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label, assumedly in an effort to increase the value of their work. But makers who

have sought to reproduce the Golden Age instruments precisely by using the same

measurements and materials have still failed to produce rnstruments with the same

quality of tone. Thus makers have learned that tone production in the violin involves

more than just the dimensions and type of wood used. More recent studies involving

the chemical composition of the undercoat and varnish of historic instruments have

produced decidedly more headway in recreating the sound of the Italian masters.

During the 1850s and early 1860s Hermami Helmholtz spent a good deal of time

and effort studying musical soiind and human perception. Since the publication of

his findings (especially in the book Die Lehre von den Tonempfindungen, though

there are also many related lectures and articles), the relationship between musical

sound and mathematics has been well established. The work of He]mholtz helps us

to understand why we prefer the tone of one instrument over another. Because of his

work, we are able to describe a musical sound mathematically and determine whether

or not that sound is likely to have a pleasing quality to our ear. Yet even a century

after his time, the physical acoustics of the violin remain elusive from a mathematical

point of view. Any progress we have made toward achieving the "perfect" violin

has been by two centuries of trial and error, aided by the observations of science.

Though even the most basic physics texts discuss the mathematics of the vibrating

string, few authors venture into the complexities of the resonant chamber. There is

no mathematical model which can be used to predict the output of a violin before

it is made, thus crafters must often work for several years before they know if their

ideas produce the desired effects on tone.

Since initial attempts to replicate instnunents involved size, shape, and propor-

tion, the geometry of the violin has been studied extensively. Scientists have also
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studied the sound waves produced by violins, and the vibrations of various separate

parts of the instrument (e.g. the vibrating string and the front and back plates).

The sound waves have been analyzed and described mathematically through spec-

tral analysis. But the complexity of the instrument as a vibrational system, due

to both the number of vibrating parts and the interaction of those parts, has thus

far prevented a complete mathematical description of how different properties of a

particular instrument influence the sound it produces. The purpose of this work is

to explore how one might approach making and solving a mathematical model for

the sound produced by a violin using the concepts of continuum mechanics and nu-

merical methods, and to generate a limited mathematical model which incorporates

some of the defining features of the instrument. The ultimate goal of this research,

should it be continued beyond the scope of this work, would be to produce a complete

mathematical model, where the particulars about an instrument's measurements and

composition could be entered into the equation as constants, and a sound curve for

the instrument could be produced. If a complete model could be formulated, spec-

tral analysis on existing instruments would allow us to test its validity. This work,

however, will be but a stepping stone on the path toward this ultimate goal.
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Chapter 2

THE BIG PICTURE

To begin, we must look at what comprises the acoustical system of a violin. An

analysis of the system's components will allow us to choose which are most important

to sound production, and therefore which to concentrate on describing mathematically

in this work. Anyone who has played or studied a violin will realize that this is no

small task. Even the bow with which the instrument is played has an influence on

the sound produced. Selecting the right bow for an instrument is like a young wizard

shopping for wands at Olivander's. (Rowlings, 1997) The bow is the wand through

which the musician works his magic. Though other subtleties of technique (the ffick

FIGiTRE 2.1. Violin Bow

of a wrist, the tilt of an ann) are indicative of the skill level of the performer, it is

the bow that transmits the energy from the artist to the medium. Hairs from horse

tails may not have the romantic appeal of phoenix feathers, but the powerful violinist

wields his bow of penumbucco and horse hair to fill the music hall with the magic of

sound. The weight of the bow, and the materials from which it is crafted, combined

with the skill level of the player, have a profound influence on the tone an instrument

produces. But in this work, we are interested in what the instrument itself does with



this initial stimulus, that is, what frequencies are added or emphasized by various

parts of the instrument before the sound wave finally issues from the f-holes on its

way to our ears. So, to simplify matters, let us first consider the instrument alone,

with a single pizzicato note being played at a known frequency (pitch).

'When the string is initially displaced, energy is stored, which causes the string to

vibrate when it is released.The string is fixed at one end, where it is held against the

FIGURE 2.2. The initial stimulus.

nut by the force of tension, and wrapped around a tuning peg. Near the other end,

the string is held (again by tension) against the bridge, which rests on the top plate

of the body of the instrument. The bridge is not attached, but is held against the

top plate by the tension of the string. A couple inches to the other side of the bridge,

the string is attached to the tailpiece, which does not touch the face of the violin, but

is, instead, looped around the button at the end of the instrument and held there by

the force of tension. The end of the tailpiece where the string is attached is free to

vibrate, but since the ebony tailpiece is much more dense, and much less elastic than

the string, we will consider that end of the string to be fixed as well. The behavior of
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a vibrating string with fixed ends is a well-known elementary physics problem. The

motion of the string at its point of contact with the bridge causes the bridge to rock,

thus transferring the vibrations from the string to the top plate through the vertical

motion of the bridge's feet.

Button

FIGURE 2.3. Violin top view.

Some significant ways in which the vibrations of the top plate of the violin differ

from those of the string are:

1. The string has only one point where its motion is being influenced (the location
where it was originally displaced by the finger of the player), whereas the top
plate of the instrument's body has two points of displacement (the two feet of
the bridge);

2. The string has one significant spatial dimension (length), while the plate has
two (length and width);

3. The vibrations of the string (assuming a string of perfect quality) are uninflu-
enced by any changes in density or discontinuities (breaks in the string). The
top plate, however, has two f-holes. These holes affect the progress of vibrations
issuing outward from the feet of the bridge.

It is important to notice that the link between the string and the plate transmits

motion in both directions. We can think of the bridge as a two way conduit. There

is onc instant of stimulus to the plucked string-that moment in time when it was



displaced and released. The plate continues to receive stimuli from the bridge for

as long as the string is still in motion, but in turn, the vibrations of the plate are

transmitted via the bridge back to the string. The string, having less mass, then

begins to vibrate in sympathy with the plate, and its motion continues as long as

the plate is still vibrating. In this way, certain vibrations of both components are

reinforced, and last longer than they would in either component alone.

The bass bar and soundpost also influence the vibration of the top plate. They

are inside the resonant chamber, and so are not readily visible unless one knows of

their existence. The bass bar is a comparatively thick bar of wood that is glued to

the underside of the top plate between the left foot of the bridge and the left f-hole.

It runs lengthwise, damping vibration of part of the top plate in that direction, and

tapers to an end before reaching the edge of the plate. The soundpost is near the

right foot of the bridge. Its exact placement varies, and is determined empirically by

the maker when the violin is completed. It is held in place by the tension of the front

and back plates, and serves to transmit vibrations between the two. If the strings are

loosened, and tension on the top plate is thereby reduced, the soundpost can easily

be jarred out of place. It requires a special tool and skill to reposition correctly. The

placement of the soundpost is important because it provides the initial displacement

of the back plate. Its French name, âme (meaning "soul"), is also indicative of its

profound influence on the instrument's tone. As with the bridge, the soundpost is a

two-way vibrational conduit.

Since the back plate does not have a bass bar or f-holes, one would expect its

vibrations to spread outward in a different pattern than those of the top plate. The

vibrations of the back plate are much less pronounced than those of the top for several

reasons:



FIGURE 2.4. Violin back view.

1. The top is usually made from spruce, which has a good deal of flexibility across
the grain, but not along the grain. The back plate is usually made from a less
flexible variety of wood such as maple.

2. The back plate is thicker than the top in the area between the 0-bouts where it
supports the soundpost. The top is generally thinned to approximately 3mm,
whereas the back may be nearly twice that thickness near the souiidpost.

3. The back plate also does not touch the bridge, and therefore does not receive
any direct stimulus from the strings. At the location of the somdpost, however,
the back plate must always be in phase with the top plate.

The only other direct influences on the vibration of the back plate are the motion

of the air in the resonant chamber, and whatever vibrations may be transmitted from

the front plate through the sides of the body (ribs). Due to rigid properties of wood,

the ribs are not free to vibrate vertically. Any horizontal components of vibration

they may experience would have to be small, since the ribs are less than two inches

high, and have nodes (fixed points) where they are glued to the plates at the top

and bottom. Motion of the ribs, therefore, does not significantly affect the motion of

the back plate.

The volume of air in the resonant chamber has three spatial dimensions (length,

width and height). As the plates vibrate, small changes in the volume of the chamber

ensue. Since the vibrations occur in a regular pattern over time, so, also, do the
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changes in volume. When the volume of the chamber becomes smaller, it causes the

air inside to be compressed. The increase in pressure inside the chamber forces some

air out the f-holes to the lower pressure region of air outside the instrument. When

the volume of the chamber becomes larger, the pressure on the air inside decreases,

and air is sucked in through the f-holes from the higher pressure region of air outside

the instrument. The concept is similar to breathing, though on a much smaller

scale. The studies of Helmholtz show that musical sound is what we experience

whenever a regular pattern of air pressure changes stimulates the sensory membranes

in our ears. This regular pattern of compressions issuing from the f-holes of the

violin is the sound wave which we seek to describe mathematically. The number of

compression patterns (cycles) which occur each second is called the frequency of the

sound. Musicians identify this as pitch. Small patterns within the main cycle add

overtones. The combination of overtones which occur with a given pitch varies from

instrument to instrument. Overtones determine the richness of the instruments tone.

