University. Corvallis. pp.9-14.
- Froehlich, H.A. and D.H. McNabb. 1984. Minimizing soil compaction in Pacific Northwest Forests. p. 159-192. <u>In</u>: Earl L. Stone (ed.) Forest Soils and Treatment Impacts. Proc. of Sixth North American Soils Conference. Univ. of Tenn. Conferences, 2016 Lake Ave., Knoxville. June 1983.
- Froehlich, H.A., D.E. Aulerich and R. Curtis. 1981. Designing systems to reduce soil impacts from tractive logging machines. Res. Pap. 44. For. Res. Lab, Oregon State Univ., Corvallis.
- Froehlich, H.A., D.W.R. Miles and R.W. Robbins. 1985. Soil bulk density recovery on compacted skid trails in Central Idaho. Soil Sci. Soc. Am. J. 49:1015-1017.
- Froehlich, H.A. and Bergland 1976. The effect of soil compaction during thining on the growth of residual trees. Unpubl. rept. Dept. of For. Engineering, Oregon State Univ., Corvallis. 17 p.
- Garland, J.J. 1983. Designated skid trails minimize soil compaction. Ext. Circ. 1110. Oregon State Univ., Corvallis.
- Garrison, G.A. and R.S. Rumell. 1951. First-year effects of logging on ponderosa pine forest range lands of Oregon and Washington. Journal of Forestry 49:708-713.
- Geist, J.M., J.W. Hazard, and K.W. Seidel. 1989. Assessing physical conditions of some Pacific Northwest volcanic ash soils after forest harvest. Soil Sci.Soc.Am. J. 53:946-950.
- Geist, J.M. and P.H. Cochran. 1991. Influences of volcanic ash and pumice deposition on productivity of western interior forest soils. In: Harvey, A.E.; Neuenschwander, L.F., comps. Proceedings-management and productivity of western-montaine forest soils. 1990 April 10-12; Boise, ID. Gen. Tech. Rep. INT-280. Ogden, UT. U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 82-89.

- Gent, J.A., R. Ballard, A.E. Hassan, D.K. Cassel, 1984. Impact of harvesting and site preparation on physical properties of Piedmont forest soils. Soil Science Society of America Journal 48:173-177.
- Gent, J.A., and L.A. Morris. 1986. Soil compaction from harvesting and site preparation in the upper Gulf Coastal Plain. Soil Sci. Soc. Am. J. 50:443-446.
- Gilmore, D.A. 1977. Logging and the environment, with particular reference to soil and stream protection in a tropical rainforest situation. In: Conservation guide 1: guidelines for watershed management. Rome: Food and Agriculture Organization: 223-225.
- Glass, G.G. Jr. 1976. The effects from rootraking on an upland piedmont loblolly pine (pinus taeda L.) site. Raleigh, NC: North Carolina State University School of Forest Resources. Tech. Rep. 56. 44 p.
- Greacen, E.L. and R. Sands. 1980. Compaction of forest soils. A review. Aust. J. Soil Res. 18:163-189.
- Grosenbaugh, L.R. 1964. Program estimates of tree populations from 3P sample tree-measurements. Res. Pap. PSW-13. Berkeley, CA: U.S. Department of Agriculture, Forest Service. Pacific Southwest Forest and Range Experiment Station. 49 p.
- Hann, D.W. and D.R. Larson. 1991. Diameter growth equations for fourteen tree species in southwest Oregon. Research Bulletin 69. Forest Research Laboratory, Oregon State University, Corvallis, Oregon. Research Bulletin 69. 18 p.
- Harvey, A.E.; R.T. Meurisse, J.M. Geist. 1989. Managing productivity processes in the Inland Northwest-mixed conifers and pines. In: Perry, D.A. et al.,eds. Maintaining the long-term productivity of Pacific Northwest forest ecosystems. Portland, OR: Timber Press: 164-184.
- Hatchell, G.E., C.W. Ralston and R.R. Foil. 1970. Effects of soil characteristics and growth of loblolly pine in the Atlantic Coast Plain. J.For. 68:772-775
- Haupt, H.F. 1960. Variation in areal disturbance produced by harvesting methods in ponderosa pine. J. For. 58:634-39.

- Helms, J.A., C. Hipkin, and E.B. Alexander. 1986. Effects of soil compaction on height growth of a California ponderosa pine plantation. Western Journal of Applied Forestry 1:104-108.
- Helm s, J.A. and C. Hipkin. 1986. Effects of soil compaction on tree volume in a California ponderosa pine plantation. Western Journal of Applied Forestry 1:121:124.
- Howard, R.F. and M.J. Singer. 1980. Measuring forest soil bulk density using irregular hole, paraffin clod, and air permeability.
- Howard, R.F., M.J. Singer, and G.A. Frantz. 1981. Effects of soil properties, water content and compactive effort on the compaction of selected California forest and range soils. soil Sci. Soc. Am. J. 45:231-236.
- Jeppesen, D. 1977. Soil compaction in LaPine soils by timber harvest. Internal Memorandum, Bureau of Land Management.
- Jurgensen, M.F., J.R. Tonn, R.T. Graham, A.E. Harvey, K. Geier-Hayes. 1991. Nitrogen fixation in forest soils of the Inland Northwest. In: Harvey, A.E.;
- Kairiukstis, L. and Z. Sakunas. 1989. Impact on soil of machinery used for cutting and reforestation. Seminar on the impact of mechanization of forest operations on the soil, Louvain-la-Neuve, Belgium. Economic Commission for Europe Food and Agriculture Organization and International Labour Organization. 13pp.
- King, A.L. and S. Haines. 1979. Soil compaction absent in plantation thinning. USDA Forest Service Southern Forest Experiment Station. No. 251.
- King, A.L., 1979. Measuring soil compaction in mechanically thinned pine plantations. 1979 Winter Meeting American Society of Agricultural Engineers. St. Joseph, MI.
- Krag, R.K., K. Higginbotham, R. Rothwell. 1986a. Logging and soil disturbance in southeast British Columbia. Can. J. For. Res. 16: 1345-1354.
- Kroger, J.L., E.C. Burt and A.C. Trouse, Jr. 1985. Multiple pass effects of skidder tires on soil compaction. Transactions of the ASAE Paper No. 83-1619.

