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Two forest management objectives being debated in the context of federally
managed landscapes in the US Pacific Northwest involve a perceivedtiade
between fire restoration and C sequestration. The formaegy would reduce fuel
(and therefore C) that has accumulated through a century of fire suppression and
exclusion that has led to extreme fire risk in some areas. The latter strategy would
manage forests for enhanced C sequestration as a method ohgealueospheric
CO, and associated threats from global climate change. We explored the tradeoff
between these strategies by modeling their effects at both the stand and landscape
scale We began with an assessmenthef extent to whiclkincertainties in wdel
parameter values, model structure, and field measurements can influence model
performance. We adaptéue generalized likelihood uncertainty estimation (GLUE)

methodologyfor BiomeBGC, a widely used terrestrial ecosystem modéd found



that the pheomenon of parameter equifinality exerted significant control on model
performance, but that issues with model structure in the BB@€ modelmay

present an even greater obstacle to model accuracy. We then examined the effects of
fuel reduction on fireseverity and the resulting lostgrm standevel C storage by
utilizing the STANDCARB model for three Pacific Northwest ecosystems: the east
Cascades Ponderosa Piaeests, the west Cascaddestern hemlodkDouglasfir

forests, and the Coast Rangesterrhemlock Sitka sprucdorests. Finally, we then
tested the extent to which various landsekgyel fuel reduction treatments, when
applied at various annual treatment areas, altered pyrogenic C emissions and long
term C storage in the east Cascades Rosdeine ecosystems. For this we employed
the LANDCARB model, which models forests throughout a landscape on alstand
stand basis. Results from both the stand and land4eaglanodeling indicate that,

for fuel reduction treatments to be effectimeeducing wildfire severitythey must be
applied at higher frequencies and over larger areas than they are currently.
Furthermore, fuel reduction treatments almost always reduce stand and landscape
level C storage, sinceducing the fraction by which 8 lost in a wildfire requires the
removal of a much greater amount of C, simust of the C stored in forest biomass
(stem wood, branches, coarse woody debris) remains unconsumed even by high

severity wildfires.
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THE EFFECTS OF FOREST FUEL REDUCTION ON FIRE SEVERITY AND
LONG-TERM CARBON STORAGE

CHAPTER 1

INTRODUCTION

Stephen R. Mitchell



Introduction

Increases imtmospheric C@concentrationsia fossil fuel combustiohave
long been observed (Revelle and Suess 1957, Revelle 1982) and are widely thought to
be causing significant changes in earthos
all annual fossil fueémissions remain in the atmosphere, leaving the rest to be
absorbed by oceanic and terrestrial ecosystems (SckirmaeR001). The potential
for terrestrial ecosystems to mitigate current and future atmos2@sic
concentrations is a matter of onggimquiry and has prompted many studies
attempting to estimate carbon sequestration capacities throughout a wide variety of
biomes(Harmon et al. 19907 urneret al. 1995, Harmoret al. 1996, Harmon 2001,
Pacaleet al.2001, Hurtt et al.2002 Smithwicketal. 2002, Pacalat al.2004).

Wildfires are a significant source of C loss from terrestrial ecosystems and thus
exert considerable influence on the global C cySlehultz et al. 200Bond and
Keeley 200%. While carbon accumulation by forests is tgbotito make up much of
the carbon sink currently thought to exist in the continental US (Pacala et al. 2001),
there is growing recognition that much of the current sink may be unsustainable. A
centurylong policy of fire suppression is widely credited mihe buildup of
uncharacteristic levels of understory fuel biomassome forest ecosystems adsad
thought to have contributed to increased levels of wildfire severity (Noss et al. 2006;
Donovan and Brown 2007). Simulations suggest that if fire sugipresere to fail
in the coming years, the current C sink in the coterminous US would rapidly become a

C source as a result of extensive burning of large scale wildfires @iait002).



High amounts of wildfirecaused C loss often reflect high amtsuof forest
fuel availability prior to the onset of fire. Given the magnitude of such losses, it is
clear thatan understanding alfie effecs of wildfire on longterm C dynamics is
essential to a fullinderstanding of the global C cycle. What is neacis the extent
to which repeated fuel removals that are intended to reduce wildfire severity will
likewise reduce (or increase) lotgrm total ecosystem C storageeducing fuel
loads among the stands with uncharacteristic levels of fuel build upekasproposed
as a method of reducing fire severity. Many studies have demonstrated the
effectiveness of fuel reduction treatments at the stand level (Stephen$-#38,al.
20071, Pollet and Omi 2002Stephens and Moghaddas 2005). While a properly
executed reduction in fuels could be successful in reducing forest fire severity and
extent, such a treatment may be counterproductive to attempts at utilizing forests for
the purpose of lonterm C sequestration.

Fuel reduction treatments require the reaiaf woody and detrital materials
to reduce future wildfire severity. Such treatments can be effective in reducing future
wildfire severity, but they likewise involve a reduction in stdexkl C storage. If
repeated fuel reduction treatments decrelasartean total ecosystem C storage by a
guantity that is greater than the difference between the wilddivsed C loss in a
treated stand and the wildfimused C loss in an untreated stand, the ecosystem will
not have been effectively managed for maxitoatr-term C storage.Further
complications arise when dealing with the effects of fuel reduction treatments on fire

severity, fire extent, and C storagkthe landscape scale, aamagement constraints



could preclude any attempt to fully utilize PaciNorthwest forests for their full
carbon sequestration or biofuels production potential. Currently in the Pacific
Northwest there are approximately 3.6 X h@ of forests in need of fuel reduction
treatments (Stephens and Ruth 2005) and in 2004 thalaneatment goal for this
area was 52000 ha (1.44%). Unless a significantly larger fuel reduction treatment
workforce is employed, it would take 69 years to treat this area once, a period that
approximates the effecewduration of fire suppression.

In this dissertation, | begin by ascertaining the parameter and measurement
uncertainties inherent in a widelised terrestrial ecosystem simulation model, Biome
BGC by applying the Generalized Likelihood Uncertainty Estimation (GLUE)
framework(Chapter 2) Applying the GLUE framework to a model with low
computationatequirements allows a quantification of model uncertainty and serves as
a starting point for calibratingnodels with greater computational demandhen used
the STANDCARB model to ascertdine effects oh wide array ofuel reduction
treatments on fire severity and letgym ecosystem C storage for stands in the east
and west Cascades and the Coast Range (Chapter 3). Théestm@halysis
examines not only C storage lal$o the timeequired to offset reductions in stand
level C storage with biofuels production. Finally, | used the LANDCARB model to
guantify the changes in fire severity and landseapel C storage that result from a
rangeof annual landscape treatment percentagatsaie treated with a combination of

salvage loggingprescribed firea harvesbf 50% of all live biomass followed by a



prescribed fire, and a cleaut followed by a prescribed fif€hapter 4).1 conclude

with recommendations for future research dicets (Chapter 5).
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CHAPTER 2

MULTIPLE SOURCES OF PREDICTIVE UNCERTAINTY IN MODELED
ESTIMATES OF NET ECOSYSTEM CO, EXCHANGE.

Stephen R. Mitchell, Keith J. Beven, and Jim E. Freer.
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Abstract
Net ecosystem C{exchange (NEE) is typically measured directly by eddy
covariance towers or is estimated by ecosystem process models, yet comparisons
betweerthe data obtained by these two methods can show poor correspondence. There
are three potential explanations for this discrepancy. First, estimates of NEE as
measured by the edayvariance technique are laden with uncertainty and can
potentially provide goor baseline for models to be tested against. Second, there could
be fundamental problems in model structure that prevent an accurate simulation of
NEE. Third, ecosystem process models are dependent on ecophysiological parameter
sets derived from fieldheasurements in which a single parameter for a given species
can vary considerably. The latter problem suggests that with such broad variation
among multiple inputs, any ecosystem modeling scheme must account for the
possibility that many combinations gi@arently feasible parameter values might not
allow the model to emulate the observed NEE dynamics of a terrestrial ecosystem, as
well as the possibility that there may be many parameter sets within a particular model
structure that can successfully repuod the observed data. We examined the extent to
which these three issues influence estimates of NEE in a widely used ecosystem
process model, BiomBGC, by adapting the generalized likelihood uncertainty

estimation (GLUE) methodology. This procedure iweal 400,000 model runs, each

with randomly generated parameter values from a uniform distribution based on
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published parameter ranges, resulting in estimates of NEE that were compared to daily
NEE datafom young and mature Ponderosiaepstands at Metolg) Oregon. Of the
400,000 simulations run with different parameter sets for each age class (800,000
total), over 99% of the simulations underestimated the magnitude of net ecosystem
CO2 exchange, with only 4.07% and 0.045% of all simulations providirgfeszory
simulations of the field data for the young and mature stands, even when uncertainties
in eddycovariance measurements are accounted for. Results indicate fundamental
shortcomings in the ability of this model to produce realistic carbon fluxaadr the
course of forest development, and we suspect that much of the mismatch derives from
an inability to realistically model soil respiration. However, difficulties in estimating
historic climate data are also a cause for maldéh mismatch, partdarly in a highly
ecotonal region such as central Oregon. This latter difficulty may be less prevalent in
other ecosystems, but it nonetheless highlights a challenge in trying to develop a

dynamic representation of the terrestrial biosphere.

Keywords: Net ecosystem exchange, BIiolB&C, Ecosystem Model, uncertainty,

GLUE, Pinus ponderosamodeidata synthesis
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Introduction

Increases in atmospheric €@ncentrations via fossil fuel combustion have
long been observed (Revelle and Suess 1957, Reb@82) and are widely thought to
be causing significant c¢ haApgaximatalymalfefar t hdos
all annual fossil fuel emissions remain in the atmosphere, leaving the rest to be
absorbed by oceanic and terrestrial ecosystems (Skchkirae2001). The potential
for terrestrial ecosystems to mitigate current and future atmos2@sic
concentrations is a matter of ongoing enquiry, necessitatingtésngstudie®f net
ecosystem C@exchange throughout a wide variety of bion{@ouldenet al,1996
Law et al.,2003 Baldocchi 2003).

