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ON THE RATIONAL APPROXIMATIONS TO THE IDEAL
DELAY FUNCTION AND THEIR TIME-

DOMAIN OPTIMIZATION

I. INTRODUCTION

A delay network is a system in which the output is a replica of

the input with a certain amount of time delay. The need for such time-

delay networks often arises in applications where two or more signal

paths are used to transmit information to a summing point and the rela-

tive time position or difference between the two signals is of interest.

In order to correct for this time difference or to introduce some time

delay in one of the signals, a delay network is inserted in the pertinent

path of the signal.

Ideal delay characteristics cannot be obtained from a lumped-

constant network, but may be obtained from a transmission line. This

is because the ideal delay function e -Ts (s = Laplace transform vari-

able, T = delay time) is a transcendental function of s. For practical

reasons, however, a delay network with a large amount of delay time

is usually synthesized with lumped-constant elements. Since network

functions of lumped-constant networks are rational functions of s,

the design of lumped-constant delay networks requires, first of all,

a physically realizable rational function which approximates the ideal

delay function in the "best" way.
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The main purpose of this paper is twofold, first, to make a de-

tailed study of two new classes of rational approximations to an ideal

delay function, and second, to optimize rational delay functions to

achieve a minimum rise time-to-delay time ratio (hereafter called

rise-to-delay ratio) in the step response within certain constraints.

Khovanskii describes, in his book [10], two kinds of continued

fraction expansions of the exponential function ex. As far as the

author knows, these expansions have not been studied in the literature

in connection with rational approximations to the ideal delay function.

In this paper the physical realizability of these expansions by lumped-

constant network elements will be examined, and their frequency- and

time-domain characteristics will be investigated in detail. Compari-

sons with other approximating functions will also be made.

Time-domain optimization of delay functions is a relatively

recent subject, and several authors have used different criteria on

the optimum delay function [8, 19]. In this paper, employing the con-

ventional definitions of the rise and delay times of a. step response and

starting with the Storch approximating functions for the all-pole func-

tions, we will attempt to achieve a minimum rise-to-delay ratio in

the step response 'within specified tolerances of overshoot and under-

shoot by adjusting the pole and zero positions of the function in the

complex s-plane.
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Although a delay network is usually synthesized by lossless

elements, a more realistic approach to the pertinent problem would

take into consideration the loss of the reactive elements in the realized

network. Therefore, in this paper, an attempt will also be made to

minimize the rise-to-delay ratio by adjusting the element values of

lossy LC ladder delay networks. Fletcher-Powell's method is em-

ployed as the minimization technique in both optimizations.

In Chapter II, physical realizability of transfer functions of

passive networks is presented. Frequency-domain and time-domain

characteristics of the ideal delay function are also given together with

some time-domain definitions.

In Chapter III, two classes of new rational approximations of the

normalized ideal delay function e
-5 based on Khovanskii's continued

fraction expansion of ex are studied. The physical realizability of

these approximating functions (all-pass and non-all-pass functions)

are examined, and their frequency- and time-domain characteristics

are investigated in detail. Other rational approximations of e s by

Storch, Budak and Allemendou are briefly described, and comparisons

between these and Khovanskii approximations are made.

In Chapter IV, optimization of rational delay functions is con-

sidered. In the first part, real parts and imaginary parts of zeros

and poles are used as variables to optimize the rise-to-delay ratio of

a step response under the constraints of 2% and 5% overshoot. In the
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second part, element values of a lossy LC ladder network are used as

variables.

In Chapter V, realization of Khovanskii functions by passive and

active networks are illustrated by taking a third order function as an

example.
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II. APPROXIMATIONS AND SOME
TIME-DOMAIN DEFINITIONS

In this chapter, physical realizability of transfer functions of

passive networks is presented. Frequency- and time-domain character-

istics of the ideal delay functions are also given together with some

time-domain definitions.

In general, network synthesis procedure consists of two steps.

First, a mathematical function must be determined which is physically

realizable and approximates, within specified tolerances, the desired

network characteristics; second, a design procedure must follow which

starts with the above mathematical function and leads to network configu-

rations together with element values. The first step is called the ap-

proximation problem, and the second step is called the realization

problem.

Approximations by rational functions are especially important in

network theory because driving-point and transfer functions of a linear

lumped network are rational functions (ratio of two polynomials) of s,

the complex frequency, with real coefficients.

2. 1 Physical Realizability

As mentioned above, the approximating function must be physi-

cally realizable. The necessary and sufficient conditions for a function

of s to be a transfer function of a lumped-constant network will be

described in the following.
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The transfer function of a lumped-constant network must be, first

of all, a ratio of two polynomials of s with real coefficients. The

coefficients of the denominator polynomial must be positive and have

no missing terms, except for even or odd polynomials, while the coef-

ficients of the numerator polynomial may be negative and/or may have

missing terms. The degree of the numerator polynomial must be less

than or equal to that of the denominator polynomial. Poles of the trans-

fer function must be in the left half of the s-plane with any multiplicity,

but they must be simple on the imaginary axis. On the other hand,

zeros of the transfer function may be anywhere in the s-plane. Pos.,

sible zero and pole locations of the transfer function are shown in

Figure 2.1.

j(4)
s-plane

Figure 2.1. Pole and zero locations of a physi-
cally realizable network.



Once a transfer function H(s) is chosen, the step response

r(t) is easily calculated by

r(t) =

2. 2 Time-delay Function

Suppose a system function is given by

H(s) = ke-sT

7

(2. 1)

where k is a positive real constant. Then the frequency response of

the system can be expressed as

H(jw) = ke-jwT (2. 2)

so that the amplitude response A(w) is a constant k, and the phase

response

9(co) = (2. 3)

is linear in w. The response of such a system to an excitation denoted

by the Laplace transform pair [ e(t), E(s)1 is

R.( s) = kE(s)e-sT (2.4)

so that the inverse Laplace transform r(t) can be written as

r(t) = ke(t- T) (2.5)

We see that the response r(t) is simply the excitation delayed

by a time T and multiplied by a constant. Thus no signal distortion



results from transmission through the system described by Equation

(2. 1). We note further that the delay time T can be obtained by dif-

ferentiating the phase response in Equation (2. 3) with respect to (0;

that is

delay = - d0((,)) = T
u)

8

(2.6)

The amplitude, phase and delay characteristics of Equation (2.1)

are given in Figure 2. 2 (a), (b) and (c) respectively.

A(w) ideal

actual

(a) (b)

T( co)

(c)

Figure 2. 2. Amplitude, phase and delay of ideal and
actual delay functions (a) Amplitude, (b)
Phase (c) Delay.
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A. system with linear phase and constant amplitude is obviously

desirable from a pulse transmission viewpoint. However, the system

function H(s) in Equation (2. 1) is realizable only by a lossless trans-

mission line called a delay line. If we require that the delay network

be made up of lumped-constant elements, then we must approximate

Equation (2. 1) by a rational function of s. This function must satisfy

the constraints of a physically realizable network given in Section 2.1.

Amplitude, phase and delay characteristics of actual delay networks

are also given in Figure 2. 2.

2. 3 Some Time-domain Definitions

In time-domain synthesis, we are interested in determining a

network whose time response to a given input is specified. Several

definitions employed in this paper to describe a step response are

given below:

2. 3.1 Rise time Tr . The rise time of a step response is de-

fined as the time required for the step response to rise from 10% to

90% of its final value.

2. 3. 2 Delay time Td. This is a measure of the time lapse be-

tween the time a unit step input is applied and the time the step re-

sponse reaches 50% of its final value.

2. 3. 3 Rise-to-delay ratio. This is the ratio between the two

quantities described in Sections 2. 3.1 and 2. 3. 2. This quantity is
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independent of any scaling in the time or frequency domain, and is

usually the most significant quantity in measuring the quality of a delay

network,

2. 3. 4 Overshoot. The overshoot of a step response is defined

as the difference between the peak value above the final value and the

final value of the step response, expressed as a percentage of the

final value.

r(t)

1, 0

0. 9

0, 7

0, 5

0, 3

0, 1

ideal response
overshoot

1,0
Tr

undershoot

actual response

Figure 2, 3. Time-delay characteristics of ideal
and actual delay responses,

t
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2.3.5 Undershoot. The undershoot of a step response is de-

fined as the difference between the peak value below the initial value

and the initial value of the step response, expressed as a percentage

of its final value.