- Laing, L. and E. Dashall. 1983. Soil quality monitoring plan of operation: detrimental soil disturbance following yarding and slash disposal activities on the Best Shot Timber Sale, Unit 1, Newport Ranger District, Colville National Forest.
- Larson, D.M. 1976. Soil Resource Inventory. Deschutes National Forest. Pacific Northwest Region.
- Larson, W.E. and S.C. Gupta. 1980. Estimating critical stress in unsaturated soils from changes in pore water pressure during confined compression. Soil Sci. Soc. Am. J. 44:1127-1132.
- Little, S.N., D.R. Waddell and P.H. Cochran. 1988. Draft: Effect of intensive harvesting and slash treatment on growth, biomass and product potential of second-growth ponderosa pine. Proposal to U.S. Department of Agriculture.
- Lull, H.W. 1959. Soil compaction on forest and range lands. USDA For. Serv. Misc. Pap. No. 768.
- Lysne, D.H. and A.L. Burditt, 1983. Theoretical ground pressure distribution of log skidders. Transactions of the ASAE. 26(5): 1327-1331.
- Mace, A.C., Jr. 1971. Recovery of forest soils from compaction by rubber-tired skidders. Minn. For. Res. Notes No. 226, 4 p. Univ. of Minnesota, St. Paul.
- McArdle, E., H. Meyer and D. Bruce. 1949. The yield of douglas-fir in the Pacific Northwest. USDA Tech. Bull. 201, 74 p.
- McIver, James. 1995. Deerhorn fuels reduction: economics and environmental effects. BMNRI-TN-6.
- McNabb, D.H. 1984. Using soil tests to predict Douglas-fir reponse to nitrogen fertilizer. pp.80 IN: Regional Forest Nutrition Research Project, Report No. 2. College of Forest Resources, U. of Washington, Seattle.
- McNabb, D.H. and H.A. Froehlich. 1984. Conceptual model for predicting forest productivity losses from soil compaction. P. 261-265 in new Forests for a Changing World. Proc., 1983 SAF national Convention, Portland, OR.

- Megahan, W.F. 1980. Nonpoint source pollution from forestry activities in the western United States: Results of recent research and research needs. p. 92-151. In: U.S. Forestry and Water Quality: What course in the 80's? An Analysis of Environmental and Economic Issues. Conf. Proc., Richmond, VA. 19-20 June. Water Pollution Control Federation, Washington, DC.
- Miles, J.A. 1976. Soil compaction produced by logging and residue treatment. American Society of Agricultural Engineers 1976 Winter Meeting Paper No. 76-1574.
- Miles, J.A., R.W. Robbins and H.A. Froehlich. 1976. Rehabilitation: Objectives and evaluation of forest tillage. <u>In</u>: J.D. Lousier and G.W. Steill (Ed.) Degradation of Forested land: Forest Soils at Risk. Proc. of 10th B.C. Soil Sci. Workshop. Land Management Rept. No. 56. p. 204-215.
- Miles, J.A. 1978. Soil compaction produced by logging and residue treatment. Trans. Am. Soc. Agric. Engineers. 60-2.
- Miles, J.A., B.R. Hartsough, P. Aulani and W.J. Chancellor. 1981. A soil compaction study on the Blodgett Experimental Forest. Proc. of Int. Conf. on Forest Regeneration. ASAE, St. Joseph, MI p. 72-81
- Minore, D. and H.G. Weatherly. 1988. Yarding method and slash treatment effects on compaction, humus, and variation in plantation soils. USDA Forest Service Pacific Northwest Research Station Research Note PNW-RN-476.
- Minore, D., C.E. Smith, and R.F. Woolward. 1969. Effects of high soil density on seedling growth of seven northwestern tree species. USDA Forest Service. Research Note PNW-RN-112. Pacific Northwest Research Station, Portland, OR.
- Miller, J.H. and D.L. Sirois. 1986. Soil disturbance by skyline yarding vs. skidding in a loamy hill forest. Soil Sci. Soc. Am. J. 50:1579-1583.
- Moehring, D.M., and I.K. Rawls. 1970. Detrimental effects of wet weather logging. J. For. 68.3. 166-167.
- Murdough, D. and T. Jones. 1984. Feller buncher analysis based on a timber sale soil monitoring project. Unpubl. rept. USDA Forest Service. Willamette National Forest, Oakridge Ranger District.

- Neuenschwander, L.F., comps. Proceedings-management and productivity of western-montane forest soils: 1990 April 10-12. Boise, ID. Gen. Tech. Rep. INT-280. Ogden, UT. U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 101-109.
- Olsen, E.D. and J.C.W. Seifert. 1984. Machine performance and site disturbance in skidding on designated trails. J.For. 82(6):366-369.
- Omberg, H. 1969. The formation of tracks made by forwarders on forest soil. In: Proc. Thinning and Mechanization. p. 144-150. IUFRO Meet., Royal Coll. For., Stockholm, Sweden.
- Page-Dumroese, D.S. 1993. Susceptibility of volcanic ash-influenced soil in northern Idaho to Mechanical compaction. USDA Forest Service Intermountain Research Station. Research Note Int-409.
- Pearse, P.A. 1958. A study of effects of soil compaction. U.B.C. For. Club Res. Comm. Res. Note No. 16.
- Perry, T.O. 1964. Soil compaction and loblolly pine growth. Tree Planters' Notes 67:9
- Power, W.E. 1974. Effects and observations of soil compaction in the Salem District. USDI-BLM Tech. Note No. 256, Federal Center Building 50, Denver, CO. 12 pp.
- Raghaven, G.S., V.E. McKyes, and B. Beaulier. 1977. Prediction of clay soil compaction. J. Terra Mech. 4:31-38.
- Raghavan, G.S.V., E. McKeyes and F. Taylor. 1981. Soil compaction effects on soil productivity. Proc. of Int. Conf. on Forest Regeneration. ASAE, St. Joseph, MI. p. 90-97.
- Raney, W.A., T.W. Edminster and W.H. Allaway. 1955. Current status of research in soil compaction. Soil Science Society Proceedings. p. 423-428.
- Reinhard, K.G. 1964. Effect of a commercial clearcutting in West Virginia on overland flow and storm runoff. J. For. 62, 161-71.
- Resinger, T.W., G.L. Simmons, P.E. Pope. 1988. The impact of timber harvesting on soil properties and seedling growth in the South. Southern Journal of Applied Forestry. 12(1):58-67.