The amplitude of the vibrations of the string (and therefore the plates) determines

the amount of change in volume of the chamber, which in turn determines the force

with which air is expelled from the f-holes. Therefore, the amplitude determines how

loud the sound is when perceived by the listener.

Since the air inside the resonant chamber is directly in contact with the two plates

and the ribs, its motion has an influence on the motion of the plates. As with the top

plate and string, once a vibrational pattern is established inside the resonant chamber,

it is transmitted directly to the plates, and indirectly (via the bridge) to the strings,

thus reinforcing certain frequencies in the entire system. The string, where the initial

stimulus occurs, shares its energy with the plates. Because of its fixed ends, and the

location of the initial stimulus, it is only possible for the string to vibrate at certain
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frequencies. The plates then begin to vibrate at frequencies which are consonant with

those introduced by the string. Since the fundamental tone introduced by the string

has the most energy, it will also be the fundamental tone of the vibration in the

plates if the plates are able to sustain a vibration at that frequency. Otherwise, the

fundamental tone in the plates will be the closest frequency at which they can readily

vibrate. The same relationship holds between the plates and the air. The air will

only vibrate at frequencies which are introduced to it by the plates. But the plates

may have added overtones which were not present in the vibration of the string, so

the sound wave becomes richer as it is passed from component to component, but

the string provides the fundamental frequency for the whole system. When energy is

passed back to the strings by the motion of the top plate, all strings may vibrate in

sympathy, but the string which was originally displaced naturally vibrates longer and

with more amplitude than the other strings because it has the most stored energy,

and is already vibrating in consonance with the air and plates.

Physicists have determined that the motion of each separate component of the

system (string, plates and air) can be described by a wave equation of the form

= a2i.a

(in one, two, and three dimensions respectively), though the shape of the body of the

instrument, both in outline and in cross section, poses difficulties for mathematicians

attempting to describe the two- and three-dimensional components. Another dill-

culty arises when we try to link the components and describe their influence on one

another mathematically. This would be much easier if vibrations were only trans-

mitted in one direction, say from string to plates to air and not back from air to
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plates to string. The construction of the top plate with f-holes and bass bar also

complicates the mathematics. Once a vibrational pattern is established, however,

the separate components are vibrating in sympathy with one another. Therefore,

the important thing to consider is which vibrations are strong enough to reach the

ear of the listener. Since the air in the resonant chamber is less dense and more elas-

tic than the other components, it responds most readily when force is applied. We

expect the air issuing from the f-holes to have the most overtones, and the gTeatest

force of vibration. It is also well known from experiment that without the resonant

chamber, the sound of the instrument would be pitifully weak. Thus, the motion of

the air in the resonant chamber is key to our description of the vibrational system.

But the vibrations of the string and plates are the stimulus for the pressure changes

of the air in the resonant chamber. Since the violin body provides the boundary for

the chamber in which the vibrating air is contained, its shape and properties contin-

uously influence the motion of the air. In other words, the volume and motions of

the air are continuously changing as the plates move. We assume that once a pattern

of air pressure changes is established, the other components continue to vibrate in

sympathy, and therefore do not add any new frequencies to the sound wave. In this

work, therefore, we focus our attention on the behavior of the air inside the resonant

chamber. The string and plates provide what we call the "initial conditions" and

"boundary conditions" for our equation of vibration.
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Chapter 3

PROPERTIES OF THE VIBRATING MEDIUM

Now that we have decided where to begin, let us turn our attention to mathematical

considerations. Our quest is to explore the possibility of making a mathematical

model that will describe the motion of the air which issues from the f-holes of a violin

(the sound wave) due to the regular variations in pressure inside of the resonant

cavity. We want to keep this model as general as possible so that any individual

could change parameters such as the exact shape and dimensions, and the physical

properties of the instrument such as density, elasticity, and thickness of its parts.

But we also want to make the model specific enough so that it is representative of

the vibrational behavior of a violin, and not just any generic resonant box. There

is a good deal of skepticism as to whether such a model is possible. The following

quotation from Lothar Cremer's The Physics of the Violin is a good representative

of this skepticism:

"An aviation engineer, say, can generate predictive models out of el-
ements such as beams, plates, and shells, with the aid of a computer.
No such models will ever be possible for the violin; in any case, predictive
models are indispensable only when human lives are at stake. In the realm
of art, in which instruments are 'played,' there is more freedom in design.
If an engineering firm equipped with all of today's knowledge and instru-
mentation had been given the task of developing a string instrument, the
resulting design would not be the same as the actual, empirically devel-
oped one. "(Cremer, 1984)
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Cremer also later notes that "Since.. .the shapes of the boundaries are not amenable

to calculation, the exact position of the air cavity resonances can be determined

only by experiment. "(Cremer, 1984) But what is the purpose of mathematics if

not to describe physical phenomenon in the interest of predicting without doing?

Of what use would such predictions be if there were not some freedom of design?

Since the basic features of today's empirically developed violin evolved over more

than three centuries, there must be some reason that this model produces a sound

which we perceive as superior to previous instrument designs. A mathematical model

may shed some light on why this design is superior, or if a better one could be

developed. Helmholtz found that our perception of a sound as "superior" has to

do with what combination of individual frequencies are present in the sound wave,

and which frequencies are present with the most strength. We know mathematics

can describe the sound wave because it has been done through spectrograms and

Fourier analysis. But these methods do not describe the wave in terms of the physical

properties of the instrument. The complexity of the mathematics should not prevent

us from making a model if we are willing to put in the time and thought required,

though solving the model may be another matter entirely if the proper technique has

not yet been discovered. Spectrograms do, however, give us an idea as to the general

nature of the solutions.

It is reasonable to expect that our problem is well posed because:

1. There is a sound wave produced each time a string is displaced and released.
This sound wave can be recorded and mathematically described.

2. It is reasonable to assume that the sound wave produced by a given instrument
is unique if the same exact physical conditions are present. These conditions
would include environmental conditions such as temperature and humidity, as
well as conditions governing the vibrating system such as force and direction of
initial displacement, and tension, density and elasticity of the string.
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3. It is reasonable to assume that the sound wave depends continuously on the mo-
tion of the plates, which depends continuously on the environmental conditions,
the physical qualities of the instrument, and the input from the player.

Having established that a model is theoretically feasible, though complicated, we

turn to the question of what features one might consider to be defining character-

istics of the violin. Visually, the body shape seems most important, since this is

how many people distinguish the violin from other stringed instruments. Size and

proportion are also important, as we see that cellos and violas have qualities of tone

distinguishable from those of violins. The bass bar, soundpost, and f-holes directly

arid substantially affect the vibrations of the plates, and therefore can not be ignored

as major contributors to tone quality. Some of these may have more affect on our

ability to distinguish a violin from a clarinet or a guitar, while others may have more

affect on distinguishing one violin from another. There are many other factors to

consider, but we will begin by devising a mathematical description which takes these

features into consideration.

The sound waves pictured in plates 1, 2, and 3 show a single pizzicato note on

the open A string of each of the four instruments pictured in Figure 1.1. The sound

waves correspond to the pictured instruments in order, from left to right. Notice in

Plate 1 that the four sound waves have a similar overall appearence, but the detailed

views in Plate 2 show that their composition is actually quite different. Plate 3

shows which frequencies occur in each sound wave, and their relative strengths. In

the interest of detail, the top portion of the peaks corresponding to the fundamental

and first overtone are not shown. These two peaks are substantially higher than any

of the others. There were also higher frequencies present in all four tones, but we

have limited the horizontal axis to a maximum of 3000 cycles per second in order to

show more detail of the stronger frequencies (those nearer to the fundamental).
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Three-Quarter Size Violin (Beginner)

Full Size Violin (Intermediate)

Full Size Violin (Advanced)

Viola (Intermediate)

Plate I Sound waves from the four instruments in Figure 1.1.
Single pizzicato note on the open A string.
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L31 33 314 O.35 I3L 131? O31 a

Three-Quarter Size Violin

(505? 0S3 0354 035 1135 (LOSS Ir? r5?? 555

Full Size Violin (Tnt)

0263 (5244 0 5 .524(5 -5>.5( 021 0VS

Full Size Violin (Adv.)

Viola

Plate 2 Zoom View. Sound waves from the same four instruments.
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Three-Quarter Size Violin

0' 0' 0' t t.WV 20' M12 flt

Full Size Violin (Tnt.)

S}) c.w 12 U £01 2211 2411 2211

Full Size Violin (Adv.)

L1 )3

Viola

Plate 3 FFT spectrum showing relative strengths of various overtones.
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We will model the air in the violin's resonant chamber as a continuum with mass

density (p), pressure (p), and velocity (v), all of which depend on time (t) and

position (x). We assume that the air inside the violin is at the same constant

temperature as the outside air. We expect, as with all forces, that the motion of the

air inside the resonant chamber of the violin is governed by Newton's Laws. Thus,

we describe the properties of the air as follows.

