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The spatial distribution of forest disturbance is commonly calculated using a 

satellite imagery-driven bi- or tri-temporal change analysis. Working in Colombia’s 

Cordillera de los Picachos National Natural Park – a region of consistent cloud cover 

and dramatic topographic relief – a change assessment with such infrequent 

observations cannot capture long-term trends of vegetative decline (browning) or 

improvement (greening) nor the drivers associated with these changes. In recognition 

of the importance of spatio-temporally explicit information for assessing the effects 

of socio-environmental change and conservation strategy implementation, I 

developed a rigorous assessment of vegetation change using MODIS and Landsat 

time-series data and the Breaks For Additive Season and Trend (BFAST) algorithm to 

identify the timing, trends, and locations of change as well the associated drivers. 

First, I measured long-term vegetation trends from 2001-2015 using a 

Moderate Resolution Imaging Spectroradiometer (MODIS)-based 250m resolution 

Multi-Angle Implementation of Atmospheric Correction (MAIAC) time-series, and 

mapped short-term disturbances using all available Landsat images (149 dates from 

Landsat 5, 7, and 8). BFAST trends based on MAIAC data indicate a net greening in 

6% of the park, with a net browning trend of 2.5% in the 10km-wide region 

surrounding the park. I also identified a 12,500 ha area within Picachos (4% of the 

park’s total area) that experienced a consecutive vegetative decline or browning 

during every year of study, a result corroborated with a BFAST Monitor assessment 

using finer 30m resolution Landsat data. With Landsat, I recorded 12,642 ha (±1440) 



 

 

of disturbed forest within the park at high spatial and temporal accuracy. Spatially, 

Landsat results had user’s and producer’s accuracies of 0.95±0.02 and 0.83±0.18, 

respectively. Temporally, a TimeSync-supported temporal validation assessment 

showed that 75% of Landsat-detected dates of disturbance events were accurate 

within ± 6 months.  

With disturbances identified, I characterized disturbances within Picachos’ 

southeastern foothills and associated drivers using a set of metrics related to the 

spectral, pattern and trend properties of disturbance patches derived from Landsat 

time-series data (1996-2015). A training dataset was initially developed to identify 

drivers of disturbances using Corine Land Cover maps and high-resolution imagery. 

A Random Forests classifier was used to attribute disturbances to specific drivers of 

forest cover change: conversion to pasture, conversion to subsistence agriculture, and 

non-stand replacing disturbance (i.e., thinning). Attribution of changes had high 

accuracy at patch and area levels with 1-5% commission and 2-14% omission errors, 

respectively, for regions that were converted to pasture or experienced thinning. 

Lower agreement was found for agricultural conversion with 43% omission and 9% 

commission errors. 

I found that conversion to pasture is the main cause of forest cover loss within 

Picachos at 9901 ha (±72) corresponding to 14.7% of Picachos’ foothills, and that 

subtle forest alteration contributed to 1327 ha (±92) of forest degradation. 

Recognizing the diversity of pressures facing conservation strategy implementation in 

the region, these results have direct relevance for anticipating future land use 

pressures within Colombia, as well as across similar regions in the Andes-Amazon 

transition area. Indeed, since these results reveal the possibility to uncover historical 

disturbances related to human-incursion in protected landscapes, the methods are well 

suited to enhancing landscape planning particularly where biodiversity richness is 

quickly diminishing due to anthropogenic presence. 
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Chapter 1. General introduction 

 
1.1 Overview 

Human dominance on Earth has introduced a diversity of landscape disturbances with 

dramatic impacts on the environment (Achard et al., 2010). As a result, one third to 

one-half of the Earth’s land surface had been affected by human-induced activities 

(Zeng, Sui, & Wu, 2005). This landscape’s alteration is generally driven by economic 

development, agricultural production and demographic transitions (Leblois, Damette, 

& Wolfersberger, 2016). With population growth and an unbalanced economic model 

in both peripheral and core countries, human-induced landscape changes will 

continue, affecting our ecosystems. Hence, a continuous monitoring and 

understanding of disturbance regimes as well as the implementation of strategies to 

reduce human impacts are some of the biggest challenges for humankind during the 

21st century (Zeng et al., 2005). 

For decades, creating protected areas (PAs) has been considered one of the 

most effective practices to promote and ensure biodiversity conservation (Cuenca, 

Arriagada, & Echeverría, 2016; Wiens et al., 2009). However, global satellite studies 

show a dramatic increase in disturbance surrounding protected areas, specifically in 

tropical countries that hold most of the world’s biodiversity (DeFries et al., 2007; 

Defries, Hansen, Turner, Reid, & Liu, 2007; Joppa, Loarie, & Pimm, 2008). The 

Andes, in particular, is considered as hyper-hotspot because of its exceptional amount 

of endemic plants (Myers, Fonseca, Mittermeier, Fonseca, & Kent, 2000), yet 

methods for monitoring disturbance within such biodiverse regions are still limited 

(Pasquarella, Holden, Kaufman, & Woodcock, 2016). 

The cumulative changes in the regions surrounding protected landscapes 

within the Andes are threatening the extraordinary biological diverse of many 

countries. For example, in Colombia, the second most biodiverse country in the world 

(Butler, 2006), the rapid expansion of human population and the growing demand for 

forest services have increased the pressure over PAs located in the Colombian Andes. 

Forest cover changes are related to a variety of factors including rural-urban forced 

migration, presence of illicit crops, legal and illegal mining exploitation, and 
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agriculture and ranching expansion (Dolors Armenteras, Rodríguez, Retana, & 

Morales, 2011; Etter, McAlpine, Wilson, Phinn, & Possingham, 2006; Sánchez-

Cuervo & Aide, 2013). 

While some studies suggest that PAs on Colombian Andes have been 

effective at limiting deforestation and degradation (Cortes Alonso & Sergio, 2012; 

Rodríguez, Armenteras, & Retana, 2013; Salazar Villegas, 2013; Sanchez-Cuervo & 

Aide, 2013),the complex colonization processes in the Andes–Amazonia transition 

belt (Dolors Armenteras et al., 2011) driven by internal conflict, drugs trafficking and 

subsistence agricultural expansion have nonetheless caused drastic modifications to 

forest structure and extent over the last 50 years (Dolors Armenteras et al., 2011; 

Etter, McAlpine, & Possingham, 2008; Sánchez-Cuervo & Aide, 2013). As a result, 

the Andes–Amazonia transition belt is ever more recognized as a hotspot of 

deforestation dominated by encroaching pastures, agriculture, and illicit crop 

cultivation within and outside of PAs (Achard et al., 2014; Rodríguez et al., 2013).  

Even though the Landsat archive stretches back to 1972 and offers consistent 

measurements of the Earth’s surface over decades (Holden & Woodcock, 2015; 

Vogelmann, Gallant, Shi, & Zhu, 2016), most satellite image-based analyses in the 

Andes region use only two or three images for change detection (Dolors Armenteras 

et al., 2011; Etter, McAlpine, et al., 2006; Fernández et al., 2015; Rodríguez et al., 

2013; Tovar, Seijmonsbergen, & Duivenvoorden, 2013). Bi- or tri-temporal 

comparisons are unsuited for monitoring complex, dynamic socio-environmental 

relationships at different spatio-temporal levels. The free availability of Landsat and 

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery support the 

development of more sophisticated algorithms that extract finer-scale traits and abrupt 

changes using individual vegetation indices and transformation functions that take 

advantage of full-spectral domain (Alonzo, Van Den Hoek, & Ahmed, 2016; Hilker 

et al., 2012; Jamali, Jonsson, Eklundh, Ardo, & Seaquist, 2015; Kennedy, Yang, & 

Cohen, 2010; Rufin, Müller, Pflugmacher, & Hostert, 2015; Verbesselt, Zeileis, & 

Herold, 2012). Notwithstanding, we have only just begun to comprehend how to use 

frequent, repeatable and reproducible observations from different satellite-based 

sensors for study of terrestrial ecology.  
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In an attempt to provide a more consistent perspective of change dynamics 

and to overcome the obstacles for monitoring inaccessible places, this study integrates 

1) multi-source imagery with a sub-annual change detection algorithm, 2) a set of 

diverse time-series metrics for detecting long- and short-disturbances forest, and 3) 

the most probable drivers of change in National Park Picachos. The methods 

presented here support improved comprehension and spatial, temporal, and thematic 

detail of the forest disturbances in regions characterized by complex socio-economic 

dynamics and persistent cloud cover. 

 

1.2 Change detection methods 

Forest cover change detection is the process of identifying differences in the state of 

forest cover condition or structure by observing the forest at different times (Singh, 

1989). Early remote sensing change detection techniques were strictly bi-temporal 

(e.g., Coppin & Bauer, 1996; Lu, Mausel, Brondizio, & Moran, 2004; Singh, 1989), 

and bi- or tri-temporal comparisons continue to be used in regions with persistent 

cloud cover or in areas with low image availability (Alonzo et al., 2016; DeVries, 

Verbesselt, Kooistra, & Herold, 2015). However, such simplistic representations of 

forest changes are unable to capture the consequences of complex co-evolution of 

natural and social systems across different spatial and temporal scales (Murillo-

Sandoval, Van Den Hoek, & Hilker, 2017).  

In recognition of these limitations, change detection algorithms such as 

LandTrendr and Vegetation Change Tracker (VCT, Huang et al., 2010) have been 

developed that employ the full satellite data time series to identify location and timing 

of both abrupt and protracted changes with high accuracy (Cohen, Yang, & Kennedy, 

2010; Pflugmacher, Cohen, & Kennedy, 2012; Pickell et al., 2014; Thomas et al., 

2011). Annual time series detection algorithms require the reduction of potential 

seasonality by selecting the best-available-pixel (Hermosilla, Wulder, White, Coops, 

& Hobart, 2015). This temporal reduction both (over-)simplifies the characterization 

of forest cover change and decreases the amount of data storage and computational 

requirements (Forkel et al., 2013).  
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In an effort to extend detection of disturbances to a finer, sub-annual temporal 

scale, some techniques have focused on increasing temporal resolution by combining 

daily MODIS observations with high-resolution imagery, (e.g., Hilker et al., 2009; 

Tran, de Beurs, & Julian, 2016). Other approaches such as the Noise Insensitive 

Trajectory Algorithm (NITA; Alonzo et al., 2016), the Detecting Breakpoints and 

Estimating Segments in Trend (DBEST; Jamali et al., 2015) and the Breaks for 

Additive Seasonal and Trend (BFAST; Verbesselt, Hyndman, Newnham, & 

Culvenor, 2010) detect changes using all available observations at all pixels. Of these, 

BFAST has been broadly tested across geographies and land cover types, has simple 

parameterization, and less sensitivity to data gaps and noise, making it suitable for 

monitoring forest changes in regions with high cloud cover and low data availability 

(DeVries et al., 2015; Schultz, Verbesselt, Avitabile, Souza, & Herold, 2015; Watts & 

Laffan, 2014). Although sub-annual algorithms like BFAST require higher data 

volumes and computational requirements, they offer a more accurate representation 

of subtle forest changes and gradual vegetative trends than broader annual resolution 

approaches (Kennedy et al., 2014; Pasquarella et al., 2016). 