- Rice, R.M. and P.A. Datzman. 1981. Erosion associated with cable and tractor logging in northwestern California. International Association of Scientific Hydrology. 132:362-374.
- Sands, R. 1981. The effect of soil physical changes on forest productivity. CSIRO Division of Soils.
- Sands, R. and G.D. Bowen. 1978. Compaction of sandy soils in radiata pine forests II. Effects of compaction on root configuration and growth of radiata pine seedlings. Aust. For. Res. 1978 (8):163-170.
- Sands, R., E.L. Greacen and C.J. Gerard. 1979. Compaction of sandy soils in radiata pine forests I. A penetrometer study. Aust. J. Soil Res. 17, 101-13.
- SAS Institute Inc. 1982. SAS Users Guide 1982 Edition. SAS Institute Inc., Raleigh, N.C. 494 pgs.
- Schuacher, F. X. and F.S. Hall. 1933. Logarithmic expression of timber-tree volume. J. Agric. Res. 47:719-734.
- Shetron, S.G., J.A. Sturos, E. Padley, and C. Trettin. 1988. Forest soil compaction: effect of multiple passes and loadings on wheel track surface soil bulk density. North. Journal of Applied Forestry. 5:120:123.
- Sidle, R.C. and D.M. Drilca. 1981. Soil compaction with a low ground pressure skidder in the Oregon Coast Ranges. Soil Sci. Soc. Amer. J. 45:1219-1225.
- Silvics of North America. 1990. USDA Forest Service. Handbook 654. Volume 1 Conifers.
- Skinner, M.F., and G.D. Bowen. 1974. The penetration of soil by mycelial strands of ectomycorrhizal fungi. Soil Biol. Biochem. p. 57-61.
- Snider, M.D., and R.F. Miller. 1985. Effects of tractor logging on soils and vegetation in eastern Oregon. Soil Sci. Soc. Am. J. 49:1280-1282.
- Steinbrenner, E.C. 1955. The effect of repeated tractor trips on physical properties of forest soils. Northwest Sci. 29(4):155-159.
- Stewart, R., H. Froehlich and E. Olsen. 1988. Soil compaction: an economic model.Western Journal of Applied Forestry. Vol. 3, No. 1.

- Terry, T.A., D.K. Cassel and A.G. Wollum. 1981. Effects of soil sample size and included root and wood on bulk density in forested soils. Soil Science Society of America Journal 45:135-138.
- Thorud, D.B. and S.S. Frissel, Jr. 1976. Time Changes in soil density following compaction under an oak forest. Minn. For. Res. Note No. 257, 4 p. Univ. Minnesota, St. Paul.
- Vomocil, J.A., E.R. Fountaine, and R.J. Reginato. 1958. The influence of speed and drawbar load on the compacting effect of a wheeled tractor. Proc. Soil Sci. Soc. Am. 22:178-180.
- Vora, R.S. 1988. Potential soil compaction forty years after logging in northeastern California. Great Basin Naturalist. Vol. 48, No. 1. p117-120.
- Warkentin, B.P. 1971. Compaction as it affects soil conditions. Effects of compaction on content and transmission of water in soil. p. 126-153. In: Compaction of agricultural soils. ASAE Monograph, St. Joseph, Mich.
- Weaver, H.A. and V.C. Jamison. 1951. Effects of moisture on tractor tire compaction of soil. Soil Sci. 71. 15-23.
- Wert, S. and B.R. Thomas. 1981. Effects of skid roads on diameter, height, and volume growth in Douglas-fir. Soil Sci. Soc. Am. J. 45:629-632.
- Wingate-Hill, R., and B.F. Jakobsen. 1982. Increased mechanization and soil damage in forests. New Zealand J. For. Sci. 12(2):380-92.
- Youngberg, C.T., and C.T. Dyrness. 1965. Biological assay of pumice soil fertility. Soil Science Society of America Proceedings. 29 (2): 182-187.
- Zaborski, R.R. 1989. Soil compaction on a mechanized timber harvest operation in eastern Oregon. M.F. paper, Forest Engineering Department, Oregon State University. 89 pp.

APPENDIX

/

Appendix A. Sample Penetrometer Data.

Tables 1, 2 and 3 are presented to clarify how the averaged soil strength values per tree were derived for the statistical analysis and to also show how some of the inherent variability in the data was lost or masked as a result of averaging. All of the soil strength values are in pounds per square inch (PSI).

Table 1 presents a small sample of the raw data collected by the recording penetrometer. The penetrometer recorded the soil strength at one-inch intervals to a total depth of 24 inches. Each row of data represents a single probe by the penetrometer.

Table 2 shows how all the averaged penetrometer files were combined to create an overall average soil strength value for each individual tree in the East Fort Rock – Complete Removal study area.

Finally, Table 3 shows the final average soil strength values used in the analysis for the East Fort Rock – Complete Removal study area, for the 15-, 30- and 45-foot radius plots around each tree.

Table 1. East Fort Rock – Complete Removal sample penetrometer data. Soilstrength in pounds per square inch.

