AN ABSTRACT OF THE THESIS OF

Darren W. Stevens for the degree of Master of Science in Physics presented on February 25, 1992.
Title : _ The Design and Architecture of An Improved Microcomputer-Controlled
Perturbed Angular Correlation Spectrometer
Redacted for Privacy

Abstract

approved : \qquad John A. Gardner

An improved, integrated perturbed angular correlation (PAC) spectrometer was designed, built and exhaustively tested. PAC spectroscopy is an experimental method used for probing the structure of materials. At the core of the technique is the experimental apparatus which is used in data collection. This work was undertaken in order to improve upon the existing data collection scheme by building an integrated, computer-controlled spectrometer that would be both easy to use and reliable, so that the focus of the user could be dedicated to the physics learned from the data and not committed to the problems associated with the collection of the data. Instead of redesigning the older, existing systems, a revolutionary new design was developed and implemented. An experimental run using room-temperature HfO_{2} as the sample and ${ }^{181} \mathrm{Ta}$ as the probe was performed to verify the operation of the system. Analysis of two different data sets from this run showed PAC frequencies that agreed with work done on the same material by other groups. The frequencies for the first data set were:

$$
\begin{aligned}
& \omega_{1}=829 \pm 2 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1447 \pm 5 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

and for the second data set were:

$$
\begin{aligned}
& \omega_{1}=827 \pm 3 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1448 \pm 5 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

The agreement between these two data sets and the favorable comparison of both of them to other published results indicates that the spectrometer is fully functional, although some problems associated with purchased components used in the system were discovered. The overall system performed well enough throughout extensive testing to be considered a successful venture and consequently the new system will be the basis for significant future development.
${ }^{c}$ Copyright by Darren W. Stevens
February 25, 1992

All Rights Reserved

The Design and Architecture of An Improved Microcomputer-Controlled Perturbed Angular Correlation Spectrometer

by

Darren W. Stevens

A Thesis
submitted to
Oregon State University
in partial fulfillment of the requirements for the degree of
Master of Science

Completed February 25, 1992
Commencement June 1992

APPROVED:

Redacted for Privacy

Professor of Physics in charge of major

Redacted for Privacy

Chairman of the Department of Physics

Redacted for Privacy

Dean of the Graduate \$chool

Date thesis is presented

Typed by Darren W. Stevens for \qquad

ACKNOWLEDGEMENT

I would like to take this opportunity to thank the many people that have helped me on the long road to the completion of this project. First of all, I would like to thank my major professor, Dr. John A. Gardner, for introducing me to this interesting and challenging project and then helping me achieve the completion of such a complicated and detailed endeavor. I would also like to thank Walt Dillon for his many hours of electronics discussion and Tim Taylor for his help in pc-board etching.

I would also like to thank several people in my research group for the help at various points along the way, thanks to: Randy Lundquist for his help in writing the control program for the spectrometer and his writing of the astounding data analysis programs; Matthew Zacate for his extensive hardware help, his friendship, and his many conversations over Thai food; John Griffith for making the hafnium oxide sample that was used to verify the operation of the spectrometer; Eric Antonnissen for lending me the photomultiplier tube from his spectrometer when mine went kaput; Lisa Dundon for providing me with the numbers from old data that I needed for verification.

A couple of my close friends are also deserving of thanks for their friendship and support. Thanks to Neil Roberts for his encouragement at several trying times and to Scott Fuller for his friendship and the many trips to various places when I really needed a break. I would also like to thank the others in the physics department for making it an interesting place to be. I would also like to thank the good folks at Suds and Suds for the refreshing blasts of reality that I was able to squeeze in from time to time.

To my family, without whose support this project would have been an impossible task, I thank you for everything. Special thanks to mom and dad for financial and emotional support and much, much more. To my brother Dean, his wife Robin and their children Jennifer, Heather and Derrick, to my sister Linda and her husband Bob, to my sister Carol, her husband Barry and their children Emily and Brenton, I would like to say thanks for making my occasional trips home so wonderful. You are all very special to me!

TABLE OF CONTENTS

1. Introduction 1
1.1. Theory of perturbed angular correlations 1
1.2. Experimental perturbed angular correlation spectroscopy 6
2. The design of the old spectrometer 12
2.1. Overview 12
2.2. Data collection and analysis 19
3. The architecture of the new spectrometer 22
3.1. Overview 23
3.2. The STINTSET board 30
3.3. The Energy boards 34
3.4. The Brain board 37
3.5. The computer interface 39
4. Operation of the new spectrometer 42
4.1. Procedure 42
4.2. Data analysis 46
5. The experimental verification 50
6. Summary and conclusions 66
6.1. Comparison of design features 68
6.2. Future considerations 69
References 71

APPENDICES

A. Some of the known PAC probes 74
B. List of EPROM-based functions used to control 75 the VME-based boards
C. The PCB artwork used in the etching process 86
(reduced from full-size)
D. Assembly language listing of the program VMEASS.ASM 91
E. Listing of the QuickBASIC module SETWIND.BAS 114
(module of VMEMCA.BAS)
F. Listing of the QuickBASIC program READRAM.BAS 125
(a stand-alone program)

LIST OF FIGURES

1.1. Diagram of the photomultiplier tube used in this work 8
1.2. Diagram of the different detector configurations used in PAC 11
2.1. Block diagram of the old spectrometer 13
2.2. Diagram of a single TSCA. There is a total of 4 of these, 16 one for each detector.
2.3. Diagram of the coincidence section of the old spectrometer 16
3.1. Block diagram of the timing section of the new spectrometer 24
3.2. Block diagram of the energy analysis section of the new spectrometer 27
3.3. Schematic diagram of the STINTSET board 31
3.4. Schematic diagram of the modification made to the CFD's 33
3.5. Schematic diagram of the TTL-to-NIM conversion circuit 33 for the TDC fast clear
3.6. Schematic diagram of the Energy boards 36
3.7. Schematic diagram of the Brain board 38
3.8. Block diagram of the computer interface board 40
4.1. The computer display as seen when starting the VMEMCA program 44
4.2. A typical computer display as seen while using the VMEMCA 44 program to set windows
4.3. The computer display as seen when starting the VMEPAC program 45
4.4. A typical computer display as seen while using the VMEPAC 45 program to collect data
5.1. The decay scheme for ${ }^{181} \mathrm{Hf} \rightarrow{ }^{181} \mathrm{Ta}$ 51
5.2. Typical 90° raw data for a sector with the stop window set on the 53 low energy stop gamma ray peak
5.3. Typical 180° raw data for a sector with the stop window set on the 53 low energy stop gamma ray peak
5.4. A typical fitted $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for a data set with the windows set on the 54low energy stop gamma ray peak
5.5. Typical 90° raw data for a sector with the stop window set on the 55 high energy stop gamma ray peak
5.6. Typical 180° raw data for a sector with the stop window set on the 55 high energy stop gamma ray peak
5.7. A typical fitted $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for a data set with the windows set on the 56 high energy stop gamma ray peak
5.8. Typical 90° raw data for a sector with the stop window set on the 58 lower half of the high energy stop gamma ray peak
5.9. Typical 180° raw data for a sector with the stop window set on the 58 lower half of the high energy stop gamma ray peak
5.10. A typical fitted $A_{2} G_{2}$ plot for a data set with the stop windows set 59 on the lower half of the high energy stop gamma ray peak
5.11. Typical 90° raw data for a sector with the stop window set on the 60 upper half of the high energy gamma ray peak
5.12. Typical 180° raw data for a sector with the stop window set on the 60 upper half of the high energy gamma ray peak
5.13. A typical fitted $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for a data set with the stop windows set 61 upper half of the high energy stop gamma ray peak
5.14. Plot of the experimental $\mathrm{A}_{2} \mathrm{G}_{2}$ and fit used for 64 frequency comparisons (first set)
5.15. Plot of the experimental $\mathrm{A}_{2} \mathrm{G}_{2}$ and fit used for 65 frequency comparisons (second set)

LIST OF TABLES

2.1. The raw data sectors for the old system 21
2.2. The different $A_{2} G_{2}$ sets for the old system and how they are formed 21
4.1. The raw data sectors for the new system 47
4.2. The different $A_{2} \mathrm{G}_{2}$ sets for stop window 1 and how they are formed 48
4.3. The different $\mathrm{A}_{2} \mathrm{G}_{2}$ sets for stop window 2 and how they are formed 49
5.1. Summary of the properties of ${ }^{181} \mathrm{Ta}$ 52

The Design and Architecture of An Improved Microcomputer-Controlled Perturbed Angular Correlation Spectrometer

1. Introduction

Perturbed angular correlation (PAC) spectroscopy is a useful tool for research in nuclear and solid state physics. Data obtained from PAC studies gives information about the energy levels of the nuclear states of radioactive probe nuclei which can be used to deduce information about its local environment. This information can then be compared to theoretical predictions about the structure of a material, behavior of defects in the material, or various other related entities. It has advantages over other types of study in that it interrogates the local environment of the probe nuclei and thus can be used to study particular properties of materials as chosen by the exact method of study. It has been used by Professor John A. Gardner's research group to study liquid and amorphous selenium-tellurium alloys ${ }^{1}$, zirconia ceramics ${ }^{2,3}$, oxide ceramics ${ }^{4}$, high T_{c} superconductors ${ }^{5,6}$, defects in ceria ${ }^{7}$, and various other materials. There have been compilations done of results obtained from PAC studies done on compounds by Lerf and Butz ${ }^{8}$, on metals by Vianden ${ }^{9}$, and a general list of applications by Rinneberg ${ }^{10}$.

1.1. Theory of perturbed angular correlations

Radiations from an atomic or nuclear system are not random in their direction, but have a pattern dependent on the observed system ${ }^{11}$. This means that when two successive gamma rays are emitted from a single excited nucleus in the process of decaying to the ground state, there is a preferred direction for the emission of the second with respect to the emission of the first (a pattern exists). This result is what allows the whole technique
of PAC to be useful; By observing these patterns, the environment of the nuclei responsible for the emissions can be deduced, and then this information can be used to understand the physical structure and other properties of the studied materials. If the decay process is repeated by many nuclei that share the same (or very nearly the same) environment and these patterns are recorded, then these observations can be used to determine the properties of the system. An example of a system that meets the similar environment criteria would be nuclei occupying the same lattice positions in a wellordered crystalline material. Analysis of the data would reveal properties of the environment at these lattice positions and the structure of the solid could then be characterized.

The underlying theory behind the use of PAC is quite complex. In order to fully understand how the interactions within the system produce the results that are observed, one must understand electricity and magnetism, quantum mechanics, solid-state, and nuclear physics. A complete theoretical treatment of the formalism for the static electric field gradient (EFG) is given by Frauenfelder and Steffen ${ }^{12}$. A summary of that treatment and a complete development of the PAC theory has been done by Gaskill ${ }^{13}$, Jaeger ${ }^{14}, \mathrm{Su}^{15}$, Weidlich ${ }^{16}$, Fuchs ${ }^{17}$, Schwenker ${ }^{18}$, and Wang ${ }^{19}$. Only a brief theoretical development will be presented here, since this work was not undertaken as an exercise in using PAC spectroscopy, it was done to improve the experimental system. The form and notation of Jaeger ${ }^{20}$ and Su^{21} will be adopted in this discussion and their work will be summarized.

Consider the intermediate state of the nuclei that undergo the decay cascade mentioned previously. During its finite lifetime τ, the nuclei will interact with any external or internal electromagnetic fields that act upon them. The interaction with these fields will cause the nuclei to precess and the angular distribution of the second gamma ray with respect to the first will be changed from the case where there are no fields acting. By measuring the angular correlation for the system in which the fields are acting and comparing it to the expected angular correlation with no fields acting, information about the interaction can be obtained. By learning about the interaction, the environment of the nuclei can be determined and the properties of the sample can be characterized. The only interactions that must be taken into account for the most popular

PAC probes is the interaction of the electric quadrupole moment of the nucleus with the electric field gradient. The reason for this is that (i) the most common PAC probes have closed electronic shells (spherical symmetry) and therefore no electric or magnetic dipole moments, (ii) the materials that are studied are usually non-magnetic, and (iii) higher order electronic terms are negligible. It will be assumed that this is the case in the rest of this discussion.

In PAC spectroscopy, the observation of the first gamma ray emission from the nuclear decay (through cascade $I_{i} \rightarrow I \rightarrow I_{f}$), selects a subset of all of the decaying nuclei in the sample. This must be the case, because only certain spin orientations can produce gamma ray emissions in the direction of a detector. As a result of this, the second gamma ray from these nuclei must be emitted in an angular distribution that is correlated with the direction of the first. The probability that a nucleus decays by the emission of two gamma rays, γ_{1} and γ_{2}, in the directions \mathbf{k}_{1} and \mathbf{k}_{2} into solid angles $\mathrm{d} \Omega_{1}$ and $\mathrm{d} \Omega_{2}$ is defined as:

$$
W\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{\mathbf{2}}, t\right) d \Omega_{1} d \Omega_{2}
$$

By using quantum mechanics to describe the transition from $I_{i} \rightarrow I \rightarrow I_{f}$ it can be shown that:

$$
W\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{\mathbf{2}}\right)=\sum_{k=0, \text { even }}^{k_{\max }} A_{k k} P_{k}(\cos \theta)
$$

is the angular correlation function for free nuclei. In this equation, A_{kk} are numbers that depend only on the spins of the nuclear states and $\mathrm{P}_{\mathrm{k}}(\cos \theta)$ are the Legendre polynomials where θ is the angle between the gamma ray emissions.

If a static extranuclear perturbation field is taken into account, after similar analysis it can be shown that:

$$
W\left(k_{1}, k_{2}\right)=\sum_{k=0, e v e n}^{k_{\max }} A_{k k} G_{k k} P_{k}(\cos \theta)
$$

is the resulting perturbed angular correlation function. The assumption made in the derivation of this equation is that the sample is made up of many crystals that are randomly oriented. The resulting perturbation function G_{kk} can then be understood as the average of the perturbation function for a single crystal. This perturbation function can be expressed as:

$$
G_{k k}(t)=\sum_{n} S_{n n}^{k k}+\sum_{n^{*} n^{\prime}} S^{k k} \cos \left[\frac{\left(E_{n}-E_{n^{\prime}}\right) t}{\hbar}\right]
$$

where the coefficients $S^{k k}$ depend on the nuclear states in the transition. The energies E_{n} and E_{n} are the energy eigenvalues for the interaction Hamiltonian. It is important to note the time independent term $\sum_{n} S_{n n}^{k k}$. Due to the existence of this term, the angular correlation of a polycrystalline sample is never completely destroyed by the static perturbing fields. For this reason, the term has historically been called the "hard-core".

In order to fully understand the perturbation function, the energy eigenvalues for the interaction Hamiltonian must be found. Solving for the energy eigenvalues of the interaction Hamiltonian is quite complicated and only the results will be shown here. As was stated earlier, the only interaction that must be taken into account is the interaction of the electric quadrupole moment of the nucleus with the electric field gradient (EFG). To simplify things, the principle axis system is chosen for the EFG in such a way that $\left|V_{x x}\right| \leq\left|V_{y y}\right| \leq\left|V_{z z}\right| \quad(V \equiv E F G)$. For external charges the Poisson equation reduces to the Laplace equation $V_{x x}+V_{y y}+V_{z z}=0$ so that η, which is defined by:

$$
\eta=\frac{V_{x x}-V_{y y}}{V_{z z}}
$$

is restricted to $0 \leq \eta \leq 1$. In the above definition, η is called the asymmetry parameter.
For static, axially-symmetric EFG's the quadrupole Hamiltonian is diagonal and
results in energy eigenvalues:

$$
E_{m}=\hbar \omega_{Q}\left[3 m^{2}-I(I+1)\right]
$$

where the quadrupole frequency ω_{Q} is defined as:

$$
\omega_{O}=\frac{e Q V_{z z}}{4 I(2 I-1) \hbar}
$$

where Q is the the quadrupole moment of the nucleus. For the case where the electric field gradient is not axially symmetric, the Hamiltonian is not diagonal. In this situation, the Hamiltonian must be diagonalized in order to solve for the eigenvalues, a process which can be quite difficult. If the system is restricted to $I=5 / 2$, which is the case for the PAC probe used in this work, then the diagonalization results in :

$$
\begin{gathered}
E_{ \pm \frac{5}{2}}=2 \alpha \hbar \omega_{Q} \cos \left[\frac{1}{3} \cos ^{-1} \beta\right] \\
E_{ \pm \frac{3}{2}}=-2 \alpha \hbar \omega_{Q} \cos \left[\frac{1}{3}\left(\pi+\cos ^{-1} \beta\right]\right. \\
E_{ \pm \frac{1}{2}}=-2 \alpha \hbar \omega_{Q} \cos \left[\frac{1}{3}\left(\pi-\cos ^{-1} \beta\right]\right.
\end{gathered}
$$

where

$$
\alpha=\sqrt{\frac{28}{3}\left(\eta^{2}+3\right)} \quad \text { and } \quad \beta=\frac{80\left(1-\eta^{2}\right)}{\alpha^{3}}
$$

Recall that: $\quad\left(I=\frac{5}{2} \rightarrow m= \pm \frac{5}{2}, \pm \frac{3}{2}, \pm \frac{1}{2}\right)$

By substituting these into the equation for G_{kk}, the expression can be now be directly linked to the energy states of the nucleus and the EFG at the probe nuclei. This is the fundamental basis for PAC; by extracting the $G_{k k}$ function for the experimental data, information about the environment of the probe is also obtained.

Before closing this discussion, there are a few conclusions that should be drawn. One observation is that the $\pm m$ energy levels for both cases (symmetric and asymmetric EFGs) are doubly degenerate. This results in ($2 I+1$)/2 distinct energy levels for halfinteger I, and to $\mathrm{I}+1$ distinct energy levels for integer I . For the case $\mathrm{I}=5 / 2$, there are three distinct frequencies (depending on m - shown on the previous page) observed when the data is analyzed, corresponding to the differences between these energy levels. These three frequencies are referred to as the PAC frequencies. For the asymmetric EFG case, the energy levels (and therefore the PAC frequencies) depend on the degree of the asymmetry (η). The last conclusion that should be mentioned is that the three PAC frequencies must obey the sum rule, $\omega_{1}=\omega_{2}+\omega_{3}$.

It should also be noted that the possibility exists that the electromagnetic fields in the local environment of the probe may change as a function of time. If the fields change during the lifetime of the intermediate state, then the electric quadrupole interaction becomes time-dependent and therefore very complicated. By studying this, there is quite a bit to be learned about such things as the jump rate of defects, correlation times, and the trapping energy. The system can (and usually does) include both static and timedependent perturbing fields. The derivations for time-dependent perturbations are beyond the scope of this discussion and will not be presented here.

1.2. Experimental perturbed angular correlation spectroscopy

PAC spectroscopy is an experimental method that allows for detailed study of the structural properties of various materials. As its name implies, it involves establishing the angular correlation between the emissions of two (or more) gamma rays from an
excited nucleus as it decays to the ground state. Obviously, the first requirement in studying a material involves the presence of radioactive probe nuclei in the material. If a probe species is not naturally present or cannot be manufactured by a process such as irradiation, than it can be artificially introduced by one of many different methods. Once the probe nuclei have been introduced into the sample, the sequence for a decay of interest would be for the parent nucleus to decay by some mechanism, usually electron capture or beta decay, into a daughter nucleus which is left in an excited state. This nucleus then decays to the ground state by the emission of a single gamma ray or a cascade of gamma rays. It is the latter emission scheme that is useful for this experimental method.

It is necessary to carefully pick the probe nuclei so that certain criteria are fulfilled for this type of work. The first, and most important, is that the gamma rays are emitted in a cascade in such a way that the intermediate state of the nucleus exhibits a half-life that is suitable for the resolution of the time measuring device. The gamma rays must also have energies that are within the range of common detectors. There are several radioactive probe nuclei that satisfy these criteria (see appendix A). The next restrictions on the choice of probe depend directly on the physical characteristics of the material to be studied and the specific properties of the material that are of interest. For example, if the material to be studied is a crystalline structure, the charge on the probe atom and the physical size of the atom must also be compatible with the lattice site in which the probe is to be introduced. This is very important if the results are to be correctly interpreted, since analysis of the angular correlation gives information about the local environment in which the probe nuclei are placed. By knowing the site (or sites) where the probe nuclei are located, predictions and simulations of the results can be made, thereby confirming or disproving theoretical models about the material.

The data collection for this experimental procedure can be performed in many different ways. The first essential pieces of equipment are the detectors, which are normally photomultiplier (pm) tubes (see figure 1.1). The basic operation of a pm tube is very simple. A gamma ray is incident upon the scintillation crystal and excites the crystal lattice. The lattice then produces visible light in the process of relaxation. These

Fig. 1.1. Diagram of the photomultiplier tube used in this work
photons strike the photocathode which causes it to emit electrons. These electrons are accelerated towards a chain of dynodes, each of which is held at a different electric potential. The first electrons (from the photocathode) hit the first dynode, which causes it to emit secondary electrons. This process is repeated throughout the length of the dynode chain, with each link multiplying the number of electrons that are emitted. At the end of the chain there is anode which "collects" the electrons. This burst of electrons produces a voltage pulse across a resistor, the amplitude of which is proportional to the number of electrons and therefore to the energy of the incident photon. There is also a secondary, slower output of the pm tube which comes directly from one of the last dynodes in the chain. It is different in that it is shaped by an R-C network to have a form that is better representative of the energy of the incident photon and is easier to use in conventional amplifiers. The primary, fast pulse (called the anode pulse) is usually used for timing purposes and the slower, secondary pulse (called the dynode pulse) is usually used for energy analysis.

The essential sections of the system after the detectors are a section which analyzes the energy of the emitted gamma rays and a high resolution timer that records the time between the reception of these emissions. The capture of an "event" of interest can be simply stated as a sequence that includes the detection of the first gamma ray of the cascade which starts a timer and the detection of the second gamma ray of the cascade which stops the timer. It is for this reason that the first gamma ray of the cascade is called the start gamma ray and the second gamma ray of the cascade is called the stop gamma ray. By recording thousands of these events, it is possible to establish the angular correlation of the emission of these gamma rays. With these parts of the system in place, the last necessary part of the hardware of the system is the section which collects the data and stores it in a usable form. There is also the need for a data analysis system to process the data after it has been gathered. For flexibility and efficiency reasons, a personal computer was chosen to perform those tasks in the new system instead of the conventional multi-channel analyzer.

This work was undertaken to improve upon existing data collection systems. The goal was to design and build an integrated system that was easy to use, efficient, and
could gather a more complete set of data than was currently being accomplished. Care was taken at every step to insure that the design was flexible enough to make future hardware modifications unnecessary by allowing the software to dictate what data is gathered from the system. By making the information available to the computer through software, there is an inherent flexibility in the types of experiments that can be performed with this new system.

For the record, it should be noted that there are actually two different strategies that can be employed in order to gather the data necessary for analysis (see figure 1.2). The first strategy is to use a pair (or pairs) of detectors, keeping one fixed and moving the second detector on the circumference of a circle with the source at the center of the circle (labelled MOVABLE DETECTORS in figure 1.2). By moving the second detector to a sufficient number of different locations and collecting data for a known period of time at each position, the angular correlation between gamma ray emissions can be established. The second method (called time differential perturbed angular correlation or TDPAC) involves placing two pairs of detectors at fixed positions (usually 90° and 180° apart) on the circumference of a circle with the source at the center (labelled FIXED DETECTORS in figure 1.2). It is this experimental set-up that was used for this work and all discussions from this point on will refer to this scheme (references to this method from this point on will be shortened to PAC).

Fig. 1.2. Diagram of the different detector configurations used in PAC

2. The design of the old spectrometer

In preparation for a detailed treatment of the new spectrometer design, it is helpful to first examine the architecture of the system from which it has evolved. The "old" spectrometer which is referred to here is, itself, an evolution from an earlier system ${ }^{22}$. This earlier system has been modified and improved upon to the point that inclusion of a discussion on it would not prove beneficial and therefore will be excluded. The evolution that has taken place in the past has been to improve upon the existing design, with the central "core" of the system left relatively unchanged. The new system has been significantly changed and should be considered a new generation. Throughout this discussion, figure 2.1. should be consulted. The discussion will be limited to what is relevant to understanding the overall hardware functions and will not include supporting hardware such as the furnace or furnace controller. Detailed discussion of the calibration and other necessary procedures is mentioned, but the purpose here is not to explain the full operation of the old system.

2.1. Overview

The old spectrometer can best be discussed by tracing the different sequences of events that would occur when the system is running. Consider the fixed detector system in figure 1.2. The four detectors (labelled $0,1,2$, and 3) are placed on the circumference of a circle with a radius of approximately 5 cm , and the sample is placed in the center of the circle. The radioactive nuclei that are present in the sample are constantly decaying and emitting their gamma rays in all directions. On occasion, a gamma ray will be incident on one of the four detectors and the detector will react to this occurrence (in the manner described in section 1.2).

Fig. 2.1. Block diagram of the old spectrometer

This occurrence starts the ball rolling. The detector that received the gamma ray will output an anode pulse which travels down a length of coax cable to a constant fraction discriminator (CFD). The function of the CFD is to discriminate electrical noise from the photon signal in the pm-tube and to produce a timing pulse which alerts the rest of the system that a gamma ray has been detected. The noise level threshold is adjustable by means of a potentiometer accessible on the front panel of the CFD. The CFD internally splits the signal from the anode and delays one branch. The delayed portion of the signal is subtracted from a fraction of the undelayed signal. The result is a bipolar signal which has a baseline crossover that is independent of the amplitude of the input signal. The bottom line is that the CFD outputs a signal at a time that is independent of signal amplitude and is therefore independent of the energy of the incident photon. Therefore, the CFD is exactly what is needed for the timing section of the spectrometer.

An important feature of the old spectrometer is that it was designed with only two CFD's. The output of detectors 0 and 1 are first fed into a radio frequency combiner which performs an "or" function on their signals. The output of the combiner is then routed into the start of a Time-to-Amplitude Convertor (TAC). In a similar manner, the output of detectors 2 and 3 are sent into another combiner. The output of this combiner is sent through a delay module that delays the signal for an amount of time equal to about half of the full-scale of the TAC. The TAC functions in a manner similar in principle to a stopwatch, in that it measures the time between the reception of a start signal and the reception of a stop signal. The difference is that it outputs a voltage level that is proportional to the difference in time, not a conventional representation of the time.

The output of the TAC is sent into an Analog-to-Digital Convertor (ADC), which converts the analog representation of the time into a corresponding digital (binary) value. The delay placed before the CFD that generates the stop of the TAC serves a very important role; It makes the TAC output a value corresponding to half of its maximum for a simultaneous (or as close to simultaneous as electronically possible) event. Thus an event that has a "stop" pulse arriving at the stop combiner before the "start" pulse will be recorded as a positive time, provided the time between them is less than half of full scale on the TAC. The end result is that the TAC now records two different time scales,
one that is forward in time and one that is backward in time. In other words, since midrange on the TAC corresponds to a zero time difference between CFD signals, a value between mid-range and the TAC maximum corresponds to positive time and a value between mid-range and the TAC minimum corresponds to negative time. This feature is crucial to the function of the overall system because of the way that the energy branch of the system is designed.

The energy branch starts from the dynode signal of the pm-tubes. Each detector's dynode output signal is connected to a linear amplifier which simultaneously shapes and amplifies the signal. The positive, unipolar output of each amplifier is connected to a laboratory-built Twin Single Channel Analyzer (TSCA). The schematic diagram for these is shown in figure 2.2. The basic function of them is to check to see if the amplitude of the signal from the amplifier is within two different "windows". These two windows are set by manually adjusting potentiometers which adjust a lower level threshold (LLT in the figure) and an upper level threshold (ULT in the figure). Since the amplitude of the voltage pulse from the amplifier depends on the energy of the incident photon, these windows can be set so that one of them gives a "true" output for pulses that correspond to an energy that signifies the detection of a start gamma ray and the other one gives a positive output for pulses that correspond to an energy that signifies the detection of a stop gamma ray. The windows have a finite width that is determined experimentally, since the behavior of all of the associated electronics tends to spread out the range of voltages that correspond to a photon of a specific incident energy. Since there are two "channels" that are possible, the name TSCA is used for this section. One channel is tuned to the start gamma ray and the other to a stop gamma ray.