The definitions given above are illustrated in Figure 2.3. For

an ideal delay network, the rise time is equal to zero (therefore its

rise-to-delay ratio is equal to zero), without any overshoot or under-

shoot. However, actual delay networks have nonzero rise-to-delay

ratios, with some overshoot and undershoot. Then within some speci-

fied tolerances of overshoot and undershoot, the qualities of these

networks can be compared by their rise-to-delay ratios.

All calculations of frequency and time response were carried

out by the digital computer CDC 3300 at OSU Computer Center. Brief

descriptions of some main subroutines are given in Appendices A and

B.
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III. RATIONAL APPROXIMATIONS TO e-8

Khovanskii, in his book [101 gives a convergent continued frac-

tion expansion of ex. Two series of rational functions result from

this expansion truncated at a finite term. These functions have not

been studied in the literature in connection with the rational approxi-

mations to the ideal delay function.

In this chapter, we will examine the physical realizability and

other properties of these two new classes of rational approximations

in both the frequency domain and the time domain. Comparisons with

other rational approximations will also be made.

3.1 Khovanskii's Continued Fraction Expansion of ex

The continued fraction expansion of ex is given by Khovanskii

[10} in the form

x 1 x x x x x x x
1 - 1 + 2 - 3 + 2 - 5 + + 2 - 2n-1 + (3. 1)

which is convergent throughout the whole of the finite complex x-plane.

With x replaced by -s, the normalized delay function is obtained:

e-s lssss s s s
1 + 1 - 2 + 3 - 2 + 5 - - 2 + 2n-1- (3. 2)

th .thTruncating Equation (3. 2) at the . term, we get an convergent

-s 1 s s s s s 2 se
1

2- 3- +s- +i72 for i = odd (3.3)
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-s 1 s s s s s s se for i = even1 +1 - 2+ 3- 5 - - 2 + i-1
(3. 4)

which approximates e-s in the vicinity of s = 0. The convergent of

Equation (3. 3) can be rewritten as

where

-s 1 1e =
Q3 1

P-
3

Q3
2 - s
2 + s

P5 12 - 6s + s 2

Q5 12 + 6s + s2

k+1 m
n (k-i+2)(k+i-1)] sk-m+1

Q,(s) = sk + i =2
1

m=2

P.(s) = Q.(

(m-1)!

(3. 5)

(3. 6)

1-k = i2
, i=odd

The convergent of Equation (3. 4) can be rewritten as

-s
e

2 1

Q2 1 + s

(3. 7)



where

-s P4 6-2se
2Q4 6+4s+s

6 60- 24s +3s2

.
Q6

60+36 s +9 s2+s
3

Q.
1

m
k TI [k- j +l]( -s

j=1P.(s)
= 1 +

1

m=1 II [2k -j +2] m!

m
k+1 R [k -j-1-2) sm

Qi(s) = 1 + j=1
m

m

m=1 ti [(k-j+2)] m!
j=1

14

(3. 8)

(3. 9)

i-2k - i=even

(3. 10)

The two series of rational approximations to e s given in

Equations (3. 5) and (3, 8) are physically realizable as transfer functions

of lumped-constant networks. We will prove this by showing that the

denominators of these functions are Hurwitz, or they have left-half-

plane poles only.
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?.. 2 Physical Realizability of Kohvanskii Rational Approximations
to e -s

Let Q.(s) be the denominator polynomial of the Khovanskii func-i

tion truncated at the ith term, and let us split it into two parts:

Q.(s) = E.(s) + 0.(s) (3. 11)

swhereE.( ) and 0.(s) are the even and odd parts. The necessary

and sufficient conditon that Q.(s) be a Hurwitz polynomial is simply

that all coefficients of s or 1 in the continued fraction expansion of
E.(s)

As an example,

term:

Q
9

(s) =

1

TOs

consider the

1680 + 840s + 180s2

1

Khovanskil function

+ 20s 3 + s 4

be positive.0.(s)

truncated at the 9th

E (s)
10 10 (s)

9 69 s + 1587 1

8680
s +

343
966 s

Since all coefficients are positive, Q
9(s) is a Hurwitz polynomial. In

the same manner we can prove that all denominators of the Khovanskii

functions are Hurwitz. Hence they are all physically realizable trans-

fer functions.

Incidentally, all zeros of the Khovanskii rational approximations

are located in the right half of the complex s- plane.
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3. 3 Frequency- and Time-domain Characteristics of Khovanskii
Rational Approximations

The series of functions expressed in Equation (3.5) are all-pass

functions, while the series of functions expressed in Equation (3. 8) are

not. In this section, we will study the frequency- and time-domain

characteristics of these functions in detail.

3. 3. 1 All-pass Functions

The coefficients of the denominators of this series of functions

are given in Table 3.1. All coefficients are integer, but some of the

coefficients greater than 8 digits are given in the E-field. The coeffi-

cients of the numerators are the same as those of the denominators,

except the signs in the odd terms. The poles of these functions are

given in Table 3.2 up to the 6th decimal point.

In this series of functions, zeros and poles are symmetrical with

respect to the imaginary axis of the complex s-plane. The magnitude

of this kind of function is unity for, all frequencies and its phase angle

is twice that of P (jw). The delay characteristics of all-pass functions

are shown in Figure 3. 1; it is seen that the delay characteristics im-

prove as n increases. The step response is given in Figure 3.2. In

this case, since the degree of the numerator and the denominator are

the same, the step response does not start at the origin; instead, it

starts at +1 or -1. Hence this kind of function is not suitable for
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Table 3.1. Denominator coefficients of Khovanskii all-pass coefficients.

n Denominator Coefficients Starting with Constant Term

2

3

12 6

120 60 12 1

4 1680 840 180 20 1

5 30240 15120 3360 420 30

6 665280 332640 75600 10080 840

7 17297280 8648640 1995840 277200 25200 1512

56 1

8 5,1891840E08 2,5945920E08 60560480 8648640 831600

55440 2520 72 1



0

4.

o
0 n=-.4

A n=--5

co in radian

.Figure 3. 1. The delay characteristics of Khovanskii all-pass functions.



0.8 1.0 1.2
t in second

A n=3

o n=4

o n=5

1. 4

Figure 3 2. The step responses of Khovanskii all-pass functions.
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Table 3. 2. Pole locations of Khovanskii all-pass functions.

Pole Location Pole Location

-x -1-br -x

1 2.000000 6 8. 496719 1.735019

7.471417 5.252545
2 3.000000 1, 732051 5, 031864 8. 985346

3 4.644371 7 9.943574
3,677815 3.508762 9.516581 3.478572

8.140278 7. 034348
4 5.792421 1. 734468 5.371354 10.841388

4.207579 5.314836

8 11.850754 3.555235
5 7.293477 9.739363 3.892317

6.703913 3.485323 8. 740017 9.149211
4.649349 7.142046 5, 669866 12.662265

pulse transmission, although the amplitude characteristics are ideal.

The correlation between the frequency response and the step response

is not apparent for this sort of function.

3. 3. 2 Non-all-pass Functions

The functions of this series are even convergents of the Khovanskii

function. Their numerator and denominator coefficients are calcu-

lated up to degree 12 by Equations (3. 9) and (3. 10), and are given in

Tables 3. 3 and 3.4. The zeros and poles of this series of functions

up to degree 12 are given in Table 3.5. This class of functions has

either one negative real pole or one positive real zero; all other zeros

and poles are complex.
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Table 3-3. Numerator coefficients of Khovanskii non-all-pass functions.

n Numerator Coefficients Staring with Constant Term

2

3

6

60 -24 3

4 840 -360 60 -4

5 15120 -6720 1260 -120 5

6 332640 -151200 30240 -3360 210 -6

7 8648640 -.3991680 831600 -100800 7560 -336
7

8 2. 5945920E08 -1. 2108096E08 25945920 -3326400 277200
-15120 504 -8

9 8.8216128E09 - 4,1513472E09 9.0810720E08 1,2108096E08
10810800 -665280 27720 -720

10 3.3522128E11 - 1.5878903E11 3. 5286451E10 -4. 8432384E09
4. 5405360E08 -30270240 1441440 -47520 990
-10

11 1.4079294E13 6.7044257E12 1.5084957E12 2.1171870E11
2.0583763E10 - 1.4529715E09 75675600 -2882880 77220
-1320 11

12 6.4764752E14 3.0974446E14 7.0396470E13 - 1.0056638E13
1. 0056638E12 -7, 4101547E10 4. 1167526E09 -1. 7297280E08
5405400 -120120 1716 -12
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Table 3-4. Denominator coefficients of Khovanskii non-all-pass functions.