	Dep	th in Ir	nches		Soil S	Strengt	h Res	istanc	e in Po	ounds	per S	quare	Inch												Avg.
File#	1	2	3	4	5	6	7	8		10	11		13	14	15	16	17	18	19	20	21	22	23	24	PSI
1	52	94	92	122	172	167	192	208	213	239	248	230	238	263	284	284	280	289	300	296	299	306	303	326	229
2	8	33	57	95	134	155	157	178	184	201	207	190	187	183	184	187	216	230	192	202	204	213	240	270	171
3	0	0	18	30	62	73	101	98	133	161	184	191	184	179	188	175	171	171	167	202	223	241	228	230	142
4	17	44	73	73	36	42	42	45	100	192	113	102	124	160	190	190	181	180	188	177	174	184	205	340	132
5	7	11	7	33	113	178	193	192	212	215	221	234	248	259	239	245	265	269	246	227	244	294	337	357	202
6	22	33	17	0	40	100	132	134	143	151	158	162	164	180	202	164	101	79	92	97	178	294	267	155	128
7	5	18	37	89	124	122	133	102	104	101	137	167	164	223	284	288	312	336	365	377	363	357	328	299	201
8	49	36	47	89	189	257	317	351	306	281	346	358	366	384	359	349	342	338	376	393	414	470	502	520	310
9	7	13	46	98	119	104	116	133	160	193	235	232	187	193	190	192	204	211	228	248	261	256	276	350	177
10	28	31	44	68	85	104	102	71	69	69	80	121	129	141	171	219	287	381	557	403	97	104	107	11	145
11	14	42	63	92	125	162	199	227	228	241	242	267	342	438	288	206	229	320	344	379	433	489	605	688	278
12	0	5	7	16	6	6	5	12	17	18	29	223	411	568	219	86	86	88	89	89	89	89	89	89	97
13	25	27	8	9	71	190	251	282	464	214	411	471	513	543	568	513	350	253	169	201	305	409	412	95	281
14	46	89	81	97	88	86	121	214	317	361	347	335	354	333	321	362	566	675	500	278	217	272	261	295	276
15	19	40	119	239	265	258	261	299	333	339	347	329	351	376	435	412	439	499	613	644	530	631	279	60	338
16	25	34	49	96	163	201	256	337	351	289	305	366	524	611	572	587	85	622	569	612	339	73	71	69	300
17	13	22	77	125	189	239	253	288	296	225	214	259	317	382	493	561	510	496	398	400	388	299	361	361	298
18	15	20	51	143	207	215	225	253	346	414	268	403	450	483	466	387	324	394	620	133	90	92	94	95	258
19	25	33	78	157	184	189	139	113	130	166	313	82	84	83	84	86	86	86	85	85	86	86	86	85	110
20	12	8	0	0	39	143	226	213	172	203	362	187	90	94	93	94	94	97	98	101	102	103	103	10	110
21	6	15	27	67	90	101	107	155	212	208	194	210	246	315	385	391	347	342	315	367	456	482	580	321	247
22	5	0	22	62	133	210	287	418	411	340	433	505	531	592	367	620	324	103	106	114	116	117	116	117	252
23	6	29	18	29	40	95	161	289	260	163	115	210	352	288	204	317	462	421	78	80	81	81	82	80	164
24	0	25	50	84	98	103	136	163	188	140	118	303	373	417	393	389	97	101	101	101	102	98	98	96	157
25	38	88	139	166	51	168	171	253	421	323	308	326	81	86	86	86	88	88	88	88	88	88	88	89	146
26	42	78	80	97	116	116	96	107	119	139	153	180	201	137	147	229	136	161	157	225	105	105	107	106	131
27	8	22	50	71	90	92	75	133	56	187	175	188	234	317	149	279	302	302	297	398	307	111	112	115	170
28	6	26	33	58	95	94	117	141	155	162	187	212	214	188	184	216	226	240	287	320	348	389	400	379	195
29	6	11	41	169	293	269	249	263	311	332	349	325	312	281	228	211	198	247	290	291	284	300	285	114	236
30	5	42	57	35	50	56	75	78	67	66	66	122	132	135	248	107	216	213	206	199	219	258	269	25	123
31	22	60	90	78	63	42	35	23	19	28	83	175	127	122	147	188	213	242	240	192	194	233	303	342	136
32	16	59	29	37	27	98	219	284	314	308	266	213	146	127	185	308	388	421	431	435	420	376	350	403	244
33	12	47	80	69	90	133	170	202	202	216	213	218	193	205	222	233	242	253	253	246	219	190	193	201	179
34	31	38	78	122	113	64	59	66	68	67	52	50	36	36	30	19	19	35	62	129	180	210	205	200	82
35	15	18	29	47	66	136	183	184	185	145	134	147	168	190	235	246	258	248	242	210	213	272	261	136	165
36	12	18	18	33	56	33	34	33	42	56	38	29	30	33	39	67	93	77	69	70	66	147	97	97	54
37	0	15	9	64	143	182	189	203	201	157	115	146	155	172	250	490	217	371	362	423	501	623	636	682	263
38	9	30	70	147	173	170	169	181	188	215	169	202	160	382	414	81	85	86	86	88	88	89	90	91	144
39	37	84	183	283	334	367	374	367	384	410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	282
40	42 16	113 28	164 54	203 118	180	184	212	103	233	263	261	279	328	470	216	355	403	447	482	502	335 74	289 77	308	342 8	280
41					182	174	158	130	153	223	178	259	288	335	304	233	429	648	302	75			77		188 309
42	29 33	63	96	159	184	213	249	278	250	213	221	282	311	349	370	357	445 86	489	513 88	657 86	687	625 89	297 89	78 90	309
43	33	195 12	477 17	421 48	677 77	387 89	384 163	115 227	441 285	434 384	500 211	630 155	635 137	502 173	627 129	265 182	393	89 494	558	565	86 534	89 547	89 604	90 550	273
44	8	12	39	48 66	49	89 26	163	13	285	384	211	155 39	75	173	129	182	393 97	494 168	293	273	534 381	105	604 98	104	
45	0	13	39 22	68	49 102	26 94	89	73	20 56	39 59	134	39 297	75 548	556	311	372	358	301	293 468	536	648	688	98 643	676	296
40	27	40	57	49	50	94 57	75	73	56	59 45	134 59	78	548 96	556 441	240	48	358	59	408 68	121	173	195	199	167	105
47	8	51	119	167	182	175	148	145	141	127	141	161	213	293	352	40 317	293	324	405	501	564	498	300	261	245
40	14	17	0	13	50	116	157	145	213	234	253	293	426	475	533	0	293	0	405	0	0	490	0	201	199
50	38	98	101	95	92	117	141	236	259	157	153	160	420	230	296	344	457	637	539	416	199	69	69	68	215
50	14	33	57	83	92 97	52	208	230	259	324	362	273	255	306	290	344 0	457	037	0	410	0	0	0	00	185
52	5	18	85	187	194	204	208	245	201	240	466	475	255 355	339	377	373	475	326	68	92	94	96	97	96	221
53	18	48	115	169	194	204 180	192	237	172	240 119	202	331	355	339	0	3/3	4/5	320	0	92	94	96	97	90	163
54	6	35	45	51	82	95	86	75	81	94	202	331	0	0	0	0	0	0	0	0	0	0	0	0	93
55	23	66	183	290	o∠ 329	326	318	317	321	94 321	318	343	329	311	327	365	438	465	487	410	92	97	101	97	277
56	15	47	89	103	100	320 80	60	45	321	44	62	324 84	329 90	68	327 91	365 173	438 370	465 557	233	241	92 69	197	292	347	145
57	41	106	152	195	180	157	172	45 189	173	44 167	62 196	214	321	337	210	269	248	217	233	241	335	339	292 361	374	228
57	16	12	25	50	101	137	124	113	1/3	126	125	133	146	260	263	269	248	0	230	294	335	339	361	0	129
59	17	54	77	90	169	225	207	202	212	226	125	199	217	200	188	195	216	241	282	255	294	312	337	343	207
60	6	14	77	196	260	308	331	361	358	365	379	384	361	370	350	359	363	337	304	295	294 321	312	344	305	207
00	0	1-4	11	130	200	500	551	501	550	305	519	304	301	310	550	209	505	551	304	290	521	320	044	303	290