It should be noted that this design has some inherent problems. One is that the thresholds tend to drift with changes in temperature and with fluctuations in the power supply. Another is that the timing that governs the window-checking employs a peaksensing operational-amplifier (op-amp) circuit, which is pulse-height sensitive by nature of its design. This means that the timing will be different for a start or stop photon if they are of significantly different energy. The fact that it works at all can be explained by the notion that the energy resolution is not a critical factor in the overall system. If

Fig. 2.2. Diagram of a single TSCA. There is a total of 4 of these, one for each detector

Fig. 2.3. Diagram of the coincidence section of the old spectrometer
the windows are set too wide, then there is an decrease in the signal-to-noise ratio in the data because of the increase in stray (or background) counts. If the windows are set too narrow, then there is a increase in the dead time of the system due to the tight restrictions placed on the acceptable range of energies. If the windows are set somewhere in the middle of this range, than neither of these problems contributes significantly to the overall performance of the system. However, setting windows still remains as one of the biggest problems with the old design and is one area that was addressed in the new design.

In continuing with the design discussion, it is assumed that the windows are set in such a manner that there is a reasonable probability that if a start or stop gamma ray is incident upon a detector than the corresponding TSCA will provide the correct output. The next part of the system is the coincidence section (see figure 2.3). The output of the four TSCA outputs are the inputs to this portion of the system. This section is responsible for providing two crucial pieces of information about the photons that were detected. The first provided information is about which detectors received photons of energies corresponding to a start or stop (the routing information) and the second is whether or not it corresponds to a valid event. A valid "normal" event is one in which detector 0 or 1 absorbed a start gamma ray and detector 2 or 3 detected a stop gamma ray. A valid reverse event is one in which detector 2 or 3 detected a start gamma ray and detector 0 or 1 received a stop gamma ray. The case where more than one detector received either a start or a stop is ambiguous, and is therefore considered invalid. The result of the energy analysis is clocked into a latch by the delayed TRUE START signal from the TAC. This signal only occurs if the TAC received a start and stop signal within its full-scale range. If the TAC receives a start with no stop, than it resets itself and a new sequence is processed. It will now be assumed that the TAC received a start and stop and the current sequence is continued.

At this point in the cycle there are two different cases to be considered. In either case, the timing of the system is such that spectrometer will now be in a state where the event has been flagged as valid or invalid and the system waits for the ADC to assert the DATA READY signal, which lets the rest of the system know that it is done digitizing the signal from the TAC. The VALID line, the DATA READY line, and a line
that distinguishes between run or calibrate mode (an output from the computer called RUN/CAL) are now inputs to the interrupt versus reset logic. At the time the DATA READY line is asserted, the decision is made whether or not to interrupt the computer. If the VALID line is not asserted, then the computer will be interrupted only if the RUN/CAL input has the system in the calibrate mode. If the system is in run mode, than a hardware reset (HARD RESET) is asserted and the system is reset. If the system is in the calibrate mode than the computer is interrupted every time the DATA READY line is asserted and calibration data can be obtained from the system by the computer. In the case where the VALID line is asserted, the computer is interrupted at the time the DATA READY line is asserted, regardless of the state of the RUN/CAL line.

Upon interrupt, the computer stops whatever it is doing (after completing the instruction it is executing), saves the state of the machine and executes an interrupt service routine. The interrupt service routine reads the routing information, reads the output of the ADC , and figures out where in memory it will increment a value that corresponds to the count of the occurrences of the event. The computer memory is divided into segments that correspond to the different possible events (see table 2.1). The offset within the segment corresponds to the digitized value of the time between the detection of events. This scheme allows a table look-up method to be implemented in the interrupt service routine and time spent in the service routine to be minimized. This is an important consideration, since this time contributes directly to the dead-time of the system. After the proper memory location has been incremented, the computer issues a software reset (SOFT RESET) signal and the system is reset.

The data is collected in this manner for a long period of time, usually a few days to ensure good statistics. The computer has on-line data analysis capabilities, so that data can be checked from time to time and problems can be detected if they occur. An important point to note is that the interrupt service routine runs in the background and that the computer can be used to do various other tasks while it is collecting data. After a run is completed, the data is transferred by floppy disk to more powerful computers for analysis.

2.2. Data collection and analysis

The data sets that are collected in the old system are limited by the design of the spectrometer. Since the start of the TAC results from an "or" of the signals from CFD 0 and CFD 1 and the stop of the TAC results from an "or" of the signals from CFD 2 and CFD 3, there are four coincidences that are impossible to obtain any information about (see table 2.1). The events that result from a coincidence between the pairs of detectors in the "or" of the start or stop do occasionally occur, but because of the design of the system, they only start (or stop) the TAC twice. This means that these events will do nothing but contribute to the dead time of the system. However, the overall effect is not that significant, because the system processing time is already dominated by events in which a start is received, but there is no corresponding stop (called singles). The fact remains that there is a portion of data that exists but cannot be collected by the spectrometer.

At the end of an experimental run, the data that is collected can be analyzed in a straightforward manner. For each valid detector pair, the data consists of an array in which the index is the time between the reception of a start and stop and the contents in each location is the number of occurrences of that event. If we define $D_{i j}$ to be the raw data for the detector pair i and j, then this raw data can be expressed as:

$$
D_{i j}=\frac{1}{\tau_{N}} e^{-\frac{t}{\tau_{N}}} e_{i} e_{j} N_{0} W(\theta, t)+B_{i j}
$$

and then the background corrected count rate can be expressed as:

$$
C_{i j}=D_{i j}-B_{i j}=\frac{1}{\tau_{N}} e^{-\frac{t}{\tau_{N}}} e_{i} e_{j} N_{0} W(\theta, t)
$$

in this notation ${ }^{23} \theta$ is the separation angle between the ith and jth detector and e_{i}, e_{j} are the detectors efficiencies. N_{0} is the decay rate of the parent isotope and τ_{N} is the average
half-life of the intermediate state of the daughter isotope. $W(\theta, t)$ is the angular correlation function which contains all of the information about the probe-environment interaction. B_{ij} is the background rate for the ijth data sector.

Recalling the angular correlation function for polycrystalline samples with static interactions from the first chapter, we can write $\mathrm{W}(\theta, \mathrm{t})$ as:

$$
W(\theta, t)=\sum_{k=0, Q_{v e n}}^{k_{\max }} A_{k k} G_{k k}(t) P_{k}(\theta)
$$

For most of the isotopes used in this research group, $\mathrm{I}=5 / 2$, which restricts the value of k in such a way that $\mathrm{k}_{\max }=4$ (due to selection rules). Using this, the approximation that $\mathrm{A}_{44} \approx 0$, and adopting the notation $\mathrm{A}_{22} \equiv \mathrm{~A}_{2,}$, then the angular correlation can be written:

$$
W(\boldsymbol{\theta}, t) \approx 1+A_{2} G_{2}(t) P_{2}(\cos \theta)
$$

If the spectra-ratio for the normal spectrum is written ${ }^{24}$ as:

$$
R_{n}(t)=2 \frac{\left(C_{02} C_{13}\right)^{\frac{1}{2}}-\left(C_{03} C_{12}\right)^{\frac{1}{2}}}{\left(C_{02} C_{13}\right)^{\frac{1}{2}}+2\left(C_{03} C_{12}\right)^{\frac{1}{2}}}
$$

and for the reverse is written as:

$$
R_{n}(t)=2 \frac{\left(C_{20} C_{31}\right)^{\frac{1}{2}}-\left(C_{30} C_{21}\right)^{\frac{1}{2}}}{\left(C_{20} C_{31}\right)^{\frac{1}{2}}+2\left(C_{30} C_{21}\right)^{\frac{1}{2}}}
$$

then the spectra-ratio is approximately equal to $\mathrm{A}_{2} \mathrm{G}_{2}$. Therefore, by very simple calculations, the interesting physics can be extracted from the raw data.

Table 2.1. The raw data sectors for the old system

SECTOR NUMBER	SECTOR LABEL	START GAMMA	STOP GAMMA	COMMENTS
0	01	0	1	INVALID
1	02	0	2	VALID,FORWARD
2	03	0	3	VALID,FORWARD
3	10	1	0	INVALID
4	12	1	2	VALID,FORWARD
5	13	1	3	VALID,FORWARD
6	20	2	0	VALID,REVERSE
7	21	2	1	VALID,REVERSE
8	23	2	3	INVALID
9	30	3	0	VALID,REVERSE
10	31	3	1	VALID,REVERSE
11	32	3	2	INVALID

Table 2.2. The different $\mathrm{A}_{2} \mathrm{G}_{2}$ sets for the old system and how they are formed

$\mathrm{A}_{2} \mathrm{G}_{2}$ SET	90° SECTORS	180° SECTORS	FORMULA $\left({ }^{*}\right.$ SECTOR FORM)
FORWARD	03,12	02,13	$(02 * 13)^{1 / 2}-\left(03^{*} 12\right)^{1 / 2}$ $(02 * 13)^{1 / 2}+2 *\left(03^{*} 12\right)^{1 / 2}$
REVERSE	30,21	20,31	$\frac{(21 * 30)^{1 / 2}-\left(20^{*} 31\right)^{1 / 2}}{(21 * 30)^{1 / 2}+2 *\left(20^{*} 31\right)^{1 / 2}}$

* In sector form the sector label represents the number of background-corrected counts in the sector. There is also an implicit function of time in this equation. In other words:

$$
i j=C_{i j}(t)=D_{i j}(t)-B_{i j}(t)
$$

in the above table.

3. The architecture of the new spectrometer

Before discussing the internal architecture of the new spectrometer, it would be beneficial to consider an overview of the components. The natural starting place for a discussion on the new spectrometer is at the detectors. The fixed detector method (shown in figure 1.2) is employed in the new system, with the positions of the four detectors being perpendicular to each other. There are two standard "NIM bins" that hold and power devices such as the CFD's and amplifiers. These NIM bins are mounted in a standard 19 " rack, which also houses a "VME" card cage and a power supply for the VME card cage. There is also a personal computer (IBM-XT) connected to the rackmounted components which controls the system.

The VME card cage is usually used for the building of a custom-made computer system, but it is not used for that purpose in the new spectrometer. It was chosen because a standard backplane (or motherboard) was available that provided 14 different mounting positions for "cards", each of which had 96 connections to a common bus. This design allowed custom electronics to be built and plugged into the backplane with the interconnections used for intercommunication. The backplane was also designed in such a way that allowed for easy connection of an external power supply to the power buses which were provided at each card slot. The only restriction placed on the custom electronics was that the boards that the circuits were assembled on had to use the type of connector that the VME standard required. As it turned out, this requirement was a problem in the manufacturing process used for the custom printed boards, because the connectors were of triple row design and the boards could only be manufactured with two layers. This problem was resolved by carefully choosing the placement for the traces on the printed circuit boards. Now that the outline of the system has been described, the internal workings can be described.

3.1. Overview

Although the new spectrometer functions as one integrated unit, it can best be discussed by separating the system into two different sections (see figures 3.1 and 3.2). The natural division between the energy and timing channels will be used in this discussion, since there is only minor overlap between these two segments. The reality that they are both tied together should not be forgotten, however. Without simultaneous processing of events in both of these channels, experimental data could never be recorded. It is also worthwhile to remember that the starting point for the processing of an event in both channels is ultimately at the detectors. From there, the timing signals governing the processing of a given event are tied together until they take separate routes from the CFD's. For this reason, each detector and CFD set can be thought of as a single entity for the discussion of the timing system.

Instead of the two CFD's used in the old system, there is one CFD for each of the four detectors in the new setup. This method allows a more accurate tuning of the CFD threshold to the individual detectors and also provides for the distinction between all timing events. The timing of event processing for a given detector splits up at the three CFD outputs, each of which conforms to the NIM standard. Two of the three CFD outputs are dedicated to recording the time between the reception of gamma rays and the other one is used for the starting the energy analysis channel. It should be noticed that all of the timing signals (both the timing and the energy sections of the system) are generated from the output of the CFDs.

It seems natural to dedicate the first part of this overview to the timing channel, since the control of the overall event processing is governed by this channel. It is assumed that the reader will be consulting the block diagram of the timing section shown in figure 3.1 in conjunction with this discussion. Consider the system from the state in which every component has been reset and is ready to process an event. The first part of the sequence is established following the detection of a gamma ray is when the pmtube (Hamamatsu H3177) sends out an anode (timing) pulse, followed shortly thereafter

Fig. 3.1. Block diagram of the timing section of the new spectrometer
by a dynode (energy) pulse. The anode pulse travels along a coaxial cable to the CFD (ORTEC model 934-S), where it is level-discriminated. Assuming that the anode pulse resulted from the detection of a photon of interest (above CFD threshold), then the CFD asserts the three output lines. One of these is connected to a Lecroy (model 322A) logic unit that is configured in the "or" mode. This signal propagates through the logic unit and starts the Time-to-Digital Convertor (TDC - Lecroy model 2228A) by asserting the common start input of the TDC. The second output of the CFD traverses a long length of cable that serves as a delay (approximately 80 ns). This time delay has been experimentally tuned to stop the channel of the TDC corresponding to the detector channel that started it at a TDC count of about 20. This event is called a self-stop and provides a zero-time reference.

In order to understand this more clearly, a discussion of the TDC is necessary. The TDC is a device that performs the same function as the TAC and ADC from the old system. It is different in that there are eight different channels that keep track of time relative to a common start. Of these eight channels, the four that had the closest calibrations were chosen to be used for this spectrometer. The TDC uses a common start signal to trigger the charging of capacitors in all eight channels (in unison). The charging of the capacitor in each one of these channels can be individually stopped and the resulting total charge on that particular capacitor will then be proportional to the time that elapsed from the reception of the start until it was stopped. If no stop signal for a channel comes within the maximum time allowed, then the unstopped channel will have the maximum possible charge. At the end of this preset maximum time (referred to as fullscale) the TDC starts a 20 MHz oscillator and begins discharging the capacitors. Internal counters (each channel) count the number of clock cycles that pass while the capacitors are discharging. In this way, the time that elapsed between reception of start and stop pulses for each individual channel is recorded by the counters. This method, called the Wilkinson run-down method ${ }^{25}$, can be made very accurate by choosing high quality circuit components, and therefore a very precise measure of time can be achieved. It should be noted that the time scale resolution of the TDC can be adjusted by an external switch, making it possible to use the device for radioactive probe isotopes with different half-
lives. For this work, the TDC had a resolution of approximately 0.45 ns per channel.
In parallel with the two signals that are associated with the TDC, there is a signal which travels to a circuit board called the STINTSET board which is housed in the VME cage (this board will be discussed in detail in the next section). On that board, a timer is started which keeps a limit on how much time is spent processing each "event". For continuity, assume another gamma ray arrives at one of the other detectors in a time that would allow it to be recorded as a valid event. The second detector sends out an anode pulse which travels to its corresponding CFD. Just like the first CFD sends out three signals, this one does the same. Since the TDC has already been started, the second start signal from the "or" gate is ignored. The delayed stop signal is not ignored, however, and the channel that received this second gamma ray is stopped at a count of about 20 , plus the count of whatever amount of time elapsed since the start was received. Using this scheme, the count difference between the second channel that was stopped and the selfstopped channel will be an accurate measure of the time between the detection of the two photons in the detectors (all channels are tuned to self-stop at a count of about 20). At this point, the TDC has recorded an accurate measure of the time between the detection of the two gamma rays and it is time to check the result from the energy analysis to see if a cascade of interest has been timed.

The energy analysis has been taking place in parallel to the timing sequence that was just discussed. The energy analysis section (see figure 3.2) of the new spectrometer is probably the most innovative section of this spectrometer (see the following sections for a more complete discussion of the individual boards). The overall idea is based on the recent technological innovations in the area of flash-type, integrated-circuit Analog-toDigital Convertors (flash ADCs). The new generation of these components allows analog information to be quickly transformed into its digital representation, which can be processed using fast and accurate digital electronic circuits. The old spectrometer used analog circuitry (the TSCA's) to decide if the voltage pulse from the amplifier was in the correct range to correspond to a gamma ray of interest. The new system uses a fast ADC (Analog Devices AD7821KN - 650 ns conversion) to obtain an accurate digital representation of the same information which can than be processed digitally. The binary

Fig. 3.2. Block diagram of the energy analysis section of the new spectrometer
output of the ADC is used to address a Random Access Memory (RAM) chip (Hitachi HM6264), which has been previously loaded with a "table" of values. In this way, the RAM (referred to as a "WINDOW" RAM) can be used as a hardware look-up table to see if the digital representation of the energy corresponds to a gamma ray of interest. One of these systems (an Energy Board) is attached to the output of each amplifier, which is attached to the dynode signal of each detector.

Further analysis is performed by a printed circuit board in the VME cage called the Brain board. The output of all four of the individual WINDOW RAM outputs are latched and the output of these latches (74LS173) are used as the input to another RAM (HM6264). This RAM is also used as a look-up table (referred to as the "VALID" ram). This RAM has the job of deciphering whether or not the combination of gamma rays that have been detected corresponds to the detection of a gamma ray cascade of interest (a VALID event). This RAM also encodes the combination of individual detector events into the same type of information that was encoded by the coincidence section of the old spectrometer. This information is referred to the "ROUTING" INFORMATION and it identifies which of the detectors received the start and stop gamma rays. For example, if detector 0 detected a start gamma ray and detector 1 detected a stop gamma ray, then this would correspond to a valid 90° event. The valid bit would be asserted and the routing would describe the sources that produced it. In this way, the VALID RAM gives direct information as to whether or not an event is of interest and if it is, what the details of the event were.

The timer on the STINTSET board is preset for an amount of time equal to the full-scale of the TDC (currently $\approx 1 \mu \mathrm{~s}$), plus the time of propagation through the energy analysis section $(\approx 3 \mu \mathrm{~s})$. The reason for this should be fairly obvious. If the second gamma ray comes in at a time just less than full-scale, then it is valid as far as the timing is concerned, and the final selection criteria must come from the VALID RAM. At the end of the preset time the system looks at the VALID line and decides on one of two choices. If the VALID bit is not asserted, then the event is not interesting, and a hardware reset (HARD RESET) is generated. The total amount of time that the system takes to process an invalid event is approximately $9 \mu \mathrm{~s}$. If the VALID bit is asserted, then
the computer is interrupted and executes an interrupt service routine. This service routine is responsible for gathering the timing data after interrogation of the routing information. Just as in the old system, a memory location corresponding to the count of the number of occurrences of the particular type of event is incremented. It then issues a software reset (SOFT RESET) and the system is reset for the processing of another event. The total amount of processing for a valid event is approximately $250 \mu \mathrm{~s}$, due mainly to the processing time of the interrupt service routine.

One section of the new system that was not described above is the CALIBRATION INTERRUPT section of the STINTSET board. The implementation will be left to the next section which describes the STINTSET board in detail. The use of it is very specialized and it is only active while the system is being prepared for a data collection run. The basic need that it fulfills is to provide the computer (and therefore the operator) with the calibration information needed to load the value into the WINDOW RAM. Basically, a known energy gamma ray will give a defined range of ADC outputs, but how is the computer and operator to know what that range is? The answer comes from the use of the CALIBRATION INTERRUPT circuitry. The user sets the system into special mode that interrogates each ADC output individually and thus provides the information necessary for the loading of the WINDOW RAM.

An important detail of the system that should be addressed at this point is the method of overall control within the VME cage. There are six different cards connected to the VME backplane that all have to be simultaneously controlled if there is to be any hope of passing information back and forth between them. Imagine a group of people that are all talking at once; No person can hope to hear what another person across the room might be trying to tell them! The scheme that was devised and implemented to solve this problem is one of the most ingenious parts of the new system. On each one of the Energy boards and on the Brain board, there are two Erasable-Programmable ReadOnly Memory (EPROM) chips. These integrated circuits are used to store the possible "modes" that each one of the boards needs to be in for a given state of the overall system. After correlating the contents correctly (see Appendix B), the computer can be used to address these EPROMs and all parts of the VME cage can be configured to the correct
mode. It should be noted that the STINTSET board does not have any EPROMs on it because it does not have any connections that might conflict with the other boards. It does, however, have connections to the VME FUNCTION bus (the EPROM addresses) and thus can be configured to the CALIBRATION mode (mentioned above).

3.2. The STINTSET board

The name STINTSET board (see figure 3.3) was derived from STart-INTerruptreSET which describes the functions that the circuitry on the board performs. Its inputs are the four START signals from the CFDs, the VALID signal from the Brain board, the SOFT RESET line (from the computer), and the three most significant FUNCTION bits (EPROM address bits) which act as the mode control for the board. The outputs include four gate signals for the CFDs, two reset lines that are sent to the Brain and Energy boards via the VME backplane, and the INTERRUPT line (to the computer). Also recall that it has the timer associated with the length of time each event is processed.

The STINTSET board is best viewed as the overall timing control for the whole system. It receives the start signals from the CFDs, which are immediately sent into flipflops on this board. It should be mentioned that the CFD outputs had to be modified to provide the necessary TTL (transistor-transistor logic) signals (see figure 3.4) for these flip-flops. The positive outputs from each of these flip-flops are "ORed" together resulting in a single signal that is asserted if any one of the detectors receives a photon. This signal is then used to start a timer "one-shot" (the timer was mentioned previously; a one shot can be considered as a preset timer throughout this discussion) that is preset for full-scale of the TDC plus the propagation time through the energy analysis section. At that preset point in time, the valid bit is "looked at" to see if the sequence that started the timer resulted in a valid event. If the event was valid, then a pulse from a second one-shot is steered (by the valid bit) to trigger a flip-flop and the computer is interrupted.

Fig. 3.3. Schematic diagram of the STINTSET board

If the event is not valid, then the pulse is steered (HARD RESET) to a one-shot that controls the resetting of the system. It should be noted that this HARD RESET signal is ORed together with the output of a one-shot that is connected to the computer (SOFT RESET). In the event that the computer was interrupted, after executing an interrupt service routine, the computer will trigger this other one-shot and a reset will be generated.

The one-shot connected to the computer SOFT RESET line was implemented due o the slowness of the computer. It was found that the interrupt service routine holds the SOFT RESET line in the high state for a seven microsecond time period. This caused a problem if an invalid event followed the interrupt, since the computer would hold the input to the OR gate in the high state. The positive edge from the HARD RESET was not able to propagate through the OR gate and the result was that the edge did not reset the system, resulting in a locking-up of the system. By placing the one-shot with a one microsecond pulse width in the path of the computer signal, the problem was avoided.

The reset sequence is something that should also be discussed, since it is not very straightforward. The output of the reset OR gate is a positive edge that triggers the first one-shot. This one-shot pulse width is set to a time of 3.4 us, which is connected to the CFD gate inputs and gates them off during this time period. It also triggers a second oneshot which has a time-constant of about lus, which is the reset signal that is sent onto the VME bus. This second one-shot is always contained within the pulse width of the gate one-shot, thereby insuring that the TTL components in the VME cage will be reset while the CFD is gated off. At the end of the second one-shot pulse (1us), there is a third oneshot triggered which is connected to a TTL-to-NIM convertor (see figure 3.5). The TTL-to-NIM convertor is necessary because the TDC will only accept NIM level signals as its FAST-CLEAR input.

There is one reason that the reset sequence is so complicated in this system; the separation of the timing and energy analysis sections at such an early point in the overall sequence (at the CFD). Recall that in the old system, the delayed TRUE-START of the TAC was use to strobe the result of the energy analysis. In the new design, this signal is absent, which means that the energy and timing sections are no longer tied together in the processing of an event. Therefore, it is necessary to guarantee that the entire system

Fig. 3.4. Schematic diagram of the modification made to the CFD's

Fig. 3.5. Schematic diagram of the TTL-to-NIM conversion circuit for the TDC fast clear
is reset and ready to go at exactly the same time. If the timing section becomes ready before the energy section or vice-versa, then the possibility exists that the two sections will process signals from different photons. In order to prevent this from occurring, theCFDs had to be gated off while everything was reset, and then the CFD gate could be turned off. This was further complicated when it was learned that there was a 700 ns delay from the time the CFD gate was asserted until the CFD output was actually gated off. The knowledge that the TDC required a 2 us time delay from the assertion of the FAST CLEAR until it was ready to process an event also complicated matters.

The other section of this board that is pertinent to this discussion is the CALIBRATION INTERRUPT section. The computer FUNCTION output to the VME bus is used to control this section. In the calibration mode, the regular interrupt section is disabled and the 1 -of- 4 decoder is enabled by the most significant bit of the FUNCTION. The computer sets the address to whatever channel the user wants to calibrate via the next two most significant bits of the FUNCTION, and the output of the ADC for the selected channel is available to the computer. In this way, the user can determine what ADC outputs correspond to which gamma rays and can set the WINDOW RAM accordingly. The disabling of the interrupt-delay timer used in regular data gathering mode means that every single incident photon causes the computer to be interrupted, so the count rate is astronomical in this mode. The reader should refer to section 4 for a further discussion of the use of this mode for window setting.

3.3. The Energy boards

The Energy board(s) also obtained their name by the function that they perform in the spectrometer; they are responsible for the energy analysis for each of the detectors. Care was taken in the design of these boards to make sure that all four of the boards could be built as identical units and jumper selected to be a given channel. This feature
allowed the boards to be tested and debugged by using the same procedures. During the construction of the first prototype, some flaws in the design were noted and were taken into account before the construction of the final four boards. Several testing methods established while verifying the operation of the first board were carefully chronicled so that the final four boards could be tested in the shortest period of time. Most importantly, computer code written for the basic testing of the single Energy board prototype could be used for the testing the rest of them. Refer to figure 3.6 for a diagram of these boards.

There are only two inputs to the energy boards that should be considered as external, the energy signal from the amplifier and the start signal from the CFDs. The start signal actually comes through the VME bus from the flip-flop on the STINTSET board, a feature which limits the start signal to occurring only once during a processing cycle (the flip-flops on the STINTSET board are set up that way). This prevents the board from losing the information that it is processing due to the occurrence of another start signal. The basic function of the energy boards is the WINDOWing. It is on these boards that the digitization and analysis of the energy pulses is performed. It will be assumed that the WINDOW RAM contains the correct contents in the following discussion.

The first part of the Energy board sequence is the reception of the start pulse (jumper selected) from the STINTSET board. This pulse triggers a one-shot that is adjustable to the rise time of the amplifier pulse. The amplifier output is connected to a sample-and-hold amplifier (SHA), which samples the amplifier pulse at its peak (it is strobed by the variable one-shot). It should be noted that the SHA was necessary because the rise-time of the amplifier pulse is too fast for the ADC to accurately track the pulse. The output of the SHA is the input to the ADC. Notice that the SHA and the ADC are strobed simultaneously (by the same signal). This is possible because the SHA has a propagation delay of only 250 ns , whereas the ADC has a 350 ns set-up time. The output of the ADC is used to address the WINDOW RAM as was previously mentioned. There is also a signal (INT) from the ADC which is asserted when the ADC is done digitizing the analog signal. That signal is used to trigger another one-shot (labelled LATCH CLOCK in the diagram). The LATCH CLOCK one-shot has a preset pulse width of

Fig. 3.6. Schematic diagram of the Energy boards

140ns that is just long enough to allow the ADC-addressed result of the RAM to settle. The positive edge of the one-shot is used to trigger the latch which holds the result from the RAM. The three output lines of the latch are then sent (jumper selected) onto the VME bus and is used on the brain board.

It should be noted that there is also the communication link between the VME bus and the WINDOW RAM on this board. The EPROMs that were mentioned previously are employed to make sure there is no bus contention between the RAMs on the other boards and the one that is being loaded (or read). This provision allows the computer to individually to establish the contents of the WINDOW RAM on each Energy board during calibration mode. For further discussion of this functional aspect of the board, refer to chapter 4.

