Bryan R. Lewis for the degree of Master of Science in Nuclear Engineering presented on June 14, 1993 . Title: DEVELOPMENT OF SYSTEMS ANALYSIS PROGRAM FOR SPACE REACTOR STUDIES


An overall systems design code was developed to model an advanced in-core thermionic energy conversion based nuclear reactor system for space applications at power levels of 10 to 50 kWe . The purpose of this work was to provide the overall shell for the systems code and to also provide the detailed neutronic analysis section of the code. The design code that was developed is to be used to evaluate a reactor system based upon a single cell thermionic fuel element which uses advanced technology to enhance the performance of single cell thermionic fuel elements.

A literature survey provided information concerning how other organizations performed system studies on similar space reactor designs.
by
Bryan R. Lewis

A THESIS<br>submitted to<br>Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Completed June 14, 1993
Commencement June 1994

Redacted for Privacy
Professor of Nuclear Engineering in charge of major
Redacted for Privacy
Heał of Department of Nuclear Engıneering

## Redacted for Privacy



Date thesis is presented June 14, 1993

Typed by Bryan Lewis for Bryan Lewis

ACKNOWLEDGEMENTS
This research effort was sponsored by Universal Energy
Systems, Inc. through subcontract No. S-236-002-001 from Wright Research and Development Center, Wright-Patterson Air Force Base, Dayton, OH. Once the decision was made to use Object Oriented Programming (OOP), Kevin Greek, a postDoctoral student, provided substantial assistance in the use of the chosen OOP environment, Smalltalk. The author has a special acknowledgement for A.C. Klein, whose research project made it possible for the author to pursue a career in Nuclear Space Power research coupled with computer programming.
I. INTRODUCTION ..... 1
II. SPACE REACTOR ANALYSIS OVERVIEW ..... 2
2.1 Advanced Thermionic Initiative Reactor ..... 2
2.2 The Thermionic Process ..... 5
2.3 System Model Requirements ..... 11
2.4 Neutronic Model Requirements ..... 12
III. REVIEW OF LITERATURE ..... 15
3.1 RSMASS ..... 15
3.2 Development of a Thermionic Reactor Space Power System ..... 16
3.3 SP-100 Reactor and Shield Design ..... 17
IV. NEUTRONIC ANALYSIS ..... 19
4.1 General MCNP Information ..... 20
4.2 MCNP Geometry ..... 22
4.3 Description of ATI MCNP Model ..... 23
V. SYSTEMS CODE ..... 26
5.1 First Attempt ..... 26
5.2 Investigation of Object Oriented Programming ..... 27
5.3 MCNP in OOP Environment ..... 27
5.4 Resulting Program ..... 28
VI. ANALYSIS RESULTS ..... 33
6.1 Investigation of the Use of Tungsten ..... 33
6.2 Optimizing Pitch-to-Diameter Ratio and Driver Radius ..... 35
6.3 Driver Fuel Comparison ..... 39
VII. SUMMARY ..... 42
VIII.BIBLIOGRAPHY ..... 43
APPENDICES
Appendix A Neutronic Module User Manual ..... 44
Appendix B Sample MCNP Input File ..... 53

## LIST OF FIGURES

Figure 1 Deployed Space Reactor View ..... 2
Figure 2 ATI Horizontal View ..... 3
Figure 3 TFE Horizontal View ..... 4
Figure 4 Thermionic Process Diagram ..... 6
Figure 5 Typical Temperature Profile ..... 7
Figure 6 Thermionic Process Diagrams ..... 8
Figure 7 Systems Code Interactions ..... 12
Figure 8 Neutron Interaction Example ..... 22
Figure 9 ATI MCNP Model $1 / 4$ Core ..... 24
Figure 10 Tree of Object Hierarchy ..... 29
Figure 11 Reactor Edit Window ..... 30
Figure 12 P/D=1.7 ..... 31
Figure 13 P/D=2.1 ..... 31
Figure 14 MCNP Map Window - Individual Rod Modification ..... 32
Figure 15 Individual TFE Parameter Window ..... 32
Figure 16 Various Tungsten 184 Percentages ..... 34
Figure 17 K Effective \% vs, Driver Radius/Pitch-to-
Diameter Ratio ..... 36
Figure 18 TFE Power \% vs Driver Radius/Pitch-to-
Diameter Ratio ..... 37
Figure 19 Mass vs P/D Ratio ..... 38
Figure 20 MCNP Processor Window ..... 45
Figure 21 MCNP Processor Choices ..... 45
Figure 22 Reactor Edit Window ..... 46
Figure 23 TFE Edit Window ..... 47
Figure 24 Driver Edit Window ..... 48
Figure 25 Materials Edit Window (partial) ..... 49
Figure 26 Materials Edit Window (remaining section) ..... 49
Figure 27 Reactor Display Window/Graphical Interface ..... 50
Figure 28 Graphical Interface Window ..... 51
Figure 29 MCNP Input Control Parameters ..... 52

## LIST OF TABLES

Table 1 Neutronic Model Input/Output List ..... 13
Table 2 Driver Analysis Results ..... 41

## DEVELOPMENT OF SYSTEMS ANALYSIS PROGRAM FOR SPACE REACTOR STUDIES

## I. INTRODUCTION

An overall systems design code was developed to model an advanced in-core thermionic energy conversion based nuclear reactor system for space applications at power levels of 10 to 50 kWe . In the U.S., the Thermionic Fuel Element Verification Program [Samuelson 1990] has been highly successful in developing a feasible and reliable system for use in high power space applications using a multi-cell arrangement. In the Soviet Union, the 10 kWe single cell in-core thermionic reactor units (TOPAZ) have undergone extensive development, including space-based testing of two units [Wetch 1990]. The design code that was developed is to be used to evaluate a reactor system based upon a single cell thermionic fuel element which uses advanced technology to enhance the performance of single cell thermionic fuel elements.

## II. SPACE REACTOR ANALYSIS OVERVIEW

### 2.1 Advanced Thermionic Initiative Reactor

The Advanced Thermionic Initiative (ATI) Reactor is a design in the research stage of development by the U.S. Air Force. There are several efforts underway to establish new or advanced technical concepts for application in the ATI reactor. The work at OSU is intended to provide a tool that


Figure 1 Deployed Space Reactor View
allows the user to bring together the results of the various research efforts to assess their impact on the overall system performance.

An overall view of a deployed space reactor is provided in Figure 1 [Truscello]. The small cone at the far left of
the view is the structure that holds reactor and the radiation shield. The shield between the reactor and the payload protects the payload from radiation damage. In addition, the boom between the reactor and the payload provides the distance necessary to reduce the radiation at the payload and the requirement for the shield thickness. The reactor core is made up of Thermionic Fuel Elements (TFEs), along with their coolant channels that are equally spaced in a hexagonal pattern throughout a zirconium hydride cylindrical block. The zirconium hydride block provides the moderating material which makes this a relatively thermalized reactor. A cross sectional view of the core midplane shown in Figure 2. The core is surrounded on the sides by a reflector material ( BeO or Be ) to decrease the critical core size by decreasing neutron leakage. The top


Figure 2 ATI Horizontal View
and bottom are surrounded by as much reflector material as the design will allow considering the electrical connections with the TFEs.


Figure 3 TFE Horizontal View

A cross sectional view of a single cell thermionic fuel element (TFE) with its coolant channel is shown in Figure 3. The TFE consists of:

1. a central void to remove fission gas products
2. uranium oxide fuel to generate heat
3. emitter material made of tungsten which emits electrons
4. emitter/collector gap filled with cesium vapor for electron transport
5. collector material made of molybdenum or tungsten to collect the electrons
6. insulator sheath made of diamond or $A l^{2} \mathrm{O}^{3}$ to electrically insulate the collector
7. cladding made of Kovar
8. coolant channel with NaK coolant
9. a liner made of stainless steel that contains the TFE's coolant channel within the overall core material

Considering the low power levels for which the reactor will be designed, another important variable that is part of the design analysis is the potential addition of driver fuel elements. Driver fuel elements are small fuel rods without the thermionic capabilities and hence without the extra nonfissionable material. The use of driver fuel elements can enable smaller reactor designs to be critical where, if the reactor was only made of TFEs designed to run at full power, it would not attain criticality. There is also the option of using enough TFEs to obtain criticality and then downrating the required electrical power from each TFE to obtain the desired total core power.

## 2. 2 The Thermionic Process

In order to develop a system analysis capability, one first needs to understand the purpose and mechanisms within the system to comprehend the required parametric studies that will be required of the final product. Therefore a detailed examination of the thermionic process will be necessary.

Thermionic converters are devices that directly convert heat into electricity without moving parts. As illustrated in Figure 4, electrons are thermionically emitted from a hot
metallic electrode, called the emitter, traverse a gap, and then enter a cooler metallic electrode, called the collector. The voltage developed between the two electrodes causes the electrons to flow through an electrical impedance external to the thermionic converter, delivering electrical power to the load.

Thermodynamically, thermionic converters are heat engines in which electrons are the working fluid. As such, the electrons also transport heat from the emitter to the collector and thus heat must be rejected to a coolant.

Temperature profiles typical of converters on which extensive testing has been conducted are shown in Figure 5. The collector and emitter temperatures are chosen to optimize overall system performance. Since the energy conversion efficiency increases with increasing emitter temperature, $\mathrm{T}_{\mathrm{B}}$, it is chosen to be as high as practical,


Figure 4 Thermionic Process Diagram
consistent with the properties of the heater and emitter materials, and the desired lifetime for the device operation. For long term operation the range of practicality for $\mathrm{T}_{\mathrm{B}}$ is 1600 to 2000 K . If the heat source is a nuclear fuel, the peak
temperature occurs in the center of the fuel pellet, and is about 700 K hotter than the emitter. The collector temperature, $\mathrm{T}_{\mathrm{c}}$, has a strong influence on the space system heat-rejection-radiator mass and size. The lower the


Figure 5 Typical Temperature Profile collector temperature, the higher the thermionic efficiency, as well as the heavier the radiator. This is because the radiator, which operates at approximately the collector temperature, rejects heat via radiation. This heat removal rate increases as a function of $\mathrm{T}^{4}$. Therefore, the higher the collector temperature, the smaller the space radiator needed to remove the same amount of waste heat. The balance usually optimizes at about 1000 to 1100 K , or the highest possible value consistent with high conversion efficiency. [Angrist] Note that all components of the power system except the fuel and emitter
operate at temperatures at or below the collector temperature.

A typical current-voltage characteristic of a thermionic converter and a motive diagram showing the electron potentials within the thermionic converter are shown in Figure 6 (a). In this example 0.6 volt is produced by the converter electrodes. This potential is created by the difference between the emitter and collector work functions ( $\Phi_{\mathrm{E}}, \Phi_{\mathrm{C}}$ ) and the various efficiency loss mechanisms in the real-life application of the thermionic process. One function of the cesium is the creation of ionized cesium plasma (neutral plasma) that allows the electrons to traverse the gap without having to overcome an electronic space charge that would otherwise exist. This occurs when the energy dissipated internally in the


Figure 6 Thermionic Process Diagrams
interelectrode gas by collisional processes heats the electrons in the gas to a sufficiently high temperature so that the ionized gas maintains a neutral plasma. If a neutral plasma did not exist, then the barrier for the electrons to leave the emitter would be significantly higher (i.e. electrons in the plasma would create a negative charge, repelling further ingress of electrons). The neutral plasma state is referred to as the ignited mode of the thermionic device, and the remaining discussion of the thermionic process will be limited to the ignited mode. If outside of this condition (i.e. the temperature difference , $\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{C}}$, is not high enough to ignite the plasma) the thermionic efficiencies are significantly lower than in the ignited mode operation. This is part of the difficulty of operating single-cell TFEs, because the longer the cell the more difficult it is to maintain an ignited mode of operation along the entire length. There are several transition regions and changing mechanisms involved in the various stages of the thermionic process. The most desired mode is the ignited case and the goal is to maintain the process in this mode, therefore the remaining discussion is limited to ignited mode processes.