n Denominator Coefficients Starting with Constant Terms

2

3

6 4

60 36

1

9 1

4 840 480 120 16 1

5 15120 8400 2100 300 25 1

6 332640 181440 45360 6720 630 36 1

7 8648640 4656960 1164240 176400 17640 1176

49 1

8 2.5945920E08 1.3837824E08 34594560 5322400 554400

40320 2016 64

9 8.8216128E09 4.6702656E09 1.1675664E09 1.8162144E08

19459440 1496880 83160 3240 81 1

10 3.3522128E11 1.7643225E11 4.4108064E10 6.9189120E09

7.5675600E08 60540480 3603600 158400 4950

100 1

11 1.4079294E13 7.3748683E12 1.8437170E12 2.9111322E11

3,2345913E10 2.6637811E09 1.6648632E08 7927920

283140 7260 121 1

12 6.4764752E14 3.3790305E14 8.4475764E13 1,3408851E13

1.5084957E12 1.2703122E11 8.2335052E09 4.1513472E08

16216200 480480 10296 144 1
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Table 3-5. Zero and pole locations of Khovanskii non-all-pass function.

n

Zero Locations Pole Locations

+x ±iY +x +iY

1 -1.000000

2 3.000000 -2.000000 +1.414214

3 4.000000 +2.000000 -3.637834 -

-2.681083 +3.050430

4 5.648486 - -4.787193 +1.567476
4.675757 +3.913490 -3.212807 ;4.773087

5 6.796057 +1.886649 -6.286705 -

5.203941 +5.805857 -5.700953 +3.210266

-3.655694 ;6,543737

6 8.298523 -7.490638 +1.621502
7.706097 +3.740053 -6.470515 +4.900121
5.644642 +7.693546 -4.038848 +8.345600

7 9.501455 +1.841500 -8.936833 -

8.472096 +5.582570 -8.511835 +3.281014
6.026449 +9.582063 -7.141055 +6.623046

-4.378694 +10.169693

8 10.949006 - -10.169446 +1.649202
10.820395 +3.665410 -9.406371 +4.969217
9.139631 +7.422677 -7.738688 +8.370879
6.365471 +1.1.473438 -4.685495 +12.010579

9 12.180999 +1.817155 -11.587351
11.412402 +5.482757 -11.253270 +3.321341
9.734818 +9.264046 -10.206883 +6.680141
6.671780 +13.368387 -8.280042 +10.138360

-4.966129 +13.864686

10 13.599697 - -12.837676 +1.666062
13.263326 +3.623432 -12.226132 +5.012721
12.210485 +7.298670 -10.934303 ;8.409673
10.274200 +11.108354 -8.776435 +11.921854
6.952141 +15.267079 -5.225453 +15.729529

11 14.849583 +1.802069 -14.238485
14.234390 +5.425223 -13.962282 +3.347519
12.935682 +9.115793 -13.112562 +6.720463
10.769007 +12.956338 -11.602918 +10.154856
7.211335 +17,169447 -9.235964 +13.718720

-5,467034 +17.603299

12 16.250690 - -15.499798 +1.679273
15.973326 +3.596240 -14.990690 75.041570
15,118827 +7,226502 -13.927779 +8.442864
13.602377 +10.935240 -12.223616 +11.913327

11.227248 +14.808344 -9.664521 +15.526981
7.452885 +19.075318 -5.693584 +19.484631



Table 3.6. Time-response characteristics of Khovanskii non-all-pass functions.

n
10%

Time Response
90%

Time Response
10-90%

Rise Time
50%

Delay Time
Rise-to- Delay

Ratio
Overshoot Undershoot

2 0.548 1.483 0.935 0.891 1.049 1.3 -17.9

3 0.709 1.293 0.584 0.945 0.618 2.4 -17.6

4 0.788 1.209 0.422 0.966 0.437 3.1 -16.9

5 0.834 I. 163 0.329 0.976 0.337 3.6 -16.1

6 0.863 1.133 0.270 0.982 0,275 4.0 -15,5

7 0.884 1.112 0.228 0.986 0.208 4.3 -15.0

8 0.900 1.097 0,197 0.989 0,199 4.6 -14.6

9 0,912 1.086 0.174 0.991 0.175 4.9 -14.2

10 0.921 1.076 0.155 0,992 0.156 5,1 -13.9

11 0.929 1.069 0.140 0.993 0.141 5.2 -13.6

12 0.935 1.063 0.128 0.994 0.129 S. 4 -13.4
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Figure 3. 11. The step responses of Khovanskii non- all-pass functions.
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The amplitude and delay characteristics of this series of func-

tions from n = 2 to n = 8 are given in Figure 3. 3 to Figure 3. 5 and

in Figure 3.6 to Figure 3. 8, respectively. From these curves, it is

seen that both characteristics improve as the order of the function in-

creases.

The step responses are shown in Figure 3.9 to Figure 3.11.

They show overshoot and undershoot; they oscillate one cycle after

rising and (n-1) half cycles before rising (n=the degree of the func-

tion). As the degree of the function increases the undershoot is slight-

ly decreased while the overshoot is slightly increased. The rise-to-

delay ratio improves as the degree of the function increases. The

10% to 90% rise time, 50% delay time, rise-to-delay ratio, under-

shoot, and overshoot up to degree 12 are given in Table 3.6.

Other delay functions are briefly reviewed in the follo'wing.

3.4 Rational Approximation of e s by Storch

Storch's method [14] of approximating the ideal delay function

by a rational function starts with rewriting e-s as

T(s) = e-s 1

cosh(s) + sinh(s)

1/sinh(s)
coth(s)+1

(3. 12)



Expanding coth(s) into a continued fraction, we get

coth(s) =
1

+
s 3 1

s 5 1

s 7 1

s 9
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(3. 13)

If the continued fraction is truncated in n terms, then T (s) can be

written as

k
0Tn(s) = (3. 14)

where k0 is chosen such that T (0) = 1 and Bn( s ) is a Bessel poly-

nomial of order n defined by the formula:

Bn(s) =

k=

(2n-k)! sk
n-k

2 k! (n-k)!
(3. 15)

The coefficients of higher degree Bessel polynomials are given

in [18, p. 500], and an extensive table of roots of Bessel polynomials

is given in [13], which shows that all roots are in the left half plane.

3.5 Rational Approximation of e-s by Budak

In this approximation [3], a parameter k is introduced to split

e-s into two parts such that
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-ks
e-s e 0 <k <1 (3. 16)

e-(k-1 )s '

-ks and e- (k -1and then e are approximated independently by

Storch functions mentioned in the previous section. Thus the resulting

approximation of e-s will have Bessel polynomials both in the numer

ator and in the denominator . The poles of the e-(k-l)s approximant will be

the zeros of the final approximant, while the poles of the e
ks approx-

imant will be its poles. For realizability, the degree of the e-(k-1 )s

approximant should be less than the degree of the e-ks approximant.

The amplitude, phase and time response characteristics are

given in [3]. As k decreases, the frequency-domain characteristics

improve, while the step response shows more overshoot and undershoot.

For comparison with Khovanskii approximations, the step responses

for n = 3 with k = 0.6 and for n = 5 with k = 0. 55 are plotted in

Figures 3.16 and 3.17, respectively; these have about the same under-

shoot as the corresponding Khovanskii non-all-pass function.

3.6 Rational Approximation of e-s by Allemendou

This approximation [1] is obtained by the equation

e-s
2f(s )

Bn( s ) (3.17)

where Bn(s) is a Bessel polynomial of degree n defined by Equation



(3. 15) and
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co co
2 4

f(0,2) = B0[1 + 2(2n-1 + ..-
222!(2n.-1)(2n-3)

(3. 18)
(02r

2
rr!

(2n-1)(2n-3) (2n-2r+1)

where B
0

= 1. 3. 5 (2n-1) and 0)2 = -s 2.

