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Consider the bole of a tree to consist of a linear elastic material that is

orthotropic with respect to the cylindrical coordinates. When the bole of a tree is

subjected to resultant loads in the directions of the Cartesian base vectors, the S1 I,

S22. S33, and S12 stresses in Cartesian coordinates are coupled. It is desirable to use

beam elements to analyze the structural behavior of trees because of the ease with

which these can be incorporated into Finite Element Models. However, elementary

beam theory is not able to consider the problem where the S1, S22, S33, and S12

stresses are coupled. The objective of this study was to determine the magnitudes

of the normal stresses in the radial and tangential directions (Sn, See) and the shear

stress (S), relative to the normal stress in the x3 direction for an element of a tree

bole.

In cylindrical coordinates the strains are not unique at r = 0. Therefore, a

constitutive equation was adopted in cylindrical coordinates where the elastic

coefficients are dependent on r. An element of a tree bole was considered as a

cantilever beam and posed as a Relaxed Saint-Venant's Problem in Cartesian



coordinates. It was found if the strains resulting from the generalized plane strain

part of the problem were considered linear functions of the x1 and x2 coordinates,

then the strain compatibility conditions arid equilibrium equations could be

satisfied.

Given the assumption that the generalized plane strains are linear in x1 and x2,

it was proven that the Srr, S, and S,-9 stresses are analytic functions of the complex

variable z. It is also proven that the 5rr, S99, and SrO stresses are equal to zero on the

lateral surface of the element of the tree bole. Therefore, using the analyticity of the

stress functions and the fact that they are zero on the lateral surface it is possible to

show that the 5rr, S09, and 5r9 stresses are zero throughout the element of a tree bole.
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Mechanical Stresses in Trees Resulting from Strain Compatibility in an
Anisotropic Material

1. Introduction

Common skyline logging systems employ a bicable ropeway (Schneigert 1966

p27, 501), which as the name suggests consists of two cables, a skyline, and a

mainline. The logs are suspended from a carriage that is pulled along the skyline by

the mainline, where the skyline is the carrying cable and the mainline is the hauling

cable. The function of hauling logs from the cutblock to the roadside is termed

yarding; the machine containing the winch set for the skyline and the mainline and

usually a tower to support the skyline is called the yarder.

The skyline is a wire rope suspended between two or more points (Conway

1976, p200). The suspension points may be the yarding crane, trees, or stumps. The

advantage to using a skyline system is that there is greater control over the logs

when yarding, and it is possible to either partially or fully suspend the logs to

minimize ground disturbance. To realize this advantage it is necessary to maintain a

minimum clearance between the ground and the carriage. In some situations, it is

necessary to support both ends of the skyline off the ground in order to maintain

clearance between the carriage and the ground. If live trees are used to support the

end of the skyline opposite from the yarder, these trees are called tailspars (Figure

1.1). It is also possible that the skyline will require midspan support; trees used for

this function are called intermediate supports.



Tree block
and strap

Skyline

To Yarder

Figure 1.1, Tailspar support tree

The structural behavior of tailspar and intermediate support trees is of interest

because they may limit the capacity of the logging system. The point where the

cables are attached to the tree may displace laterally up to a meter or more and still

be compatible with the other elements of the cable system. The displacement of the

support tree becomes important when geometric nonlinear effects are considered

(P-delta effect).

Stalnaker and Harris (1989, p.142) discuss the P-delta effect in beam column

design, where there is a moment magnification from the product of the vertical load

(P) and the deflection (delta). The support tree also has a flexible base, which can

be represented as a rotational spring (Pyles 1987). The interaction of the nonlinear

restraining force supplied by the guylines, the P-delta effect of the column, and the

Guyline

Guyline anchor

Skyline anchor



rotational stiffness of the base may combine to produce a complicated displacement

field in the support tree.

Lyons (1997) used elementary beam theory to estimate the stresses in a

tailspar. The results of this study indicated that compression parallel to the grain

would be the limiting stress; however, the calculated maximum stress was located

farther down the tree than where other trees were observed to have failed.

Amineson et al. (1987) demonstrated that the geometric nonlinear effects in the

structural analysis of a support tree could be modeled in a Finite Element Model

(FEM). Animeson used beam elements to model the support tree, where the

bending component of the stiffness matrix used in the model was derived from the

Bernoulli-Euler law of elementary bending theory (Ugural and Fenster, 1995

p187).

Connor (1989) studied the stress distribution in trees rigged for experimental

purposes. Connor used Animeson's model to predict the displacement of the

rigging point of a tailspar. Connor compared the predicted displacement of the

rigging point to the actual displacement of test trees and found agreement to with in

a few centimeters. However, Connor's results also showed that the maximum stress

in compression was near the base of the tree. Neither Connor (1989) nor Lyons

(1997) measured trees that were loaded to failure. It is possible that in these studies

the applied loads were not sufficient to produce a noticeable P-delta effect.

To use a FEM to perform a detailed analysis of a support tree structure it is

necessary to identify the appropriate material model and the type of element that



should be used for a given analysis. For example Pellicane and Franco (1993) use a

detailed solid element FEM to model the effects of grain pattern around knots in

wooden poles, while Ammeson et al (1987) used beam elements to model the

displacement of a support tree. Bodig and Jayne (1993, pg 110) describe a

cylindrical section of a tree as being an orthotropic material with cylindrical

anisotropy, where the axes of symmetry are the long axis , the radial axis r, and

the tangential axis U (Figure 1.2). If a cylindrical section of a tree is consider

orthotropic in cylindrical coordinates then it will not be possible to estimate the

normal stresses or the shear stress in the r, U plane using elementary beam theory.

Thus, in order to justify the use of beam elements derived from the Bernoulli-Euler

law of elementary bending theory, it is necessary to determine if cylindrical

anisotropy has a significant impact on the stress field.

Figure 1.2, Cylindrical coordinates axes in a section of a tree



1.1 Objective

Consider a cylindrical beam with the X3 axis as the generator of the cylinder.

The beam is composed of wood where the X3 axis passes through the center of the

growth rings, and the wood is considered a linear elastic material that is orthotropic

in cylindrical coordinates. If the wood is Douglas fir, the ultimate strength of the

wood in compression is an order of magnitude less in the radial and tangential

directions than it is in the direction (USDA 1974, pg 4-46). If elementary beam

theory is used to analyze the stresses in the beam, it is not possible to consider the

radial or tangential stresses. If the beam is fixed at one end and loads that are

independent of are applied to the opposite end, is it possible that the S,.,., S00, or

S stresses (refer to section 2.31 for definitions of these stresses) become limiting

before the normal stress in the direction does?

The objective of this thesis is to determine the magnitudes of the S,.,., S09. and

S,.0 stresses in a cylindrical cantilever beam, that is orthotropic in cylindrical

coordinates for loads independent of. If the 5,.,., S00, and SrO stresses are always

small, irrespective of the magnitude of the applied loads then they should never

become limiting before the normal stress in the direction does.



1.2 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2, the material properties

of wood are considered. The constitutive equations in cylindrical coordinates are

transformed into Cartesian coordinates to simplif\j the derivation of the stress

functions for the beam. In Chapter 3, a beam element will be considered as a Saint-

Venant's Problem. lesan (1987) proposed a solution to Saint-Venant's Problem for

constitutive equations with material coefficients that are a function of the x1 and x2

coordinates. lesan's proposed solution is specialized to the problem being

considered in this paper. In Chapter 4, the functions for the Tn, T22, or T12

generalized plain strain stresses are derived for a cylindrical beam of Douglas fir. In

Chapter 5, the stress functions in Cartesian coordinates are used to estimate the

magnitudes of the Srr, Sgg, and Srg stresses.

6



2. Material Properties of Wood

2.1 Defining wood as a continuum

Fung (1994, pg 3) suggests for practical application of continuum mechanics

that it is necessary to relax the classical definition of a continuum. In the classical

description of a continuum it is said that the densities of mass, momentum, and

energy, must exist in the mathematical sense. That is, considering mass density as

an example, the limit must exist

p(P)= lim-. (2.1)
fl-OD

n

Here: P is a point such that P E

p is the mass density at point P,

n a positive integer,

V, is a volume where V,+1 is contained within V,,

M is the mass of the matter contained in volume V,.

If the classical definition were to be rigorously imposed, it would not be

possible to model wood as a continuum. Wood is composed of cells that have solid

walls and voids and so the limit in equation (2.1) does not exist as a continuous

function. However, if we define the mass density of the material at P with an

acceptable variability e in a defining limit volume w then it may be possible to



consider wood as a continuum, where

M
<E (Fung 1994, pg 4) (2.2)

n

Thus, to define a material as a continuum in a practical analysis it is necessary

to consider both the acceptable error in approximating p, and the size of the

limiting volume w. When considering wood, defining the limiting volume also

dictates the constitutive equations to be used. On a gross scale where the

displacement of a cross section of a tree may be of interest, the discrete cells are not

recognizable. If the strain of an individual cell is of interest then the cell walls

could be considered a continuum, though they are also composed of many

substructures.

2.2 The role of wood in trees

When considering the structural properties of a live tree the xylem is the most

important element. Kramer and Kozlowski (1979, pg 30) discuss wood structure of

Gymnosperms, which include important species such as Pseudotsuga menziesii

(Douglas-fir). Xylem is the woody material produced on the inside of the cambium.

The xylem performs two primary functions; 1) it provides the structural support for

the tree, and 2) it transports sap, which is mostly water. The xylem has some cells

that store nutrients, though this function is also performed by other tissues in the

tree. Up to 90% of the xylem is composed of vertically stacked overlapping cells

called tracheids. Tracheid cells may be up to 100 times long as they are wide and



average 3 to 7 mm in length. Looking at the cross section of a tree, variation in the

cells can be seen both within an individual growth ring and across the section.

Bodig (1993, pg 3) reports that the specific gravity of the wood can vary three fold

within a growth ring. The cells formed at the beginning of the growing season are

larger and have thinner cell walls than those formed towards the end of the growing

season.

The wood in the cross section of a tree can be divided into the sapwood and the

heartwood. The sapwood is young xylem and it conducts as the name suggests the

sap. As the sapwood ages, the living cells die off and it becomes heartwood.

Heartwood can be differentiated from sapwood in that all the cells are dead;

compounds such as oils, gums, resins, and tannins may be deposited in heartwood

and add to its rot resistance (Kramer and Kozlowski 1979, pg 22). The sole

function of heartwood is the structural support of the tree. It requires energy to

maintain the living cells in the sapwood, and the tree only requires a portion of the

cross sectional area to meet its sap transportation needs. Therefore, the sapwood is

limited to about 10 to 20 of the outer rings.

The wood in a tree can also be divided into juvenile wood and mature wood.

These terms are misleading though; as they imply that the type of wood is

dependent on the age of the tree when it was formed or how old the wood is. A

more precise terminology would be respectively, crown wood and bole wood. The

growth hormones produced in the crown create the variation between the crown

wood and the bole wood. Bruchert et al. (1997) found in Picea abies (Norway
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spruce) that Young's modulus in the X3 direction could be 30% lower in the crown

wood than in the bole wood of a given tree. When the tree is young, the crown

extends to the base of the tree and so the whole tree is formed of crown wood. As

the tree ages the crown may retreat up the stem and then bole wood is formed in

regions distant from the crown. Thus, for regions below the crown the tree will

have a core of crown wood surrounded by a cylinder of bole wood. While near the

base of the crown, and higher, there will be only crown wood.

2.3 Constitutive equations

The choice of the appropriate constitutive equations depends on both the size

of the defining limit volume and the intended analysis. It will be assumed in this

study that the defining limit volume is large enough so that the individual cells are

small in comparison. Then the error term c will be a function of the general

structure of the wood, such as early wood or late wood, and not a function of

whether the point P falls with in a cell cavity or a cell wall. Constitutive equations

that could be used in an analysis of wood include, isotropic, rectilinear orthotropic,

curvilinear orthotropic, or completely general anisotropy. Orthotropic materials

will be discussed in section 2.3.1. The choice of the constitutive equation depends

not only on which one best represents the real material, but also given the analysis

being performed, what is the simplest constitutive equation that produces

acceptable results.



S, = CE1

= SUki Ski

1(au, k=-I2xk aX1

Here S,, is Cauchy's stress tensor, Ck1 is the elasticity tensor, Syk/ is the compliance

tensor, Eki is the infinitesimal strain tensor, and uk are the displacements.

(i, j, k, 1 = 1,2,3) (2.5)
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Hosford (1993, pg 21) states that it is possible to use the basic forms for the

matrices of the elastic constants for materials other than crystals, which have

similar symmetries of structure. Green and Zerna (1968, pg 155) note that wood

may be considered an orthotropic material, though it is not an exact material

property. The wood in a tree is organized into concentric tapered cones; therefore,

it is logical to consider it as a material with curvilinear anisotropy. Curvilinear

anisotropy is characterized by the fact that the equivalent directions for its different

points are not parallel, but obey some other laws (Lekhnitskii 1981, pg 67).

However, for rectilinear anisotropy, the equivalent directions are the rectilinear

coordinate axes and these are the same for every point in the material.

2.3.1 Constitutive equations in cylindrical coordinates

Lai et al (1993, pg 221) give the constitutive equations for a linear elastic solid

written in tensor form,



Here r corresponds to the radial direction, 0 corresponds to the tangential direction,

and x3 corresponds to the direction parallel to the generator of a cylinder.