To be moved from the emitter into the gap, an electron must overcome the energy barrier known as the emitter work function $\left(\Phi_{\mathrm{B}}\right)$. A similar barrier, $\mathrm{V}_{\mathrm{B}}$, exists on the collector. This voltage barrier consists of the collector
work function ( $\Phi_{C}$ ), and the arc drop, $V_{D}$, required to generate a cesium plasma. Returning to the motive diagram, the output voltage of the electrodes, $V_{B}$, is

$$
V_{B}=\Phi_{B}-V_{B}
$$

where $V_{B}=\Phi_{C}+V_{D}$

The electrical power produced per centimeter of electrode length, $P_{E}$, is

$$
P_{B}=J V_{B}
$$

where $J$, the net current density in $A / \mathrm{cm}^{2}$ from the emitter to the collector, is calculated using statistical electron theory. This is done using the Richardson/Dushman equation

$$
J=A T_{B}^{2} \exp \left(-\left(V_{E}+V_{B}\right) / k T_{B}\right),
$$

where $A=120 \mathrm{~A} / \mathrm{cm}^{2}-\mathrm{K}^{2}$, and $\mathrm{k}=(11,600)^{-1} \mathrm{eV} / \mathrm{K}$ is the Boltzmann constant divided by the electronic charge. As $V_{B}$ goes to zero, the maximum efficiency, shown as the Boltzmann Line in Figure 6 (a), is obtained.

The total heat that must be supplied to the emitter is $q_{B}=q_{e c}+q_{r}+q_{e 1}$,
where $q_{\text {ec }}=$ emitter electron cooling $=J\left(\Phi_{\mathrm{B}}+2 \mathrm{kT}_{\mathrm{E}}\right)$
$\mathrm{q}_{r}=$ heat removed by radiation $=\sigma \varepsilon\left(\mathrm{T}_{\mathrm{B}}{ }^{4}-\mathrm{T}_{\mathrm{C}}{ }^{4}\right)$
$q_{e 1}=$ heat conducted down the emitter lead
$\sigma=5.67 * 10^{-12} \mathrm{~W} / \mathrm{cm}^{2} \mathrm{~K}^{4}=$ Stefan-Boltzmann constant, and
$\varepsilon=$ net thermal emissivity of the electrode system, $\approx 0.1-0.2$.

The energy conversion efficiency is, therefore,

$$
\eta=J V_{\mathrm{E}} / \mathrm{q}_{\mathrm{E}}=\mathrm{P} / \mathrm{Q}
$$

The preceding thermionic discussion is a top level view of the process that was reviewed to help understand the required parametric study capability requirements. Another thermionic performance characteristic that will be of concern is the losses in efficiency due to ohmic losses that the electrons experience traveling the length of the TFE and the electronic leads attached to the TFEs. These losses are important factors that regulate the optimization of the length of the TFEs.

## 2. 3 System Model Requirements

The system analysis program is to be used to verify the design and to conduct detailed parametric studies on a system wide basis. The requirements of the systems analysis program are:

1. Evaluate core criticality and power distribution.
2. Interfacing with a power conversion code to determine thermionic performance.
3. Radiation shielding analysis.
4. Heat rejection system calculations.

An overall system program was developed that could manage all of the system variables and feed the appropriate variables to system modules that perform specific calculations. This interrelationship is depicted in Figure
7. The specific modules that were planned included neutronic, thermionic/thermal performance, shielding analysis, and heat rejection performance. The results from these modules would need to be shared and fed back into the overall description. Once the systems analysis program was operational, the program would be used for parametric studies.


Figure 7 Systems Code Interactions

### 2.4 Neutronic Model Requirements

The nuclear analysis module was required to perform a variety of nuclear design calculations. Foremost is an accurate determination of $k$ effective. The $k$ effective calculation should also be able to model launch configurations. This includes the adequate shutdown margin calculations for normal configurations, water immersion,
water flooding, and sand burial. Industry standard neutron transport codes were required to obtain reasonable accuracy. In the effort to develop the neutronic module, a list of the input parameters that would need to be accessible for parametric studies and a list of output variables was determined. The resulting list is shown in Table 1. The system program will likely require additional parameters, but an effort was made to include all the reactor parameters that would be needed for the neutronic calculations as well as the other modules in the program.

Table 1 Neutronic Model Input/Output List

| ATI Reactor Parameters | Neutronic | Thermal/ <br> thermion ic | shield | $\begin{gathered} \text { Heat } \\ \text { reject- } \\ \text { ion } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| ```Core pitch/diameter ratio radius height fueled region rod top moderator material``` | input <br> input <br> input <br> input <br> input |  |  |  |
| Radial reflector <br> radius <br> height <br> material | input input input |  |  |  |
| Top reflector <br> radius <br> height <br> material | input <br> input <br> input |  |  |  |
| \# TFEs | output | * |  |  |
| \# Driver rods | output | * |  |  |

* expected shared variable for module not yet developed

Table 1 Neutronic Model Input/Output List (cont.)

| ATI Reactor Parameters | Neutronic | Thermal/ thermion ic | Shield | $\begin{aligned} & \text { Heat } \\ & \text { reject- } \\ & \text { ion } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| Thermionic Fuel Element <br> (for each rod in the core) <br> void radius <br> fuel radius/material/temp <br> emitter <br> gap <br> collector <br> sheath <br> cladding <br> coolant <br> liner <br> radius/material/temp <br> radius/material/temp <br> radius/material/temp radius/material/temp radius/material/temp radius/material/temp radius/material/temp | input <br> input |  |  |  |
| Driver Rod <br> (for each rod in the core) <br> fuel radius/material/temp <br> gap radius/material/temp <br> cladding radius/material/temp coolant radius/material/temp liner radius/material/temp | input <br> input <br> input <br> input <br> input |  |  |  |
| Region Outside Reactor material/temp | input |  |  |  |
| ```Material (for all materials) atomic number (specify isotopes) density``` | input <br> input |  |  |  |
| K effective | output |  |  |  |
| Reactor mass | output |  | * |  |
| U235 mass | output |  |  |  |
| \% heat generated in each rod | output | * |  | * |
| \% heat TFEs/total heat | output | * |  | * |

* expected shared variable for module not yet developed


## III. REVIEW OF LITERATURE

An investigation was made of how other attempts at this type of system analysis have been accomplished in the past. The investigation centered on the neutronic analysis requirements with the overall system program interactions as a secondary concern.

### 3.1 RSMASS

A simple mathematical model (RSMASS) has been developed to provide rapid estimates of reactor and shield masses for space-based reactor power systems [Marshal 1986]. Approximations were used rather than correlations or detailed calculations to estimate the reactor fuel mass and the masses of the moderator, structure, reflector, pressure vessel, miscellaneous components, and the reactor shield. The fuel mass is determined either by neutronic limits, specific power limits, or fuel burnup limits--whichever yields the largest mass.

RSMASS requires the reactor power and energy, 24 reactor parameters, and 20 shield parameters to be specified. This parametric approach is intended to provide mass estimates for a very broad range of reactor types.

It was determined not to apply the same type of calculations to the system analysis program under development in this project. The desired sensitivity studies that are needed could not be achieved with the few
parameters that are input to this type of program. In addition, the results would be highly questionable outside the range for which the formulas would apply.

### 3.2 Development of a Thermionic Reactor Space Power System

Development of a Thermionic Reactor Space Power System is a report summarizing 17 months of effort conducted in the early 1970's on the design of an in-core thermionic reactor system [General Atomic, 1973]. The method used in this study was to analyze four reference designs in detail in order to develop the data to observe parametric trends.

For most of the calculations, an 11 broad group structure was used for neutron cross sections. Some adjustment of the energy groups was made to adequately treat the various types of reactions in the resolved and unresolved resonance range and in the fission source range. The general procedure followed was to run separate neutron cross section group development code for the core region and the radial reflector. As stated in the report, "None of the resonance absorption treatments presently available in the GGC-5 are adequate to treat the core region lattice. ... In the calculations actually done, most of this complexity was necessarily ignored." The two-dimensional calculations were done in $r-z$ and $r-\theta$ geometry. Because of the limitations of computer memory and budget, only portions of the reactor core were represented in various models. The models
developed had to be analyzed and modified on an individual basis for each parameter change in order to determine if the current model was actually sensitive to the parameter being examined.

It was determined that this work performed a similar level of detail as the ATI system program developed for this project, but a substantial amount of work and various models of each specific core that had to be created for each parametric study. Therefore using similar analysis techniques would not be used in this project.

### 3.3 SP-100 Reactor and Shield Design

The COROPT-S [Deane 1992] code was the primary tool used to investigate the mass impact of the initial design options for the SP-100 reactor system. The code has modules that determine the size and evaluate the key design limiting performance characteristics of the major components of the reactor, shield, primary heat transport and reactor instrumentation and control subsystems. The code provides initial design definition data that meet the specified design requirements and constraints. Selected variables, which have been defined to be independent, may be floated during an optimization run to determine the minimum mass system. Some system level interface parameters, such as mass flow rate and the secondary side pressure drop are held constant as are system-level parameters such as cone angle
and power level. These parameters are optimized in a sensitivity mode by manual iteration with a computer code which performs the heat balance for the system. Additional coding includes: 1) a code which was used for the nuclear assembly test fuel pin design review analysis, 2) a model for the radial reflector, and 3) an integrated reactor and shield neutronics model. The code used for the fuel pin design review includes the nitrogen balance model, helium generation in the UN due to neutron absorption in the nitrogen, and fission gas release and swelling models which have been calibrated to the available SP-100 fuel test data. The neutronics-model uses a one neutron group and one gamma diffusion group approximation to improve the capability to perform trade-offs between the reactor and shield subsystems. Verification and calibration of the one group model were done using MCNP for $k$ effective and TWODANT for the shield.
IV. NEUTRONIC ANALYSIS

There are several methods that are available for this type of analysis. A review of these methods revealed that in many of the codes there were assumptions made in the development stages. These assumptions were required to enable the codes to run in reasonable amounts of time, given the computer capabilities during development (the 1960's or earlier). This causes concern, for it was difficult to identify when one is outside the bounds imposed by assumptions made during the development stage of the programs. A reasonable question to ask is if these limitations in computer capabilities still exist and do they need to be accounted for in the current system code development. Given the increase in the speed of computers and the reduction in cost of these machines, the first approach taken in this project is the brute force method.

The brute force method is the Monte Carlo Neutron and Photon Transport Code (MCNP) developed at Los Alamos National Lab [RSIC]. This code was originally designed to run on Cray computer systems and is written in FORTRAN. MCNP has since been downloaded and compiled on personal computers at Oregon State University. This enables MCNP to be incorporated into a systems code.

### 4.1 General MCNP Information

Monte Carlo methods are very different from deterministic transport methods. Deterministic methods, the most common of which is the discrete ordinates method, solve the transport equation for the average particle behavior. By contrast, Monte Carlo does not solve an explicit equation, but rather obtains answers by simulating individual particles and recording some aspects (called tallies) of their average behavior. The average behavior of particles in the physical system is then inferred (using the central limit theorem) from the average behavior of the simulated particles. Not only are Monte Carlo and deterministic methods very different ways of solving a problem, even what constitutes a solution is different. Deterministic methods typically give fairly complete information, whereas Monte Carlo supplies information only about specific tallies requested by the user.

Monte Carlo methods can be used to theoretically duplicate a statistical process (such as the interaction of nuclear particles with materials) and is particularly useful for complex problems that cannot be modeled by computer codes of deterministic methods. The individual probabilistic events that comprise a process are simulated sequentially, and the probability distributions governing these events are statistically sampled to describe the total phenomenon. The statistical sampling process is based on
the selection of random numbers - analogous to throwing dice in a gambling casino - hence the name "Monte Carlo'. In particle transport, it consists of actually following each of many particles from a source throughout its life to its death in some terminal category (absorption, escape, etc.). Probability distributions are randomly sampled from the transport data to determine the outcome of each step of its life [MCNP manual]. This is depicted in Figure 8, which shows a sample of the path of a neutron through a medium. The following numbered statements refer to the interaction at that number's location in Figure 8.