When n is an odd integer, the degree of the numerator may not

exceed n-1 and when n is an even integer, the degree of the numer-

ator may not exceed n. Therefore, for the same polynomial Bn(s)

of degree n, any one of the following polynomials may be chosen as

the polynomial f(s 2):

2

fn, 0(°) )

2
fn,

1
(0)2 ) = B [1 + 'A) I0 2(2n-1)

2 w2 w44fn,
2(c,)

) = B0[1 +,
2(2n-1) + 8(2n-1)(2n-3)

(3. 19)

The best approximation of the delay function in the case of an

odd n is given by

e

2
-s fn, (n-1)/2 (s )

Bn(s) (3. 20)



and for an even n is given by

(s2)
e
-s n, n/2 (s

n

3.7 Comparisons of the Four Functions

38

(3.21)

In this section, we will compare the frequency- and time-domain

characteristics of the Khovanskii non-all-pass function, the Storch

function, the Budak function and the Allemendou function. The ampli-

tude response and the delay response for orders 3 and 5, respectively,

are given in Figures 3. 12, 3.13, and Figures 3.14, 3. 15. The step

responses of the various functions are given in Figures 3.16 and 3.17,

and numerical values about their step responses are given in Tables

3. 7 and 3. 8

The following observations are made:

1. Both of the amplitude and delay characteristics of the Khovan-

skil non-all-pass function are superior to those of the Allemendou

function or of the Storch function.

2. For the same amount of undershoot and for the same order

of the function, the Khovanskii non-all-pass function shows a better

rise-to-delay ratio than the Budak function, but has slightly more

overshoot, while in the frequency domain, the former gives better

amplitude and delay characteristics at low frequencies. Incidentally,

the frequency characteristics of the Budak function improve, as the
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parameter k decreases; the step response, however, deteriorates

increasingly at the same time.

3. Although the Storch function has no undershoot and very little

overshoot, the rise-to-delay ratio is the worst.

One may conclude that, as a whole, the Khovanskii non-all-pass

function gives the best characteristics in the frequency and time do-

mains within the tolerances of overshoot and undershoot obtained in

these functions.
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Table 3. 7. Time domain characteristics of four functions for n = 3.

Function
10%

Response
90%

Response
10%-90%

Rise Time
50%

Delay Time
R ise- to- Delay

Ratio
Overshoot Undershoot

Khovanskii
(non-all-pass)

Storch

Budak (k = 0.6)

Allemendou

0. 709

0. 424

0, 697

0. 563

1.293

1, 666

1. 310

1. 472

0. 584

1.242

0.613

0. 908

0.945

0.957

0.935

0.921

0.618

1. 298

0.655

0. 985

2.4

0.9

1. 1

2. 3

-17.6

--
-18.2

-14.6

Table 3. 8. Time domain characteristics of four functions for n = 5.

Function
10%

Response
90%

Response
10%-90%

Rise Time
50%

Delay Time
Rise -to -Delay

Ratio
Overshoot

%

Undershoot
%

Khovanskii
(non-all-pass)

Storch

Budak (0.55)

Allemendou

0. 834

0. 562

0.828

0. 722

1. 163

1.469

1. 171

1.285

0.329

0, 907

0.343

0. 563

0.976

0.989

0.971

0. 963

0.337

0.917

0.353

0. 585

3.6

0. 8

2. 1

3. 5

-16. 1

-16. 8

-13. 9
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IV. OPTIMIZATION OF A DELAY FUNCTION

Although all the approximating functions considered in the pre-

vious chapters are derived systematically, they may not show the

"best" responses in the frequency or time domain. In other words,

there is still some room to adjust the coefficients or poles and zeros

of the delay functions in order to improve the responses. The so-

called network optimization is concerned with achieving the most de-

sirable network characteristics by adjusting some parameters of the

network functions or network elements under certain constraints.

Optimization can be performed either in the frequency domain or

in the time domain, or in both domains. Since it is not easy to corre-

late the frequency response with the time response, and we are, in

most cases, interested in the time response for the applications of

delay networks, optimization of the step response rather than of the

frequency response will be considered in this paper.

First, optimization of the all-pole rational delay function by ad-

justing the pole locations will be considered in order to obtain the mini-

mum rise-to-delay ratio under specified tolerances of overshoot and

undershoot. Then, optimization of a lossy delay ladder network by

adjusting the element values will be considered.

Before going into the specific optimization, we will describe

some basic techniques of optimization procedure.
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4. 1 Error Criterion

In any optimization problem, the error criteria must be, first of

all, defined. The error between the current response and the desired

response can be defined in many ways depending on the specific prob-

lem.

In this paper the error of the step response will be defined as

the sum of the rise-to-delay ratio and the magnitude of the response

over and under some specified tolerances of overshoot and undershoot:

where

Tr
F = w E

o
f w

Td ui
i =1

(4. 1)

Eo. and Eu, are the overshoot and undershoot errors, re-
f 1

spectively, exceeding the specified tolerances, and evaluated at dis-

crete time points as shown in Figure 4. 1; w1 and w2 are weighing

functions.

The error defined in Equation (4. 1) is a function of the poles and

zeros of the network function, or a function of the element values of

the actual network. We want to minimize this error by adjusting the

independent variables.

The cut and try method should not be employed for finding the

minimum error condition, since it is time-consuming and the true mini-

mumpoint usually cannot be found in this way. The most widely used
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E
u.

Figure 4.1. A delay network with overshoot and undershoot
restrictions.
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minimization method is the gradient method, in which the parameter

adjustment follows the negative gradient of the error function.

4. 2 Minimization Procedure

The Fletcher-Powell method of minimization [6] used in this pa-

per is a variation of the gradient method. Only first derivatives of

the function to be minimized are required, yet the technique has

"second order" convergence; that is, it minimizes a positive-definite

quadratic form of n variables in n iterations. The method has

found wide acceptance and is generally regarded as the most powerful

general procedure known at the present time for finding the local

minimum in the unconstrained minimization problems.

Central to the method is a symmetric, positive-definite matrix

H. , which is updated at each iteration, and which determines the

current direction of motion S. by multiplying the current gradient

vector. An iteration is described as follows:

H = any positive definite matrix

F(x.) = the error function to be minimized1
hthe set of adjusted variables at .t iteration

S . = m H V F ( x i) (4.2)1
Choose a. so as to minimize F(x . + u.S.). Denoting the minimizing1 1 1-1
value of a, as aA . , define

1 1



= a.S

= V F(x.
1+1

) - V F( x .)1

A.
1

d

U.DT1-1

H.d.d.T H.1-1-1 1
d . H. d .

(4. 5)

(4. 6)

Note that the numerators of A. and B. are both matrices1 1
while the denominators are scalars. Now let

H. = H. + A + B . (4.7)1+1
Fletcher and Powell have proved the following:

1. The matrix H. i s positive-definite for all i, As a con--1
sequence of this fact, the method will always converge, since

da. "I" 2-ci a = 0
-VF (xi)HiVF(x.) < 0 (4.8)

That is, the function is initially decreasing along the direction S
1

so that the function can be decreased at each iteration by minimizing

down S

2. When this method is applied to the quadratic

F(x ) = C
Tx + x TA x (4. 9)

where A is a real symmetric matrix and C is a column vector,

we get the following results:
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a. The minimum is reached in n steps.

b. The matrix H. converges to the inverse of the matrix of

second partial derivatives of the quadratic after n iterations,

that is

H = A -1n (4.10)

Subroutine MIN in Appendix B implements this technique.

4. 3 One-Dimension Minimization

Each iteration of the Fletcher-Powell method requires minimi-

zation of the one dimensional function F(x. a.S .), that is, the calcu--1 1-1
lation of A

. The method of successive quadratic polynomial fitting

[5, p. 190] is used in this paper.

The computer program for this technique is given in Subroutine

QUAD in Appendix B.

4. 4 Optimization of a Rational Delay Function

In the first optimization problem, the real parts and imaginary

parts of zeros and poles of a rational function are used as independent

variables to minimize the error defined in Equation (4. 1) under 2%

and 5% overshooting tolerances,

The Storch delay functions are used as the starting functions.

The flow chart of the main program is given in Figure 4.2. After 20
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/Read in poles
of Storch's function

time
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time response, Tr/ Td

Evaluate the
current error

Call subroutine MIN
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Change values
of variables.