3.4. The Brain board

The Brain board (see figure 3.7) has two different functions in the overall system. Both of these are cerebral in nature, so the name of this board also resulted from its overall function (just like the other boards in the system). The inputs to this board are the outputs from the four Energy board latches. This board is also at the other end of two forty-conductor ribbon cables from the computer some of which can be bi-directional. The FUNCTION bus (and its associated control signals) from the computer is routed via this board, but the overall destination of that bus should be considered as the whole VME cage. The SOFT RESET line from the computer is routed through this board in a similar fashion, but its destination is the STINTSET board (solely). In the opposite direction, the INTERRUPT line from the STINTSET board travels through this board. The outputs from this board (during RUN mode) are the VALID line and the rest of the ROUTING information.

One of the assignments of the Brain board has already been alluded to in earlier

Fig. 3.7. Schematic diagram of the Brain board
discussions. The Brain board is where the VALID RAM is located, and thus it has the job of making the decision of whether or not an event is VALID. This is accomplished by a table-look-up similar to the Energy analysis on the energy boards. It is different inthat the contents of the VALID ram are "predetermined". Unlike the Energy boards, where the ADC output range determines the contents of the WINDOW RAM, the inputs to the VALID RAM are already established by the connections to the Energy boards. For example, if detector 0 receives a start gamma ray and detector 1 receives a stop, then the event is VALID. The memory location that is addressed by this set of outputs from the Energy boards is established as VALID, and it will always be that way. The result of this is that the computer routine that loads the contents of the VALID RAM is unchanging, unless some special circumstances warrant an unusual look-up table.

The other responsibility of the Brain board is the job of communication between the VME bus and the computer. There are two different 40 pin ribbon connectors on this board that go directly to the computer (every other conductor is grounded on these cables). There are also EPROMs on this board that control all of the necessary control bits on the board for the bi-directional bus transceivers at the end of this ribbon cable. The basic idea here is that there must be some way to control the communication between the computer and the card cage while the different modes are being executed. For example, the direction of communication between the computer and VME cage is different when the WINDOW RAM is being loaded then when the ROUTING information is being read.

3.5. The computer interface

The computer interface is centered around a parallel interface board (Quatech PXB-721) that plugs into a single slot in the PC bus. This board is based on three 8255 parallel interface chips. A block diagram is shown in figure 3.8. Access to these 8255 's
Fig. 3.8. Block diagram of the computer interface board
is made through three 34 pin headers, each of which has a prototyping board plugged into it (directly - no cables). These boards mount directly onto the board that plugs directly into the PC bus, and the entire configuration can be closed up into the PC. Two of theseprototyping boards are the "other end" of the 40 -conductor ribbon cables from the VME cage. It should be noted that one of these two headers is dedicated to the control of the VME bus system and the other is dedicated to the communication of information between the computer and the VME cage. The third header is used to communicate with the TDC, a complicated process in its own right. Examining the details of how the interface board works is quite complex and will not be discussed.

One detail that will be mentioned is that this board also has the interrupt generating capabilities that communicate directly with the microprocessor of the computer. By using this board, the system can interrupt the computer by asserting the correct lines on the interface board. The detailed communication with the microprocessor is taken care of by the internal workings of this board. It should be noted that the board must be correctly configured by the computer for this interrupt system to work.

4. Operation of the new spectrometer

The operation of the new system is almost completely computer controlled. Eliminating the complexities of the operation of the old system was one of the focus points of this work. The user must still be involved with the same sample preparation (and the associated start-up routines) as they were with the old system, but once the initial hurdles have been cleared the system can almost be operated from the computer keyboard. In the following discussion, a step-by-step procedure for the operation of the spectrometer will be briefly outlined. It will be assumed that there is a prepared sample is available and in place for the data collection run. It will also be assumed that the power is off in all parts of the system and that the computer has the control programs on the hard disk. Another important assumption is that the correct procedure is followed at each step in this process, thereby allowing the next steps in the sequence to be completed.

4.1. Procedure

The first step necessary in a data collection run is the initialization of the entire system. With the power off, the entire bus structure outlined in the previous chapter is in an indeterminate state. In order to prevent the system from "burning out" any components in the initial power-up phase, an initialization program was written. The first thing that must be done is turning on the computer. The user would then run a program called INITIALZ (all programs have the extension .EXE and are executable code). A message would appear that instructs the user to turn on the power, and then press a key. At this point, the power for all components would be turned on, the key pressed, and the computer would then configure the entire system in what is called the NULL state (nothing happens). The next program that is run is called VMEASS. This program sets
up the ASSembly language routines that are used in the data gathering process. This is the program that sets up the interrupt service routine and all of the capabilities associated with collecting data. After the preparatory phase has been completed, the system is ready to be calibrated.

For this phase, there is a program called VMEMCA which must be executed. Upon doing this, the user would a screen that looks like figure 4.1. As the name implies, this is where the spectrometer performs all of the tasks normally associated with a MultiChannel Analyzer (MCA). This is the phase of operation that was referred to in earlier chapters as the CALIBRATION. It is the time when the computer interrogates the individual Energy boards to find out which memory locations in the WINDOW RAM should be loaded with the values corresponding to the start and stop gamma rays. The computer and spectrometer actually function as a four separate multi-channel analyzers in this stage (each one tuned to a particular detector).

After gathering data for a while (in similar fashion to an MCA), the user would see a screen that looks like figure 4.2. Note the single line on the left hand side of the boxed-in area. That line represents the cursor that is found on commercial MCAs. It is controlled from the keyboard, and with it the user can find out the number of counts in a given channel. Of particular interest in this discussion are the three "paired" lines that are surrounding the peaks in the data (in the figure). These paired lines represent the three windows that have been mentioned previously. If the user were to press " w " while the screen looked like it does in the figure, the "look-up table" in the channel that is being interrogated would be set. The RAM values corresponding to the positions between the cursors would be the windows set within the WINDOW RAM. The user would set all four channels in a similar manner. After that, the user would set up the table in the VALID RAM by pressing a " v ". At this point the VMEMCA program could be exited.

The next program that would be run is the actual data gathering program, named VMEPAC. Upon execution of this program, the user would see a screen that looks like figure 4.3. This program allows the user to examine the data and to control the spectrometer. After collecting data for a period of time and then selecting the option enabling the examination of data, the user would see a screen that looks like figure 4.4.

Fig. 4.1. The computer screen as seen when starting the VMEMCA program

Fig. 4.2. The computer screen as seen while using the VMEMCA program to set windows

Fig. 4.3. The computer screen as seen when starting the VMEPAC program

PAC Data Acquisition Sustem

Fig. 4.4. The computer screen as seen while using the VMEPAC program to collect data

4.2. Data analysis

The data analysis for the new spectrometer is not much different than it is for the old spectrometer, except for the fact that there is a great deal more raw data that can be analyzed (see table 4.1). The increase in the amount of raw data sectors also means that there are more possible ways to form $\mathrm{A}_{2} \mathrm{G}_{2}$ (see tables 4.2 and 4.3). The analysis method is identical to the method used for the old spectrometer, however.

It might be useful to point out that the use of three windows is not restricted to the concept of having a single start and two different stop channels. The other possible scenario that it may be useful for is to split certain gamma ray peaks with two windows. There may be some reason why the data from one part of a peak may be better than another (see chapter 5). There is a downside to having this large amount of data. The storage space is very large (about 450 Kbytes) and it takes considerably longer (a few days) to collect a statistically good set of data than it did with the old system. However, this is presumably outweighed by the increase in the amount of information that is obtained.

Table 4.1. The raw data sectors for the new system

SECTOR NUMBER	SECTOR LABEL	START GAMMA	STOP GAMMA	STOP ENERGY WINDOW
0	011	0	1	LOW
1	021	0	2	LOW
2	031	0	3	LOW
3	012	0	1	HIGH
4	022	0	2	HIGH
5	032	0	3	HIGH
6	101	1	0	LOW
7	121	1	2	LOW
8	131	1	3	LOW
9	102	1	0	HIGH
10	122	1	2	HIGH
11	132	1	3	HIGH
12	201	2	0	LOW
13	211	2	1	LOW
14	231	2	3	LOW
15	202	2	0	HIGH
16	212	2	1	HIGH
17	232	2	3	HIGH
18	301	3	0	LOW
19	311	3	1	LOW
20	321	3	2	LOW
21	302	3	0	HIGH
22	312	3	1	HIGH
23	322	3	2	HIGH

Table 4.2. The different $A_{2} G_{2}$ sets for stop window 1 and how they are formed

$\begin{aligned} & \mathrm{A}_{2} \mathrm{G}_{2} \\ & \mathrm{SET} \end{aligned}$	$\begin{gathered} 90^{\circ} \\ \text { SECTORS } \end{gathered}$	$\begin{gathered} 180^{\circ} \\ \text { SECTORS } \end{gathered}$	FORMULA (${ }^{*}$ SECTOR FORM)
A	031,121	021,131	$\frac{\left.\left(021^{*} 131\right)^{1 / 2}-(031 * 121)\right)^{1 / 2}}{\left(021^{*} 131\right)^{1 / 2}+2^{*}(031 * 121)^{1 / 2}}$
B	011,321	021,311	$\frac{(021 * 311)^{1 / 2}-\left(011^{*} 321\right)^{1 / 2}}{(021 * 311)^{1 / 2}+2^{*}\left(011^{*} 321\right)^{1 / 2}}$
C	101,231	131,201	$\frac{(131 * 201)^{1 / 2}-(101 * 231)^{1 / 2}}{(131 * 231)^{1 / 2}+2^{*}(131 * 201)^{1 / 2}}$
D	211,301	201,311	$\frac{(201 * 311)^{1 / 2}-(211 * 301)^{1 / 2}}{(201 * 311)^{1 / 2}+2^{*}(211 * 301)^{1 / 2}}$
E	011,121,231,301	021,131,201,311	$\frac{(021 * 31 * 201 * 311)^{1 / 4}-(011 * 121 * 231 * 301)^{14}}{(021 * 131 * 201 * 311)^{1 / 4}+2 *(011 * 121 * 231 * 301)^{1 / 4}}$
F	011,101,231,321	021,131,201,311	$\frac{(021 * 131 * 201 * 311)^{1 / 4}-(011 * 101 * 231 * 321)^{1 / 4}(021+131 * 201 * 311)^{1 / 4}+2^{*}(011 * 101 * 231 * 321)^{1 / 4}}{(001+1}$
G	031,121,211,301	021,131,201,311	$\frac{(021 * 131 * 201 * 311)^{1 / 4}-(0031 * 121 * 211 * 301)^{1 / 4}}{(021 * 131 * 201 * 311)^{1 / 4}+22^{*}(031 * 121 * 211 * 301)^{1 / 4}}$
H	031,101,211,321	021,131,201,311	$\frac{(021 * 131 * 201 * 311)^{1 / 4}-(031 * 101 * 211 * 321)^{1 / 4}}{(021 * 131 * 201 * 311)^{1 / 4}+2 *\left(031 * 101+211^{*}+321\right)^{1 / 4}}$
I	$\begin{aligned} & 011,031,101,121 \\ & 211,231,301,321 \end{aligned}$	021,131,201,311	

* In sector form the sector label represents the number of background-corrected counts in the sector. There is also an implicit function of time in this equation. In other words:

$$
i j k=C_{i j k}(t)=D_{i j k}(t)-B_{i j k}(t)
$$

in the above table.

Table 4.3. The different $\mathrm{A}_{2} \mathrm{G}_{2}$ sets for stop window 2 and how they are formed

$\begin{aligned} & \mathrm{A}_{2} \mathrm{G}_{2} \\ & \mathrm{SET} \end{aligned}$	90° SECTORS	$\begin{gathered} 180^{\circ} \\ \text { SECTORS } \end{gathered}$	FORMULA (*SECTOR FORM)
J	032,122	022,132	$\frac{\left(022^{*}+13\right)^{1 / 2}-(032 * 122)^{1 / 2}}{\left(022^{*} 132\right) 1 / 2+2^{*}\left(0322^{*} 122\right)^{1 / 2}}$
K	012,322	022,312	$\frac{(022 * 312)^{1 / 2}-(012 * 322)^{1 / 2}}{\left(022^{*}+312\right)^{2 / 2}+2 *(012 * 322)^{1 / 2}}$
L	102,232	132,202	$\frac{(132 * 202)^{1 / 2}-\left(102^{*} 232\right)^{1 / 2}}{(132 * 232)^{1 / 2}+2 *\left(132^{*} 202\right)^{1 / 2}}$
M	212,302	202,312	$\frac{\left(202^{*} 312\right)^{1 / 2}-(212 * 302)^{1 / 2}}{\left(202^{*} 312\right)^{1 / 2}+2^{*}(212 * 302)^{1 / 2}}$
N	012,122,232,302	022,132,202,312	
O	012,102,232,322	022,132,202,312	$\frac{(022 * 132 * 202 * 312)^{1 / 4}-\left(012^{*} 102 * 232 * * 322\right)^{1 / 4}}{\left(022^{*} 132 * 202 * 312\right)^{1 / 4}+2 *\left(012^{*}+102 * 232 * 322\right)^{1 / 4}}$
P	032,122,212,302	022,132,202,312	
Q	032,102,212,322	022,132,202,312	$\frac{(022 * 132 * 202 * 312)^{1 / 4}-(032 * 102 * 212 * 322)^{1 / 4}}{(022 * 132 * 202 * 312)^{1 / 4}+2 *(032 * 102 * 212 * 322)^{1 / 4}}$
R	$\begin{aligned} & 012,032,102,122 \\ & 212,232,302,322 \end{aligned}$	022,132,202,312	

* In sector form the sector label represents the number of background-corrected counts in the sector. There is also an implicit function of time in this equation. In other words:

$$
i j k=C_{i j k}(t)=D_{i j k}(t)-B_{i j k}(t)
$$

in the above table.

5. The experimental verification

In order to test to see if the spectrometer was working correctly, two different experimental runs were conducted. The sample that was used for both was room temperature HfO_{2}. In the literature ${ }^{26,27}$ it is characterized as having four HfO_{2} units in a face-centered monoclinic structural arrangement. These Hf atoms are located at each face and corner of the unit cell, and each is surrounded by eight oxygen nearest-neighbors. The sample that was prepared for this experimental testing by irradiation, which produces the radioactive isotope ${ }^{181} \mathrm{Hf}$ that decays by beta decay into the PAC probe ${ }^{181} \mathrm{Ta}$. The relevant properties of the of the radioactive probe are shown in table 5.1.

The choice of Hf as the radioactive isotope was deliberate, since the decay scheme (see figure 5.1) produces a daughter isotope $\left({ }^{181} \mathrm{Ta}\right.$) that has a single start gamma ray (133 keV) and two potential stop gamma rays (346 keV and 482 keV). The normal cascade that is used is $133 \mathrm{keV} \rightarrow 482 \mathrm{keV}$, but it is possible to monitor the other cascade which is $133 \mathrm{keV} \rightarrow 346 \mathrm{keV}$. However, this cannot be done without the problem associated with the overlap of the 136 keV transition peak with the 133 keV start peak. Since the half-life of the $9 / 2^{+}$state is so short (40 ps), the result of this overlap is a delta-function at time zero $\left(\mathrm{T}_{0}\right)$ in the raw data sector corresponding to the $133 \mathrm{keV} \rightarrow 346 \mathrm{keV}$. The reason for the delta function in those sectors is that the 136 keV gamma ray is erroneously recorded by the electronics as a start gamma ray and the 346 keV gamma ray is interpreted as the stop gamma ray.

The first data collection run was performed using both of the cascades for data collection. The start window was set on the 133 keV gamma ray peak, the low energy stop window was set on the 346 keV gamma ray peak, and the high energy stop window was set on the 482 keV gamma ray peak. In this way, the 12 sectors corresponding to the low energy stop window recorded the $133 \mathrm{keV} \rightarrow 346 \mathrm{keV}$ cascade and the 12 sectors corresponding to the high energy stop window recorded the $133 \mathrm{keV} \rightarrow 482 \mathrm{keV}$ cascade (see table 4.1 for the raw data sector list). In this way, the concept of more than two windows could be employed in data gathering.

Fig. 5.1. The decay scheme ${ }^{28}$ for ${ }^{181} \mathrm{Hf} \rightarrow{ }^{181} \mathrm{Ta}$

Table 5.1. Summary ${ }^{29}$ of the properties of ${ }^{181} \mathrm{Ta}$

Parent Half-life $\left({ }^{181} \mathrm{Hf}\right)$	42.5 days
Start gamma ray energy	133 keV
Energy ${ }^{*}$ of stop gamma ray \#1	346 keV
Energy of stop gamma ray \#2	482 keV
Nuclear spin sequence	$1 / 2^{+} \rightarrow 5 / 2^{+} \rightarrow 7 / 2^{+}$
Angular-correlation coefficient A_{22}	$-0.295(5)$
Angular-correlation coefficient A_{44}	-0.069
Half-life of the intermediate state	10.8 ns
Electric quadrupole moment	+2.5 b

*For this work, the cascade $133 \mathrm{keV} \rightarrow 346 \mathrm{keV}$ was measured as well as the cascade $133 \mathrm{keV} \rightarrow 482 \mathrm{keV}$ which is normally used for PAC spectroscopy.

Some typical data resulting from the low energy stop window is shown in figures 5.2 and 5.3. Notice the presence of the delta-function that was described above in both of the raw data sectors shown. The presence of this in the data around T_{0} caused the data analysis to be very difficult, since it effects the $\mathrm{A}_{2} \mathrm{G}_{2}$ calculation in this critical area (see figure 5.4). The fit (solid line), which had to be calculated in the region away from T_{0}, is not very good for this reason. Some typical data for the high energy stop window is shown in figures 5.5 and 5.6. Notice that there is no delta function in these sectors, which corresponds to the expected result. A typical $A_{2} G_{2}$ plot resulting from this data set is shown in figure 5.7. The fit to this data set could be done much closer to T_{0}, and the result is that it looks much better. The error bars in both $\mathrm{A}_{2} \mathrm{G}_{2}$ sets are large due to the restriction on how long a run could be made without an data overflow in the deltafunction region.

Fig. 5.2. Typical 90° raw data for a sector with the stop window set on the low energy stop gamma ray peak

Fig. 5.3. Typical 180° raw data for a sector with the stop window set on the low energy stop gamma ray peak

Fig. 5.4. A typical fitted $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for a data set with the windows set on the low energy stop gamma ray peak

Fig. 5.5. Typical 90° raw data for a sector with the stop window set on the high energy stop gamma ray peak

Fig. 5.6. Typical 180° raw data for a sector with the stop window set on the high energy stop gamma ray peak

Fig. 5.7. A typical fitted $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for a data set with the windows set on the high energy stop gamma ray peak

The second run was performed on the same HfO_{2} sample, but the data collection was done quite differently. In this data collection run, the $133 \mathrm{keV} \rightarrow 482 \mathrm{keV}$ cascade was the only one that was monitored. A problem that had arisen in the previous use of the ${ }^{181} \mathrm{Ta}$ probe was investigated by performing a very interesting experiment. In the past, there were certain situations when the delta function associated with the 346 keV cascade appeared in the raw data. This was finally determined to be the result of the overlap of edges of the Gaussian tails of the two energy peaks. When setting the stop window on the 482 keV peak with the old spectrometer, it was very difficult to see the appropriate place to set the lower level threshold (LLT) for the stop window. If the threshold was set too low, the resulting data set could contain some of the manifestations of this overlap. The idea came to mind to use the new system to split the 482 keV stop gamma ray peak with the two stop windows. The prediction was that the raw data sectors with the stop window set on the lower half of the "split" peak would contain some signs off the delta function, but the data set with the stop window set on the upper half of the peak would not show any signs of the anomaly.

Some typical raw data sets for sectors with the stop windows set on the lower half of the peak are shown in figures 5.8 and 5.9. The surprising result was that there was no significant indication of any delta function at T_{0}. One probable reason for this was that the window was not set "sloppily" enough. In the old spectrometer, the window setting is not as exact as it is in the new system, and it would therefore be much easier to set the windows in such a way as to overlap the 346 keV peak. A typical $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for the data set that has the window set on the lower half of the 482 keV peak is shown in figure 5.10. The fit seems to be quite reasonable, which tends to support the idea that the window setting was actually too well done to overlap the edge of the 346 keV peak.

Some typical raw data for sectors with the stop window set on the upper half of the 482 keV peak are shown in figures 5.11 and 5.12. These sectors show the expected result, which is the absence of the delta function near T_{0}. The raw data in these sectors is very similar in appearance to the raw data from the sectors that had the stop window set on the lower half of the window. This provides further support for the hypothesis that the windows for the other sectors were set too closely to the 482 keV peak to show the

Fig. 5.8. Typical 90° raw data for a sector with the stop window set on the lower half of the high energy stop gamma ray peak

Fig. 5.9. Typical 180° raw data for a sector with the stop window set on the lower half of the high energy stop gamma ray peak

Fig. 5.10. A typical fitted $A_{2} G_{2}$ plot for a data set with the windows set on the lower half of the high energy stop gamma ray peak

Fig. 5.11. Typical 90° raw data for a sector with the stop window set on the high energy stop gamma ray peak

Fig. 5.12. Typical 180° raw data for a sector with the stop window set on the high energy stop gamma ray peak

Fig. 5.13. A typical fitted $A_{2} G_{2}$ plot for a data set with the windows set on the upper half of the high energy stop gamma ray peak
influence from the other gamma ray peak. A typical $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for the data sets with the stop window set on the upper half of the 482 keV peak is shown in figure 5.13. Just as in the set from the other stop window, the fit appears to be quite reasonable.

Since the windows seemed to be aligned too well to show the effect of the overlap of the upper edge of the low energy stop peak and the lower edge of the stop window, the analysis of the data sets was used for a different purpose. The data from both stop windows appeared to be clean enough to allow a comparison between the frequencies from fitting the $\mathrm{A}_{2} \mathrm{G}_{2}$ from the two data sets. The expected result was that the two sets would give nearly identical results. The fitted $\mathrm{A}_{2} \mathrm{G}_{2}$ plot for the lower half of the high energy stop window is shown in figure 5.14. The resulting fit can be considered quite good, even though there are some areas in which the data and fit seem to differ a little bit. The fitted $A_{2} G_{2}$ plot for the lower half of the high energy stop window is shown in figure 5.15. Again, the resulting fit is quite good and agrees quite well with the result from the other stop window. The frequencies from the fit of the data resulting lower half of the high energy stop peak were:

$$
\begin{aligned}
& \omega_{1}=829 \pm 2 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1447 \pm 5 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

and for the upper half of the high energy stop peak were:

$$
\begin{aligned}
& \omega_{1}=827 \pm 3 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1448 \pm 5 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

These values were in close agreement with each other, which indicates that the system is functional to the point that it give consistent results. The real verification is established when these results are compared to those of other groups. By consulting the literature, two sets of results were found and are shown on the following page. Upon inspection, the results obtained by this new system can be seen to agree quite well with work done on the same material by other groups.

The results obtained by Yeshurun and Arad^{30} using a least squares fit method were:

$$
\begin{aligned}
& \omega_{1}=830 \pm 14 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1443 \pm 24 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

and using a Fourier transform method they obtained:

$$
\begin{aligned}
& \omega_{1}=834 \pm 34 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1463 \pm 48 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

The results obtained by Gardner and Prestwich ${ }^{31}$ were:

$$
\begin{aligned}
& \omega_{1}=819 \pm 10 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1483 \pm 25 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

Fig. 5.14. Plot of the experimental $\mathrm{A}_{2} \mathrm{G}_{2}$ and fit used for frequency comparisons (first set)

The frequencies for this data set were:

$$
\begin{aligned}
& \omega_{1}=829 \pm 2 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1447 \pm 5 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

Fig. 5.15. Plot of the experimental $\mathrm{A}_{2} \mathrm{G}_{2}$ and fit used for frequency comparisons (second set)

The frequencies for this data set were:

$$
\begin{aligned}
& \omega_{1}=827 \pm 3 \mathrm{Mrad} / \mathrm{s} \\
& \omega_{2}=1448 \pm 5 \mathrm{Mrad} / \mathrm{s}
\end{aligned}
$$

6. Summary and conclusions

There are several features of the new spectrometer that make it a revolutionary design. The significant new features are (i) the digitization of the energy pulses, (ii) the flexibility of the design, and (iii) the use of a four-channel TDC. All three of these features combine to make the new design a significant improvement over the existing systems. Any single one of these would be an improvement, thus the implementation of all three of them puts the new system in a class by itself.

The first feature that sets it apart from the older designs is the digitization of the energy pulses that takes place in the energy analysis section of the spectrometer. The old system uses analog circuitry to see if the pulse falls within a range of voltages that correspond one of two preset "windows", whereas the new system uses a flash-type ADC to digitize the voltage pulse. The associated digital circuitry for this process was chosen and implemented in such a way that there should be no problems with "drift" associated with fluctuations in temperature and power-supply variations. The old system had potentiometers that had to be checked periodically to see if the "windows" had moved, a process that was quite bothersome. There is also the advantage associated with this "windowing" being performed using digital circuitry in that the computer can process this digital information. When using the new system the user can set up and check this information while sitting at the computer, whereas the old system's analog information cannot be monitored by a computer. There are other advantages associated with this digital processing in that more windows can be used in the new system, while the old system is restricted in the hardware to having only two windows (a single start and a single stop). If the software used to run the new spectrometer were modified, it would be possible to have seven total windows. This opens up the possibility of performing new experiments (such as monitoring more than one cascade) that the old spectrometer cannot currently perform.

The second feature in the new design that make its a better system is the way that it is layed out and conceived. The design was done with flexibility in mind, which allows
the user to have better control of the system. For example, the system is designed in such a way that allows the computer to have access to the data that is used in every part of the process. If there seems to be a problem in some section, or there is a need to monitor something that is not currently observed, then the software can be modified in order to allow just that feature. The convenience of using a computer to control the system also makes the system much nicer to use, since the software can be modified at any time to incorporate new ideas, or to fix any problems as they are encountered. Also, the control program can be written in such a way that it is easy to use and user-friendly.

The third major improvement in the new system is the use of the four-channel TDC instead of a single-channel TAC-ADC combination. This difference means that there are no invalid data sectors associated with "ORing" the starts and stops. This also means that the user has the ability to change the time scale by the flick of a switch on the TDC (the older system has to be significantly modified to change probes). Therefore, when a variety of experiments needs to be performed, there is no significant down-time associated with converting the spectrometer. Another thing to note is that with the advances in such technologies as GaAs, the future for improved TDCs looks promising. If one becomes available that performs better than the one employed in the present system, then it can be installed with only minor alterations.

The overall goal of this work was to design and build a new spectrometer that was an improvement over the old systems. The overall complexity of the system made its final design much more complicated than was ever anticipated. However, the results of the analysis done on data that was collected using the new system clearly demonstrates that the system is fully operational. The ease of use and the differences from the operation of the old spectrometer demonstrate that it is in fact a revolutionary design when compared to the older systems. Based on this, it is clear that the goal of this work was realized.

6.1. Comparison of design features

There are many design differences between the old spectrometer and the new improved version that was completed in this work. The first is the difference in the way that the windows are set in the two different systems. The old system uses imprecise analog threshold comparisons and the new design employs accurate digital comparisons. The second major difference is the restriction on the usable detector pairs in the old design that does not exist in the new system. The restriction in the old system results from the fact that there is only one timing mechanism, whereas the new system employs a single unit that can time four channels (out of the eight total TDC channels). The next major architectural difference is the limit of two windows that exists in the old system, which is not present in the new system. The new system is theoretically restricted to seven windows (based on the three bits of information obtained from the WINDOW RAM - one bit pattern is reserved for encoding a "no window" result), but is realistically limited to the present three windows due to the enormous amount of data that results from each "extra" window.

