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ABSTRACT

The linear stability of a double-diffusively stratified, inflectional shear flow is investigated. Double-
diffusive stratification has little effect on shear instability except when the density ratio R� is close to unity.
Double-diffusive instabilities have significant growth rates and can represent the fastest-growing mode even
in the presence of inflectionally unstable shear with a low Richardson number. In the linear regime,
background shear has no effect on double-diffusive modes except to select the orientation of the wave
vector. The converse is not true: double-diffusive modes modify the mean shear via momentum fluxes. The
momentum flux driven by salt sheets is parameterized in terms of a Schmidt number (ratio of eddy viscosity
to saline diffusivity) Scs. In the oceanic parameter regime, Scs is less than unity and can be approximated
as Scs � 0.08 ln[R� /(R� � 1)]. Enhanced molecular dissipation by unstable motions is quantified in terms
of the dissipation ratio �, and the results are compared with observations. Corresponding results are given
for diffusive convection in an inflectional shear flow, though linear theory is expected to give a less accurate
description of this mechanism.

1. Introduction

Thermohaline stratification is double-diffusively un-
stable for nearly half of the ocean interior (You 2002).
The instability often results in layering, which may oc-
cur through two mechanisms that have been seen as
distinct, though their relationship is poorly understood.
When temperature and salinity vary only in the vertical,
the fluid becomes organized into staircases of vigor-
ously convecting layers separated by thin interfaces
(Radko 2003). When temperature and salinity vary in
the horizontal, buoyancy fluxes may drive interleaving
motions that have the potential to effect significant lat-
eral transport between water masses. Effects of shear
(i.e., vertically sheared horizontal currents) may be im-
portant in both scenarios. In the interleaving case, shear
is clearly present between adjacent intruding layers
(Mueller et al. 2007). In a staircase, shear is not intrin-
sic, but the ubiquitous presence of gravity waves in the
ocean means that such layers will be subjected to shear
nonetheless (e.g., Kunze 1994).

While the last few decades have seen many studies of
double-diffusive instability, the effects of shear on
those instabilities have received relatively little atten-
tion. Linden (1974) showed both theoretically and ex-
perimentally that a uniform shear favors convection
rolls whose axes are parallel to the background flow.
Analogous results have been found for ordinary con-
vection in the presence of shear (Deardorff 1965).
Thangham et al. (1984) conducted detailed numerical
studies of shear effects, but excluded inflectional pro-
files (i.e., flows in which shear is vertically localized, our
main focus here). Kunze (1990, 1994) considered equili-
bration of finite-amplitude salt fingers in shear, includ-
ing the oceanically important case of inertially rotating
shear. Wells et al. (2001) conducted laboratory experi-
ments on salt fingers in a vertically periodic shear and
showed how the strength of the salt fingers adjusted to
create an equilibrium state. Other investigators have
looked into the spontaneous generation of shear by di-
vergent double-diffusive fluxes (Paparella and Spiegel
1999; Stern 1969; Holyer 1981).

The ability of double-diffusive motions to flux hori-
zontal momentum in the vertical has been addressed
experimentally by Ruddick (1985) and Ruddick et al.
(1989), and observationally by Padman (1994). Double-
diffusive momentum fluxes are thought to be crucial in
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determining the vertical scales of thermohaline inter-
leaving layers (Toole and Georgi 1981).

Here, we consider instability in a vertically localized
layer where diffusively unstable stratification and shear
coincide. The inflectional nature of the imposed shear
yields the possibility of Kelvin–Helmholtz (KH) insta-
bility independent of double diffusion. We delineate
regions of parameter space in which each class of insta-
bility is likely to dominate, and also consider the effects
of double-diffusive stratification on KH instability. We
examine the effect that the finite vertical extent of the
stratified layer has on the characteristics of double-
diffusive instability relative to the previously studied
case of uniform gradients.

One of the most useful outcomes that any study of
ocean mixing can produce is a prediction of the fluxes
due to the mixing process in question. Predictions of
double-diffusive fluxes are needed for the interpreta-
tion of observational data (e.g., Gregg and Sanford
1987; Padman and Dillon 1987; Hebert 1988; Rudels et
al. 1999; Timmermans et al. 2003) and for models rang-
ing from global simulations (Zhang et al. 1998; Merry-
field et al. 1999) to small-scale processes studies (e.g.,
Walsh and Ruddick 1998; Merryfield 2000). In the lin-
ear (small amplitude) limit, fluxes grow exponentially.
In reality, this exponential growth is arrested with the
onset of nonlinear effects, which generally lead the flow
to a turbulent state. Fluxes occurring at finite amplitude
cannot be predicted from linear theory. The situation
becomes more encouraging if one considers ratios of
fluxes. As a linear eigenmode grows exponentially in
time, any flux ratio will remain constant. One therefore
knows the value of the flux ratio at the onset of non-
linear effects, and this provides a plausible estimate of
the flux ratio that will pertain in fully nonlinear flow.
For example, the ratio of thermal to saline buoyancy
fluxes in exponentially growing salt fingers is a simple
function of R� that agrees well with the flux ratio in the
fully nonlinear state (e.g., Schmitt 1979; Kunze 2003).

Here, we attempt to parameterize momentum fluxes
in terms of the better understood buoyancy fluxes, us-
ing flux ratios in the form of Prandtl and Schmidt num-
bers. Results are in reasonable agreement with avail-
able laboratory and observational evidence, but pro-
vide a more comprehensive view of the parameter
dependences of these flux ratios.

The dissipation ratio � is frequently used to charac-
terize mixing processes (e.g., McDougall and Ruddick
1992; Ruddick et al. 1997; St. Laurent and Schmitt
1999). Like the Prandtl and Schmidt numbers, � is con-
stant in the linear regime. We compute � for small-
amplitude salt sheets in shear, and find that the results
compare reasonably well to observations of finite-am-

plitude salt fingering in weakly sheared flow (St. Lau-
rent and Schmitt 1999).

Our primary focus is on the salt fingering regime, in
which warm, salty fluid overlies cooler, fresher fluid. In
the opposite scenario, linear theory predicts oscillatory
diffusive convection. Diffusive convection as it occurs
in the laboratory and the ocean is an intrinsically finite-
amplitude phenomenon and is poorly modeled by its
linear counterpart. Nevertheless, the linear dynamics
are not without interest and are included here for com-
pleteness.