12

Cauchy's stress tensor and the infinitesimal strain tensor are second order

tensors and so by the quotient rule Ck/ must be a fourth order tensor having 81

coefficients in the most general form. The number of independent coefficients is

reduced by 27 due to the symmetry of the infinitesimal strain tensor = Cu/k),

by 18 due to the symmetry of the Cauchy stress tensor (Ck/ Cji/k), and by a

further 15 when assuming an elastic potential exists (Ck/ = Ck/). Thus, the

elasticity tensor in (2.5) has at most 21 independent coefficients. Similarly, the

compliance tensor in (2.5) has at most 21 independent coefficients.

In wood, the constitutive equations may be simplified further by using the

cylindrical coordinate axes as the basis for the tensors in (2.5). From now on

tensors with base vectors corresponding to the cylindrical coordinate axes will be

denoted with a prime (i.e. Ck/', Sk/', So', Ek]). The strain tensor and the stress tensor

will be arranged as follows,

- - -
(2.6)

c '
*_)11

c 'L)2

c '
-'12

c '
*)22

c 'l3

c '
*)23 =

Srr

Ser

S,

See

Srx

Sex

c_*)3I c
*)32

c*_)33 Sxr Sx33 Sx3x3

E11' E12'

' 22

I,'32

E13'

' 23I''33

E

Eer

Exr

E

Eee

E

Eex
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Given the most general type of anisotropy it is obvious in equation (2.5) that

the nonnal stresses can produce shear strains and shear stresses can produce nonnal

strains. This fact greatly increases the complexity of analyzing these materials.

Bodig (1993, pg 112) suggests wood has three orthogonal planes of symmetry,

which in a cylindrical coordinate system are 1) a plane perpendicular to the axis,

2) a plane perpendicular to the radial axis, and 3) a third plane orthogonal to the

first two (Figure 2.1).

Figure 2.1, Cross section of a tree with the positive x3 axis directed out of the page.

A plane of symmetry requires that the base vector normal to the plane can be

reflected about the plane to form a new set of base vectors, without altering the

compliance or elasticity tensors.



That is,

C9k1'= Ckl' (or Sk1'= S,jki11)

Here Ck/ is the elasticity tensor in the original basis and Ck1"1 is the elasticity

tensor in the new basis.

Certain coefficients must be equal to zero for the C,Jkl' to be invariant when a

base vector is reflected about a plane of symmetry. If wood is considered to have

three orthogonal planes of symmetry defined by the base vectors of the cylindrical

coordinate system, then the constitutive equations take on the following form in

Note, equation (2.8) is symmetric so C1fiJ = Ck1 and there are only nine independent

coefficients. A material with three orthogonal planes of symmetry will be called

orthotropic. Equation (2.8) indicates there are no interactions between the normal

strains and shear stresses or between the shear strains and the normal stresses in an

orthotropic material.

C,
k) 23 o 0 0 C2323' 0 0 2E23'

C,i-'13 o o 0 0 C1313' 0 2E13'

C,iJ'2 o 0 0 0 0 C1212' 2E12'

Viogt notation.

SI1,

CI
-' 22

C,
k) 33

C1111'

''2211

I-', '
'-3311

C1122'

I-', '
''2222

I-" '
'-3322

C1133'

I-" '
''2233

I-" '
'-3333

0

(
'-'

fl'j

0

'-'

0

n
'-'

nj

E11' -

7;'

7;''
(2.8)
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(2.7)



2.3.2 Constitutive equations in Cartesian coordinates

Equations (2.5) are tensor equations and so are valid under any proper

transformation; however, it will be necessary to take the derivatives of these

equations. If equation (2.5) has a curvilinear basis, then on taking the derivative

with respect to a base vector the resulting differential will have a different set of

base vectors from the point where the derivative was taken (Charlier et al 1992, pg

21). The resulting matrix is no longer a tensor, and will have to be corrected in

order to regain the original properties of the tensor equation. This complication can

be avoided if the constitutive equations are transformed to a rectilinear basis. Then

the base vectors are the same for all points in the domain and so taking the

derivative of a tensor will result in a tensor.

Lai et al (1993, pg 221) give the transformation taking the fourth order tensor

C,k1' from the e1' basis to the e1 basis as

C,k, = QmiQnjQrkQslC'mnrs'
(2.9)

Sk, - QmiQnjQrkQslSmnrs'

Here Qj is the second order tensor containing the direction cosines for the rotation

of interest. To convert the elasticity tensor or the compliance tensor from a

cylindrical basis to a Cartesian basis Q,, would be

where C9 and S9 are the cosine and sine of the cylindrical coordinate 0.

15

Ce

S0

_0

S0

Ce

0

0

0

1_

(2.10)
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The rotation (2.10) transforms the positive r direction in cylindrical coordinates to

the positive x1 direction in Cartesian coordinates. Recall there are only nine

independent coefficients in the C' and Sk/' tensors. Refer to Appendix C for the

complete list of transformation equations for CkJ' and Sk/.

Equations (C2.1 1) and (C2.12) show that there are now thirteen coefficients,

after transforming the Ck/' and Sk/' tensors to Cartesian coordinates. In addition,

the coefficients in the new Cuki and SkJ tensors are no longer constant; instead, they

are now dependent on the cylindrical coordinate 0 and the nine coefficients from

the Cuki' and Suki' tensors. To view the change in dependence between the stresses

and strains after the transformation (2.9) the constitutive equations can be written in

Voigt notation. For example,

Equation (2.13) indicates when the constitutive equations are transformed from

cylindrical coordinates to Cartesian coordinates only one plane of symmetry

remains, and this plane is formed by the Xl, x2 axes. If the material is subjected to

rectilinear strains, or stresses, there is now an interaction between theE12 shear

strain and the normal stresses, and the S12 shear stress and the normal strains. There

is also an interaction between E23 and S13, and E13 and S23.

SI'

S22

S33

S23

SI3

S12

C1111

22fl

C3311

0

0

C1211

C1122

c2222

3322

0

0

1222

Cr133

C2233

C3333

0

0

C1233

0

0

0

C2323

C1323

0

0

0

0

C2313

1313

0

C1112

C2212

C3312

0

0

C1212

E11

E22

E33

2E23

2E13

2E12

(2.13)



2.3.3 Constitutive equations for the bole of a tree

The Wood handbook (USDA 1974, pg 4-6) gives the engineering constants for

Douglas-fir when the wood is assumed to be orthotropic in cylindrical coordinates

(Table 2.1). The engineering constants reported by the Wood handbook do not

produce a symmetric compliance tensor where Sk1 = S1. To produce a symmetric

compliance tensor from the published values the off diagonal terms in (2.8) were

averaged (Table 2.2).

Table 2.1 Engineering constants for Douglas-fir (USDA, 1974)
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* Young's modulus, ** 5hear modulus, Poisons ratio

Table 2.2 Compliance coefficients for Douglas-fir

.

1.08E+1O 5.40E+08 7.34E+08 6.91E+08 8.42E+08 7.56E+07

, Q j :

1

0.292 0.449 0.390 0.287 0.020 0.022

f

1.362E-09 -2.842E-10 -2.090E-10 1.852E-09 -4.116E-11 9.259E-11

(Pa ) S1313' (Pa') S1212 (Pa )

1 .188E-09 1 .447E-09 1 .323E-08



However, the compliance coefficients (Table 2.2) indicate that (2.14) is not

true for all points in the cross section of a tree. It is necessary to introduce

constitutive equations that are a function of the cylindrical coordinate r in order to

satisfy (2.14) at r = 0, while allowing for other combinations of coefficients where

r 0. The following constitutive equation in cylindrical coordinates will be

assumed to apply to a cylindrical section of the bole of a tree,

E '=S 'S '_[S+r*M 15
q k1 Id - jk1J ki

ü Uk! Id _[Cjk!+r*K 'ES'=C 'E'- qk!J Id

in cylindrical coordinates (2.15)
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If a cylindrical section of the bole of a tree is assumed orthotropic with , r,

and 0 being the axes of anisotropy. Then, if the X3 axis falls within the bole of the

tree certain relations are required between the elastic coefficients (Lekhnitskii

1981, pg 68). In cylindrical coordinates when r = 0, the unit vectors er and e0

become indistinguishable. Therefore, it must be possible to interchange the r and 0

directions in (2.8); this requires certain of the coefficients to be equivalent. The

coefficients that must be equivalent at r = 0 are

sill1, = s2222' , S11331 = S2233' , S2332' = S1313'
atr=O (2.14)

where £, M and j are constants.

Before transforming the compliance and elasticity coefficients in (2.15) to

Cartesian coordinates, some simplifications can be made. Equation (2.14) does not

place any restrictions on S 122', 53333', S1212', or C1 122, C33331, C1212t. Therefore, these

C'=
1111

C2222
' r '
''-'1133

r
'-'2233

' r =
''-'2332 '-'1313



coefficients may be independent of r and so the following simplifications can be

made.

Let

s2323=s02s3+c2 =[s:+cs3=3e L2323

S33 = c+ss2323 =[c +SS1313 =S33

atr=O (2.18)
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To form the compliance coefficients in Cartesian coordinates substitute (2.15)

into (C2. 12), then take into account (2.16), (2.17), and (2.18). The resulting

compliance coefficients in Cartesian coordinates are as follows.

I<1122 I<1122 = I<1122 = 0
(2.16)

-'I122 = -'II22 = -'I122 = 0

Equation (2.14) does place restrictions on (2.15) when r = 0, therefore, let

C2222 = C1111, C2233 C1133, C2323 = C1313

atr=0 (2.17)
2222 - S33 S1133, S2323 = 1313

On substituting (2.17) into (2.15) when r = 0, then substituting this into the fourth

and fifth equations of (C2.1 1) and (C2.12), the following can be noted.

c2323 = s: c1313 + c: c2323 = + G0 1313 = C1313

c1313 =c: c1313 +s:c2323 =[c: +s:1313 =c1313



S1111 =[c04 +sii11 +r[Co4M1111 +SM2222]+2CSS2+4CSS1212

SI122 = S1122

= s1133 +r[CM1i33 +SM2233]

S1112 = S0C0 [C[S i1+rMiiii]_CS2_2CSj212 +2SS1212 +S0 S1122 -S[Sii +rM2222fl

2222 =[c: +ss1, +r[S:Miii,

2233 =S33+r[SMii33 +CM2233]

22I2 =_S0C0 [So2[ +rM2222fl
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S3333 = S3333

33I2 = S0C0 [S1133+riWij33]_[Sii33 +rM2233]I

2323 =3+r[SMi313 +CM2323]

S233 =S0C0r[1v11313 _M2323]

Sj3j3 =3+r[CMi3i3 +SM2323]

I2I2 =CS[2S1 +r11111 +M2222]_2[S1122 +j+[c: +ss12

(2.19a)

Similar equations can be formed for the elastic coefficients by replacing Sk, by

Ck,, S by and M1 by and these equations would be called (2.19b).
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3. A Solution for Saint-Venant's Problem

From now on in this paper, Greek indices will range from 1 to 2, while Latin

indices range from 1 to 3 unless otherwise specified. Summation notation is used

for repeated indices, and a comma followed by a subscript will indicate a partial

derivative with respect to the coordinate. Definitions of the Kronecker delta

function ((ä), the two-dimensional alternator symbol (ed), and the permutation

symbol (ek), can be found in Appendix B.

To formulate a problem in elastostatics some basic equations will be required.

The constitutive equations are required to link the observable strains to the

corresponding stresses. The constitutive equations (2.15) are independent of 0 when

viewed in cylindrical coordinates. However, when the elasticity tensor () and

compliance tensor () are transformed into the Cartesian frame by (2.19) they

become functions of both x1, and X2, though they are still independent of x3.

C = C:jici = Cyk,(xl, X2)

S = S, = Sk,(x1, X2) (3.1)

The constitutive equations written in Cartesian coordinates are,

S(u) = CyklEici(U)

E(u) = Sk,Sk,(u) (3.2)

The first equation of(3.2) shows the stress tensor S is a function of the

displacement vector u = u(xi, x2, x3). The displacement vector enters into the

formulation of the problem through the strain tensor E.



(3.3)
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Only the infinitesimal strain tensor will be used in this analysis, and it may be

written in vector or indicial form depending on convenience.

E(u)=--[Vu+VuT]

iran, au.1E(u) =_[_-+----!-]

The equations of motion are the differential equations that define the

displacements. In a static analysis, the displacements are independent of time and

so the equations of motion become the equations of equilibrium. As will be noted

in section 3.1 the body forces may be ignored without restricting the generality of

the analysis because if required they can be reintroduced later. The equilibrium

equations when ignoring the body forces are

as(u)0
(3.4)

3.1 Problem statement and classification

Consider a cantilever beam with constant circular cross sections (Figure 3.1).

Let the region B refer to the interior of the cylinder, where B denotes the closure of

B and B is the boundary,

BaBuB (3.5)

Specifically let E1 be the open cross section at x3= 0, E be the open cross

section at x3 = h, and let E be an arbitrary cross section with normal x3. The lateral



xl

Figure 3.1, A cylindrical cantilever beam with loads independent of x3
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surface of the cylinder will be H, while the boundary of an arbitrary cross section is

F. The cantilever beam in Figure 3.1 is a mixed fundamental boundary value

problem of elastostatics (Muskhelishvili 1963, pg 68). E2 is fixed, so the

displacements are zero on this portion of the boundary, where as the surface

tractions on öB - 2 will be specified. Muskhelishvili (1963, pg 71) notes the mixed

fundamental problem will have a unique displacement solution, where as the first

fundamental problem where equilibrium is maintained by surface tractions may

not.
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Sokolnikoff (1956, pg 258) notes the body forces resulting from self-weight

occur in the equations of motion as a linear tenn. This linearity makes it possible to

reduce the system to a homogeneous fonn where the body forces are not present,

solve this system, and then reconstruct a solution to the original problem.