TREE#	PENT#	PSI	TREE#	PENT#	PSI	TREE#	PENT#	PSI
160	25	146	173	142	185	186	3 99	342
160	51	185	173	169	234	186	456	275
160	78	166	173	1 9 6	336	186	400	331
160	106	104	173	223	136	186	427	251
160	79	225	173	250	242	186	454	220
160	52	221	173	277	215	186	481	289
160	133	191	173	278	349	186	508	273
160	756	108	173	251	294	186	509	223
160	26	131	173	224	183	186	482	223
160	53	163	173	1 9 7	253	186	455	305
160	80	229	173	170	350	186	428	278
160	107	137	173	171	224	186	401	337
160	108	170	173	1 9 8	261	186	374	3 9 8
160	81	112	173	225	299	186	402	397
160	54	93	173	252	31 9	186	429	274
160	27	170	173	27 9	262	186	483	229
160	757	159	173	248	310	186	510	217
160	821	232	173	167	248	186	484	258
160	822	140	173	1 9 4	313	186	457	341
160	823	119	173	221	229	186	430	273
160	824	106	173	275	221	186	425	382
160	855	161	173	276	376	186	452	218
160	854	200	173	249	201	186	479	222
160	853	164	173	222	208	186	507	168
160	852	215	173	195	257	186	480	250
160	134	146	173	168	306	186	453	200
160	825	204	173	141	174	186	426	173
AVG		163	AVG		259	AVG.		272
161	133	191	174	306	220	187	454	220
161	107	137	174	277	215	187	481	289
161	108	170	174	278	349	187	508	273
161	824	106	174	305	295	187	535	203
161	134	146	174	332	298	187	562	302
161	825	204	174	333	257	187	563	263
161	856	137	174		221	187	536	222
161	858	296	174	276	376	187	509	223
161	161	97	174	301	243	187	482	223
161	188	221	174	302	231	187	455	305
161	215	172	174	303	114	187	510	217
161	242	330	174	330	123	187	537	317

Table 2. East Fort Rock – Complete Removal. Soil strength calculations for each tree, averaging all penetrometer files within the 45-foot radius.

161	243	149	174	357	130	187	533	224
161	216	143	174	384	258	187	559	229
161	189	275	174	329	164	187	532	426
161	162	154	174	355	190	187	505	265
161	826	330	174	328	248	187	478	202
161	827	221	174	356	213	187	452	218
161	828	198	174	383	195	187	479	222
161	829	238	174	385	195	187	506	198
161	859	260	174	358	309	187	560	436
161	857	200	174	331	217	187	561	272
161	214	185	174	304	389	187	534	387
161	187	230	174	359	301	187	507	168
161	160	162	174	386	308	187	480	250
AVG.		197	174	360	334	187	453	200
162	182	205	AVG.		246	187	588	364
162	209	387	175	332	298	AVG.		264
162	236	257	175	301	243	188	485	249
162	263	457	175	302	231	188	512	319
162	208	309	175	303	114	188	539	227
162	289	227	175	330	123	188	566	269
162	262	376	175	357	130	188	567	205
162	235	317	175	384	258	188	540	213
162	291	180	175	411	313	188	513	231
162	264	311	175	438	255	188	486	338
162	237	266	175	329	164	188	508	273
162	210	177	175	327	261	188	535	203
162	183	161	175	354	371	188	562	302
162	184	171	175	381	195	188	563	263
162	211	261	175	408	224	188	536	222
162	238	311	175	409	187	188	509	223
162	265	170	175	382	240	188	482	223
162	292	134	175	355	190	188	483	229
162	293	296	175	328	248	188	510	217
162	266	243	175	356	213	188	537	317
162	239	165	175	383	195	188	564	261
162	212	165	175	410	211	188	565	353
162	319	294	175	437	303	188	538	287
162	290	238	175	412	380	188	511	179
162	317	408	175	385	195	188	484	258
162	318	276	175	358	309	188	457	341
AVG.	5.5	258	175	331	217	188	593	273
163	129	220	175	304	389	188	592	253
163	100	293	175	359	301	188	591	326
163	101	170	175	386	308	188	590	413
163	125	200	AVG.		242	AVG.		267