Net ecosyster®O, exchang€NEE) is the net C@C exchange from an
ecosystem to the atmosphere, calculated aditfegence between gross primary
production and ecosystem respiratiercluding lossesfoespirationderived
dissolved inorganic carbon (Chaptal.2006). Continuous field estimates of NEE
have been measured from over 100 locations using the eddy covariance method and
offer a valuable baseline against which model assumptions, pararaetkrs,
performance can be ascertairf€dhulz et al., 2001; Wang et al. 2001; Thornton et al.,
2002;Braswellet al.,2005 Knorr and Kattge 20055acks 2006

Biophysical models, even those designed to simulate the same phenomena, can

differ widely in ther structure, assumptions, and philosophy, leading to substantial
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uncertainty in their predictions (Franks et al., 1997; Schulz et al., 2001; Raupach et al.,
2005). For many terrestrial ecosystem models, a predominant source of model
uncertainty stemgom aninsufficient capacity to provide reliable estimates of
ecosystem respiration {RDavidson 2006Trumbore 2005 Total ecosystem
respiration (TER), defined as the sum of heterotrophic respiratirafld autotrophic
respiration (R), poses a difficlly to environmental modelers. A large source of the
uncertainty in estimates of TER involves the respiratory processes of roots and soll
organisms, collectively referred to as soil respiration. Scientists do know that
temperaturas well as soil moisterexert significant control ovesoil respiration but
efforts at modeling such dynamiaee difficult becausef the intricacies involved in
disentanglinghe interactions betweeseasonal variations lemperature from
accompanyingariations in soil mature (Davidsoret al.1998).

Uncertainties inherent in calculations of TER not end in the soil. Any
modeled estimate ofdfRequires knowledge of the precigeantities of each respiring
componen{Law et al., 1999; Litton et al., 2007) and estimaiéthe growth and
maintenanceespiration of constituent woly tissues are often calculated and
distributed by way of stationary allometric ratios that determine the patterns of
biomass allocation. In reality, allometric ratios are not static. Wwébsa high
capacity for biomass storagan exhibit substantiafariation in such ratios due to
variation amongsite conditions as well as stand abaw et al.(2004g;, 2004) found
that xeric systems exhibited decreased bejosund biomass allocation widge

while mesic systems exhibited increased bedpaund biomass allocation witlye.
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Similarly, Comeau and Kimms (1989) found that patterns of new fine root C: new

leaf C inPinus contortecan vary considerably as a function of site water availability.
Nonallometric parameters can also vary by site and/or stand agaus ponderosa

leaf andfine root turnovewariesby elevation(WhittakerandNiering 1968 Whittaker
andNiering 1975) and percentages of leaf nitrogerthe enzymeubisco vary wih

irradiance (Poorter and Evans 1998). Significant differences in transpiration per unit
leaf area have been observed between young and mature stands when water is readily
available (Irvineet al.2004), which may partially explain whgaf water poterwls

during conductance reactions can stwgwnificant intersite variation within species
(DeLuciaet al, 1988; DelLucia and Schlessinger 1990).

Issuessuch as theseave prompted modelata synthesis studies. Modklta
synthesis, according to Raupaat al.(2005), operates under the assumption that the
inherent uncertainties in any dataset are just as important as the data values and should
therebybe included irboth parameter estimation and data assimilation. for a
ecosystem model (and/or ircfaany environmental modelhis uncertainty lies not
just with the observed data but also with the parameters on which the data is
conditioned, affecting both the predictive uncertainty of a mdd& synthesis and
the predicted best estimat@nalyzing these uncertainties effectively requires an
acknowledgment of the potential for equifinality in model predictiofise concept of
equifinality implies that, within the current capacity of mechanistic modeling, there

may be many model structures and pagter sets within a given modstucturethat
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may be acceptable in reproducing the observed behavior of an environmental system
(Beven 2002, 2006)

Acknowledgement of model equifinality is essential to predictions drawn from
environmental models in thabmpeting models and parameter sets can be considered
as multiple working hypotheses about how the system is functioning. Given the
limitations of observational data, approximate model assumptions, and lacking
independent estimates of the effective patmvalues required by a model, it may
not be possible to determine uniquely the most likely hypothesis, even if many models
can be rejected as unacceptable orbpelmavioral. Our goal was to explore the
respective contributions of measurement uncegtambdel structure, and parameter
equifinality to modeled estimates of NEE. We used the GLUE framework (Fig. 1) in
conjunction with a terrestrial ecosystem model, Big®&C, to 1) examine model
equifinality for combinations of ecophysiological parametdugs with respect to
NEE dynamics in a senrairid forest ecosystem, 2) compare differences in parameter
uncertainty between two distinct age classes of this ecosystem and 3) ascertain the
cause(s) of any modedhata mismatch.

Methods
The GLUE Methodology

The GLUE method (BeveandBinley 199) was developed from the
genealized sensitivity analysis of Spear and Hornberger (1980) to deal with multiple
acceptable parameter setithin environmental models. Studies of parameter

responses have shown thia¢ assumption of a single wellefined optimal parameter
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set rarely holds, resulting the condition ofmodel equifinality Freeret al.,1996;
Frankset al, 1997; Beven and Freer 2001; Scheizl, 2001). GLUE provides a
means of assessing the predietuncertainty based on a generalized likelihood
measure within a Monte Carlo framewor&LUE hasbeen used for a wide range of
environmental modeling problems (see Beven and Freer 2001 ;efrale2004;
Beven 2006, 2008)ncluding the prediction of O, flux data (Frank®t al, 1997;
Schulzet al, 2001) tree mortality under drought conditions (Martinéiialta et al,
2002) and forest fired(fiol et al.2004 2007)

Utilization of the GLUE method involves a large number of model runs, each
of which isdriven byrandomlygeneratednput parametevaluesdrawnfrom uniform
prior distributionsacross the range of each parameter. The performance of each run is
thereafterdeemed behavioral or ndiehaviorabased upothe comparison of
simulated verssiobserveddata Model runs that do not meet specifaateptability
criteria are rejected as ndmehavioral anérethus given zero likelihood, removing
themfrom further analysisIn what follows, parameter sets must satisfy two
performance criteria tbe considered as behavioral and used in prediction. Within
the GLUE methodology, each behavioral simulation can be associated with a
likelihood weight that depends on performance during comparisons with available
observations.

Evaluation of parameter gesitivities
Many randomly generated parameter sets will result in a simulation that is

physiologically unsustainable within tla@pliedmodeling frameworkthus
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simulations that reswdd in a NEE of 0.0 werexcluded from additional analysas
priori. For the remaining simulations we used MashSutcliffe model efficiency
coefficient(Nash and Sutcliffe, 1970) to determine whether orangiven set of

parameter valueshould be retained for further analysis. It is defined as:

a _(Ci-cy)y
e | i ~ \2 (1)
aizl(co - Co)

E =1-

whereCci, is observed NEE for day 60 is the mean of daily observed NEE, and

C,iﬁj is modeled NEE of dayfor parameter sgt NashSutcliffe efficiencies can

rangefromb t o 1. An E=#)indicates a pesfectanaitch bf mpdeled

data to the observed data. An efficiency oEG=(0) indicates that the model

predictions are as accurate as the mean of the obsemteedutide an efficiency less

than zero EE < 0) occurs when the observed mean is a better predictor than the model.
Si mul at i onB<il)were re@ined for fu@her analys@nce these parameter
combinatios were found, we calculated their likeldw weights using the following

equation:
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whereL(Qj|\_() is the likelihood of simulating datégiven parameter s€);, assuming

a uniform prior distribution for all parameter sets whgrel. Our method is similar
to the sensitivity analysis of Spear and Hornberger (1980) except that there is an
additional step of calculating a likelihood weight for each parameter set. This
sampling strategy allows any covariation that is importantowigding simulations
wi t hE<Ql to®e apparent in the likelihood weights whether or not prior
covariation has been specified in sampling the parameter sets.

This first threshold condition for a model to be retained for further analysis (0
OE < 1) is very relaxed. Inight be considered less than the minimal requirement for
a model to be useful in prediction, since it indicates that the model predictions are
merely as accurate as or better than the mean of the observed data. Here, however, we
are using it primarily toeveal information about the sensitivity of the simulations to
different parameters and combinations of parameters. We later impose an additional
criterion for a model performance to be considered behavioral in relation to errors in
the observed data. h& second threshold criterion is based on comparing annual
estimates of NEE from the model to estimates obtained from field measurements, the
latter of which includes a term representing the uncertainty in annual estimates of
NEE. The termeis based b the propagation of uncertainty in annual NEE estimates
and includes estimates of errors incurred by the instrumentation used in the eddy
covariance techniquéatagapfilling, as well as spatial and temporal variability,

calculated from the estimatesarfnual measurements of net ecosystern &©hange
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uncertainty from Oreetal.( 2006 ) . This o6éeffective obser
example of the approach to model evaluation proposed by Beven (2006) but the
concept of including observational uni@nties to construct model performance
criteria has been applied previously (Pageal, 2003; Freeet al, 2004) . We
included this second step in our evaluation procedure to help decide whether or not
our model should be consulted as a reliable Etouof NEE. Thus, only simulated
annual estimates of NEE that met the following criteria are considered in the
behavioral model set:
A Cl-20<q C,<§’ Cl+2e @
i=1 i=1 i=1