Therefore, in this analysis the body forces will be ignored.

Gurtin (1981, pg 221) states the mixed problem of elastostatics as follows. Let

'y U'y2 = ÔB,wherey1 r''y2 = (2). Given: an elasticitytensor Ckl on B, a

prescribed displacement field ü on y1, and a prescribed stress field § on Y Find a

solution {u,E(u),S(u)]in B, such that u = ü ony1 and s = S,1(u)n = § ony2,

where u C' (B) r' C2 (B) and n is the unit normal to ÔB.

lesan (1987, pg 3) notes that Saint-Venant's Problem was originally posed as a

first fundamental boundary value problem (a traction problem). If

= (2) andy2 = i3B then find {u,E,S] in B, such that s = S(u)n = § ony2.

However, the prescribed stress fields §(1) on E1 and §(2) on E2 are not known a priori

for the problem in Figure 3.1. Therefore, it is necessary to formulate the problem in

Figure 3.1 as a Relaxed Saint-Venant's Problem, where the prescribed stress fields

§(1) and 2) are replaced by integral functions that equal their resultants (Knowles

1966).



lesan (1987, pg 4) classifies the relaxed Saint-Venant's problem based on

assumptions concerning the resultant forces F and the resultant moments M. The

relaxed problem can be decomposed into two classes.

P1 (loads independent of x3): Fa 0. The class of solutions to Pi is

denoted by K1(F3, M1, M2, M3).

P2 (flexure): F3 = M, = 0. The class of solutions to P2 is denoted by

K2(Fj, F2).

Only problems of class P1 will be considered in this paper.

= M on all L)

lesan (1987, pg 3) notes, for the Relaxed Saint-Venant's Problem the

prescribed stress vector will be replaced by the following functions on E1 and H

for problems of class P1.

fri (u) = Fa = 0, f3(u) = F3, m1(u) = M1, m2(u) = M2, m3(u) = M3 on
(3.8)

s(u)=O onH

(Note, for P1 the resultant loads are independent of x3, therefore, qu) = F and m(u)
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From Figure

(l)

The stress vector

s'(u)

0

0

1

3.1

on

S(u)n°

the normal vectors

on E1, and (2) =

E1 is given by

0

0

1

on E1 and (2) on

onE2

are seen to be

(3.6)

(3.7)
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The integral functions f(u) and m(u) are functions of the prescribed stress

vector on Ej, where

f(u)
=

'(u)da, m(u) = x x .(u)da (3.9)

Here x is the position vector directed from the origin to a point on

xT=[x1 x2 o] onEj

In expanded form the four nonzero equations from (3.9) are

f3(u)= L.(u)da = S31n(u)da =LS33(u)da

m3(u) = - x2'(u)da + j x1'(u)da = - x2S1n'(u)da + j x1S21n'(u)da

= Lx2Si3)d LxiS23)
(3.10)

m1(u) = jx2"(u)da = x2S3n')(u)da = Lx2S33(u)da

m2(u)= L_xi°01 LxiS3jn(u)da = LxiS33(u)da

Since the body forces are being ignored and the inertial forces equal zero, the

necessary conditions for a solution require that the sum of forces and sum of

moments on B equal zero. Recall that the surface tractions on H equal zero;

therefore, the necessary conditions for a solution require that the sum of the stress

fields on 12 and the resultants on Ij equal zero.



The sums of the stress fields on are

= S31n2(u)da = S33(u)da

L- x2.2(u)da + [ x1I2(u)da
=

- x2S11n2(u)da + [ x1S2n2(u)da

= - x2S13(u)da+ x1S23(u)da (3.11)

x2.2)(u)da = x2S3n2(u)da = x2S33(u)da

Lx1I2(u)da
=

[ x1S31n2(u)da = x1S33(u)da

The necessary conditions for a solution require that (3.11) is equal and

opposite to (3.10). The necessary conditions for a solution are

L Sa3(u)da = fa (u) =0 (from (3.9))

LS33(u)da = f3(u) = F3
(3.12)

Lea Xa S3 (u)da = m3 (u)= M3

LxaS33(u)da = eamp (u) = eM

Saint-Venant's Principle has been used to pose the mixed fundamental

boundary value problem in Figure 3.1 as a Relaxed Saint-Venant's Problem. lesan

(1987, pg 4) notes that a solution to the problem in Figure 3.1, posed as a Relaxed

Saint-Venant's Problem, is any displacement field u = U(xi, x2, x3) that satisfies

(3.8). In posing the problem as a Relaxed Saint-Venant's Problem the boundary

condition u = 0 on )J2 has been replaced by (3.12). The stresses in (3.12) are related

to the first derivatives of the displacements by (3.2). Recalling that rigid body

motions may have zero first partial derivatives with respect to the coordinates
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(A14), the displacement field defined by (3.8) is unique only up to an arbitrary

rigid body motion.

3.2 Statement and proof of Theorem 3.1

Theorem 3.1 and Corollary 3.1 were proposed by lesan (1987, pg 45). The

following proof of Theorem 3.1 and Corollary 3.1 parallels that given by lesam

Assume, C Ckl ( 2) where (x1 , x2) E . Let D denote the set of all

equilibrium displacement fields u that satisfy the second equation (3.8).

Theorem 3.1

If uD and u,3EC1(B)r'C2(B)

Then u3 E D and

f(u,3 ) = 0, ma(u,3) = eaf (u), m3(u,3 ) = 0

Proof of Theorem 3.1

Recall from (3.2) and (3.3) that

S(u) = CE(u) = 1C(Vu + V/uT) = --(CVu + C VuT)

Since C = C (x1 , x2) is independent of X3, and u E C1 (B) r C2 (B) , then

--[Vu]=[Vu,3] and {C[Vu}}=C[Vu,3]

Therefore, S(u,3 ) = CE(u,3) =

28



true.

11 = n(x1, x2), 11,3 = 0

--[S(u)n] n----[S(u)] + S(u)--n = n--[S(u)]
fx3

Therefore,

If u D then,

s(u)=S(u)n=O onH

S(U,3) = = --[S(u)n]= 0 onH (3.13)
1,ax3

This proves the first part of Theorem 3.1, if u ED then also U3 E D.

To prove the last part of Theorem 3.1 the equilibrium equations (3.4) must be

considered. Substitute S = S1J(u,3) into the equilibrium equations,

SI1,1 +S12,2 +S13,3 = 0

= 0

= 0
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On the lateral surface H, where 11 is the unit normal, introducing u,3 results in

s(u,3 ) = S(u,3 )n = n onH
tx3

The beam being considered is a right cylinder; therefore, on H the following is



Note S13 is symmetric and that S3, (11,3 )
a

S3, (u), therefore, the equilibrium
ax3

equations can be re-written as

S31(u,3 ) = -S1(u),

S32 (u,3 ) = S2 (u),

S33(u,3 ) = S3(u),

These equilibrium equations can be written more compactly as

S31(u,3) = S1(u), (3.14)

To prove the last part of Theorem 3.1 it is necessary to prove that u,3 satisfies

the first three equations of the necessary conditions for a solution. Substitute u,3

into the first of (3.8), substitute this into the first three of (3.12), and then take into

account (3.14).

f(u,3)
= -[ S31(u,3)da = [ S(u), da

Using the divergence theorem,

J(U,3 ) =
S1(u),1+S2(u),2 da

= JSi1(u)n1 + S2(u)n2ds

nl

OnE n =

0

f(u,3) = JSnds = Js1(u)ds (3.15)

Then S13n = S1n1 + 512n2, therefore,
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To prove the last part of Theorem 3.1 it is necessary to prove that u,3 satisfies

the fifth and sixth of the necessary conditions for a solution. Substitute u,3 into the

first of(3.8) and this into the fifth and sixth of (3.12).

m (u,3) = J eaxaS33(u,3 )da

Using (3.14),

eaxaS33(u,3) = eaxaSp3(u),p

ea[xaSp3(u)J,p ea[xaSi3,i+xaSi3,2+Sa3J

Therefore,

ea Xa S33(u,3) = ea [[XaSp3(U)II,p Sa3(U)I

Substitute (3.16) into mfl(u,3),

m (u,3)
=

e [[XaSp3(U)II,p Sa3(uYlda

Using the divergence theorem,

m(u,3)= JeaxaSp3(u)npds+ LeaSa3(u)da

Recall from (3.12) that

fcx(") =ISa3(u)da

Therefore,

m(u,3) = JeaxaSp3(u)npds - eafa(u)

(3.16)

(3.17)
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To prove the last part of Theorem 3.1 it is necessary to prove that u,3 satisfies

the fourth of the necessary conditions for a solution. Substitute u,3 into the first of

(3.8) and this into the fourth of (3.12).

m3(u,3)
= -[ eDxS3D(u,3 )da

Again using (3.14),

eUDxUS3D (u,3 ) = eUDxSPD (u),

ea[xaSp (u)], = ea[xaSi ,I+xUS2D ,2+SaD 1

Therefore,

eaxS3 (u,3 ) = e [[XaSpD (u)], SaD (u)]

Substitute (3.18) into m3(u,3),

m3(u,3)
=

L eaD [[XaSpi3 (u)], S (u)]da

Using the divergence theorem,

m3(u,3) = - [ eS(u)da

However,

eaSa(u) = S12(u) S21(u) = 0

Therefore,

m3(u,3) = JIexS (u)nds

(3.18)

(3.19)

The proof of Theorem 3.1 is summarized by the following observations.

Consider (3.15),

onE s(u)=O, then f1(u,3)= [s(u)ds = 0 (3.20)
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Consider (3.17),

onFn3 =Oands(u)=O,then S3(u)n =O,therefore,

ma (u,3 ) = eaf (u)

Consider (3.19),

on F n3 = 0 and s(u) = 0, then S (u)n = 0, therefore,

m3(u,3) = 0

(3.21)

(3.22)

Thus, by equations (3.13), (3.20), (3.21), and (3.22) Theorem 3.1 is proven.

Corollary 1.1

If u E K1(F3,M1,M2,M3) arid u,3 E C' (B)nC2 (B)

Then u,3 D and

f(u,3)=0, m(u,3)= 0

Proof of Corollary 3.1

Recall that D is the set of all equilibrium displacement fields u that satisf'

s(u) = 0 on H. K1 is the set of solutions to P1 arid since P1 requires s(u) = 0 on H,

then

K1(F3,M1,M2,M3)c D

Therefore, noting in P1 that F1 = F2 = 0, then from (3.20), (3.21), and (3.22)

f(u,3) = J1s1(u)ds = 0

ma(u,3 ) = 0, m3(u,3) = 0

Thus, proving Corollary 3.1 is true.
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3.3 Statement and proof of Theorem 3.2

Theorem 3.2 was proposed by lesan (1987, pg 48). The following proof of

Theorem 3.2 parallels that given by lesan. Let R be the set of all rigid body

displacement fields. Recall from Corollary 1.1,

If u E K,(F3,M1,M2,M3) and U,3E C' (B)nC2 (B)

Then u3 E D and

f(u,3)=O, m(u,3)=O

This suggests that u,3 is a rigid body displacement and that u is a solution to Pi.

Theorem 3.2

Let J be the set of all vector fields u E C' (B) n C2 (B) such that u,3 E R. Then

there exists a vector field u E J that is a solution to the problem P1.

Proof of Theorem 3.2

To prove Theorem 3.2 a system of equations will be derived in sections 3.3.1

to 3.3.3 that uniquely define u E J as a solution to P1.

3.3.1 Displacement equations

Let u E C' (B) n C2 (B) such that u,3 is a rigid body displacement given by,

U,3 = A + B x x (See Appendix A) (3.23)

Here A, B are constant vectors, and x is the position vector originating from the

origin.
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Integrate (3.23) with respect x3,

B2x
u1 =A1x3B3x2x3+ +U1(x1,x2)

2

B1x
u2 =A2x3 B3x1x3 +U2(x1,x2)

2

= A3x3 B2x1x3 +B1x2x3 +U3(x1,x2)

Here the U(xi, x2) are the functions of integration with respect to x3

Let u' be an arbitrary rigid body displacement

U1'_-:-W3X2 +W2X3 +U10

u2' w3x1 - w1x3 + u20 (3.25)

u3'= w1x2 w2x1 +u30

Here w1 are rotations about the x1 axes, u are translations in the x1 directions, and

A1x3 = w2x3

A2x3 = w1x3

Recognize in (3.24) that the U1 may include parts of a rigid displacement that

are not a function of x3. Rewrite (3.24) by separating out an arbitrary rigid body

displacement such that

B2x
B3x2x3 +T3(x1,x2)+u1'

2

Bx
u2=

u3 =[A3 B2x1 +B1x2]x3 +W3(x1,x2)+u3'

(3.24)

(3.26)
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In (3.26) the WI are

W1(x1,x2)=U1 (w3x2 +u10)

W2(x1,x2) = U2 (w3x1 +u20)

IV3(x1,x2)=U3 (w1x2 w2x1 u30)

Note, W is a displacement field that is independent of x3 and that produces strains,

where

W(x1,x2) E C'(>)r' C2(>) (3.27)

3.3.2 Forming the generalized plane strain problem

Recall Ckl = Cj(xi, X2), and the stresses are given by

Sf1, (u) = CklEkl

Substitute (3.26) into the second equation of (3.28) and note the rigid body

displacement does not contribute to the strain.