163	126	138	176	352	275	189	566	269
163	127	177	176	379	185	189	567	205
163	128	118	176	406	227	189	564	261
163	155	173	176	433	267	189	565	353
163	182	205	176	434	229	189	594	293
163	209	387	176	407	165	189	593	273
163	236	257	176	380	360	189	620	110
163	208	309	176	353	238	189	647	253
163	206	314	176	326	267	189	674	297
163	179	210	176	327	261	189	675	272
163	152	153	176	354	371	189	648	293
163	153	229	176	381	195	189	621	278
163	180	165	176	408	224	189	592	253
163	207	322	176	435	225	189	591	326
163	234	272	176	462	316	189	618	169
163	235	317	176	463	184	189	645	295
163	181	181	176	436	312	189	372	347
163	154	193	176	409	187	189	673	223
163	237	266	176	382	240	189	646	172
163	210	177	176	355	190	189	619	226
163	183	161	176	356	213	189	590	413
163	156	184	176	383	195	189	644	267
163	157	268	176	410	211	189	617	232
163	184	171	176	437	303	189	842	275
163	211	261	176	1015	147	189	843	188
AVG.		222	176	1016	231	189	844	112
164	48	245	176	460	326	AVG		256
164	102	154	176	461	164	190	559	229
164	75	194	AVG.		- 238	190	560	436
164	49	199	177	438	255	190	561	272
164	76	275	177	489	168	190	585	233
164	103	234	177	544	370	190	586	247
164	104	172	177	517	296	190	587	296
164	77	197	177	490	284	190	588	364
164	50	215	177	463	184	190	589	391
164	129	220	177	436	312	190	616	468
164	130	199	177	437	303	190	643	228
164	131	76	177	464	369	190	670	259
164	99	262	177	491	234	190	613	274
164	100	293	177	518	208	190	614	188
164	73	146	177	546	283	190	641	307
164	46	296	177	519	351	190	668	340
164	47	105	177	492	233	190	695	301
164	74	284	177	465	240	190	696	322
164	101	170	177	520	218	190	669	230

164	127	177	177	493	230	190	642	257
164	128	118	177	466	256	190	615	249
164	155	173	177	439	143	190	612	288
164	154	193	177	440	334	190	639	335
164	156	184	177	467	191	190	666	340
164	157	268	177	494	330	190	694	389
164	158	114	177	521	306	190	667	225
AVG.	1724.0	199	177	548	253	190	640	315
165	69	322	177	545	275	ANG		298
165	42	309	177	547	363	191	535	203
165	15	338	AVG.		268	191	562	302
165	16	300	178	387	291	191	533	224
165	746	282	178	306	220	191	557	319
165	43	309	178	332	298	191	530	257
165	70	190	178	333	257	191	504	324
165	9 7	383	178	334	189	191	531	305
165	98	259	178	335	179	191	558	336
165	71	216	178	384	258	191	559	229
165	44	273	178	439	143	191	532	426
165	17	298	178	412	380	191	505	265
165	747	459	178	385	195	191	506	198
165	748	312	178	358	309	191	560	436
165	18	258	178	331	217	191	561	272
165	45	99	178	390	366	191	534	387
165	72	182	178	416	241	191	507	168
165	99	262	178	361	244	191	584	264
165	100	293	178	388	224	191	585	233
165	73	146	178	415	296	191	586	247
165	46	296	178	442	338	191	587	296
165	19	110	178	443	203	191	588	364
165	749	333	178	389	297	191	589	391
165	20	110	178	362	182	191	611	390
165	47	105	178	359	301	191	613	274
165	74	284	178	386	308	191	614	188
AVG.		257	178	413	331	191	641	307
166	123	186	178	440	334	191	615	249
166	231	267	178	468	210	191	612	288
166	204	190	178	441	287	191	640	315
166	177	166	178	414	231	AVG.	010	294
166	150	215	178	387	291	192	641	307
166	124	213	178	360	334	192	668	340
166	124	200	178	387	291	192	695	301
166	125	138	AVG.	507	266	192	722	250
166	120	138	Avo. 179	446	300	192	921	230 171
166	127	205	179	440 417	300 344	192	921 920	171
100	162	200	1/9	41/	244	192	920	103