Our basic tool is linear stability analysis, whose ap-
plication is described in section 2. The description of
the results begins in section 3 with an overview of the
main classes of unstable modes that may occur in a
diffusively unstable, sheared flow: salt fingers, salt
sheets, KH instabilities, and diffusive convection. We
discuss the physics of each and define Schmidt and
Prandtl numbers with which to describe the momentum
fluxes. In section 4, we look at the effects of double-
diffusive stratification on KH instabilities. Background
shear does not affect double-diffusive instabilities di-
rectly (except to select their orientation), but the insta-
bilities may affect the background flow by transporting
momentum in the vertical. This process, and its param-
eterization, are the subjects of section 5. We then give
an equivalent (though less detailed) discussion for dif-
fusive convection in section 6. In section 7, we delineate
the regions of parameter space in which each of these
classes of instabilities is expected to dominate. Conclu-
sions are given in section 8.

2. Methodology

a. The eigenvalue problem for linear normal modes

We assume that density is a linear function of tem-
perature and salinity and neglect inertial effects of den-
sity variations in accordance with the Boussinesq ap-
proximation. The velocity field u(x, y, z, t) � {u, �, w} is
measured in a nonrotating, Cartesian coordinate sys-
tem {x, y, z}. The resulting field equations are

Du
Dt

� ��� � bk̂ � v�2u, �1�

� · u � 0, �2�

DbT

Dt
� �T�2bT , �3�

DbS

Dt
� �S�2bS, and �4�

b � bT � bS. �5�
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The variable 	 represents the pressure scaled by the
uniform characteristic density �0, and k̂ is the vertical
unit vector. Buoyancy is defined as b � �g(� � �0)/�0,
where g is the acceleration due to gravity. Buoyancy is
the sum of a thermal component bT and a saline com-
ponent bS. Kinematic viscosity and thermal and saline
diffusivities are represented by 
, �T, and �S, respec-
tively. Boundary conditions are periodic in the horizon-
tal and flux free at z � 0 and z � H. Table 1 lists all
symbols used in this paper.

The velocity, buoyancy, and pressure terms are sepa-
rated into two parts, a background profile and a per-
turbation:

u�x, y, z, t� � U�z�î � �u��x, y, z, t�, �6�

bT�x, y, z, t� � BT�z� � �b�T�x, y, z, t�, �7�

bS�x, y, z, t� � BS�z� � �b�S�x, y, z, t�, and �8�

��x, y, z, t� � ��x, y, z, t� � ����x, y, z, t�. �9�

We substitute (6)–(9) into (1)–(4) and then collect
the O(�) terms. The perturbations are assumed to take
the normal mode form:

w��x, y, z, t� � ŵ�z�e�t�i�kx�ly� � c.c., �10�

where k and l are wavenumbers in streamwise and
spanwise directions, respectively, and 
 is the growth
rate of the perturbation. Substituting these perturba-
tions into the O(�) equations gives

�û � �ikUû � ŵUz � ik�̂ � ��̃2û, �11�

�	̂ � �ikU	̂ � il�̂ � ��̃2	̂, �12�

�ŵ � �ikUŵ � �̂z � b̂ � ��̃2ŵ, �13�

0 � i�kû � l	̂� � ŵz, �14�

�b̂T � �ikUb̂T � ŵBTz � �T�̃2b̂T, �15�

�b̂S � �ikUb̂S � ŵBSz � �s�̃
2b̂S, and �16�

b̂ � b̂T � b̂S, �17�

where the subscript z indicates the derivative, �̃2 �
d2/dz2 � k̃2 and k̃2 � k2 � l2. Eliminating 	̂ from (11)–
(14), we obtain

��̃2ŵ � �ikU�̃2ŵ � ikŵUzz � ��̃4ŵ � k̃2b̂. �18�

Equations (15)–(18) form a closed, generalized, differ-
ential eigenvalue problem whose eigenvalue is 
 and
whose eigenvector is the concatenation of {ŵ, b̂T, b̂S}.
The horizontal velocities and the pressure may then be
obtained separately if needed.

The background profiles appearing in (11)–(18) are
chosen to describe a stratified shear layer:

U � u0 tanh
z

h
, �19�

BTz �
R
Bz0

R
 � 1
sech2

z

h
, and �20�

BSz �
�Bz0

R
 � 1
sech2

z

h
. �21�

Here, u0 is the half velocity change across a layer of half
depth h, Bz0 is the maximum background buoyancy gra-
dient (or squared buoyancy frequency), and R� �
�BTz/BSz is the density ratio.

TABLE 1. Glossary of symbols.

Symbol Definition

u(x, y, z, t) Velocity, {u, �, w}
u�(x, y, z, t) Velocity perturbation, {u�, ��, w�}
U(z) Background velocity profile
Uz0 Central background shear
bT (x, y, z, t) Thermal buoyancy
b�T (x, y, z, t) Thermal buoyancy perturbation
BT (z) Background thermal buoyancy profile
BTz 0 Central thermal buoyancy gradient
bS(x, y, z, t) Saline buoyancy
b�S(x, y, z, t) Saline buoyancy perturbation
BS (z) Background saline buoyancy profile
BSz0 Central total buoyancy gradient
Bz0 Central background buoyancy gradient
	 (x, y, z, t) Scaled pressure
�(z) Background pressure profile
	�(x, y, z, t) Pressure perturbation

 Growth rate
k Streamwise wavenumber
l Spanwise wavenumber
k̃ Magnitude of wave vector

 Molecular viscosity
�� Molecular thermal diffusivity
�S Molecular saline diffusivity
h Half thickness of layer
u0 Half velocity change across layer
R� Density ratio: �BTz /BSz

Pr Molecular Prandtl number: 
 /�T

Sc Molecular Schmidt number: 
 /�S

� Diffusivity ratio: �S /�T

Re Reynolds number: u0h/

Gr Grashof number: Bz0h4/
�T

Rib Bulk Richardson number: Gr/PrRe2

�s Salt finger buoyancy flux ratio
�d Diffusive convection buoyancy flux ratio

s Salt finger viscosity
Prs Salt sheet Prandtl number:

Viscosity/thermal diffusivity
Prd Diffusive convection Prandtl number
Scs Salt finger Schmidt number:

Momentum/saline diffusivity
Scd Diffusive convection Schmidt number
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In the interleaving case, the assumption that shear
varies vertically on the same scale as stratification is
reasonable. If shear is imposed by an internal wave
field, however, it is likely that the vertical scales will be
very different. If thermohaline properties vary on a
much smaller scale than velocity, there exists the po-
tential for other classes of shear instability besides KH.
If the shear field is aligned so that maximum shear
coincides with a stratified interface, the result may be
Holmboe instability (e.g., Smyth and Winters 2003). On
the other hand, if the shear maximum is located be-
tween adjacent stratified layers, Taylor instability may
result (e.g., Lee and Caulfield 2001). These will be the
subject of a future publication.

b. Nondimensionalization

We nondimensionalize the problem using length
scale h and time scale h2/�T. This nondimensionaliza-
tion introduces four dimensionless parameters: the mo-
lecular Prandtl number Pr � 
/�T, the diffusivity ratio
� � �S /�T, the Reynolds number Re � u0h /
, and the
Grashof number1 Gr � Bz0h4/
�T. The latter is just the
additive inverse of the Rayleigh number and as such is
positive in statically stable stratification. It is also a
scaled version of the buoyancy gradient Bz0, which is
equal to the squared Brunt–Väisälä frequency.

