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Logical Implications Between Different Flavors of Asphericity

1 HISTORY

In part IV of his article on homotopy groups published in 1935/36 W. Hurewicz

[19] called an arcwise connected space X aspherical if all its higher homotopy groups

vanish. That is to say that X is aspherical if for all k > 2, each map of the ksphere

into X extends to a map of the (k + 1)ball into X, see E. Dyer and A.T. Vasquez

[12]. Hurewicz furthermore discovered that for a finite aspherical simplicial complex

X, its homotopy type is fully determined by its fundamental group 71X.

In 1941, J.H.C. Whitehead [40] posed the question whether asphericity is a hered-

itary property for two-dimensional C-W complexes. That is, given an aspherical con-

nected two-dimensional CWcomplex, is every connected subcomplex also aspherical?

This question remains unanswered. The assumption that the answer will be positive

is known as the Whitehead Conjecture.

Previously, in 1910, Max Dehn [10] had already realized that a finitely presented

group is naturally associated to a two-dimensional CW complex modeled after its

presentation. Thus, an intrinsic connection between group presentations and two-

dimensional CW complexes was given. The interplay between algebra (group pre-

sentations) and topology (two-dimensional CW complexes) is one characteristic of

combinatorial group theory and low dimensional topology.

Thus, the Whitehead Conjecture is of central importance in the study of com-

binatorial group theory and low dimensional topology. Out of its study developed
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the formulations of several combinatorial properties for group presentations that are

sufficient (but not necessary) for asphericity of the associated model. These different

flavors of asphericity, which we will define precisely in the next two chapters, are

known as combinatorial asphericity (CA), diagrammatic asphericity (DA), Cohen-

Lyndon asphericity (CLA) and diagrammatic reducibility (DR).

The notion of a presentation to be CA is derived from a long exact sequence of

the universal cover of the standard two-dimensional CW complex modeled after that

presentation. The question whether CA is hereditary is equivalent to Whitehead's

question, as recently shown by S.V. Ivanov [21].

Notions of asphericity which all imply CA and are known to be hereditary have

been investigated. These are DA, CLA and DR, see Chiswell, Collins and Hueb-

schmann [7] and the references cited there for DA, CLA, and A.J. Sieradski [35] for

DR. The DA property resulted from correcting a mistake in a proof for asphericity in

Lyndon and Schupp [24] and was introduced by D.J. Collins and J. Huebschmann [9].

Important in these developments have been the publications by R. Peiffer [27] and

K. Reidemeister [32], which introduced the concepts of identities between relations, in

1949. Out of it came the notions of Peiffer elements, Peiffer identities and (identity)

sequences. It is in that terminology that DA was first formulated.

In 1979, K. Igusa [20] and C.P. Rourke [33] introduced pictures, although the key

ideas where already present in the article by E.R. van Kampen [39] published in 1933.

Pictures give a combinatorial representation of spherical maps into a two-dimensional

CW complex X, and are therefore of great interest when studying elements of the

second homotopy group 72X.
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The properties CA, DA and DR can all be formulated in terms of pictures, which

reflects their combinatorial nature.

In 1963, D.E. Cohen and R.C. Lyndon [8] published a purely algebraic notion of

asphericity, known as Cohen-Lyndon Asphericity. A presentation P -= (X : R) is

Cohen-Lyndon aspherical (CLA) if there exists a certain free basis for the relation

module Nab which lifts to a free basis for N, where N denotes the normal closure

of R in the free group on X. A theorem in Lyndon and Schupp [24] first showed

that CLA implies DA. Whether this implication can be reversed has been an open

question, since it was first posed in article by Chiswell, Collins and Huebschmann [7],

that gives an account of the developments until 1981. In that article, a presentation

was given by I.M. Chiswell which is CA but not DA. Another such example is given

by A.J. Sieradski [34]. Both examples show the same picture theoretic characteristics,

as mentioned by J. Huebschmann [18].

The logical relationships between CA, DA, CLA and DR that were known prior

to this writing, are exhibited in the following diagram:

CLA

DA CA

DR



This leaves the two open questions:

DA 7 > CLA and DR CLA

We will show that the first of these questions, the reverse implication of the Theorem

by R.C. Lyndon and P.E. Schupp, has a negative answer by exhibiting an example of

a group presentation that is DA but not CLA.

4



2 ASPHERICITY

2.1 Definitions

A group presentation P = (X : R) consists of a set X, called generators, and a set R,

called relators. The elements of R are words in the semigroup I/17(X) on the alphabet

X U X'.

We then define the free group on X:

W (X)F F(X) = x-lx 0

and the normal closure of R in F, i.e. the smallest normal subgroup in F containing

R, called the consequences of R:

N = ((R)),

We thus can formulate the following

Definition 2.1 The group defined by the presentation P = (X : R) is G = G(P) =

FIN.

Furthermore, we have the

Theorem 2.1 For each group G there exists a presentation P such that G C(P).

Next, we will examine the relationship between certain algebraic and topological

notions in combinatorial group theory and low dimensional topology. Let P = (X : R)

be a group presentation. We construct a two-dimensional CW complex as follows.

Let K° c° be a single 0-cell, called basepoint, and for each element x E X attach

5
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an oriented 1-cell, denoted by c, so that both endpoints are identified with c° and

for x y we have cx1 n cyl = c°. The resulting set 10 is then one point union of circles

x E X, that is

K1 V SI. (Sx1 e° U cxl).
xEX

The set Kl is given the weak topology with respect to the family {Sx1 : x E XI of

circles.

Theorem 2.2 [37] The fundamental group of the space K.' is isomorphic to the free

group on X.

Now, for each element in R we define a map c9r from the circle into as

follows. Each relator r E R can be uniquely written as a finite reduced word of

the form 41- xmlr), where the positive integer m(r) denotes the length of r. We

subdivide OM = Sri accordingly and label the segments by xP X±1 \ wherem(r ),

identifies each labeled segment of the circle Sr' with the loop S. respecting

the orientation of K', i.e. x;P1 is positively oriented.

The standard complex / model for P = (X : R) is given by

K2 = K(P) = c° U cxl U c7.2, x E X, r E R.

For this, we extend (13, to a map r from the pair (D72, Sr') to (K2, K1), where for

each r E R the boundary Sr' of Dr2 spells the relator r = x+1 X±1

Theorem 2.3 [37] The fundamental group of the standard complex modeled after the

presentation P is isomorphic to the group G(P) obtained from P.



And, in fact,

Theorem 2.4 [37][Theorem 1.9] Every connected two-dimensional CW complex has

the homotopy type of the model of some group presentation.

2.2 Motivation

Our theme is to study groups by realizing them as fundamental group of a two-

complex K2, modeled after a given presentation, that is, using algebraic topology

and homotopy theory of two-complexes to study group theory.

From the above construction, we realize that different group presentations give

rise to different models K2. Difficulties in homotopy of two-complexes will then

cause problems in our group theoretic investigations.