NO

YES

Print out poles,
/ime response, Tr/

d
T/

of optimum function

( END

Figure 4.2. Flow chart of optimization with poles
as variables.
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Table 4. 1. Overshoot and rise-to-delay ratio of Starch and optimum functions.

n
% Overshoot
Restriction

Overshoot
%

Tr
% Improvement

ra
T
T-

d RemarksTd

3 0. 9 1, 298 Starting function

3 2 2.7 1. 196 7.8 Optimum (2%)

3 5 5.4 1. 124 13.4 Optimum (5%)

4 0. 8 1.063

4 2 2.1 0.931 12.5

4 5 4.9 0. 862 19.0

5 0, 8 0.917

5 2 2.2 0.871 5.0

5 5 5.2 0.759 17.2

6 0.6 0. 818

6 2 2,7 0.727 11.1

6 5 5.0 0.708 13.6

7 0.4 0.743

7 2 3.2 0.652 12.3

7 5 5.4 0.635 14.5

8 0.3 0.687

8 2 2.5 0.640 6.8

8 5 5.0 0.604 12.0

9 0.2 0.641

9 2 2. 1 O. 595 7.2

9 5 5.0 0.562 12.3

10 0. 1 0.604

10 2 2.3 0.557 7.6

10 5 5.3 0.524 13.2
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Table 4.2. Pole locations of Storch and optimum functions.

n
Storch Functions

OPTIMUM FUNCTIONS
2% Overshoot Restriction 5% Overshoot Restriction

-x -x ±iY -x _±,hr

3 2.322185 2.373398 2.443109
1.838907 1. 754381 1. 582264 1. 952957 1. 390272 2.071093

4 2.896211 0. 867234 2.676115 0. 850819 2.614168 0. 899916
2. 103789 2. 657418 1. 415178 3. 533409 1. 036038 3.752518

5 3.646739 3. 705123 3.584171
3.351956 1. 742661 3. 351830 1.898311 3. 369780 2.057806
2. 324674 3, 571023 2.066494 3.616314 1. 042549 5.070504

6 4.248359 0. 867510 4. 188812 0.878212 4. 514530 1. 073753
3. 735708 2. 626272 3.680436 2.902979 3. 589436 3.020803
2. 515932 4. 492673 1. 461224 5.078451 1. 939724 4. 436298

7 4. 971787 4. 968211 5. 171281
4, 758291 1. 739286 4.793421 1. 844859 4. 950218 2. 127506
4. 070139 3. 517174 3. 940829 3.917871 3. 759559 3. 943848
2. 685677 5. 420694 1. 571265 5. 803998 2.029693 5. 249393

8 5. 587886 0. 867614 5.793161 0. 978181 5.913013 1.048294
5.204841 2.616175 5.231987 2. 875669 5, 243229 3.050436
4. 368289 4, 414443 4. 129868 4.615801 3. 953359 4. 785195
2. 838984 6. 353911 2.486916 6. 201951 2. 137711 6. 159643

9 6. 297019 6. 428657 6. 532973
6. 129368 1. 737848 6. 306272 1.949209 6.445862 2. 115967
5.604422 3.498157 5.553113 3.803687 5. 512169 4.043085
4.638440 5.317272 4. 323672 5.496789 4.077652 5. 633756
2. 979261 7.291464 2. 606321 7. 079707 2. 323906 6. 910807

10 6. 922045 0, 867665 7. 241259 0. 987214 7. 493606 1.081724
6.615291 2. 611568 6. 779793 2.920500 6. 909877 3. 164777
5. 967528 4, 384947 5. 872524 4, 740152 5. 797460 5. 021191
4. 886220 6,224985 4. 539904 6.409217 4.265926 6. 555431
3. 108916 8. 232699 2. 746967 8. 025722 2. 459750 7,862887
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to 60 iterations, depending on the order of the functions, the optimum

points are reached. The optimum results are given in Tables 4.1 and

4.2. In Table 4.1, the first row for each value of n gives the re-

sponse characteristics of the starting function (the Storch function),

while the second and third rows give the response characteristics of

optimum functions with 2% and 5% overshoot tolerances, respectively.

For 2% overshoot tolerance, the rise-to-delay ratios improve by 5 to

12.5%, and for 5% overshoot tolerance they improve by 10.3 to 19%.

No undershoots are seen in the optimum functions, as in the initial

functions. In Table 4.2, the pole locations of the Storch and optimum

all-pole delay functions are given. We see that all poles of all opti-

mum functions are located in the left half plane; hence the optimum

transfer functions are still realizable.

In conclusion, we can improve the rise-to-delay ratio signifi-

cantly by allowing a small amount of overshoot.

4.5 Optimization of Lossy Delay Network

Although the transfer functions obtained in the last section are

optimum, the actually realized network may not show the same opti-

mum time response. In the realization ideal inductors and capacitors

are usually assumed, whereas practical elements always have some

loss. Therefore, the more realistic network synthesis must take into

consideration the loss associated with reactive elements. This loss

can be accounted for in an approximate manner by combining a
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resistance in series with each inductance and one in parallel with each

capacitance. If these resistances are variables of each inductance and

capacitance, then

ZL = Ls + RL = Ls + F L

Z 1 1

c Cs 1 Cs 4- Fc C
RC

(4. 11)

(4. 12)

where FL = RL/L and F = 1/R C are the dissipation constants of

inductance and capacitance, respectively.

In this section, a ladder delay network which realizes the Storch

transfer function with ideal elements is used as the initial network in

the optimization. The losses of reactive elements are then incorpo-

rated in the way described above, as shown in Figure 4.4. Optimiza-

tion is carried out to minimize the error defined by Equation (4. 1),

this time by the use of reactive element values as independent variables.

Figure 4.3 shows the flow chart of this optimization procedure

and Tables 4.3 and 4.4 give the optimum results for a network of

degree 5. We see that as the loss increases the rise-to-delay ratio

worsens with a decreased final value of the step response.

Incidentally, although the loss factor is assumed to be the same

for all of the same kind of reactive elements, it may take different values

for different elements, for which cases the program can still be used



( START )

/
Read in reactive elements

values of the network, FL and F

Find coefficients
of the network function

Find poles of the network
unction by subroutine MULLER

/Print out element values,
coefficients, zeros, poles,
time response and Tr/T

Evaluate the
current error

Call subroutine MIN
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Change values
of variables

NO

/Print
out element values

coefficients, zeros, poles,
time response and T-r /T

d

END

Figure 4. 3. Flow chart of the optimization with
element values of a delay network as
variables.
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with only a slight modification.

It is noted that the optimization with poles of the transfer function

as variables (Section 4.5) and the optimization with element values as

variables in the lossless ladder network (FL = FC = 0) give different

results; the latter method gives a better result, as we can see by com-

paring rows 8 and 9 of Table 4. 1 and rows 2 and 3 of Table 4.4. This

distinction may not be surprising if one considers the different set of

variables used in the two methods, and the possibility of many local

minimum points in each optimization.

Ln RL
Ln I Ln- 1

L2 RL2 RL1

Figure 4. 4. A lossy ladder delay network.



60

Table 4, 3. Element values of Starch lossy network of order 5 with different values of FL, Fc and
percent overshoot restriction.

L1 C1
L2

C2 L3 C3
F F

C

% Overshoot Restriction

0 0.066667 0. 194805 0. 310256 0.421499 0, 623077 (Starch)

0 0.405882 0.371800 0.379261 0.381645 0,548498 0, 0, 2

0 0. 535838 0.360475 0. 597835 0.397635 0.494072 0, 0, 5

0 0.432922 0.353481 0. 369806 0.355133 0. 531612 0. 1, 0. 1, 2

0 0.273152 0. 339383 0.350415 0.292874 0. 399082 0.1, 0.1, 5

0 0.362544 0,546126 0.569121 0.341084 0.640922 0.1, 0,2, 2

0 0.291874 0.625670 0.655940 0.405818 0.609130 0.1, 0.2, 5

0 0.388103 0.245695 0.387371 0.224473 0. 467748 1.0, 1.0, 2

0 0,877547 0. 217286 0. 771390 0.233909 0. 405358 1.0, 1.0, 5
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Table 4. 4. Time-domain characteristics of Storch lossy network of order 5 with different
values of FL and FC,

% Overshoot Overshoot r
FL FC

Restriction Vo Final Value T
d

Remarks

0 0 0.8 1.0 0,917 (Storch)

o 0 2 1.9 1.0 0.709

0 0 5 3.8 1.0 0.667

0. 1 0. 1 0. 7 0. 905 0. 927

0. 1 0, 1 2 1.9 0.880 0.717

0.1 0,1 5 5.0 0.904 0.688

0.1 0.2 2.5 0.828 0.900

0.1 0.2 2 2.0 0.750 0.718

0.1 0.2 5 4.9 0.750 0.705

1.0 1.0 0.2 0.389 0.996

1.0 1.0 2 2.0 0, 366 0. 761

1.0 1.0 5 5, 2 0.252 0. 728
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V. REALIZATION

In this chapter, we will consider the realization of the Khovanskii

transfer function by passive and active networks.

5. 1 Passive Network Realization

Since the all-pass and non-all-pass functions can be realized

in a similar way, we will consider only the latter class of functions.