3.1 Notation

position

displacement of plates

velocity of air

mass density

mass flux

pressure

volume

surface region

area of f-holes

element of surface

outward unit normal to surface

element of volume

x= (x,y,z)
u(x, y, z, t)

dx/dt = v(x,y,z,t)

p = p(x, t) = mass per unit volume

q = q(x,t) = pv

p =p(x,t)

V = V(t) (denotes region or quantity,

depending on context)

S

A(t)

dS

n

dV = dzdydx
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3.2 Conservation of Mass

The rate of change of mass is equal to the net rate at which mass enters or leaves the

resonant chamber through the f-holes plus the rate of mass produced or lost within

the chamber. Let V represent an arbitrary volume of air inside our resonant chamber

with surface region S. Since no mass is produced or lost inside the violin, we can

translate this law of physics mathematically, using elementary calculus, to

fPdV=_fq.ndS.

Using the Gauss divergence theorem, this equation can be written as

fPt dV = f div q dV, or

+divq)dVO

Since this law holds for any arbitrary volume, it follows that the integrand is identi-

cally zero. Hence we write the equation more simply as the Continuity Equation:

p+divq=0 or p+div(pv)=0.

3.3 Conservation of Momentum

Newton's second law tells us that the rate of change of momentum is equal to the

sum of the forces acting on a region. Let V represent the region occupied by the

resonant chamber at an arbitrary time t. In the case of the violin, the surface force

acting on V is pressure from the moving plates. The body force is gravity. Since
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the violin is small, gravity has nearly the same effect at every point in the continuum.

We therefore expect its effect on the relative motion of the particles of air to be

negligable. Thus we translate Newton's second law mathematically as

fpvdV=_ [pndS=_ [VpdV.
JSt Jvt

Via the transport theorem, we can also write this as

fp[vt+(v.V)v]dV= _JVPdV,

and since this holds for arbitrary %', we can write the Momentum Equation:

p[vt+(vV)v] -Vp.

In the case of small deformations, which we assume for the vibrations of the violin,

we can write

p[v+(v.V)v] =P0Vt,

where p0 is the equilibrium density of the air, and the Momentum Equation becomes

PoVt = Vp.

3.4 Equation of State

The sound wave we seek to describe is a regular variation in pressure inside the violin

relative to the outside air pressure. According to Boyle's Law, air pressure is inversely

proportional to volume. Since p mass per unit volume, it follows that air pressure
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is directly proportional to density. So for air at a given constant temperature, p = pR

for all t, where R is the gas constant for air at that temperature. This gives the result

that
P Po P p- = - = or =
p p0 Po Po

Since we assume the violin is being played in a room with contstant air tempera-

ture, one might initially expect the vibrations to be governed by this equation. Upon

further study, however, one will find that rapid compressions and expansions of air

(such as those caused by the vibrations of the plates) cause temperature variance,

which changes the elasticity of the air. The modern air conditioner is one familiar

example of how rapid compression and expansion affect air temperature. In an air

conditioner the air is rapidly compressed, allowed to dissipate the resulting heat en-

ergy, and then is released (expanded) back into the room. The re-expanded air is

much cooler than it was initially. Thus we see that the vibrations inside the violin's

chamber are affected by temperature even if the temperature of the outer environment

is held constant.

To determine the correct equation of state, therefore, we instead assume that

entropy, not temperature, is constant over time. We take internal energy of the

chamber to be a function of entropy and volume, and we express temperature as the

change in internal energy with respect to entropy

, 0e
I

and pressure as the opposite of the change in internal energy with respect to volume

p=
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We can then translate the differential equation

ôe aede=

into

de = pdV.

Solving this for d'q gives
de pdVdi,=+-f-.

By Boyle's Law, we know that

pV = nRT, or
puR
T V

Let Cv represent the specific heat of the air at constant volume, and Cp the specific

heat at constant pressure. We then use the identities

to get

e = CT and nR Cp Cv

p Cp-Cvde=CvdT,and= V

and hence by substitution,

d= -dT+ CP_CVdV



24

By integrating this equation to eliminate the differentials, we get

Ti = CvinT+(CpCv)lnV+tc
= in(7CvvCPv_v)+K

T 2 C
in(Vcv) +k

p= C1n Vcv+K
I

Examining this equation for entropy leads to the conclusion that entropy can only be

constant if pV' is constant for A Cp /Cv. Since density is inversely proportional to

volume, this also implies that p/p" is constant over time, thus yielding the equation

P Po or equivalently

p

Po \PoJ

This equation describes the relationship between air pressure and density when rapid

compressions such as sound waves are considered. The constant, A, which represents

the ratio of the specific heat of air at constant pressure to that at constant volume,

has an empirically determined value of approximately 1.4.

3.5 Equation of Motion

Let u(x,t) represent the relative change in density of the air inside the chamber to

the outside air, so

1 +o(x,t).
p0
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We then have
= (1+u(x,t))A

Po

By the binomial theorem,

00(1+u)A=(A)u=l+Au A(A-1) A(A-1)(A-2) 3

ri=O

+
2! 3!

CT...

Since the vibrations are small, the changes in mass density are small, which means

u is small. We therefore neglect non-linear terms and approximate p/p0 by 1 + Au.

This gives p = p0 + p0Au, which means

Vp=p0AVu. (*)

It is useful to note here that the relative change in pressure, Au, is what our ears

sense, and we perceive as sound. Thus if we can determine the mathematical nature

of u, expressed in terms of known quantities, we will have a usable equation for the

sound wave. Since we seek a solution for a, our equation of motion should be in

terms of u.

Notice that

p=p0(1+u)=p=p0ut.

So by the Continuity Equation,

p0ut+div(pv) =0.

Since div (pv) = div (p0v), the Continuity Equation becomes po(ut + div v) = 0,
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which implies ot = div v. Taking the time derivative of both sides then gives

cTtt div vt. (**)

If we take the divergence of both sides of the momentum equation, we have

p0div(vt) = div(Vp).

To obtain an equation of motion in terms of o, substitute (*) and (**) into this

equation to get

poo = div(p0AVo), or

Ttt =
p0

Since p0, p0, and A are all positive, we can write

2A 2 Po= a LU, wnere a =
p0

This is known as the Wave Equation. Since the properties by which we derived this

equation were specific to the air, this equation applies to a(x, y, z, t) for x inside the

resonant cavity, and t 0.

3.6 Initial Conditions

Notice that when t = 0, p = p0 so we have o(x, 0) = 0 for all x in the resonant

cavity. This is the initial relative change in density for our system. At time t = 0,

the Continuity Equation imposes the initial condition 0j(X, 0) = div v(x, 0) for all
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x in the resonant cavity. Since this second condition is related to the displacement

of the particles of the continuum, we would expect it relate, also, to the displacement

of the plates. We will discuss this further in Chapter 4.

Since t = 0 is the moment when the string is displaced, only points of the con-

tinuum near the bridge have initial velocity. The displacement of the top plate is

concentrated at the right foot of the bridge because the string is initially displaced to

the right. Therefore the initial value for Cit should describe a sudden intense pressure

change at the foot of the bridge, with intensity decreasing to zero outside of a small

neighborhood centered at that foot. Since the elastic properties of air are the same in

all directions, we expect the effects of this initial disturbance in pressure to eminate

spherically over time until they meet with resistance from the boundaries. This will

not be the case for the wood plates, however, since wood is more elastic across its

grain than along it.



Chapter 4

THE BOUNDARY

The Wave Equation and initial conditions for u found in Chapter 3 depend only on the

physical properties of the medium contained inside and around the resonant chamber

(in our case, air). This means that the general solution to the wave equation will

describe the motion of air in any generic container under the same initial conditions.

To make the solution (or sound wave) specific to the violin, we must describe the

boundary which contains the air. This is where it becomes important which features

we choose to emphasize as defining characteristics of the instrument. The boundary

conditions for u depend on the physical properties, and therefore the vibrational

properties, of the materials from which the violin is crafted. Changes in air density

are inversely proportional to changes in the volume of the resonant chamber. Using

the definition of density as mass per unit volume,

p (m/V) mV0m V0 mV0-(T=-
p0 (m0/V0) V m0 m0 V rn0 V

- = 1+A=1A+(p
/m)(vo\p0 m0

Thus we see that variations in the volume of the resonant chamber directly affect

pressure variations of the air inside. The volume of any region is determined by

the shape of its boundary, hence the study of the geometry of various instruments

is necessary for an understanding of their vibrational behavior, and we are justified

in choosing shape as a defining characteristic of an instrument. The ratio V0/V is
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affected by the amount of change in volume caused by the motion of the boundaries

(in our case, wood plates and ribs), while rn/rn0 depends on the amount of mass

gained or lost through the f-holes over a period of time. The displacement of the plates

which causes the relative change in volume is determined in part by the elasticity of

the wood, which is affected by wood type, curvature and thickness, and treatments

such as aging and varnish. These factors will enter into calculations as constants,

since they do not change for a given instrument once it is crafted. The area of the

f-holes and the velocity at the f-holes determine the relative change in mass, since,

for the violin, q = 0 everywhere on the boundary except at the f-holes. The speed,

or frequency, of the sound waves is therefore dependent on the velocity of motion at

the boundaries. Other factors affecting change in volume are force of initial stimulus

(from the player), temperature, and pressure on the top plate caused by tension of

the strings. More energy from these sources implies more amplitude in vibrations,

and hence greater variance in volume. As we seek a mathematical description for

the motion of the plates, we expect these factors to come into play.