It is important to note that homotopy invariants of aspherical CW complexes are

group theoretic invariants of the fundamental group 7T-1:

Theorem 2.5 (Hurewicz [19]) If K is an aspherical CW complex, that is 71-K

0, V2 < n, then the homotopy type of K is determined by the fundamental group 7r1K

Our goal thus becomes to build a CW complex K such that K is aspherical and

7r1K G. Such a space is called a Eilenberg-Mac Lane space of G, denoted by

K(G, 1).

For this, we need to "kill" all higher homotopy groups of K2 by attaching cells in

dimensions three and higher, i.e. build

7
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That is, for each nontrivial element [a] E 72K2 attach a three cell via

S2
a K2

B3 K2 U C3 C K3

SO [e] = 0 in 7r2K3. To do this, we can use generators of 72K2 to attach three cells,

in order to obtain:

u-2 072/1 P 72/1

From the cellular approximation theorem (see Fuks and Rokhlin [14]) we furthermore

get that:

G TiK2 711(3

7r2K2 stur).-j.

721(3

Thus the three-dimensional CW complex K3 has fundamental group G and trivial

second homotopy group. We say that K3 is obtained from K2 by attaching 3-cells

to "kill" 72. One continues in this way, attaching (n + 1)-cells to kill ir to obtain

a CW complex K, possibly infinite-dimensional, to serve as a K(G, 1). Explicit

computations of the homotopy invariants of a K (G, 1) require more explicit knowledge

of the cell structure.

The challenge then becomes to find generators for 7r2K2, as a ZG-module. In

particular, given a two-complex K2, we would like to be able to determine whether

72K2 =-- 0. But, 72K2 is not well enough understood. In particular, the unresolved

statue of following question indicates the difficulty of the above problem:

Whitehead's Question [40]: Is any connected subcomplex of an aspherical two

complex itself aspherical?

8



2.3 Flavors of Asphericity: CA

Before we enter into an analysis of the different flavors of asphericity, we will for the

remainder always assume that the two following conventions hold:

Standard Model By K = K(X : R) we always denote the model of P = (X : R).

Relator Hypothesis No element r E R is freely trivial nor conjugate to any other

relator or its inverse.

In the following, we summarize the description of the equivariant world for two-

dimensional CW complexes given in [37]. Consider the universal covering space

(K, p, K) for K = K2. The cell structure of K lifts through the covering projection

p: k K to a cell structure on k, making k into a two-complex with one-skeleton

kl. The long exact sequence (LES) for the pair (k, k') has the following form:

. . . H2k1 H2k H2 (k, k 1 ) HK1 -+

A closer investigation of the above LES yields:

H2k1 = 0 (since k1 is one-dimensional)

Since k is simply connected we obtain that HS = 0 and hence the Hurewicz

homomorphism h : 72k H2k is an isomorphism. From covering space theory,

we have that the covering projection p induces an isomorphism ptt : 72K -4 72K of

homotopy groups.

-2If Or denotes a preferred lift of er2, then: H2(k,k1) ZG er
rER

is the free ZG-module with basis {q I r E R}

The covering situation for k is given by:

9
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We can now formulate the following two results:

,o-1(K1) C C K

K1 C K

so that

(Pli1)d(71(K1)) (Plk1)q(7r1P-1(10))

= ker[7riKi 7ri

-= ker[F

= N.

Whence, 7riklS=2- N and H1k-1 = (71-1k1)ab Nab.

(5) Finally, since 7r1k 0, it follows that HS 0.

Altogether, we get a short exact sequence of ZGmodules described in the following

Theorem 2.6 There exists a short exact sequence of ZGmodules

7r2K ZG a Nab 4
rER

where 0 is defined through er2 r[N, Vr E R. This short exact sequence is

compatible with the following actions:

7T2K is a ZGmodule via the homotopy action of 71K-== G.

G acts on ED ZG er2 by permuting the cells, i.e. by Deck Transformation.
rER

G acts on Nab via conjugation in F, e.g. (wN) (n[N, ND = wnw'[N,N].

With this action, Nab is called the relation module for 'P.



sr s-1[N, N] r[N, N] = 0

since sr = r in F.

We therefore conclude that s is in fact an element on N, that is

(sN 1G)e E ker 0

(sN 1G)e-r2 = 0

sN = 1G

s E N

Step 2: k = +1 If we consider the LES:

7r2K -IL->t 72(K , 10)

7F2K

since H2(f(, kJ) is free

0,1 c

71K1 71-K

11

Corollary 2.1 The second hornotopy group 7r2K is trivial if and only if Nab is a free

(left) ZGmodule with basis {r[N, N] r E R}.

Proof: This follows immediately from the short exact sequence in Theorem 2.6.

Lemma 2.1 If 72K = 0, then no relator r E R is a proper power.

Proof: Under the assumption that 7r2K = 0, suppose r = sk where s E F is not a

proper power and k E Z. Show that k = +1.

Step 1: s E N We have that ker 0 72K = 0, and that

[D] 0

Since s E N ker a = imat we find that there exist [D] E 72(K, K1-) such that

atj[D]) s. Thus, 00([D]k) = .0([_D])k = sk = r.



If we now consider the characteristic map for er2 C K:

2 .

(Pr

we then obtain that [co7.2] E 7C2(K, K1) and aq([çr2]) [(797-21,51 =rEN<F'=-'_71K1.

Whence,

a([4{Drk) = ad([4-Q,2-MGDDk

B2 K
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Therefore, [yr2[ [D]k E ker = im = 1. So, we obtain that [cor2] = [D]k. Next,

from the Hurewicz homomorphism h : 72(K, Kl) H2(K, K1) it follows that

= h([o,2]) = h([D]k) = k h([1)]).

Now, c7.2 is an element of a basis for the free abelian group H2(K, K1), i.e. k h([D])

is a basis element. Therefore k = ±1.

Here the last step follows from the

Lemma 2.2 If A is a free abelian group andaEA,ke Z are such that k a is a

member of a basis for A, then k = ±1.

Proof: Assume A has basis {b1, , bm} that contains ka.

Then, a = k1b1 + + kmbm where kl, . . , km e Z. Moreover, if ka is some basis

element, say b1, we have that ka = kkibi + ...+ kkmb, = bl.



Thus, kkibi = b1, so kki -= 1, and hence k = ±1.

We note here that if r E R and r = sk, then (sN 1G) E kera.

Definition 2.2 The presentation P = (X : R) is called combinatorially aspherical,

(CA), if the kernel of the map

a. ZG e'r2 Nab

rER

is generated (as ZGmodule) by D { (sN 1G) e-r2 }rcR, where s is the root of r,

that is r = sk with k maximal.

In this formulation, every CA presentation satisfies the relator hypothesis. This can

be seen as follows. First, if ro E R is freely trivial, then..e7.20 E kera since

a(er20) = ro [N, NJ = 1[N, Al = 0.

Claim: If ro E R, then er20 ZG D.

Proof: Consider the (augmentation) G-homomorphism

E : (3) ZG 'e-r2 z
rER rER

defined by E(g = 1. Then, F((sN 1) 0, whence ZG C ker(c). Since

E(e-7,20) = 1 0, we find that Oro ker(F). Thus, e2,.. ZG D.