1. Neutron scatter, photon production
2. Photon capture
3. Fission, photon production
4. Neutron leakage
5. Neutron capture
6. Photon scatter
7. Photon leakage

In the above example, each of the interactions would be added to the tally, assuming the user had requested the code to gather these reactions in a tally bin for that type of interaction. If enough source particles are introduced into the model, the tallies will describe the average behavior


Figure 8 Neutron Interaction Example
one can expect of the real life situation with equivalent source particles.

### 4.2 MCNP Geometry

The geometry of MCNP treats an arbitrary threedimensional configuration of user-defined materials in geometric cells bounded by first- and second-degree surfaces. The cells are defined by the intersections, unions, and complements of the regions bounded by the surfaces. Surfaces are defined by supplying coefficients to the analytic surface equations, or for the certain types of surfaces by supplying known points on the surfaces.

MCNP has a more general combinational geometry than is available most other codes. Rather than combining several predefined geometrical bodies as in a more conventional combinatorial geometry scheme, MCNP gives the user the added flexibility of defining geometrical regions from all the first and second degree surfaces of analytical geometry and elliptical tori, and then of combining them with Boolean operators. The code does extensive internal checking to find input errors.

Using the cell specifications, MCNP tracks particles through the geometry. MCNP knows all of the bounding surfaces of a cell and calculates the intersection of a particle's trajectory with each bounding surface and finds the minimum positive distance to an intersection. If the distance to the next collision is greater than this minimum distance then the particle leaves the current cell. At the appropriate surface intersection, MCNP finds the correct cell that the particle will enter by checking the sense of the intersection point for each surface listed for the cell. When a complete match is found, MCNP has found the correct cell on the other side and the transport continues.

### 4.3 Description of ATI MCNP Model

The input to MCNP describes a heterogeneous core that is a spatially complete description of the core. The only simplification in the core geometry model is in the
connections on the ends of the TFEs. These sections are modeled as a homogeneous mixture of the elements present in these sections. This 3-dimensional heterogeneous model uses a reflective midplane, a reflective vertical plane and a reflective horizontal plane to reduce the size of the problem. This is a technique used in MCNP to have a partial model simulate the results of a full model. In this case, having a reflective plane implies that the core is assumed fully symmetric about the plane (i.e. the $1 / 8$ section that is completely modeled is the same as the other seven $1 / 8$


Figure 9 ATI MCNP Model $1 / 4$ Core
sections). Figure 9 shows a simplified, horizontal cross section view of the model. The model view is simplified in that each TFE is actually represented by nine embedded cylinders for each material in the TFE. A typical input
deck thus has 300 to 400 cell descriptions and approximately the same number of surface descriptions. A sample of a typical input deck is included as Appendix B.

## V. SYSTEMS CODE

A review of the extensive MCNP input deck in Appendix $B$ demonstrates the need for a preprocessor for MCNP. For example, to analyze a different pitch to diameter ratio would require an experienced MCNP user at least four to five days of work. This would not be an acceptable use of time in the conduct of parametric studies. Another factor is the uncertainty of the model if it is manually developed each time and subject to human errors. The same preprocessor that builds the MCNP input decks also needs the ability to handle all of the system data, and to have the capability to serve as a preprocessor and postprocessor for the other modules in the system code.

### 5.1 First Attempt

The input for MCNP is extensive and labor intensive, but it also is based on rather simple relationships. Therefore an attempt was made to develop a MCNP preprocessor in the Quattro Pro (QPRO) spreadsheet environment utilizing the macro capabilities of QPRO. A macro is a sequence of recorded keystrokes or commands that QPRO executes automatically [Borland 1991].

Three weeks of effort produced a QPRO macro that would build an ATI reactor MCNP input deck. The list of variables for parametric studies was, for the most variables, available to the user. Two weeks later, a modification to
the input development was determined necessary. The entire algorithm seemed to collapse when a small change was attempted. The macros used for the preprocessor were rather lengthy and difficult to debug when problems arose. It was obvious that this method was stretched beyond its usefulness to create an MCNP input deck, and that to add additional features by various programmers would likely lead to trouble. Therefore, a new programming environment was needed.

### 5.2 Investigation of Object Oriented Programming

Object orientation represents a major shift from traditional methods of software construction. Traditional methods apply active procedures to passive data. Object orientation changes the focus of the programming process from the procedures to objects. Objects are self-contained modules that include both the data and the procedures that act on the data. Objects that have a common use are grouped together in a class, and new classes can be created that inherit the procedures and data from classes already built, enabling the programmer to reuse existing classes and to program only the differences.
5.3 MCNP in OOP Environment

In MCNP, a cell describes a region where geometry, position, and composition are defined. An object may also
be defined in terms of its geometry, position, and composition. Therefore, a direct correlation can be made between objects and cells. It is also possible that each object may contain one or more interior objects. In fact, a complex assembly of objects can be visualized as a hierarchy of progressively interior objects. In order to develop the basis of the programming for the MCNP preprocessor, the following rules were developed.

1. Objects have boundaries which contain one or more cells.
2. Objects may have interior objects.
3. If the boundaries of a cell or interior object are incompletely specified then they share that boundary of the object outside it.
4. If an object contains interior objects then its cells must exclude their boundaries.
5. The set of all objects, the universe, is itself an object with all other objects interior to it.
6. The universe is the only object which has no exterior object.

Once the problem is specified as an object hierarchy to the MCNP processor, every detail of the problem description may be accessed by the outermost object. This object, the universe, is the set of all objects.

### 5.4 Resulting Program

The base for the system program was successfully developed in the Object Oriented Programming (OOP) environment called SmallTalk [Digittalk 1986]. While in the
main code (Smalltalk environment), any of the parameters that make up the core can be modified by the user through windows that display the current core description, also a graphical representation of the core can be viewed by the user. The main code can then arrange the data into an input deck for MCNP, and run MCNP.

One of the windows available to the user is a tree that displays the hierarchy of objects in the universe, as seen by the code. This is displayed in Figure 10, which is the exact view as seen on the computer screen by the user. The universe consists of objects internal to it. The first


Figure 10 Tree of Object Hierarchy
level down is
the "void outside the reactor", inside of this is the "reactor". The reactor consists of the "reflector", which surrounds the "core".

The core
contains the
individual TFES
and Driver rods. Figure 11 shows the window that allows the user to modify the main core parameters. The parameters that can be modified are shown with a box surrounding the value, while the parameters that are calculated as a result of user input are displayed without a box. Further details of the program's features are provided in the manual in Appendix A.


Figure 11 Reactor Edit Window

Two examples that demonstrate the usefulness of the this programming environment are to change of the pitch-todiameter ratio of the reactor and to change the variables of an individual rod within the core. The first example of changing the pitch-to-diameter ratio can be accomplished by changing the appropriate value in the Reactor Edit Window. The results can be seen in Figure 12 and Figure 13. The first case is with a 1.7 pitch-to-diameter ratio and the second case is with a 2.1 pitch-to-diameter ratio. This demonstrates that a task that used to require approximately five days can now be accomplished in a few minutes with this program. In addition, the graphical display provides a useful tool for the reactor designer to view the design.


Figure $12 \mathrm{P} / \mathrm{D}=1.7$


Figure $13 \mathrm{P} / \mathrm{D}=2.1$

The second example demonstrates the capability to modify each individual TFE or Driver rod in the MCNP Map Window as shown in Figure 14. Once a specific location is highlighted, a menu


Figure 14 MCNP Map Window Individual Rod Modification
can be accessed that allows the user to remove the rod or to edit the rod's
parameters. Figure 15
shows the resulting
window from choosing
to edit the rod. In
the TFE11 Edit
Window, the user can modify any of the
various parameters
that describe the
rod.


Figure 15 Individual TFE Parameter Window
VI. ANALYSIS RESULTS

During the course of this project, the base reactor configuration was changing due to input from the various research groups involved in the process. Therefore, the following neutronic studies are not analyzing the exact same reactor configuration. These studies were intended investigate individual parameters of interest for other groups involved in this project. The initial analysis of the ATI reactor was to optimize the parameters with respect to $k$ effective. Therefore the following results are an investigation of the effects of various changes on $k$ effective. The overall design optimization will require balancing the $k$ effective changes with thermionic performance, system mass, radiator efficiency, etc.

### 6.1 Investigation of the Use of Tungsten

Since tungsten has been determined to be the optimal emitter for the long ATI thermionic fuel element, a series of core criticality calculations were performed to assess the effect of using natural tungsten as the emitter and the collector in the thermionic fuel element. Unfortunately, most of the isotopes of tungsten are strong thermal neutron absorbers and this restricts the use of natural tungsten in a thermal reactor. This is due to the thermal neutrons necessary for the nuclear reactions being absorbed by the tungsten. However, one isotope of tungsten, $\mathbb{W}^{184}$, has a
reasonably low thermal neutron absorption cross section. Therefore tungsten enriched in $W^{184}$ may be attractive as an emitter/collector material. The effect of enriched tungsten however will be determined by the degree of thermalization of the neutrons. A fast spectrum reactor will be less effected by the strong thermal neutron absorption of natural tungsten than a more thermalized reactor configuration.

Figure 16 shows the effect on $k$ effective for various $W^{184}$ percentages using two pitch to diameter ratios. For the $P / D$ of 1.01 , the core radius was 25 cm and for the $P / D$ of 1.2, the core radius was 30 cm . This resulted in a similar

## K EFFECTIVE VS TUNGSTEN 184



- PID RATIO 1.01 * P/D RATIO 1.2

Figure 16 Various Tungsten 184 Percentages
number of TFEs in both cases (approximately 250). It should be noted that this is a neutronic investigation and that the final core design for low power levels will probably have significantly fewer TFEs. As can be seen of Figure 16, the more thermal the reactor, the higher the $k$ effective for similar number of TFEs. Also the more thermal the reactor, the stronger the effect of thermal absorption in natural tungsten.

## 6. 2 Optimizing Pitch-to-Diameter Ratio and Driver Radius

As seen in the previous analysis, driver rods will be required to achieve criticality if natural Tungsten emitters are to be used in the design. This raises the question of what is the optimum driver rod size in combination with the optimum pitch-to-diameter ratio. The goals are to obtain a $k$ effective of at least 1.05 , to minimize the amount of power that is being generated in the driver fuel, and to minimize total reactor mass.

In an effort to find the optimum pitch-to-diameter ratio and driver fuel diameter, a series of twenty reactor configurations were analyzed with the ATI Systems Code. This series of reactors all have 85 TFEs and 204 Drivers to provide a comparison of reactors with equivalent power production capabilities while varying the parameters of concern. The ATI Systems Code was used to make the MCNP
input decks and the resulting data was processed in a QPRO spreadsheet.

Figure 17 shows the range in $k$ effective with various driver rod radii and pitch-to-diameter ratios. K effective increases with increasing pitch-to-diameter ratio due to the increase moderation with increasing distance between the fuel pins. This is advantageous up to a p/d ratio of 2.1 , but at a p/d ratio of 2.3 , the $k$ effective starts to decrease due to the negative effect of the increased fuel-to-fuel distance.


[^0]The second parameter of concern is to maximize the amount of power that is generated by fission in the TFEs. The goal to minimize the power generation in the driver fuel due to the power generated in the driver fuel is $100 \%$ waste heat. This is because all the power generated in the driver rods is wasted due to these rods not creating any electrical power. Figure 18 shows the TFE power percentage in comparison to varying the driver radius and pitch-todiameter ratio. The graph shows that the smaller the driver rod radius, the higher the TFE power percentage.


Figure 18 TFE Power \% vs Driver Radius/Pitch-to-Diameter Ratio

The third parameter of concern is the reactor mass.
Figure 19 shows the reactor mass of the twenty reactors used in this analysis. The main factor controlling the mass is the $p / d$ ratio. This is because the larger the p/d ratio, the larger the resulting reactor core. There is a small difference due to the driver rod radius, but in comparison to the overall reactor mass, the difference is negligible.