E11 =i=W11
ax1

E33 = = (A3 - B2x1 + B1x2)
ax3

E23 +l[B3xi +W3,2]
2[ax3 ax2J 2

E12
a au3l+I

2[ax3 axi]

(3.29)
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au2E22 ----W2,2
ax2

E13
1 au1=- au3l

+w3,1]axij_B3x2
2[ax3

Eki 1[ak U1
(3.28)I__2[axi aXk



I2 = C121 +C222W2 '2 +C1233(A3 - B2x + Bx2) + C1212 ('i '2 +W , )

Four coefficients from the constant vectors A and B occur in (3.30). These

coefficients can be combined in the single vector a.

Let

a1-B2,a2= B1,a3=A3,a4=B3 (3.31)

Equation (3.30) can be written compactly using (3.31)

S(u) = Cq33(apxp + a3) - a4C3ex + I(W) (3.32)

where

= CUkaWk,a (3.33)

lesan (1987 pg 45) defines the state of generalized plane strain for a cylinder to

be the state where the displacement vector is only a function of xi and X2. Equation

(3.33) can be considered a state of generalized plane strain, where the stresses (Ta)

are a function of the displacement vector W=W(xi, X2). Substituting (3.32) into the

(3.30)
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Recall from equation (C2.11) that

C1123 = Cu13 = C2223 = C2213 = C3323 = C3313 - C1223 = C1213 = 0

C2311 = C1311 = C2322 = C1322 = C2333 = C,333 = C2312 = C1312 = 0

Substituting (3.29) in to the first of (3 .28),

S11 = C111W,1+C1122W2,2+C1133(A3 - B2x1 + B1x2) + C112(W,2+J47,1 )

22 = C2211 1,1+C2222"2,2+C2233(A3 - B2x1 + B1x2) + C2212(W,2+J'V2,1 )

S33 = C331 1w , '2 +C3333 (A3 - B2x1 + B1x2) + C3312 (W '2

23 = C2332 (B3x1 + W,2 ) + C2313(B3x2 + J'V3,1 )

= C1332 (B3x1 + J'V3,2 ) + C1313(B3x2 + W,1 )



equilibrium equations S(u), = 0, and the boundary conditions on the lateral

surface s(u)n = 0, results in six equations that are independent of x3. The three

equations resulting from the equilibrium equations are independent ofx3 because

(3.32) is independent of x3. The three equations resulting from the boundary

conditions are independent ofx3 because (3.32) is independent of x3, and because

the normal vector on the lateral surface has only x1 and X2 components. The

following six equations resulting from equation (3.32), the equilibrium equations,

and the boundary conditions define a problem of generalized plane strain.

=_a4x11323 + ac2323l
[ac1313

+
ac23131

ax, ax2 [ ax, ax2 ax1 ax2 j
11n1 + = (a3 + a1x1 + a2x2)[C1133n1 + C1233n2]

+ = (a3 + a1x1 + a2x2 )[C1233n1 + C2233n2]
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(3.34)

13fl1 + I3fl2 = a4[x2C1313 - x1C1323]n1 + a4[x2C2313 - x1C2323]n2

The right hand side of the first three equations in (3.34) can be interpreted as

body loads, while the terms on the right hand side of the last three equations are

surface tractions. The necessary conditions for a solution to the traction problem

are given by the laws of momentum balance (Gurtin 1981, pg 100).

= a1C1133 a2C1233 (a3 +a1x1 +a2x2) +
L ax,

+

233]

ax2

= a1C1233 a2C2233 (a3 +a1x1 +a2x2)

L ax,

2233]

ax2

+a, ax2

+
a2

ax, ax2



The equations for conservation of momentum are

LbdV=O

LrxbdV=O
(335)
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Here t are the surface fractions acting on the body, b are the body loads, and r are

the position vectors from the origin to points in B.

The first equation of (3.35) is the conservation of linear momentum, while the

second equation is the conservation of angular momentum. For the generalized

plane strain problem defined by (3.34) the necessary conditions for a solution are,

[gda+ JJIds=O

(3.36)

[xag3da+ jxaH3ds= [Ta3da

where

gi are the right hand sides of the first three equations of (3.34), and

I-I, are the right hand sides of the last three equations of (3.34).

The body loads (g) and surface tractions (Hj) can be written in the following form,

g =aiCai33 +a2Ca233 +(ax +a3)[d133 + c233]

[c133 23a3]
(3.37)

Ha =(ax +a3)[Ca33n]

H3 = [eaxa4Cp3a3Inp



The area integrals in (3.36) can be converted into boundary integrals by noting

from (3.37) that

e x

g
a [(ax +a3)C33}

ax1,

arg3 =[a4xeaCp3j
ax

Substitute equations (3.38) into (3.37) and these into (3.36), then use the

divergence theorem to convert the area integrals into boundary integrals. The first

three equations of (3.36) become

j(a3 +a1x1 +a2x2)[Ca33nIds+ j_(ax +a3)[C33n13]ds =0

j[eax13a4Cp3]npds+ j[eaxa4Cp3Inpds =0 (3.39)

(Note ea =e)

Recall the fourth equation of (3.36),

[ [exg Jda + J[eaxaH Jds = 0 (3.40)

Substitute the fourth and fifth of (3.37) into (3.40). Collect the terms in the second

integral of (3 .40) by ui and fl2, and then use the divergence theorem to convert the

second integral into an area integral.

e1x1(ax +a3)[C33n]ds = (ax +a3)[eaxCay33ny]ds

(ax +a3)[eaxCay33nyJds
=

iax (ax +a3)[eax13Cay33Jda

Substituting this and (3.38) back into (3.40) results in,

a[(a x +a3)C13133Jda+ (a x +a3)[exC133Jda=0 (3.41)
ax1 ax1

(3.38)

40



However, in the second integral of (3 .41) the following terms cancel.

a a
(apxp + a3)C1233 (--x1) + (ax + a3)C1233 -(x2) = 0

xl

Therefore, exfl can be moved outside of the derivative in the second integral and

(3.41) is seen to equal zero.

a a[(ax +3)Cy33]da+[eax(a xp p p p

(3.42)
a a[(ax +a3)Cy33]da.[eaxa---(a x

p p
ax

'

Consider the fifth and sixth equations of (3 .36). The equilibrium equations for

generalized plane strain are,

+g = 0 (3.43)

Insert (3.43) into the right hand side of the fifth and sixth equations of (3.36),

[ Td1= J3+xa(I +g3)da (i)

Note,

a7)=Txx+xaT3i,i+xaT32,2
cx1

Substituting (ii) into (i), using the divergence theorem to convert the area

integral to a boundary integral, and then recognizing that xaT3n = xaH3 results in,

[ Ta3da = J.xaH3ds + Jxag3da (3.44)
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e Xct

=



Substituting (3.44) into the fifth and sixth equations of (3.36) results in the

following equation that is identically satisfied,

xag3da+ J.XaH3dS =J.XaH3dS+ xag3da (3.45)

Thus, from equations (3.39), (3.42), and (3.45) the necessary conditions for a

solution to the generalized plane strain problem, are satisfied for any values of a.

The generalized plane strain problem is defined by (3.34), and the necessary

conditions for a solution are given in (3.36).

3.3.3 Forming the system of equations for determining aQ

Substituting a into the displacement equations and ignoring the rigid body

displacements u1', since these do not contribute to the strains, (3.26) can be written

in the following form.

u. =61a[a ---+eaa4xx3]+,3[apxp +a3]x3 +Wga2
(3.46)

x2
u, - W =ja[aa + +a3]x3

The right hand side of the difference u, - W1 can be written as the dot product of two

vectors,

42

- =

-iI+i3xIx3 -
2

i2 -+3X2X3
2

i3x3

a1

a2

a3

a4

(3.47)
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The vector W is a solution to the boundary value problem (3.34). Equations

(3.39), (3.42), and (3.45) show that the necessary conditions for a solution to the

generalized plane strain problem are satisfied for any values of a. Let be the

solution to the generalized plane strain problem for a particular set of a. Let n = 1,

2, 3, 4, then in (3.48) set a = 1 forp = n, and a = 0 forp to form the base

vectors for (3.47). The displacements u in the directions of the base vectors then

form four auxiliary problems.

i1+i3x1x3 -
2

= i2 e (3.49)

i3x3

(-11x2x3 +12x1x3)

u1 = (3.50)

The coefficients a (p = 1. . .4) form the vector a,

1 0 0 0

0 1 0 0
a = a1 + a2 + a3 + a4 = ae (3.48)

0 0 1 0

0 0 0 1

i3x3

(-1x2x3 +2x1x3)

iI+i3xlx3 -
2

u - i2 -+13X2X3
2 e+W



S1(u) = CklEkl

a
+

2 [ax,
,

ax,,

Since the a are independent of the derivatives, the derivatives can be moved inside

the summations in (3.51).

ç [au"S(u)=aI +
L ox1 ar,,

S(u) = aS(u)

Therefore, the stresses S1 = S(u) can also be written as linear combinations of their

components in the directions of the base vectors. Recall equation (3.32)

S(u)=C33(ax +a3)a4Cqa3eax +Tq(W)

S(u) - I(W) = C33(ax + a3) - a4Cya3eaxp (3.53)

The right hand side of the difference S, - T in (3.53) can be written as the dot

(3.51)

(3.52)
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To show that the stresses, S = S11(u), can also be written as linear combinations

of their components in the directions of the base vectors, substitute (3.50) into

(3.28).

product of two vectors,

S(u)T,(W)=

cy33 xi

CU33 x2

CU33

-- Cja3eap X3

.

a1

a2

a3

a4

(3.54)



Substituting e for a in (3.54) results in,

S(u") - =

S(u") =

In equation (3.55) the stresses = T,(W") indicate the generalized plane

strain problem can be separated into four auxiliary problems corresponding to the

base vectors. The six equations of (3.34) define a generalized plane strain boundary

value problem for the unknown stresses T = T,j(W). Replacing a in (3.34) with the

base vectors e will result in four systems of six equations that define the stresses

T,. lesan (1987 pg 49) writes these four systems of equations compactly as the

three equilibrium equations on

= 0

l3,a+(Cja33),a =0 (3.56)

ep (C13x = 0

and the three boundary conditions on F,

Tn =Cia33xna
zcx a

=Cia33na (3.57)

= epCjap3xna

e, +2(W") (3.55)

45

C33x1

C,33x2

Cu33
. ep

- Ca3eax
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Recall that D represents the set of all equilibrium displacement fields u that

satisfy the conditions s(u) = 0 on H, where sj(u) = S(u)n3. Substitute (3.55) into the

equilibrium equations Su(u), = 0, noting (3.56) it can be seen that the equilibrium

equations are identically satisfied. Substitute (3.55) into the boundary conditions on

H, s(u) = S(u)n = 0, noting (3.57) it can be seen that the boundary

equations are identically satisfied. Therefore, u E D.

Recall that Saint-Venant's principle was used to replace the resultant loads on

E with the stress functions f = f(u) and m = m(u), where u E K1 (I, M1 , M2 ,M3).

Equation (3.8) gives six equations relating u to the applied loads,

fi(u) = 0,f2(u) = 0,f3(U) = F3

mi(u) =M1, m2(U) =M2, m3(U) =M3 (3.58)

Recall from Theorem 3.1 that ma(u,3) eaDfD (u) However, from Corollary

1.1 m(u,3 ) = 0 because u,3 E R. Therefore, the first two equations of (3.58) are

satisfied. The last four equations of (3.58) will be used to form a system of

equations that determine the constants a (p = 1,2,3,4). Substitute the last four

equations of (3.58) into the last four equations of the necessary conditions for a

solution (3.12).

IS33)da =

X2S33(U)da = M2
2 (39)

IxlS33(U)da =M1

[[x1S32(U)x2S31(U)]da = M3



Substitute (3.52) into the first of (3.59) and then replace S33(u") with (3.55).

LS33(u)da = L
aS33(u")da F3

L[C3333 (a1x1 + a2x2 + a3) - a4C3313x2 + a4C3323x1 + T33}la = F3

From (C2.1 1) C3313 = C3323 = 0, therefore,

L, [C3333(a1x1 + a2x2 + a3) + T33]da = F3 (i)

Following a similar method, three more equations can be formed by

substituting (3.52) and (3.55) into the last three equations of (3.59). These three

equations and (i) form the following system of equations that determine the

constants a1.

L2[C3333(aixi +a2x2 +a3)+T33}la =F3

+a2x2 +a3)+ 13}la = M2 (3.60)

x1 [C3333(a1x1 + a2x2 + a3) + I3 }la - M1

[ ax1[C233x - C2313x2]+ x1I2da - f a4x2[C2313x1 - C1313x2]+ x2I1da = M3

Rewrite the system of equations in (3.60) in matrix form,

jxC3333da j xxC3333da x1C3333da 0

x1x2C3333da xC3333da x2C3333da 0

x1C3333da xC3333da C3333da 0
2 2

0 0 0

[-2x1x2C2313 + xC2323

+ x2C1313]da

(3.61)
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a1 G1

a2 G2

a3 G3

a4 G4



In. (3.61) the are

M1 - L x113da

M2 - [ x213da

-
- T33da

M3 - x1I2 +x211da

There are two independent problems in (3.61). As will be shown in section 5.1

the three coefficients ai, a2, and a3 conespond to the S stresses, while a4

conesponds to the S03 stresses.