Parameter Estimates

Biome-BGC requires 37 ecophysiological parameter values for thdatiom
of evergreen needlieaf forests. Of these 37, 13 were allowed to vary (T2hle
assuming independent uniform prior distributions across feasible ranges of the
parameters in the absence of any strong information about effective parameter values
and their covariation. Whitet al.(2000) performed a sensitivity analysis of model
parameters, showing that LAI, FLNR, and :Nvere among the most sensitive
parameters, and these were some of the parameters we included. Addilectadrs
of paraneters that were allowed to vary was based on the range in variation of
parameters in the literature. For instance, parameters with a wide range of variability,
such aghe ratio of new fine root carbon to new leaf carbdeRC:LC), were chosen

for this re@on, and parametefsr which literature values exhibiteldtle to no
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variability were excludedOur study site has a canopy comprised primarily of
Ponderosa pind’{nus ponderosa a species with input parameters that are generally
providedin the compliation by Whiteet al.(2000) and in casesherepublished
parameter values wermavailablewe substituted therinom otherPinusspecies.
Each parameter range was subsequently expanded to allow for the possibility of yet
unpublished values that might bbserved in the field in the future, the uncertainty
that may arise from substituting species types when necessary, and the
commensurability error between fietdeasured values and the effective parameter
values required to give good results in this madelcture.
Study Sites

Data were collected from twaites with eddy covariance towers at Metolius,
Oregon, located approximatedy kilometershorth of Bend, Orego(Fig. 2). Data
from the young stand, aged ~23 years, were collected in 2001@, data from the
mature stand, aged ~89 years, were collected in 2002. sBesharalominated
primarily by Ponderospine (Pinus ponderoseand toth have naturally regenerated
from clearcuts. Soils are well drained ladth sites.Descriptions okite-specific data
arereferredto as they wereuringthe timein which the system was simulated.
Additional ste charactastics are summarized in Talf2e?.
Modeling

All simulations used version 42of theBiome-BGC model (Thornton et al.
2002) a widely used terrestrial ecosystem model. Biel@&C simulates water,

carbon,and nitrogen dynamics in plants, litter, and soil, using a daily time step for all
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processesRunning and Coughlin, 1988hornton 1998 White et al, 2000). Biome-
BGC allows forthe option of a sphup simulation to serve as a basis for an initial
estimate of soiC content. Spinup time is determined by the amount of time it takes
to allow soil C to reach equilibriunT bornton and Rosenbloqra005. We
incorporated the samen@omly generated parameter values in the-gpisimulations
for each of our GLUE analysis simulations addition to simulating initial estimates
of soil C content for each parameter, we incorporated a representation of eacs stand
disturbance historinto the regular (nospinup) simulations. Our methodology for
this was similar to, but not an exact replicate of, the methodology developed kst Law
al. (2001). At both stands, a cleemt was simulated upon the completion of each
spirntup simulation bystarting a new simulation that included estimates of-pastest
amouns of coarse woody debris, leaf litter, dead fine roots, and soil C pools taken
from the amounts of these materials remaining at the end of thesgimulation.
Data Collection

Desciptions of NEE collection protocols are described for the young stand
Anthoni (2002) and mature stand data are described in Viekedin review). In
brief, the eddy covariance method estimates NEE flux from the covariance of high
frequency fletuations in vertical wind velocity and G@oncentrations. NEE is
calculated as the sum of this flux term and a canopyst@age termthe latter of
which is calculated from the change in £&Oncentrationn the canopy air spa@s a

function of heigh (Law et al., 1999Anthoniet al. 2002)
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z

NEE = '+ A2 dz (4)
Mot

wherev 'c' is the timeaveraged eddy flux for CQcovariance between the turbulent

fluctuations for verticalwind speedi) ) and scal ab) |[ddocatis@ nt r at i
vertical storage term that is a function of canopy he@hthich approximates
change in C@storage in the canopy air space. NEE, like other measurements taken
from an eddy flux tower, is measured at 20Hz and is thereafter average@-into 3
minute intervals which form the dataset of daily estimates of NEE for each respective
stand.
Meteorological Data
The drivingmeteorologicatlata forBiome-BGC is composed athe following
inputs giveron a daily time stegnaximum temperaturel sy, minimum temperature

(Tmin), average temperatu(®a..g), average vapopressure éficit (VPD) (MPa),
average incoming shortwave radiatic®, ) (W m?), total precipitatior(mm), and

day length (s) Meteorological instrumentation didhexist at the Metolius site prior
to its establishment as an Anfdtix site, requiring the generation sichdata for the
years before theddy correlation instrumentation was installed at the Sitds need
was met using the DAYMET climate model, adel which gathers data for a user
specified location by extrapolatingeteorological readingsom surrounding climate
stationsand adjusting for any changes in elevati@horntonandRunning 1999

Thorntonet al, 2000). DAYMET generated daily climatgata from 1980 through
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2003specific to each site. Such a climate record is of sufficient length to capture
inter-annual El NineSouthern Oscillation dynamics, which exert considerable control
over the vegetation dynamics of the US Pacific Northwestgi@aad, 1994).
Meteorological data taken from the Anfdux instrumentatiorthenreplaced the data
generated by the DAYMET model for the time span of our analysiaddition to
incorporating meteorological data, BiofB&C allows for the user to spegifearly
CO, concentrations at the sjtbased on annu&lO, concentrations recorded since
1901, and we utilized this feature to account for changes in atmospheric CO

These inputs were the basis of all 400,000 simulations we performed for each
of the twostands. We recognize that there will be an interaction between errors in the
inputs and any parameter sets that are identified as behavioral within the GLUE
methodology (see discussion in Beven, 2006) but, as in very many environmental
modeling studieghere is little information available with which to assess the potential
input errors. EacRinus ponderosaimulation had 24 fixed ecophysiological
parameter values and 13 that were allowed
random number generatthrat sampled from a uniform range in potential model
parameter values. Ranges for these parameters are given ir2 Pabl€he 800,000
total simulations of Biom&GC and the GLUE analysis were performed on a Linux
cluster at the USDA Forest Service PadNorthwest Research Station in Corvallis,
Oregon.

Results
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Of the simulations that were run3.15% and 77.06% of simulations resulted
in afinontlivingo and thus rejected simulation for the young and mature stands
respectively; 12.40% ar®il.8 2% resuled in live butrejected( P E ©0) simulations.
Of all simulations for the young and mature stands, respecti#ly5%and 1.13%
resulted inlive simulationss hat coul d be retaibkb<eld for fur
shown in Figur@.3. Of the retaing simulations, 98.63%nd 99.71% underestimated
the magnitude of the NEE estimated by observation for the young and mature stands
respectively

Figure2.4 shows plots of the randomly sampled parameter values against
posterior likelihood projections. Rameter values for combinationswEiO 0 ar e
shown in grey and behavioral combinations that satisfied both performance citeria are
shown in black. Each of these plots represents points on the posterier multi
dimensional surface, projected onto single parameter alxeall, 5 of the 13/arying
parameters showo sensitivities within their range (Gif, C:Nyead wood CRC:SC)Y ¢,
Y o), 2 of the 13 parameters show slight preference {Gahd C:Nneroot9, and 6 of
the 13 parameters (FLNR, FM, FRC:LC, SC:LC, LAI, agu&@y show strog
preference for a certain parameter value (Fig. 4). Exhibition of preferences for these 6
parameter values appears more pronounced in the mature stand, particularly in the
likelihood projections of behavioral (annual NEE & parameter value combinat&n
The difference between the sets of parameter combinations is less obvious in the

young stand since a much higher proportion of parameter combinations were
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behavioral. In the mature stand, clustering of these behavioral likelihood projections
within acertain parameter value range is pronounced, and this clustering tends to
occur in the parameter value ranges that produce the highest likelihood estimates.

C:Niear €xhibits a slight preference for low values in the young stand and a
slight preference fonigh values in the mature stand. GidNand C:Neagwood Showed
no slope across the sampled range in their posterior likelihood projectioRge GeiN
in the young stand also lacked any strong conditioning in the posterior likelihood
projections, hough lower parameter values in the mature stand showed a tendency to
have higher likelihood values. The likelihood projections for the parameter controlling
FLNR show a slight absence of lower values for low parameter values in the young
stand. A similaabsence of low FLNR values is seen for the mature stand, which also
show slightly increasing likelihood values for higher parameter values.

FM shows similarity among age classes in the projection of likelihood
estimates, with both showing a slight dovaral sloping pattern for high likelihood
values and an absence of low likelihood values for high parameter values. FRC:LC
shows high values for low parameter values and an absence of lower likelihood values
for high parameter values. SC:LC shows a slighfggence for high values in the
young stand and a downward sloping likelihood projection in the mature stand. In
contrast, likelihood estimates of CRC:NSC do not show any curvature in the posterior
likelihood projections across the full range sampled.

Likelihood projections for LAl have a slight downward slope for the young

stand and a rapidly increasing slope with an absence of low likelihood values in the
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mature stand. LAl estimates taken at these sites, however, were measured to be 0.89
and 2.96 fothe young and mature stands, respectively. Maximum stomatal
conductance @ax however, exhibits a slightly upwasdoping pattern with an

absence of low likelihood values for low parameter values in the young stand, while
the mature stand shows a rapitficreasing slope to values of ~3.0 X*1Bat

thereafter tapers off into a gradually decreasing slope across the upper bounds of high
likelihood values, also with a lack of low likelihood values for low parameter values.
Plant water stres¥(;) is a cause of stomatal closure and is related to leaf water
potentials at the initial and final reductions to stomatal conductahged) in Biome

BGC. Both of these values are assumed to be negative, since plants are rarely at full
hydration. Likelhood projections for both of these values do not show any shaping
across the values range.