A consideration of all the data from the twenty reactors that were analyzed determines the optimum reactor. The reactors with the 0.25 cm radius driver rod never achieved the $k$ effective requirement of 1.05 while the


Figure 19 Mass vs P/D Ratio
remaining reactors with p/d ratios greater than 1.9 did meet this requirement. As a result, the optimum reactor must have driver rod radius of at least 0.30 cm . The next goal of maximizing the TFE power percentage is achieved by having the smallest driver rod radius, therefore, of the reactors not already ruled out, the 0.30 cm driver radius is preferable. The last goal of minimizing the reactor mass is achieved by having the smallest $\mathrm{p} / \mathrm{d}$ ratio. Therefore the reactor with the 0.30 cm driver rod radius and a p/d ratio of 1.9 is the optimum reactor of those that were analyzed.

## 6. 3 Driver Fuel Comparison

Three different driver fuels (UO2, UN, U-10\%Mo) were analyzed to determine if there were any neutronic considerations that favor one fuel type over another. The configuration used consisted of 85 TFEs and 204 Driver rods in all cases. Two cores were analyzed for each driver fuel that differed only in the TFE pitch to diameter ratio. This allowed analysis of the effects of increased moderation.

It should be noted that the core configuration analyzed is not a optimized ATI core design, but a simple pattern to allow driver fuel comparisons. The emitter material used was natural tungsten. Also, the UN fuel was analyzed with a very thin rhenium liner that is required to chemically separate the nitrogen from the niobium cladding. The
rhenium is also a high thermal neutron absorber. The use of this liner is similar to the SP-100 UN fuel.

The results of the analysis are shown in Table 2. The results are close, but there are trends. The amount of $U$ 235 increases with driver fuel density while maintaining equivalent K effective values. These results hold true for a thermal reactor where the increased U-235 content in UN and $U-10 \%$ Mo is offset by increased self shielding. Also, the percentage of core power located in the TFE fuel region decreases with increasing driver density. Therefore, UO2, with the lightest density, is the preferred driver fuel for the ATI core. The UO2 fuel provided the lightest reactors, the smallest fuel loadings, and the highest percentage of power in the TFE fuel regions.

Table 2 Driver Analysis Results

|  | UO2 | UN | U-10\%MO |
| :---: | :---: | :---: | :---: |
|  | Fuel | Fuel | Fuel |
|  | OD=0.6 $6 m$ | OD=0.6cm | OD=0.5cm |
|  | density $=10.0$ | density $=13.2$ | density $=18.0$ |


| $\|$TFE p/d=1.7 <br> Core dia $=48.15 \mathrm{~cm}$ |  |  |  |
| :--- | :---: | :---: | :---: |
| K effective | 1.037 | 1.023 | 1.036 |
| $\%$ Power in TFEs | 32.1 | 30.5 | 24.5 |
| Reactor Mass (kg) | 625 | 630 | 627 |
| U-235 Mass (kg) | 31.2 | 35.5 | 34.3 |
| TFE p/d=1.9 <br> Core dia $=53.6 \mathrm{~cm}$ |  |  |  |
| K effective | 1.067 | 1.066 | 1.068 |
| $\%$ Power in TFES | 32.5 | 31.1 | 26.7 |
| Reactor Mass (kg) | 729 | 734 | 731 |
| U-235 Mass (kg) | 31.2 | 35.5 | 34.3 |

VII SUMMARY

The resulting systems analysis program for the ATI reactor meets and exceeds the initial goals of the research project. The level of detail in the analysis techniques used for parametric neutronic studies is one of the most accurate techniques currently available. Prior to this program development, MCNP was primarily used for only final design studies. In addition, the use of the OOP environment should aid in the programs ability to be expanded and modified by a variety of different programmers. The description on the reactor as a grouping of objects also provides the ability to feed the appropriate data and results to the various modules within the final systems analysis program.

## VIII. BIBLIOGRAPHY

Angrist, S. W., Direct Energy Conversion, Second Edition, Ally and Bacon, Inc., Boston

Borland, Inc., "QUATTRO-PRO 3.0 Superior Spreadsheet Power",1991

Deane, N.A., Stewart S.L., Marcille T.F., Newkirk D.W., General Electric, "SP-100 Reactor and Shield Design Update", Summaries of the 9 th Symposium on Space Nuclear Power, Albuquerque, NM, January 1992

Development of a Thermionic Reactor Space Power System, Gulf-GA-A12608, Gulf General Atomic Company, June 30, 1973

Digitalk, Inc., "Smalltalk/V - Object Oriented Programming System", Los Angeles, CA 1986

Marshall, A. C., SAND86-1020 RSMASS:A PRELIMINARY REACTOR/SHIELD MASS MODEL FOR SDI APPLICATIONS, Sandia National Laboratories, Albuquerque. NM, August 1986

RSIC COMPUTER CODE COLLECTION, Monte Carlo Neutron and Photon Transport Code System, Los Alamos National Laboratory, Los Alamos, New Mexico.

Samuelson, A. L., "Thermionic Fuel Element Verification Program - Summary of Results", Summaries of the 7 th Symposium on Space Nuclear Power, Albuquerque, NM, January 1990.

Truscello, V. C., "SP-100-- The Space Reactor for the 21 st Century", Summaries of the 7 th Symposium on Space Nuclear Power, Albuquerque, NM, January 1990.

Wetch, J. R., Davis, M. V., Pononmarev-Stepnoi,N. N., Usov, V. A., Kurchatov, I. V., "The Commercial Potential of the TOPAZ Power System", Summaries of the 7 th Symposium on space Nuclear Power, Albuquerque, NM, January 1990

## APPENDICES

Appendix A Neutronic Module User Manual.

## Introduction

This module allows access to the variables in the core, TFE, and driver rods. After modifying these variables, you can build an MCNP input deck with one simple command. This code is written in the Smalltalk/V language. A simple understanding of how to use the mouse, start the program, and open/move windows can be achieved by reviewing the first two chapters in the Smalltalk/V manual.

After a review of the basics of the Smalltalk operating environment, the next step is to have the image file and change. log files for the ATI systems code in place of the files of the same name that are installed with the basic Smalltalk setup. It is these files which start the program in the ATI systems code for which this manual is written.

The details for each individual system will vary depending on how MCNP is compiled and used. The most basic method is to have this program make the desired input decks for MCNP and then to run MCNP outside of this environment. It is also possible to run MCNP inside the Smalltalk environment, but this method varies for each computer.

Initial Screen.


Figure 20 MCNP Processor Window

Figure 20 is the initial window that is used to open menu list to give you access to the other process windows. Move the mouse to the box indicated and click the mouse to bring up the menu shown in the next window.

Main Menu
Figure 21 is the menu list that gives you access the to the various process windows used for reactor analysis. The following figures will be a description of these choices. To choose one of these items, simply highlight your choice with the mouse and click. For example, choose the edit reactor to obtain the following window.

## Reactor Edit

Figure 22 is the window that allows access to the primary reactor variables. The values that appear in boxes are the ones that you have the capability to change. Simply move the cursor inside the box you want to change and click once. When you see the horizontal bar appear in the box you are in the edit mode. The various edit keys can be used as normal.


Figure 22 Reactor Edit Window

For example, use the backspace key to delete values to the left of the bar and type the desired number in the box. Use the "enter" when the appropriate value is in the box. If you change the Pitch/Diameter, Core radius or Core Edge buffer, the code recalculates the new core with new rod positions (which also updates the current reactor description). This is evident by the hour glass which appears, indicating to wait while the code works, in addition to new number of calculated rods that is displayed upon completion (assuming your change is large enough to have a core with a different number of rods).

If you change the remaining dimension parameters, the core is not recalculated or updated. Therefore, if you change the Fuel height you also need to update the core to get this change into the current reactor description. An easy way of doing this without really changing the reactor is to change the Core edge buffer from 1.5 to 1.51 , this updates the entire reactor description. Future versions should have an update feature in each window.

In the ATI, the moderator region is the cylindrical core region with axial holes for each TFE/driver rod. The bottom part of Reactor Edit window allows you to change the materials that are classified as "Reactor Materials". As can seen in the descriptions, this is the moderator block,
the top reflector region, and outer reflector region (i.e. radial reflector). These regions are intended to model the actual physical material and geometry that is used in the ATI core. The top of core region is modeled as a homogeneous mixture of unfueled region in TFEs, drivers, moderator, and coolant and the material choices should reflect this mixture. The region outside the reactor is normally a void, unless you are conducting accident analysis. If water, sand, etc. is used for the material in this parameter, then a large region outside the reactor is modeled as that material.

To change a material, move to the desired location and change the material number. As will be shown later, you can add, change, and delete materials from the list that you have access to through this numbering scheme. At this point, you would have to know which number represented the material you wanted to change the core materials. Therefore, come back to this window after you understand the material choice method. Note - if you change a material number and the description does not update, close the window and open it again to get the new material description. This also will be fixed in future revisions.

At this time, the temperature input capability does not fully utilized in the neutronic analysis. When and MCNP input deck is generated, the temperatures are also part of input deck, but the results of changing these parameters requires more analysis before this will be utilized in the neutronic analysis. It may be more useful as tracking the temperatures in the thermal module.

## TFE Edit



Figure 23 TFE Edit Window

Figure 23 is the window that allows access to the variables that describe the TFE. These variables will be used for each TFE rod each time you create a new reactor. You have access to the dimensions in the same method as in the previous window. When you change one dimension, the thickness is recalculated for the affected layer(s). The materials are modeled as cylindrical heterogeneous sections that are as high as the Fuel height in the Reactor Edit Window. To change the materials, the same method as given the reactor edit section applies to the TFE Edit Window.

Driver Edit


Figure 24 Driver Edit Window

Figure 24 is the window that allows you to edit the driver parameters. The use of this is similar to the TFE Edit Window.

## Material Edit

Figure 25 is the window that allows you to make the list of materials and edit materials that you reference in the other windows by the numbers in the first column of this window. Moving around and editing in this window is tricky until you get the hang of it. First of all, what you see is not the whole window. To see the rest of the window press and hold down the right mouse button while moving the mouse across the screen like moving the window reference with your hand (the results of this is shown in Figure 26). To move around within a particular parameter, first click the left mouse button in the parameter of interest and then use the right mouse button as before.


Figure 26 Materials Edit Window (remaining section)

## Reactor Display/Graphical Interface

By activating the choice "map", a display of the current reactor is activated as shown in Figure 27. This display shows a horizontal cross section with the core edge, reflector edge and each individual TFE and Driver liner edge within the moderator block.


Figure 27 Reactor Display Window/Graphical Interface

This display of the reactor can also be used to modify individual TFE and Driver parameters. By moving the mouse to the desired rod and pressing the left mouse button, you have a menu that allows you to edit just that rod's parameters or to remove it entirely from the core and fill the void with the moderator block material. Examples of this process are shown in Figure 28.

If the right mouse button is pressed you get several choices. Of interest are the "extent", "print upright" and "update". The "extent" changes the size of the reactor. The "print upright" prints the displayed window on the printer. The "update" redraws the reactor to show changes that may have been made after the window was initially opened. Note that you can type notes directly on the screen and they will appear on the printed form. This can be very useful when building and tracking several MCNP input decks.


Figure 28 Graphical Interface Window

## MCNP Input Control Parameters

The middle section of the MCNP Processor Window (shown in Figure 29) allows the user to modify the control parameters that are attached to the end of the input deck. Refer to the MCNP manual for a description of these parameter.


Figure 29 MCNP Input Control Parameters

## Creating the MCNP Input Deck

To create the MCNP input deck, you highlight the "create output" section in the lower part of the MCNP Processor Window after filling in the appropriate destination and file name. To highlight the section, hold down the left mouse button while drawing over the area. Then press the right mouse button and choose "do it". The desired MCNP input deck should be built and then filed under the name specified.