166	208	309	179	444	308	192	723	213
166	151	131	179	471	323	192	696	322
166	178	212	179	498	328	192	669	230
166	205	188	179	525	225	192	639	335
166	232	231	179	526	256	192	666	340
166	233	206	179	499	293	192	693	201
166	206	314	179	472	213	192	720	80
166	179	210	179	445	330	192	923	172
166	152	153	179	418	173	192	953	253
166	153	229	179	391	406	192	952	267
166	180	165	179	392	311	192	922	239
166	207	322	179	419	156	192	721	272
166	234	272	179	473	115	192	694	389
166	235	317	179	500	276	192	667	225
166	181	181	179	527	211	192	640	315
166	154	193	179	528	258	192	692	217
AVG.		218	179	501	260	192	664	255
167	283	335	179	474	184	192	691	241
167	256	310	179	447	331	192	718	218
167	229	378	179	420	254	192	924	203
167	202	232	179	393	359	192	719	233
167	203	343	179	470	218	192	665	225
167	230	245	179	443	203	192	638	384
167 167	230 257	245 320	179 179	443 421	203 367	192 AVG.	638	384 249
							638 635	
167	257	320	179	421	367	AVG.	194	249
167 167	257 284	320 308	179 179	421 448	367 167	AVG. 193	635	249 273
167 167 167	257 284 285	320 308 201	179 179 179	421 448 475	367 167 398	AVG. 193 193	635 662	249 273 228
167 167 167 167	257 284 285 258	320 308 201 148	179 179 179 179	421 448 475	367 167 398 349	AVG. 193 193 193	635 662 689	249 273 228 239
167 167 167 167 167	257 284 285 258 231	320 308 201 148 267	179 179 179 179 AVG	421 448 475 502	367 167 398 349 269	AVG. 193 193 193 193	635 662 689 716	249 273 228 239 320
167 167 167 167 167 167	257 284 285 258 231 204	320 308 201 148 267 190	179 179 179 179 AVG 180	421 448 475 502 446	367 167 398 349 269 300	AVG. 193 193 193 193 193 193	635 662 689 716 717	249 273 228 239 320 315
167 167 167 167 167 167 167	257 284 285 258 231 204 310	320 308 201 148 267 190 286	179 179 179 179 ▲♥₲ 180 180	421 448 475 502 446 471	367 167 398 349 269 300 323	AVG 193 193 193 193 193 193 193	635 662 689 716 717 690	249 273 228 239 320 315 337
167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311	320 308 201 148 267 190 286 349	179 179 179 AVG 180 180 180	421 448 475 502 446 471 498	367 167 398 349 269 300 323 328	AVG. 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663	249 273 228 239 320 315 337 131
167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312	320 308 201 148 267 190 286 349 195	179 179 179 179 ▲♥₲ 180 180 180 180	421 448 475 502 446 471 498 525	367 167 398 349 269 300 323 328 225	AVG 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636	249 273 228 239 320 315 337 131 267
167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205	320 308 201 148 267 190 286 349 195 188	179 179 179 ▲♥G 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553	367 167 398 349 269 300 323 328 225 377	AVG 193 193 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609	249 273 228 239 320 315 337 131 267 215
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232	320 308 201 148 267 190 286 349 195 188 231	179 179 179 AVG 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526	367 167 398 349 269 300 323 328 225 377 256	AVG. 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611	249 273 228 239 320 315 337 131 267 215 390
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259	320 308 201 148 267 190 286 349 195 188 231 179	179 179 179 AVG 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499	367 167 398 349 269 300 323 328 225 377 256 293	AVG. 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610	249 273 228 239 320 315 337 131 267 215 390 291
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286	320 308 201 148 267 190 286 349 195 188 231 179 182	179 179 179 ▲♥G 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472	367 167 398 349 269 300 323 328 225 377 256 293 213	AVG 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612	249 273 228 239 320 315 337 131 267 215 390 291 288
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286 287	320 308 201 148 267 190 286 349 195 188 231 179 182 201	179 179 179 AVG 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472 445	367 167 398 349 269 300 323 328 225 377 256 293 213 330	AVG 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612 639	249 273 228 239 320 315 337 131 267 215 390 291 288 335
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286 287 260	320 308 201 148 267 190 286 349 195 188 231 179 182 201 291	179 179 179 AVG 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472 445 473	367 167 398 349 269 300 323 328 225 377 256 293 213 330 115	AVG. 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612 639 666	249 273 228 239 320 315 337 131 267 215 390 291 288 335 340
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286 287 260 233	320 308 201 148 267 190 286 349 195 188 231 179 182 201 291 206	179 179 179 AVG 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472 445 473 500	367 167 398 349 269 300 323 328 225 377 256 293 213 330 115 276	AVG 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612 639 666 693	249 273 228 239 320 315 337 131 267 215 390 291 288 335 340 201
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286 287 260 233 206	320 308 201 148 267 190 286 349 195 188 231 179 182 201 291 206 314	179 179 179 AVG 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472 445 473 500 527	367 167 398 349 269 300 323 328 225 377 256 293 213 330 115 276 211	AVG 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612 639 666 693 720	249 273 228 239 320 315 337 131 267 215 390 291 288 335 340 201 80
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286 287 260 233 206 234	320 308 201 148 267 190 286 349 195 188 231 179 182 201 291 206 314 272	179 179 179 AVG 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472 445 473 500 527 554	367 167 398 349 269 300 323 328 225 377 256 293 213 330 115 276 211 271	AVG. 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612 639 666 693 720 694	249 273 228 239 320 315 337 131 267 215 390 291 288 335 340 201 80 389
167 167 167 167 167 167 167 167 167 167	257 284 285 258 231 204 310 311 312 205 232 259 286 287 260 233 206 234 261	320 308 201 148 267 190 286 349 195 188 231 179 182 201 291 206 314 272 202	179 179 179 AVG 180 180 180 180 180 180 180 180 180 180	421 448 475 502 446 471 498 525 553 526 499 472 445 473 500 527 554 555	367 167 398 349 269 300 323 328 225 377 256 293 213 330 115 276 211 271 321	AVG 193 193 193 193 193 193 193 193	635 662 689 716 717 690 663 636 609 611 610 612 639 666 693 720 694 667	249 273 228 239 320 315 337 131 267 215 390 291 288 335 340 201 80 389 225

168	228	200	180	447	331	193	664	255
168	255	115	180	476	189	193	691	241
168	282	221	180	448	167	193	718	218
168	283	335	180	475	398	193	925	166
168	256	310	180	502	349	193	924	203
168	229	378	180	529	408	193	719	233
168	309	183	180	556	374	193	665	225
168	336	335	180	530	257	193	638	384
168	337	353	180	503	403	AVG.		267
168	310	286	AVG.		285	194	604	284
168	306	220	181	420	254	194	631	246
168	226	193	181	393	359	194	658	300
168	278	349	181	366	309	194	685	397
168	225	299	181	340	143	194	713	305
168	252	319	181	367	254	194	686	254
168	279	262	181	394	265	194	659	215
168	280	242	181	395	246	194	632	255
168	253	211	181	368	161	194	605	271
168	227	239	181	341	227	194	578	349
168	254	266	181	342	336	194	581	301
168	281	230	181	369	250	194	608	215
168	333	257	181	396	283	194	635	273
168	307	170	181	397	372	194	662	228
168	334	189	181	370	310	194	689	239
168	335	179	181	343	249	194	663	131
168	308	266	181	371	536	194	636	267
AVG.		254	181	398	263	194	580	267
169	123	186	181	421	367	194	579	332
169	93	324	181	448	167	194	606	228
169	94	315	181	449	464	194	633	149
169	95	124	181	422	292	194	660	314
169	96	364	181	423	103	194	687	301
169	120	306	181	450	242	194	714	115
169	121	223	181	451	241	194	715	208
169	122	211	181	424	256	194	688	278
169	119	306	181	425	382	194	661	307
169	147	299	AVG.	1	282	194	634	97
169	174	244	183	263	457	194	607	257
169	201	307	183	288	131	AVG.		254
169	229	378	183	289	227	195	960	267
169	202	232	183	262	376	195	930	257
169	175	277	183	291	180	195	713	305
169	148	267	183	264	311	195	686	254
169	149	250	183	265	170	195	662	228
169	176	342	183	292	134	195	689	239