 

1.3 Attribution of change agent 

According to White & Jentsch (2001), forest disturbance is “a relatively discrete 

event in time that disrupts the ecosystem, community or population structure and 

changes the resources, substrate availability or physical environment. A disturbance, 

in this sense, changes the state of structural and physical variables in the ecosystem, 

although these changes also influence ecosystem functions and processes.” The 

methods described in section 1.2 are able to track the presence of forest disturbance, 

but equally important is to identify the agents causing disturbances. Even though the 

magnitude of forest cover change detected by algorithms correlates with the 

disturbance severity (Jeffrey G. Masek, Hayes, Joseph Hughes, Healey, & Turner, 

2015), a robust assessment of agents must also include repetitive measurements in the 

spectral, temporal, pattern and location domains (Lambin, 1999). Methodologies for 

attribution of changes tend to focus on individual drivers such as pests and insects 

(Jones, Song, & Moody, 2015; Neigh, Bolton, Diabate, Williams, & Carvalhais, 
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2014; Olsson, Jönsson, & Eklundh, 2012), fires (Chu, Guo, & Takeda, 2016; Jiang, 

Jia, Chen, Deng, & Rao, 2015), land use conversion (Borrelli, Sandia Rondón, & 

Schütt, 2013; Reiche, 2015), harvest (Buhal, 2016; Hamunyela, Verbesselt, & Herold, 

2016) and wind or storm damage (Al-Amin Hoque, Phinn, Roelfsema, & Childs, 

2017; Nelson, Kapos, Adams, Oliveira, & Oscar, 1994) rather than multiple agents. 

The difficulty in discriminating multiple drivers of disturbance results from the lack 

of reliable, quantitative spatio-temporal datasets that support the assignment of 

specific changes to a specific cause.  

The use of high-resolution imagery and temporally dense Landsat time-series 

with assistance from visual interpretation has become the most popular and reliable 

way to initially categorize different agents of change (Kennedy et al., 2015) yet 

automated methods for agent attribution are gaining ground. Pickell et al. (2014) 

introduce a highly accurate (94%) method using VCT and linear discrimination 

analysis (LDA) across a large number of Landsat-derived spectral, temporal and 

pattern metrics to classify wildfires and resource extraction in Alberta, Canada. A 

similar approach was used by Hermosilla et al. (2015) in which a time-series protocol 

based on the “best available pixel” was input to a Random Forest (RF) classifier to 

categorize disturbance drivers including fire, road expansion, forest harvest, and non-

stand replacing disturbance. Disturbance attribution was also assessed by Kennedy et 

al. (2015) using a set of spectral and trend metrics derived from LandTrendr input to a 

RF classifier for discriminating agricultural conversion, urbanization, fire and insect 

damage, and harvests associated with forest management. These methods offer a 

relatively straightforward way to exploit the Landsat archive along with spectral, 

temporal, and pattern metrics to distinguish among different drivers of change and are 

improved with a longer and denser Landsat archive. 

 

1.4 Proposed Method 

The proposed method explores a different approach to the problem of sub-annual 

forest cover change monitoring in persistently cloudy places by i) combining multi-

source remote sensing time-series data to characterize short- and long-term 
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disturbances, and ii) distinguishing different drivers contributing to observed changes, 

using machine learning classifiers in Picachos Natural Park in Colombia.  

In my first chapter, I take advantage of MODIS-based MAIAC observations 

because of its enhanced surface reflectance and more regular temporal resolution, 

and, using BFAST, I classify disturbance trends as either greening or browning. 

Greening and browning are statistically significant linear segments between 

breakpoints, which exhibit a positive or negative slope direction, respectively. I also 

extend the study to the Landsat scale of observation using a variant of BFAST at sub-

annual level, which initially employs historical observations to fit a stable model and 

then compares the characterization of a stable forest with other observations in order 

to detect significant deviations in signal values (referred to as breakpoints) from 2001 

to 2015. In pairing MODIS and Landsat time series, I compare the differences in 

disturbance location and timing and assess the ability of both sensors to detect abrupt 

and gradual forest cover changes in Picachos.  

In my second chapter, I collect training data at sites of forest thinning as well 

as forested sites that have been converted to pasture or agriculture. This training 

sample was collected from Corine Land Cover maps and high-resolution imagery. 

Every patch of disturbed forest is characterized with metrics derived from spatial 

pattern, spectral values, trends, or topographic condition, which are input to a RF 

classifier to assign the most probable driver of change to each patch. The 

incorporation of multi-source imagery with a sub-annual change detection algorithm 

and diverse metrics permits an unprecedented identification of spatio-temporal 

change as well as the local-level processes directly contributing to the changes.  
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Chapter 2. Leveraging multi-sensor time series datasets to map short- and long-
term tropical forest disturbances in the Colombian Andes 

2.1 Introduction 

Protected areas are vital for preserving the planet’s biodiversity and maintaining 

functional terrestrial and aquatic ecosystems (Wiens et al., 2009). The tropical Andes, 

in particular, are a “hyper“ hotspot for endemism and conservation support (Myers et 

al., 2000). However, protected areas in the Colombian tropical Andes are under threat 

from anthropogenic land uses such as cattle grazing, agriculture and population 

migration (Dolors Armenteras et al., 2011; Jetz, Wilcove, & Dobson, 2007; Sánchez-

Cuervo & Aide, 2013), which have led to deforestation and degradation of protected 

landscapes (Simula & Mansur, 2011). Monitoring long-term ecological processes in 

these protected areas is therefore crucial to ecological conservation and biodiversity 

(Willis, 2015). While remote sensing presents the ideal means to frequently and 

regularly characterize vegetation change over large and remote areas without the need 

for physical access, remote sensing of the Colombian Andes is challenging due to 

frequent cloud cover, complex topography, and regional insecurity (e.g., armed 

conflict) that impede field validation. Indeed, to date, most studies on Latin American 

tropical forests have been confined to the Amazon basin’s lowlands rather than the 

Andes region (Fernández et al., 2015; Rodríguez et al., 2013).  

In the Andes, as well as other mountainous regions, studies of vegetation 

dynamics have typically used bi- or tri-temporal satellite images acquired on 

relatively cloud-free dates (D. Armenteras, Gast, & Villareal, 2003; Rodríguez et al., 

2013; Tovar et al., 2013). Such temporally coarse and irregular change assessments 

are prone to confusing seasonal (intra-annual) vegetation dynamics with inter-annual 

changes (DeVries et al., 2015; Van Den Hoek, Ozdogan, Burnicki, & Zhu, 2014) and 

are wholly dependent on the quality of images selected for analysis (Alonzo et al., 

2016). In Colombia, the ecological monitoring of protected areas is managed by 

Colombian National Natural Parks (Parques Nacionales Naturales), and based on 

maps generated every five years using the Corine Land Cover inventory (CLC), 

which is partially or poorly validated in many remote areas (Anaya, Colditz, & 

Valencia, 2015; IDEAM, 2010). Such simplistic representations of vegetation change 
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are unable to capture the complex co-evolution of natural and social systems across 

different spatial and temporal scales. 

In an effort to provide a more systematic perspective of vegetation dynamics 

and illuminate spatially detailed patterns, we employ a multi-scale time series 

assessment of forest disturbance over Picachos National Park and its surrounding area 

from 2001-2015 using two datasets: the Moderate Resolution Imaging 

Spectroradiometer (MODIS)--based Multiangle Implementation of Atmospheric 

Correction (MAIAC) time series, and the Landsat archive from 1996 – 2015 (Landsat 

5, 7, and 8). MAIAC is a relatively new cloud screening and atmospheric correction 

technique that provides a more complete description of the physical system under 

investigation and overcomes many restrictions faced by conventional satellite 

retrievals (e.g. assumed Lambertian reflectance), especially in tropical regions (Hilker 

et al., 2012, 2015). MAIAC provides a more confident interpretation of vegetation 

trends with much greater temporal fidelity than what could be achieved with a bi or 

tri-temporal comparison. (Bi et al., 2016; Hilker et al., 2014), but its coarse spatial 

resolution does not support detection of fine-scale changes that may be better 

characterized using Landsat data. The Landsat archive with its 30 meter spatial 

resolution and 16-day revisit period, is more suitable for monitoring small-scale 

processes of deforestation and degradation (Achard et al., 2010, 2014) like those 

present in Picachos and other regions of montane in Colombia (Rodríguez et al., 

2013).  

To characterize time series trajectories and trends, we apply the Breaks For 

Additive Season and Trend (BFAST) algorithm, which has successfully been used to 

detect forest cover changes in tropical forests with comparable structure to Picachos 

(DeVries et al., 2015; Dutrieux, Verbesselt, Kooistra, & Herold, 2015). BFAST was 

selected over other well-known disturbance monitoring algorithms such as 

LandTrendr (Kennedy et al., 2010) and Vegetation Change Tracker (VCT) (Huang et 

al., 2010) for two main reasons. First, BFAST has been shown to be more resilient to 

noise and missing data (i.e., low data availability or cloud cover) (Devries, Pratihast, 

Verbesselt, Kooistra, & Herold, 2016; Dutrieux et al., 2015; Hamunyela et al., 2016; 

Schultz et al., 2016). Second, BFAST produces sub-annual information on 
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disturbances and trends rather than the annual scale of LandTrendr and VCT (Cohen 

et al., 2010; Huang et al., 2010). Two different implementations of BFAST were 

applied: we first used the dense MAIAC time series to quantify multi-year vegetation 

greening and browning trends and recorded breakpoint dates, which may indicate 

disturbance or a significant deviation in vegetation trends (Verbesselt et al., 2012). 

Second, we used the BFAST Monitor method and all available Landsat imagery to 

identify annual disturbances (DeVries et al., 2015), which were independently 

validated using TimeSync (Cohen et al., 2010). Short-term Landsat disturbances were 

then used to validate the timing and distribution of longer-term MAIAC trends. 

Collectively, these techniques present an effective and scalable framework for 

monitoring short- and long-term vegetation disturbances and trends in the Andes and 

other mountainous forested regions.  