The equations needed for the analyses to follow be-
come

�û � �ikUû � ŵUz � ik�̂ � Pr�̃2û, �22�

��̃2ŵ � �ikU�̃2ŵ � ikŵUzz � Pr�̃4ŵ � k̃2b̂, �23�

�b̂T � �ŵBTz � ikUb̂T � �̃2b̂T , and �24�

�b̂S � �ŵBSz � ikUb̂S � ��̃2b̂S, �25�

with background profiles

U � RePr tanhz, �26�

BTz �
R
GrPr
R
 � 1

sech2z, and �27�

BSz �
�GrPr
R
 � 1

sech2z. �28�

In (22)–(28) and hereinafter unless otherwise noted, all
quantities are dimensionless. For the computations de-
scribed here, boundaries are located at z � �4.

c. Numerical methods

The Fourier–Galerkin method is used to discretize
the z dependence:

{ŵ�z�, b̂T�z�, b̂S�z�} � �
n�1

N

{ŵn, b̂Tn
, b̂Sn

}fn�z� and

�29�

{û�z�, 	̂�z�, �̂�z�} � �
n�1

N

{ûn, 	̂n, �̂n}gn�z�, �30�

where

fn�z� � sin
n��z � H�2�

H
and

gn�z� � cos
n��z � H�2�

H
. �31�

The nondimensional domain height H is here set equal
to 8. The inner product operator of any two functions
a(z) and b(z) is defined by

�a�z�b�z�� �
2
H �

0

H

a�z�b�z� dz, �32�

so that

� fm�z�fn�z�� � 
mn and

�gm�z�gn�z�� � 
mn�1 � 
m0�. �33�

Equations (23)–(25) become

�� fm�̃2fn�ŵn � ��ik� fmU �̃2fn� � ik� fmUzzfn� � Pr� fm�̃4fn��ŵn � k̃2� fmfn�b̂Tn � k̃2� fmfn�b̂Sn,

�� fmfn�b̂Tn � �� fmBTzfn�ŵn � ik� fmUfn�b̂Tn � � fm�̃2fn�b̂Tn, and

�� fmfn�b̂Sn � �� fmBSzfn�ŵn � ik� fmUfn�b̂Sn � �� fm�̃2fn�b̂Sn.

This is a generalized algebraic eigenvalue problem
whose eigenvalue is 
 and whose eigenvector is the

concatenation of {ŵn, b̂Tn, b̂Sn}. Convergence re-
quires up to 192 Fourier modes for boundaries located
at z � �4.

d. Parameter values

The molecular Prandtl number and the diffusivity ra-
tio have the values Pr � 7 and � � 10�2, appropriate for

1 We use the term somewhat loosely, as the buoyancy gradient
in Gr contains a contribution from a second scalar (salinity) in
addition to the one whose diffusivity appears in the denominator
(temperature).
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seawater. We also define the molecular Schmidt num-
ber, Sc � Pr/� � 700.

Here Gr is assumed to be positive, indicating stable
stratification. Observations in a thermohaline staircase
east of Barbados, summarized by Kunze (2003), suggest
values in the range from 108 to 2 � 109; depending on
how one relates h to the thickness of a double-diffusive
layer.

Double-diffusive instability requires (Pr � �)/(Pr � l)
� R� � ��1 (or 0.876 � R� � 100 for the present pa-
rameter values) and is strongest when R� is near unity.
The Barbados observations yielded a typical value of
1.6. Here, we consider a range of values from 0.9 to 100.

The Reynolds number obtained from the Barbados
observations is in the range 103–104. Values used here
will range from 0, in the limit of no shear, to 108. The
latter may exist in thin, strongly sheared layers not re-
solved in measurements.

Another parameter of interest is the bulk Richardson
number, Rib � Gr/(PrRe2). This is the minimum value
of the gradient Richardson number, occurring at z � 0.
Bulk Richardson number Rib � 1/4 is the standard cri-
terion for KH instability (Miles 1961; Howard 1961).

3. Overview of instabilities

In the absence of shear, double-diffusive instability
creates convection rolls (and other planforms; e.g.,
Schmitt 1994) whose orientation is not determined, that
is, the growth rate depends on the magnitude of the
wave vector but not on its direction (Fig. 1a). In the
absence of double-diffusive instability, inflectional
shear may create dynamic instability, which for this
flow configuration is KH instability. Unlike double-
diffusive instability, KH instability is strongly direc-
tional, with wave vectors oriented parallel to the back-
ground shear flow growing most rapidly in accordance

with Squire’s theorem (Yih 1955). These modes have
l � 0, and we refer to them as transverse. Of these, the
mode with nondimensional wave vector near one-half
(or wavelength about 7 times the thickness of the shear
layer) grow the fastest (Fig. 1b).

Double-diffusive instability becomes directional in
the presence of shear, with wave vectors oriented at
right angles to the mean flow growing fastest. These
modes have k � 0, and are referred to here as longitu-
dinal. In accordance with Squire’s theorem, longitudi-
nal modes are unaffected by the background shear, a
property we will explore in detail in section 5. Figure 1c
shows a case in which both salt fingers and KH modes
are unstable. The KH modes are strongest near k �
0.45, l � 0, as is true in ordinary stratification (e.g.,
Hazel 1972). Salt fingers, instead of being nondirec-
tional as in Fig. 1a, are strongly damped except near
k � 0 (upper-left corner of Fig. 1c). This causes the
instability to take the form of longitudinal convection
rolls, or salt sheets.

Diffusive convection cases are not included in Fig. 1
because their dispersion relations are qualitatively simi-
lar to the salt sheet case (Fig. 1c). The difference is that,
rather than being stationary, modes are oscillatory with
frequencies often far in excess of the growth rate.