There is also a comparison to be made in the amount of data that is collected by each system. There is a curse and blessing in the fact that the new system gathers much more information than the old system. On one hand, more data means more information, but on the other hand it takes more time to gather it and more room is necessary to store it. The extra window is also a win-lose situation for the same reason. The flexibility associated with gathering more data suggests that even though there are some downfalls, the more data gathered the better. It remains to be seen if the flexibility of the new system can be used to perform some experiment that no other system in the world is capable of, but all indications are that it will be able to do just that.

6.2. Future considerations

The future looks very bright for the new spectrometer, since it has been proven to be such an enormous improvement over the old system. There is one area that needs to be improved upon if the system is to perform up to the capabilities that were designed into the overall system. That area has clearly shown itself to be the main component of the timing channel, the TDC. It was known at the time of incorporation that the TDC was not guaranteed to perform up to what the manufacturer claimed, based on some earlier functional testing that was performed on the device. The specifications also showed it to be a slow device (the conversion time is 100 us), but the fast clear function seemed to be a possible savior. Knowing that most of the events that the spectrometer would be analyzing would be singles (starts with no stops), the hope was that the deadtime of the system would not receive a significant contribution from the slow conversion time of the TDC.

The overall result was that the assumptions seemed to be correct. The incredible speed ($3 \mu \mathrm{~s}$) at which the energy analysis is performed allows the fast clear input to be utilized in the TDC. If the event is invalid at the end of the maximum time that a valid event could be detected, then the system generates a clear and the conversion time of the TDC does not have to be realized. If the event is valid, then the slowness of the computer overshadows the long conversion time of the TDC, since it takes longer for the computer to request the data than it does for the TDC to provide its conversion result.

Obviously, the best future plan would be to replace the TDC with a timing device that is faster, but functionally equivalent. In order to get the most benefit out of that improvement, a faster computer would have to accompany this change, since a faster TDC would tend to elucidate the slowness of the computer. A faster TDC would require the placement of a wait loop in the interrupt service routine, since the TDC in the current system is ready to provide data at the same time the computer is ready to receive it. Replacement of the computer alone may actually be a good idea for the time being, since there is a need for speed in the interrupt service routine after the TDC data has been read.

Any increase in the execution speed of the service routine would provide an increase in the system performance as a whole. There is also a need for bigger capacity floppy and hard disk drives, since a data file for the new spectrometer averages about 450 kbytes. This need could be taken care of by the purchase of the faster computer, so the benefits of this change would be two-fold.

As far as the true test is concerned, the spectrometer needs to be used over a period of time in order to uncover any bugs that may exist. At this point in time there are no known bugs in the design, but in all likelihood there are some hidden problems. The pure complexity of the system makes it improbable that it is glitch-free. One mystery that has arisen is a problem in the data in very close proximity to T_{0}. It is not known at this time what is the cause, but when an attempt to fit the experimental data in this region the quality of the fit is diminished considerably. There is reason to believe that there is some cross-talk in the TDC that causes it to "hiccup" when two stops occur at the same time in the region of T_{0}. One fix for this may be to have the self-stop channels "staggered" in time in the TDC instead of having them all tuned to a count of about 20. This would alleviate the possibility that there is some confusion instilled in the TDC as a result of the close proximity of the self-stop channels. The T_{0} for each of the sectors could be calibrated and stored in the same manner as it is currently, so the sector-to-sector (relative) shift would not be a problem.

In Appendix A there is a list of most of the known PAC probes. By close inspection, it was noticed that there is one probe that has a start gamma ray and two different stop gamma rays $\left({ }^{131} \mathrm{Te}^{\mathrm{m}}\right)$. If this probe were used in the new system, it would be one of the first times that two different cascades were recorded at the same time (successfully). There is also a probe that has two start gamma rays and one stop gamma ray (${ }^{99} \mathrm{Rh}$). It is improbable that anyone has ever performed an experiment using that sort of probe, thus it would be an excellent demonstration of the capabilities of the new system. It is the opinion of the author that there are other candidates for this type of probe and that they have not been discovered, because they have not been pursued.

References

1. D. Kurt Gaskill, Ph. D. Thesis, Oregon State University (1984), unpublished.
2. Herbert Jaeger, Ph. D. Thesis, Oregon State University (1987), unpublished.
3. Heinz D. Fuchs, M. S. Thesis, Oregon State University (1990), unpublished.
4. H. T. Su, Ph. D. Thesis, Oregon State University (1989), unpublished.
5. Georg Weidlich, M. S. Thesis, Oregon State University (1989), unpublished.
6. Rainer Schwenker, M. S. Thesis, Oregon State University (1990), unpublished.
7. Ruiping Wang, Ph. D. Thesis, Oregon State University (1991), unpublished.
8. A. Lerf and T. Buttz, Hyperfine Interactions 36, 275 (1987).
9. R. Vianden, Hyperfine Interactions 15/16, 1081 (1983).
10. H. H. Rinneberg, Atomic Energy Review, 17, 477 (1979).
11. J. D. Jackson, Classical Electrodynamics, 2nd edition, John Wiley \& Sons, New York (1975), Chapter 16.
12. H. Frauenfelder and R. M. Steffen, Alpha-Beta- and Gamma-Ray Spectroscopy, Vol. 2, edited by K. Siegbahn, North-Holland, Amsterdam (1965), Chapter XIXA, pp 997-1198.
13. D. Kurt Gaskill, Ph. D. Thesis, Oregon State University (1984), unpublished.
14. Herbert Jaeger, Ph. D. Thesis, Oregon State University (1987), unpublished.
15. H. T. Su, Ph. D. Thesis, Oregon State University (1989), unpublished.
16. Georg Weidlich, M. S. Thesis, Oregon State University (1989), unpublished.
17. Heinz D. Fuchs, M. S. Thesis, Oregon State University (1990), unpublished.
18. Rainer Schwenker, M. S. Thesis, Oregon State University (1990), unpublished.
19. Ruiping Wang, Ph. D. Thesis, Oregon State University (1991), unpublished.
20. Herbert Jaeger, Ph. D. Thesis, Oregon State University (1987), unpublished.
21. H. T. Su, Ph. D. Thesis, Oregon State University (1989), unpublished.
22. H Jaeger, J. A. Gardner, H. T. Su and R.L. Rasera, Rev. Sci. Instrum. 58, 1694 (1987).
23. H. T. Su, Ph. D. Thesis, Oregon State University (1989), unpublished, p. 75.
24. A. R. Arends, C. Hohennemser, F. Pleiter, H. De Waard, L. Chow, and R. M. Sutter, Hyperfine Interactions 8, 191 (1980).
25. Horowitz and Hill, The Art of Electronics, 2nd edition, Cambridge University Press, New York (1989), p. 1035.
26. J. W. Ball and M. Kaplan, J. Chem. Phys. 69, 117 (1978)
27. W. B. Blumenthal, The Chemical Behavior of Zirconium, Van Nostrand, Princeton (1958).
28. Table of Isotopes, 7th edition, edited by C. M. Lederer and V. S. Shirley, Wiley-Interscience, New York (1978), p. 521.
29. Y. A. Ellis, Nuclear Data Sheets 9, 319 (1972).
30. Y. Yeshurun and B. Arad, J. Phys. C., 7, 430 (1973).
31. P. R. Gardner and W. V. Prestwich, Canadian Journal of Physics, 48, 1430 (1970).
32. H. H. Rinneberg, Atomic Energy Review, 17, 477 (1979).

Appendices

Appendix A. Some of the known PAC probes ${ }^{32}$

PARENT/ HALF-LIFE	DECAY MODE	DAUGHTER/ HALF-LIFE(ns)	START ENERGY(keV)	$\begin{gathered} \text { STOP } \\ \text { ENERGY(keV) } \end{gathered}$
${ }^{44} \mathrm{Ti} / 47 \mathrm{a}$	EC	${ }^{44} \mathrm{Sc} / 155.8$	78.4	67.8
${ }^{99} \mathrm{Mo} / 66 \mathrm{~h}$	β	${ }^{99} \mathrm{Tc} / 3.6$	739.4	181.1
${ }^{99} \mathrm{Rh} / 15 \mathrm{~d}$	EC, β^{+}	${ }^{99} \mathrm{Ru} / 20.7$	$\begin{aligned} & 528.2 \\ & 353.0 \end{aligned}$	$\begin{aligned} & 89.8 \\ & 89.8 \end{aligned}$
${ }^{100} \mathrm{Pd} / 3.6 \mathrm{~d}$	EC	${ }^{100} \mathrm{Rh} / 214.5$	84.0	74.8
${ }^{111} \mathrm{Ag} / 7.5 \mathrm{~d}$	β	${ }^{111} \mathrm{Cd} / 84.1$	96.3	245.4
${ }^{111} \mathrm{Cd}^{\mathrm{m}} / 48.6 \mathrm{~m}$	IT	${ }^{111} \mathrm{Cd} / 84.1$	150.6	245.4
${ }^{111} \mathrm{In} / 2.8 \mathrm{~d}$	EC	${ }^{111} \mathrm{Cd} / 84.1$	171.3	245.4
${ }^{115} \mathrm{Cd} / 53.4 \mathrm{~h}$	β	${ }^{115} \mathrm{In} / 6.0$	35.6	492.2
${ }^{116} \mathrm{Sb}^{\mathrm{m}} / 60.4 \mathrm{~m}$	EC, β^{+}	${ }^{116} \mathrm{Sn} / 370$	542.9	1072.4
${ }^{117} \mathrm{Cd} / 2.4 \mathrm{~h}$	β	${ }^{117} \mathrm{In} / 58.7$	89.7	344.5
${ }^{118} \mathrm{Sb}^{\mathrm{m}} / 5.0 \mathrm{~h}$	EC, β^{+}	${ }^{118} \mathrm{Sn} / 21.7$	253.7	1091.5
${ }^{131} \mathrm{Te}^{\mathrm{m}} / 30 \mathrm{~h}$	β	${ }^{131} \mathrm{I} / 5.9$	$\begin{aligned} & 102.1 \\ & 102.1 \end{aligned}$	$\begin{aligned} & 200.6 \\ & 240.9 \end{aligned}$
${ }^{133} \mathrm{Ba} / 10.7 \mathrm{a}$	EC	${ }^{133} \mathrm{Cs} / 6.4$	356.0	81.0
${ }^{133} \mathrm{Ce} / 5.4 \mathrm{~h}$	EC, β^{+}	${ }^{133} \mathrm{La} / 64$	510.4	58.4
${ }^{140} \mathrm{La} / 40.3 \mathrm{~h}$	β	${ }^{140} \mathrm{Ce} / 3.4$	328.8	487.0
${ }^{155} \mathrm{~Tb} / 5.3 \mathrm{~d}$	EC	${ }^{155} \mathrm{Gd} / 6.4$	180.1	86.5
${ }^{172} \mathrm{Lu} / 6.7 \mathrm{~d}$	EC	${ }^{172} \mathrm{Yb} / 7.8$	90.6	1093.6
${ }^{177} \mathrm{Yb} / 1.9 \mathrm{~h}$	β	${ }^{177} \mathrm{Lu} / 120$	$\begin{gathered} 138.5 \\ 1080.1 \end{gathered}$	$\begin{aligned} & 150.4 \\ & 150.4 \end{aligned}$
${ }^{181} \mathrm{Hf} / 42.4 \mathrm{~d}$	β	${ }^{181} \mathrm{~T} /$ / 10.8	133.0	482.0
${ }^{187} \mathrm{~W} / 23.9 \mathrm{~h}$	β	${ }^{187} \mathrm{Re} / 563$	479.5	72.0
${ }^{199} \mathrm{Hg}^{\text {m }} / 42.6 \mathrm{~m}$	IT	${ }^{199} \mathrm{Hg} / 2.45$	374	158.4
${ }^{204} \mathrm{~Pb}^{\mathrm{m}} / 66.9 \mathrm{~m}$	IT	${ }^{204} \mathrm{~Pb} / 270$	911.7	374.7
${ }^{204} \mathrm{Bi} / 11.2 \mathrm{~h}$	EC	${ }^{204} \mathrm{~Pb} / 270$	984.0	374.7

Appendix B. List of the EPROM-based functions used to control the VME-based boards

The following pages contain the actual contents of the EPROMs on the Brain and Energy boards. They are programmed in such a way that there is no bus contention when a function is selected. The procedure for communicating with the VME card cage is to send the NULL FUNCTION, followed by the new FUNCTION. In this way, when a new FUNCTION is selected, the NULL FUNCTION is always the last FUNCTION that the system has seen. Therefore there is absolutely no chance that there could be bus contention when changing functions. It should be noted that the EPROM used for storing these FUNCTIONs has 8 address lines, which means that there is a total of 256 different FUNCTIONs that can be programmed into the system. Since there are only 28 FUNCTIONS currently programmed, there are 228 FUNCTIONs that can still be programmed. This flexibility allows for any future changes in the use of the system.

B.1. Brain board EPROM \#1 (top left-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	0	0	0	0	1	0	1	0	0A
WRITE SET-UP (VALID RAM)	01	0	0	0	0	0	1	0	1	05
WRITE (VALID RAM)	02	0	0	0	0	0	1	0	1	05
READ (VALID RAM)	03	0	0	0	0	0	1	0	0	04
WRITE SET-UP (WINDOW RAM 0)	04	0	0	0	0	0	1	0	1	05
WRITE (WINDOW RAM 0)	05	0	0	0	0	0	1	0	1	05
READ (WINDOW RAM 0)	06	0	0	0	0	0	1	0	0	04
WRITE SET-UP (WINDOW RAM 1)	07	0	0	0	0	0	1	0	1	05
WRITE (WINDOW RAM 1)	08	0	0	0	0	0	1	0	1	05
READ (WINDOW RAM 1)	09	0	0	0	0	0	1	0	0	04
WRITE SET-UP (WINDOW RAM 2)	OA	0	0	0	0	0	1	0	1	05
WRITE (WINDOW RAM 2)	OB	0	0	0	0	0	1	0	1	05
READ (WINDOW RAM 2)	0 C	0	0	0	0	0	1	0	0	04
WRITE SET-UP (WINDOW RAM 3)	OD	0	0	0	0	0	1	0	1	05
WRITE (WINDOW RAM 3)	OE	0	0	0	0	0	1	0	1	05
READ (WINDOW RAM 3)	OF	0	0	0	0	0	1	0	0	04
RUN MODE	10	0	0	0	0	1	0	0	0	08
ADC-RAM CHECK 0	20	0	0	0	0	0	0	0	0	00
ADC-RAM CHECK 1	21	0	0	0	0	0	0	0	0	00
ADC-RAM CHECK 2	22	0	0	0	0	0	0	0	0	00
ADC-RAM CHECK 3	23	0	0	0	0	0	0	0	0	00
CALIBRATE 0	80	0	0	0	0	0	0	1	0	02
CALIBRATE 1	A0	0	0	0	0	0	0	1	0	02
CALIBRATE 2	C0	0	0	0	0	0	0	1	0	02
CALIBRATE 3	E0	0	0	0	0	0	0	1	0	02

$\mathrm{D} 7=\mathrm{NO}$ CONNECTION
D6 $=$ NO CONNECTION

D5 $=$ NO CONNECTION
D4 $=$ NO CONNECTION
$\mathrm{D} 3=\mathrm{G}$ of 74LS645 CONTROLLING ADDRESS-IN FROM COMPUTER ($0 \equiv$ ENABLE)
D2 $=$ DIR of 74LS645 CONTROLLING ADDRESS-IN FROM COMPUTER ($0 \equiv$ TO COMPUTER)
$\mathrm{D} 1=\mathrm{G}$ of 74LS645 CONTROLLING DATA-IN FROM COMPUTER ($0 \equiv$ ENABLE)
D0 $=$ DIR of 74LS645 CONTROLLING DATA-IN FROM COMPUTER ($0 \equiv$ TO COMPUTER $)$

B.2. Brain board EPROM \#2 (center of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	0	1	1	0	1	0	1	1	6B
WRITE SET-UP (VALID RAM)	01	0	0	0	0	1	1	1	0	OE
WRITE (VALID RAM)	02	0	0	0	0	0	1	1	0	06
READ (VALID RAM)	03	1	0	0	0	1	1	0	0	8 C
WRITE SET-UP (WINDOW RAM 0)	04	0	1	1	0	1	0	1	1	6B
WRITE (WINDOW RAM 0)	05	0	1	1	0	1	0	1	1	68
READ (WINDOW RAM 0)	06	0	1	1	0	1	0	1	1	6 B
WRITE SET-UP (WINDOW RAM 1)	07	0	1	1	0	1	0	1	1	6 B
WRITE (WINDOW RAM 1)	08	0	1	1	0	1	0	1	1	6 B
READ (WINDOW RAM 1)	09	0	1	1	0	1	0	1	1	6 B
WRITE SET-UP (WINDOW RAM 2)	0A	0	1	1	0	1	0	1	1	6 B
WRITE (WINDOW RAM 2)	0B	0	1	1	0	1	0	1	1	6B
READ (WINDOW RAM 2)	0 C	0	1	1	0	1	0	1	1	6B
WRITE SET-UP (WINDOW RAM 3)	0D	0	1	1	0	1	0	1	1	6 B
WRITE (WINDOW RAM 3)	OE	0	1	1	0	1	0	1	1	6B
READ (WINDOW RAM 3)	0F	0	1	1	0	1	0	1	1	68
RUN MODE	10	1	0	0	0	1	1	0	0	8 C
ADC-RAM CHECK 0	20	0	1	1	0	1	0	1	1	6 B
ADC-RAM CHECK 1	21	0	1	1	0	1	0	1	1	6 B
ADC-RAM CHECK 2	22	0	1	1	0	1	0	1	1	6 B
ADC-RAM CHECK 3	23	0	1	1	0	1	0	1	1	6 B
CALIbrate 0	80	0	1	1	0	1	0	1	1	6B
CALIBRATE 1	A0	0	1	1	0	1	0	1	1	6B
CALIBRATE 2	C0	0	1	1	0	1	0	1	1	6B
CALIBRATE 3	E0	0	1	1	0	1	0	1	1	6B

$\mathrm{D} 7=\mathrm{DIR}$ of 74LS645 CONTROLLING DATA of VALID RAM $(0 \equiv$ INTO RAM $)$
$\mathrm{D} 6=\mathrm{G}$ of 74LS645 CONTROLLING DATA of VALID RAM ($0 \equiv$ ENABLE $)$
$\mathrm{D} 5=\mathrm{G}$ of 74LS645 CONTROLLING ADDRESS of VALID RAM $(0 \equiv$ ENABLE $)$
D4 $=$ DIR of 74LS645 CONTROLLING ADDRESS of VALID RAM ($0 \equiv$ INTO RAM)
$\mathrm{D} 3=\mathrm{WE}$ of VALID RAM $(0 \equiv$ WRITE ENABLED $)$
$\mathrm{D} 2=\mathrm{CS} 2$ of VALID RAM $(1 \equiv$ SELECTED $)$
$\mathrm{D} 1=\mathrm{OE}$ of VALID RAM $(0 \equiv$ OUTPUT ENABLED $)$
$\mathrm{D} 0=\mathrm{CS} 1$ of VALID RAM $(0 \equiv$ SELECTED $)$

B.3. Energy board 0 - EPROM \#1 (left-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (VALID RAM)	01	1	1	1	0	1	0	1	1	EB
WRITE (VALID RAM)	02	1	1	1	0	1	0	1	1	EB
READ (VALID RAM)	03	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	0	1	1	1	0	EE
WRITE (WINDOW RAM 0)	05	1	1	1	0	0	1	1	0	E6
READ (WINDOW RAM 0)	06	1	1	1	0	1	1	0	0	EC
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 1)	08	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 1)	09	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 2)	0 A	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 2)	0 B	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 2)	0 C	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 3)	0D	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 3)	0 E	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 3)	0F	1	1	1	0	1	0	1	1	EB
RUN MODE	10	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 0	20	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 1	21	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 2	22	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 3	23	1	1	1	0	1	0	1	1	EB
CALIBRATE 0	80	1	1	0	0	1	0	1	1	CB
CALIBRATE 1	A0	1	1	1	0	1	0	1	1	EB
CALIBRATE 2	C0	1	1	1	0	1	0	1	1	EB
Calibrate 3	E0	1	1	1	0	1	0	1	1	EB

D7 = INPUT "AND" GATE for RESET OF SECOND START ONE-SHOT ($0 \equiv$ RESET)
D6 = INPUT "AND" GATE for RESET OF FIRST START ONE-SHOT ($0 \equiv$ RESET)
$\mathrm{D} 5=\mathrm{CS}$ OF $\mathrm{ADC}(0 \equiv \mathrm{ENABLED})$
D4 $=$ NO CONNECTION
D3 $=$ WE OF WINDOW RAM ($0 \equiv$ WRITE ENABLED $)$
D2 $=\operatorname{CS} 2$ OF WINDOW RAM ($1 \equiv$ SELECTED)
D1 $=$ OE OF WINDOW RAM ($0 \equiv$ OUTPUT ENABLED $)$
D0 $=$ CS1 OF WINDOW RAM ($0 \equiv$ SELECTED $)$

B.4. Energy board 0 - EPROM \#2 (right-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (VALID RAM)	01	1	1	1	1	1	1	0	0	FC
WRITE (VALID RAM)	02	1	1	1	1	1	1	0	0	FC
READ (VALID RAM)	03	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 0)	04	0	0	1	1	1	1	0	0	3 C
WRITE (WINDOW RAM 0)	05	0	0	1	1	1	1	0	0	3C
READ (WINDOW RAM 0)	06	0	0	1	1	1	1	0	1	3D
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 1)	08	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 1)	09	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 2)	0A	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 2)	OB	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 2)	0 C	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 3)	0D	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 3)	OE	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 3)	OF	1	1	1	1	1	1	0	0	FC
RUN MODE	10	1	1	1	1	0	0	0	0	F0
ADC-RAM CHECK 0	20	0	1	1	1	0	0	0	1	71
ADC-RAM CHECK 1	21	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 2	22	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 3	23	1	1	1	1	1	1	0	0	FC
Calibrate 0	80	1	0	1	1	1	1	1	0	BE
Calibrate 1	A0	1	1	1	1	1	1	0	0	FC
Calibrate 2	C0	1	1	1	1	1	1	0	0	FC
Calibrate 3	E0	1	1	1	1	1	1	0	0	FC

$\mathrm{D} 7=\mathrm{G}$ of 74LS645 CONTROLLING DATA of WINDOW RAM ($0 \equiv$ ENABLE)
D6 $=\mathrm{G}$ of 74 LS 645 CONTROLLING DATA of WINDOW RAM $(0 \equiv$ ENABLE $)$
D5 = INPUT "NAND" GATE for LATCH CLEAR ($0 \equiv$ CLEAR)
D4 $=$ INPUT "NAND" GATE for RESET of LATCH CLOCK ONE-SHOT ($0 \equiv$ RESET)
$\mathrm{D} 3=\mathrm{G} 1 \& \mathrm{G} 2$ of 74LS173 GAMMA LATCH $(0 \equiv$ DATA ENABLED $)$
$\mathrm{D} 2=\mathrm{M} \& \mathrm{~N}$ of 74LS173 GAMMA LATCH $(0 \equiv$ OUTPUT ENABLED $)$
D1 = DIR of 74LS645 CONTROLLING ADDRESS of WINDOW RAM $(0 \equiv$ INTO RAM $)$
D0 $=$ DIR of 74LS645 CONTROLLING DATA of WINDOW RAM $(0 \equiv$ INTO RAM $)$

B.5. Energy board 1-EPROM \#1 (left-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (VALID RAM)	01	1	1	1	0	1	0	1	1	EB
WRITE (VALID RAM)	02	1	1	1	0	1	0	1	1	EB
READ (VALID RAM)	03	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 0)	05	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 0)	06	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	0	1	1	1	0	EE
WRITE (WINDOW RAM 1)	08	1	1	1	0	0	1	1	0	E6
READ (WINDOW RAM 1)	09	1	1	1	0	1	1	0	0	EC
WRITE SET-UP (WINDOW RAM 2)	0A	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 2)	OB	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 2)	OC	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 3)	OD	1	1	1	0	1	0	1	1	EB
WRIIE (WINDOW RAM 3)	0E	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 3)	0F	1	1	1	0	1	0	1	1	EB
RUN MODE	10	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 0	20	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 1	21	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 2	22	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 3	23	1	1	1	0	1	0	1	1	EB
Calibrate 0	80	1	1	1	0	1	0	1	1	EB
CALIbRATE 1	A0	1	1	0	0	1	0	1	1	CB
CALIBRATE 2	C0	1	1	1	0	1	0	1	1	EB
CALIBRATE 3	E0	1	1	1	0	1	0	1	1	EB

D7 = INPUT "AND" GATE for RESET OF SECOND START ONE-SHOT ($0 \equiv$ RESET $)$
D6 = INPUT "AND" GATE for RESET OF FIRST START ONE-SHOT $(0 \equiv$ RESET $)$
$\mathrm{D} 5=\mathrm{CS}$ OF $\mathrm{ADC}(0 \equiv \mathrm{ENABLED})$
D4 $=$ NO CONNECTION
D3 = WE OF WINDOW RAM $(0 \equiv$ WRITE ENABLED $)$
D2 $=$ CS2 OF WINDOW RAM ($1 \equiv$ SELECTED $)$
D1 $=$ OE OF WINDOW RAM $(0 \equiv$ OUTPUT ENABLED $)$
D0 $=$ CS 1 OF WINDOW RAM $(0 \equiv$ SELECTED $)$

B.6. Energy board 1 - EPROM \#2 (right-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (VALID RAM)	01	1	1	1	1	1	1	0	0	FC
WRITE (VALID RAM)	02	1	1	1	1	1	1	0	0	FC
READ (VALID RAM)	03	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 0)	05	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 0)	06	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 1)	07	0	0	1	1	1	1	0	0	3 C
WRITE (WINDOW RAM 1)	08	0	0	1	1	1	1	0	0	3 C
READ (WINDOW RAM 1)	09	0	0	1	1	1	1	0	1	3D
WRITE SET-UP (WINDOW RAM 2)	OA	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 2)	OB	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 2)	OC	1	1	1	1	1	1	0	0	F_{C}
WRITE SET-UP (WINDOW RAM 3)	OD	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 3)	0E	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 3)	OF	1	1	1	1	1	1	0	0	FC
RUN MODE	10	1	1	1	1	0	0	0	0	F0
ADC-RAM CHECK 0	20	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 1	21	0	1	1	1	0	0	0	1	71
ADC-RAM CHECK 2	22	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 3	23	1	1	1	1	1	1	0	0	FC
Calibrate 0	80	1	1	1	1	1	1	0	0	FC
Calibrate 1	A0	1	0	1	1	1	1	1	0	BE
Calibrate 2	C0	1	1	1	1	1	1	0	0	FC
Calibrate 3	E0	1	1	1	1	1	1	0	0	FC

D7 = G of 74LS645 CONTROLLING DATA of WINDOW RAM ($0 \equiv$ ENABLE)
D6 $=\mathrm{G}$ of 74LS645 CONTROLLING DATA of WINDOW RAM ($0 \equiv$ ENABLE)
D5 = INPUT "NAND" GATE for LATCH CLEAR ($0 \equiv$ CLEAR)
D4 = INPUT "NAND" GATE for RESET of LATCH CLOCK ONE-SHOT ($0 \equiv$ RESET)
$\mathrm{D} 3=\mathrm{G} 1 \& \mathrm{G} 2$ of 74LS173 GAMMA LATCH $(0 \equiv$ DATA ENABLED $)$
$\mathrm{D} 2=\mathrm{M} \& \mathrm{~N}$ of 74LS173 GAMMA LATCH $(0 \equiv$ OUTPUT ENABLED $)$
D1 $=$ DIR of 74LS645 CONTROLLING ADDRESS of WINDOW RAM $(0 \equiv$ INTO RAM $)$
D0 $=$ DIR of 74 LS 645 CONTROLLING DATA of WINDOW RAM $(0 \equiv$ INTO RAM $)$