Because of the restriction of zero locations of the Khovanskii

non-all-pass function in the right half plane, most of the methods of

passive transfer function synthesis fail. Darlington's methods (for

the single or double-terminated network), Cauer's parallel partial

fraction network realization, zero-shifting technique;and bridged-T

network realization are all inadequate. However, constant-R symmet-

trical lattice realization is possible for the Khovanskii non-all-pass

function of any order.

The order 3 non-all-pass function will be taken up for illustra-

tion.

Given the transfer impedance function

(s) 3s 2 - 24s + 60
s3 + 9s2

A- 36s + 60

we want to realize it by a symmetrical lattice network terminated by

1 ohm resistance [17, p. 346]. The two arm impedances are



63

calculated as

z
1 - Z12

a 1 +Z12

s3 + 6s 2 + 60s
3

s + 12s
2 + 12s + 120

2 1

s 6 1

-r

1 2 1zb = = +
za s 6 1

+s 10
+ 1

s

Then the network of Figure 5.1 is obtained
0. 5h

I

1

1'

Figure 5.1. Realization of Khovanskii non-all-pass transfer
impedance function as a constant-R symmetrical
lattice.
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The lattice network in Figure 5.1 can be converted into an unbalanced

network [9, p. 2541 as shown in Figure 5.2.
z

a1 2 1

C 0
2'

Figure 5. 2. Unbalancing a lattice.

2za
2

5, 2 Active Network Realization

Among the many methods of transfer function synthesis by an

active network, the RC-operational-amplifier circuit is advantageous

in many respects. High-quality operational amplifiers are readily

available commercially and a minimum number of capacitors are

needed, which is a desirable feature in an integrated circuit. In this

method, the given transfer function is factored into first and second

order functions, each factor is simulated by an RC-operational-ampli-

fier circuit, and the resulting sections are cascaded. Then, the im-

pedance level of each section can be changed independently of other

sections, and there is almost no interaction among sections. The

RC-operational-amplifier circuit is relatively insensitive to the

change of the parameters of active elements.
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The Khovanskii non-all-pass function can be realized as a volt-

age transfer function by the use of RC-operational-amplifier circuits.

A third order function is used as an illustration. The given voltage

transfer function is first factored as follows:

T(s) =
V2 3s 2 - 24s + 60

=

Vl 3s + 9s 2 + 36s + 60

3(s 2 - 8s + 20) 1

+5.362166s + 16.493329 s + 3.637834

(3 + -40. 086498s + 10. 520013 1

2
s + 5. 362166s + 16. 493329 s + 3. 637834

2s "1 1

s +a
2
s+a

1

s +
3'

= T
1
(s) T 2(s)

The synthesis method for the first and second order transfer

functions by RC-operational-amplifier circuits are given in many text

books on RC-active-network synthesis. In particular, the state-

variable method [12] has the advantage of low sensitivity to the

parameter variations. In this paper T1(s) and T2(s) are realized

by the state-variable method. The complete network is shown in

Figure 5. 3; any load impedance can be connected at the output without

changing the overall voltage transfer function.



V

T (s) = C, +
2

s +a
Ls

+al

1

T 2(s) s +3

Figure 5. 3. Active network realization of Khovanskii-non-all-pass function of
order 3.

v2
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VI. CONCLUSION

In the first part of this paper, two new classes of rational approxi-

mations to the ideal delay function based on the Khovanskii continued

fraction expansion of ex were studied in detail in both the frequency

domain and the time domain. Comparisons of the Khovanskii non-all-

pass approximation with other approximations (by Budak, Allemendou

and Storch) were made. The results show that, as a whole, the

Khovanskii non-all-pass function gives the best frequency- and time-

domain characteristics within the same tolerances of overshoot and

undershoot in the step response.

The coefficients of the Khovanskii approximations, their poles

and zeros and the response characteristics of the step response are all

tabulated for convenient reference.

In the second part of this paper, time-domain optimizations of

the delay function were performed by first taking the pole locations of

the Storch all-pole delay function as variables and then considering the

element values of the lossy LC ladder network as variables. The re-

sult shows that considerable improvement can be made in the rise-to-

delay ratio within the specified overshoot, by either optimizing the

pole locations or the lossy element values.

All the pertinent response characteristics of the optimum re-

sults are tabulated for n = 3 to 10 in the first case, which may
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have practical values for the designers of delay networks. Although

optimization for the second case was performed for n = 5 only, the

computer program can be used for any n.

Finally, typical realizations of the Khovanskii non-all-pass func-

tion were given in both passive and active networks.
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APPENDIX A

Brief descriptions of some main subroutines are given in this

appendix, and their listings are given in Appendix B.

A.1 Subroutine MULLER

This subroutine finds the poles and zeros of a network function

by the Mullerls method [11] of finding roots of a polynomial. The

algorithm of this method is as follows:

Let

= f(x) = a0 a
1
x + a2x2 + + a nxn = 0

w he r e the coefficients a0, a
1

, , an are real numbers.

1. Let x., xi
1

, x. -2 be three approximations to a root z of

f(x) To start choose x0 = -1, x
1

= 1 and x2 = 0, if better approxi-

mations are not known. Compute fi, fi_l, fi-2

2 Compute in order

h = x. - x.
1 1-1

X.
1 x. - x

1-1
X.

h

15.= +X.
1 1

3, Compute 2 2g. = f,
- 1 1

X. - f. 5. + f.(X. + 6.)1-1 1 1 1 1



4. Compute

g. + g - 4f.8.X.(f. 8. + f.j 1 2
1 1 1 1 1 1- -1 1 1
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choosing the sign so that the denominator will always have the largest

magnitude.

5. Then x.
1+1 1

x. + 11.X. is the next approximation.
1+1

6. Compute f(xj+i) = fi+1.

7. Repeat steps 1 to 6 until convergence based on either of the

following criteria is satisfied:

x. - x
(a) 1 < E

for prescribed E 11

(b) I f(xi) < rl

When one root z
1

has been found, then the degree of the poly-

nomial is reduced by dividing the original polynomial by (x-z
1)

and

the succeeding roots are obtained from the reduced polynomial.

A. 2 Subroutine FREQ

This subroutine calculates amplitude and delay characteristics of

a network function for a given frequency by Equations (A.1) and (A. 2)

below:

F(s) =
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M + N
2 2m2 - n2

where m
1

, n1 and m2, n2 are even and odd parts of the numerator

and the denominator, respectively; and

Therefore

M = m1 m2 - n
1
n2

= nm
1 2 i2

F(jw) - M + N
2 2m2 - n2

Phase angle of F(jw) is given by

-j tan() = --m-

S = 'A)

or -
s = jw

-1 N,= tan (---)
3M s T:jw

withThe delay time Td is obtained by taking the derivative of -

respect to w

deTd

M2 d N

M2 - N2
clw (---)M

MN' - NM'
2 2- NM S = jw

S = jw

(A. 1)

(A 2)
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A. 3 Subroutine TIME 1

This subroutine calculates, by Equation (A.3), the step response

for a given transfer function whose poles and zeros are already ob-

tained by Subroutine MULLER.

Assuming that the transfer function has no multiple poles, let us

express it as:

H(s) =
Q(s)
P(s)

(s-z
1
)(s-z

2)
(s-zm)

-P 1)(s-132)

Then the step response is obtained by taking the inverse Laplace

transform of

as

R(s) - H(s)

r(t) =

n p.t
k.e J

J

j=0

(A. 3)

where and k. are either real or complex. The residues k.'s
PJ

are calculated by Subroutine RESDUE.
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APPENDIX B

Listings of main subroutines used in this paper:

SUBROUTINE MULLER (ZRO, N8, Z, KEY)
DIMENSION ZRO(14)COE(14), Z(14,2)
N1=N8-1
IF (N1)1000,1000,1001

1000 WRITE (61,1119 )
1119 FORMAT ( //, 20X, 4HNONE)

RETURN
1001 DO 1003 J=1, N8

K=N8-J+1
1003 COE(J)= ZRO(K)

N4)
I=N1+1

19 IF (COE(I)) 9,7,9
7 N4=N4+1

Z(N4,1)=0.
Z(N4, 2)g),
I=I-1
IF(N4-N1 )19, 37,19

9 CONTINUE
10 8

L=1

N3=1
ALP1R=AXR
ALP1I=AXI
M=1

GO TO 99
11 BET1R=TEMR

BET1I=TEMI
AXR4). 85
ALP2R=AXR
ALP2IAXI
M=2

GO TO 99
12 BET2RTEMR

BET2I=TEMI
AXR=0. 9
ALP3RAXR
ALP3IAXI
M=3

GO TO 99
13 BET3R=TEMR

BET3I=TEMI
14 TE1=ALP1R-ALP3R

TE2---,ALP1I-ALP3I
TES= ALP3R -ALP2R

TE6=ALP3I-ALP2I
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APPENDIX B (continued)