Parameters that have relatively uniform posterior likelihood projections are
those that have less to do with the dynamics of primary production and affected non
photosynthetic biomass, dealing with either stoichiometry or allocation ratios.
CRC:SC, a parameter that deals exclusively with-plostosynthetic biomass, controls
patterns of biomass allocation in coarse roots and stems, thus has little impact on
primaryproduction and respiration. GilN.ot had only a very slight shaping in its
posterior likelihood projections, and Gidhwood anNd C:Niter Show no discernable
influence on NEE, probably due to the comparatively long time scale at which
decomposibn operates. On a mulgear time scale, a low C:N ratio of dead biomass

would, holding climate constant, result in an increased decompositiokfoatthese
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components, increasing the respiration ob@the atmosphere. However, it is clear
that ths effect is difficult to detect due to the influence of climatic constraints.eSun
al. (2004) found that measurements of coarse woody debris respiration in this
ecosystem were negligible unlekg tvood was moist but not waterlogged ander
warm climdic conditions, thugoarse woody debrdecomposition only occurs during
a small part of the year and contributes a marginal amouri&Roin this semarid
forest.
Prediction Uncertainties

As noted earlier, the range of models included in the sengitiailysis
includes many models that have limited predictive power. It is clear, however, that for
many parameters the Obestdé models for t
distributed throughout the ranges of parameter values tried. The GLUE methodolog
allows for such equifinality of models in estimating prediction uncertainties by
keeping a set of behavioral models thought to be useful in prediction. Beven (2006)
has suggested an approach to model rejection based on setting prior limits of
acceptabity. Here this approach has been implemented by defining such limits on the
basis of the effect of error in the field measurements on estimates of annual NEE as in
condition (3) above Behavioral models are then consistent with annual NEE allowing
for the estimated errors in the measurements and might therefore be considered as
providing reliable simulations of net ecosystem,@change.

There are several potential sources of error in NEE estimates that form the

basis of our uncertainty estimagé¢hat we use in our equation (3) to determine model

he
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acceptability. First, the fluxes that are computed overh@lf intervals with the
intention of describing ecosystem activities in the sampling footprint are known to
include sampling errors, includirmicrometeorological sampling errors (Baldocchi,
2003) as well as statistical sampling errors from-ijipg methodologies (Falget
al, 2001). These errors are distinct from uncertainties in the spatial and temporal
variability in ecosystem activityUncertainties in the spatial and temporal variability
should not be significantly changed through an increase in averaging time, while
micrometeorological sampling errors can be potentially reduced by sampling a greater
proportion of eddies and averagittggm over a longer time scale (Kaatlal, 2001).
Orenet al.(2006) separated the contribution of these two factors through temporal
averaging of NEE data from towers with overlapping ecosystem activity footprints to
ascertain the magnitude of eacluse of measurement uncertainty, which thereby
allowed a calculation of total measurement uncertainty. We calcugditenh
averaging the uncertainty propagation estimates of €rah(2006) for the years
19982004, calculated to be 100.86 g C g™

After application of this tern@into condition (3), a mere 4.07and 0.0045%
(16,276 and 179 out of 400,000) of simulations resulted in behavioral (@@f
annual NEE) estimates for the young and mature stands, respectively (Fig. 5). We
note that some may consider this acceptability criterion still to be too generous, and
we add that the percent of stands with N&Eimates that were + 50 g € of annual

NEE were 0.31% and 0.000023% (1,256 and 9 out of 400,000) for the young and
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mature stands, respectively. Thus, an overwhelming majority of parameter
combinations resulted in an inadequate reproduction of obsdatadcind could be
rejected.

Discussion

Can BiomeBGC be considered a satisfactory model of these stands?

In using the Generalized Likelihood Uncertainty Estimation (GLUE) technique
to analyze the uncertainty that arises when simulating a forest ecosydiem
different age classes with the terrestrial ecosystem model, BR{&@& only a very
small number of model parameter sets have survived the chosen, rather relaxed,
criteria for acceptability. On the basis of the wide range of simulations triedy we d
not think that this model provides an adequate reproduction of observed data at these
sites. We note that the failure of the masimulations tgroducea live stand does not
necessarily reflect poorly on tiBsome-BGC model, as our range of potential
parameter values was largad inevitably leads to many parameter combinations that
are physiologically unsustainablélowever, it was clear from our posterior likelihood
estimates that many of the parameters, despite a broadimathg@ uniform prior
distributions exhibited little or ncsensitivityto variation in their values and thus bear
little or no responsibility for model failures.

In the young and mature stands, BieB8C does not reliably simulate the
magnitude of NEE during the summer monsisjulations in the young and mature

stands, whether behavioral or Rb@havioral, underestimated the magnitude of annual

NEE 99.77% and 99.90% of the time. BiocBe&GCb6s t endency t o undel
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magnitude of NEE is apparent in other studies as welanlearlier study, Lawt al.
(2001) performed a modelta comparison of NEE data from an-gldwth Pinus
ponderosastand at Metolius, OR and found that BieB@&C underestimated the
magnitude of NEE flux by 240 g Chyr™.

Substantial differencesere observed ithe shaping of both theO0 and
behavioralikelihood projections between the young andturestands, indicatinghe
difficulties involvedin finding a parameter set that can simulate estimates of NEE
over the course of forest developmebifferences in the posterior likelihood
projections are due to a variety of factors, the most significant of which appears to be
BiomeBGCo6s | ow capacity for simulating the
found this tendency for NEE magnitude underediimmavhen we tested Biome
BGC6s default model par ameleakforestunadobtiuties f or
young and mature stands. The young stand produced a NEE estirid® @iC n¥
yr'! compared t6273 g C rif yr?, while the mature stand proced a NEE estimate of
-286 g C n yr'', compared to a measured estimate4dB g C nif yr'. Such results
are quite superior to the estimates of most parameter combinations, but it is striking
how much default model parameter values differed from aheeg taken directly
from the site itself.

Using site specific estimates for 11 of the 13 varying parameter values for the
young stand (see Tabk?2), along with every other substitutable parameter value
measured at the site, the simulation produceodining simulation. (Parameter

values from the mature stand were not available to allow a similar test). This suggests
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that, at very least, there is a commensurability issue between measured values of
parameters and the effective values required tdym® a successful simulation; at
worst that there is a significant structural deficiency in the model.

Investigating model failure: simulation of soil hydrology

We initially suspected that difficulties in modeling soil hydraulics in the
Metolius eceystem accounted for the bulk of modeka mismatch. Irvinet al.
(2004) showed that while there are substantial-stand differences in transpiration
that occur when water is readily available at the Metolius sites, cumulative tree
transpiration dog not differ greatly among differently agethnds during the growing
season, suggesting that water limitations ultimately inhibit &A®investigated the
possibility of a failure to sufficientlyeproducesoil hydrology and evapotranspiration
by running5,000additionalsimulations. We evaluatednodel performancby
comparing simulatedstimates of soil water potential and evapotranspirdEadn to
measured data in both stand®esults were divergent: the ratio of thedeled
estimates of soil watgrotential to ETwerehigherthan the ratio of the measured
valuesfor the young stand ariddwer than the ratio of the measured values for the
mature stand (Figur2.6). Such a result clearly shows an inability to model soil water
storage and uptake by natlp getting the ratios wrong, but by getting them wrong in
different ways for differenthaged stands. However, this is not necessarily the
dominant factor in the model ds inabil
against annual GPP show tima¢asured data can be well within the range of the

modeled data plotted for both stands (Fig2if), so it is clear that the model can

t

y
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accurately reproduce estimates of the water use efficiency of photosynthesisfWUE
even if soil hydrology is misrepsented.

Investigating model failure: simulation of Total Ecosytem Respiration (TER)

A further possible cause of the limited success of the BiB@E in predicting
the observed NEE data is an inability to model TER successfully. On average, ~80%
of GPPis respired back to the atmosphere, and soil respiration, which incorporates
elements of both Rand R, accounts for more than twabirds of this flux (Lawet al,
1999; Jansseres al, 2001; Xuet al, 2001). Contemporary frameworks for modeling
soil respiration, such as the Lloyd and Taylor (1994) function used in our version of
Biome-BGC, base calculations on temperature and moisture data, ignoring some of the
contributions of canopy processes to soi@®lux that may be crucial to modeled
estimaes of NEE. Recent research indicates that failure to incorporate a more direct
link between canopy and soil processes in ecosystem simulation models may be
problematic. Ekblad and Hogberg (2001) and Bowéngl.(2002) used an isotopic
technique to shw that photosynthate takes only days to become available for root
respiration, indicating a relatively tight coupling of above and bejoound
processes. Irvinet al.(2005) observed that daily soil GEfflux was linearly related
to GPP as measured the eddy covariance techniqué € 0.55,p < 0.01), furthering
the evidence that GPP makes significant sterh contributions to soil respiration.
Our results are an additional indication that the connection between canopy processes
and soil respiratio is not being made. VEn though GPP can be reasonably

reproduced, there is still a significant mismatch between modeled and measured
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respiration data. This is especially visillben GPP is plotted against TER (Figure
2.6), as the ratio between GPP arieR is too large; almost all of GPP is respired back
to the atmosphere, thus yielding the low estimates of the magnitude of NEE.
Difficulties in modeling soil respiration are present in other mald¢ syntheses as
well. Braswell et al. (2005) applietbnlinear inversion to the eddy covariance flux
measurements from Harvard Forest using a simplified model of photosynthesis and
evapotranspiration and concluded that ratar eddy flux measurements allow for a
tight constraining of photosynthesis, bubp@onstraints on parameters relating to soil
decomposition, which varies at considerably longer time scales than photosynthesis
and evapotranspiration. Similarly, Veerbeck et al. (2006) found that the parameter
responsible for the greatest amount of wtaety in the FORUG model was related to
soil respiration, and Williams et al. (2005) concluded that-kemgn measurements of
carbon pool sizes are needed to estimate parameters relating to soil decomposition.
As a resultthe simulations were best Wwiparameter values that were often on
the extreme ends of their specified ranges producing an increase in GPP that
compensated for an overestimation of the magnitude of TER. Parameters that have a
more direct control over potential GPP, such as thosetmitol leaf production and
leaf nitrogen concentration, are clearly are among the most sensitive model parameters
in Biome-BGC (Whiteet al.2000) and may be even more so under conditions of
chronic water limitation. For instance, low values of FRC:oly increased
allocation to leaves and thus had high likelihoods in both stands. Like FRC:LC,

gsmax showed intestand similarities among the posterior likelihood projections, and
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high-likelihood values associated with low values fengxwere consistarwith the
workings of a watetimited system, since a lower maximal stomatal conductance will
result in decreased water loss. Furthermore, low values of FM imply low leaf (and
fine root) turnover and had the highest likelihood weights, probably duducee
construction respiration costs for the leaves that could be used in constructing other
biomass components, thereby increasing the magnitude of NEE. Field values of leaf
turnover were similar to the high likelihood values in the model, indicatingaanm
residence times of 3.6 years (FM = 0.283 et al, 2001). Field values of fine root
mean residence time were different from leaf values and were estimated at 1.6 years
(FM = 0.63) Law et al, 2001, though estimates of fine root turnover are often
problematic (Stranet al, 2008.