Salt fingers grow because the positive buoyancy flux
due to salinity advection outweighs the negative buoy-
ancy flux due to thermal advection (Fig. 2a). Unlike salt
fingers growing on uniform background gradients (e.g.,
Stern 1960; Baines and Gill 1969), motions are concen-
trated in a thin layer where background gradients are
largest. (Note that the vertical extent included in Fig. 2a
is much less than that of the domain.) The amplitudes
of the fluxes are arbitrary in the linear regime, but their
ratio is not. The flux ratio

�s � �b�Tw��b�Sw� �34�

FIG. 1. The real part of the dispersion relation 
 r (k, l) for three illustrative cases: (a) pure salt fingering: Re �
0, Gr � 106, R� � 1.6; (b) pure KH: Re � 300, Rib � 0.1, R� � 100; and (c) KH and salt sheets: Re � 100, Rib �
0.1, Gr � 7000, R� � 1.6. Bullets indicate points for which flux profiles are shown in Fig. 2.
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has the value 0.59 for this example. This value agrees
well with measurements of salt fingers in laboratory
and numerical experiments (Kunze 2003) and in the
ocean (Schmitt 2003), despite having been derived
from linear theory. This flux ratio also obtains in the
vastly different parameter regime of sugar–salt fingers
(Schmitt 1979).

The KH instability grows because the velocity flux
(Fig. 2c) acts to reduce the background shear and thus
draws energy from the mean flow into the perturbation.
Because the stratification is almost purely thermal in
this example, the same is true of the buoyancy flux (Fig.
2b). In fact, the flux ratio for this case is 93. This is
similar to the value of the density ratio R� � 100, indi-
cating that the difference in the diffusivities of the two
scalars plays no significant role in the dynamics, con-
sistent with the fact that the mechanism of KH insta-
bility is essentially inviscid.

Salt sheets, like salt fingers, grow because of the
dominance of the positive buoyancy flux due to salinity

(Fig. 2d). For this example, �s � 0.55. In addition, con-
vective motions within the salt sheets tilt against the
shear, so that the velocity flux (Fig. 2e) draws energy
from the mean flow to the perturbation. It is important
to recognize that this energy transfer only amplifies mo-
tions in the x direction, and thus does not supply energy
to the salt sheets per se. In fact, the background flow
has no effect whatsoever on the salt sheet instability, in
accordance with Squire’s theorem.

The momentum and buoyancy fluxes may be ex-
pressed in terms of effective diffusivities via the usual
flux-gradient formalism. The ratio of momentum to
thermal diffusivity, here called the salt sheet Prandtl
number Prs has the value 0.19, while the Schmidt num-
ber Scs, the ratio of momentum to saline diffusivity, is
0.07.

Diffusive convection is an oscillatory instability
driven by the dominance of the positive thermal buoy-
ancy flux over the negative saline buoyancy flux (Fig.
2f). The finite-amplitude expression of diffusive con-

FIG. 2. Vertical fluxes of buoyancy and velocity for the three illustrative cases shown by bullets in Fig. 1, plus an example of sheared
diffusive convection. (a) Pure salt fingering: Re � 0, Gr � 106, R� � 1.6, k � 22.36, l � 22.36 (bullet in Fig. 1a). The velocity flux is
not shown as it is identically zero. (b), (c) Pure KH: Re � 300, Rib � 0.1, R� � 100, k � 0.47, l � 0 (bullet in Fig. 1b). (d), (e) Sheared
salt fingers: Re � 100, Rib � 0.1, Gr � 7000, R� � 1.6, k � 0, l � 9.15 (bullet in Fig. 1c). (f), (g) Sheared diffusive convection: Re �
100, Rib � 0.1, Gr � 7000, R� � 0.96, k � 0, l � 9.15. (a), (b), (d), (f) Buoyancy fluxes: total (solid), thermal (dashed), and saline
(dotted). All buoyancy fluxes have been divided by 1000 for plotting convenience. (c), (e), (g) Velocity flux.
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vection is a nonoscillatory convective layering, suggest-
ing a qualitative change in the physics between the
small- and large-amplitude regimes, so that results from
linear theory must be interpreted with caution. The flux
ratio is defined oppositely to that for salt fingers:

�d � �b�Sw��b�Tw�, �35�

and has the value 0.21 for this example. Like salt sheets,
sheared diffusive convection generates a vertical trans-
port of momentum (Fig. 2f) via longitudinal convection
cells. In contrast with the salt sheet case, momentum
diffusivities are larger than scalar diffusivities. For the
example shown in Figs. 2e,f, the Prandtl number of the
diffusive convection is Prd � 1.46 and the Schmidt num-
ber is Scd � 7.07.

In subsequent sections, we will explore in detail the
relationships between sheared, double-diffusive flow
profiles and the instabilities they generate.

4. How are KH billows affected by
double-diffusively unstable stratification?

For most oceanographic parameter values, diffu-
sively unstable stratification has a negligible effect on
KH instability. While this result is not obvious a priori,
it is not surprising as the KH instability mechanism is
inviscid. An exception occurs where R� � 1. There,
double-diffusive instability becomes so strong that,
even when damped by shear, it overwhelms shear in-
stability. (In this case the longitudinal salt sheet insta-
bility, being free of the damping effect of shear, is the
dominant mode. Growth rates of salt sheets and KH
billows are compared explicitly in section 7.)

An example is given in Fig. 3, which shows growth
rate as a function of R� and k for purely transverse
modes with shear strong enough that the Richardson
number is subcritical (Rib � 0.14). The black contour
signifies 
i � 0; modes to the right of that contour are
oscillatory. The white, dotted contour indicates the fast-
est-growing mode (FGM) at each R�. For R� � 1.6, the
FGM is stationary and has wavenumbers near 0.45, as is
characteristic of KH instability (Hazel 1972). At wave-
numbers smaller than this fastest-growing KH mode,
growth rates are independent of R� for all R�, as indi-
cated by vertical contours.

In ordinary stratification with Rib � 0.14, wavenum-
bers greater than 0.83 would be stable. Instead, a sec-
ondary maximum in 
r is found at much higher wave-
numbers (k �102), where salt fingering instabilities are
damped and rendered oscillatory by the shear. The lat-
ter occurs when finger amplitudes are maximized not at
z � 0, as in the example shown in Fig. 2a, but at some
other depth where the background flow is nonzero. The

background flow therefore advects the instability,
Doppler shifting the oscillation frequency away from
zero. For 1 � R� � 1.6, these oscillatory salt fingers are
the dominant instability.

For 0.9 � R� � 1, the dominant instability is diffusive
convection. When R� � 0.9, KH modes are again domi-
nant and are again not significantly affected by the
double-diffusive stratification (as indicated by the fact
that the white curve is once again vertical).

5. How do salt sheets interact with shear?

As illustrated in Fig. lc, shear suppresses the salt fin-
gering instability whenever the convective motions
have a component in the direction of the mean flow,
that is, whenever k � 0. When k � 0, the mean flow U
no longer appears in (23)–(25), so the growth rate and
the eigenfunctions ŵ, b̂T , and b̂S are just as they would
be in the absence of a mean shear (cf. Linden 1974).