It also becomes necessary at this point to recall our discussion from Chapter 2

about how vibrations are transmitted in both directions (not only from plates to

air, but also from air to plates). It is true that the plates initiate the vibrations of

the air, but once the air is in motion, it also has an influence on the motion of the

plates. Thus we are dealing with a coupled system. This means that the equations

governing the wood and those gQverning the air must be solved simultaneously. The

same will be the case between the wood and the string. In this work, we assume that

the displacement function for the wood plates is known, since exploring the nature of

motion of the plates would merit its own volume of work, but we still need to consider
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the properties of the plates to some extent in order to discuss the behavior of the air

at the boundary of the resonant chamber.

Because boundary conditions for a are determined by the motion of the wood

plates and ribs, they will be most easily described in terms of the velocity (v). As
we have seen, the velocity of the air inside the chamber is related to a in the Continuity

Equation by

at = div v.

Also, the Momentum Equation can be written POVt = p0AVa by substituting (*) into

the right side, thus

Va = --Vt.
p0A

The laws of conservation of mass and momentum also apply to the plates, the differ-

ence being that the plates have a different equilibrium density than the air.

Let 7) represent the mass density of the wood. If displacement of the wood (u)

is known, we can find velocity = (Ut) for x E S. It then remains to relate velocity

of the plates (Ut) to velocity of the air in the resonant chamber (v). We do this by

equating components of velocity in the direction of the outward unit normal to the

surface (n), which can be found using the cross product of the partial derivatives of

the instrument's surface function. Notice that ñ is a function of time, since the shape

of the instruments surface varies slightly as it vibrates. We then have the condition

v.ñ=ut.ii,forxESandtO.

We have no information about the motion of the air in tangential directions except

at t = 0, when both air and boundary are assumed to be still.
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The coupled system must also satisfy Conservation of Energy at the boundary.

To this end, consider Newton's third law that every action has an equal but opposite

reaction. This law tells us that the outward pressure at the surface of the chamber

must at all times be balanced by an equal inward pressure from the boundary. To

satisfy this law, we take the pressure from the boundary inward to be ñ, which,

following the same reasoning we used in the case of the air, makes the Momentum

Equation for the wood

OoUtt = V.

Thus balancing forces at the boundary produces the condition

POVt = p0AVo = -7ut for x E S.

In order to notate violin-specific boundary conditions, it is necessary to first de-

scribe the boundary of the resonant chamber mathematically. There are many pub-

lished works available which discuss the geometry of the violin. Since the time of the

Cremonese masters, people have studied instruments with exemplary tone in an effort

to understand, and possibly replicate the work of their makers. But violin makers are

artists. Violin geometry varies from maker to maker. Individual templates are gen-

erally created empirically, an in any case, are usually not published or shared. From

the studies available, one will find that a general outline of a violin can be created by

drawing a series of tangent arcs, and switching from one arc to another at the point

of tangency. Violin maker David Gusset, of Eugene, Oregon is kind enough to share

two examples of such construction on his website. He developed these constructions

by studying instruments made by the Arnati family. The design of intersecting and

tangent circles in Figure 4.1 appears commonly in geometric studies.
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FIGURE 4.1. Circles. Note how the circles form a violin outline.

For the sake of discussion, let us assume that the top and back plates have outline

shape described by y = ±F(x, t), where the origin is at the geometric center of the

resonant chamber (see diagram below for position of coordinate axes). Assuming

geonietric coiistmction similar to that shown above, F(x, t) is smooth and continuous

for all x in its domain, and can be defined piecewise using the tangent arcs which form

the violin's edges. It is sensible to describe the outline as a ftmction of x because if we

let the direction parallel to the strings be the x direction, as is commonly done when

finding the equation of motion for a vibrating string, the instrument is symmetric

about the x-axis, but not about the y-axis. The lower region (the end with the

tailpiece and chinrest) is generally wider than the upper region. Let the length of

the violin be L = L1 + L2 with lower extreme at x = L1 <0 and upper extreme at

x = L2 > 0. For the scope of this work, we will assume that the ribs are vertical and

fixed, so +F(x, t) = +F(x, 0) = +F(x) for all x E [L1, L2].

With this notation, the boundary of our chamber can be described piecewise in



33

-15 -10 -5 0 5 10 15

FIGURE 4.2. Violin outline in 2-D.

three regions: the top plate (ST), plate(SB), ribs(Sn). The entire
boundary is S = ST U SB U 5R.

4.1 Top Plate

Let ZT(Xo, Yo) denote the height of the top plate when t = 0. In other words, a

particle (x, y, z) of the continuum is considered to be part of the top plate if its initial

position can be described by (x0, Yo, ZT(Xo, yo)). Thus the displacement of the top

plate can be described as

'LtT(X, y, t) = (x(t) x0, y(t) Yo, ZT(X, y, t) ZT(Xo, yo)).

Since our origin is at the geometric mean when t = 0, we can conclude that

ZT(Xo, y0) > 0 for all x0 and Yo In fact, since the vibrations are small compared
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Top Plate

Back Plate

FIGURE 4.3. Violin side view.

FIGURE 4.4. Violin end view.

to the height of the ribs, we expect that if a particle of the continuum is in the top

plate, z > 0 for all t. We describe the top plate by the region

ST={(x,y,z)/Ll x<L2;F yF; Z=ZT=UT.e3+ZT(X0,yo)>0}.

For our purposes, we will consider the bass bar to be a region of the top plate

with a specified fixed y coordinate:

BassBar=T(x,y,z)EST/bl<x<b2; y=constant;0<< mm F(x)
bj<x<b2

Consider the feet of the bridge to be single fixed points of contact at (.', ±, ZT(, +)).
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The f-holes are also regions on the top plate. They are closed curves which mirror

one another across the s-axis. Let fi(X, y, ZT) and f2(x, y, ZT) represent the functions

which bound the f-hole above the s-axis. Then -fi(x, y, ZT) and -f2(x, y, ZT) bound

the lower f-hole. The four points of intersection-those of Ii with 12, and those of

-fi with -12 -usually all lie on a circle. The outward unit normal to the top plate

at a point (x,y) at time t is

I(x,y,z >< (XZT)
flT(X,Y,t)

KXYZT x (x,y,zT)

4.2 Back Plate

Let ZB(XO, Yo) denote the height of the back plate when t = 0. In other words, a

particle (x, y, z) of the continuum is considered to be part of the back plate if its

initial position can be described by (xe, Yo, zB(xo, Yo)). Thus the displacement of the

back plate can be described as

UB(X,y,t) = (x(t) x0,y(t) yO,ZB(X,y,t) z(x0,y0)).

As with the top plate, vibrations of the back plate are small, so we expect z < 0 for

all t if a particle is in the back plate. We describe the back plate as

SB={(x,y,z)/LlxL2; -Fy.F; ZZBUBê3+ZB(Xo,yo)}.

The outward unit normal to the back plate at a point (x, y) at time t is

(x,y,z5) x (x,y,z)
(x,y,zB) X (X,Y,ZB)



4.3 Ribs

We describe the ribs by the region

S = {(x,y,z)/ L1 <x < L2; y = ±F(x); zB(z,*F,t) z zT(x,+F,t)}

Since we have chosen to view the ribs as fixed, we have

u(x,±F(x),z,t) = 0.

The outward unit normal to ribs at a point (x, +F(x)) at time t is

(1,±F',O) Xe3
flR(X, ±F(x)) (1,±F',0) x ê3JJ

4.4 Sound Post

36

In this work, we will treat the soundpost as one-dimensional, though it is actually a

small cylinder.

SoundPost={(x,y,z)/x=zxp; y=yp; z(x,y,t) <z < ZT(Xp,yp,t)}.

We will assume that the soundpost is rigid so that U(Xp, yp, z, t) is constant with

respect to z, and is therefore only dependent on time.
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4.5 An Example

In order to consider a specific example of a possible region, let us suppose that the top

and back plates of the instrument are flat and fixed. We then have T = = e3.

Let -ZB = ZT = so h represents the height of the ribs, and in this case, the

constant height of the resonant chamber. We let F(x) be piecewise defined as

F(x) = /14.232 for x [-14.23, 14]

F(x) = 25 (x+9)2 + 2.5 for xE [-14,-9]
F(x) = 752 (x +

9)2 for x E [-9, 4.5]
F(x) = 36 (x - 0.2)2 + 9.75 for xE [-4.5,4]
F(x)_36_(x_7)2 forxE[4,7]
F(x)= 2S_(x_7)2 + 1 forxE [7,12]

F(x) = V145 for x [12, JiiL]

5.'