Projections for these and other parameters exhibit not only a shaping of
maximal values that can be attributed to certain parameter values generating high
likelihood estimates, but also strong interaction effects otitler parameter values.

Both FRC:LC and FM showed high and low likelihoods for low values while showing
an absence of low likelihood values for high parameter values whiexghowed a

lack of low likelihood values for low parameter values due to ttexaction effects
between other parameters. The shaping of the behavioral likelihood projection (shown
in black) for gmaxin the mature stand is an exceptional example of the strong
interactions that take place with other parameter values. Similarlig high

likelihood values were found for Ci{k in the young stand, there was a slight

tendency for higher likelihood values to be found among high parameter values of



35

C:Neear in the mature stand, a phenomenon which we suspect is due to a sensitivity in
the interaction with FLNR.

Investigating model failure: Stand history data

We also recognize that one perceived source of raatal mismatch in our
analysis may be related to the incorporation of etediting disturbance and its
potential effects on gacies of remaining coarse woody debris and their contribution
to TER. Even though we incorporated BieBies C 6 sdisfunbaace estimates of
dead fine roots, leaf litter, soil C, and coarse woody debris into our simulation, our
estimates of coarse woodytites did not include the potential contribution of tree
stump biomass that would remain following a cleatr. We know of no appropriate
method for estimating the stump biomass that would remain following aalear a
singlelife form model such as BmeBGC since estimates of stem biomass and
allometry vary substantially when generated by multiple sets of ecophysiological
parameter combinations. However, we do not think that this alters our general
conclusions for two reasons. First, as stated gleweet al.(2004) found that coarse
wood decomposition contributes only a marginal amount to ihERs semiarid
forest, and our modeled results I|ikewise
parameters such as CRC:SC and &adNoos  Second, eveif estimates of NEE in this
ecosystem were sensitive to the release of §oarse woody debris, the
incorporation of additional amounts of gf@lease by decomposing stump materials
would merely serve to further decrease the magnitude of NEE aridinesven

greater modetlata mismatch, thereby strengthening our current conclusion.
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Investigating model failure: modeled past climate inputs

There is additional uncertainty in the generation of climatic data via the
DAYMET model (Thornton and Running®29). The DAYMET model estimates
meteorological data from taking measurements from surrounding weather stations and
subsequently uses this data to estimate the meteorological data at a point near those
weather stations. This method is most reliable where are many weather stations
close to the point of interest and when the area over which the meteorological data are
extrapolated is homogeneous in its climatic patterns. Neither of these conditions is
met in an estimation of meteorological data atMetolius sites. The Metolius sites
occur in the eastern Cascade mountain range, where rainfall patterns are tightly
coupled to the raishadow effect that characterizes Pacific Northwest climate
gradients (Waring and Franklin 1979), making reliable gaians of sitespecific
meteorological data difficult, particularly in a region with a relatively sparse
population and [presumably] few weather stations.

We ran an informal test of the extent to which an exclusion of DAYMET data
resulted in a differemtumber of retained runs by running the model 5,000 times with
continuous data taken solely from the Ameriflux instrumentation. Of the simulations
for the young stand, 4.56% were retained and 3.94% were behavioral, compared to
14.45% that were retaineddad.07% that were behavioral in the simulations run with
climate data generated with the DAYMET model. The mature stand had 7.22%
retained and 3.68% were behavioral simulations, compared to 1.13% that were

retained and 0.0045% that were behavioral insthrilations run with climate data
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generated with the DAYMET model . I n ot he
climate data resulted in a significant reduction of retained runs and a slight reduction

in the number of behavioral runs for the young staHdwever, this same substitution

for the mature stand significantly increased the number of both the retained and
behavioral simulations. Furthermore, 67% and 49% of these retained simulations
underestimated the magnitude of NEE for the young and mstiamds, respectively,

which is a much more even error distribution compared to the simulations run with the
more complete, though distantly estimated, historical climate data. Such a result

partly vindicates the performance of the model if only to raése questions about the

future difficulties of predicting meteorological data throughout the terrestrial

biosphere, though we acknowledge that the difficulties involved in predicting climate

at our particular points could, in fact, be indicative of a séemamvhich such a task

is uncharacteristically difficult. Nevertheless, one of the goals of ecological modeling

is to simulate an ecosystem, including future changes in response to climate forcing,
without any eddy covariance data to aid in model cditmaand we think that our

initial modeling exercise that included the DAYMET data is more indicative of the
common practices of ecosystem modeling and thus does not represent an extreme case
in terms of procedure.

Investigating model failure: lack ofmporal parameter variation

Wang et al. (2007) has noted that the CSIRO Biosphere model (CBM) can
have very strong performance when photosynthetic parameters (maximum potential

carboxylation rate and maximal electron transport rate) are allowed to easonsdly
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(i.e. have different values for the growing season and the dormant season). Such an
innovation in the photosynthetic parameters of Bid®@&C may come at the expense
of introducing more parameters to be identified, but may nevertheless result in
improved model performance. Our version of BieB@&C might also benefit from
having allometric parameters (SC:LC, FRC:LC, CRC:SC) that vary with age, as such
parameters are known to vary significantly in the field. As stated previouslyet.aw
al. (2004g; 2004) found that xeri®®inus ponderosaystems exhibited decreased
belowground biomass allocation with age while mesic systems exhibited increased
belowground biomass allocation with age, and Comeau and Kimmons (1989) found
that patterns of FRC:LC iRinus contortacan greatly vary as a function of site water
availability. Likewise, the likelihood projections for FRC:LC and SC:LC are shaped
differently for the two stands, making it clear that accounting for temporal changes in
parameter values may beaessary to improve model performance.
Conclusions

We have incorporated the uncertainty that arises from both multidimensional
parameter variability and eddy flux measurement uncertainty by simulating 400,000
combinations of 13 parameter values andngsh see if estimates of NEE from those
simulations can fall within the bounds of measurement uncertainty inherent in
estimates of NEE based on eddy flux measurements. Studies that provide an account
of uncertainty to this extent are rare, and our resulygest that BiorBGC should
not be considered to be a reliable simulator of net ecosystemexc@ange in these

semtarid forests and possibly additional ecosystems as well. It is clear that
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substantial uncertainties remain in this terrestrial ecesyshodeling scheme and its
representation of forest stand development. While recognizing the real need for
predictions regarding the dynamics of global change, scientists are often attempting to
make predictions under conditions of incomplete knowledgéht ecosystems of
concern. It would seem that, in the case of BiB@C, there is not only a problem of
multidimensional parameter variability that is shared with other models, but also a
fundamental deficiency in model structure. We think that theetrdales not provide
a realistic representation of ecosystem respiration, particularly soil respiration, at the
study sites, and the only parameter sets that can emulate NEE dynamics are those that
manage to compensate for this shortcoming by allocatimyiress that maximize
GPP, no doubt skewing the simulation of other metrics of ecosystem process and
function. We think that a rethinking of model structure and parameterization schemes,
especially with regard to soil respiration, may be required to &lapte-BGC to
meet the need of accurate estimates of net ecosysteraxckange, and we suspect
that this is true for other models as well. An incorporation of both measurement
uncertainty and parameter variability can play a valuable role in detecticifjspe
problems in model structure and we encourage such a procedure in future ecosystem
process model assessments.
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Symbol Variable Parameter Value Rang  Values fom Young S
FM annual leaf and fine root turnover fraction (1/yr) 0.12-0.9 0.25 |
FRC:LC  new fine root C : new leaf C (ratio) 0.1-6.0 6.00
SC.LC new stem C : new leaf C (ratio) 0.22.0 1.48
CRC:NSC new croot C : new stem C (ratio) 0.20.5 N/A
C:Niear C:N of leaves (kgC/kgN) 2090 50.50
C:Nitter C:N of leaf litter, after retranslocation (kgC/kgN) 90-150 95.60
C:Nineroot  C:N of fine roots (kgC/kgN) 2090 46.00
C:Ngeadwood C:N of dead wood (kgC/kgN) 200-1800 287.00
LAI canopy averagspecific leaf area, projected area basis 0.54.0 0.89
(mP/kgC)
FLNR fraction of leaf N in Rubisco (unitless) 0.01:0.15 0.075
Oamax maximum stomatal conductance, projected area basis (r 0.0020.012 0.007
Y leaf water potential: start of conductance reduction (MPa -0.85--0.20 N/A
Y. leaf water potential: complete conductance reduction (M -2.3--0.9 -1.14
Table2.1. BiomeBGC Parameters allowed to vargite values from Law (personal

communicatioh
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Young Mature
Latitude 44.44 44.45
Longitude -121.57 -121.56
Elevation 1165 m 1232 m
Mean DBH (cm) 11.3 290
Analysis Period 2000 2002
Stand Age (98 %tile) 23 89
OverstoryLAl 0.89m2 m2 2.96 m2 e
Species Composition Pipo Pipo,Cade
Soil Porosity Sandy Loam Sandy Loam

Table 2.2. Site characteristics from Laet al. (2003). Species codes: PipBjnus ponderosaCade,Calocedrus
decurrens
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1. Run model with randomly generated
parameter values that draw from a
uniform prior distribution across range
of parameter values.

}

2. Evaluate model performance.

3(i). If parameter set meets
minimum performance criteria,
associated parameters and
resultant time series are retained |

for further analysis.

!

4. Calculate the conditional
likelihood of simulating data Y for
each parameter set.

|

5. Find acceptable model
simulations by comparing the
model 6s annual est
observed annual NEE.

!