169	203	343	183	293	296	195	716	320
169	204	190	183	319	294	195	927	238
169	177	166	183	346	227	195	957	116
169	150	215	183	347	279	195	987	170
169	146	249	183	320	283	195	956	166
169	173	255	183	290	238	195	926	246
169	200	105	183	315	254	195	717	315
169	151	131	183	342	336	195	690	337
AVG.		254	183	370	310	195	660	314
170	86	98	183	343	249	195	687	301
170	60	295	183	316	342	195	714	115
170	87	227	183	317	408	195	929	271
170	88	261	183	344	273	195	959	372
170	61	296	183	371	536	195	989	259
170	34	82	183	372	347	195	988	223
170	35	165	183	345	151	195	958	252
170	62	191	183	318	276	195	928	128
170	89	244	183	373	351	195	715	208
170	90	318	AVG.		286	195	688	278
170	63	308	184	236	257	195	661	307
170	64	297	184	263	457	AVG.		=250
170	91	220	184	289	227	196	577	125
170	115	207	184	291	180	196	604	284
170	116	130	184	264	311	196	631	246
170	117	221	184	237	266	196	658	300
170	118	238	184	238	311	196	685	397
170	142	185	184	265	170	196	659	215
170	169	234	184	292	134	196	632	255
170	170	350	184	293	296	196	605	271
170	143	246	184	266	243	196	578	349
170	144	232	184	239	165	196	548	253
170	171	224	184	267	143	196	549	269
170	145	317	184	294	260	196	575	257
170	113	184	184	319	294	196	602	271
170	168	306	184	346	227	196	629	281
170	141	174	184	347	279	196	656	254
170	114	308	184	320	283	196	683	275
AVG.	2064 208	239 .	184	321	251	196	684	193
171	770	218	184	348	249	196	657	236
171	769	162	184	290	238	196	630	199
171	768	331	184	316	342	196	603	226
171	767	323	184	317	408	196	576	317
171	6	128	184	344	273	196	600	372
171	65	137	184	372	347	196	627	318
171	11	278	184	345	151	196	682	158

171	10	145	184	318	276	196	655	317
171	736	259	184	373	351	196	628	280
171	33	179	184	374	398	196	601	134
171	61	296	AVG.		262	196	574	194
171	34	82	185	319	294	AVG.		264
171	7	201	185	346	227	197	546	283
171	737	310	185	347	279	197	604	284
171	738	186	185	320	283	197	548	253
171	8	310	185	321	251	197	549	269
171	35	165	185	348	249	197	575	257
171	62	191	185	344	273	197	602	271
171	89	244	185	371	536	197	629	281
171	90	318	185	398	263	197	656	254
171	63	308	185	399	342	197	683	275
171	36	54	185	372	347	197	657	236
171	9	177	185	345	151	197	630	199
171	739	223	185	318	276	197	603	226
171	740	151	185	373	351	197	576	317
171	37	263	185	400	331	197	547	363
171	64	297	185	427	251	197	653	423
171	38	144	185	454	220	197	626	317
171	741	240	185	455	305	197	599	307
AVG.		220	185	428	278	197	572	388
172	85	220	185	401	337	197	573	146
172	732	181	185	374	398	197	600	372
172	2	171	185	375	293	197	627	318
172	29	236	185	402	397	197	654	382
172	56	145	185	429	274	197	682	158
172	83	283	185	403	365	197	655	317
172	84	127	185	376	300	197	628	280
172	57	228	185	425	382	197	601	134
172	30	123	185	453	200	197	574	194
172	3	142	185	426	173	AVG,	0/5	278
172	733	244	AVG.		.300	198	1006	289
172	734	245	**************************************	ta at and	and which the second	198	1007	340
172	4	132				198	1008	292
172	31	136				198	1009	229
172	58	129				198	677	402
172	86	98				198	568	264
172	59	207				198	595	358
172	32	244				198	622	334
172	5	202				198	649	211
172	735	144				198	676	353
172	6	128				198	650	345
172	60	295				198	623	274

*5

172	55	277	198 596	113
172	28	195	198 569	175
172	33	179	198 542	300
172	87	227	198 678	277
172	111	207	198 651	300
172	112	246	198 624	241
AVG.		191	198 597	133
		-	198 570	278
		-	198 571	415
		-	198 598	390
		-	198 625	288
		-	198 652	282
		-	198 679	159
		-	198 626	317
		-	198 599	307
		-	AVG.	284

15 FT. RA	dius	30 FT. RADI	US	45 FT. RAD	IUS
TREE#	PSI	TREE# 1	PSI	TREE#	PSI
160) 163	160	184	160	201
161	197	161	200	161	216
162	2 258	162	248	162	249
163	3 222	163	221	163	238
164	ł 199	164	217	164	217
165	5 257	165	232	165	227
166	5 218	166	239	166	240
167	257	167	253	167	254
168	3 254	168	257	168	259
169	254	169	244	169	247
17() 239	170	237	170	243
171	220	171	233	171	236
172	2 191	172	210	172	221
173	259	173	248	173	249
174	4 246	174	255	174	260
175	5 242	175	254	175	269
176	5 238	176	263	176	266
177	268	177	275	177	280
178	3 266	178	261	178	272
179	269	179	279	179	273
180	285	180	281	180	271
181	282	181	277	181	270
183	286	183	261	183	256
184	262	184	257	184	253
185	300	185	267	185	270
186	5 272	186	277	186	268
187	264	187	284	187	273
188	267	188	263	188	259
189	256	189	244	189	237
190) 298	190	274	190	252
191	294	191	284	191	265
192	249	192	252	192	251
193	267	193	255	193	256
194	254	194	262	194	264
195	5 250	195	249	195	257
196	5 264	196	266	196	264
197		197	277	197	265
198	3 284	198	283	198	270
AVG.	253		253		253

Table 3. East Fort Rock – Complete Removal. Average soil strength per treeand per plot in pounds per square inch for the 15-, 30- and 45-foot radius.