B.7. Energy board 2 - EPROM \#1 (left-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (VALID RAM)	01	1	1	1	0	1	0	1	1	EB
WRITE (VALID RAM)	02	1	1	1	0	1	0	1	1	EB
READ (VALID RAM)	03	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 0)	05	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 0)	06	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 1)	08	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 1)	09	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 2)	0A	1	1	1	0	1	1	1	0	EE
WRITE (WINDOW RAM 2)	0B	1	1	1	0	0	1	1	0	E6
READ (WINDOW RAM 2)	0 C	1	1	1	0	1	1	0	0	EC
WRITE SET-UP (WINDOW RAM 3)	OD	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 3)	OE	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 3)	OF	1	1	1	0	1	0	1	1	EB
RUN MODE	10	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 0	20	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 1	21	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 2	22	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 3	23	1	1	1	0	1	0	1	1	EB
Calibrate 0	80	1	1	1	0	1	0	1	1	EB
Calibrate 1	A0	1	1	1	0	1	0	1	1	EB
CALIBRATE 2	C0	1	1	0	0	1	0	1	1	CB
Calibrate 3	E0	1	1	1	0	1	0	1	0	EB

D7 = INPUT "AND" GATE for RESET OF SECOND START ONE-SHOT $(0 \equiv$ RESET $)$
D6 = INPUT "AND" GATE for RESET OF FIRST START ONE-SHOT $(0 \equiv$ RESET $)$
$\mathrm{D} 5=\mathrm{CS}$ OF $\mathrm{ADC}(0 \equiv \mathrm{ENABLED})$
$\mathrm{D} 4=\mathrm{NO}$ CONNECTION
D3 = WE OF WINDOW RAM ($0 \equiv$ WRITE ENABLED $)$
$\mathrm{D} 2=\mathrm{CS} 2$ OF WINDOW RAM $(1 \equiv$ SELECTED $)$
D1 $=$ OE OF WINDOW RAM $(0 \equiv$ OUTPUT ENABLED $)$
$\mathrm{D} 0=\mathrm{CS} 1$ OF WINDOW RAM $(0 \equiv$ SELECTED $)$

B.8. Energy board 2 - EPROM \#2 (right-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (VALID RAM)	01	1	1	1	1	1	1	0	0	FC
WRITE (VALID RAM)	02	1	1	1	1	1	1	0	0	FC
READ (VALID RAM)	03	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 0)	05	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 0)	06	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 1)	08	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 1)	09	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WNDOW RAM 2)	0A	0	0	1	1	1	1	0	0	3 C
WRITE (WINDOW RAM 2)	OB	0	0	1	1	1	1	0	0	3 C
READ (WINDOW RAM 2)	0C	0	0	1	1	1	1	0	1	3D
WRITE SET-UP (WINDOW RAM 3)	OD	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 3)	0 E	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 3)	OF	1	1	1	1	1	1	0	0	FC
RUN MODE	10	1	1	1	1	0	0	0	0	F0
ADC-RAM CHECK 0	20	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 1	21	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 2	22	0	1	1	1	0	0	0	1	71
ADC-RAM CHECK 3	23	1	1	1	1	1	1	0	0	FC.
Calibrate 0	80	1	1	1	1	1	1	0	0	FC
CALIBRATE 1	A0	1	1	1	1	1	1	0	0	FC
Calibrate 2	C 0	1	0	1	1	1	1	1	0	BE
CALIBRATE 3	E0	1	1	1	1	1	1	0	0	FC

D7 $=\mathrm{G}$ of 74LS645 CONTROLLING DATA of WINDOW RAM $(0 \equiv$ ENABLE $)$
D6 $=G$ of 74LS645 CONTROLLING DATA of WINDOW RAM $(0 \equiv$ ENABLE $)$
D5 = INPUT "NAND" GATE for LATCH CLEAR ($0 \equiv$ CLEAR)
D4 $=$ INPUT "NAND" GATE for RESET of LATCH CLOCK ONE-SHOT ($0 \equiv$ RESET)
$\mathrm{D} 3=\mathrm{G} 1 \& \mathrm{G} 2$ of 74 LS 173 GAMMA LATCH $(0 \equiv$ DATA ENABLED $)$
$\mathrm{D} 2=\mathrm{M} \& \mathrm{~N}$ of 74 LS 173 GAMMA LATCH $(0 \equiv$ OUTPUT ENABLED $)$
D1 $=$ DIR of 74LS645 CONTROLLING ADDRESS of WINDOW RAM ($0 \equiv$ INTO RAM)
D $0=$ DIR of 74 LS 645 CONTROLLING DATA of WINDOW RAM $(0 \equiv$ INTO RAM $)$

B.9. Energy board 3-EPROM \#1 (left-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (VALID RAM)	01	1	1	1	0	1	0	1	1	EB
WRITE (VALID RAM)	02	1	1	1	0	1	0	1	1	EB
READ (VALID RAM)	03	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 0)	05	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 0)	06	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 1)	08	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 1)	09	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 2)	0A	1	1	1	0	1	0	1	1	EB
WRITE (WINDOW RAM 2)	OB	1	1	1	0	1	0	1	1	EB
READ (WINDOW RAM 2)	0 C	1	1	1	0	1	0	1	1	EB
WRITE SET-UP (WINDOW RAM 3)	OD	1	1	1	0	1	1	1	0	EE
WRITE (WINDOW RAM 3)	OE	1	1	1	0	0	1	1	0	E6
READ (WINDOW RAM 3)	or	1	1	1	0	1	1	0	0	EC
RUN MODE	10	1	1	0	0	1	1	0	0	CC
ADC-RAM CHECK 0	20	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 1	21	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 2	22	1	1	1	0	1	0	1	1	EB
ADC-RAM CHECK 3	23	1	1	0	0	1	1	0	0	CC
Calibrate 0	80	1	1	1	0	1	0	1	1	EB
Calibrate 1	A0	1	1	1	0	1	0	1	1	EB
Calibrate 2	C0	1	1	1	0	1	0	1	1	EB
CALIBRATE 3	E0	1	1	0	0	1	0	1	1	CB

D7 = INPUT "AND" GATE for RESET OF SECOND START ONE-SHOT ($0 \equiv$ RESET $)$
D6 = INPUT "AND" GATE for RESET OF FIRST START ONE-SHOT ($0 \equiv$ RESET)
D5 = CS OF ADC ($0 \equiv$ ENABLED)
D4 $=$ NO CONNECTION
D3 $=$ WE OF WINDOW RAM $(0 \equiv$ WRITE ENABLED $)$
D2 $=$ CS2 OF WINDOW RAM (1 \equiv SELECTED $)$
D1 = OE OF WINDOW RAM ($0 \equiv$ OUTPUT ENABLED $)$
D0 $=\mathrm{CS} 1$ OF WINDOW RAM $(0 \equiv$ SELECTED $)$

B.10. Energy board 3-EPROM \#2 (right-hand side of board)

FUNCTION	ADDRESS	D7	D6	D5	D4	D3	D2	D1	D0	HEX
NULL FUNCTION (ISOLATION)	00	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (VALID RAM)	01	1	1	1	1	1	1	0	0	FC
WRITE (VALID RAM)	02	1	1	1	1	1	1	0	0	FC
READ (VALID RAM)	03	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 0)	04	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 0)	05	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 0)	06	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 1)	07	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 1)	08	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 1)	09	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 2)	0A	1	1	1	1	1	1	0	0	FC
WRITE (WINDOW RAM 2)	OB	1	1	1	1	1	1	0	0	FC
READ (WINDOW RAM 2)	0C	1	1	1	1	1	1	0	0	FC
WRITE SET-UP (WINDOW RAM 3)	OD	0	0	1	1	1	1	0	0	3C
WRITE (WINDOW RAM 3)	OE	0	0	1	1	1	1	0	0	3 C
READ (WINDOW RAM 3)	OF	0	0	1	1	1	1	0	1	3D
RUN MODE	10	1	1	1	1	0	0	0	0	F0
ADC-RAM CHECK 0	20	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 1	21	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 2	22	1	1	1	1	1	1	0	0	FC
ADC-RAM CHECK 3	23	0	1	1	1	0	0	0	1	71
calibrate 0	80	1	1	1	1	1	1	0	0	FC
CALIBRATE 1	A0	1	1	1	1	1	1	0	0	FC
Calibrate 2	C0	1	1	1	1	1	1	0	0	FC
CALIBRATE 3	E0	1	0	1	1	1	1	1	0	BE

$\mathrm{D} 7=\mathrm{G}$ of 74LS645 CONTROLLING DATA of WINDOW RAM ($0 \equiv$ ENABLE $)$
D6 $=\mathrm{G}$ of 74LS645 CONTROLLING DATA of WINDOW RAM ($0 \equiv$ ENABLE)
D5 = INPUT "NAND" GATE for LATCH CLEAR ($0 \equiv$ CLEAR)
D4 $=$ INPUT "NAND" GATE for RESET of LATCH CLOCK ONE-SHOT $(0 \equiv$ RESET $)$
$\mathrm{D} 3=\mathrm{G} 1 \& \mathrm{G} 2$ of 74LS173 GAMMA LATCH ($0 \equiv$ DATA ENABLED $)$
$\mathrm{D} 2=\mathrm{M} \& \mathrm{~N}$ of 74LS173 GAMMA LATCH ($0 \equiv$ OUTPUT ENABLED)
$\mathrm{D} 1=\mathrm{DIR}$ of 74LS645 CONTROLLING ADDRESS of WINDOW RAM ($0 \equiv$ INTO RAM)
D $0=$ DIR of 74LS645 CONTROLLING DATA of WINDOW RAM ($0 \equiv$ INTO RAM)
C. The PCB Artwork used in the etching process (reduced from full-size)

On the following pages is a copy of the actual artwork used in the photo etching process for the Brain and Energy boards. They are shown for the purpose of being complete and are being shown without any embellishment.

C.1. The solder side of the Brain board

C.2. The component side of the Brain board

C.3. The solder side of the Energy boards

C.4. The component side of the Energy boards

D. Assembly language listing of the program VMEASS.ASM

In this appendix, the listing of the Assembly language program VMEASS.ASM can be found. This program performs the task of setting up the interrupt service routines and their associated data space. The listing of the actual interrupt service routines are contained within the structure of the main program, as the routines are implemented using a Terminate-and-Stay-Resident (TSR) method. For this reason, this program must be executed before any of the other programs. The listing are presented here without detailed explanation, but they can be understood the experienced programmer by reading the commented source code.

.MODEL COMPACT

STACK SEGMENT PARA STACK 'STACK'
DB 200H DUP (?)
;200 (HEX) BYTE STACK DEFINITION
STACK ENDS

DATA SEGMENT BYTE PUBLIC 'DATA'

```
;---------------------------------------
```

H1_PORTA	EQU	0300 H
INTDATA	EQU	0300 H

H1_PORTB	EQU	0301 H	$;$ HEADER 1 ADDRESSES FOR
FUNKTION	EQU	0301 H	$;$
H1_PORTC	EQU	0302 H	;CONTROL REGISTER AND PORTS
FUNINTSTUFF	EQU	0302 H	$;$
H1_CONTROL			
FUNCONTROL	EQU	0303 H	$;$
	EQU	0303 H	$;$

;---------------------------------------

H2_PORTA	EQU	0304 H	$;$
VMEDATA	EQU	0304 H	$;$
H2_PORTB			
VMEADDLOW	EQU	0305 H	$;$ HEADER 2 ADDRESSES FOR
		0305 H	$;$
H2_PORTC	EQU	0306 H	$;$ CONTROL REGISTER AND PORTS
VMEADDHIGH	EQU	0306 H	$;$
H2_CONTROL	EQU	0307 H	$;$
ADDATACONTROL	EQU	0307 H	$;$

H3_PORTA	EQU	0308H	;
TDCOUT	EQU	0308H	;
H3_PORTB	EQU	0309H	;HEADER 3 ADDRESSES FOR
TDCHIGHIN	EQU	0309H	;
H3_PORTC	EQU	030AH	;CONTROL REGISTER AND PORTS
TDCLOWIN	EQU	030AH	;CONTROL REGISTER AND PORTS
H3_CONTROL	EQU	030BH	;
TDCCONTROL	EQU	030 BH	;
;**			
PC0_RESET	EQU	00 H	;
FUNCLOCK_LOW	EQU	00 H	;PORT C - BIT \#0 SET/RESET FUNCTIONS
PC0_SET	EQU	01H	;SENT TO THE CONTROL REGISTERS OF 8255
FUNCLOCK_HIGH	EQU	01H	;
PC1_RESET	EQU	02H	;
FUNCTION_ENABLE	EQU	02H	;PORT C - BIT \#1 SET/RESET FUNCTIONS
PC1_SET	EQU	03H	;SENT TO THE CONTROL REGISTERS OF 8255
FUNCTION_DISABLE	EQU	03H	:SENT TO THE CONTROL REGISTERS OF 8255
PC2_RESET	EQU	04H	;
SOFTRESET_LOW	EQU	04H	;PORT C - BIT \#2 SET/RESET FUNCTIONS
PC2_SET	EQU	05H	;SENT TO THE CONTROL REGISTERS OF 8255
SOFTRESET_HIGH	EQU	05H	:SENT
PC3_RESET	EQU	06H	;PORT C - BIT \#3 SET/RESET FUNCTIONS
PC3_SET	EQU	07H	;SENT TO THE CONTROL REGISTERS OF 8255
PC4_RESET	EQU	08H	;
INTERRUPT_OFF	EQU	08H	;PORT C - BIT \#4 SET/RESET FUNCTIONS
PC4_SET	EQU	09H	;SENT TO THE CONTROL REGISTERS OF 8255
INTERRUPT_ON	EQU	09H	
;***************************************			
FUN_MODE	EQU	0B8H	;MODE CONTROL WORD - FUNCTION HEADER
TDC_MODE	EQU	8BH	;MODE CONTROL WORD - TDC HEADER
READ_RAM	EQU	50 H	;MODE CONTROL WORDS
WRITE_RAM	EQU	80H	;FOR DATA/ADDRESS HEADER
CALIBRATION	EQU	9BH	;THESE SETTINGS DEPEND
RUN_MODE	EQU	9BH	;ON VME BUS STATUS

TDC_OFF	EQU	0FFH	;FUNCTION SENT TO TDC - TURNS BUS OFF
TDCREAD_0	EQU	0BFH	;FUNCTION SENT TO TDC - READ CHANNEL 0
TDCREAD_1	EQU	OBEH	;FUNCTION SENT TO TDC - READ CHANNEL 1
TDCREAD_2	EQU	OBDH	;FUNCTION SENT TO TDC - READ CHANNEL 2
TDCREAD_3	EQU	0BCH	;FUNCTION SENT TO TDC - READ CHANNEL 3
TDCREAD_4	EQU	OBBH	;FUNCTION SENT TO TDC - READ CHANNEL 4
TDCREAD_5	EQU	OBAH	;FUNCTION SENT TO TDC - READ CHANNEL 5
TDCREAD_6	EQU	089H	;FUNCTION SENT TO TDC - READ CHANNEL 6
TDCREAD_7	EQU	0B8H	;FUNCTION SENT TO TDC - READ CHANNEL 7
;***************************************			
I8259_CONTROL	EQU	20H	;PORT ADDRESS-8259 CONTROL REGISTER
I8259_IMASKR	EQU	21H	;PORT ADDRESS-8259 IRQ MASK REGISTER
END_OF_INT	EQU	20H	;END OF INTERRUPT SIGNAL
LOWINT_ENABLE	EQU	0 F 8 H	;BYTE ENABLES IRQ 0, 1 AND 2 (ON PC BUS)
IRQ3_INT	EQU	11	;INT\# = IRQ\#+8 (WE USE IRQ3 FOR XT'S)
QB_INT	EQU	7H	;INTERRUPT FOR QuickBASIC PROGRAMS
MCA_ARRAY	DB	400H DUP (0)	;MCA DATA ARRAY
PLOT_SCALE	DW	1	;PLOTTING SCALE
BIT	DW	0	;PLOTTING BIT
BITE	DW	0	;PLOTTING BYTE
BYTEBIT	DB	0	;PLOTTING BIT IN BYTE
COUNTS	DW	0	;COUNT VALUE
SCOUNT	DB	0	;SCALED COUNT VALUE
ENERGY	DW	0	;BOTH BYTES OF ENERGY
SEGTABLE	DW	18H DUP (0)	;LOOK-UP TABLE FOR SECTOR SEGMENTS
START_TABLE	DB	18H DUP (0)	;LOOK UP TABLE FOR START CHANNELS
STOP_TABLE	DB	18H DUP (0)	;LOOK UP TABLE FOR STOP CHANNELS
TABLE_OFFSET	DW	(0)	;WORD HOLDS OFFSET WITHIN THE TABLES
DATA ENDS			;END OF DATA SEGMENT
S011 SEGMENT PARA PUBLIC 'DATA' SECTOR011 DW 1000H DUP (0) S011 ENDS			;DATA SEGMENT FOR SECTOR \#0 - 011
			;START 0-STOP 1 (LOW ENERGY)
;--1.-			
S021 SEGMENT PARA PUBLIC 'DATA'			;DATA SEGMENT FOR SECTOR \#1-021

SECTOR021 DW 1000H DUP (0)
S021 ENDS

S012 SEGMENT PARA PUBLIC 'DATA'	;DATA SEGMENT FOR SECTOR \#3-012
SECTOR012 DW 1000H DUP (0)	
S012 ENDS	;START 0 - STOP 1 (HIGH ENERGY)

S022 SEGMENT PARA PUBLIC 'DATA' ;DATA SEGMENT FOR SECTOR \#4-022
SECTOR022 DW 1000H DUP (0) ;
S022 ENDS
;
;START 0 - STOP 2 (HIGH ENERGY)

S032 SEGMENT PARA PUBLIC ' DATA'	;DATA SEGMENT FOR SECTOR \#5 - 032
SECTOR032 DW 1000H DUP (0)	
S032 ENDS	;START 0 - STOP 3 (HIGH ENERGY)

S101 SEGMENT PARA PUBLIC 'DATA'	;DATA SEGMENT FOR SECTOR \#6-101
SECTOR 101 DW 1000H DUP (0)	
S101 ENDS	;START 1 - STOP 0 (LOW ENERGY)

S121 SEGMENT PARA PUBLIC 'DATA' SECTOR 121 DW 1000H DUP (0) S121 ENDS	;DATA SEGMENT FOR SECTOR \#7 - 121 ;START 1 - STOP 2 (LOW ENERGY)
S131 SEGMENT PARA PUBLIC 'DATA' SECTOR 131 DW 1000H DUP (0)	;DATA SEGMENT FOR SECTOR \#8-131
S131 ENDS	;START 1 - STOP 3 (LOW ENERGY)

S102 SEGMENT PARA PUBLIC 'DATA' SECTOR102 DW 1000H DUP (0) S102 ENDS
;
;START 1 - STOP 0 (HIGH ENERGY)

S311 SEGMENT PARA PUBLIC 'DATA' SECTOR311 DW 1000H DUP (0) S311 ENDS	;DATA SEGMENT FOR SECTOR \#19-311 ;START 3 - STOP 1 (LOW ENERGY)
S321 SEGMENT PARA PUBLIC 'DATA' SECTOR321 DW 1000H DUP (0) S321 ENDS	$\begin{aligned} & \text {;DATA SEGMENT FOR SECTOR \#20-321 } \\ & ; \\ & ; \text { START } 3-\text { STOP } 2 \text { (LOW ENERGY) } \end{aligned}$
S302 SEGMENT PARA PUBLIC 'DATA' SECTOR302 DW 1000H DUP (0) S302 ENDS	;DATA SEGMENT FOR SECTOR \#21-302 ;START 3 - STOP 0 (HIGH ENERGY)
```S312 SEGMENT PARA PUBLIC 'DATA' SECTOR312 DW 1000H DUP (0) S312 ENDS```	;DATA SEGMENT FOR SECTOR \#22-312 ;START 3 - STOP 1 (HIGH ENERGY)
S322 SEGMENT PARA PUBLIC 'DATA' SECTOR322 DW 1000H DUP (0) S322 ENDS	```;DATA SEGMENT FOR SECTOR #23-322 ;START 3-STOP 2 (HIGH ENERGY)```
CODE SEGMENT PARA PUBLIC 'CODE'	;THE CODE SEGMENT (EXECUTABLE STUFF)
ASSUME CS:CODE,DS:DATA,ES:DATA,SS:STAC	- CK (SEMBLER DIRECTIVES
******************************************	**********************
PAC_INT PROC NEAR	;THE HARDWARE (RUN) INTERRUPT ROUTINE
PUSH AX	;SAVE AX REGISTER
PUSH BX	;SAVE BX REGISTER
PUSH CX	;SAVE CX REGISTER
PUSH DX	;SAVE DX REGISTER
PUSH DS	;SAVE DS REGISTER
PUSH ES	;SAVE ES REGISTER
PUSH DI	;SAVE DI REGISTER
PUSH SI	;SAVE SI REGISTER
MOV AX,DATA ;	;SET AX TO POINT TO DATA SEGMENT

MOV DS,AX

MOV DX,INTDATA
IN AL,DX
MOV AH,0H
CMP AX, 17H
JNG OK
JMP FAR PTR BAD
OK: NOP
MOV TABLE_OFFSET,AX
MOV DX,AX
ADD DX,AX
MOV BX,OFFSET SEGTABLE
ADD BX,DX
MOV CX,WORD PTR [BX]
MOV ES,CX

MOV CX,5H
WATE: NOP
DEC CX
JZ BAD
MOV DX,TDCHIGHIN
IN AL,DX
AND AX,10H
JNZ WATE

MOV BX,OFFSET START_TABLE
ADD BX,TABLE_OFFSET
MOV AL,BYTE PTR [BX]
MOV DX,TDCOUT
OUT DX,AL

AND AL,0EFH
OUT DX,AL
MOV DX,TDCHIGHIN
IN AL,DX
MOV DX,AX
AND DX, 8 H
JZ BAD

XOR AL,0FFH
AND AL,7H
MOV AH,AL
;MOVE THIS TO THE DS REGISTER
;READ THE VME DATA WHICH ;CONTAINS THE ROUTING BYTE ;ZERO THE HIGH BYTE OF AX
;COMPARE THE ROUTING TO 23 TO SEE IF IT ;IS ALLOWED - THERE ARE ONLY 23 SECTORS
;JUMP IF ROUTING IS INCORRECT
;ARRIVAL HERE IF ROUTING IS OK
;STORE THE LOOK-UP-TABLE OFFSET
;MULTIPLY AX BY TWO ;(TWO BYTES PER ENTRY)
;GET SEGMENT-TABLE OFFSET
;ADD OFFSET (CALCULATED FROM ROUTING)
;GET THE ACTUAL SEGMENT ADDRESS
;ES NOW HOLDS SEGMENT OF SECTOR ARRAY
;LOOP IS EXECUTED THIS AMOUNT OF TIMES
;LOOPING POINT FOR THE WAIT LOOP
;DECREMENT THE "TIMER" VARIABLE
;THE POINT IS BAD IF WE WAIT THIS LONG
;SET UP DX FOR TDC READ
;READ THE HIGH TDC INPUT BITS
;ISOLATE THE LOOK-AT-ME BIT (BIT \#4)
;LOOP IF LOOK-AT-ME IS STILL HIGH
;GET THE START-TABLE OFFSET
;ADD THE OFFSET (THE ROUTING)
;GET THE CORRECT READ INSTRUCTION
;SET UP DX FOR TDC READ
;OUTPUT THE READ INSTRUCTION
;ASSERT THE STROBE BIT WITH THIS MASKING ;OUTPUT READ INSTRUCTION AND STROBES
;SET UP DX FOR TDC READ
;READ THE HIGH DATA BITS OF THE START
;MOVE THE READ RESULT TO DX FOR TESTING ;CHECK FOR OVERFLOW BIT (DATA BIT \#12) ;JUMP OUT IF IT IS SET - BAD DATA
;iNVERT THE HIGH TIMING (INVERSE LOGIC) ;MASK OUT THE TDC STATUS BITS ;MOVE THE HIGH BITS INTO AH

MOV DX,TDCLOWIN
IN AL,DX
XOR AL,0FFH
CMP AX,2000
JG BAD

CMP AX, 15
JL BAD
MOV CX,AX

MOV DX,TDCOUT
MOV AL,TDC_OFF
OUT DX,AL

MOV BX,OFFSET STOP TABLE
ADD BX,TABLE_OFFSET
MOV AL,BYTE PTR [BX]
MOV DX,TDCOUT
OUT DX,AL

AND AL,0EFH
OUT DX,AL

MOV DX,TDCHIGHIN
IN AL,DX

MOV DX,AX
AND DX,8H
JZ BAD

XOR AL,0FFH
AND AL,7H
MOV AH,AL

MOV DX,TDCLOWIN
IN AL,DX
XOR AL,0FFH
CMP AX,2000
JG BAD

CMP AX, 15
JL BAD

ADD AX,2048

SUB AX,CX

MOV BX,AX
ADD BX,AX
;SET UP DX FOR TDC READ
;READ THE LOW DATA BITS OF THE START ;INVERT THE HIGH TIMING (INVERSE LOGIC)
;COMPARE DATA TO 2000 (ABOUT FULL SCALE)
;JUMP OUT IF IT IS GREATER - BAD DATA
;COMPARE DATA TO 42 (ALMOST ZERO TIME) ;JUMP OUT IF IT IS GREATER - BAD DATA
;SAVE THE TIME FROM TDC START CHANNEL
;SET UP DX FOR TDC "BUS OFF" ;SET UP AL FOR TDC "BUS OFF" ;TURN OFF THE TDC BUS
;GET THE STOP-TABLE OFFSET
;ADD THE OFFSET (THE ROUTING)
;GET THE CORRECT READ INSTRUCTION
;SET UP DX FOR TDC READ
;OUTPUT THE READ INSTRUCTION
;ASSERT THE STROBE BIT WITH THIS MASKING ;OUTPUT READ INSTRUCTION AND STROBES
;SET UP DX FOR TDC READ ;READ THE HIGH DATA BITS OF THE STOP
;MOVE THE READ RESULT TO DX FOR TESTING ;CHECK FOR OVERFLOW BIT (DATA BIT \#12)
;JUMP OUT IF IT IS SET - BAD DATA
;INVERT THE HIGH TIMING (INVERSE LOGIC)
;MASK OUT THE TDC STATUS BITS
;MOVE THE HIGH BITS INTO AH
;SET UP DX FOR TDC READ
;READ THE LOW DATA BITS OF THE STOP ;INVERT THE HIGH TIMING (INVERSE LOGIC)
;COMPARE DATA TO 2000 (ABOUT FULL SCALE) ;JUMP OUT IF IT IS GREATER - BAD DATA
;COMPARE DATA TO 42 (ALMOST TIME ZERO) ;JUMP OUT IF IT IS GREATER - BAD DATA
;MOVE TIME=0 TO THE MIDDLE OF THE ARRAY
;ACTUAL TIME $=$ STOP - START (CHANNELS)
;MOVE THE RESULT TO BX AND THEN ;MULTIPLY BY 2 (2 BYTES PER COUNT)

$\qquad$

F1: CMP AH,01H
JNE F2
MOV AX,0H
L10: NOP
MOV BX,OFFSET SEGTABLE
ADD BX,AX
ADD BX,AX
MOV CX,WORD PTR[BX]
MOV ES,CX
MOV BX,0H
L1I: NOP
MOV WORD PTR ES:[BX],0H
INC BX
INC BX
CMP BX,8192
JNE LII
INC AX
CMP AX,24
JNE Llo
JMP F8
$\qquad$
F2: CMP AH,02H
JNE F3
MOV AH,0H
MOV BX,OFFSET SEGTABLE
ADD BX,AX
ADD BX,AX
MOV CX,WORD PTR [BX]
MOV ES,CX
MOV BX,0H
L2: NOP
MOV WORD PTR ES:[BX],0H
INC BX
INC BX
CMP BX,8192
JNE L2
JMP F8
$\qquad$

## JNE F4

MOV AH,00H
MOV BX,OFFSET SEGTABLE
ADD BX,AX
ADD BX,AX
MOV CX,WORD PTR [BX]
PUSH DS
MOV DS,CX
MOV BX,0H
L3: NOP
MOV CX,WORD PTR DS:[BX]
MOV ES:[SI],CX
INC BX
INC BX
INC SI
INC SI
CMP BX,8192
JNE L3
POP DX
MOV DS,DX
JMP F8
;..............................
F4: CMP AH, 04 H
JNE F5
;***** NOT A CURRENT FUNCTION
JMP F8
$\qquad$
F5: CMP AH,05H
JNE F8
PUSH DS
MOV AX,SEG MCA_INT
MOV DS,AX
MOV DX,OFFSET MCA_INT
MOV AL,IRQ3_INT
MOV AH,25H
INT 21 H
MOV AX,SEG MCAINT7
;JUMP IF NOT FUNCTION 3
;ZERO AH, AL CONTAINS THE SECTOR NUMBER ;GET SEGMENT-TABLE OFFSET
;ADD TWICE THE SECTOR NUMBER TO GET THE ;PROPER SEGMENT ADDRESS IN THE TABLE
;GET THE ACTUAL SEGMENT ADDRESS (WORD)
;SAVE THE DS REGISTER
;MOVE THE SEGMENT ADDRESS TO DS

## ;CLEAR BX

;LOOPING POINT
;GET THE NUMBER OF COUNTS FROM MEMORY ;STORE THIS IN QuickBASIC ARRAY
;INCREMENT SOURCE POINTER (FIRST TIME) ;INCREMENT SOURCE POINTER (SECOND TIME) ;INCREMENT DESTINATION POINTER (FIRST) ;INCREMENT DESTINATION POINTER (SECOND) ;CHECK IF AT THE END OF THE SECTOR ARRAY ;IF NOT - JUMP TO LOOPING POINT
;
;RESTORE THE DATA SEGMENT REGISTER
;FUNCTION DONE - GO RESET AND RETURN
;TRANSFER DATA FROM QUICKBASIC ARRAY ;JUMP IF NOT FUNCTION 4
;FUNCTION DONE - GO RESET AND RETURN

