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The Quotient Method (QM), a laboratory-based risk assessment methodology 

used by the Environmental Protection Agency to evaluate pesticides for registration and 

use, has not been thoroughly field-tested and its performance has not always been 

reliable. My objective was to determine if variation in vegetation structure or diet of 

exposed animals could result in adverse ecological effects that were not predicted by 

the QM. In April and early May 1993, I established populations of herbivorous 

gray-tailed voles (Microtus canicaudus) and omnivorous deer mice (Peromyscus 

maniculatus) in 24 0.2-ha enclosures planted with alfalfa (Medicago sativa). Alfalfa in 

12 enclosures was mowed on 22 June to reduce vegetation height. Small mammal 

populations were monitored by live trapping from May through August 1993. On 14 

July, an organophosphorus insecticide, azinphos-methyl, was applied at 0, 0.88, and 

3.61 kg/ha. Insecticide residues were measured on canopy-level spray cards, soil 

samples, and alfalfa. I compared the observed residue concentrations with predictions 

based on the nomogram used to estimate exposure for QM risk assessments. I also 

compared QM predictions of risk with observed effects on population size and growth, 

survival, reproductive activity, recruitment, body growth, movements, and diet of the 

small mammals. 

Much of the insecticide reached ground level in mowed enclosures, but dense 

alfalfa intercepted most of the spray in unmowed enclosures. The mean half-life of 

azinphos-methyl on alfalfa was 3.4 days and was not affected by mowing. Mean 
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residue concentrations on mowed alfalfa and the top 15 cm of unmowed alfalfa were 

underestimated by the QM exposure nomogram. Therefore, pesticides may pose greater 

risk to organisms inhabiting sparse vegetation or the tops of plants than predicted by the 

QM. 

Treatment with azinphos-methyl at 3.61 kg/ha caused severe effects in both 

mowed and unmowed enclosures on population size and growth, survival, recruitment, 

and body growth of voles. Effects of azinphos-methyl on vole recruitment and body 

growth and on survival of female voles were greater in mowed than in unmowed 

enclosures. However, I did not find that population-level responses of voles to the 

chemical differed between mowing treatments. Most effects on voles were of short 

duration (<27 days) but vole densities in 3.61 kg/ha enclosures remained depressed >6 

weeks after spraying. The 3.61 kg/ha application rate resulted in a 42% decrease in 

deer mouse densities in mowed enclosures during the week of spraying, but the 

insecticide had no adverse effects on deer mice in unmowed enclosures. In addition, 

the insecticide may have reduced recruitment of deer mice in mowed enclosures. 

Analysis of deer mouse feces indicated that consumption of arthropods increased in 

insecticide-treated enclosures just after spraying occurred. Survival, reproductive 

activity, body growth, and movements of deer mice were highly variable and not 

significantly affected by azinphos-methyl. 

Mowing resulted in greater residue concentrations than predicted and, 

consequently, the insecticide adversely affected voles and deer mice in mowed 

enclosures at application rates characterized as low risk by the QM. However, food 

aversion or selective feeding on alfalfa tops may have resulted in similar exposure of 

voles to the 3.61 kg/ha treatment in mowed and unmowed enclosures. I did not find 

that insectivorous feeding behavior of deer mice made them more susceptible than 

predicted. Although residue concentrations on alfalfa did not follow predictions, the 

gross pattern of effects on small mammals was consistent with QM risk 

characterization. However, the QM may underestimate exposure and risk when 

pesticides are sprayed on sparse vegetation. 
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INFLUENCE OF VEGETATION STRUCTURE AND FOOD HABITS  
ON EFFECTS OF GUTHION 2S® (AZINPHOS-METHYL)  

ON SMALL MAMMALS  

INTRODUCTION 

Variation among organisms in their susceptibility to pesticides may hinder 

assessment of ecological risks posed by these chemicals. Characteristics intrinsic to the 

organisms or heterogeneity in biotic and abiotic features of the environment may cause 

such variation. Before the U.S. Environmental Protection Agency (EPA) registers a 

pesticide for use, it is required under the Federal Insecticide, Fungicide, and 

Rodenticide Act of 1970 to evaluate the likelihood that applying the pesticide will cause 

unreasonable ecological damage. The EPA uses a Quotient Method (QM) to conduct 

preregistration ecological risk assessments (Urban and Cook 1986). The quotient of 

risk for a particular chemical and species of test organism is calculated by dividing the 

estimated exposure by the estimated hazard. For the QM, exposure is generally 

measured by the expected environmental concentration (EEC), which, for terrestrial 

animals, represents the estimated concentration in or on primary foods. EEC is 

estimated by a nomogram derived from a database of residues measured on crops 

(Urban and Cook 1986). Estimates calculated by this nomogram represent maximum 

expected residue concentrations (Hoerger and Kenaga 1972). Hazard in the QM 

denotes the chemical's potential to cause adverse effects. Although hazard may be 

estimated by a variety of ecotoxicological endpoints (e.g., reproduction, mutagenesis, 

growth, bioconcentration potential) on any target organism, LD50 or LC50 tests on 

standard laboratory animals are usually used. A risk quotient >1 means that expected 

exposure exceeds the estimated hazard and is interpreted to indicate unacceptable risk. 

Quotients considerably <1 indicate comparatively low risk. To account for error and 

differences among species, the EPA presumes risk at a quotient of 0.2 (EEC = 1/5 the 

LC50; National Research Council 1983). 

The QM allows a rapid semiquantitative measure of the potential risks of 

applying a particular chemical. However, assumptions underlying the QM have been 
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challenged after chemicals, for which quotient values indicated "low risk," were 

implicated in causing wildlife die-offs (Grue et al. 1983, Blus et al. 1989). Estimation 

of EEC incorporates the assumption that residue concentrations increase 

proportionately with application rate (i.e., doubling the application rate should double 

residue concentrations) and independently of habitat characteristics. Estimation of 

hazard by LD50 or LC50 tests on laboratory animals requires the assumptions that 

animals will not select or avoid contaminated foods and that indirect effects are 

negligible. These assumptions are largely untested. Bennett et al. (in press) found that 

the vegetation nomogram underestimated azinphos-methyl residues on alfalfa. Edge et 

al. (in press) observed responses of enclosed gray-tailed vole (Microtus canicaudus) 

populations to azinphos-methyl that corresponded with characterizations of risk by the 

QM. However, Bennett et al. (unpublished data) observed mortality of bobwhite quail 

(Colinus virginianus) chicks after exposure to azinphos-methyl at application rates 

characterized by the QM as posing low risk to this species. Carey (1993) and Bennett 

et al. (in press) suggested that interception of insecticide sprays by dense vegetation 

may reduce exposure of animals at ground level. Acute toxicity of insecticides differs 

among test species (Cholakis et al. 1981, Fleming and Grue 1981) but food habits may 

affect susceptibility independently of toxicity. Animals that prey on arthropods may 

receive greater doses of insecticides than herbivorous species by selectively feeding on 

intoxicated arthropods after spray (Morris 1970, Robel et al. 1972, Stehn et al. 1976). 

Insecticides may also affect insectivorous species indirectly by reducing the abundance 

of arthropod prey (Barrett and Darnell 1967). Such differential effects among species 

may alter the structure of ecological communities (Barrett and Darnell 1967, Morris 

1970). 

My objective was to test the assumptions (1) that the vegetation nomogram 

accurately predicts environmental concentrations of insecticides after application and 

(2) that responses of wild animals to insecticide exposure are unaffected by vegetation 

structure and the diets of the receptor species. I compared EEC with observed residue 

concentrations after applying azinphos-methyl to alfalfa. In addition, I compared QM 

risk characterizations with observed responses of populations (density, growth rate, and 
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recruitment) and individuals (survival, body growth, reproductive activity, and 

movements) of herbivorous gray-tailed voles (hereafter referred to as voles), and 

omnivorous deer mice (Peromyscus maniculatus) to application of the 

organophosphorus (OP) insecticide azinphos-methyl (0,0-dimethyl 

S-[(4-oxo-1,2,3-benzotriazin-3(4H)-yOmethyl] phosphorodithioate; trade name Guthion 

2S ®; Mobay Corporation, Agricultural Chemical Division, Kansas City, Missouri, 

USA) to mowed and unmowed alfalfa in 24 0.2-ha enclosures. 
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ABSTRACT  

We field-tested the vegetation nomogram used by the Environmental Protection 

Agency to estimate maximum expected concentrations of pesticide residues on plants 

when conducting preregistration risk assessments. This nomogram is based on a 

relatively small database of residue studies and does not account for vegetation 

structure. Our objectives were to test whether residue concentrations were 

conservatively predicted by the nomogram and to determine the influence of vegetation 

structure on residue distribution and degradation. We applied 0.0, 0.88, and 3.61 kg/ha 

of azinphos-methyl to 24 0.2-ha enclosures planted with alfalfa (Medicago sativa), 12 

of which were mowed 3 weeks earlier to reduce vegetation height. Residue 

concentrations were measured on canopy-level spray cards, soil samples, and alfalfa on 

days 0, 2, 6, 14, and 28 after spraying. Deposition of azinphos-methyl on spray cards 

was generally lower than the application rate measured from spray tank samples. 

Residue concentrations increased proportionately with application rate. However, mean 

concentrations on mowed alfalfa and unmowed alfalfa tops were underestimated by the 

nomogram. Residue concentrations on the top 15 cm of unmowed alfalfa were more 

than four times greater than those on the bottom 15 cm, indicating that much of the 

insecticide was intercepted in the canopy of unmowed alfalfa. Residue concentrations 

on mowed alfalfa tended to be higher than on unmowed alfalfa tops. The half-life of 

azinphos-methyl ranged from 1.7 to 5.1 days. Mowing did not apparently affect residue 

persistence. Our results indicate that the vegetation nomogram may underestimate 

pesticide residue concentrations on alfalfa and that variation in vegetation structure may 

substantially influence exposure of herbivores to pesticides. 

INTRODUCTION 

Exposure of target and nontarget organisms to pesticides may be influenced by 

the structure of the vegetation they inhabit, hindering laboratory-based ecological risk 

assessment. The U.S. Environmental Protection Agency (EPA) uses a Quotient Method 
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(QM) to conduct preregistration ecological risk assessments (Urban and Cook 1986). 

In the QM, exposure of nontarget organisms is generally measured by the expected 

environmental concentration (EEC), which, for terrestrial animals, represents the 

estimated maximum concentration in or on primary foods. EEC is estimated by a 

nomogram derived from a database of residues measured on crops (Urban and Cook 

1986, based on Hoerger and Kenaga 1972), and risk is characterized by the quotient 

EEC/dietary toxicity (Urban and Cook 1986). 