Next, if r1 is conjugate to 4 where Ti r2 and 5 E {-1, +1}, say

6wr2w1 ,

13

0

0



then,

6wAver29) = ri wr2-6w-l[N.N]

= 1[N.N]

= 0

Claim: If r1 and r2 are distinct elements of R, w E F and 6 E {-1, +1}, then

Sw1Ver22 ZG D.

Proof: Let E be defined as above, then

E(j7,21 w/V2) (0, . , 0, 1, 0, , 0, 6, 0, . , 0) 0

Thus, e2ri 6WAre2r2 ker(5), whence e-,21 6wNe-r22VZG V.

Combinatorial asphericity is also referred to as the Identity Property. A large class

of groups which are CA is given by the following result, which is known as Lyndon's

Simple Identity Theorem,

Theorem 2.7 (R. Lyndon [23]) All one-relator presentations are CA.

The relationship between asphericity and the CA property is the following.

Theorem 2.8 lillProposition 1.31 Let K be the model of the presentation P = (X

R). The second homotopy group 7T2K is trivial if and only if the presentation P is

CA and no relator is a proper power.

Proof: We assume first that 71-2K is trivial. Then, from Lemma 2.1 we conclude that

no relator is a proper power.

14
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Moreover, it follows that the map 0 in Theorem 2.6 is an isomorphism, whence P is

CA.

On the other hand, assume that P is CA and that no relator is a proper power,

that is the kernel of the map

J: zG er2 Nab

rER

is generated by { (rN 1G) e-7.2 }rER = (1G 1G) e-r2 }rER

Consequently, 7r2K = 0, by Theorem 2.6.

2.4 Sequences and Peiffer Operations

We will now introduce the notions of sequences, identity sequences and Peiffer oper-

ations.

If P = (X : R) is a given presentation, let F = F(X) denote the free group on

the set of generators and ((R))F= N 4F, so G = FIN. Moreover, F(X : R) is the

free group on the set F x R, and 19 : F(X : R) -4 F is the homomorphism defined by

(w, r)

Elements a E F(X : R) are called sequences; they are viewed as formal consequences

of the relators R. The free group F acts on F(X : R) on the left, through:

x (w,r) = (xw,r)

Furthermore, 19(w a) = wi9(o-)w-1, so ker 19 is F-invariant.

Elements of E(X : R) = ker 79 are called identity sequences for the presentation P,

and more precisely
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Definition 2.3 An identity sequence over P = (X : R) is a sequence of the form

(wi, ri)" (11) rn)fn

where 0 < ii, e, E {-1, +1}, w, C F(X), r, E R for all i = 1, ...,n and

= 1 in F(X). If n = 0, we speak of the empty sequence.
i=1

Lemma 2.3 There is a short exact sequence of left F-groups

1 E(X : R) F (X : R) N 1

The set of elements of the form

{(w,r)6(v, (w , 0-6 (wr6 w- v ,t)-E w, v E F, r,t E R,6,EE {-1, +1}1

is called the set of Peiffer elements and their normal closure in F(X : R), denoted by

P = P(X : R), is called the group of Peiffer identities.

Lemma 2.4 The group of Peiffer identities P(X : R) is a subgroup of E(X : R) and

P(X : R) is F-invariant.

Proof: We observe first that

79 ((w,r)6 (v , (w, r)- ( (wr6 w- v , =

6 E -wr w vt v1 wr-8 al
_1wr w v wr w

wr6w-ivev-lw r-6r8 w =



Thus, P(X : R) is a subgroup of E(X : R).

To show that P (X : R) is F-invariant, we check that

x ((w, r)6 (v , (w , r)- (wra v ,

((xw, r) (xv , (xw,, r)- 5 (xwr6 w- v , t)')

((xw,r)' 5 (xv,, (xw, r) (xw r` w-1 xv,,t)-E) E P (X : R)

since xw and xv are in F.

We can perform the following Peiffer operations on sequences

a = H rir c F(X : R),
i-1

Substitution: Replace any wi by a word freely equal to it.

Exchange: Replace (wi, ri)f' (W2+1 r i+ )6'41

by (wirwi-lwi+t (wi,

-Ei+1or (wi+1, ri+i) (wi+ir1i+

Deletion: Delete two consecutive terms (wi, ri)fi (wi+i, ri+1)1, whenever

wi+iri+iEi+1. -1 1 in F (X).W2+1

Insertion: Opposite of Deletion.

Then, two sequences a and a' are Peiffer equivalent if a can be transformed into a'

via the above operations. We write [a] to denote the equivalence class of all sequences

that are Peiffer equivalent to a.

17
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Theorem 2.9 If the presentation P = (X : R) satisfies the relator hypothesis, then

P is CA provided every identity sequence over P is Peiffer equivalent to the empty

sequence 1 e F(X : R).

Proof: Suppose a is an identity sequence, and that a can be reduced to the empty

sequence via a finite number of Peiffer operations. From Lemma 2.3, Theorem 2.6

and the map

:F(X : R) ED ZG er2
rER

defined by n(w,r) = wN er2, we obtain the commutative diagram with exact rows

1 E(X : R) F(X : R) ---> N 1

1- nat

0 7r2K ED ZG
a Nab > 0

rER

We note that n respects the F-actions, since:

071(x (w, r)) = 71(xw,r)

(xwN)

xN(wN er2)

xN n(w,r)

Moreover, a o nat o '0, since:

On(w,r) a(wN )

wrw-1 [N,

19(w, r)[N,



f(sN - 1) r E

19

Finally, we will make use of the fact that 71 is surjective. This follows since e, ZG er2
rER

has ZG-basis fer2 : r E RI and given any r E R, we have n(1, r) = ë, R.2 : r E

RI is contained in im(77).

We need to show that ker a is generated by the set { (sN 1) er2 1r ER 1, where s

is the root of r E R.

Assume that E E ker a. Since n is surjective, there exist a' E F(X : R) such that

= E. From an = natI9 it follows that 19(a-') E ker(nat) = [N,

Moreover, since 19 is surjective, there exist T E [F(X : R), F(X : T)] such that

79(T) I9(a'). Then, 19(a'T-1) = 1, so a'1 E E(X : R). Since El) ZG is abelian,
rER

it follows that [F(X : R), F(X : R)] C ker 77 and so 77(T) = 0. Now, we compute as

follows.

71(a'T 1 ) TO') r/(T)

= 701)

=

Thus, for all E E kerD there exist a = a'T-1 E E(X : R) such that n(a) = E. By

hypothesis, a is Peiffer equivalent to the empty sequence 1 E F(X : R), that is there

exist a finite sequence a = ao, , a 1, where a2+1 is obtained from a, by a

Peiffer move.