## Appendix B Sample MCNP Input File




142
143
144
145
146
TFE16
147
148
149
150
151
152
153
154
155
TFE17
156
157
158
159
160
161
162
163
164
TFE18
165
166
167
168
169
170
171
172
173
TFE19
174
TFE19
175
TFE19
176
177
178
179
180
181
182
TFE 20
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
TFE 22
201
202
203
204
205
206
207
Driverl
2085 Driverl
$0-145-96$ IMP:N=1 TMP=1.6399443E-7 VOL=8.8873298E-1 \$ void TFE16 $1-10.0145-146-96 \quad I M P: N=1 \quad T M P=1.6399443 E-7$ VOL=11.059788 $\$$ fuel TFE16 $2-18.8146-147-96$ IMP:N=1 TMP=1.4417533E-7 VOL=10.269803 \$ emitter TFE16 $30147-148-96 \quad$ IMP $: N=1 \quad T M P=1.4400299 E-7 \quad$ VOL $=3.0611913$ \$ gap TFE1 6 9-10.12 148-149-96 IMP:N=1 TMP=1.0109033E-7 VOL=6.7148714 \$ collector
$4-8.4286149-150-96$ IMP $: N=1$ TMP $=1.0022863 E-7$ VOL $=3.6536800$ \$ sheath TFE16 6-7.87 150-151-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=3.4571713 \$ cladding TFE16 $5-0.75151-152-96$ IMP: $N=1 \quad T M P=7.7565925 E-8$ VOL $=31.291300$ \$ coolant TFE16 $6-7.87152-153-96 \mathrm{IMP}: N=1 \quad \mathrm{TMP}=7.7565925 E-8$ VOL=5.3718971 \$ liner TFE16 $0-154-96$ IMP: $\mathrm{N}=1 \quad \mathrm{TMP}=1.6399443 \mathrm{E}-7$ VOL=8.8873298E-1 $\$$ void TFE17 $1-10.0154-155-96 \quad \mathrm{IMP}: N=1 \quad \mathrm{TMP}=1.6399443 E-7$ VOL=11.059788 \$ fuel TFE17 $2-18.8155-156-96$ IMP:N=1 TMP=1.4417533E-7 VOL=10.269803 \$ emitter TFE17 $30156-157-96$ IMP $: N=1 \quad T M P=1.4400299 E-7 \quad$ VOL $=3.0611913$ \$ gap TFE17 $9-10.12157-158-96$ IMP:N=1 TMP=1.0109033E-7 VOL=6.7148714 \$ collector
$4-8.4286158-159-96$ IMP $: N=1$ TMP $=1.0022863 E-7$ VOL $=3.6536800$ sheath TFE17 6-7.87 159-160-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=3.4571713 $\$$ cladding TFE17 5-0.75 160-161-9 6 IMP: $\mathrm{N}=1 \mathrm{TMP}=7.7565925 \mathrm{E}-8 \mathrm{VOL}=31.291300$ \$ coolant TFE17 6-7.87 161-162-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=5.3718971 \$ liner TFE17 $-163-96$ IMP:N=1 TMP=1.6399443E-7 VOL=8.8873298E-1 \$ void TFE18 $-10.0163-164-96$ IMP: $N=1$ TMP $=1.6399443 E-7$ VOL=11.059788 $\$$ fuel TFE18 $2-18.8164-165-96$ IMP: $N=1 \quad T M P=1.4417533 E-7$ VOL=10.269803 \$ emitter TFE18 $30165-166-96 \mathrm{IMP}: N=1 \quad \mathrm{TMP}=1.4400299 \mathrm{E}-7$ VOL=3.0611913 \$ gap TFE18
$9-10.12166-167-96 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=1.0109033 \mathrm{E}-7 \mathrm{VOL}=6.7148714$ ( collector
$4-8.4286167-168-96 \mathrm{IMP}: N=1 \quad \mathrm{TMP}=1.0022863 \mathrm{E}-7 \mathrm{VOL}=3.6536800$ \$ sheath TFE18 6-7.87 168-169-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=3.4571713 \$ cladding TFE18 $5-0.75169-170-96 \quad I M P: N=1 \quad T M P=7.7565925 E-8$ VOL $=31.291300$ \$ coolant TFE18
 $0-172-962$ IMP: $\mathrm{N}=1$ TMP=1.6399443E-7 VOL=4.4436649E-1 \$ void TFE19
 $2-18.8173-174-962$ IMP: $\mathrm{N}=1 \quad \mathrm{TMP}=1.4417533 \mathrm{E}-7$ VOL=5.1349016 \$ emitter TFE19 $30174-175-962$ IMP: N=1 TMP=1.4400299E-7 VOL=1.5305957 \$ gap TFE19 9-10.12 $175-176-962 \operatorname{IMP}: N=1 \quad$ TMP $=1.0109033 E-7 \quad$ VOL $=3.3574357$ \$ collector
$4-8.4286176-177-962 \mathrm{IMP}: N=1 \mathrm{TMP}=1.0022863 \mathrm{E}-7 \mathrm{VOL}=1.8268400$ \$ sheath
6-7.87 177-178-9 6 2 IMP:N=1 TMP=7.7565925E-8 VOL=1.7285856 \$ cladding
5-0.75 $178-179-962$ IMP: $\mathrm{N}=1 \quad \mathrm{TMP}=7.7565925 E-8$ VOL $=15.645650$ \$ COOL ant TFE19
$6-7.87179-180-962$ IMP:N=1 TMP $\quad 17.7565925 E-8$ VOL $=2.6859485$ \$ liner TFE19 $-181-96$ IMP: $N=1 \quad T M P=1.6399443 E-7$ VOL=8.8873298E-1 \$ void TFE20
$1-10.0181-182-96$ IMP:N=1 TMP=1.6399443E-7 VOL=11.059788 $\$$ fuel TFE20 $2-18.8182-183-96$ IMP: $N=1 \quad$ TMP $=1.4417533 \mathrm{E}-7$ VOL $=10.269803$ \$ emitter TFE20 $0183-184-96 \quad \mathrm{IMP}: N=1 \quad \mathrm{TMP}=1.4400299 \mathrm{E}-7$ VOL=3.0611913 \$ gap TFE20

- $-10.12184-185-96 \mathrm{IMP}: N=1 \quad \mathrm{TMP}=1.0109033 \mathrm{E}-7$ VOL $=6.7148714$ $\$$ collector
$4-8.4286185-186-96$ IMP: $N=1 \quad T M P=1.0022863 E-7$ VOL $=3.6536800$ \$ sheath TFE 20 $6-7.87186-187-96 \mathrm{IMP}: \mathrm{N}=1 \quad \mathrm{TMP}=7.7565925 E-8$ VOL=3.4571713 \$ cladding TFE20 5-0.75 187-188-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=31.291300 \$ coolant TFE20 - 7.87 188-189-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=5.3718971 \$ liner TFE20 $0-190-96$ IMP:N=1 TMP=1.6399443E-7 VOL=8.8873298E-1 \$ void TFE21
$-10.0190-191-96$ IMP:N=1 TMP=1.6399443E-7 VOL=11.059788 $\$$ fuel TFE21 $2-18.8191-192-96 \mathrm{IMP}: N=1$ TMP $=1.4417533 \mathrm{E}-7$ VOL=10.269803 \$ emitter TFE21 $30192-193-96 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=1.4400299 \mathrm{E}-7 \quad \mathrm{VOL}=3.0611913$ \$ gap TFE21
-10.12 $193-194-96$ IMP:N=1 TMP=1.0109033E-7 VOL=6.7148714 \$ collector
$4-8.4286194-195-96$ IMP:N=1 TMP=1.0022863E-7 VOL=3.6536800 \$ sheath TFE21 6-7.87195-196-96 IMP:N=1 TMP=7.7565925E-8 VOL=3.4571713 \$ cladding TFE21 5-0.75 196-197-9 6 IMP: $\mathrm{N}=1$ TMP $=7.7565925 E-8$ VOL=31.291300 $\$$ coolant TFE21 $-7.87197-198-96 \mathrm{IMP}: N=1 \quad \mathrm{TMP}=7.7565925 \mathrm{E}-8$ VOL=5.3718971$\$$ liner TFE21 $-199-96$ IMP: $N=1$ TMP $=1.6399443 E-7$ VOL=8.8873298E-1 $\$$ void TFE22
$-10.0199-200-96 \mathrm{IMP}: N=1 \mathrm{TMP}=1.6399443 \mathrm{E}-7$ VOL=11.059788 $\$$ fuel TFE22 -18.8 200-201-9 6 IMP:N=1 TMP=1.4417533E-7 VOL=10.269803 \$ emitter TFE22 $\begin{array}{ccccc}0 & 201 & -202 & -9 & \text { IMP }: N=1 \quad T M P=1.4400299 E-7 \quad \text { VOL }=3.0611913 \text { S gap TFE22 }\end{array}$
$-10.12202-203-96 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=1.0109033 \mathrm{E}-7$ VOL=6.7148714 \$ collector
$-8.4286203-204-96 \mathrm{IMP}: N=1$ TMP $=1.0022863 \mathrm{E}-7$ VOL $=3.6536800$ sheath TFE22 -7.87 204-205-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=3.4571713 \$ cladding TFE22 $-0.75205-206-96 \mathrm{IMP}: N=1 \mathrm{TMP}=7.7565925 E-8$ VOL=31.291300 $\$$ coolant TFE22 -7.87 206-207-9 6 IMP:N=1 TMP=7.7565925E-8 VOL=5.3718971 \$ liner TFE22 $-10.0-208-962$ IMP:N=1 TMP=1.6399443E-7 VOL=1.7774659 \$ fuel Driverl $0208-209-962 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=1.4400299 \mathrm{E}-7 \quad \mathrm{VOL}=5.9742606 \mathrm{E}-2$ \$ gap Driver1 -7. $87209-210-962 \quad I M P: N=1$ TMP=7.7565925E-8 VOL $=0.5821201$ \$ cladding

209 6 Driver 1 210
211
212 213 214 215 216 217 218 219 220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
$249 \quad 6$
250
$251 \quad 3$
$252 \quad 6$
$\begin{array}{lr}\text { Driver10 } \\ 253 & 5\end{array}$
$254 \quad 6$
255
$256 \quad 3$
$257 \quad 6$
Drivex 11
258
Driver-11
2596
Driver11
$260 \quad 1$
2613
2626
Driver12
2635
$264 \quad 6$
$\begin{array}{ll}265 & 1 \\ 266 & 3\end{array}$
$267 \quad 6$
Driver13
2685
$269 \quad 6$
$270 \quad 1$
2713
2726
Driverl4
2735
2746
2751
$276 \quad 3$
2776
$-7.87211-212-962$ IMP:N=1 TMP=7.7565925E-8 VOL=9.3810703E-1 \$ Iner
$1-10.0-213-96$ IMP: $N=1$ TMP $=1.6399443 E-7$ VOL=3.5549319 $\$$ fuel Driver2
$\begin{array}{rrrrr}1 & -10.0 & -213 & -9 & 6 \\ 3 & \text { IMP: } N=1 \quad \text { TMP }=1.6399443 E-7 & \text { VOL }=3.5549319 \text { \& } \quad \text { fuel Driver2 }\end{array}$

-0.75 $215-216-9 \quad 6 \quad I M P: N=1 \quad T M P=7.7565925 E-8$ VOL=3.1599395 \$ coolant Driver2
$\begin{array}{rlllllll}5-0.75 & 215 & -216 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & V O L=3.1599395 \\ 6 & -7.87 & 216 & -217 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 \\ \text { VOL }=1.8762140 & \$ \text { liner Driver2 }\end{array}$


$6-7.87219-220-96$ IMP:N=1 TMP=7.7565925E-8 VOL $=1.1642402$ \$ cladding Driver3
$-0.75220-221-96$ IMP:N=1 TMP $=7.7565925 E-8$ VOL=3.1599395 \$ coolant Driver3
$-7.87221-222-96$ IMP:N=1 TMP $=7.7565925 E-8$ VOL $=1.8762140$ \$ liner Driver3
$-10.0-223-96$ IMP:N $=1 \quad \mathrm{TMP}=1.6399443 \mathrm{E}-7 \quad \mathrm{VOL}=3.5549319$ S fuel Driver4
$0223-224-96$ IMP:N=1 TMP=1.4400299E-7 VOL=1.1948521E-1 $\$$ gap Driver4
$-7.87224-225-96$ IMP:N=1 TMP=7.7565925E-8 VOL=1.1642402 \$ cladding Driver4
$\begin{array}{llllllll}-7.87 & 224 & -225 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & V O L=1.1642402 \\ -0.75 & 225 & -226 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & \text { VOL }=3.1599395\end{array}$ cladaing Driver4
$\begin{array}{rllllllll}-0.75 & 225 & -226 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & \text { VOL }=3.1599395 & \text { \$ coolant Driver4 } \\ -7.87 & 226 & -227 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & \text { VOL }=1.8762140 & \text { \$ liner Driver4 }\end{array}$
$-10.0-228-96$ IMP: $N=1$ TMP $=1.6399443 E-7$ VOL $=3.5549319$ \$ fuel Drivex 5