In contrast, U does not vanish from the streamwise
momentum equation (22), which becomes

�� � Pr�2�û � �ŵUz. �36�

The vertical motion of the salt sheets advects the mean
shear to force a perturbation horizontal velocity. While
this process does not affect the salt fingers (at the low-
est order), it may have an important effect on the mean
flow via the Reynolds stress u�w� � 2(ŵ*û)re

2
r t, in
which the asterisk and the subscript r represent the
complex conjugate and the real part, respectively.

FIG. 3. Effects of double-diffusive stratification on KH instabil-
ity. Shaded contours indicate log10
r as a function of k and R� for
transverse modes (l � 0) with Re � 104, Rib � 0.14, and Gr � 108.
The white contour shows the wavenumber of the fastest-growing
mode for each R�. Modes are stationary except to the right of the
black contour, where oscillatory instability occurs.
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We begin the discussion of salt sheets by establishing
an analytical framework within which to interpret the
numerical results, based on existing theories for salt
fingers in an unsheared environment with uniform
scalar gradients. We show that, even in a sheared envi-
ronment with localized background gradients, these ap-
proximations can work very well provided Gr is suf-
ficiently large. We then investigate the diapycnal mo-
mentum flux due to salt sheets, as described by the
Schmidt number, Scs, the ratio of the effective viscosity
of the salt sheets to their effective saline diffusivity. We
find that Scs is much less than unity in the linear regime,
indicating that salt sheets may be relatively inefficient
at fluxing momentum. Last, we describe the dissipation
ratio �, whose value is commonly used to distinguish
double-diffusive mixing from mechanically driven tur-
bulence in complex ocean environments. The linear ap-
proximation to � turns out to bear significant resem-
blance both to its finite-amplitude, steady-state form
and to observational estimates.

a. Comparison with salt sheets in uniform gradients

Consider the simple case in which the aspect ratio of
the salt sheets is such that the vertical derivative in �̃2

is negligible relative to the horizontal derivatives. This
is the “tall fingers” (TF) approximation first used by
Stern (1975). When k � 0, we may then write �̃2 → �l2.
Validity of this approximation requires that the vertical
scale over which salt sheet properties vary is much
larger than 2	/l. We express that vertical scale in di-
mensional terms as ch, where h is the layer thickness
and c is a dimensionless scaling factor. Assuming that
salt sheets can be vertically uniform only inasmuch as
the mean profiles (19)–(21) are, we expect that c will be
at most O(1) and probably smaller. The condition for
validity of the TF approximation is then, in nondimen-
sional terms, l k 2	/c.

Consistent with the above assumptions, we replace
the background buoyancy gradients BSz and BTz, and
velocity gradient Uz, with constants equal to the gra-
dients evaluated at z � 0: BTz0 � R�GrPr/(R� � 1),
BSz0 � �GrPr/(R� � 1), and Uz0 � RePr. With these
assumptions, the eigenvalue problem (23)–(25) reduces
to a cubic polynomial for the growth rate (Stern 1975):

�� � � l2��� � Prl2��� � l2� � GrPr�

� �R
� � 1�
GrPr

R
 � 1
l2 � 0. �37�

While the TF approximation simplifies the problem
considerably, it still requires the solution of a cubic

poynomial.2 To make further progress, we make the
additional assumption that the growth rate is small in
comparison with the viscous decay rate Prl2, but large
in comparison with the salinity decay rate � l2 (Stern
1975). This formulation assumes that growth rates are
purely real. We refer to this as the “viscous control”
(VC) approximation. With it, the cubic is reduced to a
quadratic, which is easily solved to find the growth rate
and wavenumber of the fastest-growing instability:

� � Gr1�2f�R
�, f�R
� � � R


R
 � 1�1�2

� 1, �38�

and

l � Gr1�4. �39�

The assumption l k 2	/c now becomes Gr k

(2	/c)4 � 1559/c4. Given the uncertainty of c, all we can
say is that Gr must be greater than O(103), possibly by
several orders of magnitude, for these approximations
to be valid; however, that condition is frequently satis-
fied in the ocean (section 2d). The opposite extreme,
Gr K 103, corresponds to the thin interface limit, which
is known to be a poor description of double-diffusive
instability in the ocean (e.g., Kunze 2003).

The condition for the analytical solution in (38) and
(39) to be valid, � l2 K 
 K Prl2, becomes

� K f�R
� K Pr. �40�

Common oceanic values of R� at which salt fingering is
observed range between 1.25, for which f � 1.24, and 3,
for which f � 0.22. With � � 0.01 and Pr � 7, these
values are within the range specified in (40), so we may
reasonably expect that the analytical solution in (38)
and (39) will be relevant. In limited regions, such as
certain sublayers of a thermohaline interleaving com-
plex, R� may be less than 1.25, and the resulting intense
instability may not be well described by (38)–(40).

The TF approximation allows explicit solution of the
buoyancy equations in (24) and (25) for longitudinal
modes:

b̂T �
�ŵBTz0

� � l2 and b̂S �
�ŵBSz0

� � � l2 . �41�

The flux ratio (34) thus becomes

�s �
� � � l2

� � l2 R
, �42�

where once again the growth rate is assumed to be real.
(These results will be generalized to include complex

2 For the complete analytic solution see Schmitt (1979, 1983).
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growth rates in section 6.) We cannot evaluate �s ex-
plicitly without knowledge of 
 and l, but we can de-
duce the bounds R�� � �s � R�. The VC approximation
now allows us to substitute from (38) and (39) to obtain

�s � R

1�2�R


1�2 � �R
 � 1�1�2� �43�

(e.g., Stern 1975; Kunze 2003).
Equivalent results for the localized gradients consid-

ered in this paper are obtained numerically and are
then compared with the theoretical results for uniform
gradients reviewed above. In Fig. 4, we show results for
a case in which Gr � 108. This Grashof number is at the
low end of the observed range; nevertheless, it exceeds
103 by five orders of magnitude, so we anticipate that
the TF approximation will work well. The TF approxi-
mation predicts growth rates (Fig. 4b), wavenumbers
(Fig. 4c), and flux ratios (Fig. 4d) of salt sheet instabili-
ties accurately over the entire range of R�. In particular
the nonmonotonic dependence of �s on R� that leads to

staircase formation in the model of Radko (2003) is
reproduced. Not surprisingly, the VC approximation is
less successful. It gives useful results for a limited range
of R� in which (40) is valid (Fig. 4a).