The QM allows a rapid semi-quantitative measure of the potential risks of 

applying a particular chemical. However, assumptions underlying the vegetation 

nomogram used to estimate EEC may limit the reliability of this method of risk 

assessment. To facilitate extrapolation from the relatively small database of residue 

measurements, the nomogram incorporates the assumptions that residue concentrations 

increase proportionately with application rate and independently of vegetation structure. 

However, distribution of pesticide residues can be affected by the height and density of 

the vegetation onto which the chemicals are applied (Ebeling 1963, Bennett et al., in 

press). In addition, vegetation structure may influence the action of environmental 

factors, such as solar radiation, temperature, humidity, wind, and precipitation, that 

determine rates of pesticide degradation from foliage (Willis and McDowell 1987). 

Our objective was to test assumptions of the vegetation nomogram by 

comparing EEC with observed concentrations of azinphos-methyl on mowed and 

unmowed alfalfa (Medicago sativa). In particular, we tested for effects of the mowing 

treatment, which reduced the height of alfalfa, on the vertical distribution and 

persistence of residues. We hypothesized that the initial availability of azinphos-methyl 

to ground-level herbivores would be greater in mowed enclosures, but that greater 

exposure to sunlight and precipitation in mowed enclosures would result in lower 

residue persistence. 
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METHODS 

Study Area 

We conducted our experiment at Oregon State University's Hyslop Agronomy 

Farm, approximately 10 km north of Corvallis, Oregon. The site was surrounded by 

agricultural fields of various crops and had an elevation of approximately 70 m, level 

topography, and well-drained silty-clay loam soil. We used 24 0.2-ha (45 x 45 m) 

enclosures constructed of galvanized sheet metal extending approximately 1 m above 

ground. Enclosures were designed to contain populations of small mammals for 

pesticide toxicology experiments (Edge et al., in press), but also reduced drift of 

pesticide sprays among enclosures. Alfalfa was planted in the enclosures in spring 

1991, and was mowed to a height of approximately 8 cm on 4-5 May 1993. 

Experimental Design 

We applied the organophosphorus insecticide azinphos-methyl at three 

application rates (0.0, 0.88, or 3.61 kg/ha) to mowed and unmowed enclosures. The 

maximum registered application rate for azinphos-methyl on alfalfa is 0.84 kg/ha, and it 

may be applied up to four times per year. Four replicate enclosures were randomly 

assigned to each combination of mowing and azinphos-methyl treatments in a 3 x 2 

factorial design. 

Mowing 

Alfalfa in 12 randomly-chosen enclosures was mowed on 22 June, 22 days 

before insecticide application. Alfalfa in the other 12 enclosures was left unmowed. A 

Robel pole was used to measure vegetation height in unmowed and mowed enclosures 

on 13 July. Measurements made by this method correlate strongly with the total 
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biomass of aboveground vegetation (Robel et al. 1970). The lowest visible point on a 

white pole was determined by an observer 4 m away at an eye level of 1 m. 

Measurements from the four cardinal directions were recorded for each of 10 randomly 

selected sites in each enclosure. 

Insecticide Application 

Azinphos-methyl was applied on 14 July (day 0) by a licensed applicator, 

using a four-wheel all-terrain vehicle and trailer tank with 7.6-m spray booms. Four 

mowed and four unmowed enclosures were sprayed with each of the 0.0, 0.88, and 3.61 

kg/ha application rates; control (0.0 kg/ha) enclosures were sprayed with an equal 

volume of water. Enclosures were sprayed in order of increasing application rate. 

Spray booms were adjusted to apply the chemical from approximately 45 cm above the 

vegetation in both mowed and unmowed enclosures. Two samples were taken from the 

spray tank before spraying the first enclosure and two more were taken after spraying 

the last of the eight enclosures for each application rate. Tank samples were stored on 

ice in opaque glass containers and analyzed that day. For each application rate, we 

report the mean tank sample concentration as the actual application rate. 

Approximately 0.08 cm of rain fell on day 0, beginning within 1 hour after 

azinphos-methyl was applied. Rain fell again during six of the first nine days after 

spraying, totalling 1.6 cm (Fig. 1). 
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Figure 1. Daily temperature range and rainfall after application of azinphos-methyl at 
Hyslop Agronomy Farm, Benton County, Oregon, 14 July 1993. 
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Residue Sampling 

We sampled residues on canopy-level spray cards, alfalfa, and soil on days 0, 2, 

6, 14, and 28 after spraying to estimate the availability of azinphos-methyl to herbivores 

and to determine its persistence over time. Samples were collected, following the 

methods used by Bennett et al. (in press), at 10 random points in each enclosure on day 

0 and at five of the 10 points thereafter. Entire alfalfa stems were collected from 

mowed enclosures and the top 15 cm and bottom 15 cm of stems were sampled in 

unmowed enclosures. Residue and spray tank samples were analyzed without clean-up 

using high-resolution gas chromatography. 

Data Analysis 

We used Statistical Analysis System (SAS Version 6.05; SAS Institute, Inc. 

1990) for all data analyses. We analyzed the natural logarithm of residue values to 

normalize distributions and stabilize variances. Multivariate repeated-measures 

analysis of variance (RMANOVA) was used to test (1) whether residue concentrations 

for each sample type and mowing treatment differed among application rates and 

sampling dates, and (2) whether concentrations on each sample type and sampling data 

differed among mowing and application rate treatments. RMANOVA included Wilk's 

Lambda tests for day x application rate interactions (Rao 1973), which we used to 

determine whether decay curves were parallel among application rates, and polynomial 

contrasts, from which we inferred the shape of degradation curves (linear, quadratic, or 

cubic). Because day x application rate interactions were significant for both alfalfa 

sample types in both mowing treatments, we used least-squares regression to model 

separate decay curves for each application rate, sample type, and mowing treatment. 

We used these regression models to determine residue half-lives by setting the residue 

value to the natural log of 1/2 the back-transformed y-intercept residue level and 

solving for the number of days. Rain filled many soil sample petri dishes after day 2, 

possibly removing insecticide or soil. Therefore, we considered those data to be 
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unreliable and did not model decay curves for residues on soil samples. For each 

mowing treatment, we used least-squares regression to test whether untransformed 

residue concentrations on samples collected <1 hour after application increased with 

application rate at the slope predicted by the vegetation nomogram. Because variance 

increased with application rate for untransformed residue data, values for each 

application rate, mowing treatment, and sample type were weighted by the reciprocal of 

their variance. 

RESULTS 

Vegetation Structure 

Mowing reduced the height of the alfalfa canopy from >1 m to approximately 8 

cm. Mowed alfalfa rapidly regrew to approximately 30 cm in height by 13 July, when 

vegetation height was measured. We recorded 465 Robel pole measurements for 

mowed enclosures and 459 for unmowed enclosures. Despite the rapid regrowth of 

alfalfa, height of visual obstruction in mowed enclosures (x = 20 cm, SE = 0.7) was less 

than one-half that measured in unmowed enclosures = 60 cm, SE = 1.1; t = 27, d. f. = 

22, 1-sided P < 0.0001). 

Insecticide Residues 

We collected 1,962 samples between days 0 and 28 after spraying. On day 0, 

240 spray cards, 240 soil samples, 120 mowed alfalfa stems, 120 unmowed alfalfa 

bottoms, and 120 unmowed alfalfa tops were collected from the 24 enclosures. On each 

sampling date thereafter, we collected 60 each of mowed alfalfa stems, unmowed 

bottoms, and unmowed tops. Despite efforts to keep sampling sites away from the path 

of the spraying apparatus, several soil samples were crushed by the spray vehicle or 

personnel. Therefore, 118, 96, 118, and 98 soil samples were collected on days 2, 6, 14, 

and 28, respectively. Azinphos-methyl was not detected in spray tank contents applied 
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to control (0.0 kg/ha) enclosures or on spray cards, soil samples, or alfalfa in control 

enclosures; thus, no detectable insecticide drifted among enclosures. 

Residues on Day 0: Vertical and Horizontal Distribution 

Residue concentrations on soil samples and unmowed alfalfa bottoms varied 

widely within each enclosure, resulting in mean coefficients of variation of natural log-

transformed residue concentrations ranging from 21% to 766% (Table 1). Residues on 

alfalfa tops and unmowed alfalfa bottoms were less variable, with mean coefficients of 

variation <10%. In unmowed enclosures, azinphos-methyl concentrations on 

unobstructed materials (spray cards and alfalfa tops) were more than four times greater 

than those on soil and alfalfa bottom samples (Fig. 2), indicating that the dense alfalfa 

intercepted much of the pesticide spray before it reached ground level. However, initial 

deposition of azinphos-methyl was much greater in mowed than unmowed enclosures 

on alfalfa bottoms and soil (both F > 48; d. f. = 1, 156; P < 0.0001) for both application 

rates. Mean concentrations on mowed alfalfa tended to be slightly greater than those on 

unmowed alfalfa tops (Fig. 2b). 

Residues on Day 0: Relationships with Application Rate 

The concentration of azinphos-methyl residues increased linearly with 

application rate for all sample types and mowing treatments except for spray cards and 

soil samples in mowed enclosures (Fig. 2a). Polynomial regression equations improved 

model fit over that of simple linear equations for residues on spray cards 

and soil samples in unmowed enclosures (both t > 2.2, d. f. = 9, P < 0.052): 

spray card residue = 0.0540 + 8.27(rate) - 0.345(rate2); R2> 0.99 

soil residue = 0.0786 + 1.95(rate) - 0.441(rate2); R2 = 0.60 

The coefficient of the rate term was negative in both cases, indicating decreasing slope 

as application rate increased. 
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Application of 1 kg/ha should deposit 10 lig/cm2 on an unobstructed flat surface. 

However, the slope of the linear relationship between azinphos-methyl residues on 

spray cards and application rate was lower than the expected slope of 10 for the mowed 

treatment (t > 5.9, d. f. = 10, 2-sided P < 0.0001) and 95% confidence intervals for 

mean residues did not include predicted values for the unmowed treatment (Fig. 2a). 

Thus, the amount of active ingredient deposited was less than the application rate 

determined by the concentration of the spray mixture. For both mowing treatments, the 

slopes of the relationships between day 0 residues on soil samples and application rate 

were much lower than expected for an unobstructed surface (Fig. 2a). 

Residue concentrations on unobstructed alfalfa (mowed alfalfa and unmowed 

alfalfa tops; Fig. 2b) were underestimated by the vegetation nomogram (Urban and 

Cook 1986). The nomogram predicts that azinphos-methyl residues (Y) on alfalfa, 

expressed in ppm, should increase with application rate (X), expressed in kg/ha, as 

Y = 52X. The slope (+ SE) of this relationship was 60 + 3.2 (R2 = 0.97, n = 12) for 

unmowed alfalfa tops and 70 ± 3.2 (R2= 0.98, n = 12) for mowed alfalfa, both of which 

exceeded the expected slope of 52 (both t > 2.3, d. f. = 10, 2-sided P < 0.041). 