6. Analyze posterior likelihood
projections for shaping among
retained and acceptable parameter
values to characterize the best-
performing simulations

400,000 runs
for each of the
2 systems
(800,000 total
simulations)

Fig. 2.1 Schematic of the GLUE procedure

\ 4

3(ii). If parameter set does not meet
minimum performance criteria,
associated parameters and resultant
time series are excluded from further
analysis.




Metolius

Oregon

Fig. 22. Location of Metolius, Oregon.
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Abstract

Two forest management objectives being debated in the context of federally
managed landscapestire US Pacific Northwest involve a perceived traffebetween
fire restoration and C sequestration. The former strategy would reduce fuel (and therefore
C) that has accumulated through a century of fire suppression and exclusion that has led
to extreme fie risk in some areas. The latter strategy would manage forests for enhanced
C sequestration as a method of reducing atmospher@@®associated threats from
global climate change. We explored the traffebetween these two strategies by
employing a foest ecosystem simulation model, STANDCARB, to examine the effects
of fuel reduction on fire severity and the resulting ldegn C dynamics among three
Pacific Northwest ecosystems: the east Cascades Pondero&a gt the west
CascadedVestern hemloki Douglasfir forests, and the Coast Rangfestern hemlodk
Sitka sprucdorests. Our simulations indicate that fuel reduction treatments in these
ecosystems consistently reduced fire severity. Howesducing the fraction by which
C is lost in a wildire requires the removal of a much greater amount of C, siose of
the C stored in forest biomass (stem wood, branches, coarse woody debris) remains
unconsumed even by higdeverity wildfires. For this reason, all of the fuel reduction
treatments simaked for the west Cascades and Coast Range ecosystems as well as most
of the treatments simulated for the east Cascades resulted in a reduced mean stand C
storage. One suggested method of compensating for such losses in C storage is to utilize
C harvestedn fuel reduction treatments as biofuels. Our analysis indicates that this will
not be an effective strategy in the west Cascades and Coast Range over the next 100

years. We suggest that forest management plans aimed solely at ameliorating increases
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in atmospheric C@should forego fuel reduction treatments in these ecosystems, with the
possible exception of some east Cascades Ponderossguids with uncharacteristic
levels of understory fuel accumulation. Balancing a demand for maximal landscape C
storage with the demand for reduced wildfire severity will likely require treatments to be
applied strategically throughout the landscape rather than indiscriminately treating all
stands.
Introduction

Forests of the US Pacific Northwest capture and stoge lamounts of
atmosphericC0O, and thus help mitigate the continuing climatic changes that result from
extensive combustion of fossil fuels. However, wildfire is an integral component to these
ecosystems aneleases substantial amount €O, back to he atmosphere via biomass
combustion. Some ecosystems have experienced an increase in the ar@@ynt of
released due to a centtiong policy of fire suppression that has led to increased levels
of fuel build up, resulting in wildfires of uncharacterist&verity. Fuel reduction
treatments have been proposed to redviltire severity, but like wildfire, these
treatments also reduce the C stored in forests. Our work examines the effects of fuel
reduction on wildfire severity and loftgrm C storage tgauge the strength of the
potential tradeoff between managing forests for increased C storage and reduced wildfire
severity.

Forests have long been referenced as a potential sink for atmosphegric CO
(Vitousek 1991, Turneet al. 1995, Harmoret al. 1996 Harmon 2001, Smithwickt al.
2002, Pacalat al.2004) and are credited with contributing to much of the current C sink

in the coterminous United States (Paalal.2001, Hurttet al.2002). This U.S. carbon
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sink has been estimated to be betweeA D@58 PgCy¥f or t he 19806s, of
between 0.17 x £ 0.37 Pg C ¥ has been attributed to accumulation by forest
ecosystems (Pacadd al.2001). While the presence of such a large sink has been
valuable in mitigating global climate change ubstantial portion of it is due to the
development of understory vegetation as result of a national policy of fire suppression
(Pacaleet al.2001, Donovan and Brown 2007). Fire suppression, while capable of
incurring shoriterm climate change mitigatidsenefits by promoting the capture and
storage of atmospheric GOy understory vegetation and dead fuels (Houghton et al.
2000, Tilmaret al.2000), has, in part, led to increased and often extreme fire risk in
some forests, notabRinus ponderos#orests(Moeur 2005, Donovan and Brown 2007
Increased C storage usually results in an increased amount of C lost in a wildfire
(Fahnestock and Agee 1983, Agee 1993). Many ecosystems show the effects of fire
suppression (Schimet al.2001, Goodalet al.2002, Taylor and Skinner 2003), and the
potential effects of additional C storage on the severity of future wildfires is substantial.
In thePinus ponderosé#orests of the east Cascades, for example, understory fuel
development is thought to have propagatedvn fires that have killed olgrowth stands
that are not normally subject to fires of high intensity (Mastuall. 2005). Various fuel
reduction treatments have been recommended foprisie forests, particularly a
reduction in understory vegetatidensity, which can reduce the ladder fuels that
promote such severe fires (Agee 2002, Bratval.2004, Agee and Skinner 2005).
While a properly executed reduction in fuels could be successful in reducing forest fire
severity and extent, such a treatnetay be counterproductive to attempts at utilizing

forests for the purpose of losigrm C sequestration.
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Pacific Northwest forests, particularly those that are on the west side of the
Cascade mountain range, are adept at storing large amounts ofi Ibiaglived
conifers are able to maintain production during the rainy fall and winter months, thereby
out-competing shortelived deciduous angiosperms with a lower biomass storage
capacity (Waring and Franklin 1979). Total C storage potential, or inopmds, of
these ecosystems is estimated to be as high as 829.4 Mg &ntal127.0 Mg C hafor
the western Cascades and Coast Range of Oregon, respectively (Smethali2k02).

Of this high storage capacity for west Cascades and Coast Raeges fd32.8 Mg C ha
! and 466.3 Mg C haare stored in aboveground biomass (Smithveickl.2002), a
substantial amount of fuel for wildfires.

High amounts of wildfirecaused C loss often reflect high amounts of forest fuel
availability prior to the oset of fire. Given the magnitude of such losses, it is clear that
the effect of wildfire severity on lonterm Cstorages central to our understanding of
the global C cycle. What is not clear is the extent to which repeated fuel removals that
are intexded to reduce wildfire severity will likewise reduce lelegm total ecosystem C
storage TEC,). Fuel reduction treatments require the removal of woody and detrital
materials to reduce future wildfire severity. Such treatments can be effective in reducing
future wildfire severity, but they likewise involve a reduction in stkvel C storagelf
repeated fuel reduction treatments decrease the mean total ecosystem C storage by a
guantity that is greater than the difference betwtberwildfire-caused C loss in an
untreated stand and thaldfire-caused C loss intaeated stand, the ecosystentl wot

have been effectively managed for maximal keegn C storage.
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Our goal was to test the extent to which a reduction in forest fuels will affect fire
severity and londerm C dynamics by employing a test of such dynamics at-multi
century time scals. Our questions were as follows: 1) To what degikeaductions in
fuel load result in decreases instbres at the stand leve?) How much C must be
removed to make a significant reduction in the amount of C lost in a wild3ir€an
forests be mnaged for both a reduction in fire severity and increased C sequestration, or
are these goals mutually exclusive?
Methods
Model description

We conducted our study using an ecosystem simulation model, STANDCARB,
that allows for the integration of maiforest management practices as well as the
ensuing gap dynamics that may result from such practices. STANDCARB is a forest
ecosystem simulation model that acts as a hybrid between traditionatlgmdpem
ecosystem models and mdlife form gap moeéls (Harmon and Marks 2002). The
model integrates climatériven growth and decomposition processes with species
specific rates of senescence and stochastic mortality while incorporating for the dynamics
of inter- and intraspecific competition that chareerize forest gap dynamics. Intand
intra-specific competition dynamics are accounted for by modeling spsoasfic
responses to solar radiation as a function o
well as the amount of solar radiation dedited through the forest canopy to each
individual. By incorporating these processes the model can simulate successional

changes in population structure and community composition without neglecting the
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associated changes in ecosystem processes thatfr@sudtpeciespecific rates of
growth, senescence, mortality, and decomposition.

STANDCARB performs calculations on a monthly time step and can operate at a
range of spatial scales by allowing a mgkil grid to capture multiple spatial extents, as
both the size of an individual cell and the number of cells in a given grid can be
designated by the user. We used a 20 x 20 cell matrix for all simulations (400 cells total),
with 15m x 15m cells for forests of the west Cascades and Coast Range and Xim x 12
cells for forests of the east Cascades. Each cell allows for interactions of 4 distinct
vegetation layers, represented as upper canopy trees, lower canopy trees,-a species
nonspecific shrub layer, and a speawsispecific herb layer. Each respective
vegetation layer can have up to 7 live pools, 8 detrital pools, and 3 stable C pools. For
example, the upper and lower tree layers are comprised of 7 live pools: foliage, fine
roots, branches, sapwood, heartwood, cearsts, and headrot, all of whichare
transferred to a detrital pool following mortality. Dead wood is separated into snags and
logs to capture the effects of spatial position on microclimate. After detrital materials
have undergone significant decomposition they can contribute matetieiee
increasingly decayesistant, stable C pools: stable foliage, stable wood, and stable soil.
Charcoal is created in both prescribed fires and wildfires and is thereafter placed in a
separate pool with high decay resistance. Additional detailseoSTANDCARB model
can be found in Appendix A.

Fire processes
We generated exponential random variables to assign the years of fire occurrence

(senswan Wagner 1978) based on the literature estimates (see experimental design for
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citations) of mean fe return intervals (MFRI) for different regions in the US Pacific
Northwest. The cumulative distribution for our negative exponential function is given in
equation (1) wher&X is a continuous random variable defined for all possible numbers

in the probaility function P and/ representshe inverse of the expected time for a fire

return interval given in equation (2).