 

2.2 Materials and Methods  

2.2.1 Study Area 

Picachos National Park was established in 1977 and is the third largest national park 

in the Colombian Andes with an area of approximately 288,000 ha. It has a 

pronounced elevation gradient spanning 450–3800 m, and is characterized by high 

annual rainfall (4000 mm/year) and a diverse mosaic of tropical ecosystems (Figure 

1). Picachos also has great hydrological importance, as rivers with headwaters in the 

park feed the basins of the Orinoco and Amazon rivers. Picachos is a Category II Park 

as designated by the International Union for Natural Conservation with the stated goal 

of conserving large-scale ecological processes, species, and ecosystems for current 

and future generations (Dudley (Editor), 2008). However, more than 200 families – 

many fleeing armed conflict – have settled in the park over the last 25 years (Unidad 

Administrativa Especial del Sistema de Parques Nacionales Naturales, 2016) and 

introduced novel land uses such as cattle grazing and subsistence agricultural 

production, including illicit coca cultivation (Unidad Administrativa Especial del 

Sistema de Parques Nacionales Naturales, 2015). Moreover, during the early 2000s, 

the surroundings of Picachos were legally sited by FARC–EP (Fuerzas Armadas 

Revolucionarias de Colombia–Ejercito del Pueblo) as part of a negotiation process 
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conducted by the former Colombian government. This agreement collapsed, and the 

conflict intensified from 2002 to 2010. In recognition of these cross-border processes, 

our study area includes Picachos as well as the 10 km region surrounding the park. 

 
Figure 1. The study area of Picachos National Park is located in central Colombia at 

the northern extent of the Andes Mountain range. 

2.2.2 MAIAC data 

The MODIS sensor is a pillar of large-scale remote sensing studies due to its superior 

data quality and daily global coverage (Huete et al., 2002). MODIS surface 

reflectance is regularly derived from top of atmosphere measurements using pixel-

based atmospheric correction and cloud screening (Vermote & Kotchenova, 2008). 

Nevertheless, errors in the estimation of atmospheric aerosol loadings (Grogan & 

Fensholt, 2013; Samanta et al., 2010; Samanta, Ganguly, Vermote, Nemani, & 

Myneni, 2012) and deficiencies in cloud screening (Hilker et al., 2012) introduce 

variability in estimated surface parameters unrelated to actual changes in land cover 
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(Zelazowski, Sayer, Thomas, & Grainger, 2011), and these may lead to incorrect 

quantification of vegetation trends (Samanta et al., 2012). 

As an alternative to conventional MODIS at-surface products, the Multi-

Angle Implementation of Atmospheric Correction (MAIAC) is a novel cloud 

screening technique that enhances land surface reflectance based on MODIS C6 

Level 1B data (Hilker et al., 2014). MAIAC’s cloud detection technique yields a 

noise reduction by a factor of 3-10 compared to standard MODIS surface reflectance 

products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4, 

and MYD13A2-Vegetation Index) without the conventional assumption of 

Lambertian land surface behavior (Hilker et al., 2012, 2015). The improvements 

offered by MAIAC increase the number of viable clear-sky observations by a factor 

of 2-5 (Hilker et al., 2012), which is especially valuable for monitoring vegetation 

dynamics in the persistently clouded tropics (Seddon, Macias-Fauria, Long, Benz, & 

Willis, 2016; Wilson & Jetz, 2016). We used 8-day composite NDVI observations at 

1km resolution from January 2001 to June 2014 as input for the BFAST analysis. 

 

2.3 MAIAC-based trend detection with BFAST 

BFAST iteratively decomposes time series data into trend, seasonal and noise 

components and supports detection of structural changes (i.e., breakpoints) in both 

trend (i.e., browning or greening) and seasonal components (de Jong, Verbesselt, 

Schaepman, & de Bruin, 2012; Verbesselt, Hyndman, Zeileis, & Culvenor, 2010). 

The parametrization of BFAST is based on a single parameter, h, the inverse of which 

identifies the largest number of breakpoints that could be detected in a given time 

series (Watts & Laffan, 2014). We set h=0.15 to reduce the influence of persistent 

cloud cover that introduces missing data into the MAIAC-NDVI time series. With our 

MAIAC-NDVI time series being 13.5 years in duration, h=0.15 also means we would 

have a minimum segment length of at least 2.03 years (93 observations) between 

breakpoints.  
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Figure 2. Example Breaks For Additive Season and Trend (BFAST) output of a 

browning pixel. Three major breakpoints (dashed red lines) and four 
segments (black lines) have been identified over the 13.5-year Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) time series (blue 
lines) with missing observations due to cloud effects. The slope coefficients 
(β) are all significant (α = 0.05) and P represents p-values. 

 

We evaluated the ecological significance of each segment’s slope (β) output 

by BFAST (Figure 2). The trend within each segment is assumed to be linear and is 

estimated using robust linear regression (de Jong et al., 2012). Only segments with 

significant β values (i.e. non-zero trends) were considered to be potential greening 

(positive slope) or browning (negative slope) segments, and were tested against the 

null hypothesis of β=0 at α=0.05. At each pixel, the total respective durations of 

greening and browning periods were calculated as the sum of individual segments 

with significant slopes. All analysis based on MAIAC were performed in R using the 

greenbrown library (Forkel et al., 2013). 
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2.2.3 Landsat imagery  

We used all available Level-1 Terrain-Corrected (L1T) surface reflectance-corrected 

Landsat images from path/row 8/58, which covers Picachos in its entirety. In total, 

this amounted to 374 Landsat 5, 7 and 8 images from 1996-2015; images with over 

50% cloud cover were removed, leaving 149 Landsat images for the analysis (Table 

6, Figure 17 Appendix). Cloud masks produced using Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) (J.G. Masek et al., 2013), 

Function of Mask (FMask) (Zhu & Woodcock, 2012), and Landsat 8 Surface 

Reflectance (L8SR) algorithms (Holden & Woodcock, 2015; Zhu et al., 2016) were 

applied, and NDVI was calculated for all images. Although other vegetation indices 

have shown less sensitivity to saturation issues in tropical forests, recent studies have 

demonstrated that NDVI is less affected by sun-sensor geometry variation (Hilker et 

al., 2015; Morton et al., 2014) as well as variation in the frequency distribution of 

observations (Schultz et al., 2016), both of which are relevant for time series analysis. 

The cross calibration between Thematic Mapper (TM), and Enhanced Thematic 

Mapper Plus (ETM+) sensors supports a continuity of cross-sensor NDVI trends 

during the study period (Chander, Markham, & Helder, 2009; Vogelmann, Gallant, 

Shi, & Zhu, 2015; Zhu et al., 2016). However, TM/ETM+ and Landsat 8 Operational 

Land Imager (OLI) do not offer such consistency. Zhu et al. (2016) found that OLI-

derived NDVI values were positively biased with respect to ETM+ by about 0.04. 

Consequently, we transformed NDVI surface reflectance-corrected data using the 

methods described by (Roy et al., 2015) to minimize OLI’s positive bias and ensure 

NDVI consistency across Landsat sensors.  

To simplify image processing, a forest/non-forest mask was applied to the 

Landsat archive by masking out all pixels with less than 50% tree cover from the 

“Year 2000 forest cover” data product from (Hansen et al., 2013). We also removed 

pixels labeled as “rainfed cropland” according to the Land Cover V 2.5 product based 

on 1 km SPOT-VEGETATION and 300 m Medium Resolution Imaging 

Spectrometer (MERIS) data with the epoch centered on 2000 (1998–2002) (Arino, 

Perez, Kalogirou, Defourny, & Achard, 2010). Following recommendations by 

(Hamunyela et al., 2016), we also masked pixels with less than 30 observations (20% 
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of the full time series) and less than 7 observations in the historical period (1996-

2000) (see section 2.2.4 and Figure 3). 

 
Figure 3. Example of pixel-level BFAST Monitor output using a 2007-2010 subset of 

the Landsat time series. Black solid lines denote the beginning of the 
monitoring period, black dots are observed NDVI observations, blue lines 
denote expected values from the fitted seasonal model, and grey dashed 
lines represent the residuals in each monitoring period. A breakpoint 
(dashed red line) is identified in early 2007 with a magnitude (M) of -0.35 
but is not detected in 2008 or 2009. The historical periods for 2008-2009 
and 2009-2010 are shorter than the 2007-2008 period because BFAST 
Monitor only includes preceding observations until the stable seasonal 
model breaks down.  

 

2.2.4 Landsat-based disturbance detection with BFAST Monitor 

Using the Landsat time series, we applied BFAST Monitor to map forest disturbance 

in Picachos given its proven robustness at detecting disturbance in other tropical 

forests (Schultz et al., 2015). BFAST Monitor differs from the conventional BFAST 

algorithm that we used with the MAIAC time series in three important ways. First, we 

fit only a first-order harmonic curve to the over Landsat time series using BFAST 
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Monitor, whereas we used a third-order harmonic for the MAIAC time series. This 

decision lies in the irregular distribution of Landsat observations that can result in 

model over-fitting (DeVries et al., 2015). Second, we omitted the trend component 

when modeling the Landsat time series but used a seasonal-and-trend model with 

MAIAC. The inclusion of a trend component in modeling the Landsat time series 

would have generated erroneously modeled NDVI values in the monitoring period. 

Third, BFAST extracted major breaks by considering the MAIAC time series as a 

whole, while BFAST Monitor evaluated potential breaks across the Landsat time 

series in a succession of one year long periods.  

We used 32 Landsat images collected between 1996-2000 to develop a 

historical baseline of forest cover trends. Because using all images may affect the 

BFAST Monitor model fit (Verbesselt et al., 2012), we measured the reversed-

ordered-cumulative (ROC) sum of residuals to generate a cumulative prediction error 

that helps identify whether a seasonal model no longer offers an accurate fit (Pesaran 

& Timmermann, 2002) (Figure 3). With the historical model in place, we applied 

BFAST Monitor sequentially from 2001 to 2015, following the approach by DeVries 

at al. (2015).  