$-0.75230-231-96 \mathrm{IMP}: N=1 \mathrm{TMP}=7.7565925 \mathrm{E}-8$ VOL=3.1599395 \$ coolant Driver5
$-7.87231-232-96$ IMP:N=1 TMP=7.7565925E-8 VOL=1.8762140 \$ liner Driver5
$-10.0-233-96$ IMP $: N=1 \quad T M P=1.6399443 E-7 \quad$ VOL $=3.5549319$ \& fuel Driver6


$\begin{array}{llllllll}-7.87 & 234 & -235 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & \text { VOL }=1.1642402 \\ -0.75 & 235 & -236 & -9 & \text { IMP }: N=1 & T M P=7.7565925 E-8 & \text { VOL }=3.1599395 & \text { sladding coolant Driver6 }\end{array}$
$-0.75235-236-96 \mathrm{IMP}: N=1 \quad$ TMP $=7.7565925 E-8$ VOL $=3.1599395$ S coolant Driver
$-7.87236-237-96 \mathrm{IMP}: N=1 \mathrm{TMP}=7.7565925 \mathrm{E}-8 \mathrm{VOL}=1.8762140$ \$ liner Driver6
$-10.0-238-96 \mathrm{IMP}: N=1 \quad \mathrm{TMP}=1.6399443 E-7$ VOL $=3.5549319$ \& fuel Driver 7
$0238-239-96$ IMP: $N=1 \quad T M P=1.4400299 E-7$ VOL=1.1948521E-1 $\$$ gap Driver 7
$-7.87239-240-96 \mathrm{IMP}: N=1 \quad T M P=7.7565925 E-8$ VOL=1.1642402 \$ cladding Driver7
$-0.75 \quad 240-241-9 \quad 6$ IMP:N=1 TMP=7.7565925E-8 VOL=3.1599395 \$ coolant Driver7
$-7.87241-242-96$ IMP: $N=1 \quad T M P=7.7565925 E-8$ VOL=1.8762140 $\$$ liner Driver7
$-10.0-243-96$ IMP:N=1 TMP=1.6399443E-7 VOL=3.5549319 \$ fuel Driver8

$\begin{array}{lllllllll}-7.87 & 244 & -245 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & \text { VOL }=1.1642402 & \text { s cladding Driver8 } \\ -0.75 & 245 & -246 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 & \text { VOL }=3.1599395 & \text { soolant Driver8 }\end{array}$
$\begin{array}{lllllll}-0.75 & 245 & -246 & -9 & 6 & I M P: N=1 & T M P=7.7565925 E-8 \\ -7 & 246 & -247 & -9 & 6 & I M P: N=1 & \mathrm{TMP}=7.7565925 E-8 \\ V O L=1.8762140 & \text { S liner Driver8 }\end{array}$
$-10.0-248-96$ IMP: $N=1 \quad T M P=1.6399443 E-7 \quad$ VOL $=3.5549319$ \& fuel Driver9
$0248-249-96$ IMP:N=1 TMP=1.4400299E-7 VOL=1.1948521E-1 \$ gap Driver9

$-7.87251-252-96$ IMP:N=1 TMP $=7.7565925 E-8 \quad$ VOL $=1.8762140$ \$ liner Driver9
$-10.0-253-96$ IMP: $N=1 \quad \mathrm{TMP}=1.6399443 \mathrm{E}-7$ VOL $=3.5549319$ S fuel Driverlo
$0253-254-96$ IMP: $N=1$ TMP $=1.4400299 E-7$ VOL $=1.1948521 E-1$ S gap Driverlo
$-7.87254-255-96 \quad \mathrm{IMP}: N=1 \quad \mathrm{TMP}=7.7565925 \mathrm{E}-8$ VOL=1.1642402 \$ cladding
$-0.75255-256-96 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=7.7565925 \mathrm{E}-8$ VOL=3.1599395$\$$ coolant Driverlo
$-7.87256-257-96$ IMP $: N=1 \quad T M P=7.7565925 E-8 \quad$ VOL $=1.8762140$ \$ liner Driverlo
$-10.0-258-962$ IMP:N=1 TMP=1.6399443E-7 VOL=1.7774659 \$ fuel Driverl1


$-0.75260-261-962 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=7.7565925 E-8$ VOL=1.5799697 $\$$ coolant
$-7.87261-262-952 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=7.7565925 \mathrm{E}-8 \mathrm{VOL=9.3810703E-1}$ \$ liner
$-10.0-263-96$ IMP:N $=1 \quad T M P=1.6399443 E-7$ VOL $=3.5549319$ \& fuel Driverl2
$0 \quad 263-264-96$ IMP:N=1 TMP=1.4400299E-7 VOL=1.1948521E-1 \$ gap Driverl2
$-7.87264-265-96$ IMP:N=1 TMP $=7.7565925 E-8$ VOL=1.1642402 \$ cladding
$-0.75265-266-96$ IMP:N=1 TMP=7.7565925E-8 VOL=3.1599395 \$ coolant Driver12
$-7.87266-267-96$ IMP: $N=1 \quad T M P=7.7565925 E-8 \quad$ VOL $=1.8762140$ \$ I iner Driver12

| -10.0 | -268 | -9 | 6 |
| ---: | ---: | ---: | ---: |
| 0 | 268 | -269 | -9 |

$-7.87269-270-96 \mathrm{IMP}: \mathrm{N}=1 \mathrm{TMP}=7.7565925 \mathrm{E}-8 \mathrm{VOL}=1.1642402$ \$ cladding
$-0.75270-271-96$ IMP: $N=1 \quad T M P=7.7565925 E-8$ VOL=3.1599395 $\$$ coolant Driver13
$-7.87271-272-96$ IMP: $N=1 \quad \mathrm{TMP}=7.7565925 \mathrm{E}-8$ VOL=1.8762140 \$ liner Driver13
$-10.0-273-96$ IMP:N=I TMP $=1.6399443 E-7$ VOL $=3.5549319$ \& fuel Driver14
$0273-274-96 \mathrm{IMP}: \mathrm{N}=1 \quad \mathrm{TMP}=1.4400299 \mathrm{E}-7$ VOL=1.1948521E-1 \$ gap Driver14
$-7.87274-275-96 \mathrm{IMP}: \mathrm{N}=1 \quad \mathrm{TMP}=7.7565925 E-8$ VOL=1.1642402 \$ cladding
$-0.75275-276-96 \mathrm{IMP}: \mathrm{N}=1 \quad \mathrm{TMP}=7.7565925 \mathrm{E}-8 \quad \mathrm{VOL}=3.1599395$ \$ coolant Driver14
$-7.87276-277-96$ IMP:N=1 TMP $=7.7565925 E-8$ VOL=1. 8762140 \$ liner Driver14
$-10.0-278-96$ IMP:N=1 TMP $=1.6399443 E-7$ VOL $=3.5549319$ Suel Driver15
$0278-279-96$ IMP:N=1 TMP=1.4400299E-7 VOL=1.1948521E-1 \$ gap Driverl5
$-7.87279-280-96$ IMP:N=1 TMP $=7.7565925 E-8$ VOL=1.1642402 \$ cladding
Driver15




| 62 | c/z | 2.35454 .0782294 | 1.335 \$ TFE6 |
| :---: | :---: | :---: | :---: |
| 63 | C/Z | 2.35454 .0782294 | 1.385 \$ TFE6 |
| 64 | c/z | 7.06354 .0782294 | 0.15 \$ TFE7 |
| 65 | C/Z | 7.06354 .0782294 | 0.55 \$ TFE7 |
| 66 | c/ $/ 2$ | 7.06354 .0782294 | 0.75 \$ TFE7 |
| 67 | C/Z | 7.06354 .0782294 | 0.8 \$ TFE7 |
| 68 | C/Z | 7.06354 .0782294 | 0.9 \$ TFE7 |
| 69 | $c / 2$ | 7.06354 .0782294 | 0.95 \$ TFE7 |
| 70 | c/2 | 7.06354 .0782294 | 0.995 \$ TFE7 |
| 71 | $c / Z$ | 7.06354 .0782294 | 1.335 \$ TFE7 |
| 72 | C/Z | 7.06354 .0782294 | 1.385 \$ TFE7 |
| 73 | c/z | 11.77254 .0782294 | 40.15 \$ TFE8 |
| 74 | C/Z | 11.77254 .0782294 | 40.55 \$ TFE8 |
| 75 | c/z | 11.77254 .0782294 | 40.75 \$ TFE8 |
| 76 | c/Z | 11.77254 .0782294 | 40.8 \$ TFE8 |
| 77 | c/Z | 11.77254 .0782294 | 40.9 \$ TFE8 |
| 78 | c/z | 11.77254 .0782294 | 40.95 \$ TFE8 |
| 79 | C/Z | 11.77254 .0782294 | 40.995 \$ TFE8 |
| 80 | C/Z | 11.77254 .0782294 | 41.335 \$ TFE8 |
| 81 | C/Z | 11.77254 .0782294 | 41.385 \$ TFE8 |
| 82 | C/Z | 16.48154 .0782294 | 40.15 \$ TFE9 |
| 83 | c/ | 16.48154 .0782294 | 40.55 \$ TFE9 |
| 84 | C/Z | 16.48154 .0782294 | 40.75 \$ TFE9 |
| 85 | C/ 2 | 16.48154 .0782294 | 40.8 \$ TFE9 |
| 86 | C/2 | 16.48154 .0782294 | 40.9 \$ TFE9 |
| 87 | C/ $/$ | 16.48154 .0782294 | 40.95 \$ TFE9 |
| 88 | C/2 | 16.48154 .0782294 | 40.995 \$ TFE9 |
| 89 | C/Z | 16.48154 .0782294 | 41.335 \$ TFE9 |
| 90 | C/ $/ 2$ | 16.48154 .0782294 | 41.385 \$ TFE9 |
| 91 | C/2 | 08.15645890 .15 | \$ TFE10 |
| 92 | C/ $/$ | 08.15645890 .55 | \$ TFE10 |
| 93 | C/Z | 08.15645890 .75 | \$ TFE10 |
| 94 | C/Z | 08.15645890 .8 \$ | \$ TFE10 |
| 95 | C/Z | 08.15645890 .9 \$ | \$ TFE10 |
| 96 | C/Z | 08.15645890 .95 | \$ TFE10 |
| 97 | c/z | 08.15645890 .995 | 5 \$ TFE10 |
| 98 | C/Z | 08.15645891 .335 | 5 \$ TFE10 |
| 99 | C/Z | 08.15645891 .385 | 5 \$ TFE10 |
| 100 | C/Z | 4.7098 .15645890 | 0.15 \$ TFE11 |
| 101 | c/Z | 4.7098 .15645890 | 0.55 \$ TFE11 |
| 102 | c/Z | 4.7098 .15645890 | 0.75 \$ TFE11 |
| 103 | C/Z | 4.7098 .15645890 | 0.8 \$ TFE11 |
| 104 | c/Z | 4.7098 .15645890 | 0.9 \$ TFE11 |
| 105 | C/Z | 4.7098 .15645890 | 0.95 \$ TFE11 |
| 106 | c/ 2 | 4.7098 .15645890 | 0.995 \$ TFE11 |
| 107 | C/Z | 4.7098 .15645891 | 1.335 \$ TFE11 |
| 108 | C/Z | 4.7098 .15645891 | 1.385 \$ TFE11 |
| 109 | c/z | 9.4188 .15645890 | 0.15 \$ TFE12 |
| 110 | C/Z | 9.4188 .15645890 | 0.55 \$ TFE12 |
| 111 | c/z | 9.4188 .15645890 | 0.75 \$ TFE12 |
| 112 | C/Z | 9.4188 .15645890 | 0.8 \$ TFE12 |
| 113 | c/z | 9.4188 .15645890 | 0.9 \$ TFE12 |
| 114 | C/Z | 9.4188 .15645890 | 0.95 \$ TFE12 |
| 115 | c/z | 9.4188 .15645890 | 0.995 \$ TFE12 |
| 116 | c/z | 9.4188 .15645891 | 1.335 \$ TFE12 |
| 117 | c/z | 9.4188 .15645891 | 1.385 \$ TFE12 |
| 118 | c/z | 14.1278 .1564589 | 0.15 \$ TFE13 |
| 119 | C/Z | 14.1278 .1564589 | 0.55 \$ TFE13 |
| 120 | c/2 | 14.1278 .1564589 | 0.75 \$ TFE13 |
| 121 | C/Z | 14.1278 .1564589 | 0.8 \$ TFE13 |
| 122 | C/Z | 14.1278 .1564589 | 0.9 \$ TFE13 |
| 123 | C/Z | 14.1278 .1564589 | 0.95 \$ TFE13 |
| 124 | C/Z | 14.1278 .1564589 | 0.995 \$ TFE13 |
| 125 | C/ $Z$ | 14.1278 .1564589 | 1.335 \$ TFE13 |
| 126 | c/z | 14.1278 .1564589 | 1.385 \$ TFE13 |
| 127 | c/Z | 18.8368 .1564589 | 0.15 \$ TFE14 |
| 128 | C/Z | 18.8368 .1564589 | 0.55 \$ TFE14 |
| 129 | C/Z | 18.8368 .1564589 | 0.75 \$ TFE14 |
| 130 | C/Z | 18.8368 .1564589 | 0.8 \$ TFE14 |
| 131 | C/Z | 18.8368 .1564589 | 0.9 \$ TFE14 |
| 132 | C/Z | 18.8368 .1564589 | 0.95 \$ TFE14 |
| 133 | C/2 | 18.8368 .1564589 | 0.995 \$ TFE14 |
| 134 | C/Z | 18.8368 .1564589 | 1.335 \$ TFE14 |
| 135 | C/Z | 18.8368 .1564589 | 1.385 \$ TFE14 |
| 136 | C/Z | 2.354512 .234688 | 0.15 \$ TFE15 |
| 137 | C/Z | 2.354512 .234688 | 0.55 \$ TFE15 |
| 138 | c/2 | 2.354512 .234688 | 0.75 \$ TFE15 |
| 139 | c/Z | 2.354512 .234688 | 0.8 \$ TFE15 |