Conversely, concentrations on unmowed alfalfa bottoms (slope = 14 + 1.9; R2 = 0.85) 

were greatly overestimated by the nomogram (t = 20, d. f. = 10, 1-sided P < 0.0001; Fig. 

2b). Mean residue concentrations on mowed alfalfa, unmowed tops, and unmowed 

bottoms in enclosures sprayed with 3.61 kg/ha were, respectively, 3.5, 4.2, and 3.6 

times those in 0.88 kg/ha enclosures. 
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Table 1. Mean coefficient of variation (%) of natural-log-transformed azinphos-methyl 

concentrations on spray cards, soil, and alfalfa samples collected in each of 12 mowed 

and 12 unmowed enclosures within 1 hour after application of 0.88 and 3.61 kg/ha 

(n = 40 per treatment) at Hyslop Agronomy Farm, Benton County, Oregon, 14 July 

1993. 

Application rate (kg/ha) 

0.88 3.61 

Unmowed Mowed Unmowed Mowed 

Spray cards 24% 18 10 12 

Soil samples 419 766 312 39 

Alfalfa tops: 10 9 tops: 7 7 

bottoms: 31 bottoms: 21 
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Figure 2. Residue concentrations (means and 95% confidence intervals) on (a) 
canopy-level spray cards and soil samples and (b) alfalfa samples collected <1 hour 
after application of azinphos-methyl at 0.0, 0.88, and 3.61 kg/ha on mowed and 
unmowed alfalfa at Hyslop Agronomy Farm, Benton County, Oregon, 14 July 1993. 
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Residue Degradation 

Degradation curves for azinphos-methyl residues on alfalfa were best fit by 

cubic regression equations for all sample types, application rates, and mowing 

treatments (Fig. 3). Half-life estimates for residues on alfalfa ranged from 1.7 to 5.1 

days and did not differ systematically among mowing or application rate treatments. 

Concentrations on mowed alfalfa remained higher than those on unmowed bottoms (all 

F > 9.7; d. f. = 1,76; P < 0.003) through day 28 postspray (Fig. 3b). Similarly, 

concentrations in enclosures sprayed with 3.61 kg/ha remained higher than 0.88 kg/ha 

(all F > 5.8; d. f. = 1,76; P < 0.02). Mean concentrations on alfalfa tops (Fig. 3a) 

differed between application rates at all sampling times (all F > 75; d. f= 1,38; P < 

0.0001) except day 28 postspray (F = 2.1; d. f. = 1, 38; P = 0.15). 

DISCUSSION 

Estimation of EEC by the vegetation nomogram (Urban and Cook 1986) used 

by the EPA in pesticide risk assessment requires the assumption that residue 

concentrations increase proportionately with application rate. Our results support this 

assumption. The 3.61 kg/ha rate was 4.1 times greater than 0.88 kg/ha, and ratios of 

mean residue concentrations for the two application rates ranged from 3.5 to 4.2. 

Although residues increased proportionately with application rate, EEC values 

calculated from the nomogram were lower than observed residue concentrations. 

Ideally, the vegetation nomogram predicts maximum expected residue concentrations 

on plant parts (Hoerger and Kenaga 1972). However, we measured mean 

azinphos-methyl concentrations on alfalfa tops and mowed alfalfa bottoms that were as 

much as 37% greater than nomogram predictions, even though spray card 

concentrations were below nominal application rates. Others have also reported mean 

residue levels on alfalfa exceeding nomogram predictions (Bennett et al., in press, and 
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Figure 3. Temporal changes in mean concentration of azinphos-methyl on (a) top 15 
cm of unmowed alfalfa and (b) mowed and bottom 15 cm of unmowed alfalfa after 
application of 0.88 and 3.61 kg/ha on 14 July 1993 at Hyslop Agronomy Farm, Benton 
County, Oregon. 
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references therein). Therefore, our results support modification of the vegetation 

nomogram used in risk assessments to estimate exposure through consumption of 

alfalfa. However, these results do not necessarily indicate that the nomogram 

underestimates residues on other crops. 

Bennett et al. (in press) observed that much greater azinphos-methyl residues 

were deposited on alfalfa at canopy level than at ground level, and suggested that 

exposure of herbivores may be affected by vegetation structure. We found that 

deposition of azinphos-methyl at ground level was greatly affected by vegetation 

structure. In unmowed enclosures, where alfalfa height exceeded 1 m, mean residue 

concentrations on the bottom 15 cm of alfalfa were <25% of those in the canopy. 

Mowing reduced vegetation height, resulting in pesticide residue concentrations on 

alfalfa bottoms that equalled or exceeded values for unmowed alfalfa tops. Thus, 

dietary, dermal, and inhalation exposure of organisms at ground level may depend 

greatly on the structure of vegetation they inhabit. However, exposure of organisms 

feeding primarily in upper vegetation strata may be largely independent of vegetation 

structure. Vegetation structure is not accounted for in EPA risk assessments (National 

Research Council 1983), and therefore represents a potential source of significant 

variation in performance of such risk assessments. 

Persistence of pesticide residues is affected by a variety of environmental 

conditions, including temperature, solar radiation, wind, humidity, and precipitation 

(Willis and McDowell 1987). We hypothesized that reduction of vegetation height by 

mowing would increase the penetration of sunlight and precipitation, resulting in more 

rapid degradation of azinphos-methyl in mowed enclosures. However, azinphos-methyl 

did not degrade more rapidly from mowed alfalfa than from unmowed alfalfa. 

Similarly, precipitation did not seem to affect degradation of residues. Although rain 

fell intermittently for several days after we applied the chemical, our estimates of 

residue half-life (1.7-5.1 days) were comparable to those reported by Bennett et al. 

(2.5-4.5 days; in press) for azinphos-methyl applied on alfalfa in 1992, when no rain 

fell for 7 days after spraying. 
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Relaible characterization of ecological risk requires accurate estimates of 

bioavailability and exposure. Our findings indicate that the vegetation nomogram 

(Urban and Cook 1986) used by the EPA in risk assessments can underestimate 

residues on alfalfa. Also, factors that are not accounted for by the nomogram, such as 

vegetation structure, precipitation, and feeding behavior, can strongly influence the 

exposure of target and nontarget organisms to pesticides. Incorporation of these 

factors, along with the best available residue data, into the estimation of exposure may 

be necessary for complete and accurate assessment of pesticide risks. 
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ABSTRACT 

The Quotient Method (QM), a laboratory-based risk assessment methodology 

used by the Environmental Protection Agency to evaluate pesticides for registration and 

use, has not been thoroughly field-tested and its performance has not always been 

reliable. Our objective was to test whether differences in the diets of nontarget 

organisms or in vegetation structure could result in adverse ecological effects not 

predicted by the QM. In April and early May 1993, we established populations of 

herbivorous gray-tailed voles (Microtus canicaudus) and omnivorous deer mice 

(Peromyscus maniculatus) in 24 0.2-ha enclosures planted with alfalfa (Medicago 

sativa). We monitored small mammal populations by live trapping from May to August 

1993. Alfalfa in twelve enclosures was mowed on 22 June to reduce vegetation height. 

On 14 July, we applied the organophosphorus insecticide azinphos-methyl at 0, 0.88, 

and 3.61 kg/ha. We compared predictions of risk with observed effects on population 

density and growth, survival, reproductive activity, recruitment, body growth, 

movements, and diets of the small mammals. The QM predicted that the 3.61 kg/ha 

rate posed high risk to gray-tailed voles but low risk to deer mice, and that 0.88 kg/ha 

posed low risk to both species. 

Treatment with azinphos-methyl at 3.61 kg/ha reduced population density and 

growth, survival, recruitment, and body growth of voles in both mowed and unmowed 

enclosures. Survival of female voles exposed to 3.61 kg/ha was lower in mowed than 

in unmowed enclosures. The 0.88 kg/ha rate affected vole recruitment and body growth 

only in mowed enclosures. Most effects on voles were short-lived (<27 days) but vole 

densities in 3.61 kg/ha enclosures remained depressed >6 weeks after spraying. 

Azinphos-methyl did not cause detectable effects on reproductive activity of female 

voles, although the statistical power for detecting such effects was low (1-13 < .44). We 

found no differences among application rates in movement distances of voles 2-5 days 

after spraying; thereafter, movements of males were greatest in 3.61 kg/ha enclosures. 

The 3.61 kg/ha application rate resulted in a 42% decrease in deer mouse densities in 

mowed enclosures within five days after spraying, but we could not detect any adverse 
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effects of the insecticide on deer mice in unmowed enclosures. Azinphos-methyl may 

have reduced deer mouse recruitment in mowed enclosures. Analysis of deer mouse 

feces indicated that consumption of arthropods just after spraying was greater in 

insecticide-treated enclosures than in controls. Reproductive activity, body growth, and 

movements of deer mice were highly variable and not significantly affected by 

azinphos-methyl. 

Low vegetation height resulted in adverse insecticide effects on voles and deer 

mice at supposedly low-risk application rates. However, we did not find that 

insectivorous feeding behavior of deer mice made them more susceptible than predicted 

by the QM. Precipitation after spraying may have increased exposure of the mammals 

to azinphos-methyl, resulting in greater effects on voles than reported in a similar 

experiment. In general, the QM adequately predicted effects on the small mammals, 

but its performance may be affected by vegetation structure and precipitation. 

INTRODUCTION 

Both intrinsic and extrinsic factors may cause variation among organisms in 

their susceptibility to pesticides. Such variation may hinder assessment of the 

ecological risks these chemicals pose. Before the U. S. Environmental Protection 

Agency (EPA) registers a pesticide for use, it is required under the Federal Insecticide, 

Fungicide, and Rodenticide Act of 1970 to evaluate the likelihood that applying the 

pesticide will cause unreasonable ecological damage. The EPA uses a Quotient Method 

(QM) to conduct preregistration ecological risk assessments (Urban and Cook 1986). 

The quotient of risk for a particular chemical and species of test organism is calculated 

by dividing the estimated exposure by the estimated hazard. For the QM, exposure is 

generally measured by the expected environmental concentration (EEC), which, for 

terrestrial animals, represents the estimated concentration in or on primary foods. To 

calculate EEC, the EPA uses a nomogram derived from a database of residues measured 

on crops (Urban and Cook 1986, based on Hoerger and Kenaga 1972). Hazard in the 

QM denotes the chemical's potential to cause adverse effects. Although hazard may be 
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estimated by a variety of ecotoxicological endpoints (e.g., reproduction, mutagenesis, 

growth, bioconcentration potential) on any receptor organism, acute toxicity tests (LD50 

or LC50) on standard laboratory animals are usually used. A risk quotient >1 means that 

expected exposure exceeds the estimated hazard, which is interpreted to indicate high 

risk. Quotients considerably <1 indicate comparatively low risk. To account for error 

and differences among species, the EPA presumes risk at a quotient of 0.2 (EEC = 1/5 

the LC50; National Research Council 1983). 