```
;SWITCH TO MCA MODE
;JUMP IF NOT FUNCTION 5
;SAVE THE DATA SEGMENT REGISTER
;GET SEGMENT OF INTERRUPT ROUTINE
;MOVE INTO DS FOR INT 21H (25H)
;
;CHANGE THE OLD VECTOR TO ;POINT TO THE NEW ROUTINE ;
;GET SEGMENT OF INTERRUPT ROUTINE
```

```
MOV DS,AX
MOV DX,OFFSET MCAINT7
MOV AL,QB INT
MOV AL,QB INT
MOV AH,25H
INT 21H
POP DX
MOV DS,DX
;MOVE INTO DS FOR INT 21H (25H)
MOV DX,OFFSET MCAINT7
;
MOV AH,25H
INT 21 H
;CHANGE THE OLD VECTOR TO ;POINT TO THE NEW ROUTINE
POP DX
MOV DS,DX
;RESTORE THE DATA SEGMENT REGISTER
```

$\qquad$

F8: IRET
PACINT7 ENDP
;RETURN FROM INTERRUPT
;END OF INTERRUPT ROUTINE

$; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *$	
MCA_INT PROC NEAR	
MUSW INTERRUPT ROUTINE	
PUSH AX	
PUSH BX	;SAVE AX REGISTER
PUSH CX	;SAVE BX REGISTER
PUSH DX	;SAVE CX REGISTER
PUSH BP	;SAVE DX REGISTER
PUSH DS	;SAVE BP REGISTER
PUSH ES	;SAVE DS REGISTER
PUSH DI	;SAVE ES REGISTER
PUSH SI	;SAVE DI REGISTER
	;SAVE SI REGISTER
MOV AX,DATA	
MOV DS,AX	;SET AX TO POINT TO DATA SEGMENT



MOV DX,VMEADDLOW
IN AL,DX
MOV AH,0
;VMEADDLOW $=0305 \mathrm{H}=773 \mathrm{D}$
;READ THE ENERGY BYTE
;ZERO THE HIGH BYTE OF AX

MOV ENERGY,AX
ADD AX,ENERGY
MOV BX,OFFSET MCA_ARRAY
MOV CX,02H
MUL CX
ADD BX,AX

MOV AX,DATA
MOV ES,AX
MOV AX,ES:[BX]
CALL PLOT
;STORE THE ADC READ RESULT ;MULTIPLY BY TWO (SCREEN SCALE FACTOR)
;GET THE MCA DATA ARRAY OFFSET
;SET UP CX FOR MULTIPLICATION
;MULTIPLY IT (TWO BYTES PER ELEMENT)
;BX NOW HOLDS OFFSET TO ARRAY ELEMENT
;SET AX TO POINT TO DATA SEGMENT
;MOVE THIS TO THE ES REGISTER
;GET THE NUMBER OF COUNTS FROM ARRAY
;CALL THE PLOT SUBROUTINE

INC AX

MOV ES:[BX],AX
;-------------------------------------------------------------------

MOV AL,SOFTRESET_HIGH
MOV DX,FUNCONTROL
OUT DX,AL

MOV AL,SOFTRESET_LOW
MOV DX,FUNCONTROL
OUT DX,AL

MOV AL,END_OF_INT
OUT I8259_CONTROL,AL

POP SI
POP DI
POP ES
POP DS
POP BP
POP DX
POP CX
POP BX
POP AX

IRET

MCA_INT ENDP
;INC ELEMENT OF DATARRAY
;STORE THE \# OF COUNTS (IN THE ARRAY)


PLOT PROC NEAR	;UNPLOTTING ROUTINE
PUSH ES	;HELD MCA_ARRAY SEGMENT
PUSH AX	;AX HOLDS COUNTS
PUSH BX	;HELD MCA_ARRAY OFFSET
PUSH DX	;DL HOLDS SECTOR
MOV COUNTS,AX	;STORE COUNTS
MOV AX,0A000H	;
MOV ES,AX	;SET VIDEO SEGMENT
MOV AX,ENERGY	;GET ENERGY INFORMATION
ADD AX,ENERGY	
MOV BIT,AX	;DETERMINE BIT OF INTEREST
MOV CX,8H	;DETERMINE BYTE CONTAINING
MOV DX,0H	;THE BIT OF INTEREST
DIV CX	

```
MOV BITE,AX ;
MOV CL,07H
SUB CL,DL
MOV BYTEBIT,CL
MOV DX,0H
MOV AX,COUNTS
MOV CX,PLOT_SCALE
DIV CX
MOV SCOUNT,AL
MOV AX,050H
MUL SCOUNT
MOV CX,5648H
MOV BX,BITE
ADD BX,CX
SUB BX,AX
MOV AL,ES:[BX]
MOV DL,01H
MOV CL,BYTEBIT
ROL DL,CL
MOV CX,0FFH
XOR CL,DL
AND AL,CL
MOV ES:[BX],AL
MOV DX,0H
INC COUNTS
MOV AX,COUNTS
MOV CX,PLOT_SCALE
DIV CX
MOV SCOUNT,AL
MOV AX,050H
MUL SCOUNT
MOV CX,5648H
MOV BX,BITE
ADD BX,CX
SUB BX,AX
MOV AL,ES:[BX]
MOV DL,01H
MOV CL,BYTEBIT
ROL DL,CL
OR AL,DL
MOV ES:[BX],AL
;GET BYTE TO PLOT
;MAKE PLOT BIT MASK
 ;FIGURE WHICH BIT IN THE
 ;BYTE IS OF INTEREST
;
;SCALE THE COUNTS -> SCOUNT
;
;
SUB BX,AX
 ;GET BYTE TO UNPLOT
 ;MAKE UNPLOT BIT MASK
 ;
;
;
;
;
;UNPLOT BIT
;SCALE THE COUNTS -> SCOUNT
;
,
;
;
;
,
;FIGURE ADDRESS FROM BITE, AND SCOUNT
;
;
;
;
```

```
 POP DX ;RESTORE DX REGISTER
 POP BX ;RESTORE BX REGISTER
 POP AX ;RESTORE AX REGISTER
 POP ES ;RESTORE ES REGISTER
 RET ;RETURN FROM PLOT ROUTINE
PLOT ENDP
```

;RESTORE DX REGISTER ;RESTORE BX REGISTER ;RESTORE AX REGISTER ;RESTORE ES REGISTER
;RETURN FROM PLOT ROUTINE ;END OF PLOT SUBROUTINE
;SET SCALE
;
;CX WILL CONTAIN PLOT SCALE ;FUNCTION DONE - GO RESET AND RETURN
;TRANSFER DATA TO QUICKBASIC ARRAY
,
;RETURNS ADDRESS OF MCA_ARRAY ;GET SEGMENT OF MCA_ARRAY
;GET OFFSET OF MCA_ARRAY
;FUNCTION DONE - GO RESET AND RETURN
;CLEAR MCA_ARRAY
;
;
;
;
;
;
;FUNCTION DONE - GO RESET AND RETURN

```
;**
```

;********************************************************************
;-----------------------------------------------------------------
;-----------------------------------------------------------------
MCAINT7 PROC NEAR
MCAINT7 PROC NEAR
MOV DX,AX ;SAVE AX IN DX
MOV DX,AX ;SAVE AX IN DX
MOV AX,DATA ;SET AX TO POINT TO DATA SEGMENT
MOV AX,DATA ;SET AX TO POINT TO DATA SEGMENT
MOV DS,AX
MOV DS,AX
MOV AX,DX
MOV AX,DX
;RESTORE AX
;RESTORE AX
;--------------------------------------------------------------------
;--------------------------------------------------------------------
CMP AH,00H
CMP AH,00H
JNE M1
JNE M1
MOV DX,SEG MCA_ARRAY
MOV DX,SEG MCA_ARRAY
MOV CX,OFFSET MCA_ARRAY
MOV CX,OFFSET MCA_ARRAY
JMP M8
JMP M8
;..
;..
M1: CMP AH,01H
M1: CMP AH,01H
JNE M2
JNE M2
MOV BX,OFFSET MCA_ARRAY
MOV BX,OFFSET MCA_ARRAY
MOV CX, 3FFH
MOV CX, 3FFH
C1: MOV BYTE PTR [BX],00H
C1: MOV BYTE PTR [BX],00H
INC BX
INC BX
DEC CX
DEC CX
JNZ C1
JNZ C1
JMP M8
JMP M8
;.............................
;.............................
M2: CMP AH,02H
M2: CMP AH,02H
JNE M3
JNE M3
MOV PLOT_SCALE,CX
MOV PLOT_SCALE,CX
JMP M8
JMP M8
M3: CMP AH,03H
M3: CMP AH,03H
JNE M4

```
 JNE M4
```

```
 MOV BX,OFFSET MCA_ARRAY ;
 MOV CX,3FFH
 C3: MOV DX,[BX]
 MOV ES:[SI],DX
 INC BX
 INC SI
 DEC CX
 JNZ C3
 JMP M8
 ;............................
M4: CMP AH,04H
 JNE M8
 PUSH DS
 MOV AX,SEG PAC_INT
 MOV DS,AX
 MOV DX,OFFSET PAC_INT
 MOV AL,IRQ3_INT
 MOV AH,25H
 INT 21H
 MOV AX,SEG PACINT7
 MOV DS,AX
 MOV DX,OFFSET PACINT7
 MOV AL,QB_INT
 MOV AH,25H
 INT 21H
 POP DX
 MOV DS,DX
```

;RESTORE THE DATA SEGMENT REGISTER

M8: IRET

MCAINT7 ENDP
;RETURN FROM INTERRUPT
;END OF INTERRUPT ROUTINE

```
;**
INTSETUP PROC NEAR
 MOV AX,DATA
 MOV DS,AX
 ;BEGINNING OF SETUP PROGRAM
 ;SET AX TO POINT TO DATA SEGMENT
 ;MOVE THIS TO THE DS REGISTER
```



MOV BX,OFFSET SEGTABLE

MOV AX,SEG SECTOR011	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX],AX	;OF SECTOR \#0 - EVENT 011
MOV AX,SEG SECTOR021	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+2],AX	;OF SECTOR \#1 - EVENT 021
MOV AX,SEG SECTOR031	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+4],AX	;OF SECTOR \#2 - EVENT 031
MOV AX,SEG SECTOR012	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+6],AX	;OF SECTOR \#3 - EVENT 012
MOV AX,SEG SECTOR022	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+8],AX	;OF SECTOR \#4 - EVENT 022
MOV AX,SEG SECTOR032	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+10],AX	;OF SECTOR \#5-EVENT 032
MOV AX,SEG SECTOR 101	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+12],AX	;OF SECTOR \#6-EVENT 101
MOV AX,SEG SECTOR 121	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+14],AX	;OF SECTOR \#7-EVENT 121
MOV AX,SEG SECTOR131	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+16],AX	;OF SECTOR \#8 - EVENT 131
MOV AX,SEG SECTOR102	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+18],AX	;OF SECTOR \#9 - EVENT 102
MOV AX,SEG SECTOR 122	;STORE THE SEGMENT ADDR
MOV WORD PTR [BX+20],AX	;OF SECTOR \#10-EVENT 122
MOV AX,SEG SECTOR 132	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+22],AX	;OF SECTOR \#11-EVENT 132
MOV AX,SEG SECTOR201	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+24],AX	;OF SECTOR \#12-EVENT 201
MOV AX,SEG SECTOR211	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+26],AX	;OF SECTOR \#13-EVENT 211
MOV AX,SEG SECTOR231	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+28],AX	;OF SECTOR \#14-EVENT 231
MOV AX,SEG SECTOR202	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+30],AX	;OF SECTOR \#15-EVENT 202
MOV AX,SEG SECTOR212	;STORE THE SEGMENT ADDRESS
MOV WORD PTR [BX+32],AX	;OF SECTOR \#16-EVENT 212
MOV AX,SEG SECTOR232	;STORE THE SEGMENT ADDRESS


MOV	WORD PTR [BX+34],AX	;OF SECTOR \#17-EVENT 232
MOV MOV	AX,SEG SECTOR301   WORD PTR [BX+36],AX	;STORE THE SEGMENT ADDRESS ;OF SECTOR \#18 - EVENT 301
MOV   MOV	AX,SEG SECTOR311   WORD PTR [BX+38],AX	;STORE THE SEGMENT ADDRESS ;OF SECTOR \#19 - EVENT 311
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	AX,SEG SECTOR321   WORD PTR [BX+40],AX	;STORE THE SEGMENT ADDRESS ;OF SECTOR \#20 - EVENT 321
MOV   MOV	AX,SEG SECTOR302   WORD PTR [BX+42],AX	;STORE THE SEGMENT ADDRESS ;OF SECTOR \#21 - EVENT 302
MOV MOV	AX,SEG SECTOR312 WORD PTR [BX+44],AX	;STORE THE SEGMENT ADDRESS ;OF SECTOR \#22 - EVENT 312
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	AX,SEG SECTOR322 WORD PTR [BX+46],AX	;STORE THE SEGMENT ADDRESS ;OF SECTOR \#23 - EVENT 322
MOV	BX,OFFSET START_TABLE	;LOOK-UP TABLE FOR TDC START CHANNELS
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	AL,TDCREAD_1   BYTE PTR [BX],AL	;START FOR SECTOR \#0 - 011 ;DETECTOR \#0 - TDC CHANNEL \#1
MOV   MOV	$\begin{aligned} & \text { AL,TDCREAD_1 } \\ & \text { BYTE PTR }[\mathrm{BX}+1], \mathrm{AL} \end{aligned}$	;START FOR SECTOR \#1-021 ;DETECTOR \#0 - TDC CHANNEL \#1
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	AL,TDCREAD_1   BYTE PTR [BX+2],AL	;START FOR SECTOR \#2-031 ;DETECTOR \#0 - TDC CHANNEL \#1
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	AL,TDCREAD_1   BYTE PTR [BX+3],AL	;START FOR SECTOR \#3-012 ;DETECTOR \#0 - TDC CHANNEL \#1
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	AL,TDCREAD_1   BYTE PTR [BX+4],AL	;START FOR SECTOR \#4 - 022 ;DETECTOR \#0 - TDC CHANNEL \#1
MOV   MOV	AL,TDCREAD_1   BYTE PTR [BX+5],AL	;START FOR SECTOR \#5-032 ;DETECTOR \#0 - TDC CHANNEL \#1
MOV MOV	AL,TDCREAD_3   BYTE PTR [BX+6],AL	;START FOR SECTOR \#6-101 ;DETECTOR \#1 - TDC CHANNEL \#3
MOV MOV	$\begin{aligned} & \text { AL,TDCREAD_3 } \\ & \text { BYTE PTR }[\mathrm{BX}+7], \mathrm{AL} \end{aligned}$	;START FOR SECTOR \#7-121 ;DETECTOR \#1 - TDC CHANNEL \#3
$\begin{aligned} & \text { MOV } \\ & \text { MOV } \end{aligned}$	$\begin{aligned} & \text { AL,TDCREAD_3 } \\ & \text { BYTE PTR [BX+8],AL } \end{aligned}$	;START FOR SECTOR \#8 - 131 ;DETECTOR \#1 - TDC CHANNEL \#3
MOV A	AL,TDCREAD_3	;START FOR SECTOR \#9-102

MOV BYTE PTR [BX+9],AL
MOV AL,TDCREAD_3
MOV BYTE PTR [BX+10],AL
MOV AL,TDCREAD_3
MOV BYTE PTR [BX+11],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX+12],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX +13$]$,AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX+14],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX+15],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX+16],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX+17],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX+18],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX+19],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX+20],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX+21],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX + 22 ],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX̄+23],AL

MOV BX,OFFSET STOP_TABLE
MOV AL,TDCREAD_3
MOV BYTE PTR [BX],AL
MOV AL,TDCREAD_6
;DETECTOR \#1 - TDC CHANNEL \#3
;START FOR SECTOR \#10-122
;DETECTOR \#1 - TDC CHANNEL \#3
;START FOR SECTOR \#11-132
;DETECTOR \#1 - TDC CHANNEL \#3
;START FOR SECTOR \#12-201
;DETECTOR \#2 - TDC CHANNEL \#6
;START FOR SECTOR \#13-211
;DETECTOR \#2 - TDC CHANNEL \#6
;START FOR SECTOR \#14-231
;DETECTOR \#2 - TDC CHANNEL \#6
;START FOR SECTOR \#15-202
;DETECTOR \#2 - TDC CHANNEL \#6
;START FOR SECTOR \#16-212
;DETECTOR \#2 - TDC CHANNEL \#6
;START FOR SECTOR \#17-232
;DETECTOR \#2 - TDC CHANNEL \#6
;START FOR SECTOR \#18-301
;DETECTOR \#3 - TDC CHANNEL \#7
;START FOR SECTOR \#19-311
;DETECTOR \#3 - TDC CHANNEL \#7
;START FOR SECTOR \#20-321
;DETECTOR \#3 - TDC CHANNEL \#7
;START FOR SECTOR \#21-302
;DETECTOR \#3 - TDC CHANNEL \#7
;START FOR SECTOR \#22-312
;DETECTOR \#3 - TDC CHANNEL \#7
;START FOR SECTOR \#23-322
;DETECTOR \#3 - TDC CHANNEL \#7
;LOOK-UP TABLE FOR TDC STOP CHANNELS
;STOP FOR SECTOR \#0-011
;DETECTOR \#1 - TDC CHANNEL \#3
;STOP FOR SECTOR \#1-021

```
 MOV BYTE PTR [BX+1],AL
 MOV AL,TDCREAD_7
 MOV BYTE PTR [BX}+2],A
 MOV AL,TDCREAD_3
 MOV BYTE PTR [BX +3],AL
 MOV AL,TDCREAD_6
 MOV BYTE PTR [BXX+4],AL
 MOV AL,TDCREAD_7
 MOV BYTE PTR [BX+5],AL
 MOV AL,TDCREAD_1
 MOV BYTE PTR [BX+6],AL
 MOV AL,TDCREAD_6
 MOV BYTE PTR [BX+7],AL
 MOV AL,TDCREAD_7
 MOV BYTE PTR [BX+8],AL
 MOV AL,TDCREAD_1
 MOV BYTE PTR [BX+9],AL
 MOV AL,TDCREAD_6
 MOV BYTE PTR [BX+10],AL
 MOV AL,TDCREAD_7
 MOV BYTE PTR [BX+11],AL
 MOV AL,TDCREAD_1
 MOV BYTE PTR [BX}+12],A
 MOV AL,TDCREAD_3
 MOV BYTE PTR [BX +13],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX+14],AL
MOV AL,TDCREAD_1
MOV BYTE PTR [BX}+15],A
MOV AL,TDCREAD_3
MOV BYTE PTR [BX +16],AL
MOV AL,TDCREAD_7
MOV BYTE PTR [BX+17],AL
MOV AL,TDCREAD_1
MOV BYTE PTR [BX +18],AL
```

;DETECTOR \#2 - TDC CHANNEL \#6
;STOP FOR SECTOR \#2-031
;DETECTOR \#3 - TDC CHANNEL \#7
;STOP FOR SECTOR \#3-012
;DETECTOR \#1 - TDC CHANNEL \#3
;STOP FOR SECTOR \#4-022
;DETECTOR \#2 - TDC CHANNEL \#6
;STOP FOR SECTOR \#5-032
;DETECTOR \#3 - TDC CHANNEL \#7
;STOP FOR SECTOR \#6 - 101
;DETECTOR \#0 - TDC CHANNEL \#1
;STOP FOR SECTOR \#7-121
;DETECTOR \#2 - TDC CHANNEL \#6
;STOP FOR SECTOR \#8-131
;DETECTOR \#3 - TDC CHANNEL \#7
;STOP FOR SECTOR \#9 - 102
;DETECTOR \#0 - TDC CHANNEL \#1
;STOP FOR SECTOR \#10-122
;DETECTOR \#2 - TDC CHANNEL \#6
;STOP FOR SECTOR \#11-132
;DETECTOR \#3 - TDC CHANNEL \#7
;STOP FOR SECTOR \#12-201
;DETECTOR \#0 - TDC CHANNEL \#1
;STOP FOR SECTOR \#13-211
;DETECTOR \#1 - TDC CHANNEL \#3
;STOP FOR SECTOR \#14-231
;DETECTOR \#3 - TDC CHANNEL \#7
;STOP FOR SECTOR \#15-202
;DETECTOR \#0 - TDC CHANNEL \#1
;STOP FOR SECTOR \#16-212
;DETECTOR \#1-TDC CHANNEL \#3
;STOP FOR SECTOR \#17-232
;DETECTOR \#3 - TDC CHANNEL \#7
;STOP FOR SECTOR \#18-301
;DETECTOR \#0 - TDC CHANNEL \#1

MOV AL,TDCREAD_3
MOV BYTE PTR [BX+19],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX+20],AL
MOV AL,TDCREAD_1
MOV BYTE PTR [BX +21 ],AL
MOV AL,TDCREAD_3
MOV BYTE PTR [BX +22 ],AL
MOV AL,TDCREAD_6
MOV BYTE PTR [BX +23 ],AL
;STOP FOR SECTOR \#19-311 ;DETECTOR \#1 - TDC CHANNEL \#3
;STOP FOR SECTOR \#20-321 ;DETECTOR \#2 - TDC CHANNEL \#6
;STOP FOR SECTOR \#21-302 ;DETECTOR \#0 - TDC CHANNEL \#1
;STOP FOR SECTOR \#22-312
;DETECTOR \#1 - TDC CHANNEL \#3
;STOP FOR SECTOR \#23-322
;DETECTOR \#2 - TDC CHANNEL \#6

MOV AL,INTERRUPT_OFF
MOV DX,FUNCONTROL
OUT DX,AL

PUSH DS

MOV AX,SEG PAC_INT
MOV DS,AX
MOV DX,OFFSET PAC_INT
MOV AL,IRQ3_INT
MOV AH,25H
INT 21H

MOV AX,SEG PACINT7
MOV DS,AX
MOV DX,OFFSET PACINT7
MOV AL,QB_INT
MOV AH,25H
INT 21 H
POP DX
MOV DS,DX

MOV AX, 0
IN AL,I8259_IMASKR
AND AX,0F7H
OUT I8259_IMASKR,AL
MOV AL,SOFTRESET_HIGH
MOV DX,FUNCONTROL
OUT DX,AL
; INTERRUPT_OFF=08H=00001000 ;FUNCONTROL=0303H=771 (D) ;TURN OFF THE INTERRUPT ON 8255
;SAVE THE DATA SEGMENT REGISTER
;GET SEGMENT OF INTERRUPT ROUTINE ;MOVE INTO DS FOR INT 21H (25H) ;
;CHANGE THE OLD VECTOR TO ;POINT TO THE NEW ROUTINE ;
;GET SEGMENT OF INTERRUPT ROUTINE ;MOVE INTO DS FOR INT 21H (25H)
;
;CHANGE THE OLD VECTOR TO ;POINT TO THE NEW ROUTINE
;
;
;RESTORE THE DATA SEGMENT REGISTER
;CLEAR THE AX REGISTER
;GET THE CURRENT INTERRUPT MASK ;SET THE 4TH BIT TO ZERO (ENABLE IRQ3) ;SEND THIS RESULT TO MASK REGISTER

```
 MOV AL,SOFTRESET_LOW
 MOV DX,FUNCONTROL
 OUT DX,AL
 MOV AX,3100H
 MOV DX,30D4H
 INT 21h
```

    ;* RESET THE SYSTEM
    ;
    ;
    ;*************************************
    ;TERMINATE AND STAY RESIDENT FUNCTION
    ;DX CONTAINS THE NUMBER OF RESERVED
    ;PARAGRAPHS (256 BYTES/PARAGRAPH)
    INTSETUP ENDP

## E. Listing of the QuickBASIC module SETWIND.BAS (module of VMEMCA.BAS)

In this appendix, the QuickBASIC source code for the SETWIND.BAS module can be found. It is not a stand-alone program; It is used in conjunction with the spectrometer control program (VMEMCA.BAS). The reason it is present here is that it contains all of the subroutines that are necessary to communicate with the boards in the VME card cage. This program is responsible for setting the enrgy windows (in the WINDOW RAM) and setting up the contents of the VALID RAM. Again, this listing is presented without detailed explanation, but it too can be understood by an experienced programmer by reading the commented source code.