When the Grashof number is reduced to 103, the TF
approximation becomes marginally accurate (Fig. 5).
Growth rates, wavenumbers, and flux ratios are all
overpredicted, typically by a few percent.

b. The Schmidt number

Results quoted so far are independent of the mean
flow. We turn now to the momentum flux driven by salt
sheets aligned with the mean flow so that k � 0. The
streamwise momentum Eq. (36) may be solved and
multiplied by ŵ* to obtain

u�w� �
�2 |ŵ |2Uz0

� � Prl2 e2�r t. �44�

This specific momentum flux may be expressed in terms
of a salt sheet viscosity 
s that is independent of the
mean flow:

�s �
�u�w�

Uz
�

2 |ŵ |2

� � Prl2 e2�rt. �45�

FIG. 4. Test of the TF and VC approximations for sheared,
longitudinal (k � 0) salt sheets: Gr � 108. (a) The f (R�), (b) FGM
growth rate, (c) FGM spanwise wavenumber, and (d) flux ratio vs
density ratio. Straight lines correspond to f � 10�, f � Pr/10, the
approximate limits for the validity of the VC approximation.
Thick, shaded curves show numerically computed results for the
hyperbolic tangent profiles in (26)–(28).

FIG. 5. Same as in Fig. 4, but for Gr � 103.
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Recall that all quantities on the right-hand side of (45)
are independent of U when k � 0. Thus, (45) may be
combined with the saline diffusivity derived in the same
manner from (41) to form the effective Schmidt num-
ber:

Scs �
�u�w��Uz

� b�Sw��BSz

�
� � � l2

� � Prl2 . �46�

This Schmidt number provides a useful route to esti-
mation of the eddy viscosity of salt fingers via the more
easily measured saline diffusivity. As a ratio of fluxes, it
is independent of time, so that an estimate based on
linear theory may be relevant at finite amplitude. Equa-
tion (46) shows that, in the TF approximation, Scs is
also independent of the background shear and is
bounded by Sc�1 � Scs � 1. Recall that Sc is the mo-
lecular Schmidt number, equal to 700 in this study. The
limiting case 
 � 0, for which Scs takes its lower bound,
Sc�1, was described by Ruddick (1985). Note that the
lower bound is positive, so that negative eddy viscosi-
ties are excluded. The upper bound Scs � 1 shows that
eddy viscosity cannot exceed saline diffusivity.

Doing the same with the thermal buoyancy yields a
Prandtl number that has similar form and is bounded by
Pr�1 � Prsf � 1. We focus on the Schmidt number here,
because saline buoyancy is the force that drives salt
sheets. If the Prandtl number is needed, it is readily
obtained as Prs � ScsR� /�s.

If, in addition, we now make the VC assumption (40),
the Schmidt number becomes

Scs �
f�R
�

Pr
. �47�

The Schmidt number is now independent not only of
the mean shear but also of Gr. For a given Pr, the
Schmidt number depends only on R�.

Again, equivalent results for the case of localized
gradients must be obtained numerically. Based on (46)
and (47), we may anticipate that, at sufficiently high Gr,
the salt sheet Schmidt number will be, first, approxi-
mately independent of the mean flow and, second,
bounded approximately within the interval (Sc�1, 1).
Moreover, when (40) holds, Scs will depend only on R�

and Pr in accordance with (47).
Numerical results for localized gradients with shear

are shown in Fig. 6. We have chosen one case with
Gr k 103, so that TF is expected to be accurate, plus
two cases at smaller Gr where a dependence on the
mean shear is possible. We focus on the range 1 � R� �

4, where salt sheet growth rates are significant.
At Gr � 108 (Fig. 6a), the TF approximation is highly

accurate. A particular consequence of TF that is con-
firmed in Fig. 6a is the bound Sc�1 � Scs � 1. (Note
that Sc�1 � 1.4 � 10�3, which is off the scale.) The VC
is much less accurate, overpredicting the Schmidt num-
ber significantly in a range of small but oceanographi-
cally important values of R�.

Unlike the mode properties considered in section 5a,
the Schmidt number is not guaranteed to be indepen-
dent of the background shear by Squire’s theorem.
That independence is a consequence of the TF approxi-
mation, and may therefore fail if Gr is not k103, as is
the case in Figs. 6b,c. These examples have very weak
shear (Re � 1; Rib � 14) and very strong shear (Re �
104; Rib � 1.4 � 10�7), respectively. In both cases the
TF approximation overpredicts Scs by a few tens of
percent. Note that there is no significant difference be-
tween the weakly and strongly sheared cases. Although
the TF approximation that makes mean shear irrel-
evant is not valid for these cases, the mean shear has no
discernible effect.

Because the VC approximation (47) is invalid at low
R�, we propose an empirical fit for the Schmidt number:

FIG. 6. Schmidt number vs density ratio for sheared, longitudi-
nal salt sheets. The TF, VC, and empirical [(48)] approximations
are identified in the legend in (a). (a) TF is valid at high Gr. (b),
(c) Even at low Gr, the Schmidt number is essentially independent
of the mean shear.
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Scs � 0.08 ln� R


R
 � 1�. �48�

This is shown by the dotted curves on Fig. 6. Equation
(48) is a good fit to the TF approximation to Scs, and is
therefore valid wherever the latter is. Our previous
scaling considerations led to the criterion Gr k 103,
while numerical results suggest that Gr � 104 is suffi-
cient. This condition is commonly satisfied in the ocean;
for example, in the Barbados observations 108 � Gr �

2 � 109 (section 2b), exceeding the requirement by at
least four orders of magnitude. The fit in (48) shows
significant deviations from the numerical result only at
extremely low values of R�. The latter can be remedied
by capping Scs at 0.3 for R� � 1.02.

c. The dissipation ratio

The dissipation ratio � (Oakey 1985) is frequently
used as a surrogate for mixing efficiency in observa-
tional data analysis (e.g., Moum 1996; Ruddick et al.
1997; Smyth et al. 2001), and also for distinguishing
mixing due to salt fingering from that due to shear-
driven turbulence (e.g., McDougall and Ruddick 1992;
St. Laurent and Schmitt 1999). The dissipation ratio
may be defined in terms of either temperature or sa-
linity, but the former is used more commonly for ease
of measurement:

� �
�Bz

2�BTz
2 . �49�

Here,  represents the dissipation rate of thermal buoy-
ancy variance,  � �2 |�bT |2� in nondimensional form,
and � � �2Pr e2

ij� is the dissipation rate of perturbation
kinetic energy. The tensor eij � (!ui /!xj � !uj /!xi)/2
represents the strain rate. Angle brackets indicate a
spatial average, over the wavelength of the disturbance
in the present context.

At steady state, balances of kinetic energy and scalar
variance imply

� �
Rf

Rf � 1
R
 � 1

R


�s

1 � �s
, �50�

where Rf � �(b�T � b�S)w�/u�w� Uz is the flux Richard-
son number (St. Laurent and Schmitt 1999). For un-
sheared salt fingers, this takes the simpler form:

� �
R
 � 1

R


�s

1 � �s
�51�

(Hamilton et al. 1989; McDougall and Ruddick 1992).
Shear-driven turbulence typically gives values of �

near 0.2 (Moum 1996), whereas higher values are ex-
pected for salt fingers. St. Laurent and Schmitt (1999)

found � ranging up to 0.6, and occasionally higher, in
regions of strong thermal microstructure but weak
shear, and concluded that the microstructure was due
to salt fingering.