The zero terms in the coefficient matrix allow the separation of (3.61) into the

following two problems.

- 1xC3333da

12

XI x2 C3333da

Lx1 C3333da

12

Xl x2 C3333da

LxC3333da

12

x2C3333da

a1 G1

C333da a2 G2

12C3333da a3 G3

(3.62a)
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[-2xx2C2313 + xC2323 + xC1313]da * a4 = (3 .62b)

Consider (3.62a), note from (2.19b) that C3333 = is a constant and can be

moved outside of the integrals. With C3333 taken outside the integrals and since E2

is circular, the off diagonal terms in the coefficient matrix are seen to equal zero,

while the first two diagonal terms are the moment of inertia (1) and the third is the

area of E2 (A).

G1

G2

G3



Equation (3.63) shows that a1, a2, and a3 are uniquely defined if a function can be

found for l'33, since I, A, and C3333 are real and never zero.
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lesan (1987, pg 51) uses a strain energy argument to prove that (3.61) uniquely

defines a for a more general elasticity tensor. Equation (3.62b) can be shown to

uniquely define a4 when considering equation (C2. 11) and the engineering

constants in Table 2.1. Since the objective of this paper is to consider the S

stresses, equation (3.62b) is not required and it will be assumed with out further

proof to uniquely define a4.

Equation (3.61) uniquely defines the coefficients a (p = 1, 2, 3, 4) 50 the

displacement field (3.26) exists. Therefore, a displacement field u,3 E R exists such

that u E C'(B) r' C2(B) is a solution to the problem P1. Thus, Theorem 3.2 is

proven.

C33331

o

o

0

c3333i

o

0

0

C3333Aa3

a1

a2

G1

G2

G3

(3.63)



4. Solving the Generalized Plane Strain Problem

Recall for generalized plane strain that E = SjjmnTmn. Chirita (1979) notes this

process must be reversible, therefore, Tkl = CklrsErs. This results in E =

SzjmnCmnrsErs, and

SmnCmnrs =[ö irö is

(Here, a. and 13 are constants.)

all other i, r, s = 0

where the S0k1, and C1ft1 tensors are defined by (2.19).

For the generalized plane strain problem, the stresses and strains are a function

of the displacement vector W.

T11 = T1j(W(xj, x2)) = C/(JEkl

E1 = E(W(xj, x2)) SklTkl (4.2)

Equation (4.2) results in the following three sets of constraints on the strains, the

first is a result of W being independent of x3, the second and third are obtained
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from equation (Dli) in Appendix D.

i[aw3
(4.3)E(W)

= -[ ox3 Ox3

E(W) =ox + 13X2 (4.4)

E(W) =cLx + 13X2 (4.5)

(i = s, j = r) = 1/2
(i = r, j = s) = 1 / 2 (4.1)

(i = r,j = s;i = s,j = r) = 1



Let

4.1 Determining the stress functions for T/'

Letp = 1, then (3.56) and (3.57) form a generalized plane strain boundary

value problem that defines T7f' = Tq(W').

ai'
+
a

+ + ,
I ac1133

+
ac1233]

= 0
a, ax2

[
ax, ax2

+ 22 + 1233

'r'(I) aT° * [ac1233
+ = 0

ax, ax2
[

ax, ax2

q-(1) aT'(1113
+ 23 =0

ax, ax2

T'n + 1 n2 = x1 * [C1 133n1 + C1233n2J

+ T0n2 = x1
22

(1) (1)

13 23 -

Introduce the stress function ço' = '(xi, x2) such that

T' = x1C1133 +0),22

(1)= x1C2233 +4)
22

'r(I)
112 = x1C1233 - '12

T13' = T231 =0

Substitution of(4.7) into (4.6) shows that the first two equations of(4.6) are

satisfied. Substitution of (4.8) into (4.6) shows that the third and sixth equations of

(4.6) are satisfied. The fourth and fifth equations of (4.6) will be used to form a

boundary condition for

* [C1233n1 + C2233n2J
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(4.6)

(4.7)

(4.8)



Equations (4.2) and (4.3) will be used to form an equation that defines T33°.

First, substitute the second of (4.2) into (4.3), while taking into account (4.8).

E - S3311I' + S T° + S3333T + 2S Tw = 03312 1233 3322 22

Substitute (4.7) into (i)

8240) 82)
-x1[S3311C1133 +S3322C2233 +2S3312C1233]+S3311

8x
3322

8x

-2S3312 +s3333T =0
ax1ax2

Note from (4.1), when i =j=3 and r = s =3,

S3311C1133 + S3322C2233 + 2S3312C1233 = 1 - S3333C3333 (iii)

Substitute (iii) into (ii) and solve for T33'.

1 a
[53311 2= x1S3333' - x1C3333

2 )

+ 3322

a2
(I)

a2
(1)

](49)2S3312

s3333 L ax ax, ax2

Thus, (4.7), (4.8), and (4.9) provide six equations that define

4.2 Satisfying the strain constraint equations given TJ'

The constraint equation (4.5) is automatically satisfied by (4.8), while the

constraint equation (4.4) will be used to derive an equation that defines the stress

function

(i)
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Let L1 and L2 be the differential operators

a2 a2 a2
L1 = S331 + S3322 - 2S3312

ox12 ax1ox2

a2 02 02

L2=S1111+S1122-------2S1112
ax ax1 Ox2

Substitute T1J' into the second of(4.2) for i =j 1, then

= S1111I + S1122I + S1133I + 2S1112I

Substitute (4.7) and (4.9) into (i), then

E' = x1[S1111C1133 + S1122C2233 + S1133C3333 + 2S1112C1233]
11

+x 533 533
L1' +L2'

S3333 S3333

Note from (4.1) that

SiimnCmn33 0 (iii)

Substitute (iii) into (ii), expand the operators L1 and L2, and group the terms by the

The equations for E22' and E12' can be derived in a similar fashion as for E1 (1).

derivatives of

E°11 -
x1S1133 O2(I) r 1

1133
O21)

+ [51122
S3333 Ox [ S3333 j Ox S3333

(iv)
02 (1)

I 1333312

a, ax2
1112

S3333
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(i)



Substitute the transformation equations (2.19 a) into the first term on the

R.H.S. of (4.10),

x1 {S3+R[CM1133 + SM2233]}
E' -11

+
S3333

EW
xi{S3+R[SMii33+CM2233]}

22 +
S3333

2 B2212 (4.11)B2222
8x1 8X2

E'
X1 {S0C9R[M1133 -M2233]} a21

2 B121212 +
2

B1211+
2

B1222

Assume the strains are not identically equal to zero. To ensure that the strains

in (4.11) satisfy the constraint equation (4.4), q) may be selected so that the strains

are linear functions of x and x2.

(v)
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Lekhnitskii (1981, pg 104) identifies the reduced strain coefficients for

generalized Hooke's law in matrix form; the equivalent tensor forms of the reduced

strain coefficients are,

= Skl
S33Sk/33

S3333

Substituting (v) into the equations for E11', E22', and E12' results in the

following three

E'11

E'22

E'12

equations.

x1S1133
B1111

B2211

B1211

-2

(4.10)

+
S3333

x1S2233 a24(1)

+ B1122

2

2

B1112

+
S3333

x1S1233

a

82(1)

+ B2222 B2212
a 8X2

82(1)
B1212+

S3333
+ B1222



To select q so that the strains in (4.11) are linear functions of x and X2 the

following may be assumed,

x1R[CM1133 + SM2233]
B1122 2

S3333
+

2
B1111 +

ôx

0 2233Jx1R[SM1133 +C2M 1

2
ô2W

B2212 =0 (4.12)+ B2211+
s3333 ôx ôx

B2222
ox, Ox2

x1S0C0R[M1133 M2233] o2(1) o2(1)
2

o21)
B1212 =0+ B1211 +

Ox12
B1222

S3333 Ox22

Let

=
x1R[CM1133 + '2M J08 2233

S3333

+ CM2233J
=

S3333

=
- x1S0 C8 R[A11 133 - M2233 I

S3333

B1112 =0

Multiply the third equation of (4.12) by B111 2/B1212 and then subtract it from the

first equation of (4.12). Multiply the third equation of (4.12) byB22i2/Bi2i2 and then

subtract it from the second equation of (4. 12). This results in

[AW B1112C1 O2(1)

B1212 ] Ox
B1111

O2(1) o2) B2 O2) B1222B112
1211+

2
B1122

- Ox B1212 Ox B1212

(4.13)

=0

"1222 = 0[B(1)
B2212c1 O2(I) o2(1) o2(I) B1211B2212 o2(1) J?2

B2211+ B
B1212 j Ox Ox

2222
Ox B1212 Ox B1212

Multiply the second of(i) by B1112/B2212 and subtract from the first of(i), then

L

A' B°
B112 1 a241)

[B1111
B2211B1112 1 +

o21)
[B1122

B2222B1112
] = 0 (ii)+

B222] Ox B2212 j Ox B222

(i)
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ax

a2

Substitute (4.7) into the fourth and fifth of (4.6), then

a241

ax ax1ax2
n2 O

a24' a2°
ax, ax2

'
ax

Therefore, on the boundary I', q' is defined by

a2
(I)

a2
(iv)

ax a
Equations (ii) and (iv) form the following boundary value problem,

[B1111 B2211B11121 a2° [B1122 B2222B11I2] [B(1 B1112 A0)]onL'
B2212 ] a. B2212 - B2212

a24° n22 onE (4.14)- ax fl2

4.3 Determining the stress functions for T/4

Letp = 4, then (3.56) and (3.57) form a plane strain boundary value problem

i121 + 7;2n2 = 0

I;2n1 +In2 =0

+ = [C1313x2 - C1323x1 }n + [C2313x2 - C2323x 1k'2

56

that defines T. (4) = Tj(W4).lij

ai4 ai'4 =0

rac2 [ac33 +ac2331 (4.15)

ax,

ai'4

ax2

ai
ax,

aT13

ax2

23

ax,
+

ax2
=_xj

ax,
+aC2323]+

ax2 ax1 ax2 j



Let

Introduce the stress function w = W(xi, X2) such that

T(4) = C1313x2 - C1323x1 +13
ox2

T(4 = C2313x2 - C2323x123

(4)_ (4)_ (4)_
22 12

Ox2

(4.16)

(4.17)
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Substitution of (4.16) into (4.15) shows the third equation of (4.15) is satisfied.

Substitution of (4.17) into (4.15) shows the first, second, fourth, and fifth equations

of (4.15) are satisfied. The sixth equation of (4.15) will be used to form a boundary

condition for w Equations (4.2) and (4.3) will be used to form an equation that

defines T334. Substitute the second of(4.2) into (4.3), while taking into account

(4.17).

Therefore,

= 533Jl + 53322l + 53333l3 + 3312 l;2 = 0

-s T4=O- 3333 33

T334=O (4.18)

Thus, (4.16), (4.17), and (4.18) provide six equations that define T1J4.



4.4 Satisfying the strain constraint equations given T,)4

The stress function u will be defined by satisfying the strain constraint

equation (4.5). Substitute T/4 into the second of (4.2) for i 2 ,j = 3, and for i =

1,j=3.

E(4)
(4) (4)

23 - 2313 13 2323 23

(i)
= 2S1313T4 + 2S1323J34

Substitute (4.16) into (i),

= 2x2S2313C1313 - 2x1S2313C1323 + 2S2313 + 2x2S2323C2313
ax2

- 2x1S2323C2323 - 2S2323
ax,

E4 - 2x2S1313C1313 - 2x1S1313C1323 + 2S1313 + 2x2S1323C2313
13 -

ax

- 2x1S1323C2323 - 2S1323
ax,

Recall from (4.1), when taking into account (4.17) and (4.18) that

S23mnCmn23 = 2S2313C1323 + 2S2323C2323

SI3mnCmnI3 =

1

2

1
2S1313C1313 + 2S1323C2313

2

2
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S23mnCmnt3 = 2S2313C1313 + 2S2323C2313 = 0

Sl3mnCmn23 = 2S1313C1323 + 2S1323C2323 = 0



Substitute (iii) into (ii), then

E4 4x11+2S2313--23 - - - 2S2323
ox2 Ox1

E4 4x2--+2S131313 -

2S2313
Ox2 S1323

2S1323
Ox2 Ox1

(4.19)

If ti, is selected so E234 is linear in x1 and so E134 is linear in x2 then the

constraint equation (4.5) will be satisfied. In order to linearize the strains, y.i may be

selected such that,

2S 2S2313 - 2323 -
Ox2 Ox1

1313 1323 -
Ox2 Ox1

Multiply the second equation of (i) by S2323/S1323 and subtract it from the first

equation of(i), then

(i)
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=0 = isindependentofx2
Ox2

Similarly, multiply the second equation of(i) by S23 131S1313 and subtract it from the

first equation of(i), then

ow S22S2323--+2 13230w_o
Ox1 S1313 Ox1

= 0 = y is independent of x1
Ox1



T4 = C1313x2 - C1323x113

T4 = C2313x2 - C2323x123

4.5 Summarizing the generalized plane strain stresses Tu"

The stresses that are a function of W' are defined in sections 4.1 and 4.2. The

stresses that are a function of w2 or W can be defined following methods

similar to those shown in sections 4.1 and 4.2. The stresses that are a function of

were defined in sections 4.3 and 4.4. The four systems of stresses

corresponding to the four displacement vectors W are as follows.