-5

ID

-ID -15

15

FIGURE 4.5. Violin ribs in a 3-D coordinate system.



This outline shape is based on David Gusset's model for an Amati viola. It can

be used to model any size instrument by varying the unit of length. For example, if

the unit is half-inches, the model fits quite well to a -size violin owned by the author.

Based on the same model, we choose the location of the right foot of the bridge to

be = 2, = 1, z'r(r, -) = . We have L1 = 14.23 and L2= 12.042.

The rib height at the edges of the same i-size violin is approximately one inch, so let

h =2. These values will be used in our numerical computations.

4.6 Boundary Conditions

Based on the assumptions and notation established in this chapter, we can now notate

the boundary conditions for our region of interest. Assuming the ribs are fixed

provides the condition

a(x,±F,z,t) = 0 for all xE [L1,L2], z e [zB(x,±F,0),zT(x,+F,0)}, and t 0.

The condition on the air at the top and back plates are conditions of compatibility

with the motion of the plates, and are given by

V Ti = Ut fl

and

POVt = p0AVo = -p0U

for x E S and t 0.
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In order for the boundary displacement function to be continuous where the plates

meet the ribs, and compatible with the boundary conditions for the air, we use the

conditions u(x, +F, ZT, t) = 0 and u(x, ±F, Z, t) 0 as boundary conditions for the

motion of the two plates.



Chapter 5

THE IBVP

We have now arrived at a system of equations which models the behavior of the

changes in air density relative to initial (equilibrium) density:

= a2icr for x E V and t > 0,

u(x,0) =0andoj(x,0) = div v(x,O) forx E V,

cr(x,t) = 0 forxESR, t0,
v.'h=ut.ñandp0vt=p0AVa=-7i0u fOrXESBUST

This system of equations describes an IBVP (initial boundary value problem).

For the sake of generality, let us first see what we can determine about the nature

of our solution before the boundary conditions are imposed. We will then have a

general solution which can be applied to find a sound wave for any instrument simply

by modifying the boundary conditions. We will, for now, suppose v(x, 0) to be

unknown. If v(x, 0) is known, we can use numerical methods to find values for o.

We will discuss this option further in Chapter 6. For now, we seek a formal solution

for o using the method of separation of variables. There are many sources where

the reader may find the details of this method. In this chapter, we will summarize

the method to determine the general form for o. The value of A is also important,

since Acr represents the sound wave we seek to describe. We will use A = 1.4 in

numerical calculations, but will leave A in our general calculations as an unknown

constant in case the reader wishes to consider a different empirical value for A, or
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an instrument played in a gaseous medium other than air. We expect \u(x, t), and

therefore a(x, t), to be periodic due to the discoveries made by Helrnholtz that all

musical sound is periodic in nature, and the frequencies of the specific solutions for o

will tell us what overtones the specific resonant cavity will emphasize. Amplitude will

provide information on proportional loudness of the various overtones. In particular,

information about frequency and amplitude at points in the f-holes will be of interest,

since these holes are where the sound affected by resonance escapes from the chamber.

it is also important to observe that without continued input from the player, there

is a finite point in time when the violin ceases to vibrate, and the sound dies away-

that is, the pressure at each point in the violin returns to its equilibrium state. Since

we are using an idealized model which neglects the effects of air friction, our solution

for u may not converge to zero over time. We will, however, seek solutions for a

which do not diverge, as divergent solutions obviously would not closely model the

actual behavior of the vibrations.

The general solution to the wave equation is well-known in one spatial dimension,

and formal solutions have been found under certain boundary conditions in two- and

three-dimensional space, but few are eager take on the difficulties presented by the

shape of the violin. Since the focus of this work is to discuss the how motion of the air

in the resonant chamber is affected by changes in the construction of the instrument,

we will devote some space to the solution process in three dimensions, and discuss

where some of the difficulties lie. The solutions in one and two dimensions needed

for our discussion of boundary conditions will be assumed known. The same general

principles can be employed to derive them. For details beyond what is offered here,

there are numerous other sources to which the interested reader may refer.
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To find a formal solution for a, assume we can express a as a product of space-

dependent and time-dependent functions,

a(x,t) = cI(x,y,z)T(t).

Then crtt = T" and La = TL The wave equation from Chapter 3, which governs

the motion of the air, then becomes

a2T1X4.

Since we seek a non-trivial solution for a (otherwise, we would hear no sound when

the violin is played), we will assume that neither 1 nor T is identically zero. We can,

therefore, divide our revised wave equation through by the product of and (a2T)

to get
T" L

a2T=

Since the two sides are dependent on different variables, we can use a separation

constant, K, to form the separated equations

T" and

Thus, this method results in two separated equations:

T"(t) Ka2T(t) = 0 and z(x, y, z) K(x, y, z) = 0.

Since we have already established initial conditions, let us first consider, the equation

in t, a single-variable wave equation.
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If K =0, the separated equations become T" = = 0 (which then implies that

cru = 0 and z = 0). We can solve the equation T" = 0 by integrating twice with

respect to t, to get solutions of the form T(t) = C1t + C2.

If K 0, the solution process becomes a bit more complicated. Let w = T'

a/kT, allowing for the possibility that /ik may be imaginary if K < 0. Then

w'+a/kw= (T'_av1kT)'+afk(T'a/kT) =T"Ka2T=0.

Multiplication by gives

ea'ktwF + a../kecLtw 0

(etw)F = 0
ew = C1

w =
T' a/kT = Cie_at.

Multiplication by e_uit then gives

e_atTF - a/ke_?tT = Cie_2"t
= Cie_2at.

Integrating both sides with respect to t,

e_a\/'ktT 2a'Jkt so2ai/k
T(t) C1 e_a/'Kt + C2ea'?t.2a/k
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This is the general form of the solution for T if K 0. Note that the value of the

separation constant, K, determines whether the exponents are real or complex. In

the case of the violin, knowing that the sound wave is periodic, we expect to get

complex values, but let us justify this mathematically.

Based on physical considerations, we are not interested in divergent solutions for

o-, since they will not closely model the actual behavior of the air pressure as we

observe it. We can express this conclusion mathematically as

lim a = 1im((x,y,z)T(t)) = (x,y,z) urn T(t) <00.
t-OO t-400 t-*OO

Therefore, we must have 1imt> T(t) < 00 if our solution for o is to be viable. In

the two formal solutions above, we can use this fact to help narrow the set of possible

solutions.

if K = 0 and C1 0, then limt T(t) = 1irnt(Cit + C2) = ±00 (depending

on the sign of C1). This can not be the case. if K = 0 and C1 = 0, then T(t) = C2,

which would imply that a is independent of time. Observation tells us that this is

also not the case for a sound wave. Since K > 0 == T -* ±00 => a -* 00 unless

C2 = 0, we require that either K > 0 and C2 = 0, or K < 0. The initial condition on

a gives us some additional insight about the time-dependent portion of our separated

solution.

C1 C1a(x,0)= (x,y,z)T(0)=0=T(0)= +C2 =0=' = C2,2ai/i? 2ai/7?

so C2 = 0 == C1 = 0 = T 0. Since we seek a non-trivial solution, we must

conclude that K < 0.
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With K < 0, the formal solution for T can be written as

C1 e_at + C2eatT(t) 2aiv'Tk
Cl

2ai (cos(_at) + i sin(_at))
+ C2 (cos(a/7?t) + i sin(af7?t))

1 C1

2ai + c2) cos(at) + (2j + c2) isin(at).

( Cl \T(t) = 2 2ai) isin(at) C1 sin(at)
a

forallt0,whereK<OandC1 L0.
The initial condition on tTt then gives some information about .

o (x, 0) = c1(x, y, z)T'(0) = c1(x, y, z)C1 cos(0) = Ci(x, y, z) = div v(x, 0), so

4(x,y,z) = -----div v(x,0).
C1

The equation for our sound wave now looks like

AC1)r= (xas/7? ,y,z)sin(af:kt) fort> 0,K< 0 and 1.4,

where (x,y,z) = -div v(x,0) and Z(x,y,z) K(x,y,z) = 0.

The amplitude of this wave is a constant multiple of (x, y, z)J (with the constant

depending on the value of K), and its frequency is a/k, where a is a known constant

for the given set of environmental conditions where the instmment is being played.

To determine what frequencies are emphasized by the violin, we need to determine

the nature of v(x, 0), and find possible values for K. With this purpose in mind, we
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now turn to the second separated equation,

/(x,y,z) K(x,y,z) = 0,

which is known as the Helmholtz equation, and for which we have found that

(x,y,z) = ----div v(x,0).
Cl

As with the time dependent portion of the solution, we expect non-divergent solutions

for as any of its variables tend to ±oc. Common experience supports this conclusion

because if we station several listeners at varying distances from the violin in a given

direction at a given moment in time, the listeners who are farther from the instrument

will experience a weaker sound wave. This is why many concert goers prefer front row

seats. Possible eigenvalues, K, for this system of equations depend on the boundary

conditions, though we have established that K <0 based on physical considerations.