The detection of breakpoints using BFAST Monitor is associated with near-

zero or positive magnitudes which could not be related to forest disturbance (DeVries 

et al., 2015). The breakpoint magnitude is calculated as the median of observation-

model residuals within each monitoring period (Verbesselt et al., 2012). In identifying 

the magnitude threshold to distinguish disturbance from non-disturbance and 

minimize spurious breakpoints, we selected a stratified random sample of 420 

breakpoints based on three magnitude quantiles from the study area where very high 

resolution images from Google Earth were available for 2004 and 2009. We classified 

sample points as being disturbed or non-disturbed based on visual interpretation of 

true color imagery as well as NDVI time series. We then calculated a magnitude 

threshold of -0.041 using Binomial Logistic Regression where the likelihood of actual 

disturbance approached 50% (Figure 18 Appendix) (Devries & Verbesselt, 2015). We 

considered any potential breakpoint with a magnitude less than -0.041 to be disturbed 

(Milton, Fox, & Schaepman, 2006).  
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2.2.5 Validation and agreement assessment  

BFAST Monitor validation approaches in tropical regions typically involve a single 

image, which makes it difficult to capture annual dynamics or disturbed areas 

(DeVries et al., 2015; Dutrieux et al., 2015). To overcome this limitation, we used 

sub-annual Landsat L1T-derived NDVI imagery, Google Earth-hosted annual 

Landsat true color images and very high resolution images (2003-2004, 2007 and 

2009) and RapidEye images (2014-2015). We visually inspected disturbance sites and 

identified obviously erroneous disturbances, such as pixels influenced by river 

dynamics. 

With erroneous disturbance sites removed, we sampled 684 validation sites 

following Cochran’s recommendations (Cochran, 1977). After removing 24 sample 

sites due to lack of images, we distributed the remaining 660 sites into disturbed and 

non-disturbed sample sets following Olofsson et al. (Pontus Olofsson et al., 2014); 

this yielded 269 disturbed and 391 initial non-disturbed sites. Given that the amount 

of disturbed forest in Picachos is expected to be relatively small compared to stable 

forest or otherwise non-disturbed sites, we sought to decrease the potential 

overrepresentation of non-disturbed sites in the validation sample by stratifying non-

disturbed validation sample with respect to a 2km buffer from unpaved roads (2014-

2015) derived from high-resolution images (Unidad Administrativa Especial del 

Sistema de Parques Nacionales Naturales, 2016) with the assumption that disturbed 

sites are likely closer to roads (Barber, Cochrane, Souza, & Laurance, 2014; Bax, 

Francesconi, & Quintero, 2016). Our final validation sample includes 151 non-

disturbed sites within the road buffer, and 240 non-disturbed sites outside the buffer. 

For each disturbed site, we evaluated the temporal agreement of BFAST 

Monitor-derived disturbances against our reference datasets (Google Earth, RapidEye 

and NDVI sub-annual scenes) using 20 sampled pixels per year into TimeSync 

(Cohen et al., 2010) as adapted in R by (DeVries et al., 2015). A pixel-count 

confusion matrix was derived from every strata, and we removed the bias effect of 

unequal omission and commission errors by constructing an area-adjusted error 

matrix (Pontus Olofsson et al., 2014; Pontus Olofsson, Foody, Stehman, & 

Woodcock, 2013). We calculated the stratified estimator for a given class as: 
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𝑨𝑨�𝒋𝒋 =  𝑨𝑨�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∗  𝒑𝒑�.𝒋𝒋          (1)
       
Where 𝑨𝑨�𝒋𝒋 is the adjusted area, 𝑨𝑨�𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is the total mapped area for a given class, and 𝒑𝒑�.𝒋𝒋 

is the column sum of the cell area proportion in the error matrix. We further validated 

MAIAC trends using Landsat-based disturbance events by comparing the timeline of 

MAIAC-based breakpoints with annual Landsat-based disturbances.  

 

2.3 Results  

2.3.1 MAIAC-derived browning and greening patterns 

The most prominent browning region is in the southeastern corner of Picachos with 

small and scattered browning regions beyond the park’s northeastern perimeter near 

small settlements (Figure 4a). The watershed most affected by persistent browning is 

the Platanillo River watershed while the Templado River watershed is only affected at 

its southern extent where it merges with adjacent watersheds. The Yulo River 

watershed presented both browning and greening over our study period with more 

greening evident within Picachos. Greening clusters (Figure 4b) were found on a 

steeply sloped region in the park’s central-south region and surrounded by a river, the 

Rio Pato, and also in the central-eastern foothills along the large rivers, the Rio 

Guayabero and Rio Leiva. Within the park, 12,500 ha showed 13 years of consecutive 

browning, whereas the total area of persistent greening amounted to 27,700 ha.  

Each pixel may exhibit greening or browning at different periods over the 

time series (Figure 4). To calculate the percentage of Picachos that experienced 

browning or greening, we divide the total amount of browning and greening pixels by 

Picachos' extent as well as the 10km-wide region surrounding the park. In total, 14% 

and 20% of the park displayed browning and greening, respectively, while 32% of 

Picachos was masked due to absence of MAIAC observations due to cloud cover. 

Within the 10km wide region surrounding Picachos, 5% and 2.5% of the surrounding 

forest exhibited browning and greening, respectively. Therefore, we recorded a total 
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positive (greening) net trend of 6% within Picachos, but a negative (browning) trend 

of 2.5% surrounding the park. 

The lengths of browning periods were generally shorter than greening periods: 

browning periods frequently lasted 3 or 6 years, while greening tended to last 7 or 

more than 10.5 years (Figure 4c).Both greening and browning trends occurred at a 

low elevation between 300-600m and during 2004-2007.  

Figure 4. Duration of MAIAC-based a) browning and b) greening trends based on the 
number of years with significant trends (α=0.05), and (c) distribution of 
browning and greening periods across Picachos and its surrounding area. 

Fifty percent of pixels in the park had MAIAC trends with zero breakpoints 

over the 2001-2014 study period, 12% of the park saw a single breakpoint, while 

4.5% of the park saw two or more breakpoints during the study period, most of which 

occurred in the southeastern corner of the park. 
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2.3.2 Landsat-based disturbance distribution 

Using BFAST Monitor with Landsat data, we measured a total of 6353 ha of 

disturbed area within Picachos from 2001–2015 and 6289 ha disturbed area between 

1998–2001, yielding a total disturbed area of 12,642 ha (±1440 margin of error, 95% 

confidence interval) or 4.3% of Picachos’ total area. This disturbed area estimate is 

20% less than the previous estimate of 15,276 ha based on the CLC methodology 

(Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales, 

2016). This difference can be explained by the poor validation of the CLC dataset in 

this region, differences in cloud-masking approaches, and, further, that inter-annual 

change maps based on CLC datasets suggest forest cover change in many regions 

despite the presence of visually interpreted stable forest.  

 
Figure 5. Cumulative BFAST Monitor-derived disturbance based on Landsat 2001-

2015 time series, aggregated to 1km pixel size for display. 

As with the spatial distribution of MAIAC browning trends, Landsat 

disturbances were concentrated in the southeast with scattered disturbance recorded in 

the northeast just outside Picachos (Figure 5). The mean size of Landsat-derived 
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disturbed patches is 1.9 ha (range 1.1–2.9 ha) across all years, while the maximum 

annual mean patch size is 19.8 ha (range 5.1–49.3 ha). The size of disturbed patches 

within Picachos is considerably larger than the 0.6 ha patch size in other tropical 

forest regions (DeVries et al., 2015), but is smaller than the 8–10 ha patch size in 

other mountainous regions (Fernández et al., 2015). During 2001–2015, the total 

disturbance area within the 10 km-wide region surrounding Picachos was 9218 ha, 

which is 1.6 times greater than the total amount of disturbance within the park. The 

years 2004 and 2007 witnessed the most disturbance in the region surrounding 

Picachos, whereas 2007 and 2014 exhibited the most change within the park (Figure 

6).  

 
Figure 6. Temporal distribution of disturbance area within Picachos and the 

surrounding region. The year 2003 was not evaluated because of a lack of 
Landsat images. 

 

2.3.3 Validation of Landsat-derived disturbances 

Using 660 validation points, we recorded a high total accuracy (TA) of 0.99±0.007 

for disturbed class sites, with user’s (UA) and producer’s accuracies (PA) of 
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0.95±0.024 and 0.83±0.18, respectively. The non-disturbed classes presented a 

combined UA of 0.98±0.026 and PA of 0.99±0.002 (Table 1). Accuracies were 

similar to previous studies in South America (Devries & Verbesselt, 2015), but higher 

in comparison with other tropical regions (Schultz et al., 2016). We also assessed the 

agreement between Landsat-based BFAST Monitor disturbance dates and TimeSync-

interpreted disturbance dates based on sub-annual Landsat true color, sub-annual 

Landsat L1T-derived NDVI scenes and supporting very high resolution imagery. 

Most disturbance dates showed an agreement of 75% within ± 6 months, while the 

bulk of other disturbances (22%) showed a residual of 6-12 months; and 3% of 

remaining errors showed disagreement greater than 12 months (Figure 7).  

 

Table 1. Area-weighted error matrix of Landsat-based BFAST Monitor results using 
stratified sample sites across classes: 1) Disturbance, 2) Non-disturbance outside 2km 
unpaved roads buffer, and 3) Non-disturbance inside 2km unpaved roads buffer. 

 

  Reference    

  1 2  3 

Proportion 

of 

area mapped 

(Wi) 

UA  PA TA 

Map 

1 0.027 0.0001 0.0011 0.028 0.95±0.024 0.83±0.18 0.99±0.007 

2 0.002 0.172 0 0.174 0.98±0.018 0.99±0.001  

3 0.003 0 0.793 0.797 0.99±0.008 0.99±0.001  

 Total 0.033 0.172 0.794 1    
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Figure 7. TimeSync-based comparison of sub-annual BFAST Monitor-output 
disturbance dates against breakpoint dates identified using reference 
datasets. 

2.3.4 Validation of MAIAC breakpoints 

The most frequent year of MAIAC breakpoints was 2007, followed by 2004 and 

2010, which coincide with the most frequent years of Landsat disturbance between 

2002–2013 (Figure 8). Although MAIAC time series data spanned from January 2001 

to June 2014, no significant breaks were detected during 2001–2002 and 2013–2014. 

This is due to the h-defined minimum segment size of 2.03 years that restricted our 

ability to detect breakpoints at the beginning and end of the time series but supported 

accurate model fitting within each segment (De Jong, Verbesselt, Zeileis, & 

Schaepman, 2013; Verbesselt et al., 2012; Watts & Laffan, 2014). The pattern of 

Landsat disturbances is more temporally-resolved because of the year-by-year 

sequential monitoring used by BFAST Monitor. Nonetheless, the agreement in timing 

and location of major changes observed in MAIAC and Landsat time series confirms 

the potential of coarse spatial resolution time series to accurately capture the broad-
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scale multi-year trajectory of forest disturbance. 

 
Figure 8. Comparison between years of breakpoints detected using MAIAC and 

Landsat-based disturbances analyses in whole study area. 