```
** SETWIND.BAS 2/9/92
** written by DARREN W. STEVENS *
```

'***** THE SUBROUTINES USED IN THE PROGRAM

DECLARE SUB set3windows (ch\%, W1L\%, W1R \%, W2L\%, W2R \%, W3L \%, W3R \%)
DECLARE SUB set3validram ()
DECLARE SUB set2windows (ch\%, W1L \%, W1R \%, W2L \%, W2R \%)
DECLARE SUB set2validram ()
DECLARE SUB setchannel (ch\%)
DECLARE SUB setrunmode ()
DECLARE SUB read3windows (ch\%, W1L\%, W1R \%, W2L\%, W2R \%, W3L\%, W3R\%)
****** QUATECH ADDRESSES BY PORT LOCATION (I/O REFERS TO COMPUTER END)

CONST PORTA1 $=\& \mathrm{H} 300$
CONST INTDATA $=\& H 300$
CONST PORTB $1=\& \mathrm{H} 301$
CONST FUNKTION $=\& H 301$
CONST PORTC1 $=\& \mathrm{H} 302$
CONST FUNINTSTUFF $=\& H 302$

CONST CONTROL1 $=\& H 303$
CONST FUNCONTROL $=\& H 303$

CONST PORTA2 = \& H 304
CONST VMEDATA $=\& H 304$

CONST PORTB2 $=\& \mathrm{H} 305$
CONST VMEADDLOW $=\& H 305$

CONST PORTC2 $=\& \mathrm{H} 306$
CONST VMEADDHIGH $=\& H 306$
CONST CONTROL2 $=\& \mathrm{H} 307$
CONST ADDATACONTROL $=\& H 307$
CONST PORTA $3=\& \mathrm{H} 308$
CONST TDCOUT $=\& \mathrm{H} 308$

CONST PORTB3 $=\& \mathrm{H} 309$
CONST TDCHIGHIN $=\& H 309$
CONST PORTC3 $=\& \mathrm{H} 30 \mathrm{~A}$
CONST TDCLOWIN $=\& H 30 \mathrm{~A}$

> 'QUATECH HEADER \#1 - PORT A 'INTERRUPT DATA IS INPUT HERE
> 'QUATECH HEADER \#1 - PORT B 'VME FUNCTION IS OUTPUT HERE
'QUATECH HEADER \#1 - PORT C 'FUNCTION/INTERRUPT CONTROL STUFF
'QUATECH HEADER \#1 - CONTROL PORT 'FUNCTION HEADER CONTROL PORT
'QUATECH HEADER \#2 - PORT A
'VME DATA BUS IS CONNECTED HERE
'QUATECH HEADER \#2 - PORT B
'VME ADDRESS BUS (LOW) CONNECTED HERE
'QUATECH HEADER \#2 - PORT C
'VME ADDRESS BUS (HIGH) CONNECTED HERE
'QUATECH HEADER \#2 - CONTROL PORT 'ADDRESS/DATA HEADER CONTROL PORT
'QUATECH HEADER \#3 - PORT A 'TDC CONTROL BITS ARE OUTPUT HERE
'QUATECH HEADER \#3 - PORT B 'TDC DATA AND STATUS ARE INPUT HERE
'QUATECH HEADER \#3 - PORT C
'TDC DATA (LOW 8 BITS) ARE INPUT HERE

CONST CONTROL3 = \& H30B
CONST TDCCONTROL $=\& H 30 B$
'QUATECH HEADER \#3 - CONTROL PORT TDC HEADER CONTROL PORT
'***** THE HEADER (QUATECH) CONTROL WORDS USED IN RUNNING

CONST FUNMODE $=\& H B 8$	'FUNCTION HEADER CONTROL WORD
CONST TDCMODE $=\& \mathrm{H} 8 \mathrm{~B}$	
CONST READRAM $=\& \mathrm{H} 90$	'TDC HEADER CONTROL WORD
CONST WRITERAM $=\& H 80$	'READ FUNCTION - ADDRESS/DATA HEADER
CONST CALIBRATION $=\& H 9 \mathrm{~B}$	'WRITE FUNCTION - ADDRESS/DATA HEADER
CONST RUNMODE $=\& H 9 B$	'CALIBRATE FUNCTION - ADD/DATA HEADER
	'RUN FUNCTION - ADDRESS/DATA HEADER

${ }^{\prime * * * * * *}$ THE BIT SET/RESET FUNCTIONS SENT TO HEADER CONTROL PORTS ${ }^{* * * * * * * * * * * * * * * ~}$

CONST PORTCORESET $=\& H 0$ CONST FUNCLOCKLOW $=\& H 0$ CONST PORTCOSET = \&H1 CONST FUNCLOCKHIGH $=\& H 1$

CONST PORTC1RESET $=\& H 2$
CONST FUNENABLE $=\& \mathrm{H}_{2}$
CONST PORTCISET $=\& H 3$
CONST FUNDISABLE $=\& \mathrm{H} 3$
CONST PORTC2RESET $=\& H 4$
CONST SOFTRESETLOW $=\& H 4$
CONST PORTC2SET $=\& H 5$
CONST SOFTRESETHIGH $=\& H 5$
CONST PORTC4RESET $=\& H 8$
CONST INTERRUPTOFF $=\& H 8$
CONST PORTC4SET $=\& H 9$
CONST INTERRUPTON $=\& H 9$
'PORT C - BIT 0 - LOGIC LOW 'VME FUNCTION CLOCK LOW 'PORT C - BIT 0 - LOGIC HIGH 'VME FUNCTION CLOCK HIGH
'PORT C - BIT 1-LOGIC LOW 'VME FUNCTION ENABLE LOW (ENABLED)
'PORT C - BIT 1-LOGIC HIGH
'VME FUNCTION ENABLE HIGH (DISABLED)
'PORT C - BIT 2 - LOGIC LOW
'SOFT RESET LOW
'PORT C - BIT 2 - LOGIC HIGH
'SOFT RESET HIGH
'PORT C - BIT 4 - LOGIC LOW
'INTERRUPT ENABLE LOW (DISABLED AT 8255)
'PORT C - BIT 4 - LOGIC HIGH
'INTERRUPT ENABLE HIGH (ENABLED AT 8255)
'***** THE VME FUNCTIONS (EPROM ADDRESSES) OUTPUT TO VME BUS

CONST NULL $=\& H 0$

CONST VRAMWRSETUP $=\& H 1$
CONST VRAMWRITE $=\& H 2$
CONST VRAMREAD $=\& \mathrm{H} 3$

CONST EORAMWRSETUP $=\& H 4$
CONST EORAMWRITE $=\& H 5$
CONST EORAMREAD $=\& H 6$

CONST E1RAMWRSETUP $=\& H 7$
'EVERYTHING DISABLED - VME BUS ISOLATED
'VALID RAM WRITE SET-UP
'VALID RAM WRITE
'VALID RAM READ
'ENERGY 0 (WINDOW) RAM WRITE SET-UP
'ENERGY 0 (WINDOW) RAM WRITE
'ENERGY 0 (WINDOW) RAM READ
'ENERGY 1 (WINDOW) RAM WRITE SET-UP

```
CONST E1RAMWRITE = &H8
CONST E1RAMREAD = &H9
CONST E2RAMWRSETUP = &HA
CONST E2RAMWRITE = & HB
CONST E2RAMREAD = &HC
CONST E3RAMWRSETUP = &HD
CONST E3RAMWRITE = &HE
CONST E3RAMREAD =&HF
CONST DATARUN = &H10
CONST ADCRAMCH0 = &H20
CONST ADCRAMCH1 =&H21
CONST ADCRAMCH2 =&H22
CONST ADCRAMCH3 = &H23
CONST CALIBRATE 0 = &H80
CONST CALIBRATE1 = &HA0
CONST CALIBRATE 2 = &HC0
CONST CALIBRATE }3=&HE
END
'END OF THE SETWIND.BAS MAIN MODULE ,
```

$\qquad$

```
SUB read3windows (ch\%,W1L\%, W1R \%, W2L\%, W2R \%, W3L\%, W3R \%)
```

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT ADDATACONTROL, READRAM
'ENERGY 1 (WINDOW) RAM WRITE
'ENERGY 1 (WINDOW) RAM READ
'ENERGY 2 (WINDOW) RAM WRITE SET-UP 'ENERGY 2 (WINDOW) RAM WRITE
'ENERGY 2 (WINDOW) RAM READ
'ENERGY 3 (WINDOW) RAM WRITE SET-UP
'ENERGY 3 (WINDOW) RAM WRITE
'ENERGY 3 (WINDOW) RAM READ
'SETS UP VME BOARDS FOR RUN MODE
'ENERGY BOARD 0 - ADC AND RAM CHECK
'ENERGY BOARD 1 - ADC AND RAM CHECK
'ENERGY BOARD 2 - ADC AND RAM CHECK
'ENERGY BOARD 3 - ADC AND RAM CHECK
'ENERGY BOARD 0 - ADC CALIBRATE
'ENERGY BOARD 1 - ADC CALIBRATE
'ENERGY BOARD 2 - ADC CALIBRATE
'ENERGY BOARD 3 - ADC CALIBRATE

```
END SUB
,
SUB set2validram
***** THIS SUBROUINE WILL BE WRITTEN FOR TWO WINDOW STUDIES (FUTURE) ***** END SUB
'END OF set2validram
,
SUB set2windows (ch\%, W1L\%, W1R \(\%\), W2L \(\%\), W2R \(\%\))
***** THIS SUBROUINE WILL BE WRITTEN FOR TWO WINDOW STUDIES (FUTURE) *****

SUB set3validram
\({ }^{* * * * * *}\) THE VARIABLES USED IN THIS PROCEDURE

NOEVENT\% \(=255\)
EVENT011\% = 0
EVENT021\% = 1
EVENT031\% = 2
EVENT012\% = 3
EVENT022\% = 4
EVENT032\% = 5
EVENT \(101 \%=6\)
EVENT121\% = 7
EVENT \(131 \%=8\)
EVENT102\% \(=9\)
EVENT \(122 \%=10\)
EVENT \(132 \%=11\)
EVENT201\% = 12
EVENT \(211 \%=13\)
EVENT \(231 \%=14\)
EVENT \(202 \%=15\)
EVENT \(212 \%=16\)
EVENT \(232 \%=17\)
EVENT301\% \(=18\)
EVENT311\% = 19
EVENT321\% = 20
EVENT302\% = 21
EVENT312\% = 22
EVENT \(322 \%=23\)
MASK \(011 \%=\& \mathrm{H} 11\)
MASK021\% = \& H81
MASK \(031 \%=\& H 401\)
MASK012\% = \& H19
MASK \(022 \%=\& \mathrm{HCl}\)
MASK \(032 \%=\& \mathrm{H} 601\)
MASK \(101 \%=\& H A\)
MASK \(121 \%=\& \mathrm{H} 88\)
MASK \(131 \%=\& H 408\)
MASK \(102 \%=\& \mathrm{HB}\)
MASK \(122 \%=\& \mathrm{HC} 8\)
MASK \(132 \%=\& H 608\)
MASK201\% \(=\&{ }^{2} 42\)
MASK211\% = \& H50
MASK \(231 \%=\& H 440\)
MASK202\% = \& H 43
MASK \(212 \%=\& H 58\)
MASK \(232 \%=\& H 640\)
MASK \(301 \%=\& \mathrm{H} 202\)
MASK \(311 \%=\& \mathrm{H} 210\)
'NOT ANY EVENT - RAM WILL STORE \&HFF
'START 0 - STOP 1 - LOW ENERGY STOP
'START 0 - STOP 2 - LOW ENERGY STOP
'START 0 - STOP 3 - LOW ENERGY STOP
'START 0 - STOP 1 - HIGH ENERGY STOP
'START 0 - STOP 2 - HIGH ENERGY STOP
'START 0 - STOP 3 - HIGH ENERGY STOP
'START 1 - STOP 0 - LOW ENERGY STOP
'START 1 - STOP 2 - LOW ENERGY STOP
'START 1 - STOP 3 - LOW ENERGY STOP
'START 1 - STOP 0 - HIGH ENERGY STOP
'START 1 - STOP 2 - HIGH ENERGY STOP
'START 1 - STOP 3 - HIGH ENERGY STOP
'START 2 - STOP 0 - LOW ENERGY STOP
'START 2 - STOP 1 - LOW ENERGY STOP 'START 2 - STOP 3 - LOW ENERGY STOP 'START 2 - STOP 0 - HIGH ENERGY STOP 'START 2 - STOP 1 - HIGH ENERGY STOP 'START 2 - STOP 3 - HIGH ENERGY STOP
'START 3 - STOP 0 - LOW ENERGY STOP
'START 3-STOP 1 - LOW ENERGY STOP
'START 3 - STOP 2 - LOW ENERGY STOP
'START 3 - STOP 0 - HIGH ENERGY STOP
'START 3-STOP 1 - HIGH ENERGY STOP
'START 3 - STOP 2 - HIGH ENERGY STOP
\[
\begin{aligned}
& { }^{\prime} 000000010001=000000010001(011-0) \\
& \text { '0000 } 10000001=000010000001(021-1) \\
& { }^{\prime} 010000000001=010000000001(031-2) \\
& \text { ' } 000000011001=000000011001(012-3) \\
& \text { ' } 000011000001=000011000001(022-4) \\
& \text { '01100000 0001 = } 011000000001(032-5) \\
& \text { '0000 } 00001010=000000001010(101-6) \\
& { }^{\prime} 000010001000=000010001000(121-7) \\
& { }^{\prime} 010000001000=010000001000(131-8) \\
& \text { '0000 } 00001011=000000001011(102-9) \\
& { }^{\prime} 000011001000=000011001000(122-10) \\
& { }^{\prime} 011000001000=011000001000(132-11) \\
& \text { '00000100 0010 = } 000001000010(201-12) \\
& \text { '000001010000 }=000001010000(211-13) \\
& \text { '01000100 0000 = } 010001000000(231-14) \\
& \text { '00000100 } 0011=000001000011(202-15) \\
& { }^{\prime} 000001011000=000001011000(212-16) \\
& { }^{\prime} 011001000000=011001000000(232-17) \\
& \text { '0010 } 00000010=001000000010(301-18) \\
& { }^{\prime} 001000010000=001000010000(311-19)
\end{aligned}
\]

MASK321 \(\%=\& \mathrm{H} 280\)
MASK302 \(\%=\& \mathrm{H} 203\)
MASK312\% \(=\& \mathrm{H} 218\)
MASK322 \(\%=\& \mathrm{H} 2 \mathrm{C} 0\)
\({ }^{* * * * * * ~ T H E ~ A C T U A L ~ C O D E ~ O F ~ S U B R O U T I N E ~}\)

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT ADDATACONTROL, WRITERAM
FOR J\% = 0 TO 15
OUT VMEADDHIGH, J\%
FOR I\% = 0 TO 255
OUT VMEADDLOW, I\%
EVENTTEST\% = J\% * \(256+\mathrm{I} \%\)
SELECT CASE EVENTTEST\%
CASE MASK011\% OUT VMEDATA, EVENT011\%

CASE MASK021\% OUT VMEDATA, EVENT021\%

CASE MASK031\% OUT VMEDATA, EVENT031\%

CASE MASK012\% OUT VMEDATA, EVENT012\%

CASE MASK022\% OUT VMEDATA, EVENT022\%

CASE MASK032\% OUT VMEDATA, EVENT032\%

CASE MASK101\% OUT VMEDATA, EVENT101\%

CASE MASK121\% OUT VMEDATA, EVENT121\%

CASE MASK \(131 \%\) OUT VMEDATA, EVENT131\%
\({ }^{\prime} 001010000000=001010000000(321-20)\)
\({ }^{\prime} 001000000011=001000000011(302-21)\)
\({ }^{\prime} 001000011000=001000011000(312-22)\)
\({ }^{\prime} 001011000000=001011000000(322-23)\)
'SEND OUT THE NULL FUNCTION ,
'CLOCK THE FUNCTION INTO THE LATCHES
'SET QUATECH TO WRITE THE RAM
'THE HIGH ADDRESS VARIES FROM 0 TO 15
'SET UP THE HIGH ADDRESS BITS
'THE LOW ADDRESS VARIES FROM 0 TO 255
'SET UP THE LOW ADDRESS BITS
'THIS WILL BE THE TESTED WORD
'SELECT WHAT TO LOAD INTO VALID RAM
'LOAD SECTOR NUMBER OF EVENT 011 'START 0 - STOP 1 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 021 'START 0 - STOP 2 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 031 'START 0 - STOP 3 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 012 'START 0 - STOP 1 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 022 'START 0 - STOP 2 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 032 'START 0 - STOP 3 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 101 'START 1 - STOP 0 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 121 'START 1 - STOP 2 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 131 'START 1 - STOP 3 - LOW ENERGY STOP

CASE MASK \(102 \%\)
OUT VMEDATA, EVENT102\%
CASE MASK122\%
OUT VMEDATA, EVENT122\%
CASE MASK \(132 \%\)
OUT VMEDATA, EVENT132\%
CASE MASK201\% OUT VMEDATA, EVENT201\%

CASE MASK211\% OUT VMEDATA, EVENT211\%

CASE MASK231\%
OUT VMEDATA, EVENT231\%

CASE MASK202\%
OUT VMEDATA, EVENT202\%

CASE MASK212\%
OUT VMEDATA, EVENT212\%
CASE MASK \(232 \%\)
OUT VMEDATA, EVENT232\%

CASE MASK301\%
OUT VMEDATA, EVENT301\%

CASE MASK \(311 \%\)
OUT VMEDATA, EVENT311\%
CASE MASK \(321 \%\)
OUT VMEDATA, EVENT321\%
CASE MASK \(302 \%\)
OUT VMEDATA, EVENT302\%

CASE MASK \(312 \%\) OUT VMEDATA, EVENT312\%

CASE MASK322\% OUT VMEDATA, EVENT322\%

CASE ELSE OUT VMEDATA, NOEVENT\%

END SELECT
OUT FUNKTION, VRAMWRSETUP
'LOAD SECTOR NUMBER OF EVENT 102 'START 1-STOP 0-HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 122
'START 1 - STOP 2 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 132 'START 1 - STOP 3 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 201
'START 2 - STOP 0 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 211 'START 2 - STOP 1 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 231
'START 2 - STOP 3 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 202
'START 2 - STOP 0 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 212
'START 2 - STOP 1 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 232
'START 2 - STOP 3 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 301 'START 3-STOP 0 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 311
'START 3-STOP 1 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 321
'START 3-STOP 2 - LOW ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 302
'START 3 - STOP 0 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 312 'START 3 - STOP 1 - HIGH ENERGY STOP
'LOAD SECTOR NUMBER OF EVENT 322
'START 3-STOP 2 - HIGH ENERGY STOP
'LOAD NO EVENT FLAG INTO RAM
'NO EVENT, LOAD RAM ACCORDINGLY
'END OF THE CHOICES (24 SECTORS)
'SET UP THE VME BUS FOR VALID RAM WRITE

OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

OUT FUNKTION, VRAMWRITE

OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

NEXT I\%
NEXT J\%
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

END SUB
,
SUB set3windows (ch\%, W1L \(\%, \mathrm{~W} 1 \mathrm{R} \%, \mathrm{~W} 2 \mathrm{~L} \%, \mathrm{~W} 2 \mathrm{R} \%, \mathrm{~W} 3 \mathrm{~L} \%, \mathrm{~W} 3 \mathrm{R} \%)\)
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

OUT ADDATACONTROL, WRITERAM
SELECT CASE ch\%
CASE 0
RAMSETUP\% = EORAMWRSETUP RAMWRITE \(\%=\) EORAMWRITE

CASE 1
RAMSETUP\% = EIRAMWRSETUP RAMWRITE \(\%=\) EIRAMWRITE

CASE 2
RAMSETUP\% = E2RAMWRSETUP
RAMWRITE\% = E2RAMWRITE
'CLOCK THE FUNCTION INTO THE LATCHES
'ACTUALLY WRITE THE VALID RAM LOCATION y
'CLOCK THE FUNCTION INTO THE LATCHES
'SEND OUT THE NULL FUNCTION
,
'CLOCK THE FUNCTION INTO THE LATCHES
'END OF INNER LOOP
'END OF OUTER LOOP
'SEND OUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'END OF set3validram
'SEND OUT THE NULL FUNCTION
,
'CLOCK THE FUNCTION INTO THE LATCHES
'SET QUATECH TO ALL OUTPUT
'CHECK AND SET UP THE CHANNEL
'CHANNEL \#0
'RAMSETUP VARIABLE USED LATER IN SET-UP 'RAMWRITE VARIABLE USED LATER IN WRITE
'CHANNEL \#1
'RAMSETUP VARIABLE USED LATER IN SET-UP 'RAMWRITE VARIABLE USED LATER IN WRITE
'CHANNEL \#2
'RAMSETUP VARIABLE USED LATER IN SET-UP 'RAMWRITE VARIABLE USED LATER IN WRITE

CASE 3
RAMSETUP\% = E3RAMWRSETUP
RAMWRITE\% = E3RAMWRITE

END SELECT

OUT VMEADDHIGH, 0
FOR I \(\%=0\) TO 255

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT VMEADDLOW, I\%
IF ((I \% > W1L\%) AND I \(\%<\mathrm{W} 1 \mathrm{R} \%)\) THEN OUT VMEDATA, 1
'CHANNEL \#3
'RAMSETUP VARIABLE USED LATER IN SET-UP
'RAMWRITE VARIABLE USED LATER IN WRITE
'END OF INITIALIZING THOSE TWO VARIABLES
'ZERO THE HIGH ADDRESS BITS (UNUSED)
'LOOP FOR THE 256 RAM LOCATIONS
'SEND OUT THE NULL FUNCTION
,
'CLOCK THE FUNCTION INTO THE LATCHES
'SET UP THE LOW ADDRESS BITS
'WINDOW \#1 (LOWEST ENERGY)
'OUTPUT THE DATA VALUE FOR WINDOW \# 1

ELSEIF ((I\% > W2L\%) AND I \% < W2R \%) THEN OUT VMEDATA, 2

ELSEIF ((I\% > W3L\%) AND I\% < W3R\%) THEN OUT VMEDATA, 3

ELSE
OUT VMEDATA, 0

END IF
OUT FUNKTION, RAMSETUP\%
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

OUT FUNKTION, RAMWRITE\%
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

NEXT I\%

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
END SUB
'WINDOW \#2 (MIDDLE ENERGY) 'OUTPUT VALUE FOR WINDOW \# 2
'WINDOW \#3 (HIGHEST ENERGY)
'OUTPUT VALUE FOR WINDOW \# 3
'WITHIN NO WINDOW
'OUTPUT THE DATA VALUE FOR NO WINDOW
'END OF DATA OUTPUT CHOICES
'SET UP THE RAM WRITING
,
'CLOCK THE FUNCTION INTO THE LATCHES
'WRITE VALUE INTO THE RAM
,
'CLOCK THE FUNCTION INTO THE LATCHES
'END OF LOOP
'SEND OUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'END OF set3windows
```

SUB setchannel (ch%)
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT ADDATACONTROL, CALIBRATION
SELECT CASE ch%
CASE 0
OUT FUNKTION, CALIBRATE0
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
CASE 1
OUT FUNKTION, CALIBRATE1
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
CASE 2
OUT FUNKTION, CALIBRATE2
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
CASE 3
OUT FUNKTION, CALIBRATE3
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
END SELECT
END SUB
,
SUB setrunmode
OUT FUNCONTROL, INTERRUPTOFF
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT ADDATACONTROL, RUNMODE
OUT FUNKTION, DATARUN
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
'SEND OUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'SET QUATECH TO CALIBRATE MODE
'CHECK AND SET UP THE CHANNEL
'CHANNEL \#0
'OUTPUT THE CALIBRATE 0 FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'CHANNEL \#1
'OUTPUT THE CALIBRATE 1 FUNCTION
CLOCK THE FUNCTION INTO THE LATCHES
'CHANNEL \#2
'OUTPUT THE CALIBRATE 2 FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
CHANNEL \#3
'OUTPUT THE CALIBRATE 3 FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'END OF THE CHOICES
'END OF setchannel

```
'TURN OFF THE INTERRUPTS
```

'TURN OFF THE INTERRUPTS
'SEND OUT THE NULL FUNCTION
'SEND OUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'CLOCK THE FUNCTION INTO THE LATCHES
'SET ADDRESS/DATA HEADER TO RUN MODE
'SET ADDRESS/DATA HEADER TO RUN MODE
'SEND OUT THE RUN FUNCTION
'SEND OUT THE RUN FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES

```
```

'CLOCK THE FUNCTION INTO THE LATCHES

```
```


## F. Listing of the QuickBASIC program READRAM.BAS (a stand-alone program)

In this appendix, the listing of the stand-alone program READRAM.BAS can be found. It is a program that will be incorporated into the module SETWIND.BAS in the future. It is listed here to illustrate the way that the VALID RAM and WINDOW RAMs can be interrogated to find out information about current status of their contents. The program was written in such a way that the contents of each of the WINDOW RAMs is read and then the current window settings for each of the ENERGY channels (0-3) are displayed. The valid ram contents is then checked for accuracy and the results displayed. If an error is detected, then a message is displayed and the user can take appropriate action. All subroutines are written with the assumption that there is a single START window and two STOP windows. The purpose of this program is to give the user a way to check the status of the system after the program VMEMCA.EXE has been run and before the data collection control program (VMEPAC.EXE) is executed. This program is also presented with commented source code for analysis by the reader.