Next, we show that if an (identity) sequence a, is Peiffer equivalent to a sequence

then y(a.,) n(0-i+1) modulo the submodule of e ZG "e7.2 generated by 1) =
rER



If 0i+1 is obtained from ai by a Substitution, then 7/(ai+i) = 77(0-i), since

77(w' xf x'w" , r) = xf x'w" N

w N 7,2

= n(w,r)

Similarly, if o-i+i is obtained from ai by an Exchange, e.g. a = (w, (v , t)E and

a = oji(wr° v , t) (w , r)6 , then 7/(0-2+1) = 77(0-i), since

77(ai+i) i(a) + co(wr° w-1 v ,t) + 6(w, r) + 71(an

n(a) + c wr6 w-1 v N + 6(w, r) + n(an
EN

n(a:-) + evN + Sq(w,, r) + ri(an

7/ ( ) 610,11 ± EI1(V, Ti(Ojzf)

= 71(0)

Next, suppose ai+i is obtained from a by an Insertion, e.g. ai = ai'aill and a,±1

o-aw , (v , , where wr6w-1 vt'v' = 1 in F (X). Then, r6 = w'vev'w,, that is

rä is conjugate to t-f in F. From the relator hypothesis, it follows that r = t, where

c = --S (no relator is freely trivial). Moreover, we have that wv-1 centralizes r, and

so WV 1 = Sk where r sk° and k, ko E Z.

With this, we have

i+i (w , (v ,t)E o-i"

a (w , (wsk ,

a w (1, 06 wsk (1, r)- ai"

afiw ((1, r)(5sk (1, r)-8)ai"
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Now,

ai+i) 77(0-i') + 6wN ("er2 sk N "er2) + ri(o-i")

n(o-) + (1 sk N) +

n(az,) 6wN (1 sk mod (ION) r(aitt)

= (4 + N (1 + N +... + sk°-1 N) (1 sN) +
E ZG ED

Therefore, 17(o-i+1) igo-i) lies in the submodule generated by D and the theorem is

proved.

The converse to Theorem 2.9 is also true. That is, if P is CA, then every identity

sequence over P is Peiffer equivalent to the empty sequence. We will not need this.

2.5 Flavors of Asphericity: DA

One problem that arises in this context is that, in practice, one has no control over

the number of insertions in a sequence of Peiffer operations. It is therefore desirable

to find criteria which guarantee that an identity sequence can be reduced to the

empty sequence in a controlled number of Peiffer operations. An essentially stronger

condition is not to allow for any insertions at all. We therefore state the following

definition given by Chiswell, Collins and Huebschmann [7]:

Definition 2.4 The presentation P = (X : R) is called diagrammatically aspherical

(DA) if every identity sequence over P can be transformed into the empty sequence

using substitution, exchange and deletion operations, only.
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Thus, from Theorem 2.9 we obtain the

Corollary 2.2 If the presentation P = (X : R) is diagrammatically aspherical and

satisfies the relator hypothesis, then P is also combinatorially aspherical.

2.6 Flavors of Asphericity: CLA

Let P = (X : R) be a presentation for a group G = C(P) = FIN, where N is the

normal closure ((R))F of R in the free group F = F(X) with basis X. From the fact

that

± -1N = {H wirii wi wi E F, ri c R} F (free)
i=o

we obtain that

rn
Nab {E gi ri[N, N] g E G, ri E R} (free abelian)

with the natural map N Nab. Certainly, any free basis for N will project down

to a Z-basis for N'.

Theorem 2.10 (Cohen-Lyndon [8]) Let P = (X : r) be a one-relator presenta-

tion, where F = F(X), N = ((r))F, r 1 in F, and Cr is the centralizer of r in F.

Then there exists a transversal U, that is a choice of coset representatives, for NCr

in F such that N is freely generated by the set of all elements uru-1 for u E U.

As shown in Theorem 2.1, when 7u2K = 0, Nab has the Z-basis:

{g.r[N,Nflg E G,r E RI.
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Now, let U be a transversal for N in F. Then, G can be written as the dis-

joint union of cosets uN, that is G = U uN. Furthermore, Nab has the Z-basis:
uEU

{uru-i[N, u E U,r E R}.

We can now pose the

Question: When is it possible to lift the Z-basis, with G-action, for Nab to a free

basis, with F-action (conjugation), for N?

Definition 2.5 The presentation P = (X : R) is called Cohen-Lyndon aspherical

(CLA) if N, the normal closure of R in the free group F, has a Cohen-Lyndon basis

of conjugates of elements of R. That is, N has a basis of the form

B U {uru-1 u E U (r)}
rER

where UM is a full left transversal for NC, in F, r E R, where Cr is the centralizer

of r in F.

As pointed out by Chiswell, Collins and Huebschmann, Lyndon and Schupp gave an

argument to show that all CLA presentations are DA. We give a picture-theoretic

proof of this fact in 4.1.

2.7 Whitehead's Question

Two important facts concerning the CLA property are that, first of all, CLA implies

asphericity in the usual sense (72 = 0) if no proper powers occur in R, and secondly,

the CLA property is hereditary. Thus, the Whitehead Conjecture holds for all two-

complexes modeled after CLA presentations:



Theorem 2.11 [7][Proposition 2.4] Let Q = (Y : S) be a subpresentation of P

(X : R), that is Y C X and S c Rn F(Y). Suppose P is CLA. Then Q is CLA.

The fact that DA is hereditary follows immediately from the definition, and for corn-

pleteness we quote the

Lemma 2.5 [7][Lemma 2.2] Let Q = (Y: S) be a subpresentation of P = (X : R).

If P is DA, then Q is DA.

For the CA property the question regarding heredity turns out to be much more

difficult. In fact, as recently shown by S. V. Ivanov, we have the following

Theorem 2.12 [21][Theorem 4] Whitehead's Conjecture is equivalent to the conjec-

ture that combinatorial asphericity is hereditary.
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3 PICTURES

3.1 Basic Definitions

We have introduced three algebraic flavors of asphericity. The CA condition is ho-

mological, the DA and CLA conditions are combinatorial group theoretic. Our next

goal is to reinterpret diagrammatic asphericity as a combinatorial geometric flavor of

asphericity. First, we present the basic definitions and facts about the theory of pic-

tures, mostly what will be used later on. For a more rigorous and extensive account

we refer to the articles by W.A. Bogley and S.J. Pride [3] and S.J. Pride [28] and the

references given there.

A picture P consists of

An ambient disc D with boundary OD.

A finite collection of pairwise disjoint closed discs A1, , An in int(D). If

n 0, we speak of a one-dimensional picture.

A finite collection of pairwise disjoint compact 1manifolds el, , cm, called

arcs, properly embedded in D U int(Ai), i.e. De i = ei II 0 (D U int(Ai))
i=1

The picture P is spherical if no arc of P touches 0D. Given a group presentation

P = (X : R), we say P is a picture over?, if

Each arc is labeled by a transverse arrow and an element of X.

Each interior disc Ai is labeled by a relator r E R and a sign = ±1.
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Each boundary OA, has a marked basepoint, that does not lie on any arc of P.

The boundary OD has a basepoint, that does not lie on any arc of P.

The labellings are required to satisfy the following continuity condition:

For any interior disc A, with label r E R and sign e = +1, if we start at the

basepoint of A, and read clockwise around the boundary OA, recording in order

the occurrences of generators x, 1 = +1, as we cross the ends of labeled and

oriented arcs that touch Ai, the word is identically equal to r1

Given any path a in D Uint(Az) that meets all arcs transversely, we similarly

associate a labelling word W (a).