2.4 Discussion 

In this study, we demonstrated the ability of BFAST-based methods to accurately 

detect short- and long-term disturbances over a mountainous forest region. This is 

also the first study to combine all available Landsat 5, 7, and 8 images using BFAST 

Monitor and account for radiometric and spectral differences between TM/ETM+ and 

OLI sensors; while (Devries et al., 2016), used the same sensors within BFAST but 

did not consider the potential bias in cross-sensor NDVI measurements (Roy et al., 

2015; Vogelmann et al., 2015). Accounting for this bias is critical since the bias 

magnitude may approach or exceed the threshold selected to identify disturbance 

(Devries & Verbesselt, 2015; DeVries et al., 2015; Hamunyela et al., 2016). 
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2.4.1 Possible drivers of vegetation trends and disturbances 

Picachos and its surrounding region have been affected by internal conflict and 

population displacement since as early as 1991 (Unidad Administrativa Especial del 

Sistema de Parques Nacionales Naturales, 2016). During 1998-2002, FARC-EP 

(Fuerzas Armadas de Colombia- Ejercito del Pueblo) was legally sited in San Vicente 

del Caguán-neighboring Picachos to the south, as part of a negotiation process 

conducted by the former Colombian government. However, this agreement collapsed 

and the increased violence associated with the conflict between FARC and the 

Colombian government has been widely recognized as generating both internal 

displacement and economic migration into Picachos, particularly in the accessible 

southeastern region (Unidad Administrativa Especial del Sistema de Parques 

Nacionales Naturales, 2015, 2016; Vásquez, 2013). The increased in-migration 

accelerated the expansion of unpaved roads and infrastructure (small settlements) as 

well as selective logging and clearing for crops and cattle pasture, all of which has 

contributed to deforestation in the park (Unidad Administrativa Especial del Sistema 

de Parques Nacionales Naturales, 2015, 2016). Such changes in land cover and land 

use have been documented in a peasant reserve close to Picachos’ southern boundary, 

Losada-Guayabero, which includes more than 2000 families with agricultural and 

pastoral livelihoods (Unidad Administrativa Especial del Sistema de Parques 

Nacionales Naturales, 2015, 2016). The changes in dominant land use coincides with 

the concentration of browning trends and small-scale disturbances in the southeastern 

foothills of Picachos as detected by both MAIAC and Landsat and corroborated in 

previous studies (D. Armenteras et al., 2003; Dolors Armenteras et al., 2011; Etter, 

McAlpine, et al., 2006; Unidad Administrativa Especial del Sistema de Parques 

Nacionales Naturales, 2016) (Figure 9). Conversely, the concentration of MAIAC-

based greening trends and absence of Landsat-based disturbance near large rivers in 

eastern Picachos, such as Rio Guayabero, suggests that these rivers act as barriers to 

forest resource extraction. 
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Figure 9. a) Disturbance pattern in southeastern Picachos; b) Change magnitude 

(δNDVI) subset over Platanillo sector and presence of unpaved roads (2015 
RapidEye Red-Edge band background); c) Subset for Rio Platanillo, Rio 
Guayabero, and Rio Guaduas (2014 RapidEye Red-Edge band 
background). 

The abundance of disturbance events between 2004 and 2010 is likely explained a 

consequence of increased beef consumption in Colombia in the mid-2000s 

(Federacion Nacional de Ganaderos de Colombia (FEDEGÁN), n.d.) and the growth 

of the livestock industry from 20 to 23 million head during 2001-2010 before 

stabilizing over 2011-2014(Jimenez, Miranda, & Gantiva, 2008). Furthermore, 

Picachos is sited in the provinces of Meta and Caquetá, provinces that saw a high 

growth of livestock production to supply the domestic market (Santos, 2015), which 

has encroached upon Picachos and its surroundings. 

The increase in disturbance surrounding Picachos had its roots in agrarian 

policies that have contributed to the intensification of agricultural land uses over 

lowlands and foothills within the region(Vásquez, 2013). These policies promoted an 

initial process of occupation and accumulation of land followed by the establishment 

of production models based on agricultural and livestock-based land use systems 
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(Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales, 

2015). The changes brought by these formal land use policies were subsequently 

exacerbated by other regional processes such as: 1) expansion of illegal crops, 2) 

forced displacement due to armed conflict, and 3) lack of records of land titles and 

hence land tenure, which have often resulted in an informal and unrecognized 

appropriation of land (Unidad Administrativa Especial del Sistema de Parques 

Nacionales Naturales, 2016). While a broader discussion of socio-economic drivers is 

warranted, such an examination is made difficult by lack of field and demographic 

data, as well as accessibility to the study site. 

 

2.4.2 Effectiveness of BFAST disturbance detection methods 

Both BFAST implementations supported detection of vegetation change with 

high spatial and temporal accuracies. Though the MAIAC time series has a coarse 

spatial resolution, its high temporal resolution, improved cloud detection technique, 

and exceptional mitigation of sun-sensor geometry supported a refined detection of 

breakpoints that were broadly confirmed using a year-to-year Landsat-based 

disturbance monitoring approach. The most abrupt changes in the Landsat time series 

were recorded in 2004, 2007, 2010 and 2014. Our detection of such abundant changes 

despite the low average of 8 Landsat images per year from 2001-2015 suggests that 

having a relatively low number of images during the monitoring period had little 

effect on our ability to detect disturbances (See Table 6 Appendix).  

The Landsat-based disturbance class presented a high spatial and temporal 

agreement with the majority of errors (22%) resulting from a 6-12 month premature 

assignation of disturbance. Omission errors (17%) could have been improved by 

increasing the density of the time series (Schultz et al., 2015), whereas commission 

errors (5%) could have benefitted by stratifying validation site samples according to 

likelihood of vegetation change, such as locations along the park border, along 

unpaved roads, or near rivers.  

The reference datasets employed showed agreement in disturbance timing at 

over 75% of sampled sites when compared to our TimeSync-based interpretation. 

NDVI also performs well despite its well-known saturation issues over areas with 
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high biomass values. One reason NDVI was useful is likely because the rapid 

alteration of Picachos was more readily detected than gradual or low-intensity change 

disturbances over time. Had this not been the case, the NDVI performance may have 

suffered, prompting us to pursue another vegetation index (Schultz et al., 2015). 

Other approaches such as Spatial Temporal Adaptive Algorithm for mapping 

Reflectance Change (STAARCH) (Hilker, Wulder, Coops, Seitz, et al., 2009) or the 

Noise Insensitive Trajectory Algorithm (NITA) (Alonzo et al., 2016) would also have 

been useful in estimating trends over these mountainous and persistently cloudy 

places. 

 

2.4.3 Other Limitations 

This study provides new insights into the contribution of small-scale disturbances and 

long-term trends over a 15-year period in one of the most inaccessible national parks 

in the Andes. While we have recorded short- and long-term changes in Picachos using 

multi-sensor time series data with high spatial and temporal agreement, there are 

three main areas for improvement in future studies. Disturbance detection was not 

possible over 32% of Picachos, primarily at the highest elevations where cloud cover 

was near-constant. While we expect there to be minimal human-induced disturbance 

at elevations over 2000 meters above sea level (Unidad Administrativa Especial del 

Sistema de Parques Nacionales Naturales, 2015, 2016), the lack of cloud-free 

observations means we cannot examine potential climate change-related vegetation 

degradation. As with other studies (DeVries et al., 2015; Schultz et al., 2015), we also 

do not specifically identify vegetation recovery and assumed that a BFAST Monitor-

detected breakpoint with a magnitude less than our threshold (-0.041) symbolized a 

permanent change. Although this assumption is reasonable for land cover conversion 

caused by land use changes such as livestock management and road expansion, it may 

not be appropriate for detecting natural disturbances. Furthermore, we do not make 

any differentiation between deforestation and degradation. Though NDVI is sensitive 

to significant change in vegetation condition, NDVI alone may not support detection 

of forest thinning or degradation (Devries et al., 2016). 
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Greening and browning indicators from MAIAC are only represented in terms 

of individual significant slope (β) segments. Although the magnitude of change may 

have value for classifying the severity of disturbance (i.e. gradual or abrupt), the 

majority of magnitude values were small: browning magnitudes ranged from -0.318 

to -0.00072 (mean=-0.055), whereas greening ranged from 0.0005 to 0.239 

(mean=0.05). These values must be interpreted with caution due to pixel size and 

NDVI saturation issues over dense forest.  

Although we reached high disturbance detection accuracies, omission errors 

suggest that data availability is still a problem. As with many other disturbance 

analyses in tropical regions, our lack of Landsat coverage during the 1990s affects our 

ability to continuously monitor long-term changes (Broich et al., 2011; DeVries et al., 

2015). In our case, zero Landsat images are available between 1992-1995. Given this, 

it would be valuable to include observational data such as synthetic aperture radar 

(Reiche, 2015), Sentinel 1-2 (Petrou, Manakos, & Stathaki, 2015), or very high 

resolution commercial imagery from the Planet Labs, for example (Houborg & 

McCabe, 2016). A related limitation stems from the masking procedure combining 

Hansen et al.(Hansen et al., 2013) and European Space Agency Corine land cover 

products, neither of which are well validated for this study area. 

Finally, we do not perform a quantitative attribution of change events to 

specific agents of disturbance. Of special interest, the impact of armed conflict over 

land use changes and internally displaced people (IDPs) along with illegal land 

appropriation has not been sufficiently explored, nor have the effects of forced 

displacement on the potential for forest recovery. Investigation of such topics would 

make for a promising future study.  

 

2.3 Conclusions  

In this study, we recorded short-term disturbances and long-term trends of forest 

disturbance in Picachos National Park within the Colombian Andes from 2001-2015. 