The QM allows a rapid semiquantitative measure of the potential risks of 

applying a particular chemical. However, assumptions underlying the QM have been 

challenged after chemicals approved for registration based on quotient values indicating 

"low risk" were implicated in causing wildlife die-offs (Grue et al. 1983, Blus et al. 

1989). Estimation of EEC incorporates the assumption that pesticide residue 

concentrations increase proportionately with application rate (i.e., doubling the 

application rate should double residue concentrations). Estimation of hazard by LD50 or 

LC50 tests on laboratory animals requires the assumption that animals will not select or 

avoid contaminated foods and that indirect effects are negligible. These assumptions 

are largely untested. Carey (1993) and Bennett et al. (in press) suggested that 

interception of insecticide sprays by dense vegetation may reduce exposure of animals 

at ground level. Acute toxicity of insecticides differs among test species (Cholakis et 

al. 1981, Fleming and Grue 1981) but diet may affect susceptibility independently of 

toxicity. By selectively feeding on intoxicated arthropods after spray, insectivores may 

receive greater doses of insecticides than herbivores (Morris 1970, Robel et al. 1972, 

Stehn et al. 1976). Insecticides may also affect insectivores indirectly by reducing the 

abundance of arthropod prey (Barrett and Darnell 1967). Such differential effects 

among species may alter the structure of ecological communities (Barrett and Darnell 

1967, Morris 1970). 

Our objective was to determine if differences in vegetation structure, caused by 

mowing, or species-specific differences in diet alter the responses of populations 

(density, growth rate, and recruitment) and individuals (survival, body growth, 

reproductive activity, and movements) of gray-tailed voles (Microtus canicaudus) and 
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deer mice (Peromyscus maniculatus) to field application of the organophosphorus (OP) 

insecticide azinphos-methyl (0,0-dimethyl S-[(4-oxo-1,2,3-benzotriazin-3(4H)-y1) 

methyl] phosphorodithioate; trade name Guthion 2S ®; Mobay Corporation, 

Agricultural Chemical Division, Kansas City, Missouri, USA). Small mammals are 

appropriate test animals because they are ubiquitous, common in agricultural areas, and 

vulnerable to contaminant exposure across soil, air, water, and vegetation media 

(Talmage and Walton 1991). Gray-tailed voles and deer mice are abundant in 

agricultural fields in the Willamette Valley, Oregon. Gray-tailed voles are primarily 

herbivorous (Verts and Carraway 1987, Edge et al., unpublished data), whereas deer 

mice feed on seeds, fruits, arthropods, and fungi (Wolff et al. 1985). Diets of deer mice 

may consist almost entirely of arthropods when arthropods are abundant (Jameson 

1952). We used azinphos-methyl for this experiment because it has been implicated in 

wildlife kills (Grue et al. 1983, Durda et al. 1989) and because the QM classified it as 

posing low risk to mammals. Azinphos-methyl is more toxic to gray-tailed voles (LC50 

= 297 ppm, LD50 = 32 mg/kg) than to deer mice (LC50 = 1,200 ppm, LD50 = 48 mg/kg; 

Meyers and Wolff 1994). 

We hypothesized that azinphos-methyl would adversely affect population 

density and growth, survival, reproductive activity, recruitment, and body growth of 

small mammals, and that these effects would increase in magnitude with application 

rate. We hypothesized that movements of the mammals would either increase after 

spray, as individuals attempt to move to uncontaminated areas, or decrease because of 

pesticide-induced intoxication. We hypothesized that azinphos-methyl would have 

greater effects in enclosures in which vegetation density had been reduced by mowing. 

Finally, we hypothesized that the insectivorous deer mice in unmowed enclosures 

would be adversely affected at lower application rates than predicted by the QM. 
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METHODS  

Experimental Design 

We used a replicated, 3 x 2 factorial experiment to compare responses of small 

mammals to application of azinphos-methyl at 0.0, 0.88, and 3.61 kg/ha in mowed and 

unmowed field enclosures; 0.84 kg/ha is the label rate for azinphos-methyl for alfalfa. 

Four replicate enclosures were randomly assigned to each combination of mowing and 

azinphos-methyl treatments. 

Study Area and Enclosures 

We conducted our experiment at Oregon State University's Hyslop Agronomy 

Farm, approximately 10 km north of Corvallis, Oregon. The site was surrounded by 

agricultural fields of various crops and had an elevation of approximately 70 m, level 

topography, and well-drained, silty-clay loam soil. During this study, the experimental 

site received 33.9 cm of rain, 25.7 cm of which fell during April and May. 

We used 24 0.2-ha (45 x 45 m) enclosures constructed of galvanized sheet metal 

extending approximately 1 m above ground and 0.6-1 m below. Corners and vertical 

supports were blocked with sheet-metal baffles to prevent escape by climbing rodents. 

Alfalfa (Medicago sativa) was planted in each enclosure in spring 1991. A variety of 

annual and perennial weeds were a minor component (<5% cover), although their 

prevalence varied among enclosures. The herbicides Paraquat® and Sencor® were 

applied to all enclosures in March 1993 to kill annual weeds. A 1-m strip along the 

inside of each fence was mowed frequently to minimize small mammal activity near the 

fence and to prevent contact with high concentrations of insecticide dripping down the 

fence after application. Alfalfa in all enclosures was mowed to a height of 

approximately 8 cm on 4-5 May 1993. 
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Study Animals 

Populations of gray-tailed voles were established in the enclosures in April 1992 

for a prior pesticide study (Edge et al., in press). Voles were trapped 6-8 April 1993 

and redistributed among the enclosures to equalize populations at approximately 10 

heterosexual pairs/enclosure and to minimize inbreeding. Each untagged vole was 

marked with a numbered aluminum ear tag before release. We released five pairs of 

wild-caught deer mice into each enclosure 8-14 May 1993. Deer mice were tagged 

when first captured in the enclosures. We provided each enclosure with five nest boxes, 

constructed from hollow concrete construction blocks (after King 1983), to minimize 

the potential for competitive exclusion of deer mice. Each nest box had two chambers 

with cotton batting as nest material and two entrance/exit holes too small for most adult 

gray-tailed voles. 

Trapping 

Each enclosure had 75 Sherman traps and 25 pitfall traps in a 10 x 10 array with 

5 m between stations. Pitfall traps, 45 cm deep and 15 cm in diameter, were placed at 

all odd-number trap stations (e.g., 3-3, 5-7) and 8- x 9- x 23-cm Sherman live traps 

(model LFATG; H. B. Sherman Traps, Inc., Tallahassee, Florida) were placed at the 

remaining stations. Accumulation of rainwater prevented the use of most pitfall traps 

until early July. We trapped small mammals for four consecutive nights (four trap 

nights = one trap period) at two-week intervals from 18 May to 27 August 1993. Only 

one week separated the trap periods before and after we applied azinphos-methyl. 

Traps were set and baited with oats in the evening, then examined and closed the 

following morning. 

Ear tag number, species, sex, reproductive condition, body mass, and trap 

station were recorded for each animal captured. We released each animal at its site of 

capture. We assumed that all newly tagged animals had been born in the enclosures and 

defined them as recruits. Body mass was measured to the nearest 1 g with Pesola® 
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spring scales. We weighed each animal at first capture each trap period. Animals 

captured on the first trap night of a trap period were reweighed if recaptured on the 

fourth trap night, providing us with a measure of mass change over three days. We 

defined voles with body mass >30 g and deer mice >18 g as adults. We considered 

females to be in reproductive condition if they were lactating or pregnant or, for voles, 

if they had widely open pubic symphyses. Because pregnancy in these species is 

obvious only within one week of parturition, we considered lactating females and those 

with wide pubic symphyses to have been pregnant during the previous trap period, if 

the animals were not also lactating at that time. 

To reduce within-treatment variation in abundance and reduce interspecific 

competition for space, we kept vole densities at approximately 15 adults of each sex per 

enclosure by removing young and untagged voles each trap period until 30 June, two 

weeks before azinphos-methyl was applied. Enclosures with fewer than 15 voles of 

each sex were supplemented with voles removed from other enclosures. Between 30 

June and 3 July, we supplemented 11 mowed enclosures with a total of 59 female and 

46 male voles (2-10 females and 0-10 males/enclosure), which were removed from 

unmowed enclosures and grassy berms outside the enclosures. We added five pairs of 

deer mice to one enclosure, in which the population had gone extinct, on 12-13 June. 

Mowing and Insecticide Application 

On 22 June, alfalfa in 12 randomly chosen enclosures was mowed with a flail 

mower towed behind a tractor. Azinphos-methyl was applied on 14 July using a 

four-wheel all-terrain vehicle and trailer tank with 7.6-m spray booms. Four mowed 

and four unmowed enclosures were sprayed with each of the 0.0, 0.88, and 3.61 kg/ha 

application rates. Spray booms were adjusted to apply the chemical from 

approximately 45 cm above the vegetation in both mowed and unmowed enclosures. 

Spray tank contents were sampled before spraying the first enclosure and resampled 

after spraying the last of the eight enclosures for each application rate. We report actual 

application rates, determined by calculating the mean sample concentration for each 
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application rate. Approximately 0.08 cm of rain fell on 14 July, beginning within one 

hour after azinphos-methyl was applied. Rain fell again during six of the first nine days 

after spraying, totalling 1.6 cm. 

Diet 

We used microhistological examination of feces to quantify consumption of 

arthropods by deer mice. We collected feces from deer mice captured in nest boxes on 

the day before the beginning of each of five trap periods. For each sampling date, feces 

from each enclosure were combined in a glass vial containing 70% isopropyl alcohol. 

Subsamples from each vial were mounted on two slides and fifty fields of view on each 

slide were systematically examined through a 100X microscope. The presence or 

absence of invertebrate or plant tissue was recorded for each field. Plant and arthropod 

tissues were identified by referring to reference slides containing fecal material from 

animals that had been fed only plants or arthropods for several days. We did not 

identify plant or arthropod taxa. For the two slides from each enclosure and sampling 

date, we used the mean proportion of nonempty fields that contained arthropod material 

as an index to the prevalence of arthropods in the diets of deer mice. Because 

digestibility differs among food types, this method did not allow us to estimate the 

absolute proportion of the diet composed of arthropods. However, it provided a 

measure of the relative dietary prevalence of arthropods that we could examine for 

differences among treatments and sampling dates. 