In particular, the labelling word for the path that circumnavigates OD in the

clockwise direction, starting at the basepoint, is the boundary word W(P) of P.

Pictures over a presentation P = (X : R) provide geometric representations of the

consequences of the relators of P.

Lemma 3.1 (van Kampen) M6:II-Lemma 11.1] Let w be an arbitrary nonempty

word in F(X). Then w 1 in the group with presentation P = (X : R) if and

only if there exists a picture P over P such that 117(P)spells exactly w.

Corollary 3.1 If P is a one-dimensional picture, then W(P) is freely trivial.

An important special class of spherical pictures is described in the following

Definition 3.1 A (based) spherical picture over the presentation P = (X : R) con-

sisting of exactly two discs is called a dipole. Furthermore, if there exits a region such



P = (x,y : r xx-1 - -1x, t = x1 y1 yx)

folding

pair
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that reading around the two discs (clockwise for one and counter clockwise for the

other) beginning in that region spells exactly the same word, we refer to a cancelling

pair. A cancelling pair with basepoints in the same region is called a folding pair.

Example: Consider the following presentation for the free group on two generators

Lemma 3.2 (1) If no relator is freely trivial nor conjugate to any other relator or

its inverse, then every dipole is a cancelling pair. (2) If, in addition, no relator is a

proper power, then every dipole is a folding pair.

We note that, under the Relator Hypothesis, cancelling pairs that are not folding

pairs come from proper powers.

3.2 Pictures and Identity Sequences

The relationship between pictures and identity sequences is via sprays. A spray E in

a given picture P is a collection of arcs 71, , connecting the basepoint of each

disc A, to the basepoint * of the ambient disc D. These arcs may intersect the edges

, em (transversely) but not each other, that is n 7.7 = * for i j.

dipole cancelling

pair



For each arc 73 of the spray we obtain a word w = (73) in F(X) as we list the label

of each (picture) arc that -y3 traverses. We then read the disc label 7-3E3 and as we read

back along -y3, we write down w71-. Altogether each balloon on a string contributes

ei (w3,r3)j . This is done in clockwise order around the basepoint * to give

a sequence

a(P, E) = (wz, rzr
z=1

If we cut the picture along the arcs of the spray and delete int(A,) we obtain a

one-dimensional picture with exterior label freely equal to 1 ill F:

By a(P, E) we denote the (identity) sequence derived from the spray E in P, in the

following way:



Moreover, we have the following results (see S.J. Pride [28][Section 2.1]:

Theorem 3.1 Given any sequence a there is a based picture P over P = (X : R)

and a spray E in P such that o-(P,E) = a. If a is an identity sequence, then the

picture P can be chosen to be spherical.

Corollary 3.2 If P is a based spherical picture over P and E is a spray in P, then

a(P, E) is an identity sequence.

3.3 Picture Moves

The following operations can be performed on a picture P over P = (A- : R):

Float: Insertion or deletion of a floating arc which is disjoint from all interior discs

and arcs.

Bridge: Operation on two arcs of the following type:

a

ei

Dipole: Insertion or deletion of dipoles.

We remark that an arc is a floating are if all other discs and arcs of P are outside of

3, that is in the connected component of D /3 that contains the basepoint of D.

More specifically, a bridge move is performed in the following fashion.
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Connect the head (tail) of a labeled arrow of the arc e, to another, equally

labeled, arrow head (tail) of some arc el by a path a, such that a does not

intersect any arcs or discs.

Thicken a to an z-tube, denoted by U,, where 0 < E. is so that U, is disjoint

from all arcs and discs. Then U, a x

Connect ei to e via the paths a+ a x {E} and a- a x

Delete U: ee:i ax (--C, C).

The new arcs, replacing ei and e, are then Cihi and ei-3.

We say that two pictures over 7--) (x- : R), P and Q, are equivalent if, up to

isotopy, P can be transformed into Q using a finite number of the above operations.

Before we proceed to investigate asphericity in terms of pictures, we will show how

picture moves relate to the Peiffer operations mentioned previously. This is described

in the following three Lemmata.

Lemma 3.3 Given a picture P over the presentation P = (X : R) and a spray E in

P. Then a Peiffer exchange can be realized by a change of spray.

Proof: We will give the argument for the case where the change of spray arcs

corresponds to the Peiffer exchange where (wi, , (w,+1,r,+1)-F' is replaced by

(wi+1,ri+i)Ei+1 f'+' r,)'(wi+1,r,+i)E'+1. This can be illustrated as fol-

lows:
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The label of the new spray arc ti4 is obtained by reading along wi+i, counterclock-

wise around the disc Ai+1, back along wi+1 and finally along wi. Since W =

wi+iri+friwi-+11wi(wD-1 represents the label of a spherical picture, by the van Kampen

Lemma, W 1. Thus, wi±iri-±1+1 =

The corresponding Peiffer exchange is

(wi, ri)Ei (wi+1, ri-F1)+1

= (wi+i ri+i)ci+1, (w,r)

+-1
= (wi+1, i+iwi, ri

Lemma 3.4 If P' is obtained from P by a bridge move and E is a spray in P, then

E) is obtained from o-(P, E) by a finite number of Peiffer substitutions.

Proof: The proof can be illustrated as follows:
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Consider the two interior discs A and Ai, labeled by rEjJ and respectively. We

label the spray arcs connecting the basepoint * of OD to the basepoints of A and Ai

by w and wi. As the bridge a, labeled by an element xE XUX , traverses wi the

word spelled when we read along wi is changed to the word 11).rx- freely equal

to wi. In terms of operations on identity sequences this is precisely a substitution. A

spray arc wi that is not traversed by the bridge remains uneffected.

We note that a Peiffer substitution on a sequence can be realized by an insertion of

a floating circle intersecting the corresponding spray arc.

Lemma 3.5 There is a one-to-one correspondence between a deletion of a dipole and

a Peiffer deletion. In particular, we have (a) If P' is obtained from P via a deletion

of a dipole, then there exist sprays E' in P' and E in P such that (TT', E') is obtained

from o-(P, E) via a Peiffer deletion. (b) If a' is obtained from a via a Peiffer deletion,

then there exist sprays E' in P' and E in P such that a' = a(P', s'), a =- o-(P, E)

and P' is obtained from in P via a deletion of a dipole.
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Proof: (a) Suppose P' is obtained from P via a deletion of a dipole consisting of

discs Az and Ai+1 and let and 7,4_1 be the corresponding spray arcs with label w,

and wi+i, respectively. Then, the dipole yields two consecutive pairs

(wi, ri+ir+1

and since every dipole is a spherical subpicture, 7+11 is freely trivial.

Whence, a Peiffer deletion applies.

(b) Suppose a' is obtained from a via a Peiffer deletion, that is

a rir (wi+1, ri+i)+10-2

where a' = a10-2 and wiri" 7+1-1 is freely trivial. Then,

(vii, r,)"(wi+1, rj+11"+1

corresponds to a spherical subpicture with exactly two discs, a dipole. We choose the

spray arcs so that 7, connects to the disc with label r and -y,+1 to the disc with label

r:±Hil. Now, a deletion of the dipole applies.