We implemented and validated two approaches based on BFAST, neither of which 

had been tested over persistently cloudy regions. Our BFAST implementations using 

MAIAC and Landsat identified greening and browning periods based on significant 
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trend segments as well as smaller disturbances with relatively high spatial and 

temporal accuracies. We identified an abundance of greening within Picachos, albeit 

with a hotspot of vegetation decline in the park’s southeastern foothills region that 

likely results from population incursion and land use conversion. This study was 

limited by a lack of MAIAC and Landsat observations at higher elevations, which 

affects both our long-term evaluation of forest trends as well as evaluation of short-

term ecological processes. Although MAIAC offers a coarse spatial resolution, our 

results show that MAIAC-based time series can effectively detect hotspots of 

vegetation decline where Landsat data are not available.  
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Chapter 3. Monitoring forest disturbance and attributing drivers of change in 
the Colombian Andes 

3.1 Introduction 

Colombia is the second most biologically diverse country on Earth, containing 14% 

of the world's biodiversity and home to approximately 10% of the world's species 

(Butler, 2006). Furthermore, it is the third most populous country in Latin America 

with over 48 million people. Its economy is based on agriculture, industry, and 

services (manufacturing, construction, mining, telecommunications) (Sanchez-Cuervo 

& Aide, 2013). The quick expansion of human population and the growing demand 

for agricultural land have increased the pressure on Colombia’s forest ecosystems 

(Etter, Mcalpine, Phinn, Pullar, & Possingham, 2006). Though Colombia has 

included 12% of the national land mass within a Protected Areas, (Sanchez-Cuervo & 

Aide, 2013) they remain threated by drivers associated with population growth, rural-

urban forced migration and economic development (Dolors Armenteras et al., 2011; 

Etter, McAlpine, et al., 2006; Sánchez-Cuervo & Aide, 2013). As a result, a 

disturbance pattern has been detected over the Andes–Amazonia transition belt 

(Achard et al., 2014; Dolors Armenteras et al., 2011) and specifically in the 

Colombian Andes foothills (Etter et al., 2008; Stibig, Achard, Carboni, Raši, & 

Miettinen, 2014) that corresponds to locations of increasing anthropogenic pressure 

since the early 1950s. The foothills of the Colombian Andes have also been affected 

by a long history of internal social conflict, forced migration, and illicit cultivation of 

coca (Erythroxylum coca), with attendant effects on socio-ecological relationships 

(Dolors Armenteras et al., 2011; Sanchez-Cuervo & Aide, 2013; Sánchez-Cuervo, 

Aide, Clark, & Etter, 2012; Unidad Administrativa Especial del Sistema de Parques 

Nacionales Naturales, 2016) 

Previous studies within Colombia have identified causes of forest cover 

change at national scales through comparisons of two or three Landsat imagery 

separated from each other by five or more years (Etter, Mcalpine, et al., 2006; 

Rodríguez et al., 2013). Other approaches have employed more regularly collected 

images derived from MODIS, but are based on either measuring the effectiveness of 

Protected Areas at limiting deforestation (Cortes Alonso & Sergio, 2012; Salazar 
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Villegas, 2013) or detecting main drivers of forest cover change at the municipality-

level (Sanchez-Cuervo & Aide, 2013). As a consequence, there are no available 

studies that evaluate small-scale drivers of change at high temporal resolution in the 

Colombian Andes foothills. 

A diversity of metrics derived from remote sensing time series data can be 

used to indicate, not only the presence of forest cover change, but also the drivers of 

change. LandTrendr (Kennedy et al., 2015), the vegetation change tracker (VCT, 

(Huang et al., 2010), and trend detection approaches based on “best-available-pixel” 

(Frazier, Coops, Wulder, & Kennedy, 2014; Hermosilla et al., 2015; Pickell et al., 

2014) have all been commonly used for disturbance detection. However, these 

approaches produce annual disturbance maps, which may miss subtle, short-lived, or 

otherwise sub-annual changes (Forkel et al., 2013). These analyses are also reliable in 

regions with less frequent cloud cover, a deeper Landsat archive (>30 years), or with 

more regular data availability, e.g. United States and Canada (Hermosilla et al., 2015; 

Kennedy et al., 2015; Pflugmacher et al., 2012; Pickell et al., 2014).  

Using 149 Landsat scenes during the period 1996-2015, we mapped 

disturbances using Breaks For Additive Season and Trend (BFAST) algorithm and 

assigned the most probable drivers of change in Picachos National Park, focusing on 

recognized drivers of change i.e. conversion to pasture, conversion to subsistence 

agriculture and non-stand replacing disturbance. We initially built a sample of 

common drivers using high-resolution imagery and Corine Land Cover (CLC) maps. 

We characterized each driver using spectral metrics before and after disturbance 

detection, which describe persistence or recovery of vegetation, as well as 

conventional trend (e.g. magnitude and slope), pattern, and topographic metrics.  

 Trend, spectral, pattern, and topographic metrics as well as training data on 

sites and drivers of change were input to a Random Forest classifier to attribute the 

most probable driver of change. Revealing the patterns of forest cover change as well 

as associated drivers will inform the adoption of sustainable strategies in areas like 

Picachos with high biological diversity but affected by unregulated and often 

undocumented human encroachment. 
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3.2 Study area 

The study area is located in the foothills of the Colombian National Park, Picachos, 

and covers the basins of the Templado, Platanillo, and Yulo rivers. Picachos has an 

elevation gradient between 300-2000masl, and an annual accumulated rainfall 

varying from 1050-3250mm (Unidad Administrativa Especial del Sistema de Parques 

Nacionales Naturales, 2016). Picachos is a Category II Park as designated by the 

International Union for Conservation of Nature (IUCN) with the stated goal of 

conserving large-scale ecological processes, species, and ecosystems for current and 

future generations (Dudley (Editor), 2008). Although people are not legally allowed 

to reside within the park, more than 200 families and 119 small houses and plots with 

sizes among 50 to 250 ha have been recorded within the park using Corine Land 

Cover (CLC) datasets, and these communities have been responsible for expanding 

grazing lands and subsistence agricultural production (Sánchez-Cuervo & Aide, 2013; 

Unidad Administrativa Especial del Sistema de Parques Nacionales Naturales, 2015, 

2016; Vásquez, 2013).  

 
Figure 10. Study area located over Picachos National Park foothills 
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3.3 Methodology 

As an overview of our approach for relating disturbance events to drivers, we first 

conceptually divided the study area into two broad classes, stable forest (no 

disturbance) and disturbance based on BFAST Monitor disturbance outputs (Figure 

11). Pixel-level disturbance were aggregated to patches based on Rook’s case 

adjacency, and only patches with an area greater than 1 ha (~ 9pixels) were 

considered in the analysis. Disturbance patches were then conceptually categorized as 

long- or short-term disturbance. Long-term disturbance may include conversion to 

pasture or agriculture whereas short-term disturbance are non-stand replacing that 

may result from insect infestation, disease (Hilker, Coops, et al., 2009), stressed 

vegetation (Hermosilla et al., 2015), low-severity fires (Kennedy et al., 2015), as well 

as human-induced activities such as low-intensity logging (Souza, Roberts, & 

Cochrane, 2005). Using high-resolution imagery and CLC maps we developed a 

training database for the most common drivers in Picachos. We then used spectral, 

trend, pattern, and topographic metrics to associate specific drivers to mapped 

disturbance patches using a Random Forest (RF) classifier (Breiman, 2001), and 

summarized changing driver dynamics over the course of the study period. 

 

Figure 11. Conceptual flowchart for disturbance detection and driver attribution.  

3.3.1 Image pre-processing and NDMI calculation 
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Previous studies have shown that typical patch sizes in Picachos range from 1-50ha 

(mean=2ha) (Murillo-Sandoval et al., 2017). To detect such small scale changes, we 

used all available Level-1 Terrain-Corrected (L1T) surface reflectance-corrected 

Landsat images from path/row, 8/58. A total of 149 images were used for this 

analysis from 1996 to 2015 after removing 225 images with more than 50% cloud 

cover. Cloud masks were produced using Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS, Masek et al., 2013), Function of Mask (FMask, Zhu & 

Woodcock, 2012) and Landsat 8 Surface Reflectance (L8SR) algorithms (Holden & 

Woodcock, 2015; Zhu et al., 2016). Since BFAST requires identifying a period of 

stable forest cover for proper calibration, we developed a baseline forest cover mask 

using a supervised classification of cloud-free images from 1996-1998.  

 
NDMI, also known as Normalized Difference Moisture Index (Gao, 1996) 

combines short-wave infrared (SWIR) and near infrared (NIR) to identify canopy 

moisture content (Hayes & Cohen, 2007) and has been successfully used to monitor 

disturbance and regrowth in tropical places (Devries & Verbesselt, 2015). NDMI has 

shown better sensitivity for disturbance detection than greenness indices such as EVI 

and NDVI in tropical forests (Schultz et al., 2016), and is effective even with intra-

annual variability in image availability, a limitation common across the Andes region 

(Schultz et al., 2016).  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁𝑁𝑁𝑁𝑁+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

    (2) 

The simplicity and performance of NDMI over tropical places has 

demonstrated similar mapping accuracies for disturbances in comparison with other 

metrics that exploit the full dimensionality of all Landsat bands such as Tasseled Cap 

Wetness (TCW) (Jin & Sader, 2005) and Normalized Difference Fraction Index 

(NDFI) which involves spectral mixture analysis using fraction of green vegetation, 

shades and soils components (Schultz et al., 2016; Souza et al., 2005). 

 

3.3.2 Disturbance detection using BFAST Monitor time-series analysis 

Given its proven robustness for monitoring changes across various tropical forests, 

the BFAST Monitor algorithm was select to successively map disturbances (DeVries 
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et al., 2015; Dutrieux et al., 2015; Hamunyela et al., 2016). BFAST incorporates the 

iterative decomposition of time series data into trend, seasonal, and noise 

components, with methods for detecting changes (Verbesselt, Hyndman, Newnham, 

et al., 2010; Verbesselt et al., 2012). We applied BFAST Monitor in 1-year sequential 

monitoring periods beginning in 1999 using a first-order harmonic curve over NDMI 

time series. We also omitted the trend component to avoid unrealistic NDMI values in 

the monitoring period which caused the detection of false breakpoints (DeVries et al., 

2015).  

Breakpoints detected by the BFAST Monitor are robust against noise and 

other variability in the time series (Verbesselt et al., 2012). However, a magnitude 

threshold was necessary to avoid the detection of spurious breakpoints due to outliers 

in the monitoring period (DeVries et al., 2015). Using a visual comparison against a 

WorldView-1, 0.5m resolution image from December 12, 2009, we selected an 

NDMI change magnitude threshold of -0.01; all pixels with a change magnitude less 

than this threshold were classified as disturbed.  

 

3.3.3 Disturbance validation using TimeSync 

A stratified sampling procedure was used to validate the presence of changes (Pontus 

Olofsson et al., 2014). Using equation (5.25) (Cochran, 1977) and assuming a target 

standard error for overall accuracy of 1%, a total of 614 pixels were selected in two 

strata change and no change; 22 pixels were removed because of unreliable validation 

due to excessive cloud cover in the annual Landsat imagery and high resolution 

reference datasets. We sampled 211 pixels for change strata and 381 pixels for no 

change strata. A visual interpretation of changes was undertaken with TimeSync 

(Cohen et al., 2010; DeVries et al., 2015) using annual mean Landsat NDVI 

composites and Google Earth and RapidEye high-resolution images (P Olofsson, 

Holden, Bullock, & Woodcock, 2016). A confusion matrix was created by cross-

tabulating the BFAST-derived disturbance map and reference imagery datasets, and 

estimated areas of disturbance with confidence intervals were constructed with 

stratified estimation  
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3.3.4 Characterizing disturbance drivers 

The disturbance events identified by BFAST Monitor involve two components: the 

change date and the change magnitude at patch-level. In cases that a driver and its 

magnitude of change are well characterized in a given study area, the disturbance 

event can be attributed to a specific driver (Reents, 2016). However, since a similar 

change magnitude may be common across drivers, e.g., the conversion of stable forest 

into pasture may show the same magnitude of change as a conversion to agriculture, 

other topographic, geometric pattern, and spectral trend metrics are useful for 

improving the identification of specific potential drivers (Kennedy et al., 2015; 

Pickell et al., 2014). For example, conversion to agriculture typically presents an 

abrupt change and post-disturbance spectral index cycling that indicates vegetation 

growth. Non-stand replacing disturbance, on the other hand, shows subtle negative 

slope over time, and conversion to pasture presents an abrupt break followed by a 

sustained period of relatively low vegetative condition (Figure 12). 