Population and Individual Measures 

Values for population density and growth, survival rate, reproductive activity, 

recruitment, body growth, and movements were determined for each species, enclosure, 

and trap period of the study. We used program CAPTURE (Rexstad and Burnham 

1992), under the closed population model incorporating heterogeneous capture 

probabilities among animals, to estimate densities of small mammal populations for 
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each trap period. We measured weekly growth rate for each population by dividing the 

change in ln(density + 1) between successive trap periods by the number of weeks 

between trap periods. We used the mean maximum distance moved (MMDM) 

calculated by program CAPTURE (White et al. 1978) as a relative index to the activity 

of small mammals; absolute estimates of activity were impossible to obtain using our 

methods. MMDM was calculated as the average, for each species and enclosure, of the 

maximum straight-line distances animals moved between capture locations within a trap 

period (Wilson and Anderson 1985). 
We estimated sex-specific survival rates using derivations of the 

Cormack-Jolly-Seber mark-recapture methodology (Cormack 1964, Jolly 1965, Seber 

1965). We used programs RELEASE (Burnham et al. 1987) and SURGE (Pradel 

and Lebreton 1991) for survival modelling. We adopted the modelling philosophy 

espoused by Burnham et al. (1987) and Lebreton et al. (1992), in which the goodness 

of fit of each model and the number of parameters required is evaluated. Good 

models are those that fit the data well, have small numbers of parameters, and reflect 

what is already known about the species. Specific hypotheses can be tested by 

comparing goodness of fit of competing models. We used the following approach: 

(1) populations within enclosures were each modelled separately with an emphasis on 

sex-specific differences; (2) because most replicates within a treatment had the same 

best-fit model, those data were combined (Burnham et al. 1987:250); and (3) 

treatment effects on survival were explicitly tested by comparing relative fit among 

models. The most parsimonious models were identified using Akaike's Information 

Criterion (Akaike 1973, Lebreton et al. 1992:83-85). Model notation follows that of 

Lebreton et al. (1992). This approach has been used and is further explained by 

Paradis et al. (1993) in estimating sex- and age-specific survival rates of the 

Mediterranean vole (M. duodecimcostatus) in Europe. After the initial analyses on 

gray-tailed voles, the data for the two sexes were modelled separately to reduce the 

complexity of the problem, and because all initial analyses revealed sex-specific 

survival and capture probabilities. 
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We measured recruitment by (1) the proportion of animals captured composed 

of recruits, and (2) the number of recruits captured in an enclosure per adult female 

captured in the same enclosure three to four weeks (two trap periods) earlier. The 

time lag allowed recruits to reach trappable size. We measured reproductive activity 

by the proportion of adult females in reproductive condition. We measured body 

growth rates by the average percent change in body mass (100 x change in 

mass/initial mass) of males between the first and fourth trap nights of each trap 

period. We did not analyze body growth of females because of confounding effects 

associated with pregnancy and lactation. 

Statistical Analysis 

We used Statistical Analysis System (SAS Version 6.05; SAS Institute, Inc. 

1990) to conduct all data analyses. To increase statistical power, we used a = .1. 

We excluded animals from all analyses for the trap period when they were 

introduced into an enclosure. Because the number of untagged animals we captured 

during a trap period depended on the length of time since the preceding trap period, 

we adjusted measures of recruitment for each trap period by the number of weeks 

since the preceding trap period. We analyzed the arcsine of the square-root of 

proportions to normalize distributions and stabilize variances. Means and 90% 

confidence intervals for proportions are back-transformed. 

We used multivariate repeated-measures analysis of variance to test whether 

population and individual measures differed among treatments during any trap period 

of the study. Significant mowing x application rate interactions provided evidence 

that azinphos-methyl had different effects in mowed and unmowed enclosures. We 

used Tukey's Studentized range test to test for pair-wise differences between 

treatment means when significant application rate effects or mowing x application 

rate interactions were detected by the analysis of variance. 

We used a univariate analysis, treating mowing and application rate as 

whole-plot factors and time as a split-plot factor (Huynh and Feldt 1970), to test for 
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effects of treatment and time on MMDM and body growth. We MMDM movements 

separately for males and females and used the mean number of captures per animal 

in each enclosure and trap period as a covariate. Population density was also 

included as a covariate because home-range size, and therefore movement distance, 

of small mammals is known to be strongly density-dependent (Wolff 1985, Erlinge et 

al. 1990). To adjust for size-dependent rates of body growth, we included as a 

covariate the average initial body mass measurement, for each enclosure and trap 

period, of animals included in analysis of body growth. Because of missing values, 

we only analyzed body growth for four trap periods between 8 July and 13 August. 

We present covariate-adjusted means, F-values, and P-values for treatment effects on 

MMDM and body growth. 

We used a general linear model procedure (SAS Institute, Inc. 1990:891-996) 

to test for effects of and interactions between mowing and application rate treatments 

on the prevalence of arthropod material in deer mouse feces collected on 15 July, the 

day after azinphos-methyl was applied. Missing values prevented analysis of dietary 

data from more than one trap period. 

We estimated power (1-13) for detecting the observed effect sizes for 

insecticide application and mowing x application rate interactions on population 

density and growth, reproductive activity, and recruitment for each postspraying trap 

period or trap-period interval. The noncentrality parameter 4) and degrees of freedom 

were calculated for each test for insecticide effects and interactions (Neter and 

Wasserman 1974:584), and power for a = .1 was determined graphically for each 4), 

using a graph drawn from published power values (Tiku 1972). We present 

estimated power for tests for which we failed to reject the null hypotheses of no 

treatment effects and no interactions. 
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RESULTS 

Vegetation Structure and Quality 

Mowing reduced the height of the alfalfa canopy from >1 m to approximately 

8 cm. Mowed alfalfa rapidly regrew to approximately 30 cm in height by 14 July, 

when azinphos-methyl was applied. In addition to reducing canopy height, mowing 

resulted in qualitative changes in the alfalfa crop. Unmowed alfalfa became dry and 

woody with little new growth, especially at ground level, by August. However, 

mowed alfalfa produced shoots that remained green and succulent through the end of 

our experiment. 

Small Mammals 

In approximately 77,000 trap nights between 18 May and 30 August 1993, 

3,460 gray-tailed voles were captured 15,765 times and 402 deer mice were captured 

3,976 times. 

Gray-tailed voles 

Population density and growthMean (+ SE) density of voles was 43 + 3 
voles/enclosure (range = 0-170). Mowing resulted in lower growth rates (F = 6.9; 

d. f. = 1, 18; P = .017; Fig. lb) and densities (F = 18; d. f. =1, 18; P = .0005; Fig. 
la) of vole populations. During the interval between trap periods 2 and 3, when 

enclosures were mowed, mean (+ SE) density of voles decreased from 32 + 3.4 to 17 

+ 2.8 voles/mowed enclosure and increased from 29 + 3.4 to 31 + 2.1 

voles/unmowed enclosure. Because we added voles to mowed enclosures, mean 

(+ SE) densities of voles were similar in mowed (36 + 3.6) and unmowed (35 + 3.3) 

enclosures during the last trap period (4) before azinphos-methyl application. 
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We detected an interaction between effects of mowing and azinphos-methyl 

on growth of vole populations during the trap-period interval (4 to 5) when we 

applied azinphos-methyl (F = 4.3; d. f. = 2, 18; P = .031; Fig. la) and on vole 

densities during trap period 5, which began two days after application (F = 2.7; d. f. 

= 2, 18; P = .098; Fig. lb). However, the interaction between treatments did not 
take the expected form. Mean population growth rates and postspray densities 

decreased with increasing application rate, as expected, but were higher in mowed 

than unmowed enclosures treated with 0.88 and 3.61 kg/ha and lower in mowed than 

unmowed 0 kg/ha enclosures. No interaction between the effects of mowing and 

insecticide on densities or growth rates of vole populations was evident for any other 

trap period or trap-period interval (all F < 1.2; d. f. = 2, 18; P > .32; 1-13 < .34). 

Growth rates of vole populations (Fig. lb) between trap periods 5 and 6 (2-15 days 

after spraying) differed among insecticide treatments (F = 27; d. f. = 2, 18; P < 

.0001); growth rates were lower in enclosures sprayed with 3.61 kg/ha than in 

enclosures sprayed with 0 or 0.88 kg/ha (Tukey, P < .05), but were similar between 

0.88 and 0.0 kg/ha treatments (Tukey, P > .1). Growth rates of vole populations did 

not differ among insecticide treatments after trap period 6 (all F < 0.61; d. f. = 2, 18; 

P > .56; 1-13 < .22). However, vole densities (Fig. la) differed among application 
rates during trap periods 6, 7, and 8 (all F > 7.3; d. f. = 2, 18; P < .005). Mean vole 

densities in enclosures treated with 3.61 kg/ha remained less than half those treated 

with 0.0 or 0.88 kg/ha for the last three trap periods (Tukey, all P < .05). During 
trap period 6, vole densities were slightly lower in enclosures treated with 0.88 kg/ha 

than in control enclosures (Tukey, P < .1). Growth of vole populations was more 
rapid in mowed than in unmowed enclosures during the intervals from trap period 6 

to 7 and 7 to 8 (both F > 3.8; d. f. = 1, 18; P < .067), resulting in higher densities in 
mowed enclosures during trap period 8 (F = 6.7; d. f. = 1, 18; P = .018). 

Survival ratesSurvival estimates for female voles were consistently higher 

(+0.02-0.08) than estimates for males during all preliminary analyses for single 

enclosures, and survival estimates after replicates were combined generally were 

consistent with the preliminary findings. Male capture probabilities (0.84-0.96) were 

http:0.84-0.96
http:0.02-0.08
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consistently higher and significantly different from female capture probabilities 

(0.54-0.83) during all preliminary analyses for single enclosures. Most models 

indicated that capture probabilities did not vary with time for males but female 

capture probabilities in mowed enclosures were lower for the first 2-5 weeks than for 

the rest of the experiment. 

Our best model of male survival rates revealed both mowing and insecticide 

related decreases in survival (Fig. 2a). Male survival rates in all mowed enclosures 

were less than half of survival rates in unmowed enclosures the trap-period interval 

(2 to 3) when mowing occurred. Survival rates were substantially lower in both 

mowed and unmowed 3.61 kg/ha enclosures and somewhat lower in mowed 0.88 

kg/ha enclosures than other enclosures for two trap-period intervals (5 to 6 and 6 to 

7) immediately after the insecticide application before recovering towards prespray 

levels. This model incorporated capture probabilities that were equal among all 

groups and constant over time. 

Our best model of female survival rates incorporated a mowing response in 

capture probabilities and both mowing and pesticide responses in survival rates. 

Capture probabilities of female voles in mowed enclosures (0.62 + 0.04) were lower 

for two or three trap periods after mowing than capture probabilities during other 

periods and for unmowed groups (0.81 + 0.03). Survival rates of female voles were 

constant and equal for all groups during the intervals from trap period 2 to 3 and 3 

to 4, and then declined in the 3.61 kg/ha enclosures for two trap-period intervals (5 

to 6 and 6 to 7) following application of the pesticide (Fig. 2b). The pesticide 

response was more pronounced in mowed enclosures than in unmowed enclosures 

during the second trap-period interval (6 to 7) following application of the pesticide. 