P{X ¢ x} = fj & "“dx )
0
where
1
E[X] = n (2)

Fire severities in each year generated by thistion@are celspecific, asach
cell is assigned weightedfuel index calculated from fuel accumulation within that cell
and the respective flammability of each fuel comporiet Jatter of which is derived
from estimates of wildfireceaused biomass comaption(see Fahnestock and Agee 1983,
Agee 1993, Covington and Sackett 198Bies can increase (or decrease) in severity
depending on how much the weighted fuel index a given cell exceeds (or falls short of)
the fuel level thresholds for each fire satyeclass Tight, Tmedium Thigh, aNdTmay) and the
probability values for the increase or decrease in fire sev&ignfPg). For example,
while the natural fire severity of many stands of the west Cascades can be described as
high severity, other ahds of the west Cascades have a natural fire severity that can be
best described as being of medigaverity (~6680% overstory tree mortality) (Cisset
al. 1998). For these stands, mediseverity fires are scheduled to occur throughout the
simulatedstand and can increase to a hggverity fire depending on the extent to which

the weighted fuel index in a cell exceeds the threshold for adeigérity fire, as greater
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differences between the fuel index and the fire severity threshold will increashahce
of a change in fire severity. Conversely, medisenerity fires may decrease to a low
severity fire if the fuel index is sufficiently below the threshold for a meeBerrerity
fire. High-severity fires are likely to become medusaverity firesf the weighted fuel
index within a given cell falls sufficiently short of the threshold for a tsgtherity fire,
and lowseverity fires are likely to become medksaverity if the weighted fuel index in
a given cell is sufficiently greater than the tim@sl for a mediurseverity fire. Fuel
level thresholds were set by monitoring fuel levels in a large series of simulation runs
where fires were set at very short intervals to see how low fuel levels needed to be to
create a significant decrease in expediee severity. We note that, like fuel
accumulation, the role of regional climate exerts significant influence on fire frequency
and severity and that our model does not attempt to directly model these effects. We
suspect that an attempt to model tighly complex role of regional climate data on fine
scale fuel moisture, lightningased fuel ignition, and windriven fire spread adds
uncertainties into our model that might undermine the precision and applicability of our
modeling exercise, and it wés that reason that we incorporated data from extensive
fire history studies to approximate the dynamics of fire frequency and severity.

Final calculations for the expected stand fire sevéiBg] at each fire are

performed as follows:

E[F.] = %) g cOmO +cm™m™ + cMm®

i=1 (3)
whereC is the number of cells in the stand matrix @H& Ci(m) , and C,(h) are the

number of cells with light, medium, and higbverity fires, and’n(l), m(m) , ard
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h : . : : .
m( ) represent fixed mortality percentages for canopy tree species for light, medium, and

high-severity fires, respectively. This calculation provides an approximation of the
number of upper canopy trees killed in the fire. The resudixpgected fire severity
calculationE[F4] is represented on a scale from100}, where a severity index of 100
indicates that all trees in the simulated stand were killed.

Our approach at modeling the effectiveness of fuel reduction treatments
underscoes an important tradeff between fuel reduction and logrm ecosystem C
storage by incorporating the dynamics of snag creation and decomposition. Repeated
fuel reduction treatments may result in a reduction in-kemgh C storage, but it is
possible tht if such treatments are effective in reducing tree mortality they may also
offset some of the C losses that would be incurred from the decomposition of snags that
would be created in a wildfire of higher severity. STANDCARB accounts for these
dynamics ly directly linking expected fire severity with a fuel accumulation index that
can be altered by fuel reduction treatments while also incorporating the decomposition of
snags as well as the time required for each snag to fall following mortality.
Total eosystem C storagd EQ) is calculated by summing all components of C (live,
dead, and stable) storage at each timejdtmpeach replicate For each replicate
(i =1, 2é5) and for each),thenan ol edogystemeCen f i r es
storage TEG,) is calculated by averaging the yeaflECv al ues (k=1, 2, éR

1R

TECm(i’X) = R a TEC(i,X’k)
k=1

By aggregating EC,,values in this manner permits the number B, values to be the
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same as the number BfFg] values, permitting a PerMANOVA anaiggo be
performed orE[Fs] andTEC,;,
Fuel Reduction Processes

STANDCARBOs fire module allows for schedu
severity (light, medium, high) to be simulated in addition to thesabhreduled wildfires
generated from the aforem#&ned exponential random variable function. In addition to
simulating the prescribed fire method of fuel reduction, STANDCARB has a harvest
module that permits cebly-cell harvest of trees in either the upper or lower canopy. This
module allows the @ to simulate understory removal or overstory thinning treatments
on a cellby-cell basis. Harvested materials can be left in the cell as detritus following
cutting or can be removed from the forest, allowing the user to incorporate the residual
biomasghat results from harvesting practices. STANDCARB can also simulate the
harvest of dead salvageable materials such as logs or snags that have not decomposed
beyond the point of being salvageable.
Site Descriptions

We chose th@inus ponderosatands othe Pringle Falls Experimental Forest as
our representative for east Cascades fo(@stangbloodet al.2004). Topography in the
east Cascades consists of gentle slopes, with soils derived from aerially deposited dacite
pumice. Thélsuga heterophyllPseudotsuga menziestiands of the HJ Andrews
Experimental Forest were chosen as our representative of west Cascades forests
(Greenland 1994)Topography in the west Cascades consists of slope gradients that
range from 20 to 60% witlods thatare aeep, vell-drained dystrochrepts. THesuga

heterophyllaPicea sitchensistands of the Cascade Head Experimental Forest were



70

chosen as our representative of Coast Range forests. We note that most of the Oregon
Coast Range is actually comprisedlsfiga heterdpylla-Pseudotsuga menziesii
community types, similar to much of the west Cascadssiga heterophyli®icea
sitchensiscommunities occupy a narrow strip near the coast, due to their higher tolerance
for salt spray, higher semoisture optimum, and lowénlerance for drought compared
to forests dominated seudotsuga menziegilinore 1979), and we incorporate this
region in order to gain insight into this highly productive ecosystem. Topography in the
Cascade HeaBxperimental Forest consists of slagradients of ~10% witBoilsthatare
silt loams to silt clay loams derived from marine silt stonBie locations are shown in
Figure3.1 and are located within three of the physiographic regions of Oregon and
Washington as designated by Franklin angri2ss (1988). Additional site data are
shown in Table3.1.
Experimental Design

The effectiveness of forest fuel reduction treatments is often, if not always,
inversely related to the time since their implementation. For this reason, our experiment
incorporated a factorial blocking design where each ecosystem was subjected to four
different frequencies of each fuel reduction treatment. We also recognize the fact that fire
return intervals can exhibit substantial variation within a single watersheidupsity
those with a high degree of topographic complexity (Agee 1993, @isakll999), so
we examined two likely fire regimes for each ecosystem. Historic fire return intervals
may become unreliable predictors of future fire intervals (Westegtia 2006), thus

ascertaining the differencesTieC,that result from two fire regimes might be a useful
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metric in gauging C dynamics resulting from fire regimes that may be further altered as a
result of continued global climate change.

We based the @ected fire return time equations (1,2) on historical fire data for
our forests on the following studies: Bork (1985) estimated a mean fire return interval of
16 years for the east Cascaé@sus ponderos#orests, and we also considered a mean
fire return interval of 8 years for this system. Cisstehl.(1999) reported mean fire
return intervals of 143 and 231 for forests of mediamd highseverity (standeplacing)
fire regimes, respectively, among tfheuga heterophyllPseudotsuga menziefirests
of the west Cascades. Less is known about the fire history of the Coast Range, which
consists offsuga heterophylldseudotsuga menziesbmmunities in the interior and
Tsuga heterophyll®icea sitchensisommunities occupying a narrow edge of latahg
the Oregon Coast. Work by Impara (1997) in the interior region of the Coast Range
suggested a natural fire return (expected fire return time) interval of 271 years in the
Tsuga heterophyll¥seudotsuga menziegbne and Lon@t al.(1998) reportedake
derived charcoatediment based estimates of mean fire return interval for the Coast
Range forests to be fairly similar, at 230 years. HowevelTshga heterophyll®icea
sitchensicommunity type dominant in our study area of the Cascade Headiragptal
Forest has little resistance to fire and thus rarely provides a dendrochronological record.
We estimated a mean fire return interval of 250 years as one fire return interval for a
high-severity fire, derived from interior Coast Range naturalrétarn interval estimates,
and also included another higbverity fire regime with a 500 year mean fire return

interval in our analysis.
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It is important to note that while the forests of the east Cascades exhibit a
significant and visible legacy offetts from a policy of fire suppression, many of the
mean fire return intervals for the forests of the west Cascades and Coast Range exceed
the period of fire suppression (approximately 100 years), and these forests in the west
Cascades and Coast Rangd wnalt necessarily exhibit uncharacteristic levels of fuel
accumulation (Brown et al. 2004). However, the potential lack of an uncharacteristic
amount of fuel accumulation does not necessarily preclude these forests from future fuel
reduction treatments dwarvesting, thus we have included these possibilities in our
analysis. The frequencies at which fuel reduction treatments are applied were designed to
be reflective of literaturel e r i ved esti mates of each ecosyst
intervals, since farst management agencies are urged to perform fuel reduction
treatments at a frequency reflective of the fire regimes and ecosyptaific fuel levels
(Franklin and Agee 2003, Dellasahal.2004). Treatment frequencies for the Coast
Range and west Ceades were 100, 50, 25 years, plus an untreated control group, while
treatment frequencies in the east Cascades were 25, 10, and 5 years, and an untreated
control group.

We incorporated six different types of fuel reduction treatments largely based on
those outlined in Agee (2002), HessbamgpAgee (2003), and Agee and Skinner (2005).
Treatments wer e taken directly from the authors
publications, treatment 1 was derived from the same principles used to formulate those
recomnendations, and treatment 6, cleaitting, was not recommended in these
publications but was incorporated into our analysis because it is a common practice in

many Pacific Northwest forests. Treatmen# Were applied to all ecosystems, while
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treatment$ and 6 were applied only to the west Cascades and Coast Range forests, as
such treatments would be unrealistic at the treatment intervals necessary to reduce fire
severity in the higtirequency fire regimes of the east Cascd®lass ponderos#orests.