Finally, we will show the relation between (identity) sequences, pictures and the chain

map

a: C2(1-C , Kl) Ci (K1 , K°).

If P is a picture over P and E is a spray in P giving rise to the sequence a(P, E),

then



r+

ll (wi, ri)f E F(X :
i=1

We then obtain the chain

EciwiN e2 E C2(k, k1).
i=1

If P is a spherical picture over P, by Corollary 3.2, a(P, E) is an identity sequence.

Thus, E EiwiN -e E ker[C2k Cik]. Then, in terms of pictures, the element
i=1

(SN 1G) E ker(0) is represented by a dipole with basepoints offset by one, where

r = S :
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This follows from the fact that, in the case where r = E R as in the picture above,

we can choose a spray E such that a(P, E) = (1, r),(s,r)-1.. Then, sr' =

sk ss-k s-i 1.

3.4 Flavors of Asphericity: DA

For our purpose, we need to interpret the DA property in terms of pictures. This is

done through the next
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Theorem 3.2 The presentation p : R) is diagrammatically aspherical if every

spherical picture P over P can be converted to the empty picture without insertions

of dipoles. That is, P can be reduced using bridge moves, insertion or deletion of

floating arcs and deletions of dipoles, only.

Proof: We assume that any given spherical picture over P can be reduced without

insertion of dipoles, and moreover that we are given an identity sequence a over P.

Then, by Theorem 3.1, there exist a spherical picture P over P and a spray E in P

such that a = a(P, E). Now, after a finite sequence of bridge moves, we obtain a

dipole with discs A, and Az+k, where 1 < k.

The effect of these bridge moves on a, according to Lemma 3.4, is a finite number of

Peiffer substitutions. Furthermore, we can rearrange the arcs of the spray E, so that

the spray arcs connecting to the dipole are in consecutive order. This requires k 1

changes of spray arcs as described in Lemma 3.3 and we have thus performed k -- 1

exchanges in a.

Finally, the deletion of the dipole P1, corresponding to a Peiffer deletion of consecutive

terms as in Lemma 3.5, is possible. Inductively, we obtain the empty sequence.

The converse also holds, but we will not need it. Since creating a dipole, which then

can be removed, in a finite number of steps has to be possible for any given picture,

this can easily lead into complicated structure analysis for the spherical pictures under

consideration.



3.5 Flavors of Asphericity: DR

An even stronger condition is if we require that each spherical picture comes already

equipped with a folding arc, that is any connecting arc between two discs that would

form a folding pair if all arcs were connected to each other. In that case, we can

always complete such a connection to a folding pair via bridge moves and apply a

deletion.

This connection is between to discs labeled by rE and r such that it is part of a

folding pair with respect to the basepoints:

This condition is formulated in the next

Definition 3.2 The presentation P = (X : R) is called diagrammatically reducible

(DR) if every spherical picture over P contains a folding arc.

Another great advantage of the DR condition is that it is detectable by so called

Weight Test, see S.M. Gersten [15]. The DR condition was first studied by A.J.

Sieradski [35].

It now follows from the above definitions that we have the logical implications:

DR DA CA

We will show that none of these implications can be reversed.

36



4 LOGICAL RELATIONSHIPS

4.1 CLA DA

We have already established that DR DA =- CA, and will now proceed to place

the CLA condition in that logical chain and investigate the reverse implications. In

Lyndon and Schupp [24][Chapter III, Proposition 10.6] the fact that CLA implies DA

was first observed. The proof given uses the algebraic notion of identity sequences.

We will translate this into the terminology of pictures and prove the following

Theorem 4.1 Whenever = (X : R) is CLA, then every spherical picture over P

can be transformed into the empty picture without using insertions of dipoles.

Proof: Let P = (X : R) be a CLA presentation, and assume furthermore that P is

a spherical picture over P. We need to show how to reduce P to the empty picture

without using insertions of dipoles.

We will make use of the following

Lemma 4.1 Suppose P and Q are one-dimensional spherical pictures over the pre-

sentation P = (X : R) with identically equal boundary words. Then P and Q have

equivalent cancellation patterns. That is, we can transform one cancellation pattern

into the other using bridge moves and insertion/deletion of floating circles.

Proof: Since we assumed that W(P) W(Q), it is possible to identify the two

discs Dp and DQ along their respective boundaries. Thus, we obtain a sphere with

equator equal to W(P) W(Q). Moreover, if we represent the cancellation patterns

of W(P) and W(Q) by half circles, we obtain a new one-dimensional spherical picture.

37



38

Since both W(P) and W(Q) freely reduce in F, we obtain a collection of closed half

circles, each traversing the equator, possibly containing but not intersecting each

other. Moreover, there must be at least one minimal half circle on each side of the

equator, representing a free cancellation.

We can now apply a bridge moves to close the open side of one of the minimal half

circles, if necessary. This closed minimal circle represents identical free cancellation

in both, W(P) and W(Q), hence we can delete this minimal circle together with the

corresponding part of the equator.

The proof now follows by induction.

Example:

Example of two one-dimensional pictures with identical boundary words but different

cancellation patterns. We can represent the common boundary edge, the equator, as

interval, including both cancellation patterns represented by half circles:



Delete a minimal circle:

J
Apply a bridge move to close a minimal half circle:

In this fashion, we can completely reduce all half circles.

Recall that if P = (X : R) is a CLA presentation then N has a free basis B of

the form { urn' u E U(r),r E R} where U(r) is a full left transversal for NC, in

F = F(X), that is

F = U NuC,
ILEUM
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Since G = (sk), where s is the root of r

Eiciri c-1i

where kz,m, e Z. Then, we can connect the ccarcs via bridge moves to the r-arcs

77-4 ki
Si Si
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and Cr is the normalizer for r E R. Moreover, let E be a spray in P and a = o-(P,E)

the identity sequence derived from E. Then, a = (wn,rn)E-, where

H 1 E F(X).

Since w e F = U NuCr we can write
nEU(r)

w, ni c, Vi= 1, , n

where u,e U(r,),n, E N and c, E Cr.

Then each wirwil = n, u crc11ui nT1 is represented by

rrti < ki ki <m



a = (b-2 aba, (ba)-1 a-1 (ba), b a b, b (b-2 aba)-1 b-1)

cannot be transformed into the empty sequence by exchange and deletions only.
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Then, each r,-disc is contained in a larger disc, denoted as Ri-disc, where reading

around Ri yields the relator r.

We can now apply Lemma 4.1 to that effect that we replace all P arcs to obtain a

new picture P' with W(P) = W(P'), where P' reflects a cancellation pattern in

B = { ur u-1 u E U (r), r E 11}

Here, for each i = 1, , n, the parallel arcs for uiru-] on R, proceed through the

picture P' and end all on some R3, thus forming a dipole. The picture now reduces

to the empty picture via deletions of dipoles.