Reproductive activityThe proportion of adult female voles in reproductive 
condition averaged 0.77 (range = 0.13-1) and did not differ among azinphos-methyl 

treatments (all F < 2.1; d. f. = 2, 18; P > .15; 1-(3 < .37) or manifest treatment 

interactions (all F < 1.5; d. f. = 2, 18; P > .26; 1-13 < .44) during any trap period. 

Female reproductive activity was lower in mowed than in unmowed enclosures 

during trap period 4, the second trap period after mowing (F = 11; d. f. = 1, 18; 

http:0.54-0.83
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P = .0042) and higher in mowed enclosures during trap period 8 (F = 6.9; d. f. = 
1, 18; P = .017). 

RecruitmentThe mean weekly proportion of captured vole composed of 
recruits was 0.16 (range = 0-0.62; Fig. 3a). The proportion of recruits was lower in 

mowed than in unmowed enclosures during trap period 4 (F = 3.3; d. f. = 1, 18; P = 

.087). The proportion of vole recruits did not differ significantly among treatments 

during trap period 5, just after azinphos-methyl application (all P > .1, 1-13 < .49), 

but differed among application rates during trap period 6 (F = 5.1; d. f. = 2, 18; P = 

.017): it was lower in enclosures treated with 3.61 kg/ha than in those sprayed with 

0.0 or 0.88 kg/ha (Tukey, P < .05). Recruits constituted a higher proportion of 

captured voles in mowed than in unmowed enclosures during trap period 8 (F = 5.1; 

d. f. = 1, 18; P = .038). We detected no interaction between mowing and insecticide 

effects on the proportion of recruits during any trap period (all F < 2.0; d. f. = 2, 18; 

1 -1i < 0.49). 

The mean weekly number of vole recruits/adult female was 0.59 (range --

0-3.7; Fig. 3b). Fewer recruits/adult female were captured in mowed than in 

unmowed enclosures during trap period 3, just after mowing (F = 3.9; d. f. = 1, 18; 

P = .063). We found evidence of an interaction between the effects of mowing and 
azinphos-methyl application on vole recruits/adult female during the first (F = 5.1; 

d. f. = 2, 18; P = .017) and second trap periods (5 and 6) after spraying (F = 2.9; 

d. f. = 2, 18; P = .082). During trap period 5 the number of recruits/adult female 
was greater in mowed than in unmowed enclosures for all application rates (Tukey, 

P < .05). During trap period 6, mean recruits/adult female decreased with increasing 

application rate and tended to be lower in mowed than in unmowed enclosures for 

0.0 and 0.88 kg/ha treatments. For both trap periods 5 and 6, the difference between 
mowing treatments was greatest in enclosures treated with 0.88 kg/ha. 

Body growthApplication of azinphos-methyl had effects on vole body 

growth (Fig. 4) that differed among trap periods (F = 4.1; d. f. = 6, 53; P = .002) 

and between mowing treatments (F = 7.8; d. f. = 2, 17; P = .004). From 2 to 5 days 

after insecticide application (trap period 5), male voles lost mass in all enclosures 
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sprayed with 3.61 kg/ha and in mowed enclosures sprayed with 0.88 kg/ha, whereas 

mean change in mass was positive in control enclosures and unmowed enclosures 

treated with 0.88 kg/ha. Initial mass was a highly significant covariate for this 

analysis (F = 30; d. f. = 1, 53; P < .0001). 

MovementsMovements of male voles differed among insecticide treatments 

(F = 3.2; d. f. = 2, 16; P = .066) and tended to decrease over time (F = 2.4; d. f. = 
6, 106; P = .030; Fig. 5). After azinphos-methyl was applied (trap periods 5-8), 

male voles tended to move farther in enclosures treated with 3.61 kg/ha than in 0 or 

0.88 kg/ha enclosures. Effects of the insecticide did not differ between mowing 

treatments (F = 0.49; d. f. = 2, 16; P = .62). Movements of female voles were not 

significantly affected by azinphos-methyl (F = 1.5; d. f. = 12, 106; P = .12). 

However, movements of female voles were reduced in mowed enclosures during the 

trap period (3) just after mowing, resulting in a mowing x trap period interaction (F 

= 2.4; d. f. = 6, 106; P = .033). Capture frequency was a highly significant covariate 

for both sexes (F > 9.3; d. f. = 1, 106; P < .003) 
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Figure 4. Responses (means and 90% confidence intervals) of (a) density and (b) 
growth rate of enclosed populations of gray-tailed voles to mowing and application of 
azinphos-methyl at Hyslop Agronomy Farm, Benton County, Oregon, 1993. 
Significant (P < .1) differences among treatments are denoted by "a" for application rate 
treatments, "m" for mowing treatments, and "i" for treatment interactions. Double 
letters indicate a significance level of P < .01. A "+" indicates addition of supplemental 
voles to mowed enclosures. 
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Figure 5. Gray-tailed vole survival probabilities and standard errors for (a) males and 
(b) females in mowed and unmowed enclosures by application rate and date, for 0.2-ha 
enclosures treated with azinphos-methyl at the Hyslop Agronomy Farm, Benton 
County, Oregon, 1993. A "+" indicates addition of supplemental voles to mowed 
enclosures. 
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Figure 6. Recruitment of gray-tailed voles (means and 90% confidence intervals), 
measured by (a) proportion of captured voles composed of recruits and (b) recruits/adult 
female, in response to mowing and application of azinphos-methyl at Hyslop 
Agronomy Farm, Benton County, Oregon, 1993. Means are adjusted for duration of 
trap-period intervals. Significant (P < .1) differences among treatments are denoted by 
"a" for application rate treatments, "m" for mowing treatments, and "i" for treatment 
interactions. Double letters indicate a significance level of P < .01. A "+" indicates 
addition of supplemental voles to mowed enclosures. 
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Figure 7. Changes in body mass (means and 90% confidence intervals) of gray-tailed 
voles in response to application of azinphos-methyl on 14 July 1993 in mowed and 
unmowed enclosures at Hyslop Agronomy Farm, Benton County, Oregon. Means are 
adjusted for initial mass. 
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Figure 8. Maximum movement distances (means and 90% confidence intervals) of 
gray-tailed voles in response to application of azinphos-methyl on 14 July 1993 in 
mowed and unmowed enclosures at Hyslop Agronomy Farm, Benton County, Oregon. 
A "+" indicates addition of supplemental voles to mowed enclosures. Means are 
adjusted for capture frequency and population density. 
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Deer mice 

Population density and growthPopulations of deer mice ranged from 0 to 

30 mice/enclosure = 7, SE = 0.33; Fig. 6a). Mean population density in mowed 

enclosures sprayed with 3.61 kg/ha decreased 42% during the trap-period interval (4 

to 5) when we applied azinphos-methyl, while populations in unmowed enclosures 

treated with the same application rate grew or did not change. Interactive effects of 

mowing and application rate on population growth were marginally significant for 

that trap-period interval (F = 2.6; d. f. = 2, 18; P = .106; Fig. 6b). However, we 

detected no effects of insecticide or treatment interactions on population density or 

growth during any other trap period or trap-period interval (all F < 1.6; d. f. = 2, 18; 

P > .23; 1-13 < .40). Deer mouse densities were lower in mowed than unmowed 

enclosures during trap periods 3, 5, 6, and 7 (all F > 3.3; d. f. = 1, 18; P < .084). 

Survival ratesPreliminary analyses of individual treatment groups provided 

no evidence for sex-specific difference in survival rates or capture probabilities and 

best models were typically those in which estimates were constant over time. 

However, confidence intervals were very broad because few animals were represented 

in these analyses (n < 25 mice/sex). After we combined the six treatment groups 

into a single analysis, two competing best models emerged providing weak evidence 

for a mowing response in survival rates. One model provided for a constant survival 

rate that was not sex-specific (0.69 + 0.06). The alternative model also set survival 
rates equal for both sexes, but rates in mowed enclosures (0.53 + 0.21) were 

depressed for the intervals from trap period 3 to 4 and 4 to 5. Deer mice in 

unmowed enclosures had a constant survival rate (0.71 + 0.06) that was equal to the 

survival rate in mowed enclosures for the last four trap-period intervals. Both 

models had capture probabilities that were equal for both sexes and constant over 

time (0.77 + 0.07). Models incorporating pesticide-related effects fit our data poorly. 
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Reproductive activityThe average proportion of adult female deer mice in 
reproductive condition declined from 0.46 (range = 0-1) to 0.25 (range = 0-1) 

between trap periods 2 and 8 (14 June - 30 August). During trap period 8, no adult 

female deer mice in reproductive condition were captured in enclosures treated with 

0.88 kg/ha, resulting in a significant difference among application rates for that trap 

period (F = 3.2; d. f. = 2, 18; P = .067). However, the proportion of reproductive 
female deer mice was not significantly affected by mowing (all F < 0.95; 

d. f. = 1, 18; P > .34; 1-13 < .25), insecticide application (all F < 1.6; d. f. = 2, 18; P 

> .23; 1-(3 < .67), or an interaction between treatments (all F < 2.2; d. f. = 2, 18; P > 

.14; 1-(3 < .54) during any other trap period. 

RecruitmentDeer mouse recruitment varied greatly among weeks and 

treatments. The mean weekly proportion of captured deer mice that were recruits 

increased from 0.0011 (range = 0-0.6) before trap period 4 to 0.027 (range = 0-0.86) 

thereafter (Fig. 7). We detected an interaction between mowing and application rate 

on the proportion of recruits during trap period 5, the first postspraying trap period 

(F = 2.9; d. f. = 2, 18; P = .083); the proportion of recruits was higher in mowed 

than in unmowed control enclosures and lower in mowed than in unmowed 

enclosures treated with 0.88 and 3.61 kg/ha. The proportion of recruits was lower in 

mowed than in unmowed enclosures during trap period 6 (F = 6.3; d. f. = 1, 18; P = 

.021). 

The mean weekly number of deer mouse recruits/adult female increased from 

0.0089 (range = 0-0.3) before trap period 4 to 0.24 (range = 0-1) thereafter, and was 

not significantly affected by mowing (all F < 2.1; d. f. = 1, 18; P > .17; 1-(3 < .41), 
insecticide application (all F < 1.7; d. f. = 2, 18; P > .21; 1-(3 < .40), or an 

interaction between treatments (all F < 2.5; d. f. = 2, 18; P > .11; 1-(3 < .58) during 

any trap period of the study. 

Body growthBecause of missing values, we were only able to analyze body 

growth of deer mice in 13 enclosures (2/treatment, except 3 unmowed-3.61 kg/ha). 

Initial mass was a highly significant covariate (F = 16; d. f. = 1, 20; 

http:unmowed-3.61
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P = .0008), but body growth did not differ among trap periods or treatments (all 

P > .14). 