TEM=TE5*TE5+TE6*TE6
TE3=(TE1*TE5+TE2*TE6 )/TEM
TE4=(TE2*TE5- TE1*TE6 )/TEM
TE7=TE3+1.
TE9=TE3*TE3- TE4*TE4
TE10=2. *TE3*TE4
DE15=TE7*BET3R- TE4*BET3I
DE16=TE7*BET3I+TE4*BET3R
T El 1 =TE3*BET2R- TE4*BET2I+BET1R- DE15
TE12=TE3*BET2I+TE4*BET2R+BET1I- DE16
TE7=TE9-1,
TE1=TE,9*BET2R- TE10*BET2 I

TE2=TE9*BET2I+TE10*BET2R
TE13=TE1-BET1R- TE7*BET3R+TE10*BET3I
TE14=TE2-BET1I- TE7*BET3I-TE10*BET3R
TE15=DE15*TE3-DE16*TE4
TE16=DE15*TE4+0E16*TE3
TEl *(TE1 l*TE15- TE12*TE16 )
TE2=2. *TE13*TE144. *(TE12*TE15+TE1 l*TE1,6 )
TEMQRTF(TE1 *TE1-FTE2*TE2 )
IF(TE1 )113,113,112

113 TE4- SQRIF(. 5*(TEM- TE1))
TE3=. 5*TE2 /TE4
GO TO 111

112 TE3QRTF(. 5*(TEM+TE1 ))
IF(TE2 ) 110,200,200

110 TE3 =--- TE3

200 TE4=. 5*TE2 /TE3
111 TE7=TE13+TE3

TE8=TE14+TE4
TE9=TE13- TE3
TE10=TE14- TE4
TE1=2. *TE15
TE2=2. *TE16
IF (TE7*TE7-FT E8*TE8- TE9*TE9- TE10*T El 0 )204,204,205

204 TE7=TE9
TE8=TE10

205 TEM=TE7*TE7+TE8*TE8
TE3NTE1 *TE7+TE2*TE8)/TEM
TE4=( TE2*TE7- TEl*T ES )/TEM
AXR=ALP3R+TE3*TE5-TE4*TE6
AXI=ALP3I+TE3*TE6+TE4*TE5
A LP4R =AXR

M=4
GO TO 99

15 N6=1

IF(ABSF (HELL )+ABSF(BELL )-1. E- 10)18,18,16

16 TE7=ABSNALP3R-AXR )+ABSF(ALP3I-AX I )

IF(TE7/(ABSF(AXR )+ABSF(AXI))-1. E- 5)18,18,17
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APPENDIX B (continued)

17 N3=N3+1
ALP1R=ALP2R
ALP1I=ALP2I
ALP2R=ALP3R
ALP2I=ALP3I
ALP3R=ALP4R
ALP3I=ALP4I
BET1R43ET2R
BET1I=1-3ET2I

BET2R43ET3R
BET2I=BET3I
BET3R=TEMR
BET3I=TEMI
IF(N3-40 )14,18,18

18 N4=N4+1
Z(N4,1 )=ALP4R
Z(N4, 2 )=ALP4I

N3=0
IF(N4-N1 )30,37,37

37 IF(KEY) 998,998,999
999 WRITE (61,555)
555 FORMAT (/ / 7X, 9HREAL PARK, 9X, 9HIMAG PART, 13X, 9HREAL PART, 9X,

19HIMAG PART 13X, 9HREAL PART, 9X, 9HIMAG PART)
WRITE (61,666) (Z(NT, 1), Z(NT, 2 ), NT=1, N1)

666 FORMAT (F19.6, F18.6, F22.6, F18.6, F22.6, F18.6 )
998 RETURN
30 IF(ABSF (Z(N4,2 ))- 1. E-4)10,10,31

31 GO TO (32,10 ), L
32 AXR=ALP1R

AXI-ALP1R
ALP1I=-ALP1I
M=5
GO TO 99

33 BET1R=TEMR
BET1I=TEMI
AXR=ALP2R
AXI=-ALP2I
ALP2I=-ALP2I

GO TO 99
34 BET2R=TEMR

BET2I=TEMI
AXR=ALP3R
AXI=-ALP3I
ALP3I=-ALP3I
L---2

M=3

99 TEMR0E(1)
TEMIZI. 0
DO 100 I=1, N1
TE1= TEMR*AXR-TEMPAXI
TEMI=TEMI*AXR+TEMR*AXI
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APPENDIX B (continued)

100 TEMR=TEl+COE(I+1)
HELL=TEMR

BELL=TEMI
IF(N4)102,103,102

102 D0101I=1 , N4
TEM1=AXR-Z(I, 1)
TEM2=AXI-Z(I, 2)
TE1=TEM1*TEM1+TEM2*TEM2
TE2=(TEMR*TEM1+TEMI*TEM2)/TE1
TEMI=(TEMI*TEM1-TEMR*TEM2 )/TE1

101 TEMR=TE2
103 GO TO (11,12,13,15,33,34),M

END
SUBROUTINE FREQ (NA, NB,A,B, G,W )
DIMENSION A(14),AE(7 ),A0(7 ),AE1(7),A01(7), B(14)

1, B E (7), B0(7), BE1(7),B01(7), G(4)
CALL PARTS (NA ,A ,M1,AE,N1,A0,M11,AE1, N11,A01 )
CALL PARTS ( NB ,B,M2,BE,N2,BO,M12,BE1,N12,BO1)
EVN=SUM (M1 AE, W )
ODDN=W*SUM (Ni , A 0, W )
EV1N=W*SUM (M11, AE1 ,W )
ODD1N=SUM (N11 A01, W )
EVD=SUM (M2 BE W )
ODDD=W*SUM (N2 BO W )
EV1D=W*SUM (M12 ,BE1 ,W )
ODD1D=SUM (N12, B01, W )
TOP=EVN*EVN+ODDN*ODDN

BOTTOM=EVD*EVD-K)DDD*ODDD
AMPL=SQRT (TOP/BOTTOM)
DELA Y=(EVD*0 DD1D+ODDD*EV1 D )/B0 T TOM- (EVN*ODD1N+ODDN*EV1N ) /TOP

G(1 )=W

G(2 )=A MPL

G(3 )=DELAY

RETURN
END

SUBROUTINE PARTS (N.A ,A MK ,AE NK,A0 ,M1K,AE1, N1K,A01)
DIMENSION A(14),AE(7 ),A0(7 ),A0(7 ),AE1(7), A01(7 )
I=1

MK=1

MIKE
AE(1)=A(1)
IF(NA- 1)3,3,1

1 I=I+1

NK=NK+1

AO(NK )=A (I)

DUMMY=b.1
A01 (NK)=DUMMY*A(I )
IF(NA- 1)3,3,2

2 M1K=MK
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APPENDIX B (continued)

MK=MK+1
I=I+1

AE(MK)rA(I)
DUMMY=I- 1

AE1(M1K)=DUMMY*A(I)
IF(NA- 1)3,3,1

3 N1K=NK
RETURN
END
FUNCTION SUM (N,A,W)
DIMENSION A(14)
SUM=:). 0

IF(N)3,3,2
2 SUM=A (N)

IF(N-1 )3,3,4
4 X=-W*W

NM1=N- 1
DO S I=1, NM1
K=N-I

S SUM=SUM *X+A (K)

3 RETURN
END

SUBROUTINE TIME l(NZ,NP,Z P, KEY G1 G2 LA ,AA ,T)
DIMENSION Z(14,2), P(14,2), G1(100 ), G2(100), RRES(14),RPOLE(14)

1, C R ES(7), RCPOLE(7), QCPOLE(7), THETA(7), DEG(7)
IF(KEY- 1 )200,200,201

C FIRST TIME THRU, ADD POLE AT S=0
200 KEY=2

NP=NP+1

P(NP, 1 ):).
P(NP, 2)=0.
DO 11 J=1, NP
PR=P(J, 1)
PI=P(J,2)

B=J+1
IF( JJ- NP)117,117,11

117 DO 8 K=JJ , NP
C FIND CONJUGATE POLE

IF (ABSF (PR-P(K, 1 ))+ABSF (PI+P(K, 2 ))-,, 00001)9,9,8
9 P (K, 1)=13(J +1,1)