 
Figure 12. Example BFAST Monitor-derived disturbance trajectories associated with 

drivers of change. Vertical red lines indicate a breakpoint, blue lines 
indicate a seasonal+trend model fitted and M denotes the magnitude of 
change. 
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We calculated the average and standard deviation for near infrared (NIR), 

shortwave infrared 1 (SWIR1), shortwave infrared 2 (SWIR2) and NDMI before and 

after the date of disturbance (Healey, Cohen, Zhiqiang, & Krankina, 2005; 

Hermosilla et al., 2015). As a measure of change severity across time, we measured 

the mean pixel-level NDVI at each disturbance pixel for each year and calculated the 

trend using ordinary least squares (OLS) regression (Forkel et al., 2013). Pixel-level 

trends were then averaged across each patch (Table 1). We also derived pattern 

metrics including patch area, perimeter (Bogaert, Rousseau, Van Hecke, & Impens, 

2000), shape index (McGarigal, Tagil, & Cushman, 2009), and fractal dimension 

(Krummel, J. R., Gardner, R. H., Sugihara, G., O’Neill, 1987); and topographic 

metrics including elevation, slope, and topography position index defined as the 

difference between the value of a cell and the mean value of its 8 surrounding cells 

(Kennedy et al., 2015). Finally, we measured patch-level kurtosis and skewness for 

both the NDMI magnitude of change and NDVI trend (Pickell et al., 2014).  

Table 2. Summary of patch-level metrics used to characterize drivers of disturbance. 
SRTM = Shuttle Radar Topography Mission Digital Elevation Model (90m). 
  

Topographic indicators 
 

Elevation SRTM 
Slope SRTM 
Topographic position index 
 

SRTM 
  
Pattern metrics 

 

Area 
 

Perimeter 
 

Shape index 
 

Fractal dimension 
 

  
Trend time-series metrics 

 

Aggregated annual trend (mean, median) NDVI 
Average and median change magnitude  NDMI 
Standard deviation change magnitude  NDMI 
Kurtosis and skewness change magnitude  NDMI   
Spectral summary metrics 

 

Average spectral value pre-change NIR,SWIR1,SWIR2, NDMI 
Average spectral value post-change NIR,SWIR1,SWIR2, NDMI 
Standard deviation spectral value pre-change NIR,SWIR1,SWIR2, NDMI 
Standard deviation spectral value post-change NIR,SWIR1,SWIR2, NDMI 
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3.3.5 Attribution of changes 

Cataloging past disturbances is challenging mainly due to missing historical “ground 

truth” reference datasets (Cohen et al., 2010; Kennedy et al., 2015). Therefore, we 

used a collection of complementary maps generated by Parques Nacionales 

Naturales de Colombia, Instituto Geografico Agustion Codazzi and Instituto 

Amazonico de Investigacion Cientifica using Corine Land Cover methodology (CLC) 

for the years 2002, 2007, and 2012 (Unidad Administrativa Especial del Sistema de 

Parques Nacionales Naturales, 2015, 2016). CLC maps provides the most reliable 

source for interpreting land-conversion towards pasture and agriculture but have not 

been validated yet for this region. We also used high resolution (0.65m) images 

hosted by Google Earth (Jan 17, 2003; Dec 31, 2009) and RapidEye imagery (Oct 23, 

2014; Dec 15, 2014; Jan 5, 2015) to visually confirm and assign the presence of all 

three major drivers in our study area. 

From the total population of disturbance patches (3450) we visually 

interpreted 476 patches and categorized each into conversion to pasture, conversion to 

agriculture, or non-stand replacing disturbance using CLC and support imagery. Since 

there was little variation in patch area (i.e., 2.4-3.9ha), a stratified selection of objects 

by area was not performed. The full suite of topographic, time series, pattern, and 

spectral metrics were measured at disturbance sites and used for training (60%) and 

validating (40%) a RF classifier, which has been regularly used for the classifying 

drivers (Devries et al., 2016; Hermosilla et al., 2015; Kennedy et al., 2015; Reents, 

2016). With 36 input metrics, we limited the potential for multicollinearity by 

removing 9 metrics with Pearson’s R values greater than 0.70 (Hermosilla et al., 

2015) 

We used the majority of RF votes for driver attribution. Drivers attributed to 

each disturbance patch using RF were compared with the validation sample 

(reference) to measure the attribution accuracy. We also calculated the distance to the 

second most voted class as a measure of classification confidence, calculated as the 

ratio (d2/d1) where d2 corresponds to second most voted class and d1 is the assigned 

class (Mitchell, Remmel, Csillag, & Wulder, 2008). Ratio values range from nearly 0 

(when d2<d1) to 1 (when d2=d1). Patches with confidence values higher than 0.6 
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were labeled as unclassified because of perceived unreliability of driver attribution 

(Hermosilla et al., 2015). 

 

3.4 Results 

3.4.1 Disturbance detection performance 

The total disturbance area within the Picachos foothills was 10717±1095ha while 

stable forest was recorded across 53064±1094ha. Using visual interpretation results at 

594 disturbance and stable forest pixels, we estimated a total accuracy (TA) of 

0.94±0.02. The disturbance class had user’s (UA) and producer’s accuracies (PA) of 

0.98±0.02 and 0.73±0.07, respectively; the stable forest class had UA of 0.94±0.02 

and PA of 0.99. Disturbance pixels had much lower commission (2%) than omission 

errors (27%) whereas stable forest pixels were more affected by commission (6%) 

than omission (1%). Both stable forest and disturbance presented high agreement, 

revealing that forest disturbance and stable forest conditions can be well-detected 

using NDMI. We found much lower disturbance than existing CLC maps that 

recorded 12128ha of forest cover disturbance during a similar same study period. 

This difference is explained by the lack of accurate validation data such that CLC 

identifies forest cover disturbance in many regions despite visually interpreted forest 

cover stability. 

 

Table 3. Area-weighted error matrix of NDMI-based BFAST Monitor assessment 
using stratified sample sites across classes: disturbance and stable forest. 

 

Reference     

  Disturbance 
Stable 

Forest 
Wi User’s 

Accuracy 
Producer’s 
Accuracy 

Total 
Accuracy 

Map 

Disturbance 0.134 0.004 0.14 0.96±0.024 0.79±0.08 0.96±0.01 

       

Stable 
forest 0.03 0.82 0.86 0.96±0.02 0.99±0.004  

 Total 0.186 0.811 1    



52 
 

 

3.4.2 Characterization of disturbances 

Variables were ranked by the RF variable importance measure (Figure 13). The mean 

post-change NDMI was the most important metric, followed by post-change standard 

deviation NDMI, NDVI trend, and mean pre-change NDMI. If these metrics were 

excluded from the RF model, accuracy would decrease by 33%, 21%, 15% and 13%, 

respectively. Other relevant but less important metrics include mean post-change NIR 

(11%), standard deviation of NDVI trend (8%), elevation (7.5%) and median 

magnitude of NDMI (4.6%). Overall, spectral metrics had the most predictive power 

followed by topographic and pattern metrics. 

 

 
Figure 13. Most important metrics for discrimination among drivers based on mean 

decrease accuracy in RF model 

 
Conversion to pasture is well distinguished from the other two drivers 

especially in pre- and post-change NDMI (Fig 14a and 14c) and post-change SWIR2 

(Fig 14b), less so for elevation (Fig 14f). Conversion to agriculture and non-stand 

replacing disturbance showed less spectral separability, however non-stand replacing 

presented the smallest standard deviation NDVI trend (Fig 14d) and a range of NDMI 

magnitude less abrupt than the rest of drivers (Fig 14e).  
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Figure 14. Relationships between time-series metrics and drivers evaluated. 

 
3.4.3 Drivers attribution agreement 

The total accuracy of driver attribution was 96% using a 0.95 level of confidence 

(Table 3). Pasture conversion exhibited the lowest omission (2%) and commission 

errors (1%) and the highest discrimination from non-stand replacing and agriculture 

conversion. Non-stand replacing disturbance had 4% and 14% omission and 

commission errors, respectively. The worst agreement was found in the agriculture 

conversion class, which exhibits the highest omission (44%) error and commission of 

9%. This high error is likely due to small sample size.  

A total of 10 patches (5%) were labeled as unclassified because of their low 

confidence attribution. The total accuracy when measured using area-weighted errors 

was 98%±0.008 (Table 4), which indicates a slight reduction in error compared to 
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patch-level accuracies. Commission’s errors are reduced for agriculture conversion 

and non-stand replacing disturbance classes whereas omission errors remained 

almost equal.  

 

Table 4. Confusion matrix at patch level. 

 
Table 5. Area-weighted error matrix for drivers. 

 
3.4.4 Driver dynamics 

Reference     

  Conversion  
to pasture 

Conversion 
to 

agriculture 

Non-stand 
replacing 

disturbance 

User’s 
Accuracy 

Commission 
error  

Map 

Conversion 
to pasture 141   1 99% 1%  

Conversion 
to 

agriculture  

 
  
  

10   1 91% 9%  

Non-stand 
replacing 

disturbance  
 

2  5 45 86% 14%  

 Producer’s 
accuracy 98% 66% 96%    

 
 

Omission 
error 2% 44% 4%    

Reference      

  Conversion  
to pasture 

Conversio
n to 

agriculture 

Non-stand 
replacing 

disturbance 

User’s 
Accuracy 

Commission 
error  

Map 

Conversion 
to pasture 0.851   0.004 99% 1%  

Conversion 
to 

agriculture  

 
  
  

0.018   0.0007 96% 4%  

Non-stand 
replacing 

disturbance  
 

0.006  0.009 0.109 88% 12%  

 Producer’s 
accuracy 99% 67% 95%    

 
 

Omission 
error 1% 43% 5%    
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Disturbances detected using BFAST Monitor showed a linear increase from 1999 

through 2007, except for 2005-2006; after 2007, disturbances had a more inconsistent 

temporal distribution. The greatest amount of disturbance occurred in 2007 (Figure 

15), the result of a significant expansion of pasture (40%) for cattle grazing (Unidad 

Administrativa Especial del Sistema de Parques Nacionales Naturales, 2016). Of 

note, the increase in disturbed area in 2007 is not a product of increased Landsat 

image availability as other study years had the same number or more images. 