MovementsWe did not detect any effects of azinphos-methyl on 
movements of deer mice of either sex (both F < 0.86; d. f. = 6, 106; P > 0.59). 

MMDM of males tended to be higher in mowed than in unmowed enclosures (F = 

5.0; d. f. = 1, 16; P = 0.039) and varied among trap periods (F = 2.4; d. f. = 6, 106; 

P = 0.030). For both male and female deer mice, density-adjusted MMDM was 

strongly associated with capture frequency (both F > 43; d. f. = 1, 106; P < 0.0001) 

but not with population density (both F < 1.1; d. f. = 1, 106; P > 0.29). 

DietThe prevalence of arthropod material in deer mouse feces was similar 

among application rate treatments before the insecticide was applied (Fig. 8). 

However, on the day after insecticide application, arthropod material was more 

prevalent in deer mouse feces collected from insecticide-treated enclosures than in 

those from control enclosures (F = 24; d. f. = 2, 6; P = .0014), with no difference 

between 0.88 and 3.61 kg/ha application rates (Tukey, P > 0.1). For each application 

rate, the incidence of arthropod material in deer mouse feces the day after spraying 

was greater in unmowed than in mowed enclosures (F = 16; d. f. = 1, 6; P = .0075). 

By two weeks after spraying, the incidence of arthropod material in deer mouse feces 

was similar among application rates. 
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Figure 9. Responses (means and 90% confidence intervals) of (a) density and (b)  
growth rate of enclosed populations of deer mice to mowing and application of  
azinphos-methyl at Hyslop Agronomy Farm, Benton County, Oregon, 1993.  
Significant (P < .1) differences among treatments are denoted by "a" for application rate  
treatments, "m" for mowing treatments, and "i" for treatment interactions. Double  
letters indicate a significance level of P < .01.  
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Figure 10. Proportion (means and 90% confidence intervals) of captured deer mice 
composed of recruits, in response to mowing and application of azinphos-methyl at 
Hyslop Agronomy Farm, Benton County, Oregon, 1993. Means are adjusted for 
duration of trap-period intervals. Significant (P < .1) differences among treatments are 
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Figure 11. Incidence of arthropod material (means and 90% confidence intervals), 
determined by microhistological analysis, in the feces of deer mice in enclosed alfalfa 
plots before and after application of azinphos-methyl on 14 July 1993 at Hyslop 
Agronomy Farm, Benton County, Oregon. Significant (P < .1) differences among 
application rate treatments are denoted by "a." Double letters indicate a significance 
level of P < .01. 
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DISCUSSION 

Insecticide Effects 

The QM characterized 3.61 kg/ha of azinphos-methyl as "high risk" for 

gray-tailed voles but "low risk" for deer mice. Consistent with this characterization, 

3.61 kg/ha of azinphos-methyl reduced recruitment, survival, and body growth of 

voles, resulting in vole densities <40% of controls. However, population growth 

rates and recruitment of deer mice in mowed enclosures were also reduced by the 

3.61 kg/ha rate, which was predicted to pose low risk to deer mice. Reproductive 

activity was not significantly affected for voles or deer mice, even at 3.61 kg/ha, 

although power to detect such effects was low (1-(3 < .44). Movements of male voles 

were positively associated with insecticide application, but we found no insecticide 

effects on movements of females. All insecticide effects were manifested within 15 

days after spraying. Effects on population growth, recruitment, and body growth 

were detectable for only one trap period, whereas differences in population densities 

and movements of male voles persisted until the end of the experiment, over six 

weeks after spraying. 

These results provide evidence that the primary effect of azinphos-methyl was 

a short-term increase in mortality of small mammals, without long-term toxic effects. 

Survival rates of voles in enclosures treated with 3.61 kg/ha were reduced for only 

15 days after application. Although vole densities in enclosures sprayed with 3.61 

kg/ha remained approximately half of those that received lower pesticide treatments 

until the end of the study, population growth trajectories after 1 August were parallel 

for all application rates, indicating that azinphos-methyl did not have long-term 

effects. Azinphos-methyl is a relatively short-lived pesticide, and its half-life on 

alfalfa was less than five days (Chapter II, see also Bennett et al., in press). 

Symptoms of OP intoxication in mammals are also generally of short duration, with 

substantial recovery within 48 h after a single exposure (Pasquet et al. 1976, Montz 

and Kirkpatrick 1985b). Although reductions in survival, population growth, and 
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recruitment of voles were short-lived, vole populations treated with 3.61 kg/ha 

remained substantially smaller than controls for more than six weeks. This indicates 

that even a highly fecund species may not recover quickly from the short-term, acute 

effects of OP insecticides. 

We could not detect any insecticide effects on the proportion of adult female 

small mammals that were pregnant or lactating. This measure of reproductive 

activity would have been affected by reductions in birth rate or neonatal survival. 

OP's can disrupt production of reproductive hormones (Civen et al. 1977, Rattner 

and Michael 1985) and thus may affect mating and parental behaviors (Alcock 1989; 

pp. 84-88), gamete production (Russell et al. 1987), and lactation (Barnes and Denz 

1951) in mammals. Also, OP's can cross the placental barrier (Ackermann and 

Engst 1970) and are excreted in milk (Mosha et al. 1991), resulting in direct fetal 

and neonatal toxicity (Fish 1966, Budreau and Singh 1973, Short et al. 1980). 

Finally, physiological stress on female mammals, due to direct toxicity or feed 

aversion, can cause reproductive delay, embryo resorption, or stillbirth (Linder and 

Richmond 1990, Dost 1991). However, the potential of OP's to impact mammalian 

reproduction has not been confirmed by other field studies (Jackson 1952, Montz et 

al. 1984, Carey 1993). 

If the reproductive activity of females was not affected, then reductions in 

recruitment of voles and deer mice probably resulted from increased juvenile 

mortality. Negative effects on the proportion of recruits indicate that 
azinphos-methyl caused greater mortality of juveniles than of adults. Young 

mammals tend to be more susceptible to OP's than adults because detoxifying 

mechanisms are not fully developed (Gagne and Brodeur 1972, Benke and Murphy 

1975). Similar short-term reductions in recruitment have been observed for hispid 

cotton rats (Sigmodon hispidus; Barrett 1968) and meadow voles (Microtus 

pennsylvanicus; Barrett 1988) after exposure to the carbamate insecticide Sevin®. 

However, previous field studies using OP's have not demonstrated adverse effects on 

mammalian recruitment (Jackson 1952, Jett et al. 1986, Carey 1993, Edge et al., in 

press). 
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Body growth of male voles was negatively affected by azinphos-methyl for 

several days after application. Lower body growth could have resulted from direct 
physiological harm, anorexia, or avoidance of contaminated food. Unfortunately, our 

sampling methods did not allow us to determine which of these factors contributed to 

the observed effect. Ataxia and neuromotor dysfunction that characterize OP 

intoxication (O'Brien 1967; p. 56) may have reduced the foraging capability of 

intoxicated animals, thereby retarding growth. Feed aversion, but not anorexia, has 

been demonstrated in mammals exposed to pesticides (Linder and Richmond 1990). 

Gray-tailed voles can detect and avoid food contaminated with azinphos-methyl at 

concentrations <100 ppm (T. Manning and J. 0. Wolff, unpublished data). 

Furthermore, in 10-day no-choice dietary LC50 tests of the toxicity of 

azinphos-methyl to gray-tailed voles, Meyers and Wolff (1994) observed that many 

of the voles that died after 5 days died of starvation, whereas deaths before day 5 

probably resulted from acute poisoning. Thus, even when voles had no choice but to 

eat contaminated food or starve, they stopped eating to avoid exposure and starved to 

death in 5-10 days. 

Movements of voles increased after spraying in enclosures treated with 3.61 

kg/ha, even after accounting for changes in density. However, the effect was not 

apparent until two weeks after application and lasted for another four weeks. Thus, 

voles did not evidently become more sedentary due to intoxication or attempt to 

move out of the treated alfalfa plots immediately after spraying, when contamination 

was greatest. The late manifestation and long duration of the increase in movements 

of voles suggest that it reflects disruption of their social structure rather than a direct 

response to the chemical. Morris (1970) observed a similar long-term increase in 

movements of unenclosed meadow voles after application of the organochlorine 

insecticide endrin. 

Our results contrast to those of the 1992 experiment by Carey (1993) and 

Edge et al. (in press) on the effects of azinphos-methyl on gray-tailed voles in the 

Hyslop Agronomy Farm enclosures. Although they applied the insecticide at rates up 

to 4.67 kg/ha, the highest application rate caused only a 24% reduction in vole 
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populations and did not significantly affect on recruitment, body growth, or 

movements. Differences between that experiment and ours that might have 

contributed to the dissimilarity of observed effects were (1) we controlled vole 

densities in 1993 and (2) more rain fell during summer in 1993 than in 1992. Vole 

densities at the time of spraying ranged from 14 to 120 voles/enclosure in 1992, but 

only from 14 to 61 in 1993. By keeping vole densities near 30/enclosure, we 

decreased within-treatment variation and, presumably, increased statistical power for 

detecting population-level effects. However, the difference in magnitude of observed 

effects is not explained by vole population control. 

Wet weather may have contributed to the greater effects in 1993. Rain fell 

within an hour after we applied azinphos-methyl in 1993 and continued intermittently 

over the next several days, whereas no rain fell for seven days after spraying in 

1992. Precipitation did not result in lower persistence of azinphos-methyl on alfalfa 

in 1993 (Chapter II) than in 1992 (Bennett et al., in press). OP insecticides can 

reduce body temperatures and impair thermoregulation in small mammals (Meeter 

and Wolthuis 1968, Coudray-Lucas et al. 1981, Montz and Kirkpatrick 1985a). 