0

4.2 CA DA

The counterexample that answers the question, whether the implication DA CA

can be reversed, in the negative was given by I.M. Chiswell [7] and AJ. Sieradski

[34]. I. M. Chiswell shows that the presentation

C = (a, b : a, b-2 aba)

is not DA. As noted in the article by Chiswell, Collins and Huebschmann [7], the

presentation C is CA. This follows from [7] [Lemma 1.6].

To show that C cannot be DA, it is observed that the identity sequence:
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We observe that this identity sequence can be derived from the spherical picture

over C:

The above identity sequence a can be read off a spray from this picture, and the

fact that a cannot be reduced using exchanges and deletions corresponds to the

observation that the above picture does not contain a dipole nor does it allow for any

nontrivial bridge moves, i.e. further reductions will only be possible after inserting

a dipole (CA but not DA). Since CLA implies DA, the presentation C = (a,b

a, b-2aba) cannot be CLA, either.

A purely algebraic argument for the fact that a cannot be reduced with exchanges

and deletions only, is given by I.M. Chiswell [7]. J. Huebschmann redoes this in [18],

using the converse to Theorem 3.2.

A.J. Sieradski [34] in his article showed that the presentation (x, y : yxy-ixyx-1)

does not admit a geometrically split null homotopy. Again, we find this fact repre-

sented by a spherical picture that does not allow any nontrivial bridge moves:



4.3 CLA & DA 7s- DR

An example for a presentation that is CLA but not DR is that of the Dunce Hat,

namely:

= (x xxx-1)

It follows immediately from the Cohen-Lyndon Theorem that D, being a one-relator

presentation, is CLA. Yet, the following spherical picture over D contains no folding

arc:
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Whence, D is not DR.

As shown above, the Dunce Hat presentation D is CLA, hence DA, but not DR.

This establishes that the implication DR DA cannot be reversed, either.



5 A COUNTEREXAMPLE

5.1 The Presentation C Revisited

As mentioned in the previous section, I.M. Chiswell [7] presented an example of a

group presentation which is CA but not DA, namely C = (a, b : a, b-2 aba). We alter

this presentation to form a new one:

B = (a, b : a, b-2 aba-1)

and put basepoints according to the relator b-1 aba- .

5.2 8 is neither CLA nor DR

Essential in Chiswell's picture is the fact that we can have arcs, labeled by a, con-

necting the two S discs (S = b-2aba) of different polarity without folding arcs. This

property can be destroyed if we modify the presentation as indicated above:

C = (a, b : a, b-2 aba) = (a, b : a, b-2 aba-1) = (a, b : a, b-1 aba-1 b-1)

We note here that the presentation B belongs to a certain class of balanced two

generator presentations of the trivial group investigated by C.F. Miller III and P.E.

Schupp [25]. These presentations are of the form:

(a, b : aw bk +1 a-1 bk

where w E F (a ,

In the new presentation, we label the relators R = a and S = b- aba- b- 1. The new

presentation B remains CA, being another balanced presentation of the trivial group.
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Theorem 5.1 The presentation B = (a,b : a, b-1aba-1b-1) is not CLA.

Proof: Suppose that B is CLA. Then, since Cr, Cs < N = F(a,b), we find that

45

F(a,b) has a free basis consisting of elements

vb-laba-lb-1 v-11

with u, v E F(a,b). Then, we conclude that the quotient F(a,b)I((b-

cyclic. Now, if the presentation

(a,b : b-laba-lb-1) = (a,b : ab = b2a)

were cyclic, then it would also be abelian. Since

(a,b : ab = b2a) (b)00,1/4-a.b._,b2

is an HNN-Extension of the infinite cyclic group and thus (b) embeds in (a,b

ab = b2 a) , we find that b 1. But, b = [a, b] 1 shows that (a, b ab = b2 a) is not

abelian, hence not cyclic. Thus, 5 is not CLA.

5.3 Pictures over B

We now turn to the structure analysis of spherical pictures over 13. The two R discs

corresponding to the relation R : a = 1 will be indicated by filled in discs without

indication of basepoints, i.e.

R+: R : HAI
a a

laba-lb-1)) is



The two S discs in any spherical picture over B are:
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The basepoints are indicated here. For sake of clarity later on, the basepoints placed

between the two b-arcs, will be omitted. Each S disc has two double b-arcs adjacent

to the basepoints and a single b-arc that is not adjacent to the basepoint. We will

speak of arcs whether we mean a connecting arc between two discs or just the end

piece of it. We immediately realize that B is not DR, since

represents a spherical picture over B that does not contain a folding arc. This follows

from the fact that the basepoints are on different sides of the connecting b-arc.

We will now show that B is in fact DA. For this it suffices to show that every

spherical picture over B can be reduced without insertions of dipoles. This is guar-

anteed by giving a prescription of how to apply a certain finite sequence of bridge

moves that will lead to a folding arc. This guarantees the reducibility of every identity

sequence over B via Peiffer exchanges and deletions, only.



5.4 B is DA

Theorem 5.2 The presentation B = (a,b : a,b-laba'b-1) is diagrammatically as-

pherical.

Proof: We assume that we are given a nonempty spherical picture P over B that is

reduced in the sense that P does not contain any folding arcs.

We note first that if P does not contain any S discs, then it must contain a R

dipole (folding pair), contrary to our assumption. Thus, we conclude that P contains

at least one S disc.

(0) Every connected spherical picture over B must contain an equal number of

discs of opposite polarity for each relator. This follows from the fact that H2 (B) = 0.

That is, we have

7r2K(B) ---> H2K (B) < C 2(K (B))

[P] 1 >- (R+ - R-) e2
R

(S+ S) 62
s

and furthermore C2 K (B) C1K (B) given by the matrix

is an isomorphism, whence R+ - = S+ - S- = 0.

Lemma 5.1 ( 1) Every spherical picture over B contains an arc joining a 8+ disc to a

S- disc. (2) Any a-arc joining a S+ to a S- disc is a folding arc. (3) For any b-arc

joining a S+ disc to a S- disc that is not a folding arc the basepoints are adjacent

and on opposite sides of that arc.
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Proof: (1) There exist an arc 7 in P joining a S+ disc to a S- disc, because every S

disc is contained in some connected component which itself is a spherical picture P'

over B. Then, by (0), P' contains an equal number of S+ and S- discs, and being a

connected component, some arc 7 joins a S+ disc to a S- disc.

This connection cannot happen via an a-arc or a single b-arc, without being a

folding arc, contradicting our assumption of P being reduced. Thus the connection

must be between two offset double b-arcs, for example:

Again, we observe that the two basepoints are on different sides of the connecting arc

-y. We will refer to this configuration as an offset.

For the remainder of the proof, we will omit the basepoints and the b-arcs in order to

keep the pictures simple. The basepoints should be imagined between all the double

b-arcs.

It follows from (2) that an a-arc joining S discs of opposite polarity is a folding

arc. Hence, any a-arc must join S discs of same polarity.



The a-arcs therefore form either a-strings:

°TO c OT a o la o

or a-loops:

al al a a a a a010 -1-010t0

49

We will call the region involving the single b-arcs the interior region of the a-loop and

the region involving the double b-arcs the exterior region of the a-loop (as the picture

suggests)

Lemma 5.2 Every S disc is contained in a unique a-string or a-loop.