| 140 | C/Z | 2.354512 .234688 | 0.9 \$ TFE15 |
| :---: | :---: | :---: | :---: |
| 141 | C/Z | 2.354512 .234688 | 0.95 \$ TFE15 |
| 142 | C/Z | 2.354512 .234688 | 0.995 \$ TFE15 |
| 143 | C/Z | 2.354512 .234688 | 1.335 \$ TFE15 |
| 144 | C/Z | 2.354512 .234688 | 1.385 \$ TFE15 |
| 145 | C/Z | 7.063512 .234688 | 0.15 \$ TFE16 |
| 146 | C/Z | 7.063512 .234688 | 0.55 \$ TFE16 |
| 147 | C/Z | 7.063512 .234688 | 0.75 \$ TFE16 |
| 148 | C/Z | 7.063512 .234688 | 0.8 \$ TFE16 |
| 149 | C/Z | 7.063512 .234688 | 0.9 \$ TFE16 |
| 150 | C/Z | 7.063512 .234688 | 0.95 \$ TFE16 |
| 151 | C/Z | 7.063512 .234688 | 0.995 \$ TFE16 |
| 152 | C/Z | 7.063512 .234688 | 1.335 \$ TFE16 |
| 153 | C/Z | 7.063512 .234688 | 1.385 \$ TFE16 |
| 154 | C/Z | 11.772512 .234688 | 80.15 \$ TFE17 |
| 155 | C/Z | 11.772512 .234688 | 80.55 \$ TFE17 |
| 156 | C/Z | 11.772512 .234688 | 80.75 \$ TFE17 |
| 157 | C/Z | 11.772512 .234688 | 80.8 \$ TFE17 |
| 158 | C/Z | 11.772512 .234688 | 80.9 \$ TFE17 |
| 159 | C/Z | 11.772512 .234688 | 80.95 \$ TFE17 |
| 160 | C/Z | 11.772512 .234688 | 80.995 \$ TFE17 |
| 161 | C/Z | 11.772512 .234688 | 1.335 \$ TFE17 |
| 162 | C/Z | 11.772512 .234688 | 1.385 \$ TFE17 |
| 163 | C/Z | 16.481512 .234688 | 8.15 \$ TFE18 |
| 164 | C/Z | 16.481512 .234688 | 0.55 \$ TFE18 |
| 165 | $\mathrm{C} / \mathrm{Z}$ | 16.481512 .234688 | 0.75 \$ TFE18 |
| 166 | C/Z | 16.481512 .234688 | 80.8 \$ TFE18 |
| 167 | C/Z | 16.481512 .234688 | 80.9 \$ TFE18 |
| 168 | C/Z | 16.481512 .234688 | 0.95 \$ TFE18 |
| 169 | C/Z | 16.481512 .234688 | 0.995 \$ TFE18 |
| 170 | C/Z | 16.481512 .234688 | 1.335 \$ TFE18 |
| 171 | C/Z | 16.481512 .234688 | 8 1.385 \$ TFE18 |
| 172 | $c / Z$ | 016.3129170 .15 | \$ TFE19 |
| 173 | C/Z | $016.312917 \quad 0.55$ | \$ TFE19 |
| 174 | $C / Z$ | 016.3129170 .75 | \$ TFE19 |
| 175 | C/Z | 016.3129170 .8 \$ | \$ TFE19 |
| 176 | $C / Z$ | 016.3129170 .9 \$ | \$ TFE19 |
| 177 | $\mathrm{C} / \mathrm{Z}$ | 016.3129170 .95 | \$ TFE19 |
| 178 | $c / Z$ | 016.3129170 .995 | 5 \$ TFE19 |
| 179 | C/Z | 016.3129171 .335 | 5 \$ TFE19 |
| 180 | C/Z | 016.3129171 .385 | \$ TFE19 |
| 181 | $c / Z$ | 4.70916 .3129170 | 0.15 \$ TFE20 |
| 182 | C/Z | 4.70916 .3129170 | 0.55 \$ TFE20 |
| 183 | C/Z | 4.70916 .3129170 | 0.75 \$ TFE20 |
| 184 | C/Z | 4.70916 .3129170 | 0.8 \$ TFE20 |
| 185 | C/Z | 4.70916 .3129170 | 0.9 \$ TFE20 |
| 186 | C/Z | 4.70916 .3129170 | 0.95 \$ TFE20 |
| 187 | C/Z | $4.70916 .312917 \quad 0$ | 0.995 \$ TFE20 |
| 188 | $c / Z$ | 4.70916 .3129171 | 1.335 \$ TFE20 |
| 189 | C/Z | 4.70916 .3129171 | 1.385 \$ TFE20 |
| 190 | C/Z | $9.418 \quad 16.312917 \quad 0$ | 0.15 \$ TFE21 |
| 191 | $c / z$ | $9.41816 .312917 \quad 0$ | 0.55 \$ TFE21 |
| 192 | C/2 | 9.41816 .3129170 | 0.75 \$ TFE21 |
| 193 | C/Z | $9.41816 .312917 \quad 0$ | . 8 \$ TFE21 |
| 194 | C/Z | $9.41816 .312917 \quad 0$ | 0.9 \$ TFE21 |
| 195 | C/Z | $9.41816 .312917 \quad 0$ | 0.95 \$ TFE21 |
| 196 | C/Z | $9.41816 .312917 \quad 0$ | 0.995 \$ TFE21 |
| 197 | C/Z | 9.41816 .3129171 | . 335 \$ TFE21 |
| 198 | c/ $/ 2$ | $9.41816 .312917 \quad 1$ | 1.385 \$ TFE21 |
| 199 | C/Z | 2.354520 .391147 | 0.15 \$ TFE 22 |
| 200 | C/Z | $2.3545 \quad 20.391147$ | 0.55 \$ TFE22 |
| 201 | C/Z | $2.3545 \quad 20.391147$ | 0.75 \$ TFE22 |
| 202 | C/Z | 2.354520 .391147 | 0.8 \$ TFE22 |
| 203 | C/Z | $2.3545 \quad 20.391147$ | 0.9 \$ TFE22 |
| 204 | C/Z | $2.3545 \quad 20.391147$ | 0.95 \$ TFE22 |
| 205 | C/Z | $2.3545 \quad 20.391147$ | 0.995 \$ TFE22 |
| 206 | C/Z | 2.354520 .391147 | 1.335 \$ TFE22 |
| 207 | C/Z | 2.354520 .3911471 | 1.385 \$ TFE22 |
| 208 | C/Z | 02.71874110 .3 \$ | Driverl |
| 209 | C/Z | 02.71874110 .305 | \$ Driver1 |
| 210 | C/Z | 02.71874110 .35 | \$ Driver1 |
| 211 | C/Z | 02.71874110 .45 | \$ Driverl |
| 212 | C/Z | 02.71874110 .5 \$ | Driver1 |
| 213 | C/Z | 2.35451 .3592528 | 0.3 \$ Driver2 |
| 214 | C/Z | 2.35451 .35925280 | 0.305 \$ Driver2 |
| 215 | C/Z | 2.35451 .3592528 | 0.35 \$ Driver2 |
| 216 | C/Z | 2.35451 .3592528 | 0.45 \$ Driver2 |
| 217 | C/Z | 2.35451 .3592528 | 0.5 \$ Driver2 |

$218 \mathrm{C} / \mathrm{Z} 4.709$ 2.7187411 0.3 \$ Driver3 $219 C / Z 4.7092 .71874110 .305$ \$ Driver3 $220 \quad \mathrm{C} / \mathrm{Z} 4.7092 .7187411 \quad 0.35$ \$ Driver3 221 C/Z 4.7092 .71874110 .45 \$ Driver3 $222 \mathrm{C} / \mathrm{Z} 4.709$ 2.7187411 0.5 \$ Driver3 $223 \mathrm{C} / \mathrm{Z} 7.06351 .3592528 \quad 0.3$ \$ Drivex 4 $224 \mathrm{C} / \mathrm{Z} 7.06351 .3592528 \quad 0.305$ \$ Driver4 225 C/Z 7.06351 .3592528 0.35 \$ Driver4 $226 \mathrm{C} / Z 7.06351 .3592528 \quad 0.45$ \$ Driver4 $227 \mathrm{C} / \mathrm{Z} 7.06351 .3592528 \quad 0.5$ \$ Driver4 $228 \quad \mathrm{C} / Z \quad 9.418 \quad 2.7187411 \quad 0.3$ \$ Driver5 229 C/Z 9.418 2.7187411 0.305 \$ Driver5 $230 \quad \mathrm{C} / \mathrm{Z} \quad 9.418 \quad 2.7187411 \quad 0.35 \quad \$$ Driver 5 231 C/Z 9.418 2.7187411 0.45 \$ Driver5 $232 \mathrm{C} / \mathrm{Z} 9.418 \quad 2.7187411 \quad 0.5$ \$ Driver5 $233 \mathrm{C} / \mathrm{Z} 11.7725$ 1.3592528 0.3 \$ Driver6 $234 \quad \mathrm{C} / \mathrm{Z} 11.77251 .3592528 \quad 0.305$ \$ Driver6