As we will find in the next chapter, the relation between and v(x, 0) will play a role

in determining our boundary conditions.

Applying the boundary condition at the ribs gives

o(x,±F,z,t) 0 == (x,±F,z)T(t) 0== (x,±F,z) = 0

for allxE [L1,L2], zE [zB(x,±F,0),zT(x,+F,0)], andt 0.
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5.1 Motion of the surface regions

As freely vibrating surfaces (with no forcing), we expect the motion of both plates

to satisfy the wave equation in two spatial dimensions, that is

#=i2Lu fOrXESTUSB,t>O, and ã2=Aas before.
p0

This equation can be derived and solved in the same way as for the air in the three-

dimensional case, except that the constants on which a depends are determined by

the elastic properties of the wood. The initial conditions of the wood are the same

as those of the air, since the top plate is also subject to the influence of the string via

the bridge's feet. If we let u(x,y,z,t) = (x,y,z)i'(t), with limt u(x,y,z,t)l <
00 = 1imt.,0 T(t) < cc, we can follow the same method as before to arrive at the

separated solution for x E S and t 0,

(t) = sin(ät), and

(x,y,z) k(x,y,z) = 0, where K <0.

Since our surface region is piecewise defined, u and 1 are also piecewise defined,

but since all surface regions are stationary at their edges, u is continuous over the

surface. Without considering specific initial or boundary conditions on the wood, we

can use the compatibility conditions to write o in terms of u as follows. According

to the Gauss Divergence Theorem,

i=divv 1tdV= [divvdV= [v.ñdS forxEVandt0.iv iv is



Since we have determined that v ñ = ñ for x E S and t 0, we have

fatdV = f u

The second compatibility condition gives

p0Wcr = = j30Au for xES.

Using our separated solutions from before, we obtain

= (x)T'(t)

T'(t) = C1 cos(a/Rt), C1 0

p0AVo = p0AT(t)V4(x)

It follows that

T'(t)f(x)dV =

T(t)V(x) =

and Uj (x)Ti"(t), where

and T'(t) = C1 cos(ãV'Tt), Ci 0

and j30Au = 0AT(t)L4(x).

'(t)f (x) . dS, and

t(t)(x).
Fixing t = 0 gives T'(0) = C1 and T'(0) = C1, which makes the first condition

= _f(x).n dS.

These equations show that the vibrations of the air and wood are codependent at

the boundaries. As with the air, the initial velocity of the plates is zero except in a

small neighborhood of the right foot of the bridge. The size and shape of this small

neighborhood depend on the resistance of the top plate.



The boundary conditions on the wood plates are

UT(X,+F(X),t) = uB(x,±F(x),t) = 0 for x e [L1, L2] ,t >0.

Since UT(X, ±F(x), t) = T(X, ±F(x))T(t) and T(t) is not identically zero, this gives

T(X, ±F(x)) = 0. Likewise, 4'B(X, ±F(x) = 0. We must also impose the conditions

UT(Xp,yp,t) = uB(xp,yp,t) for a rigid soundpost, UT(x,13,t) = h(t) for the bass

bar, and if we assume that the bridge transfers all of the motion from the string into

normal forces at the two points where its feet contact the top plate, UT (, -, t) T =

T (., , t) . 717' ys(, t) where ys(, t) represents the displacement of the string at

its point of contact with the bridge. The change in sign results from the assumption

of rigidity on the bridge, which mandates that the feet are always moving in opposite

directions.

5.2 Motion of the string

Let the endpoints of the string be at 11 and 12 with L1 <11 < < L <12. Denote the

length of the string by I 12 11. Let ys(x, 0) = 0 represent the initial displacement

of the string, and y5(x, 0) = g(x) be its initial velocity. These initial conditions

also give the initial conditions for the motion of the top plate via the equation

UT(X, ,t) T UT(X,y,t) = ys(,t).

The initial displacement and velocity functions for UB are both zero, because the

soundpost transfers the displacement of the top plate at (xp, yp) to the back plate.

Since (Xp, yp) is not equal to (, -i), we would expect a short time to pass before
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initial displacement occurs at (Xp, yp).

Both ends of the string are fixed, so ys(li, t) = ys(i2, t) = 0 represents the string's

boundary condition. Note that the string being fixed at both ends also means that

g(x) can be extended to be 21-periodic. Finding the displacement function for a string

under these conditions is a well-known elementary physics problem, with solution

00 / cnirt criirt " nirxys(x, t) = (A cos + B sin ) sm
n=1

where c2 = -, r(x, t) is the tension of the string, and p8(x, t) is its mass density. In

this solution, A and B are the Fourier coefficients:

= f ys(x, 0) sin = 0, and

B = f ys(x, 0) sin dx = f g(x) sin dx.

Thus the displacement of the string from its equilibrium position of y = 0 has

equation
/ 2 1 nirx '\ cnirt nirxys(x,t) =
(;-;.J

g(x)sin---dx) sin sin
n=1

As we stipulated in Chapter 1, the frequency of the fundamental vibration of the

string is known. It is determined by the pitch of the note being plucked. The

fundamental vibration is that for which n = 1, so its frequency is c7r/l. With known

fundamental frequency and known string length, we can easily determine a value for

c. We can then use the solution for the displacement of the string to determine the

boundary conditions for the top and back plates, which then determine the boundary

conditions for the air pressure changes in our original PDE. The initial conditions on

the string's displacement and velocity also affect the initial conditions of the plates

and the air, for if pressure is initially applied to the string, it is transferred by the

bridge into pressure normal to the top plate.
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Chapter 6

ISSUES IN SOLVING THE IBVP

Thus far, the equations we have found which govern the motion of the components

of the violin are

= a2o
cr(x,0) = 0 and a(x,0) = div v(x,0)

o(x,t) = u(x,t) = 0

v ñ = Ut and p0vj = p0)Vr = ,o0ut,

=

u(x,0) = 0

ut(x,0) = 0

UT(X,±F(X),t) UB(X,±F(X),t) = 0

u(xp,yp,zB,t) = U(xp,yp,ZT,t)

U(X,/3,ZT,t) = constant

UT(X,Y,t) UT(X,y,t) = ys,t)

ys(x, t) = II=i ( f g(x) sin dx) sin sin

ys(x,0) = 0 and ys(x,0) = g(x)

for x E V, t 0,

for x E V,

for x E SR, t 0,

for x E SB U ST, t 0,

forx e STUSB, t >0,
for x E S,

for x E SR U SB,

forxE [L1,L2], t0,
for t 0,

for xE (b1,b2), t fixed,

for t 0,

forxE[1i,12], t0,
forxE [11,12]

A study of the wood plates will add to this system the constitutive equations for

orthotropic linear elastic behavior of the top and back plates, and an initial condition

on Ut for the top plate, which will be determined by the initial conditions of the

string and the elastic behavior of the wood. There will also be an equation balancing

pressure where the outer surface of the wood meets the outside air. The outward
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pressure of the wood at the feet of the bridge must equal the inward pressure exerted

on the surface by the displacement of the string. Hence if we were to assume the

wood is rigid in the normal direction, we might write

P (, y, Z'p, t) . n =

The pressure which the wood exerts on the air in the chamber will be affected by the

curvature and elasticity of the plates because these determine how the tension from

the point of contact with the bridge is distributed to nearby points. The various

compatibility conditions at the boundaries and certain points of interest such as the

soundpost and the feet of the bridge show how the system is coupled, and require

that the above equations must be solved simultaneously.

We have reduced the problem of solving formally for o to finding a solution to the

Helmholtz equation with boundary conditions:

1(x)K(x)=O forxE V
4(x)=O forxESR,and
T(t)V'(x) = i'(t)(x) for x E ST U SB

Here, all of the information on the right of the last equation is presumed known.

Among authors who discuss the violin from a mathematical point of view, there is

a general consensus that our problem of mathematically describing the sound wave

can not be solved, but few of them touch on why. it is probable that solving the

Helmholtz equation is the kink in the hose for most who set out on this mission.

The difficulty in solving the Helniholtz equation often leads mathematicians seeking

a solution for the wave equation to guess at a reasonable approximation for an initial

time derivative. Looking at well-known problems involving the wave equation, one
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will find that the initial time derivative (initial velocity in a displacement problem) is

usually given as part of the IBVP. In fact, if our problem were one of infinite spatial

extent, we could try something similar to the approximation

ut(x,O) = 8(x) = (4ie)le, where r= lxi = ((xO)2+(yO)2+ (z_O)2)

as is done in the derivation of Kirchhoff's solution to the WP

u = c2u xEIR3,t>O

u(x,O) = 0, ut(x,O)=5(x), xEIR3.

It may be that this approximation would serve us as well in our bounded domain.