Proof: This follows immediately from the fact that exactly two a-arcs emanate from

each S disc.

Next, we will show that one can always transform an a-loop into an a-string.

Lemma 5.3 Any a-loop can be converted into an a-string via a finite sequence of

bridge moves. Furthermore, this process does not effect any of the exterior double

b-arcs on the a-loop.

Proof: Assume we have an a-loop. We will make use of the following three facts:



Case 1 Case 2
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None of the interior b-arcs can connect directly to each other. This follows from

the orientation of the b-arcs.

An interior b-arc cannot connect to a S disc of opposite polarity, since we

assumed no folding arc exists.

Any spherical picture over B involves only a finite number of discs.

By (4) we conclude that the interior region must contain other S discs. Pick any

single b-arc emanating from the a-loop. It must connect to another S disc of same

polarity, by (5). This interior S disc is itself part of an a-string or an a-loop.

The two possible scenarios are:

Here, case 1 represents the case that a single b-arc connects the a-loop to an a-string

in its interior region, where in the other case, case 2, a single b-arc connects the a-loop

to another a-loop in its interior region. We note that this two cases are not mutually

exclusive, but depend merely on our choice of which single b-arc we follow into the

interior region of the a-string.

In case 1, suppose the interior a-string involves n different S discs of same polarity

and therefore 2n double b-arcs. One end of the a-string will count at most 2n-1 < n
2



a a a a

e+-01010 I shorter
end

oTo-r-o-r-o la o la o

Cap-Off the shorter end:

a al a a
eF0+0 0 1A

la a a a a10+0101010M/////

double b-arcs from the b-arc connecting the interior a-string to the a-loop.

Thus, we can perform the following sequence of bridge moves which we will refer to

as capping off an end:



The effect of this last bridge move can be illustrated as follows (the two pictures on

the right being isotopic):
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This finally opens up the possibility to break the a-loop via the following bridge move:

It is important to note that this process of breaking up a loop does not effect the

double b-arcs in the exterior region (none of the double b-arcs where involved in any

of the bridge moves).

al al a a

-F0 1 0

0-Thia0r0rOla0



In case 2, we can shift our focus onto the interior region a-circle. Note that this

interior circle may include more boundary discs than the original. For this new a-

circle we have again one of two cases, case 1 or case 2. Because of (6), we cannot

continue with case 2 indefinitely. That is, case 1 must occur after a finite number of

concentric a-loops. Then a cascade of the bridge moves will break up the first a-circle,

eventually.

This completes the proof of the Lemma.

Cl

We now turn back to the situation where two S discs of opposite polarity connect via

an offset. That is, we have a nontrivial reduced spherical picture P, and by Lemma

5.3 a finite number of bridge moves can be applied to break up all a-loops into a-

strings. Two of these a-strings will be of opposite polarity and joined by an offset.

Hence, we may assume that we face the situation where a S string Ei is connected

to a S string E2 via at least one b-arc, and Ii and E2 are of opposite polarity:

w-M-Tororororosl

E2...±0/<U10/CDK/D/ia
a a a a a



a a a a a a

El " +0+0+0 0 0 0

a a a

This can result in two situations. Either with both or only one a-string overlapping:

E2 E2

Both Ei and E2 have All double b-arcs

unzipped double b-arcs on E2 are zipped

Note that, in the case when both a-strings overlap, we have at least one unzipped

b-arc on both Ei and E2, whereas when only Ei overlaps, all b-arcs of E2 are zipped.

In the case that both a-strings overlap, we can apply a process we call Snake-move.

Let n be the number of aligned discs after the above "zipping" process. We then face

the situation below (example for n = 2):

The first observation we make is that we can always apply a sequence of bridge moves

that will align the two a-strings as far as possible, i.e. think of "zipping" a zipper:



+-0 0 1 0 1 0 1
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.-K)01a0 aUla
I a

We remark that at least n of the S discs in both a-strings were involved and we have

not used more than that many single b-arcs for the capping off process. Therefore, we

are guaranteed to have made available two a-arcs to be connected via a Snake-move.

n=2: al
96+010I0104.

a a a a a

The connection will happen via 2n 1 = n + (n 1) double b-arcs. We now cap off

n b-arcs on the zipped end of the the a-strings and n 1 on the zipped end of the

other a-string. Thus, we break off the 2n 1 connections, making way for a bridge

move connecting a head of an a-arc to another head of an a-arc of different polarity.

Hence, we created a folding arc:

n = 2

" 4-,o-r-o-r-o a o4I/



a a a

ORD
a

0
a

OlPie

a a

This exhausts all possible situations, completing the proof that B is DA.
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This connection between S discs of different polarity represents a folding arc.

On the other hand, suppose we face the situation that only one of the two a-strings

is overlapping. Then, the longer a-string involves it different S discs of same polarity

and the shorter a-string m different S discs of opposite polarity (in + 1 < n). After

zipping the two strings together, one end of the longer a-string will have at most

n 1 unzipped double b-arcs. Thus, we can completely cap off that end and find a

bridge move connecting the head of an a-arc to another head of an a-arc representing

a folding arc between two S discs of opposite polarity:

II



Finally, looking back at the spherical picture over B:
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we now recognize the case of two a-strings (of length 1) of opposite polarity connecting

via an offset. Here both strings are overlapping and completely aligned. Note that

we can apply a Snake move right away, since both ends are already capped-off.



DR

The question whether DR CLA or not remains open. The DR property can be

detected via weight tests, and it is therefore fairly easy to generate a large number of

DR presentations. One would then test these examples on having the CLA property,

hoping to find a suitable counterexample. As it turns out, to see whether a given

presentation is CLA or not, except in the case of a onerelator presentation, is rather

difficult. In fact, it seems more likely that the following is true:

6 CONCLUSION

It seems noteworthy to compare a presentation that has the CLA property with

the presentation B which is DA but not CLA. In both cases, spherical pictures reduce

through a finite sequence of bridge moves and deletions of dipoles. Whereas in the

case of being CLA any given picture over such a presentation reduces in a fairly tame

manner, such as in the proof of Theorem 4.1, we observed in the proof of Lemma 5.3

that a reduction may include a swirl (like some cyclone). CLA presentations do not

exhibit such behavior.

Now the known logical relations are:

CLA

58

DA CA
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Conjecture: If the presentation P = (X : R) satisfies the weight test, then P is

CLA.

Further investigations concerning the CLA property have been published, e.g. Cohen

Lyndon Theorems for locally indicable groups and onerelator products and the

characterization of ((S))

(fprnmc) introduced by A. Karrass and D. Solitar [22]. An interesting topological

observation has been made by A.J. Sieradski [36], that for a CLA presentation the

universal cover of the standard model is contractible in a very special manner.

Even though it seems rather unlikely that DR implies CLA, a counterexample is

difficult to produce. This is mostly due to the fact, that for a DR presentation P, it

is very difficult to show that P is not CLA. It may be impossible.

(X R) being the free product of maximally many conjugates
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