```
l*)
`***** THE SUBROUTINES USED IN THE PROGRAM
DECLARE SUB SETRUNMODE ()
DECLARE SUB READENERGY ()
DECLARE SUB READVALID ()
CONST TRUE = 0
'DEFINE TRUE
CONST FALSE = -1
'DEFINE FALSE
\({ }^{* * * * * * ~ Q U A T E C H ~ A D D R E S S E S ~ B Y ~ P O R T ~ L O C A T I O N ~(I / O ~ R E F E R S ~ T O ~ C O M P U T E R ~ E N D) ~ * * * * * * * ~}\)
```

CONST PORTA1 $=\& H 300$
CONST INTDATA $=\& H 300$
CONST PORTB1 $=\& H 301$
CONST FUNKTION $=\& H 301$
CONST PORTC1 $=\& H 302$
CONST FUNINTSTUFF $=\& H 302$
CONST CONTROL1 $=\& H 303$
CONST FUNCONTROL $=\& H 303$
CONST PORTA2 $=\& H 304$
CONST VMEDATA $=\& H 304$
CONST PORTB2 = \& H305
CONST VMEADDLOW $=\& H 305$
CONST PORTC2 $=\& H 306$
CONST VMEADDHIGH $=\& H 306$
CONST CONTROL2 $=\& \mathrm{H} 307$
CONST ADDATACONTROL $=\& H 307$
CONST PORTA3 $=\& H 308$
CONST TDCOUT $=\& H 308$
CONST PORTB3 $=\& \mathrm{H} 309$
CONST TDCHIGHIN $=\& H 309$
CONST PORTC3 $=\& H 30 \mathrm{~A}$
CONST TDCLOWIN $=\& H 30 \mathrm{~A}$
CONST CONTROL3 $=\& H 30 B$
'QUATECH HEADER \#1-PORT A 'INTERRUPT DATA IS INPUT HERE
'QUATECH HEADER \#1 - PORT B 'VME FUNCTION IS OUTPUT HERE
'QUATECH HEADER \#1 - PORT C 'FUNCTION/INTERRUPT CONTROL STUFF
'QUATECH HEADER \#1- CONTROL PORT
'FUNCTION HEADER CONTROL PORT
'QUATECH HEADER \#2 - PORT A
'VME DATA BUS IS CONNECTED HERE
'QUATECH HEADER \#2 - PORT B
'VME ADDRESS BUS (LOW) CONNECTED HERE
'QUATECH HEADER \#2 - PORT C
'VME ADDRESS BUS (HIGH) CONNECTED HERE
'QUATECH HEADER \#2 - CONTROL PORT
'ADDRESS/DATA HEADER CONTROL PORT
'QUATECH HEADER \#3 - PORT A
'TDC CONTROL BITS ARE OUTPUT HERE
'QUATECH HEADER \#3 - PORT B
'TDC DATA AND STATUS ARE INPUT HERE
'QUATECH HEADER \#3 - PORT C
'TDC DATA (LOW 8 BITS) ARE INPUT HERE
'QUATECH HEADER \#3 - CONTROL PORT

CONST TDCCONTROL $=\& H 30 B$
'TDC HEADER CONTROL PORT
'***** THE HEADER (QUATECH) CONTROL WORDS USED IN RUNNING ****************

CONST FUNMODE $=\& \mathrm{HB} 8$	'FUNCTION HEADER CONTROL WORD
CONST TDCMODE $=\& \mathrm{H} 8 \mathrm{~B}$	'TDC HEADER CONTROL WORD
CONST READRAM $=\& \mathrm{H} 90$	'READ FUNCTION - ADDRESS/DATA HEADER
CONST WRITERAM $=\& \mathrm{H} 80$	'WRITE FUNCTION - ADDRESS/DATA HEADER
CONST CALIBRATION $=\& H 9 B$	'CALIBRATE FUNCTION - ADD/DATA HEADER
CONST RUNMODE $=\& H 9 \mathrm{~B}$	'RUN FUNCTION - ADDRESS/DATA HEADER
${ }^{* * * * * *}$ THE BIT SET/RESET FUNCTIONS SENT TO HEADER CONTROL PORTS ***************	

CONST PORTCORESET $=\& H 0$
CONST FUNCLOCKLOW $=\& H 0$
CONST PORTCOSET $=\& H 1$
CONST FUNCLOCKHIGH $=\& H 1$
CONST PORTC1RESET $=\& \mathrm{H}_{2}$
CONST FUNENABLE $=\& \mathrm{H} 2$
CONST PORTC1SET $=\& H 3$
CONST FUNDISABLE $=\& H 3$
CONST PORTC2RESET $=\& H^{4}$
CONST SOFTRESETLOW $=\& H 4$
CONST PORTC2SET = \&H5
CONST SOFTRESETHIGH $=\& H 5$
CONST PORTC4RESET $=\& H 8$
CONST INTERRUPTOFF $=\& \mathrm{H}_{8}$
CONST PORTC4SET $=\& H 9$
CONST INTERRUPTON $=\& H 9$
'PORT C - BIT 0 - LOGIC LOW
'VME FUNCTION CLOCK LOW
'PORT C - BIT 0 - LOGIC HIGH
'VME FUNCTION CLOCK HIGH
'PORT C - BIT 1 - LOGIC LOW
'VME FUNCTION ENABLE LOW (ENABLED)
'PORT C - BIT 1 - LOGIC HIGH
'VME FUNCTION ENABLE HIGH (DISABLED)
'PORT C - BIT 2 - LOGIC LOW
'SOFT RESET LOW
'PORT C - BIT 2 - LOGIC HIGH
'SOFT RESET HIGH
'PORT C - BIT 4 - LOGIC LOW
'INTERRUPT ENABLELOW (DISABLED AT 8255)
'PORT C - BIT 4 - LOGIC HIGH
'INTERRUPT ENABLE HIGH (ENABLED AT 8255)
'***** THE VME FUNCTIONS (EPROM ADDRESSES) OUTPUT TO VME BUS

CONST NULL $=\& H 0$
CONST VRAMWRSETUP $=\& H 1$
CONST VRAMWRITE $=\& \mathrm{H} 2$
CONST VRAMREAD $=\& H 3$
CONST EORAMWRSETUP $=\& H 4$
CONST EORAMWRITE $=\& H 5$
CONST EORAMREAD $=\& H 6$
CONST E1RAMWRSETUP $=\& H 7$
CONST E1RAMWRITE $=\& H 8$
'EVERYTHING DISABLED - VME BUS ISOLATED
'VALID RAM WRITE SET-UP
'VALID RAM WRITE
'VALID RAM READ
'ENERGY 0 (WINDOW) RAM WRITE SET-UP 'ENERGY 0 (WINDOW) RAM WRITE
'ENERGY 0 (WINDOW) RAM READ
'ENERGY 1 (WINDOW) RAM WRITE SET-UP 'ENERGY 1 (WINDOW) RAM WRITE

CONST EIRAMREAD $=$ \& H 9	ENERGY 1 (WINDOW) RAM READ
CONST E2RAMWRSETUP = \& HA	'ENERGY 2 (WINDOW) RAM WRITE SET-UP
CONST E2RAMWRITE $=\& \mathrm{HB}$	'ENERGY 2 (WINDOW) RAM WRITE
CONST E2RAMREAD $=\& \mathrm{HC}^{\text {c }}$	'ENERGY 2 (WINDOW) RAM READ
CONST E3RAMWRSETUP $=$ \& HD	'ENERGY 3 (WINDOW) RAM WRITE SET-UP
CONST E3RAMWRITE $=\&$ HE	'ENERGY 3 (WINDOW) RAM WRITE
CONST E3RAMREAD $=$ \& HF	'ENERGY 3 (WINDOW) RAM READ
CONST DATARUN $=$ \& H 10	'SETS UP VME BOARDS FOR RUN MODE
CONST ADCRAMCH0 $=\& \mathrm{H}^{2} 0$	'ENERGY BOARD 0-ADC AND RAM CHECK
CONST ADCRAMCH1 $=\& \mathrm{H}_{2} 1$	'ENERGY BOARD 1-ADC AND RAM CHECK
CONST ADCRAMCH2 $=\& \mathrm{H}_{2} 2$	'ENERGY BOARD 2 - ADC AND RAM CHECK
CONST ADCRAMCH3 $=$ \& H 23	'ENERGY BOARD 3 - ADC AND RAM CHECK
CONST CALIBRATE0 $=\& \mathrm{H}_{8} 0$	'ENERGY BOARD 0 - ADC CALIBRATE
CONST CALIBRATE $1=\& H A 0$	'ENERGY BOARD 1 - ADC CALIBRATE
CONST CALIBRATE2 $=\&$ HC0	'ENERGY BOARD 2 - ADC CALIBRATE
CONST CALIBRATE $3=\&$ HE 0	'ENERGY BOARD 3 - ADC CALIBRATE
'*************************************************************	
READENERGY	'EXECUTE READENERGY SUBROUTINE
READVALID	'EXECUTE READVALID SUBROUTINE
SETRUNMODE	'EXECUTE SETRUNMODE SUBROUTINE
END	'END OF MAIN PROGRAM
SUB READENERGY	
DIM EORAM(0 TO 255) AS INTEGER	'HOLDS WINDOW RAM 0 CONTENTS
DIM E1RAM(0 TO 255) AS INTEGER	'HOLDS WINDOW RAM 1 CONTENTS
DIM E2RAM (0 TO 255) AS INTEGER	'HOLDS WINDOW RAM 2 CONTENTS
DIM E3RAM(0 TO 255) AS INTEGER	'HOLDS WINDOW RAM 3 CONTENTS
CLS	'CLEAR THE SCREEN
PRINT "PLEASE WAIT WHILE THE WINDOWS ARE CHECKED AND DISPLAYED!"	
PRINT	'PRINT MESSAGE, SKIP A LINE
OUT ADDATACONTROL, READRAM	'SET UP ADD/DATA HEADER FOR RAM READ
OUT FUNKTION, NULL	'OUTPUT THE NULL FUNCTION
OUT FUNCONTROL, FUNCLOCKLOW	

OUT FUNCONTROL, FUNCLOCKHIGH

OUT VMEDATA, 0
OUT VMEADDLOW, 0
OUT VMEADDHIGH, 0
FOR $\mathrm{J}=0$ TO 255

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT VMEADDLOW, J
OUT FUNKTION, EORAMREAD
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
$\operatorname{EORAM}(\mathrm{J})=\operatorname{INP}($ VMEDATA $)$
IF $\mathrm{J}<>0$ THEN
'CLOCK THE FUNCTION INTO THE LATCHES
'SET VME DATA BUS TO 0
'SET VME ADDRESS (LOW BITS) TO 0
'SET VME ADDRESS (HIGH BITS) TO 0
'LOOP THROUGH THE WINDOW RAM
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'OUTPUT THE LOW ADDRESS BITS
'OUTPUT THE READ FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'READ THE DATA FROM THE PORT
'CHECK ALL LOCATIONS BUT THE 0TH
$\operatorname{IF} \operatorname{EORAM}(\mathrm{J})=1 \operatorname{AND} \operatorname{E0RAM}(\mathrm{~J}-1) \diamond 1$ THEN W1L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E0RAM}(\mathrm{J})<>1$ AND E0RAM $(\mathrm{J}-1)=1$ THEN W1R $=\mathrm{J}$
$\operatorname{IF} \operatorname{EORAM}(\mathrm{J})=2$ AND E0RAM(J-1) $<>2$ THEN W2L $=\mathrm{J}$
$\operatorname{IF} \operatorname{EORAM}(\mathrm{J})<>2$ AND E0RAM(J -1$)=2$ THEN W2R $=\mathrm{J}$
$\operatorname{IF} \operatorname{EORAM}(\mathrm{J})=3$ AND E0RAM $(\mathrm{J}-1)<>3$ THEN W3L $=\mathrm{J}$
$\operatorname{IF} \operatorname{EORAM}(\mathrm{J})<>3$ AND E0RAM $(\mathrm{J}-1)=3$ THEN W3R $=\mathrm{J}$
'END OF TEST
'END OF LOOP

FOR J = 0 TO 255
$\mathrm{X} \%=\operatorname{EORAM}(\mathrm{J})$
IF $((\mathrm{X}<>0)$ AND $(\mathrm{X}<>1)$ AND $(\mathrm{X}<>2)$ AND $(\mathrm{X}<>3))$ THEN
PRINT "ERROR, J= "; J, " E0RAM(J)= "; E0RAM(J)
’WINDOW 1 LEFT TEST
'WINDOW 1 RIGHT TEST
'WINDOW 2 LEFT TEST
'WINDOW 2 RIGHT TEST
'WINDOW 3 LEFT TEST
'WINDOW 3 RIGHT TEST

END IF

NEXT J
******************************
'LOOP THROUGH THE WINDOW RAM
'USE X VARIABLE FOR TESTING
'INVALID CONTENTS
'PRINT MESSAGE

IF (W1R $=0$ OR W2R $=0$ OR W3R $=0$ ) THEN 'TEST IF WINDOWS HAVE BEEN SET

PRINT "CHANNEL \# 0 WINDOWS HAVE NOT BEEN SET!" 'PRINT MESSAGE ERAMOK = FALSE

ELSE

PRINT "FOR ENERGY CHANNEL \#0:"
PRINT "START WINDOW IS SET FROM "; W1L; " TO "; W1R 'PRINT RANGE

PRINT "HIGH STOP WINDOW IS SET FROM "; W3L; " TO "; W3R 'PRINT RANGE

END IF

PRINT

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

OUT VMEDATA, 0
OUT VMEADDLOW, 0
OUT VMEADDHIGH, 0

FOR J = 0 TO 255

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH

OUT VMEADDLOW, J
OUT FUNKTION, E1RAMREAD
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
$\operatorname{E1RAM}(\mathrm{J})=\operatorname{INP}(\mathrm{VMEDATA})$
IF $\mathrm{J}<>0$ THEN
'OUTPUT THE NULL FUNCTION
,
'CLOCK THE FUNCTION INTO THE LATCHES
'SET VME DATA BUS TO 0
'SET VME ADDRESS (LOW BITS) TO 0
'SET VME ADDRESS (HIGH BITS) TO 0
'LOOP THROUGH THE WINDOW RAM
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'OUTPUT THE LOW ADDRESS BITS
'OUTPUT THE READ FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'READ THE DATA FROM THE PORT
'CHECK ALL LOCATIONS BUT THE OTH
$\operatorname{IF} \operatorname{E1RAM}(\mathrm{J})<>1$ AND E1RAM $(\mathrm{J}-1)=1$ THEN W1R $=\mathrm{J}$
$\operatorname{IF} \operatorname{E1RAM}(\mathrm{J})=2$ AND E1RAM $(\mathrm{J}-1)<>2$ THEN W2L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E1RAM}(\mathrm{J})<>2$ AND E1RAM(J -1$)=2$ THEN W2R $=\mathrm{J}$
$\operatorname{IF} \operatorname{E1RAM}(\mathrm{J})=3$ AND E1RAM $(\mathrm{J}-1)<>3$ THEN W3L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E1RAM}(\mathrm{J})<>3$ AND E1RAM $(\mathrm{J}-1)=3$ THEN W3R $=\mathrm{J}$
'WINDOW 1 RIGHT TEST
'WINDOW 2 LEFT TEST
'WINDOW 2 RIGHT TEST
'WINDOW 3 LEFT TEST
'WINDOW 3 RIGHT TEST

END IF

NEXT J

FOR $\mathrm{J}=0 \mathrm{TO} 255$
$X \%=\operatorname{E1RAM}(J)$
'LOOP THROUGH THE WINDOW RAM 'USE X VARIABLE FOR TESTING

IF ( $(\mathrm{X}<>0)$ AND $(\mathrm{X}<>1)$ AND $(\mathrm{X}<>2)$ AND $(\mathrm{X}<>3))$ THEN
PRINT "ERROR, J= "; J, " E1RAM(J)= "; E1RAM(J)
'PRINT MESSAGE

END IF
NEXT J

IF $(\mathrm{W} 1 \mathrm{R}=0$ OR W2R $=0$ OR W3R $=0)$ THEN 'TEST IF WINDOWS HAVE BEEN SET ERAMOK = FALSE

ELSE
PRINT "FOR ENERGY CHANNEL \#1:"
PRINT "START WINDOW IS SET FROM
'CHANNEL 1 WINDOWS WERE SET 'PRINT WINDOWS FOR CHANNEL 1 "; W1L; " TO "; W1R 'PRINT RANGE PRINT "LOW STOP WINDOW IS SET FROM "; W2L; " TO "; W2R 'PRINT RANGE

PRINT "HIGH STOP WINDOW IS SET FROM "; W3L; " TO "; W3R 'PRINT RANGE END IF

PRINT

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
'END OF PRINTING
'SKIP A LINE

OUT FUNCONTROL, FUNCLOCKHIGH
OUT VMEDATA, 0 OUT VMEADDLOW, 0
OUT VMEADDHIGH, 0
FOR J = 0 TO 255
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

OUT VMEADDLOW, J
OUT FUNKTION, E2RAMREAD
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

E2RAM(J) $=\operatorname{INP}($ VMEDATA $)$
IF J <> 0 THEN
'CLOCK THE FUNCTION INTO THE LATCHES
'SET VME DATA BUS TO 0
'SET VME ADDRESS (LOW BITS) TO 0
'SET VME ADDRESS (HIGH BITS) TO 0
'LOOP THROUGH THE WINDOW RAM
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'OUTPUT THE LOW ADDRESS BITS
'OUTPUT THE READ FUNCTION
,
'CLOCK THE FUNCTION INTO THE LATCHES
'READ THE DATA FROM THE PORT
'CHECK ALL LOCATIONS BUT THE 0TH
$\operatorname{IF} \operatorname{E2RAM}(\mathrm{J})=1$ AND E2RAM $(\mathrm{J}-1)<>1$ THEN W1L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E2RAM}(\mathrm{J})<>1$ AND E2RAM $(\mathrm{J}-1)=1$ THEN W $1 \mathrm{R}=\mathrm{J}$
$\operatorname{IF} \operatorname{E2RAM}(\mathrm{J})=2$ AND E2RAM $(\mathrm{J}-1)<>2$ THEN W2L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E2RAM}(\mathrm{J})<>2$ AND E2RAM(J -1$)=2$ THEN W2R $=\mathrm{J}$
$\operatorname{IF} \operatorname{E2RAM}(\mathrm{J})=3$ AND E2RAM $(\mathrm{J}-1)<>3$ THEN W3L $=\mathrm{J}$
IF E2RAM $(\mathrm{J})<>3$ AND E2RAM $(\mathrm{J}-1)=3$ THEN W3R $=\mathrm{J}$
'PRINT MESSAGE
'WINDOW 1 LEFT TEST
'WINDOW 1 RIGHT TEST
'WINDOW 2 LEFT TEST
'WINDOW 2 RIGHT TEST
'WINDOW 3 LEFT TEST
'WINDOW 3 RIGHT TEST

NEXT J

## 'END OF TEST

'END OF LOOP

FOR J = 0 TO 255
$\mathrm{X} \%=\operatorname{E2RAM}(\mathrm{J})$
IF ( $\mathrm{X}<>0$ ) AND $(\mathrm{X}<>1)$ AND $(\mathrm{X}<>2)$ AND $(\mathrm{X}<>3))$ THEN
PRINT "ERROR, $\mathrm{J}=\mathrm{"} ; \mathrm{J}, " \operatorname{E2RAM}(\mathrm{~J})=" ; \operatorname{E2RAM}(\mathrm{J})$
END IF
'END OF TEST
END IF

NEXT J
'END OF LOOP
IF $(\mathrm{W} 1 \mathrm{R}=0$ OR W2R $=0$ OR W3R $=0)$ THEN 'TEST IF WINDOWS HAVE BEEN SET PRINT "CHANNEL \# 2 WINDOWS HAVE NOT BEEN SET!" 'PRINT MESSAGE ERAMOK = FALSE

ELSE

PRINT "FOR ENERGY CHANNEL \#2:"
PRINT "START WINDOW IS SET FROM
'CHANNEL 2 WINDOWS WERE SET 'PRINT WINDOWS FOR CHANNEL 2 "; W1L; " TO "; W1R 'PRINT RANGE PRINT "LOW STOP WINDOW IS SET FROM "; W2L; " TO "; W2R ’PRINT RANGE PRINT "HIGH STOP WINDOW IS SET FROM "; W3L; " TO "; W3R 'PRINT RANGE END IF

PRINT

OUT FUNKTION, NULL

OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH

OUT VMEDATA, 0
OUT VMEADDLOW, 0
OUT VMEADDHIGH, 0

OUT ADDATCONTROL, READRAM
FOR $\mathrm{J}=0$ TO 255

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT VMEADDLOW, J
OUT FUNKTION, E3RAMREAD
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
$\operatorname{E3RAM}(\mathrm{J})=\operatorname{INP}($ VMEDATA $)$
IF $\mathrm{J}<>0$ THEN
'END OF PRINTING
'SKIP A LINE
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'SET VME DATA BUS TO 0
'SET VME ADDRESS (LOW BITS) TO 0
'SET VME ADDRESS (HIGH BITS) TO 0
'SET UP PORTA2 (DATA) AS INPUT
'LOOP THROUGH THE WINDOW RAM
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'OUTPUT THE LOW ADDRESS BITS
'OUTPUT THE READ FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'READ THE DATA FROM THE PORT
'CHECK ALL LOCATIONS BUT THE 0TH
$\operatorname{IF} \operatorname{E3RAM}(\mathrm{J})=1$ AND E3RAM $(\mathrm{J}-1)<>1$ THEN W1L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E3RAM}(\mathrm{J})<>1$ AND E3RAM $(\mathrm{J}-1)=1$ THEN W1R $=\mathrm{J}$
$\operatorname{IF} \operatorname{E3RAM}(\mathrm{J})=2$ AND E3RAM(J-1) $<>2$ THEN W2L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E3RAM}(\mathrm{J})<>2$ AND E3RAM(J -1$)=2$ THEN W2R $=\mathrm{J}$
$\operatorname{IF} \operatorname{E3RAM}(\mathrm{J})=3 \operatorname{AND} \operatorname{E3RAM}(\mathrm{~J}-1)<>3$ THEN W3L $=\mathrm{J}$
$\operatorname{IF} \operatorname{E3RAM}(\mathrm{J})<>3$ AND E3RAM $(\mathrm{J}-1)=3$ THEN W3R $=\mathrm{J}$
'WINDOW 1 LEFT TEST
'WINDOW 1 RIGHT TEST
'WINDOW 2 LEFT TEST
'WINDOW 2 RIGHT TEST
'WINDOW 3 LEFT TEST
'WINDOW 3 RIGHT TEST

END IF

NEXT J

FOR J = 0 TO 255
$\mathrm{X} \%=\mathrm{E} 3 \mathrm{RAM}(\mathrm{J})$
'END OF TEST
'END OF LOOP
'LOOP THROUGH THE WINDOW RAM 'USE X VARIABLE FOR TESTING

IF ((X $<>0)$ AND $(\mathrm{X}<>1)$ AND $(\mathrm{X}<>2)$ AND $(\mathrm{X}<>3))$ THEN
PRINT "ERROR, J= "; J, " E3RAM(J)= "; E3RAM(J)
'PRINT MESSAGE
END IF
'END OF TEST
NEXT J 'END OF LOOP

IF $(\mathrm{W} 1 \mathrm{R}=0$ OR $\mathrm{W} 2 \mathrm{R}=0$ OR W3R $=0)$ THEN 'TEST IF WINDOWS HAVE BEEN SET PRINT "CHANNEL \# 3 WINDOWS HAVE NOT BEEN SET!" 'PRINT MESSAGE ERAMOK = FALSE

ELSE
PRINT "FOR ENERGY CHANNEL \#3:"
PRINT "START WINDOW IS SET FROM
'CHANNEL 3 WINDOWS WERE SET 'PRINT WINDOWS FOR CHANNEL 3 "; W1L; " TO "; W1R 'PRINT RANGE

PRINT "HIGH STOP WINDOW IS SET FROM "; W3L; " TO "; W3R 'PRINT RANGE
END IF 'END OF PRINTING
PRINT 'SKIP A LINE

OUT FUNKTION, NULL
'OUTPUT THE NULL FUNCTION

```
 OUT FUNCONTROL, FUNCLOCKLOW
 OUT FUNCONTROL, FUNCLOCKHIGH 'CLOCK THE FUNCTION INTO THE LATCHES
 IF ERAMOK = TRUE THEN 'TEST TO SEE IF ALL THE WINDOWS ARE SET
 PRINT "ALL THREE WINDOWS ARE SET"
 ELSE 'ERROR DETECTED
 PRINT "AT LEAST ONE CHANNEL HAS NO WINDOWS SET!" 'PRINT MESSAGE
 END IF 'END OF TEST
 PRINT 'SKIP A LINE
 PRINT "-PRESS ANY KEY TO CHECK THE VALID RAM-" 'PRINT MESSAGE
 DO
 ANS$ = INKEY$ 'LOOP WHILE NO KEY IS PRESSED
LOOP WHILE ANS$ = ""
END SUB
,
SUB READVALID
 DIM VRAM(0 TO 15,0 TO 255) AS INTEGER 'HOLDS CONTENTS OF VALID RAM
 VRAMOK = TRUE 'INITIALIZE VRAMOK TO TRUE
 CLS
 PRINT "PLEASE WAIT WHILE VALID RAM IS CHECKED FOR CORRECTNESS!"
```

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
OUT VMEDATA, 0
OUT VMEADDLOW, 0
OUT VMEADDHIGH, 0
FOR I $=0$ TO 15
FOR $\mathrm{J}=0$ TO 255
OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH 'CLOCK THE FUNCTION INTO THE LATCHES
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'SET VME DATA BUS TO 0
'SET VME ADDRESS (LOW BITS) TO 0
'SET VME ADDRESS (HIGH BITS) TO 0
'OUTER LOOP FOR HIGH ADDRESS BITS
'INNER LOOP FOR LOW ADDRESS BITS
'OUTPUT THE NULL FUNCTION

OUT VMEADDHIGH, I
OUT VMEADDLOW, J

OUT FUNKTION, VRAMREAD

OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
$\operatorname{VRAM}(\mathrm{I}, \mathrm{J})=\operatorname{INP}($ VMEDATA $)$

NEXT J

NEXT I

FOR I = 0 TO 15

FOR J $=0$ TO 255
$\mathrm{X} \%=\mathrm{VRAM}(\mathrm{I}, \mathrm{J})$

IF $\mathrm{X}<255$ AND $\mathrm{X}>23$ THEN

PRINT "I= "; I, " J= "; J, " VRAM(I,J)= "; VRAM(I, J)

PRINT "VALID RAM IS IN ERROR!"

END IF

NEXT J

NEXT I
$\operatorname{IF} \operatorname{VRAM}(0,10)<>6$ THEN
VRAMOK = FALSE
PRINT "EVENT 0 IS NOT CORRECT!" END IF

IF VRAM $(0,11)<>9$ THEN
VRAMOK = FALSE
PRINT "EVENT 1 IS NOT CORRECT!" END IF

IF $\operatorname{VRAM}(0,17) \diamond 0$ THEN
VRAMOK = FALSE
PRINT "EVENT 2 IS NOT CORRECT!"
END IF

IF $\operatorname{VRAM}(0,25)<>3$ THEN
VRAMOK = FALSE
PRINT "EVENT 3 IS NOT CORRECT!"
'OUTPUT THE HIGH ADDRESS BITS
'OUTPUT THE LOW ADDRESS BITS
'OUTPUT THE READ FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'READ THE DATA FROM THE PORT
'END OF INNER LOOP
'END OF OUTER LOOP
'OUTER LOOP FOR HIGH ADDRESS BITS
'INNER LOOP FOR LOW ADDRESS BITS
'USE X VARIABLE FOR TESTING
'CHECK TO SEE IF CONTENTS IN VALID RANGE
'INVALID CONTENTS
'PRINT MESSAGE
'END OF TEST
'END OF INNER LOOP
'END OF OUTER LOOP
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE

## END IF

$\operatorname{IF} \operatorname{VRAM}(0,66)>12 \operatorname{THEN}$
VRAMOK $=$ FALSE
PRINT "EVENT 4 IS NOT CORRECT!" END IF
$\operatorname{IF} \operatorname{VRAM}(0,67)<>15 \operatorname{THEN}$
VRAMOK = FALSE
PRINT "EVENT 5 IS NOT CORRECT!" END IF

IF VRAM $(0,80)<>13$ THEN
VRAMOK = FALSE
PRINT "EVENT 6 IS NOT CORRECT!"
END IF

IF VRAM $(0,88)<16$ THEN
VRAMOK = FALSE
PRINT "EVENT 7 IS NOT CORRECT!"
END IF

IF $\operatorname{VRAM}(0,129) \diamond 1$ THEN
VRAMOK = FALSE
PRINT "EVENT 8 IS NOT CORRECT!"
END IF

IF VRAM $(0,136)<>7$ THEN
VRAMOK = FALSE
PRINT "EVENT 9 IS NOT CORRECT!"
END IF

IF VRAM $(0,193)<>4$ THEN
VRAMOK = FALSE
PRINT "EVENT 10 IS NOT CORRECT!"
END IF
IF VRAM $(0,200)<>10$ THEN
VRAMOK = FALSE
PRINT "EVENT 11 IS NOT CORRECT!" END IF

IF VRAM $(2,2)<>18$ THEN
VRAMOK $=$ FALSE
PRINT "EVENT 12 IS NOT CORRECT!" END IF
$\operatorname{IF} \operatorname{VRAM}(2,3)<>21$ THEN
VRAMOK = FALSE
PRINT "EVENT 13 IS NOT CORRECT!"
END IF
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM 'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST
'TEST FOR EVENT 0 IN VALID RAM
'ERROR DETECTED
'PRINT MESSAGE
'END OF TEST

IF VRAM $(2,16)<>19$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 14 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(2,24)<>22$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 15 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(2,128)<>20$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 16 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(2,192)<>23$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 17 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
$\operatorname{IF} \operatorname{VRAM}(4,1)<>2$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 18 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(4,8)<>8$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 19 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(4,64)<>14$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 20 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(6,1)<>5$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 21 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(6,8)<>11$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 22 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST
IF VRAM $(6,64)<>17$ THEN	'TEST FOR EVENT 0 IN VALID RAM
VRAMOK = FALSE	'ERROR DETECTED
PRINT "EVENT 23 IS NOT CORRECT!"	'PRINT MESSAGE
END IF	'END OF TEST

OUT FUNKTION, NULL
OUT FUNCONTROL, FUNCLOCKLOW
OUT FUNCONTROL, FUNCLOCKHIGH
IF VRAMOK = TRUE THEN PRINT
PRINT "ALL IS WELL IN THE VALID RAM!" PRINT

ELSE
PRINT PRINT "THERE IS A PROBLEM WITH THE PRINT

END IF

PRINT "-PRESS ANY KEY TO CONTINUE-"
DO
ANS $\$=$ INKEY\$
LOOP WHILE ANS\$ = " "

END SUB
,
SUB SETRUNMODE
OUT FUNCONTROL, INTERRUPTOFF OUT FUNKTION, NULL

OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

OUT ADDATACONTROL, RUNMODE

OUT FUNKTION, DATARUN
OUT FUNCONTROL, FUNCLOCKLOW OUT FUNCONTROL, FUNCLOCKHIGH

END SUB
'OUTPUT THE NULL FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'CHECK ALL OF THE VALID RAM TESTS
'SKIP A LINE
'PRINT MESSAGE
'SKIP A LINE
'AN ERROR WAS DETECTED
'SKIP A LINE
VALID RAM!" 'PRINT MESSAGE
'SKIP A LINE
'END OF TEST
'PRINT MESSAGE
'LOOP WHILE NO KEY IS PRESSED
'END OF READVALID SUBROUTINE
'TURN OFF THE INTERRUPTS
'SEND OUT THE NULL FUNCTION
,
'CLOCK THE FUNCTION INTO THE LATCHES
'SET UP THE ADDRESS/DATA HEADER FOR RUN
'SEND OUT THE RUN FUNCTION
'CLOCK THE FUNCTION INTO THE LATCHES
'END OF SETRUNMODE SUBROUTINE