In the linear regime of interest to us here, both  and
� grow exponentially in time, but their ratio is constant,
so that the value of � may conceivably have some rel-
evance for finite-amplitude disturbances. Applying the
TF approximation for longitudinal salt sheets [i.e. set-
ting k � 0, �̂ � 0, and !/!z � 0, solving for û and b̂T as
was done in section 5b, and substituting into (49)], one
obtains

�TF �
Gr

�� � l2�2
�� � Prl2�2

Re2Pr2 � �� � Prl2�2
. �52�

In contrast to the Schmidt number, � is clearly a func-
tion of the mean shear (via Re) in the TF approxima-
tion. This is because perturbation velocities parallel to
U (which are orthogonal to the salt sheet motions and
do not affect their behavior in any way) make a signifi-
cant contribution to �.

The TF approximation in (52) can be shown to be
bounded by 0 � �TF � Gr/(Re2 � l4). The upper bound
corresponds to the steady state 
 � 0. As a consistency
check, one may set 
 � 0 in (37), (42), (46), and (52)
and combine to reproduce the finite-amplitude, steady-
state result in (50).

When the VC approximation is made, (52) becomes

�VC �
R
 � 1

R


Gr

Gr � Re2 �
R
 � 1

R


PrRib
PrRib � 1

. �53�

Note that the dependence on R� is the same as in the
steady-state case (50), but other details differ. As is
clearest from the first equality in (53), the imposition of
shear (Re � 0) acts to reduce �VC. The second equality
shows that shear effects are negligible when Rib k

Pr�1, whereas shear effects dominate when Rib K Pr�1

and take �VC to zero in the limit Rib → 0. In that case,
the salt sheets are supplanted by shear instability. The
latter class of modes, being transverse, is not described
by (53), but typically has � � 0.2 or less.3 For example,
the shear instability shown in Figs. 2b,c has � � 0.174.

Results for the fastest-growing salt sheet instability
with Gr � 108 are shown in Fig. 7. Here R� is set to the
oceanographically common value of 2. The TF approxi-
mation is accurate to within 1% of the numerical value
for a wide range of Rib, while the VC approximation is
up to �10% low. For Rib � 0.08, � is smaller than 0.2,
the canonical value for shear-driven turbulence.

3 Note that significantly higher values are possible for pretur-
bulent, finite-amplitude KH billows (e.g., Smyth et al. 2001).
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At large Rib (weak shear), � asymptotes to a value
slightly higher than than the VC limit (R� � 1)/R� � 0.5.
This is consistent with values observed at high Richard-
son number by St. Laurent and Schmitt (1999, their Fig.
9), although the increase in � at high Ri is greater in the
observations. The observed dependence of � on R� is
opposite to the theoretical prediction, showing a de-
crease with increasing R� where all theories [(50), (51),
(52), (53)] predict an increase.

In the linear case, shear effects become dominant
when Rib � Pr�1 � 1⁄7, whereas in the observations the
change in � occurs near Ri � 1. This discrepancy re-
flects the approximations inherent in linear theory, but
it is also due in part to a difference in the definition of
the Richardson number. Here, Rib is the minimum
value of the gradient Richardson number, evaluated
precisely at the center of the shear layer. In contrast,
the observational Ri is based on the shear of a velocity
profile measured with �1-m resolution. Averaging in-
evitably smoothes away some fraction of the shear and
thus leads to higher Ri.

We conclude that the behavior of the salt sheet dis-
sipation ratio in the linear regime is relevant at finite
amplitude. In particular, the known tendency of shear
to reduce � is manifest in small-amplitude salt sheets.

d. Obliquity effects

Longitudinal salt sheets have k � 0 and are therefore
not directly affected by the mean shear U(z). When k
becomes nonzero, the mean flow acts to damp the
growth rate, as shown on Fig. 1c. The possibility exists,

however, that these oblique salt finger modes could in-
teract with the mean shear in other ways, possibly gen-
erating a strong momentum flux, and/or rapid kinetic
energy dissipation, despite their relatively low growth
rates. In an environment with fluctuating shear (e.g.,
inertial oscillations) salt sheets are always at least
slightly oblique, and hence have the potential to inter-
act with the mean shear in unexpected ways.

Figure 8 shows the k dependence of the growth rate,
Schmidt number, and dissipation ratio for a case with
realistic Grashof number and strong shear (Rib � 0.1).
The result is essentially negative. Increasing k from
zero causes a small decrease in the growth rate, but
differences in Scs and � are insignificant. In conclusion,
obliquity does not appear to alter the conclusions pre-
viously drawn in this section.

6. How does diffusive convection interact
with shear?

The VC approximation is invalid in the diffusive con-
vection regime because 
i is generally not K Prl2. We
will, however, extend the TF approximation to obtain a
Prandtl number for diffusive convection in a shear flow.
[Because thermal buoyancy is the driving force behind
diffusive convection, flux parameterizations are gener-
ally expressed in terms of a thermal diffusivity and a
Prandtl number (e.g., Walsh and Ruddick 1998). If
needed, the Schmidt number can be computed as Scd �
PrdR�/�d.] We simply extend (44)–(46) to allow for
complex growth rates, and replace saline buoyancy with
thermal buoyancy. The result is

Prd �
�u�w��Uz

� b�Tw��BTz

�
�1��� � Prl2��r

�1��� � l2��r
. �54�

FIG. 7. Dissipation ratio vs minimum Richardson number for
salt sheets with R� � 2, Gr � 108, and k � 0. Solid and dotted
curves show the TF and VC approximations. The shaded region
represents the range 0 � � � 0.2 expected for shear-driven tur-
bulence. Vertical lines indicate Rib � 0.25 and Rib � 1.

FIG. 8. (a) Real growth rate, (b) Schmidt number, and (c) dis-
sipation ratio vs wavenumber k, for salt fingers with Gr � 108,
Rib � 0.1, Re � 104, and l � 99.8.
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The addition of oscillatory modes expands the range of
possible Prantdl numbers from Pr�1 � Prs � 1 (found
in the salt fingering case) to Pr�1 � Prd � Pr (i.e., the
TF approximation leads us to expect that the Prandtl
number for diffusive convection may be greater than
unity).