Therefore, exposure to azinphos-methyl may have increased the susceptibility of 

voles to hypothermia. Alternatively, water dripping from the alfalfa canopy may 

have provided an alternate route of exposure to the chemical if voles ingested the 

chemical while grooming their pelage. Rodents do not seem to avoid grooming after 

contact with toxicants, and this trait is exploited by contact rodenticides, which are 

applied so that rodents acquire poison on their fur and ingest it as they groom 

(Gibson 1982, Davis 1983). This route of exposure is not accounted for by the QM, 

which only incorporates exposure through contaminated foods. Thus, rainfall soon 

after insecticide application may put nontarget mammals at greater risk than predicted 

if their exposure through grooming is substantial. Conversely, drier conditions may 

reduce the risk of adverse pesticide effects because of reduced pelage contamination 

or grooming activity. Further study is needed to evaluate the relationship between 

weather and susceptibility of nontarget animals to pesticides 
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Influence of Mowing on Insecticide Effects 

Vegetation structure may influence the exposure of organisms to pesticide 

sprays by affecting the distribution and persistence of residues. However, vegetation 

structure is not accounted for by the QM and, therefore, may constitute an important 

source of unexplained variation in the performance of risk assessments. We 

hypothesized that azinphos-methyl would have greater adverse effects on small 

mammals in mowed than in unmowed enclosures. Residue concentrations at ground 

level were much higher in mowed than in unmowed enclosures (Chapter II), and the 

chemical caused greater effects in mowed enclosures on deer mouse population 

growth and recruitment, on vole recruitment and body growth, and on survival of 

female voles. However, responses of vole populations to azinphos-methyl application 

were almost identical for the two mowing treatments. Populations of deer mice were 

reduced by application of 3.61 kg/ha in mowed enclosures but not in unmowed 

enclosures. This application rate was predicted by the QM to pose low risk to deer 

mice. For voles, mowing seemed to increase effects of the 0.88 kg/ha application 

rate on body growth and recruitment/adult female. Again, the quotient of risk for 

this application rate indicated "low risk". Therefore, application of azinphos-methyl 

to areas of relatively short vegetation resulted in harmful effects not predicted by the 

QM. 

Although azinphos-methyl was present at ground level at higher 

concentrations (Chapter II) and caused higher mortality of female voles in mowed 

than in unmowed enclosures, interactive effects between mowing and insecticide 

treatments were not manifested at the population level for voles. Statistical power 

for detecting observed mowing x application rate interactions was generally low (< 

.34), but low power could have resulted from within-treatment variability or small 

effect sizes. The nearly identical responses of vole populations to the insecticide 

suggest that interactive effects were small or absent. Foraging behavior of the voles 

may have equalized their potential exposure to azinphos-methyl, and avoidance of 

contaminated vegetation may have limited their actual exposure. Gray-tailed voles 
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can access the tops of alfalfa by cutting down alfalfa stems and may climb into the 

alfalfa canopy (R. Bentley, personal communication). We have often found alfalfa 

stems cut near ground level and 5- to 10-cm lengths of alfalfa stored in burrows, 

Sherman traps, and under pitfall covers. Thus, the exposure of voles was probably 

not limited to the amount of chemical present at ground level, and may have been 

similar for both mowing treatments, even though much of the chemical was 

prevented from reaching ground level by unmowed alfalfa. However, gray-tailed 

voles can detect and avoid azinphos-methyl at dietary concentrations as low as 100 

ppm (T. Manning and J. 0. Wolff, unpublished data). In our field experiment, mean 

azinphos-methyl concentrations on mowed alfalfa and tops of unmowed alfalfa 

sprayed with 3.61 kg/ha exceeded 200 ppm (Chapter II). The uneven spatial 

distribution of residues (Chapter II) probably ensured that voles could find 

high-quality forage that was relatively uncontaminated. 

No other investigators have compared the ecological effects of pesticides in 

areas of differing vegetation density. Field studies of pesticide effects on small 

mammals have generally been conducted in dense grasslands (e.g., Morris 1970) or 

forests (e.g., Giles 1970). Carey (1993) concluded that applications of 

azinphos-methyl up to 4.67 kg/ha did not affect reproduction, recruitment, body 

growth, or movements of gray-tailed voles in enclosed alfalfa plots, and attributed 

these negative results to interception of the insecticide spray by the dense alfalfa. 

This hypothesis was supported by residue concentrations that were lower at ground 

level than in the alfalfa canopy (Bennett et al., in press). However, high variability 
in vole population densities and a significance level of .05 resulted in low statistical 

power in tests for insecticide effects. Despite the lack of detectable effects on 

parameters measured by Carey (1993), survival rates and population densities of the 

voles were reduced by application rates >1.55 kg/ha (Edge et al., in press), in 

concordance with QM predictions. 
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Influence of Diet on Insecticide Effects 

Although EEC is calculated for the primary foods of receptor organisms, the 

QM does not account for differential susceptibility as a result of differences in diet. 

We hypothesized that the insectivorous diet of deer mice would result in adverse 

effects in unmowed enclosures at lower application rates than predicted, because of 

feeding on contaminated arthropods or indirect effects from elimination of the 

arthropod prey base. Insectivorous small mammal species are known to increase 

their relative intake of arthropods after insecticide application (Stehn et al. 1976). 

We found that feces of deer mice contained more arthropod material after the 

insecticide was applied, indicating that the mice were feeding on dead or dying 

arthropods. However, we were unable to detect any effects of azinphos-methyl on 

deer mice in unmowed enclosures. Because deer mice have much greater 

physiological tolerance to azinphos-methyl (LC50 = 1,200 ppm; Meyers and Wolff 

1994) than do gray-tailed voles, they may have been able to eat contaminated 

arthropods with little adverse effects. The prevalence of arthropods in diets of deer 

mice in insecticide-treated enclosures measured two weeks after spraying did not 

drop below that of controls, providing evidence that the insecticide treatment did not 

cause a long-term reduction in prey availability. Abundance of foliar and 

ground-dwelling arthropods in insecticide-treated enclosures had returned to control 

levels by two weeks after spraying (J. Miller, personal communication). Thus, 

insectivory did not increase the observed susceptibility of deer mice to insecticide 

exposure. 

Mowing Effects 

Mowing negatively affected both species of small mammals, at least initially. 

Populations of voles were impacted most, requiring us to transfer voles to mowed 

enclosures to maintain those populations. The reduction in recruitment and 

reproductive activity of voles that we observed during the second trap period after 
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mowing probably resulted from the transfer of voles: introduced females apparently 

stopped reproducing as they adjusted to their new surroundings. The more 

immediate (5-8 days after mowing) reduction in vole recruits/adult female is evidence 

that young animals were more susceptible to mowing effects than adults. By the end 

of the experiment, however, vole populations were larger and growing faster in 

mowed than in unmowed enclosures. We suggest that growing shoots of mowed 

alfalfa constituted more nutritious forage for voles than unmowed alfalfa, which was 

drier and woodier. 

The initial adverse effects of mowing on small mammal populations could 

have resulted from increased activity and efficiency of predatory birds after vertical 

cover was removed, direct mortality caused by the mowing apparatus, or sudden 

removal of food. While mowing the border strips in the enclosures, we have noticed 

that gray-tailed voles may freeze in place rather than trying to escape the 

approaching machine. Therefore, voles may have been killed by the mowing 

apparatus. However, the enclosures were mowed during midday, a period of 

inactivity for deer mice and relatively low activity for gray-tailed voles. Therefore, 

the mower probably did not directly kill enough voles to account for the large effects 

on their populations. Mowing removed almost all the standing crop of alfalfa in 

mowed enclosures, possibly limiting forage availability. However, over-winter 

survivorship of gray-tailed voles is generally high and they sometimes breed in the 

fall, when there is no green vegetation above ground (J. Peterson, unpublished data). 

Gray-tailed voles are apparently able to survive and breed on a 

diet of alfalfa roots. Therefore, we suggest that food shortage is also an inadequate 

explanation of the adverse mowing effects on the small mammals. 

The rapid and severe reduction of vole populations in mowed enclosures and 

the much less substantial effects on deer mice are consistent with the hypothesis that 

the primary effect of mowing was to increase the vulnerability of small mammals to 

avian predators. Because tall, dense vegetation presumably can impair the ability of 

raptors to locate and capture small mammals, mowing alfalfa to <8 cm in height 

probably increased predator efficiency. Gray-tailed voles would be expected to suffer 
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most from the removal of cover because they are more diurnal, larger, and less agile 

than deer mice (Kotler et al. 1988). The observed reductions in vole movements and 

capture probabilities of female voles may have been a behavioral response to greater 

exposure to predators. However, a great increase in predator activity would seem to 

be required to explain the dramatic vole population crashes that occurred within 5 

days after mowing. Observation of diurnal raptor activity did not support this 

explanation (T. De Wilde and W. D. Edge, unpublished data). Owls, which were not 

observed because of their nocturnal habits, could have been largely responsible for 

the observed responses in vole populations. However, deer mice presumably are 

more susceptible to nocturnal than to diurnal predators and their populations might, 

therefore, be expected to be substantially affected. Predation seems to be the 

explanation most consistent with observed effects of mowing on small mammal 

populations, but it is not supported by observations of predator activity or success. 

Edge et al. (unpublished data) found that mowing the enclosures at Hyslop 

Agronomy Farm in autumn 1992 reduced gray-tailed vole densities by approximately 

50%. Recruitment was also reduced by mowing, and the proportion of animals 

attempting to disperse increased. No explanation for the adverse effects of mowing 

was provided. Other investigators that have examined responses of small mammals 

to removal of cover have also reported impacts on microtines and invoked predation 

as the most likely explanation (LoBue and Darnell 1959, Kotler et al. 1988). 
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CONCLUSIONS  

The QM is a relatively simple, laboratory-based methodology used by the 

EPA to conduct ecological risk assessments. However, environmental and biological 

factors that are not accounted for by the QM may substantially influence the 

susceptibility of nontarget organisms and result in unpredicted adverse effects. I 

conducted a replicated, factorial experiment to test whether the distribution of 

residues and responses of small mammals after application of azinphos-methyl 

concorded with predictions by the QM, despite differences in vegetation structure and 

small mammal diets. Although residue concentrations increased proportionately with 

application rate, the nomogram used by the EPA to estimate exposure in QM risk 

assessments underestimated mean concentrations on unobstructed alfalfa by as much 

as 37%. Dense vegetation intercepted the insecticide spray before it reached ground 

level. Thus, the exposure of herbivores to insecticides may depend on the vegetation 

strata in which they feed. However, vegetation structure did not affect residue 

persistence. Although the vegetation nomogram underestimated pesticide residue 

concentrations on alfalfa, the gross pattern of pesticide effects was consistent with 

QM predictions: 3.61 kg/ha caused a long-term reduction in vole populations and the 

chemical had greater effects on voles than on deer mice. However, both species 

exhibited short-term adverse effects in mowed enclosures at application rates that 

were predicted to pose low risk. Effects on vole populations were similar in both 

mowing treatments, despite greater insecticide effects on recruitment, body growth, 

and survival of voles in mowed than in mowed enclosures. Behavioral characteristics 

of voles may have reduced the influence of mowing on insecticide effects. I 

observed greater effects than those reported by Edge et al. (in press) for the same 

vole species, insecticide, and experimental site, although we applied a lower 

concentration. Rainfall after spraying may have increased exposure to the toxicant or 

vulnerability to hypothermia during this experiment. The susceptibility of small 

mammals to azinphos-methyl was not apparently influenced by their diets. My 

results suggest that vegetation structure, precipitation, and behavioral responses can 
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affect the exposure of terrestrial, nontarget species to pesticide sprays and, 

consequently, influence the magnitude of adverse ecological effects. Incorporation of 

these factors into the Quotient Method may improve the ecological foundation and 

consequent performance of risk assessments. 
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