The approximation makes sense, since there is only one point of initial disturbance

of the air. There are, however some fundamental differences if we were to choose

the approach of making an estimate for Ot(X, 0) based on intuition. In the Kirchhoff

case, the coordinate system is chosen so that the origin is the point where the initial

change in density takes place. In our violin, we would need our 8 function (C1) to

be centered at the point (, -, z, -i)), and have intensity of 1 inside V. That is,

we would like (x) to possess the qualities f (x)dV = and lim0 4(x) = 0 for

all x (., -, ZT(X, -p)). Further study of Kirchhoff's formulas and their derivations

may well provide the means to finding a formal solution to o in the case of the violin,

but since we ultimately seek a mathematical means of finding using our boundary

condition, we will not make any guesses at present. We will, instead, look at a region

for which the Helrnholtz equation is easily solvable. Three features by which the

violin defies conventional approaches to solving the Helmholtz equation are a curved

outline with limited symmetry, a bounded domain, and lack of symmetry around the
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point of initial disturbance. The latter two issues can be dealt with if we look at

a slightly more symmetric domain. Such an example will show how the boundary

conditions are applied, and how the results are interpreted. Let us, then, take a

look at two common methods of approaching the Helmholtz equation for a region

with much simpler geometry: separation of variables, and a numerical method using

difference approximations applied to a rectangular box. While these methods fail

to produce a viable solution for the region we ultimately wish to consider, they will

serve as an example of how one might utilize a formal solution to understand the

sound wave. They will also serve to show the reader exactly where difficulties arise

in attempting to find a solutions in a violin-shaped region.

6.1 Separation of Variables

Suppose (x, y, z) can be written as a product of three functions, each depending on

one spatial variable, as

y, z) = X(x)Y(y)Z(z).

We can then follow the same reasoning used in separating T and to get

K = X"YZ + XY"Z + XYZ" KXYZ =0
XII Y"Z YZ" + KYZ

=K1 (constant)

X" K1X = 0 and Y"Z = (K K1)YZ YZ"



55

The equation in Y and Z can then be separated as

(KK1)ZZ"
=K2

Y"K2Y = 0 and Z"(KK1K2)Z=0

Thus the separation leads to three independent wave equations. Since we expect

o not to diverge as any of its variables -* 00, we can assume that, as with K, we also

have K1 <0, K2 <0, and (K K1 K2) <0. Thus the solutions to these equations

take the same form as the solution for T before the initial conditions were applied:

X(x) = Aicos(,/x)+Bisin(/x)
Y(y) = A2cos(Jky)+B2sin(/ky)

Z(z) = A3 cos(/(K K1 K2)z) + B3 sin(./(K K1 K2)z)

For the sake of example, we choose a rectangular box with fixed boundaries. This

shape is not entirely unrelated to the violin, as nearly rectangular stringed iristru-

ments do exist, though the fixed boundaries will do no favors for the prospective

tone quality. Two such examples are the 18th-century Welsh crwth, which is one of

the violin's precursors, and the Mongolian morin kuhr, or "horsehead violin". One

difference between this region and the violin is that our calculations can be greatly

simplified by choosing to view one corner of the box as the origin of our coordinate

system. There is no location in the violin which affords this opportunity, and when

the violin's boundary conditions are applied to the above solution forms, the values

for the constants, K, end up being dependent on variables. Thus we determine that

the solution in the case of the violin can not be separated in this way. In order to
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look at the effects of the boundary conditions on the rectangular box, let the edges

of the box be bounded by the imes x=O, x 26, y = 0, y 14, z = 0, and z = 2

for all t 0. This gives boundary conditions as follows:

and likewise,

u(0, y, z, t) = 1(0, y, z)T(t) = 0 == (0, y, z) = 0

= X(0)Y(y)Z(z) 0,

= X(0)=0

X(26) = 0,

Y(0) = Y(14) = 0, and

Z(0) = Z(2) = 0.

Applying these boundary conditions,

Likewise,

X(0)=0==Aicos(0)+Bisin(0) =A1 =0.

Y(0)=0==A2=0andZ(0)=0==A3=0, so

X(x) = Bisin(/kix)
Y(y) = B2sin(/Tky), and

Z(z) = B3sin(/(KKiK2)z)
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Notice that B1, B2, B3 0, since we seek a non-trivial solution for . It follows

that

X(26) = 0 == sin(26/k) = 0 .' 26/ki k1ir fork1 = 1,2,3...

/k1ir \soKl=_)
Y(14) = 0 = sin(14/k) = 0 = 14/k = k27r for k2 = 1,2,3...

2
(k2ir'\soK2=J-) ,and

Z(2) = 0 : sin(2,/(K K1 K2)) = 0

== 2/(KKiK2)=k3irfork3=1,2,3...

2
(k3ir \

soK_Ki_K2=_t--)

The result of these boundary conditions is that we are able to determine a value

for K, which tells ns what frequencies of vibration are po6sible inside the box. In

this case,
2 /k2'\2 /k1\2l

K = () [(k3)2

+ +

Let w = .J(k3)2 + (k2/7)2 + (k1/13)2. Our formal solution for then looks like

00 00 00 air

> B1B2B3
(2C1 Srn( 26sm(

14 sin(--wt).
airwk=1 k2=1 k1=1

Of course, we can see that the amplitude of these superposed waves is bounded

by 1/w, and therefore decreases as k -p oc. In fact, the constants B1, B2, and B3



have the same form as the coefficient of the time-dependent solution,

B fori 1,2,3ifwelet K3 =KK1K2.

So, since each of the K contain a factor of k, the amplitude is actually bounded by

1/ (k14kw). We can then write o as

1456C1C3C5C7
00 00 00 sin(x) sin(fy) sin(z) air

air
k3=1 k2=1 k1=l

(k1k2k3)2
sin(wt)

Because the fraction inside the sum decreases as any of the k2 -* oo, there is some

finite value for each k for which the overtones will become so weak that they are

inaudible to the human ear. Thus for all practical purposes, the sums are finite.

The lowest possible frequency of vibration for the air inside this box would occur

when k1 = k2 = k3 = 1,and is approximately 1.59a cycles per unit of time. We can

also see from the above formula that a larger box would have a lower fundamental

frequency because the denominators of the frequency would be larger.

Since we are interested mainly in relative strength of the various overtones, we

need not seek values for the constants C, though one might learn something about

them from Fourier analysis if one so desired. Also, multiplication by \ does not affect

which overtones are present, or their relative strengths. Multiplying by a constant

affects the amplitude, or loudness, of all overtones equally.

In particular, we are interested in the behavior of the sound wave at x E f

holes. We can look at which frequencies are strongest in these regions by inserting

coordinates of locations within the holes. For example, perhaps one end of an f-hole

is at x = (10,1,2). We would then have (ingnoring the constant in front of the
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sin(lO) sin(l) sin(2)
relative amplitudes

(k k2 k3 )
2

sin() sin() siri(k3ir)
(k1k2k3)2w

It is important to note that in this problem, no initial stimulus was given to the air

in the box, so the solution represents only which modes of vibration are possible. A

specific initial condition for o (or C1) would limit which values of k actually occur,

and would therefore affect which overtones are present and their relative strengths.

As we have seen, the initial conditions on the plates determine the initial condition

for o.

6.2 Numerical Methods

In the absence of a closed-form solution for the Helmholtz equation as the one above,

one might wish to turn to numerical methods. This will likely be the case for the

violin because its shape is not simple enough for separation of variables to work.

There are two choices for IBVPs we might wish to solve using numerical methods.

The first possible choice is

= a2Air xEV,tO
(x,O) 0, at(x,0)=ö(r), xEV

(x,t) = 0 xES, t0.

where r2 = (x + 2)2 + (y + 1)2 + (z - 1)2 and a2 = \. To find a reasonable value



for a at room temperature (20°C), we use the empirical value for velocity of sound

(a) in air at 0°C, and multiply by + (20).

a (33,156') J1+(20) =34,349 secseci

Divide this by 1.27 cm per half-inch to get a = 27,046 half-inches per second.

We are particularly interested in the behavior of the solution, a, at the f-holes,

since this is where the violin disturbs the outer air with greatest force due to reso-

nance. It is, therefore, interesting to examine the behavior of numerical solutions

at progressive time levels for points in the f-holes. One might choose to look at the

geometric center of the holes, or perhaps at the centers of the four small circles at

the ends of the holes. Based on Gusset's model, with our flat plates, we could locate

these four points at (-4,4.5,2), (0,2,2), (0, 2,2), and (-4, 4.5,2).

The second IBVP we might wish to solve is given at the beginning of this chapter.

Two advantages of considering the Hemholtz IBVP over the IBVP involving a is that

there is one fewer variable, and we need not guess at initial conditions if we have a

known solution for the motion of the boundary.