Consider W'; the corresponding stresses defined by (4.7), (4.8), and (4.9) are

= x1C1133 +4 '22 '

(I)T° = x1C'1233 4 '1212

T1 = x1 S3333' - x1 C333333

(1)T' =22
x1C2233 +4

T' - Tw = 023 - 13

1 [ a2°
s3333

[S3311
ax

+ S3322
ax

2S3312

(4.20)

(4.21a)
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Substitute (4.16) into the sixth equation of (4.15), then

a4 =o
ax2 ax,

(iv)
8141 2

ax2 ax1 n1

Equations (ii) and (iii) indicate i1ii is constant. Equation (iv) gives the condition

for i1ii on the boundary, and this is automatically satisfied by the results from

equations (ii) and (iii). Therefore, equation (4.16) becomes,



The unknown function is defined by the boundary value problem (4.14),

B2211B1112 1 a2' [ B2222B1112 1 = [B' B1112 A1[B1111 1+ I B1122
B2212 j [ B2212 ] [ B2212 j

(1) (1)

onF- 2

The coefficients A' and B' are defined by equation (4.13),

x1R[CM1133 + SM2233]
=

3333

x1R[SM1133 +CM2233]

3333

Consider W2; the corresponding stresses derived similarly as for W° are

The unknown function 2) is defined by a boundary value problem similar to

(4.14),

B2211B1112 1 + a24)2 [B1122 B2222B1112

I =
[B(2) B1112 A(2)l[B1111

B2212 j B2212 B2212 J

(2) 224)(2)

onF-

(4.21b)

(4.21c)
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(4.22a)

24)(2)
1

2S3312
ax1ax2j

(4.22b)

p(2)
112

p(2)
1

=

=

=

x2C1133

x2C1233

x2S33331

+42)
'22 '

(2)
4) '12 '

- x2C3333 -

122

p(2)
123

1

x2C2233 +42),,

= p(2) = 0113

[ 24)(2) 24)(2)

s3333
[S3311 + 3322



The coefficients A2 and B2 are defined by equations similar to (4.13),

x2R[''2M +SM2233]
A2

1133

S3333

(4.22c)
x2R[SM1133 + CM2233]

B2
S3333

Consider W3; the corresponding stresses derived similarly as for W' are

The unknown function q3 is defined by a boundary value problem similar to

(4.14),

1+ -
B2212 J B2212 B2212

A(3)]
a23

EBIIII

B2211B1112 1
[B1122

B2222B1112

]-
[B(3) B1112

(3) _(3)
- on F (4.23b)

a n

The coefficients A3 and B3 are defined by equations similar to (4.13),

R[CM1133 + SM2233]
A3 =

S3333

R[SM1133 + CM2233]
B3 =

S3333

(4.23c)
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-In = C1133 '22 = C2233' 22

'3)
12 =C1233 _3)

'12
'3) 3) =0' 23 13

(4.23 a)

I33 = s3333' - C3333
1 a23 ,

(3)

+
53333

[ 2
ax1

2S3312
ax1ax2



Consider W4; the corresponding stresses from (4.17), (4.18), and (4.20) are

7-'(4) (4) (4)
L11 22 12 - 33 -

- C1313x2 - C1323x1l3 -
- C2313x2 - C2323x123 -

(4.24a)
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5. Determining the Magnitude of Sap

5.1 Defining Sap in terms of S33

Recall the S can be written as linear combinations of their components in the

directions of the base vectors e (p = 1, 2, 3, 4).

S(u) = (3.52)

S(u°') =

- C33x1 -

C33x2

Cu33

- Cjja3ea x13

(2)S11 (u) = {a4C1 13x2 + a4C1 123x1 } + {a14) '22 +a24) '22 +a34 (3)
'22 }

Recall from (C2.1 1) that C1113 = C1123 = 0, then

S 1(u) = {a14) '22 +a24
(2)

+a34)
(3)

'22 }'22

e +I,(W°') (3.55)

Here the T/" = TJ(W") are determined by equations (4.21), (4.22), (4.23), (4.24),

and the a have yet to be determined.

Consider the case where 1 =j = 1, substitute equations (4.21) to (4.24) into

(3.55) and this into (3.52), then

511(u) = {a1C1133x1 + a2C1133x2 + a3C1133 - a4C1113x2 + a4C1123}

+ {a1[C1133x1 +4) °,22 ] + a2[C1133x2 +4) (2)

+ a3[C1133 +4,22 ] - a4[O]}

(i)
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The stresses S22 and Si2 can be determined in a similar fashion as for S11. giving

S22 (u) = {a14 (') +a24, (2)
, +a34 (3)

,

S12 (u) = {a14 '12 +a24 (2)
'12 +a34 (3)

'12 }

Consider the case where i 1,2 and] = 3. Recall from (C2.11) that

C2333 = C1333 = 0. Substitute equations (4.21) to (4.24) into (3.55) and these into

(3.52), then

S23(u) = a4C2313x2 + a4C2323x1
(iii)

S13(u) = + a4C1323x1

Consider the case where i =j 3. Substitute equations (4.21) to (4.24) into

(3.55) and these into (3.52), then

S33(u) {C3333[a1x1 + a2x2 + a3] - C3313x2 + C3323x1} + {C3333[a1x1 - a2x2 - a3]

+ S33331[a1x1 + a2x2 + a3] + S3333[a1L14' + a2L142 + a3L143]}

Recall L1 is the differential operator defined in section 4.2,

a2 a2 a2
= 331I + 3322 - 2S3312

ax ax1ax2

Recall from (C2.1 1) that C3313 = C3323 = 0, therefore,

S33 (u) S33331 {a1 [x1 + L14 (1)] + a2 [x2 + L14 (2)] + a3[1 + L14
(3)]) (iv)
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The stresses defined by equations (i) to (iv) are,

2fD D(P) 1?
1 ['-'1112'-' '-'2212

n{B1111B2212 B2211B1112]+n{B1122B2212 B2222B1112]

- 7?
'' 22 12

= n{B1111B2212 B2211B1112]+n{B1122B2212 - B2222B1112]

(5.1)

S23(u) = a4C2313x2 +a4C2323x1

S13(u) = a4C1313x2 + a4C1323x1

533(u) = S3333 {a1{x1 + L14 )] + + L142] + a3{1 + L1 (3)]}

Recall from (4.21), (4.22), and (4.23) that (p = 1, 2, 3) are defined by

B22B2[B
B2222BIII21[B(p) B1112

- 2 'II1I
ox2 [ B2212 J ox12

1122
B2212 ] - [ B2212

o2l fl2 on F
Ox22 - Ox12 n12

Substitute the second equation of(5.2) into the first, then on the boundary F

the second derivatives of are

on

(5.2)

(5.3)
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(I) (2) (3)
S1 1(u) = {a1 '22 +a2 '22 +a34 '22

22 (u) = {a1 (') +a2 (2)
, +a34 (3)

'11

(') (2) (3)
I2 (u) = +I24'12 '12 +a34 '12 }

Notice from 4.21c, 4.22c, and 4.23c that

A(a) =xaA3, B(a) =xaB3 (i)

Substitute (i) into (5.3), then

(a) (3)
, oni (5.4)



Substitute (5.4) into the first two equations of (5.1) then, S11 and S22 become

S11(u) -t'22 (a1x + a2x2 + a3)

S22(u) (a1x1 + a2x2 + a3)

Recall the conditions on the lateral surface H from equation (3.3),

s(u) = S(u)n1 = 0

Substitute (5.5) into the boundary conditions on H for i = 1 and solve for S12.

S11(u)n1 +512(u)n2 =0

fli (3)512(u) = '22 (a1x1 + a2x2 + a3) on H

Note, if(5.6) and the second of(5.5) are substituted into the boundary conditions

on H for i = 2, after taking into account the second equation of(5.2), it can be seen

that this boundary condition is also satisfied.

Consider the sixth equation of (5.1). After expanding the differential operator

L1 and then grouping the terms by the coefficients Suki, the equation for S33

becomes,

1
S33(u) = {[ax + a2x2 + a3] + S33 [a1 '22 +a2 (2) +a3 ]'22

33 33 (i)

(3)
3322 [a1 +a2 (2) +a3 ] - 2S3312 [a1 '12 '12 +a3 3)

'12 1+a2 (2)
'11 'II

Substitute the equations for S11, 522, and 2 from (5.1) into (i), then substitute (5.5)

and (5.6) for Sn, S22. and S12.

1
533(u) = [a1x1 + a2x2 + a3][1 + (3) (3) 2 ' (3)

3311 '22 'II k)3312 '22 ] (ii)
53333

(5.6)

67

} on F (5.5)



Recall the second equation of (5.2), then write (ii) in terms of 3), on H.

[a1x1 + a2x2 + a3]
{n +4) [nS3311 + nS3322 - 2n1n2S3312]} (5.7)S33(u)

n2 S3333

Rearrange (5.7) so the parameter group (aixi + a2x2 + a3) is a function of S33(u) on

H, then

n
[a1x1+a2x2+a3]=

2
{n1 +4) [nS3311 + nS3322 - 2n1n2S3312]}

Substitute (5.8) into (5.5) and (5.6) so that Si 1(u), S22(u), and S12(u) can be

written as functions of S33(u) on the boundary H. After substituting the defmitions

for co3,aa from (5.3) and canceling terms, the functions for S1 1(u), S22(u), and

S12(u), as functions of S33(u) are as follows.

S12(u) = ---S11(u)
2

Saa(U) = {n[B1112B3 - '3]S33S3333}/{[B1111B2212 B2211B1112]nL2212J

+ [B1122B2212 - B2222B1112]n + [B1112B3 - ' 2212 '

+ nS3322 - 2n1n253312]}

5.2 Examining the linear approximation of the strain field

In section 4.2 the strain field E(W) was linearized to ensure that the strain

constraint equation (4.4) was satisfied. The question remains, where are equations

(4.12), which were used to linearize the strains, valid. Since only the second

533(u) (5.8)

onH (5.9)
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derivatives of q' are required to calculate the stresses in (5.1), the equations

(4.12) can be considered as a system of three algebraic equations

where

k1 kk2 - ox12
' -

S3333

(p= 1,2,3)
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The system (5.10) has a solution when the coefficient matrix is nonsingular.

The system (5.10) is dependent on the cylindrical coordinates r and 0, and will be

nonsingular when the determinant of the coefficient matrix is not equal to zero. In

order to calculate the determinant of the coefficient matrix in (5.10), it will be

necessary to calculate the coefficients required for the constitutive equations (2.1 5).

Values for the coefficients in the constitutive equations are not currently

available in a form suitable for (2.15). Ultimately, the values of q' of the most

interest in this analysis will be on the boundary 11. The compliance coefficients

from Table 2.2 will be used to approximate the constants necessary for the

constitutive equations (2.15) on the boundary of a circular cross section. That is, it

will be assume that the reported values for the compliance coefficients in

cylindrical coordinates came from an element on the boundary F'. The constants

£, and will be calculated so the compliance coefficients in cylindrical

B1111

B1122

B1112

B1122

B2222

B2212

- 2B1112k1

- 2B2212

2B1212

k2

k3

-- r[CM1133 + SM2233]

(5.10)

S3333

r[SM1133+"2M 2233

S3333

S9C9r[1v11133 - '22331



S2222 =

1133 = 2233 =

IVIi/k!

Sk, 'SYk!
(r=0.3monfl

r

Sfl'+S1111

2

1133 -'2233

2
(5.11)

(5.12)
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coordinates agree with the reported values in Table 2.2 when the radius of the cross

section is entered into the first equation of (2.15).

Let the boundary F, of an arbitrary cross section E, be the circle r = O.3m. This

radius is in the size range of many trees used for tailspars and intermediate supports

in cable logging. Recall the following simplifications, which were determined to be

allowable in section 2.33. The compatibility conditions at r = 0 do not place any

restrictions on S1122', S3333', and S1212'. Therefore, these coefficients may be set equal

to the published values over the whole cross section, and then

tv!1122 = 1v13333 = 1v11212 = 0 (2.16)

The fact that the cylindrical base vectors er and e0 are not unique at r = 0 does

place the following restrictions on S1 111', S22221. 51133', S2233', S2323', and S1313'

at r =0

LLLL = 2222' 1I33 - 2233' 2323 = S1313 (2.17)

To form the coefficients necessary for (2.17) from the values presented in

Table 2.2 let

C, '
02323 I313

2323 = 1313 =
2

To form the coefficients M1, which are necessary for (2.15), let



The coefficients, in cylindrical coordinates, resulting from substituting the

values from Table 2.2 into equations (5.11) and (5.12), when taking (2.16) and

(2.17) into account, are presented in Table 5.1.