P (K, 2 )=P(J+1,2)

P (J -1-1,1)=P(J, 1)
P(J +1, 2 )=-ABSF(P(J,2 ))

P(J,2 )=-P(J +1,2 )
8 CONTINUE
11 CONTINUE

NREAL=D

NCOMP=3
DO 21 J=1, NP
KK=J
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APPENDIX B (continued)

PR=P(J, 1)
PI =P(J, 2)

C IF CONJUGATE POLE WITH NEG. IMA G. PART, IGNORE
IF (PI+. 00001)21, 22,22

22 CALL RESDUE (Z, P, NZ NP, RPSAVE, QPSAVE PR PI ,KK,AA )
C REAL OR COMPLEX POLE

IF(ABSF(PI)-. 00001)23,23,24
23 NREAL=NREAL+1

RRES(NREAL)=RPSAVE
RPOLE(NREAL)=PR

GO TO 21
24 NCOMP=NCOMP+1

CRES(NCOMP)=2. *SQRTF(RPSAVE**2+QPSAVE**2)
RCPOLE(NCOMP) PR
QCPOLE(NCOMP)=PI
THETA (NCOMP)=A TA NF ( QPSA VE/RPSAVE)

IF(RPSAVE)26, 27,27
26 THETA (NCOMP)=THETA (NCOMP)+3. 14159
27 DEG (NCOMP )=57. 295779*THETA(NCOMP)
21 CONTINUE

C CALCULATE OUTPUT
201 LA=LA+1

G1 (LA )=T

G2 (LA )C1.

IF(NREAL )204, 204,203
203 DO 205 J=1, NREAL
205 G2 (LA )= G2(LA )+RRES(J)*EXPF(RPOLE(J)*T)

204 IF(NCOMP)206, 206,207
207 DO 208 J=1, NCOMP
208 G2 (LA) )=G2(LA )+CRES(J )*EXPF(RCPOLE(J)*T)*COSF(QCPOLE(J )*T+THETA (J)

206 RETURN
END

SUBROUTINE RESDUE (Z , P, NZ, NP R2, Q2, PR, PI ,KK,AA )
DIMENSION Z(14, 2 ), P(14, 2)

R2=AA
DO 1 K=1, NP
IF(KK-K)3,2,3

2 RD=-1.

QD=0.

GO TO 13
3 RD=PR-P(K, 1)

QD=PI-P(K, 2 )
13 IF(K-NZ)5, 5, 4
4 R1=1.

Q1).
GO TO 15

5 R1=PR-Z(X, 1)
Q1=PI-Z(K, 2)
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15 A=R1*R2- Ql*Q2
Q2=R1*Q2+R2*Q1
R2=A
A =RD* *2+QD* *2

B=(QD*Q2-1-R1)1412)/A

Q2=(- QD*R2 +RD*Q2 )/A

1 R243
RETURN
END

SUBROUTINE MIN(F, G,X ,N , ERROR JUMP ,NITER, ALFSAV, ALFMUL)
DIMENSION G(14), X(14), GSAVE(14), S(14), SIG(14), DG(14),

1A(14, 14), . B(14, 14), C(14, 14), XSAVE(14), H(14, 14)
IF(JUMP)20, 1,20

1 KEY=1

JUMP=1

RETURN
20 GO TO (18, 17, 36, 36, 19), KEY
18 FSAVE=F

ITER =NITER

DO 14 J=1, N
XSAVE(J)=X(J )

14 GSA VE(J )=G(J )

IMAX=1
KEY

F1=FSAVE

F2=FSAVE
X11).
X2

IF(JUMP)58, 58, 56
56 DO 12 J=1, N

DO 13 K=1, N
13 H( J, K)=0,

12 H( J, J)=1.

JUMP=-1
58 CALL MATMUL(H,N,N,G,1,S,-1. 14,1,14)

CALL MATMUL (S,1,N,G,1, DEM,1. ,1,1,1)
IF(DEM) 5,56,56

5 ALFALFSAV
ALFSAV4),
GO TO 15

17 IF(F) 44, 44,31
44 ALFSAV=ALFSAV-ALF

ALF=ALF/ALFMUL**4
GO TO 15

31 IF((F-F2)/F-. 00001) 28,28,3
3 GO TO (4,30), IMAX
4 ALFSAV=-ALFSAV/(ALFMUL)**2

GO TO 5
28 F1=F2

F2=F
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X1=X2
X2=ALFSAV

IMAX=2
ALF=ALFMUL *ALF

GO TO 15
30 TEMP=X2

X2-=ALFSAV

ALFSAV=TEMP
TEMP F2

F=TEMP
PRINT 250

250 FORMAT (1X,1HQ)
36 CALL QUAD(X1, X2 ALFSAV, ITER KEY , F , F1 F2 ERROR)

IF(KEY-5)27,99,99
99 JUMP=1

GO TO 27
15 ALFSAV=ALFSAV+ALF
27 DO 21 J=1,N
21 X(J)=XSAVE(J)+ALFSAV*S(J)

IF(JUMN 1 )26,81,26
81 PRINT 24
24 FORMAT (1X,1HG)
26 RETURN
19 IF(ABSF(F/FSAVE)-ERROR )11,10,10
10 JUMP

RETURN
11 DO 7 J=1, N

SIG(J)=-ALFSAV*S(J)

7 DG(J) (J)-GSAVE(J)
CALL MATMUL(SIG, 1 ,N, DG, 1, DEM, 1. ,1,1,1)
CALL MATMUL (SIG, N, 1, SIG, N,A DEM, 1,1,14)
CALL MATMUL (DG,1,N,H,N,B,1.,1,14,14)
CALL MATMUL (B, 1, N, DG, 1, DEM,1. 14,1,1 )
CALL MATMUL (DG,N,1,B,N,C,1.,1,14,14)
CALL MATMUL (H,N,N,C,N,B,DEM,14,14,14)
DO 8 J=1, N
DO 8 K=1,N

8 H(J,K)41(J,K)+A(J,K)-B(J,K)
JUMP=-1
GO TO 18
END

SUBROUTINE MATMUL (A,N,M,B,LL,C,DIV,NROW1,NROW2,NROW3)
DIMENSION A(1 ), B(1), C( 1)
DO 2 L=1,LL
DO 2 J=1, N
JJ=J+NROW3*(L.= 1 )

C(JJ)=.
DO 1 K=1, M
JK=J+(K- 1 )*NROW1
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KL=K+(L- 1 )*NROW2

1 C(JJ)-(JJ)+A(JK)*B(KL)
2 C(JJ)(JJ)/DIV

RETURN
END

SUBROUTINE QUAD(XA, XC, XMIN ITER ,KEY1,F,FA ,FC , ERROR )
C THIS SUBROUTINE FINDS THE ONE DIMENSIONAL MIN
C POINT BY QUADRATIC FITTING.

KEY=KEY1-1
GO TO (100,300,100,100,100,100), KEY

100 XAS=XA**2
XCS=XC**2
XB=XMIN

XBS=XB**2

FB=F

21 KEY1=KEY1+1

2 IF(KEY1-4)4,23,23
23 XMIN=XB

KEY1=5

F4-B
RETURN

4 XD=. 5*((XBS-XCS )*FA+(XCS-XAS )*FB-F(XA S-XBS )*FC )

XD=XDR(XB-XC)*FA+(XC-XA )*FB(XA -XB )*FC)
XDS=XD**2
XMIN=XD
FS=FB

RETURN
300 FD=F

IF(FD -FB)3, 3,19
19 IF(XD-XB)90,91,91
90 CALL ARR(XA ,XAS , FA ,XD,XDS , FD)

GO TO 11
91 CALLARR(XC,XCS , FC ,XD, XDS , FD)

CO TO 11
3 IF(XD-KB)9,9,8
8 CALL ARR(XA,XAS,FA,XB,XBS,FB)

GO TO 11
9 CALL ARR(XC,XCS,FC,XB,XBS,FB)
11 IF(FD-FB )10,18,18
10 CALL ARR (XB,XBS,FB,XD,XDS,FD)
18 J=J+1

IF(J-ITER)32,21,2
32 IF((ABS(FS- F)) /F -. 1*(1. -ERROR))33,33,4
33 IF(J-1 )4,4,21

END
SUBROUTINE ARR(A1,A2,A3, B1, B2, B3 )
A1431
A2=B2
A3
RETURN
END
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