One example of a numerical method is to use difference approximations for the

partial derivatives in the Helmholtz equation. To do this, we discretize in space. Let

cbk denote an approximation to yj, zk). Using difference quotients to approxi-

mate the derivatives in the Helmholtz equation, we get

DDcbJk + + = Kcbk,

which is equivalent to
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i+1jk 2ik + 'li-1jk + ij+1k 2ijk + jj-1k + ijk+1 2ijk + ijk-1
(x)2 (zy)2 (z)2

zz\2 z\2l
ijk+1 = [2+K(Z)2+2 -) +2 () j

ijkzxI

+ (z)2 + i-1jk + ij+1k + Iij-1kl
(zx)2 (zy)2 j

According to this equation, in order to find a solution for at a given height, we

need data from the two previous heights. If M represents the number of steps taken

in the x, y, and z directions, then the boundary condition can be represented as

cojk 'IMjk = iOk = 4iMk = ijO = ijM = 0.

If our boundary condition also included information for , we would be able to find

numerical approximations for at different locations inside the box by using the

approximation

cI1
ijO

to express cbi1 in terms of ijO

There are several difficulties which arise when applying numerical methods to a

violin-shaped box. The space is not easily discretized in the y-direction because of

the curved boundary. When graphing the region, it works nicely to allow Ly to vary

with x, but this does not work well for solving. Since our equations were all obtained

using the Cartesian coordinate system, each variation of Ly would require a change
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of variables. In order to satisfy the Courant-Fredrichs-Lewy condition for stability

in three-dimensional space, we need

/ / /iaLt iaLt iaztI) +() +(j <1.\LxJ \LyJ \zJ

Since the spatial dimensions of the violin are small, we are forced to choose small

values for x, y, and zz. But a (the speed of sound in air) is quite large. Time

steps must, therefore, be extremely small if we choose to seek a solution for o via

numerical methods. This makes sense, however, since the frequency of the sound wave

for the fundamental vibration of the open A string is close to 440 cycles per second,

and this is only a mid-range frequency for the violin. In other words, the speed of

sound is rapid, so waves traverse the small space inside the violin quickly. If we

want to examine the behavior of a wave in any detail, we need to choose a small

time increment. Specific initial and boundary conditions are needed for numerical

calculations, and can only be determined after finding equations to represent the

motion of the plates. Thus finding suitable conditions necessitates a thorough study

of the behavior of the plates.

Once the boundary conditions can be specified, there are some numerical methods

which show promise in overcoming some of the difficulties we mentioned above. Finite

element methods and boundary element methods provide a way of discretizing the

space (or boundary) which should work with the violin's shape, and would be worth

exploring as methods for finding the elusive eigenvalues.
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Chapter 7

CONCLUSION

We do not have a complete model of the violin at this point, but we have made some

progress in setting up basic equations and processes which may be modified to reflect

more of the violin's complexities. We have provided a mathematical description of

the violin's major components at rest, and have discussed how the motion of one

component affects the motion of the others. We have also discussed some methods

for solving the equations of motion, and some issues that arise in trying to apply

those methods to the space inside the violin. Our findings in this work suggest many

interesting paths for future research.

We have not yet explored the motion of the plates, which is key in determining

the motion of the air. The effects of outline shape and curvature are important. It

also remains to apply the restrictions imposed by the bass bar and sound post to the

motion of the plates, but if a general solution is already known, these will simply

damp or encourage certain modes of vibration. Though we chose to view the ribs as

fixed in this work, there are horizontal components to the vibration of the air which

set the ribs in motion. The change in density at the f-holes, and their size and

placement need to be considered as well. Since the equation for the motion of the

vibrating string is well known, one might use a particular frequency of vibration in

it to get initial values for the plates. Perhaps the next step in research should be to

study these issues in order to learn more about our boundary conditions.

Another possible approach would be to gather empirical data on either the sound
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wave or the motion of the plates, and use the data to determine possibilities for the

nature of the solution. There is a wealth of empirical data out there, since people

have been studying the violin for centuries in the attempt to solve the mysteries of

the Golden Age instruments. Working "backward" in this way may shed some light

on whether or not a closed form solution for a exists. Empirical data will also be

useful in testing mathematical results once they are obtained.

it is important to remember, as we are mired in the complexities of the mathe-

matical problems associated with the violin, that the instrument has flourished for

centuries without us. Robert Adair, in The Physics of Baseball, makes a statement

about analyzing sports, which applies as well to our mathematical analysis of the

violin if one considers it as a metaphor (one might substitute "music" for Usportst,

"artists" for and "violin" for "baseball").

In all sports analyses, it is important for a scientist to avoid hubris
and pay careful attention to the athletes. Major league players are seri-
ous people, who are inteffigent and knowledgeable about their livelihood.
Specific, operational conclusions held by a consensus of players are sel-
dom wrong, though-since baseball players are athletes, not engineers or
physicists-their analyses and rationale may be imperfect.... Honed by
a century of intelligent trial and error, baseball must surely be played
correctly-though not everything said about the play, by players and oth-
ers, is impeccable. Hence, if a contradiction arises concerning some aspect
of my analyses and the way the game is actually played, I would presume
it likely that I have either misunderstood that aspect myself or that my
description of my conclusion was inadequate and subject to misunder-
standing. (Adair, 1994)

As we seek our own form of mathematical beauty in understanding the physical

process of creating musical sound, we must appreciate the instinct and skill of the

artists and craftsmen in producing beautiful music, and we can not help but acknowl-

edge that the art has no need of a scientific understanding. Many artists may even
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view our mathematical descriptions as blasphemy. As mathematicians, however, we

seek not to discount the skill or beauty of the craft, but merely to describe it. De-

scribing beauty does not diminish it, but more often enhances its experience for those

who did not perceive it in the same way.

FIGURE 7.1. Artist.



REFERENCES

[Adair, 1994] Adair, Robert K. The Physics of Baseball. New York: Harper-
Collins Publishers, Inc., 1994.

[Airy, 1871] Airy, George Biddell. On Sound and Atmospheric Vibrations,
with the Mathematical Elements of Music. London: Macmillan
and Co., 1871.

[A & W, 2002] AIm, Jeremy F. and James S. Walker. "Time-Frequency Analysis
of Musical Instruments." Siam Review Vol. 44, No. 3 (Sept.
2002): 457-476.

[Berezanskii, 1968] Berezanskii, Ju. M. Erpansions in Eigenfunctions of Selfadjoint
Operators. Providence: American Mathematical Society, 1968.

[Coates, 1985] Coates, Kevin. Geometry, Proportion and the Art of Lutherie.
New York: Oxford University Press, 1985.

[Colby, 1934] Colby, M. Y. Sound Waves and Acoustics. New York: Henry
bit and Co., 1934.

[Cremer, 1984] Cremer, Lothar. The Physics of the Violin. Trans. John S. Alien.
Cambridge: MIT Press, 1984

[F & R, 1991] Fletcher, Neville H. and Thomas D. Rossing. The Physics of

Musical Instruments. New York: Springer-Verlag, 1991

[G & L, 1988] Guenther, Ronald B. and John W. Lee. Partial Differential Equa-
tions of Mathematical Physics and Integral Equations. New York:
Dover Publications, Inc., 1988.

[Gusset, 2003] Gusset, David. Personal Interview. 2003.

[Helmholtz, 1954] Helrnholtz, Hermann L. F. On the Sensations of Tone. Trans.
Alexander J. Ellis. New York: Dover Publications, Inc., 1954.

[Jeans, 1968] Jeans, James. Science 1 Music. New York: Dover Publications,
Inc., 1968.

[M & M, 1999] Mase, G. Thomas and George E. Mase. Continuum Mechanics
for Engineers. New York: CRC Press, 1999.

[Nagyvary, 2001] Nagyvary, Joseph. Lecture. Violinma/cing: Is It Art or Is It
Science? Sigma Xi: The Scientific Research Society.



67

[Rowlings, 1997] Rowlings, J. K. Harry Potter and the Sorcerer's Stone. New
York: Scholastic, Inc., 1997.

[Strobel, 1992] Strobe!, Henry A. Art and Method of the Violin Maker: Princi-
ples and Practices. Aumsville: Henry A. Strobel, 1992.

[Strobe!, 1985] Strobe!, Henry A. Useful Measurements for Violin Makers: A
Reference for Shop Use. Aunisville: Henry A. Strobel, 1985.

[Tolstoy, 1962] Tolstoy, Georgi P. Fourier Series. Trans. Richard A. Silverman.
New York: Dover Publications, Inc., 1962.

[T & S, 1967] Tychonov, A. N. and A. A. Samarski. Partial Differential Equa-
tions ofMathematical Physics. San Francisco: Holden-Day, Inc.,
1967.

Websites

http://www.boundary-element-method.com
http://www.gussetviolins.com
http://scientific-computing.co.uk
http://sigview.com
http://www.sigmaxi.org/meetings/archive/forum.2001 .online.shtml

Software

Imaging for Windows (1995-1997). Billerica, Mass.: Eastman Software, Inc.

Matlab 6 (1984-2001). Natick, MA: The MathWorks, Inc.

Microsoft Works 2000 (1987-1999). Redmond, WA: Microsoft Corporation.
Scientific WorkPlace (2002) Poulsbo, WA: MacKichan Software, Inc.

SIG VIEW version 1.71 (1995-2003). Belgrade, Yugoslavia: Obradovic Goran.