Table 5.1, Compliance coefficients in cylindrical coordinates at r = 0.3 m

Recall the reduced strain coefficients are

BYk, = SkJ
S3333

(5.13)

The Suki are the compliance coefficients transformed into the Cartesian frame by

substituting the compliance coefficients from Table 5.1 into the transformation

equations (2.19a). To take the determinant of the coefficient matrix of (5.10),

substitute the compliance coefficients in Cartesian coordinates into (5.13) and this
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Constant at r =0 Coefficient of r Compliance coefficients

calculated by (2.15) at r = 0.3 m

(Pa') M:iw (Pa1m') Sj' (Pa')

i=j=k=l= 1 1.607e-09 -8.158e-10 1.362e-09

i=j= 1, k=l= 2 -2.842e-10 0.000 -2.842e-10

i=j= 1, k=l= 3 -1.251e-10 -2.798e-10 -2.090e-10

i=j=k=l= 2 1.607e-09 8.158e-10 1.852e-09

i=j= 2, k=l= 3 -1.25 le-lO 2.798e-10 -4.1 16e-11

i=j=k=l= 3 9.259e-1 1 0.000 9.259e-11

i=k=2,j=l= 3 1.317e-09 -4.325e-10 1.188e-09

i=k= 1,j=l= 3 1.317e-09 4.325e-10 1.447e-09

i=k= 1,j=12 1.323e-08 0.000 1.323e-08



into (5.10). The reduced strain coefficients will be a function of the cylindrical

coordinates r and 0. Therefore, the determinant of the coefficient matrix in (5.10)

can be calculated along circles of radius r, where 0 0.3 (Figure 5.1).

0.5

-0.5

x 10

-4.5
0

---T__----

:----
e

:. V---*-
.4

I

0

*;-4
+ R=Olm

R=0.2m
R=0.3m

300 350 400

Figure 5.1, The determinant of the coefficient matrix from equation (5.10)

Figure 5.1 indicates that the dependence of the determinant on the cylindrical

coordinate r is very small. Let E5 be the region where the coefficient matrix is

singular, and Ed be the region where the coefficient matrix is nonsingular, then

:[---- 1_ [nit 1
c <OI+c I (n=1,2,3,4),[2 J L2 ]

= u , and u F =

(5.14)
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Qi=
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In equation (5.14) the c,, are selected so the determinant of the coefficient matrix in

(5.10) is zero for 0. The solution for the function may not be valid in the region

where the determinant approaches zero since equation (5.10) is singular there.

Theorem 5.1

If = 0 at x = x(m1,m2,m3) d ,then = 0 on the closed circular

path x + x = b2 , where m + = b2, 0 h, and b 0.

Proof of Theorem 5.1

Consider the original Cartesian coordinate system (x') (Figure 3.1). A second

Cartesian coordinate system can be formed by a counterclockwise rotation about

the x3 axis.

x," =Qx (5.15)

Here y is a positive angle such that 0 < ' 2ir , and

Cos(y) Sin(y) 0

Sin(y) Cos(y) 0

0 0 1

When the problem was originally defined the cross section E was assumed

circular, and the constitutive equations in the original cylindrical coordinates were

independent of 0. Therefore, only the applied loads are dependent on the original

placement of the x11 axis. Equation (5.2) was derived as part of the solution to the

auxiliary generalized plane strain problems T,7 (p = 1, 2, 3), in which the applied

loads do not occur.



Consider the (p = 1, 2, 3) problems in cylindrical coordinates. In

cylindrical coordinates the transformation (5.15) results in

r{Cos('y )Cos(O ')+ Sin(y)Sin(O')] rCos(O' +')
Qx(r,O ',x3) = r{Sin('y )Cos(O ')+ Cos(y)Sin(O')] = rSin(O' +') (5.16)

Consider the case where 0" =0', then because the applied loads do not occur

in the Tu (p = 1, 2, 3) problems,

T'" =T"'
4:1

(5.17)

However, if 0 H =0 'then

xf'(r,0",x3)Qx(r,0',x3) (5.18)

Thus, the T/' (p = 1, 2, 3) problems when considered in cylindrical coordinates

must be independent of 0.

= 0 (in cylindrical coordinates) (5.19)

Recall from equations (4.21a), (4.22a), and (4.23a) that ,j are portions of

the T7) stresses. Therefore, by equation (5.19) and still considering the problem in

cylindrical coordinates, the functions must also be independent of 0.

'a3 = 0 (in cylindrical coordinates) (5.20)

Let R1 be a ray extending from the origin to a point on the boundary F, where

the superscript I indicates it is in the x1 frame and the subscript d indicates it is in

the region Ed. Since R is in the region where (5.10) is nonsingular, , a" will be

defined at all points on R except at r = 0. The singular point at r = 0 is an isolated
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singular point, which is removable when the problem is considered in the complex

domain (section 5.3). Thus, by equation (5.20) if the value of7 (in cylindrical

coordinates) is known at the point on R where r = b, then the value of , j (in
cylindrical coordinates) will be known for all points on the closed circular path

r = b.

Consider the particular case where (in cylindrical coordinates) is equal to

zero on Equation (5.10) was derived using only the definitions of Cauchy's

stress tensor (So), the infinitesimal strain tensor (Eu), the elasticity tensor (C1), the

compliance tensor (S/k1), and the constitutive equations (2.6), where all these were

in Cartesian coordinates. Fung (1965, pg 48) notes that a tensor equation

established in one coordinate system must hold for all coordinate systems obtained

by admissible transformations. The transformation from cylindrical coordinates to

Cartesian coordinates is a rotation, which is an admissible transformation because it

is one to one (except at r = 0), has continuous first partial derivatives, and the

Jacobian determinant is nonzero. Therefore, if

0, on r = b, b (in cylindrical coordinates) then,
(5.21)

= 0, on + = b2 (in Cartesian coordinates)

Thus, Theorem 5.1 is proven for all x E except at the origin.



5.3 Determining the maximum values of S'

Equation (5.2) is a second order PDE in two independent variables (x1, X2). In

the general form given by Guenther and Lee (1988, pg 40) equation (5.2) with p =

3 is

(3)a(x1 , x2 )
(3)

, , x2 )4 '12 +c(x1, x2 (3)
'22

Recall from (5.2) that

b=0, a =B1111B2212 B2211B1112

c = B1122B2212 B2222B1112,

(3) (3) (3)=f(x1,x2,4 ,1,4 ,2)(5.22)

f - B3B -- 1112 ' 2212
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The classification of(5.2) will depend on the sign of the discnminant b2-ac.

Therefore, it will be necessary to calculate the values of the coefficients in (5.2)

using values in the range of interest for the compliance coefficients and the radius

of the cross section.

Substitute the S1' from Table 5.1 into equations (2.19) and these into (5.13),

then calculate a, c, andfon the boundary F (Figure 5.2). Figure 5.2 shows that the

coefficients a and c always have the same sign except for small regions about nr/2

(n is an integer), which coincide with X from (5.14). Since a and c always have the

same sign in Ed, the discriminant b2 - ac (where b = 0), will always be negative and

so equation (5.2) is elliptic in Ed.

Note that a(xa) and c(xa) are combinations of the trigonometric functions, the

coordinates, and the material constants. Since the trigonometric functions are

continuously differentiable and may be represented by convergent power series

over the whole domain B, the coefficients a(xa) and c(xa) must be analytic in B.



Therefore, since equation (5.2) is elliptic and a(xa) and C(Xa) are analytic, then the

general equation (5.22) can be reduced to normal (canonical) form by calculating

with the complex variables and i, in which case (5.22) is reduced to,

4) = G(ç ,r ,4) ,4),ç ,4),) on d (Guenther and Lee 1988 pg 45) (5.23)

0 100 200 300 400
degrees

(3)4)'ai =4),(z) onE1

x 10b0

0

j $, je * * *
* * . * 4 * * *
* * * 4 4'

* ** ** **
** ** *4E **

100 200 300 400
degrees

Figure 5.2 Coefficients of equation (5.22) onF, r= 0.3

Equation (5.23) shows that the can be defined as functions of the

complex variables 4, and i, therefore, they can also be represented by analytic

functions of the complex variable z = x1 + L2.

(5.24)
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positive x1 axis.

Consider i = 1, 2 andj = 3, then Q = 0. Therefore (5.26) may be written as

QapQy5'py (5.27)

Equation (5.27) shows that S' are ftmctions of only S22, and S12. Consider the

boundary condition on H in cylindrical coordinates

s(u)'_S'n =0 onH (5.28)

Recall on H that fl3 = 0, therefore, substituting (5.27) into (5.28) results in

=0 onH (5.29)

Recall from (2.6) that S' = Srr, and S12' = Sre, then from (5.29)

rOrr onH (5.30)
n2
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Equations (5.1) show that Sj are multiples of Q,fl(3), therefore, by (5.24)

Sa =Sa(Z) onEd (5.25)

Recall the objective of this paper is to determine the magnitudes of Srr, See, and

S relative to the normal stress on a transverse cross section. A counter clockwise

rotation about the X3 axis will transform the stress tensor in Cartesian coordinates

(S8) back to cylindrical coordinates (Safi').

Sj '= QrJJaQnSmn (5.26)

Ce 0

Here Q!J = - S C8 0 , and 0 is the cylindrical coordinate measured from the

0 0 1



Note that n1 = C9 and n2 = S9, therefore, Srr becomes

(3)S, =(ax +a3)(C ,22-2C3 +23 )'22 -'0 4)

=(ax +a3)(C23 onHoP '22 i)

'11 0 o1 onHSrr =(ax +a3)0S0 C2S2 (3)

C20

Substitute (5.33) into (5.30) then

nS,=Srr=0 onH
n 2

n--- =0 onH00 - n2

(5.32)

Substitute the second equation of(5.2) into (5.32), rewriting Srr in terms of

ii alone

(5.33)

(5.34)

Recall from (2.6) that S22' = S99, and S12' = Sr9. then from (5.29) and (5.34)

(5.35)

Thus, from (5.33), (5.34), (5.35), and noting from (5.25) that S maybe written as a

function of the complex variable z, then

Srr(Z)=Søø(Z)=S,.(Z)=0 onH (5.36)

Recall that co3afl is not defined on some segments of F, however, by Theorem

5.1 the results of (5.36) can be extended to all ofT'. Thus, the maximum value of
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Expanding (5.27) for Srr results in

Srr =CS11 +2C0S0S12 +SS22 (5.31)

Substituting equations (5.5) and (5.6) into (5.31) results in

Srr = (ax + a3)(C2 1(3) 2C0S0 (3) +2 (3)
'22 '22 ) on 11
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S,p' is zero on H. Sokolnikoff and Redheffer (1958, pg 547) note that the modulus

of the sum of complex numbers is never greater than the sum of the moduli.

Therefore, if S' has a maximum value M on the boundaiy F, then

'(z)dz '(z)dz MIdzI = MtJds = ML (5.37)

where L is the length of the boundaiy F.

Let the path Fbe the circle Iz - z0j = R , where R is the radius of E, then by

Cauchy's Integral Formula

Sa '(zo)I ---2irR = M (Sokolnikoff and Redheffer 1958, pg 558) (5.38)
2irR

Sokolnikoff and Redheffer further suggest that (5.38) is true for all points z

within the circle Fifin (5.22) f B3B11J2 - A3B2212 is always positive. However,

Figure 5.2 shows thatfis not always positive. Sperb (1981, pg 19) notes when the

maximum principle is violated by f <0, it is still possible to show that q3(z) may

not attain a maximum on the interior ofF provided the coefficients are bounded.

Figure 5.2 does show that the coefficients a, c, and fare bounded, therefore, by

(5.36) and (5.38)

Sai3 '(z)I onE (5.39)

Equation (5.39) indicates that S00, and S0 equal zero in B given the

assumptions made in this analysis.



6. Summary

Consider a cylindrical section of a tree (Figure 2.1) that is solid and orthotropic

in cylindrical coordinates. The X3 axis is an axis of symmetry in cylindrical

coordinates and it falls within B. The cylindrical base vectors er and e0 are not

unique at r = 0, therefore, the constitutive equations must allow for non-unique

strains in these directions at r = 0. However, published values of the engineering

constants for Douglas-fir (Table 2.1) do not produce a compliance tensor that

allows for non-unique strains at r = 0. If the compliance coefficients are assumed to

depend on r then it is possible to propose constitutive equations that allow non-

unique strains at r = 0, while still allowing orthotropic behavior at points where

r (equation (2.15)).

The constitutive equation (2.15) may be transformed into Cartesian

coordinates. Only the plane perpendicular to the x3 axis remains as a plane of

symmetry after transforming (2.15) into Cartesian coordinates. With the only plane

of symmetry being perpendicular to the X3 axis, there will now be interactions

between the E12 shear strain and the S11, S22, and S33 normal stresses. In addition,

the compliance and elasticity tensors become functions ofx1, and X2.

The generalized plane strain problem T = T1j(W) where W = W(xi, X2), can be

separated from the three-dimensional stress problem S, S(u) where u = u(xi, X2,

X3). The unknown coefficients a (p 1, 2, 3, 4) in the equations for the Sj, may be

found from the system (3.61) if the functions for the T, can be found. It is possible
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to find functions for the T that satisfy the boundary conditions, stress equilibrium

equations, and strain constraints if E = E(W) are assumed to be linear functions

of x and X2. Equation (5.2), which defines the unknown component of T, is

shown to be elliptic when using the engineering constants for Douglas-fir. The

result of (5.2) being elliptic is that the T, and therefore the S, maybe represented

as analytic functions of the complex variable z in regions where (5.2) is defined.

By Theorem 5.1 and equation (5.25) the functions for S are shown to be

analytic over , except possibly at r = 0. Equation (5.36) shows that S '= 0 on F.

Since S '=0 on [the Maximum Modulus Theorem, Cauchy's Integral Formula,

and the Maximum Value Theorem may be employed to prove that S '= 0 on I.