The truth of this prediction is demonstrated in Fig. 9,
which shows a case with relatively strong double-
diffusive instability (Gr � 108) and shear (Re � 104).
The TF approximation predicts growth rates, oscilla-
tion frequencies, and wavenumbers very accurately in
this case (Figs. 9a,b). Also well predicted are the flux
ratio and the Prandtl number. The flux ratio is some-
what smaller than the laboratory-based empirical for-
mulation of Kelley (1990). We take this discrepancy
as a caution that finite-amplitude diffusive convec-
tion may not be well modeled by its linear counterpart.
The Prandtl number Prd increases from 1.2 in the limit
R� → 1� to higher values at lower R�. This result is
also consistent with Padman (1994), who obtained 1 �
Prd � 3 from observations of a thermohaline staircase
in the Arctic.

To approximate the dependence of the diffusive con-
vection Prandtl number on R�, we recommend the em-
pirical fit:

Prd � �1.3R

�9, if 0.9 � R
 � 1

3.4, if 0 � R
 � 0.9
. �55�

This fit is generally good to within 10%, better at R� "
1, where diffusive convection is strong. The exponential
fit is terminated at R� � 0.9 to prevent the overpredic-
tion of momentum fluxes at lower R�, where diffusive
convection is inactive according to linear theory but not
according to laboratory experiments (Kelley 1990).

We do not investigate the dissipation ratio � in detail
for the diffusive convection case since the VC approxi-
mation is not available for comparison, but we note that
numerically computed values are generally much
smaller than those computed for salt sheets. Typical
values are O(0.1) at high Rib, and drop to zero in strong
shear as was found for salt sheets. The sheared diffusive
convection example shown in Figs. 2f,g has � � 0.024.

7. Which mode dominates?

For oceanic parameter values, the KH growth rate
may be approximated by a linear fit to the numerical
results of Hazel (1972), nondimensionalized as de-
scribed in section 2a:

�KH � 0.2RePr�1 � 4Rib�. �56�

Equating this with the salt sheet growth rate given by
(38), we obtain

0.2Pr1#2�1 � 4Rib�Rib
�1�2 � f�R
�, �57�

which for any given Pr describes a curve on the Rib �
R� plane upon which the growth rates of the fastest-
growing KH and salt sheet modes are equal. For a given
R�, (57) is easily solved for Ric, the critical Richardson
number above which salt sheet instability dominates.

Explicit calculation for the localized profiles (Fig. 10)
confirms that Ric based on (57) is accurate to within
10%. The growth rates of KH and double-diffusive in-
stabilities are comparable throughout the region where
the individual instabilities are significant, and the
double-diffusive growth rate exceeds the KH growth
rate over much of this region. We conclude that, even in
the presence of inflectional shear with Rib � 1⁄4, double-
diffusive instabilities are likely to play an important
role.

8. Conclusions

We have computed the linear stability characteristics
of a stratified shear layer in which the stratification

FIG. 9. Test of the TF approximation for weakly sheared diffu-
sive convection cells. Gr � 108; Re � 104. (a) FGM growth rate,
(b) spanwise wavenumber, (c) flux ratio, and (d) Prandtl number
vs density ratio. Also shown in (c) is the flux ratio for diffusive
convection in the laboratory (Kelley 1990). Also shown in (d) is
an empirical fit Prd � 1.3R�9

� .
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supports double-diffusive instabilities, and compared
the results with the existing understanding of inflec-
tional shear instabilities, salt fingering, and diffusive
convection in uniform gradients. An important goal has
been to parameterize momentum fluxes driven by
double-diffusive instabilities. Our main findings are as
follows:

• The finite thickness of the stratified layer has a sig-
nificant effect on the double-diffusive modes only
when Gr � 104. For the larger values typical of oce-
anic double diffusion, stability characteristics are pre-
dicted accurately by the “tall fingers” approximation,
which assumes that background gradients are uni-
form.

• Even in the presence of inflectional shear with Rib �
1⁄4, double-diffusive instabilities are strong enough to
play an important role in the dynamics. In the salt-
fingering regime, the surface on which the growth
rates are equal is given approximately by (57).

• Properties of the linear KH instability are affected
negligibly by diffusively unstable stratification unless
R� is close to unity.

• Momentum flux by salt sheets is described by a
Schmidt number Scs which lies in the range Sc�1 �
Scs � 1 and is by and large much smaller than unity.
Here Scs is determined primarily by R�. For oceani-
cally relevant parameter values, the parameteriza-
tion in (48) provides an accurate estimate of Scs.
The result Scs � 1 suggests that fingering layers are
less viscous than is commonly assumed. This has
important implications for thermohaline interleav-
ing in the fingering regime, where initial growth
is governed largely by momentum fluxes due to

salt sheets (Walsh and Ruddick 1998; Mueller et al.
2007).

• Negative eddy viscosity, via which salt fingers amplify
the mean shear (e.g., Stern 1969; Paparella and Spie-
gel 1999; Stern and Simeonov 2005), is not found in
these calculations. For localized shear and stratifica-
tion, the cases computed here have given uniformly
positive eddy viscosity (or, equivalently, Scs � 0). For
salt sheets in the TF approximation, we have given a
general proof that Scs is bounded from below by
Sc�1, which is positive. There is no inconsistency in
this result, as it is the primary instability we compute,
whereas negative eddy viscosity results from a sec-
ondary instability involving the collective deforma-
tion of several wavelengths of the primary mode.
Also, we have focused on salt sheets, which cannot be
affected by the mean flow in the small-amplitude
limit.

• Momentum flux by diffusive convection cells is de-
scribed by a Prandtl number Prd such that Pr�1 �
Prd � Pr. Here Prd is determined primarily by R� and
is generally greater than unity. For oceanically rel-
evant parameter values, the parameterization in (55)
provides a plausible estimate of Prd. In contrast to
the result for salt sheets, Prd � 1 suggests that inter-
leaving in diffusive regimes (e.g., the polar oceans)
grows relatively slowly. While linear theory is ques-
tionable as a description of diffusive convection, the
result Prd � 1 is supported by observations (Padman
1994).

• The dissipation ratio � can be meaningfully predicted
from linear theory, and agrees well with both obser-
vations and predictions based on a finite-amplitude,
production–dissipation balance.

These results are now being used in the modeling of
thermohaline interleaving, where the possibility that
Scs � 1 and Prd � 1 have significant implications for
intrusion growth and equilibration (e.g., Mueller et al.
2007). The next stages in this line of research will in-
volve 1) an extension to more general background pro-
files, and 2) moving beyond linear perturbation theory
and into the fully turbulent regime via direct numerical
simulations. There, it is expected that salt sheets will
interact with the secondary instability of KH billows
(e.g., Klaassen and Peltier 1991), which are also longi-
tudinal in form. These simulations will allow us to test
rigorously the momentum flux parameterizations sug-
gested in the present linear analyses.
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