Spatially, disturbances were most prominent over lowlands and along the margins of 

rivers; at higher elevations, the presence of disturbance was much significantly 

decreased.  

 
Figure 15. Temporal distribution of changes per class. Year 2003 is not included due 

to lack of Landsat imagery. 

The dominant driver throughout the study period was conversion to pasture, 

which accounted for 9901±72ha, well in line with CLC-calculated area of 10827ha. 

The second most dominant driver was non-stand replacing disturbance. Although 

there is no precedent for documenting such disturbances in Picachos, we estimated an 

area of 1327±92ha that suggests a progressive degradation (i.e., selective logging) 

towards a conversion in land cover. Conversion to agriculture contributed 323±61ha, 

which was in good agreement with CLC estimates of 380ha. Finally, 1467ha 

corresponding to 12.7% of the total disturbed area could not be confidently attributed 

and was left as unclassified.  
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Conversion to pasture was found over the margins of Templado, Plantanillo 

and Yulo rivers while conversion to agriculture and unclassified patches were mainly 

positioned over Yulo and less over Platanillo river. Both drivers are near Picachos’ 

official border, which likely reflects the influence of nearby peasant reserves. Non-

stand replacing disturbance was more dispersed over the entire study area and even 

evident at higher elevations. Notably, conversion to pasture and non-stand replacing 

disturbance are commonly in close proximity to each other, suggesting a gradual land 

conversion process (Figure 16). Stable forest, on the other hand, was commonly 

found at higher elevations (>700m) likely due to more complex topography and 

limited physical accessibility.  

 
Figure 16. Spatial distribution of classes from 1999-2015. 

 

3.5 Discussion 

Using a combined analysis from different topographic, pattern, trend and spectral 

metrics derived from Landsat TM, ETM+ and OLI sensors during the period 1996-

2015 national park, we detected, characterized and attributed changes on Picachos 

foothills. The presence of disturbances based on NDMI-BFAST indicate a good 
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agreement for detecting both gradual and abrupt disturbances (Table 4 and 5). The 

total accuracy for detection of disturbances and stable forest was high, with 

commission errors smaller (4%) whereas omission error for change class was 21%. 

The higher rate of omission can be explained by a lower density of available images 

for this study area (mean value 51%) in comparison with other studies in tropical 

countries such as: Peru, Brazil, Ethiopia and Vietnam (Devries & Verbesselt, 2015; 

Schultz et al., 2016). 

 

3.5.1 Method effectiveness 

NDMI was successfully applied to detect disturbances and characterize post-

disturbance conditions. NDMI leverages the sensitivity of SWIR1, which was 

especially useful for detecting conversion to pasture areas with high soil reflectance 

exposure. After a subtle reduction of canopy cover, NDMI was also able to detect 

regrowth faster than other vegetation indices, which is particularly useful for 

characterizing non-stand replacing disturbance (Devries & Verbesselt, 2015). NIR, 

on the other hand, is related to biomass increase and effective at monitoring 

conversion to agriculture.  

Since different drivers happen at different temporal rates the most important 

metrics for characterization of drivers were the mean and the standard deviation 

NDMI post-change, NDVI-trend, change magnitude and site variables such as 

elevation. Pattern metrics such as patch area or perimeter had little contribution to the 

classification likely because disturbance patch size was largely similar independent of 

the driver, and larger patches affected by other external agents (i.e. wildfires) are not 

common in the study area (Rodríguez et al., 2013). The relative importance of these 

metrics would likely vary if we included other potential drivers of change or expand 

the analysis over the rest of the Andes–Amazonia transition belt. 

Using the second highest voted class, we minimized the assignation of objects 

towards unreliable drivers, which allowed us to achieve a better mapping confidence 

and attribution performance. A confidence value per patch is a quantitative indicator 

of potential confusion between two alternative drivers and provides an opportunity 

for future sampling design (Mitchell et al., 2008). During this approach, unclassified 
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areas occupied 12.7% of the area. This information is useful for future field 

campaigns as well as for testing other hypothesis and datasets to reveal unknown 

causes of disturbances.  

The findings presented here can complement the spatio-temporal inventory of 

Picachos protected area. In Colombia, the generation of land-cover maps in remote 

places is carried on every 5 years and it’s still non-validated. This analysis provides 

annual and disaggregated information from 1999-2015 about the most common 

drivers of change using all available Landsat imagery and reference datasets. 

Although we worked merely over Picachos foothills, the final objective is to apply 

this procedure over the Andes-Amazon transition belt, which includes the protected 

areas of Tinigua and Macarena.  

 
3.5.2 Method limitation 

While we have detected, characterized and attributed disturbances using a set of 

metrics with a relatively high agreement, there are some limitations for improvement 

in future research. First, using BFAST in one-year consecutive periods, we were 

unable to identify multiple disturbances at a given pixel over the time series. Second, 

the training data used in building the RF classifier was not probabilistically sampled 

buts rather driven by the availability of reference datasets (e.g., CLC, RapidEye and 

high-resolution images). Despite limitations in our sampling approach, the out-of-bag 

sample provided by the RF model provided an alternative robust measure of model 

accuracy that identified an acceptable error rate of 13%. Finally, pre- and post-

disturbance spectral values were calculated over all available dates in the time-series, 

which can introduce possible outliers and are prone to be less effective for the years 

in the beginning and end of the time-series. 

While conversion to pasture and non-stand replacing disturbance were 

successfully discriminated, conversion to agriculture was commonly confused with 

non-stand replacing disturbance. This confusion was likely due to similar pre- and 

post-change spectral conditions in that crop phenology can produce comparable 

values with subtle change in the short- and long-term (Figure 12). Making a clear 

distinction between both classes is difficult since agriculture has a relatively low 
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coverage area and is generally surrounding by other land covers, which can introduce 

a mixed pixel effect, reducing the potential for accurate classification. Moreover, 

despite non-stand replacing disturbance often preceding deforestation driven by 

subsistence agriculture (Devries et al., 2016; Lambin, 1999) or pasture expansion 

(Fernández et al., 2015; Walker et al., 2009), we were unable to identify causal 

linkages between specific drivers. In future research, engaging local community 

knowledge could be relevant for establishing linkages between drivers and across 

metrics, especially given the remote localization of our study area (Davies, Everard, 

& Horswell, 2016; Devries et al., 2016; Miranda, Corral, Blackman, Asner, & Lima, 

2016).  

Other potential drivers such as wildfires and road expansion were not 

considered in this study. First, wildfires are uncommon in Picachos (Rodríguez et al., 

2013) and available fire datasets have a coarse spatial resolution which would be 

impractical to monitor at patch level. In the case of roads, all of them area unpaved 

and their small size means they could not be detected at the Landsat scale of 

observation (Stewart, Wulder, McDermid, & Nelson, 2009).  

 

3.6 Conclusions 

We integrated pattern, spectral, topographic, and trend metrics derived from BFAST 

Monitor and the Landsat archive to detect disturbances and identify related drivers in 

the Picachos foothills. At patch and area levels, the discrimination and attribution was 

more accurate for conversion to pasture and non-stand replacing disturbance than for 

conversion to agriculture with spectral and trend metrics having the most influence 

on the driver identification. We have confirmed that conversion to pasture is the main 

cause of deforestation throughout the study period and over Picachos. The temporal 

and spatial information provided by this methodology can be used to improve the 

monitoring of disturbances in protected landscapes under threat from anthropogenic 

drivers. 
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Chapter 4. General Conclusions 

This research demonstrates the opportunities to assess ecological changes through 

multi-source remote sensing, sub-annual change detection algorithms and machine 

learning techniques in regions with persistent cloud cover. Using Landsat and 

MODIS-based MAIAC archives, I identified short- and long-term forest disturbances 

as well as the potential drivers of change with a relatively high spatio-temporal 

accuracy from 1999-2015 in Picachos Natural Park. 

Ecological indicators such as greening and browning were mapped using 

dense MAIAC data within Picachos and its surrounding 10km buffered area. I found 

a hotspot of vegetation decline in the park’s southeastern region that likely results 

from population incursion and land use conversion. This result was corroborated 

using Landsat imagery, where disturbed area in the park was 12,642 ha (±1440 ha) 

corresponding 4.3% of Picachos’ total area. At higher elevations (>2000m) the lack 

of MAIAC and Landsat observations reduced my ability to detect disturbance. With a 

hotspot of vegetation decline detected and using a set of pattern, spectral, trend, and 

topographic metrics, I classified drivers of change. Pasture expansion for cattle 

grazing is the main cause of change within Picachos’ foothills, followed by forest 

thinning and agricultural development.  

The results of this study can be used by Protected Areas managers to expand 

document localized disturbances despite relative inaccessibility. More broadly, the 

promising results of this study should encourage the remote sensing community to 

develop more robust frameworks using dense time-series metrics to analyze the 

drivers and consequences of human-induced changes, especially in regions with low 

imager availability or consistent cloud cover. Valuable future research in the Picachos 

region would focus on the impact of armed conflict on forest changes, internally 

displaced people (IDPs), along with illegal land appropriation. The effect of forced 

displacement and population resettlement on potential forest recovery and 

degradation in Picachos would be a timely and relevant study, especially in the 

context of the Colombian post-conflict period. Expanded knowledge of particular 

pressures on the landscape and recognition of its complex socio-economic dynamics 
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will enrich the implementation of sustainable strategies in this region that support 

people and forests alike. 
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APENDICES  

Table 6. Total number of Landsat images used for disturbance detection. 

Year Landsat 5  Landsat 7 Landsat 8 Total 
1996 2     2 
1997 4     4 
1998 8     8 
1999 7 2   9 
2000 2 7   9 
2001   6   6 
2002   6   6 
2003   1   1 
2004   8   8 
2005   6   6 
2006   5   5 
2007 1 8   9 
2008   7   7 
2009   10   10 
2010 1 9   10 
2011 1 7   8 
2012   10   10 
2013   9 1 10 
2014   4 9 13 
2015     8 8 
Total 26 105 18 149 
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Figure 17. Percentage of cloud-free Landsat observation in the period 1996 –2015.  
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Figure 18. Selection of magnitude threshold (P(disturbances)=0.5) using Binomial 

Logistic Regression. The grey area is 95% confident interval. Training sites 
(blue points) were selected based on visual interpretation where 0=non-
disturbed and 1=disturbed.  
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