C/Z 11.7725 1.3592528 0.35 \$ Driver6 C/Z 11.7725 1.3592528 0.45 \$ Driver 6
C/Z 11.7725 1.3592528 0.5 \$ Driver6
C/Z 14.127 2.7187411 0.3 \$ Driver7
$C / Z 14.1272 .71874110 .305 \$$ Driver 7
C/Z 14.127 2.7187411 0.35 \$ Driver7
C/Z 14.127 2.7187411 0.45 \$ Driver7
C/Z 14.127 2.7187411 0.5 \$ Driver7
C/Z 16.4815 1.3592528 0.3 \$ Driver8
$C / Z 16.48151 .35925280 .305$ \$ Driver 8
$\mathrm{C} / \mathrm{Z} 16.4815 \quad 1.3592528 \quad 0.35$ \$ Driver 8
C/Z 16.4815 1.3592528 0.45 \$ Driver8
C/Z 16.4815 1.3592528 0.5 \$ Driver8
C/Z 18.836 2.7187411 0.3 \$ Driver9
C/Z 18.836 2.7187411 0.305 \$ Driver9
C/Z 18.836 2.7187411 0.35 \$ Driver9
C/Z 18.836 2.7187411 0.45 \$ Driver9
C/Z $18.836 \quad 2.7187411$ 0.5 S Driver9
C/Z 21.1905 1.3592528 0.3 \$ Driver10
C/Z 21.1905 1.3592528 0.305 \$ Driver10
C/Z 21.19051 .3592528 0.35 \$ Driver10
C/Z 21.1905 1.3592528 0.45 \$ Driver10
C/Z 21.19051 .3592528 0.5 \$ Driver10
C/Z 05.4374823 0.3 $\$$ Driverl1
C/Z 05.4374823 0.305 \$ Driver11
$C / Z \quad 05.4374823 \quad 0.35$ \$ Driverl1
$C / Z \quad 05.4374823$ 0.45 \$ Driver11
C/Z 05.4374823 0.5 \$ Driverli
C/Z 2.3545 6.7969706 0.3 \$ Driver12
C/Z 2.35456 .79697060 .305 \$ Driver12
C/Z 2.3545 6.7969706 0.35 \$ Driver12
C/Z 2.3545 6.7969706 0.45 \$ Driver12
C/Z 2.3545 6.7969706 0.5 S Driver12
C/Z 4.7095 .4374823 0.3 \$ Driver13
C/Z 4.7095 .4374823 0.305 \$ Driver13
C/Z $4.7095 .43748230 .35 \$$ Driver13
C/Z 4.7095 .4374823 0.45 \$ Driver13
C/Z 4.709 5.4374823 0.5 \$ Driver13
$C / Z 7.06356 .79697060 .3$ S Driver14
C/Z 7.06356 .7969706 0.305 \$ Driver14
$C / Z 7.06356 .7969706$ 0.35 \$ Driverl4
C/Z 7.0635 6.7969706 0.45 \$ Driver14
$C / Z 7.0635 \quad 6.7969706$ 0.5 \$ Driver14
C/Z 9.418 5.4374823 0.3 \$ Driver15
C/Z 9.418 5.4374823 0.305 \$ Driver15
C/Z $9.418 \quad 5.4374823$ 0.35 \$ Driver15
$C / Z \quad 9.418 \quad 5.4374823 \quad 0.45$ \$ Driver15
C/Z 9.4185 .4374823 0.5 \$ Driver15
C/Z 11.7725 6.7969706 0.3 \$ Driver16
$C / Z 11.77256 .79697060 .305$ S Driver16
C/Z 11.7725 6.7969706 0.35 \$ Driver16
C/Z 11.77256 .79697060 .45 \$ Driver16
$C / Z 11.77256 .7969706$ 0.5 \$ Driver16
C/Z 14.1275 .4374823 0.3 \$ Driver17
C/Z 14.1275 .4374823 0.305 \$ Driverl7
C/Z 14.1275 .43748230 .35 \$ Driver17
C/Z 14.1275 .4374823 0.45 \$ Driverl7
C/Z 14.127 5.4374823 0.5 \$ Driver17
C/Z 16.4815 6.7969706 0.3 \$ Driver18
C/Z 16.48156 .79697060 .305 \$ Driver18
$C / Z 16.48156 .7969706$ 0.35 S Driver18

| 296 | C/Z 16.4815 6.7969706 0.45 \$ Driver18 |
| :---: | :---: |
| 297 | C/Z 16.4815 6.7969706 0.5 \$ Driver18 |
| 298 | C/Z 18.8365 .4374823 0.3 \$ Driver19 |
| 299 | C/Z 18.8365 .4374823 0.305 \$ Driver19 |
| 300 | C/Z 18.8365 .4374823 0.35 \$ Driver19 |
| 301 | C/Z 18.8365 .4374823 0.45 \$ Driver19 |
| 302 | c/Z 18.8365 .4374823 0.5 \$ Driver19 |
| 303 | c/Z 010.874964 0.3 \$ Driver20 |
| 304 | C/Z 010.874964 0.305 \$ Driver20 |
| 305 | c/Z 010.874964 0.35 \$ Driver20 |
| 306 | c/z 010.8749640 .45 \$ Driver20 |
| 307 | c/Z 010.8749640 .5 \$ Driver20 |
| 308 | C/Z 2.3545 9.5154763 0.3 \$ Driver21 |
| 309 | C/Z 2.35459 .5154763 0.305 \$ Driver21 |
| 310 | C/Z 2.3545 9.5154763 0.35 \$ Driver21 |
| 311 | C/z 2.3545 9.5154763 0.45 \$ Driver2l |
| 312 | c/Z 2.35459 .5154763 0.5 \$ Driver21 |
| 313 | C/Z 4.70910 .874964 0.3 \$ Driver22 |
| 314 | C/Z 4.70910 .874964 0.305 \$ Driver 22 |
| 315 | C/Z 4.709 10.874964 0.35 \$ Driver22 |
| 316 | c/Z 4.709 10.874964 0.45 \$ Driver22 |
| 317 | c/Z 4.70910 .874964 0.5 \$ Driver22 |
| 318 | C/Z 7.06359 .5154763 0.3 \$ Driver23 |
| 319 | c/Z 7.06359 .5154763 0.305 \$ Driver23 |
| 320 | C/Z 7.06359 .5154763 0.35 \$ Driver23 |
| 321 | c/z 7.06359 .5154763 0.45 \$ Driver23 |
| 322 | c/Z 7.06359 .5154763 0.5 \$ Driver23 |
| 323 | C/Z 9.41810 .874964 0.3 \$ Driver24 |
| 324 | $\mathrm{C} / \mathrm{Z} 9.41810 .874964$ 0.305 \$ Driver24 |
| 325 | C/Z 9.418 10.874964 0.35 \$ Driver24 |
| 326 | C/Z 9.41810 .874964 0.45 \$ Driver24 |
| 327 | C/Z 9.41810 .874964 0.5 \$ Driver24 |
| 328 | $\mathrm{C} / \mathrm{Z} 11.77259 .5154763$ 0.3 . ${ }^{\text {S }}$ Driver25 |
| 329 | $\mathrm{C} / \mathrm{Z} 11.77259 .5154763$ 0.305 \$ Driver25 |
| 330 | C/Z 11.7725 9.5154763 0.35 \$ Driver 25 |
| 331 | c/z 11.77259 .5154763 0.45 \$ Driver 25 |
| 332 | C/Z 11.77259 .5154763 0.5 \$ Driver25 |
| 333 | C/Z 14.12710 .874964 0.3 \$ Driver26 |
| 334 | C/Z 14.12710 .874964 0.305 \$ Driver26 |
| 335 | C/Z 14.12710 .874964 0.35 \$ Driver26 |
| 336 | C/Z 14.12710 .874964 0.45 \$ Driver26 |
| 337 | C/Z 14.12710 .874964 0.5 \$ Driver26 |
| 338 | C/Z 16.48159 .5154763 0.3 \$ Driver27 |
| 339 | C/Z 16.4815 9.5154763 0.305 \$ Driver27 |
| 340 | c/Z 16.4815 9.5154763 0.35 \$ Driver27 |
| 341 | C/Z 16.48159 .5154763 0.45 \$ Driver27 |
| 342 | C/Z 16.48159 .51547630 .5 \$ Driver 27 |
| 343 | $\mathrm{C} / \mathrm{Z} 18.83610 .874964$ 0.3 \$ Driver28 |
| 344 | C/Z 18.83610 .874964 0.305 \$ Driver28 |
| 345 | $\mathrm{C} / \mathrm{Z} 18.83610 .874964$ 0.35 \$ Driver28 |
| 346 | C/Z 18.83610 .874964 0.45 \$ Driver28 |
| 347 | C/Z 18.83610 .874964 0.5 \$ Driver28 |
| 348 | C/Z 013.5937050 .3 \$ Driver29 |
| 349 | $c / Z 013.5937050 .305$ \$ Driver29 |
| 350 | $\mathrm{c} / \mathrm{Z} 013.5937050 .35$ \$ Driver29 |
| 351 | C/Z 013.5937050 .45 \$ Driver29 |
| 352 | C/Z 013.5937050 .5 \$ Driver29 |
| 353 | C/Z 2.354514 .953194 0.3 \$ Driver30 |
| 354 | C/Z 2.354514 .953194 0.305 \$ Driver30 |
| 355 | $\mathrm{C} / \mathrm{Z} 2.354514 .953194$ 0.35 \$ Driver30 |
| 356 | C/Z 2.354514 .953194 0.45 \$ Driver30 |
| 357 | C/Z 2.354514 .953194 0.5 \$ Driver30 |
| 358 | C/Z 4.70913 .5937050 .3 \$ Driver31 |
| 359 | c/Z 4.70913 .5937050 .305 \$ Driver 31 |
| 360 | C/Z 4.70913 .5937050 .35 \$ Driver31 |
| 361 | C/Z 4.70913 .5937050 .45 \$ Driver31 |
| 362 | c/Z 4.70913 .5937050 .5 \$ Driver31 |
| 363 | C/2 7.063514 .953194 0.3 \$ Driver32 |
| 364 | C/Z 7.063514 .953194 0.305 \$ Driver32 |
| 365 | C/Z 7.063514 .953194 0.35 \$ Driver32 |
| 366 | C/2 7.063514 .953194 0.45 \$ Driver32 |
| 367 | C/Z 7.063514 .953194 0.5 \$ Driver32 |
| 368 | C/Z 9.418 13.593705 0.3 \$ Driver33 |
| 369 | C/Z 9.41813 .5937050 .305 \$ Driver33 |
| 370 | C/Z 9.418 13.593705 0.35 \$ Driver33 |
| 371 | C/Z 9.41813 .5937050 .45 \$ Driver33 |
| 372 | C/Z 9.418 13.593705 0.5 \$ Driver33 |
| 373 | C/Z 11.7725 14.953194 0.3 \$ Driver34 |

```
374 C/Z 11.7725 14.953194 0.305 $ Driver34
375 C/Z 11.7725 14.953194 0.35 $ Driver34
376 C/Z 11.7725 14.953194 0.45 $ Driver34
377
378
379
380
381
382
383
385
386
387
388
389
390
391
392
393
394
396
397
398
399
400
4 0 1
402
403
404
405
406
407
4 0 8
4 0 9
410
411 C/Z 11.7725 17.671699 0.45 $ Driver41
412 C/Z 11.7725 17.671699 0.5 $ Driver41
413 C/Z 0 21.749929 0.3 $ Driver42
414 C/Z 0 21.749929 0.305 $ Driver42
415 C/Z 0 21.749929 0.35 $ Driver42
416 C/Z 0 21.749929 0.45 $ Driver42
417 C/Z 0 21.749929 0.5 $ Driver42
M5 11023-0.78 19000-0.22 $NaK
M6 26000 1 $ iron
M4
M3
M2
M9
M7
MT7
MODE
F7:N }\quad8\quad17 26 35 44 53 62 71 80 89 98 107 116 125 134 143 152 161 170
    179 188 197 205 210 215 220 225 230 235 240 245 250 255 260 265
    270}2275 280 285 290 295 300 305 310 315 320 325 330 335 340 345,
    350 355 360 365 370 375 380 385 390 395 400 405 410 $ heat
    tally
TOTNU NO
KCODE 750 1. 5 20
PHYS:N 10.0 0.00001
KSRC 0.15 2R
PRINT 120
CTME 150
```


[^0]:    Figure 17 K Effective \% vs, Driver Radius/Pitch-toDiameter Ratio