Thus, for a cylindrical cantilever beam given: a constitutive equation in

cylindrical coordinates that is a linear function of r, generalized plane strains that

are linear in x1 and x2, the engineering constants for Douglas fir (Table 2.1), and

ignoring body loads, then S '= 0 on I. This result indicates it is unlikely that the

Srr, S99, or Sre stresses will become limiting before the S33 stress does in a tree under

loads independent of x3. Therefore, S33 calculated by elementary beam theory will

be a satisfactory estimate of the load bearing capacity of a tree given small strains.
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Appendices



Appendix A: A rigid body motion given two constant vectors

Let u,3 be a smooth vector valued function on B. If u,3 is also a rigid body

displacement field then Vu,3 is constant (Gurtin 1981, pg 36). A deformation u,3

with Vu,3 constant is a homogeneous deformation, and admits the form

u,3 (p) = u,3 (q) + Vu,3 (p - q) (Al)

for all points p and q in B(Gurtin 1981, pg 42).

Proof

Choose p, q E B. Since B is connected there is a curve c in B from q to p,

where c = c(a) and c is some parameter. At the point q on c, c = 0, and at the point

p on c, y = 1 Therefore,

u,3 (p) - u,3 (q) = L u,3 (c(a )) da
da

ôa ôa ôc3 ôa

(c(a)) = [Vu,3 (c(a))]é(a) (where ê =---c(a)) (A3)
da da

(A2)
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Note, since u,3 is continuous

I'3 ôC1 I'3 ôc2 ôu1,3 ôc3

ôc1 ôa ôa ôc3 ôa
d 2'3 ÔC1 2'3 ÔC2 2'3 ôc3

u,3 (c(a)) =
da ôa ôa

ôU3,3 ôC1 ôU3,3 ôc2 ôu3,3 ôC3



E = 1(Vu,3lVu,3T), then

C = I + 2E + Vu3TVu3

B = I + 2E + Vu3Vu3T
(Gurtin 1981, pg 54) (A7)

88

Since Vu,3 is constant, then

u,3 (p) - u,3 (q) = Vu,3 j é(c ) dc

u,3 (p) - u,3 (q) = Vu,3 [c(1) - c(0)]

u,3 (p) = u,3 (q) + Vu,3 [p - q] (A4)

To write the second term on the R.H.S of(A4) as a cross product using the

axial vector co, Vu,3 must be skew. To prove Vu,3 is skew assume there are only

small deformations (Gurtin 1981, pg 54).

Let C and B be the right and left Cauchy-Green strain tensors, then

C=I+Vu+VuT +VuTVu
(A5)

B=I+Vu+VuT +VuVuT

where uEC'(B)nC2(B).

For the rigid body displacement field u,3, C = B = I, therefore,

Vu,3+Vu,3T+Vu,3 Vu,3T = 0 (A6)

Assuming infinitesimal strains, where the infinitesimal strain tensor is



Let f (0 < <) be a one-parameter family of deformations with Vu,3 =

(Gurtin 1981, pg 55), then

2E = C - I + O() = B6 - I + O() as -* 0 (A8)

If f is rigid then C = B = I , therefore, from (A7)

Vu,3" Vu,3 =C-I-2E = -2E= O() (A9)

Substitute (A9) into (A6),

Vu,3 = -Vu,3T +O() (AlO)

Thus, to within a given error O() the tenns 2E, C-I, and B-I coincide;

therefore, Vu,3 must be skew symmetric.

0 (u,3 (x1 ))'2 - (u,3 (x1 )),

Vu,3 = - (u,3 (x2 ))'i 0 (u,3 (x2)),3

(u,3 (x3)),1 - (u,3 (x3)),2 0

The axial vector of(A1 1), when noting (AlO), is

= ----eVu,3Jk e.

(u,3 (x2)),3+(u,3 (x3)),2

(u,3 (x3)),1+(u,3 (x1)),3

(u,3 (x1 ))'2 +(u,3 (x2 )),

(All)

(Al2)
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(Note, (u,3 (x2)),3 (u,3 (x3)),2 by (AlO))

Using (Al2), (A4) can be rewritten as

u,3 (p) = u,3 (q) + Vu,3 [p - q]

U3 () = u,3 (q) + o x [p - q]
(A13)



If q is the position vector x0 = 0 then p - q = x, and since u,3 is a rigid body

displacement u,3(0) is a constant vector. Note, o is constant because Vu,3 is

constant. Thus, (Al 3) can be re-written as

u,3(p)=a+oxx (A14)

where a = u,3 (0) and o are constant vectors.
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Appendix B: Notation Conventions

Mathematical Conventions Symbol

Continuous first partial derivatives C'

Continuous second partial derivatives C2

Cross product x

Cylindrical basis

Dot product

Gradient V

Indices

(1,2)

(1,2,3,...)

Kronecker delta function

Partial derivatives

(Greek symbols)

(Latin symbols)

Ii = I 1

0

= U,1
ax,

Summation notation A1 (i = ito 3) = A11 + A22 + A33

Tensor (vector notation) A (bold type)

Tensor (indicial notation) A
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e123 = e312 = e23 = 1

Permutation symbol e, = e321 = e132 = e213 =

e,1, =e112 =... =0



Mathematical Conventions

Set notation

Element of

Empty set

Intersection

Subset of

Union

Total derivative

Transpose of a matrix

Trigonometric functions

Symbol

0

n

U

du(s)
=

ds

ATJlij
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Cos(0)

Sin(0)

Co

so

a=1,3=2= 1
Two-dimensional alternator ea= a=2,I3=1=-1

a=13= 0

Vector (vector notation)

Vector (indicial notation)

u (bold type)

u
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Constants and variables Symbol Page introduced

Applied loads

Force (resultant) F1, F 25

Force (vector function of u) JXu), f(u) 25

Moment (resultant) M, M 25

Moment (vector function of u) m.(u), m(u) 25

Cartesian coordinates x, x

Cauchy's Stress tensor S, S(u), 5(u) 11

Complex variable z 77

Compliance tensor Sk1, S 11

Constitutive equation constants

First of (2.15) SiJk/, MUk, 18

Second of (2.15) CYk,, KUk, 18

Constant vectors A1, A, B1, B 34

Cross section (transverse)

Area A 48

Moment of inertia I 48

Interior E 22

Boundary F 23

Closure E 71

Interior where (5.2) defined Ed 71

Interior where (5.2) not defined E 71
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Constants and variables Symbol Page introduced

Cylinder

Interior B 22

Boimdary ÔB 22

Closure B 22

Lateral surface H 23

Length h 22

Segment of boundary 24

Cylindrical coordinates r, 0, 4

Displacement vector

Function of x u1, u 11

Function of x Wa, W 35

Differential operators L1, L2 53

Elasticity tensor Ck1, C 11

Generalized plain strain stresses T, T1j(W) 33

Imaginary unit i 77

Infinitesimal strain tensor E, E(u), E(u) 11

Normal vector n1, n 25

Parameter groups from (4.12)

(p= 1,2,3) 55

Prescribed displacement field ü 24

Prescribed stress field 24

Problem (loads independent of x3) P1 24
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Constants and variables Symbol Page introduced

Problem (flexure) P2 24

Reduced Strain Coefficients Bj 54

Right hand side of (3.34)

First three equations gj 39

Last three equations H1 39

Right hand side of (3.61) G 47

Rigid body displacements

Translation u10 35

Rotation angle about an axis w, 35

Sets

Equilibrium displacement fields D 27

Rigid body displacement fields R 33

Continuous displacement field J 34

Solution to P1 K1 24

Solution to P2 K2 24

Stress function for (p = 1, 2, 3) 51

Stress function for (p = 4) w 57

Stress vector s,, S(u), s 24

Transformation tensor (rotation) 15

Unit base vector e, 42

Vector of constants (p = 1, 2, 3, 4) a 37

Zero vector 0 25



Appendix C: Transformation equations

The equations transformation the elasticity coefficients in cylindrical

coordinates (Ck,') to Cartesian coordinates (CkJ) are

C11 = CC1111+2CSC1122'+4CSC1212'+SC2222'

C2222 = SC1113'+2CSC1122+4CSC1212'+CC2222'

C3333 = C3333

2,-.
'-'2323 - °O '-'1313 +._Ø ''2323

C1313 =CO2C1313+S02C2323

C1212 = CS[C1111'-2C122'+C2222'-2C1212']+[C +S]C1212'

C122 =c02s02c1111'+c:c1122' 4CSØ2C1212 +S0 C2211'+CSC2222'

C1133 =CO2C1133+S02C2233

C1 123 =0

C1113 =0

C1112
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'-'2233

C2223

C2213

C2212

C3323

C3313

C3312

C2313

C2312

C1312

- c-,2,-,- -'O '-'1 33 +L,Ø '-'2233

= 0

=0

=

=0

=0

= -00 S0 [C3311'-C3322']

= -00 S0 [C1313'-C2323]

=0

=0

(C2.1 1)



The equations transformation the compliance coefficients in cylindrical

coordinates (Sk1') to Cartesian coordinates (S1JkI) are
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S1111

C.

'2222

S3333

'2323

'1313

S1212

S1122

'1133

S1123

S1113

S1112

2233

2223

2213

2212

3323

3313

3312

2313

2312

1312

=

, A1'2C'2C' ,-'4c.
'B1111 +L0)2222

= S3333'

= 'O 1313 +L 2323

= '-B 1313 +) 2323

=CS[S1111'-2S1122'+S2222-2S1212'}+[C +S]S

, ,-,4c. A,-'2c.2c.

= '-01133 +)O)2233

=0

=0

2 2 2 , 2 2 2= -C8S8[C8S1111 -C8S22 -2C0S22 +2S8S1212 +S0S1122 -S8S

,

B1133 +LB)2233

= 0

= 0

= 0

=0

= -0O50 [S3311'-S3322'1

= -C858 [S1313'-S2323']

0

0

]

(C2.12)
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Appendix D: Constraints on the strains resulting from the generalized plane
strain problem

Recall the three-dimensional displacement field u = u(x1 , x2, x3), where

u E C' (B) r' C2 (B). Since the displacements have continuous second partial

derivatives with respect to the coordinates, the order that the derivatives are taken

may be interchanged for derivatives up to the third partial derivative. Therefore,

given the three dimensional displacement field u u(x1, X2, x3), the strain

compatibility equations are

E11(u),23 = E23(u),11+E13(u),21 +E12(u),13

E22 (u),31 = E31 (u),22 +E12 (u),23+E23(u),2

E33(u),2 = E12(u),33+E23(u),13+E13(u),23
D1)

2E12 (u),12 = E1 (u),22 +E22 (u),11

2E23(u),23 =

2E3(u),13 = E33(u),11+E11(u),33 (Fimg 1994, pg 149)

Substituting the strain equations (3.29) into (Dl) results in

0 = 2I1,121+0
2

0

0=0+0+0 (D2)

[fl7,212+V2,112 I = [fl7,122+:V2,211 I

0=0+0

0=0+0



Equation (D2) indicates that the displacement vector W = W(x1 , x) will

satisfy the strain compatibility equations (Dl) when represented by any function

such that W e C' (B) n C2 (B) Therefore, it is possible to consider W as the

following second-degree polynomial in two variables (xi and x2),

=ax + 131x1x2 +Ax

W =a2x + 132x1x2 + (D3)

W = a3x2 + 133x1x2 +

Substituting (D3) into the strains from (3.29) and recalling (3.31) results in

E11(u)=E11(W) =

E22(u)=E22(W) =

E33(u)=ax+a3 =

E23(u) = --a4x1 + E23(W) =

E13(u) ---a4x2 + E13(W) =

E12=E12(W) =

E11(W)=2a1x1 +1x2

E22(W)= 2x1 +2?2x2

E33(W)=O

1
E23(W)={133x1 +2?3x2]

2

1
E13(W) = {2a3x1 + 3x2]

2

E12(W) =1{131x2 +2?1x2 +2a2x1 + 132x2]

Equation (D4) can be simplified by combining coefficients, then

E11(W) =a11x1 + 11x2

E22(W) =a22x1 + 1322x2

E33(W) a33x1 + 33x2

E23(W) =a23x1 + 23x2

E13(W) =a13x1 + 13x2

E12(W) =a12x1 + 12x2

(D5)
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(D4)
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Writing (D5) more compactly,

E(W) =ax1 + 13x2 (a = 1333 = 0) (D6)

Thus, the strains that are functions of W can be written as linear functions of x1 and

X2.

Recall the displacement equations (3.50), and the definition of the infinitesimal

strain tensor. Then the strains can be written as

1E(u) = [u.,1+u,21

E(u) =

However, since u E C'(B) n C2(B) and the a are constant, the derivatives may be

moved inside the summations.

Eq(U) = +

E(u) = ia{[u], + [u], } (D7)

E(u) !ap2Eu(u) =

Recognize from (3.46) that W1 occurs as a linear term in u,, therefore, W1 may

be separated from the summation in (D7). Equating the components of (D7) that

are functions of W to (D6) results in

E(W) =ax1 + 13x2 = aE(W) (D8)



(D9)
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Now since the a and J3 are still arbitrary constants they can be separated into

four auxiliary problems that correspond to the R.H.S. of (D8), that is

4 4

and p..=Va p)
p U

p=1 p=I

Substitute (D9) into (D8) and combine under a single summation,

+ - = 0 (D1O)

The coefficients ar and are still arbitrary except for the requirement

(D9). Therefore, it is possible to select and so that

+ x2 = Er(W) (Dli)

Equation (Dli) shows that E(W) may be represented as linear functions ofx1

and X2. Equation (Dli) provides six constraint equations for the strains resulting

from the generalized plane strain problems.