Note that these treatments and combinations thereof are not necessarily utilized in each
and every ecosystem. Managers of forests on the Oregon Coast, for example, would be
unlikely to use prescribed fire as a fuel reduction technique. Our experimesitai d

simply represents the range of all possible treatments that can be utilized for fuel
reduction and is applied to all ecosystems purely for the sake of consistency.

1) Salvage LoggingSL) - The removal of large woody surface fuels limits the
flame length of a wildfire that might enter the stand. Our method of ground fuel
reduction entailed a removal of 75% of salvageable large woody materials in the stand.
Our definition of salvage logging includes both standing and downed salvageable
materialsg(sensu.indenmaer and Noss, 2006).

2) Understory RemovalUR) - Increasing the distance from surface fuels to
flammable crown fuels will reduce the probability of canopy ignition. This objective can
be accomplished through pruning, prescribed firehereémoval of small trees. We
simulated this treatment in STANDCARB by removing lower canopy trees in all cells.

3) Prescribed Fire(PF)- The reduction of surface fuels limits the flame length of
a wildfire that might enter the stand. In the figlls is done by removing fuel through
prescribed fire or pile burning, both of which reduce the potential magnitude of a wildfire
by making it more difficult for a surface fire to ignite the canopy (Scott and Reinhardt
2001). We implemented this treatm@nSTANDCARB by simulating a prescribed fire

at low-severity for all cells.
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4) Understory Removal and Prescribed FifelR+PF)-This treatment is a
combination of treatments two and three, where lower canopy trees were removed
(treatment two) before prescribed fire (treatment three) the following year for all cells.

5) Understory Removal, Overstory Thinning, and Prescribed Fire
(UR+OT+PF)- A reduction in crown density by thinning overstory trees can make crown
fire spread less probable (Agee 2P@&d can reduce potential fuels by decreasing the
amount of biomass available for accumulation on the forest floor. Some have suggested
that such a treatment will be effective only if used on conjunction with UR and PF (Perry
et al.2004). We simulatethis treatment in STANDCARB by removing all lower
canopy trees (treatment two), removing upper canopy trees in 50% of the cells, and then
setting a prescribed fire (treatment three) the following year. This treatment was
excluded from the east Cascade®$bs because it would be unrealistic to apply it at
intervals commensurate with the hiffequency fires endemic to that ecosystem.

6) Understory Removal, Overstory Removal, and Prescribed Fire (Elear
Cutting) (UR+OR+PF)- Clearcutting is a common silgultural practice in the forests of
the Pacific Northwest, notably on private lands in the Oregon Coast Range @i@lhbs
2002), and we included it in our analysis for two ecosystems (west Cascades and Coast
Range) simply to gain insight into the effedf this practice on lonterm C storage and
wildfire severity. We simulated cleautting in STANDCARB by removing all upper
and lower canopy trees, followed by a prescribed burn the following year. This treatment
was excluded from the east Cascaaeedts because it would be unrealistic to apply it at

intervals commensurate with the hiffequency fires endemic to that ecosystem.
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7) Control groupi Control groups had no treatments performed on them. The
only disturbances in these simulations wére s¢ame wildfires that occurred in every
other simulation with the same MFRI.

In sum, our east Cascades analysis tested the effects of four fuel reduction
treatment types, four treatment frequencies, including one control group, and two site
mean fire reurn intervals (MFRI = 8, MFRI =16). Our analysis of west Cascades and
Coast Range forests tested the effects of six fuel reduction treatment types, four treatment
frequencies, including one control group, and two site mean fire return intervals (MFRI =
143, MFRI = 230 for the west Cascades, MFRI = 250, MFRI = 500 for the Coast Range)
on expected fire severity and lotgrm C dynamics. This design resulte@h
combinations of treatmengpes for the east Cascades aBdcdmbinations of treatment
typesand frequencies for each fire regime in the west Cascades and Coast Range with
each treatment combination in each ecosystem replicated 5 times.

Biofuel Considerations

Future increases in the efficiency of producing biofuels from woody materials
may redue potential tradeffs between managing forests for increased C storage and
reduced wildfire severity. Much research is currently underway in the area of
lignocellulasebased (as opposed to sugar or dmaeed) biofuels (Schubert 2006). If this
area of esearch yields efficient methods of utilizing woody materials directly as an
energy source or indirectly by converting them into biofuels such as ethanol, fuels
removed from the forest could be utilized as an energy source and thus act as a substitute
for fossil fuels by adding only atmosphetterived CQback to the atmosphere.

However, the conversion of removed forest biomass into biofuels will only be a useful
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method of offsetting fossil fuel emissions if the amount of C stored in an unmanaged
forest isless than the sum of managed staf&,,and the amount of fossil fuel emissions
averted by converting removed forest biomass from a stand of identical size into biofuels
over the time period considered. We performed an analysis on the extent to wsiich fos
fuel CG, emissions can be avoided if we were to use harvested biomass directly for fuel
or indirectly for ethanol production. We recognize that many variables need to be
considered when calculating the conversion efficiencies of biomass to biofudlgssu
the amount of energy required to harvest the materials, inefficiencies in the industrial
conversion process, and the differences in efficiencies of various energy sources that
exist even after differences in potential energy are accounted for. r Raheattempt to
predict the energy expended to harvest the materials, the future of the efficiency of the
industrial conversion process, and differences in energy efficiencies, we simply estimated
the maximum possible conversion efficiency that can be&eged, given the energy
content of these materials. The following procedure was used to estimate the extent to
which fossil fuel CQ emissions can be avoided by substituting harvested biofuels as an
energy source:

1) Estimate the mean annual biomass remthatl results from intensive fuel

reduction treatments.
2) Calculate the ratio of the amount of potential energy per unit C emissions for
biofuels (both woody and ethanol) to the amount of energy per unit C

emissions for fossil fuels.
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3) Multiply the potentiakenergy ratios by the mean annual quantity of biomass
harvested to calculate the mean annual C offset by each biofuel type for each
forest.

4) Calculate the number of years necessary for biofuels production to result in an
offset of fossil fuel C emissionsThis procedure was performed for two land
use histories: managed secaymdwth forests and oldrowth forests
converted to managed secegibwth forests.

Calculations for each ecosystem are shown in Appendix B.
Simulation Spin Up

STANDCARB was calibrad to standardized silvicultural volume tables for
Pacific Northwesstands. We then calibrated itgermanent study plot data from three
experimental forests in the regi@figure3.1) to incorporate fuel legacies, which were
taken from a 600 year spup simulation with fire occurrences generated from the
exponential distribution in equation (1) whdrevas based on each ecosys!
fire return interval. Sphup simulations were run prior to the initiation of each series of
fuel reduction treatnmgs, and simulations were run for a total of 800 years for forests of
the east Cascades and a total of 1500 years for simulations of the west Cascades and
Coast Range.
Data Analysis

We employed a nonparametric multivariate analysis of variance, PerMANOVA
(Anderson 2001), to test grodgwvel differences in the effects of fuel reduction frequency
and type on mean total ecosystem C storage and expected fire severity. PerMANOVA

employs a test statistic for tikeratio that is similar to that of an ANOVéalailated
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using sum of squares, but unlike an ANOVA, PerMANOVA calculates sums of squares
from distances among data points rather than from differences from the mean.
PerMANOVA was used instead of a standard MANOVA because it was highly unlikely
that our dad would meet the assumptions of a parametric MANOVA. PerMANOVA
analysis treatedukl reductiortreatment type and treatment frequensyfixed factors
within each respective fire regime for each ecosystem simulated. ullg/pothesis of
no treatment dééct for different combinations of these factors DBEGC,,andE[F¢ was
tested by permuting the data into randomly assigned sample units for each combination
of factors so that the number of replicates within each factor combination were fixed.
Each of outwelve PerMANOVA tests incorporated 10,000 permutations using a
Euclidian distance metric, anduttiple pairwise comparison testing for differences
among treatment types atr@atment frequenciesasperformedwhensignificant
differences were detectedg(j, P < 0.05)
Results

Results of the PerMANOVA tests indicate that mean expeaeeddveriy
(E[F4) andmean total ecosystem C storag@&(C,) weresignificantly affected by fuel
reduction type < 0.0001), frequency® < 0.0001), and interactions between type and
frequency P < 0.0001)in all three ecosystemd hese results were significant for type,
frequency, and interaction effects ewginen clearcutting was excluded from the
analysis for the west Cascades and Coast Range simulations, just aa pinveaisfor
simulations of the east Cascades. When the PerMANOVA was performed on only one of
our response variableE[f] or TEC,), graupwise comparisons of effects of treatment

type showed that the most significant effects of treatment and frequency were related to
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TEGC,. TEG, was strongly affected by treatment frequency for each fire regime in each
ecosystemK < 0.0001) and consistdptshowed an inverse relationship to the quantity
of C removed in a given fuel reduction treatment and was thus highly related to treatment
type. E[F4], similar toTEGC,;, showed significant relationships with treatment frequency
for all three ecosystem® (< 0.0001), with statistically significant differences among
most treatment types. BoxplotsTEC,andE[F] for each treatment type in each fire
regime for each ecosystem are shown in Appendix C.

Fuel reduction treatments in east Cascades simulagosedl EC,,with the
exception of one treatment type: UR treatments (see Babléor acronym descriptions)
in these systems occasionally resulted in additional C storage compared to the control
group. These differences were very small{D.B% incrase inTEC,) but statistically
significant (-TedtR<d00B)tfobtlse tréatment retdrn ifterval of 10
years in the light fire severity regime #1 (MFRI = 8 years) and for all treatment return
intervals in light fire severity regime #2 (MFRI16 years). The fuel reduction treatment
that reduced EC;the least was SL, which, depending on treatment frequency and fire
regime, stored between-®8% of the control group, indicating that there was little
salvageable material. UR+PF, dependingreatment frequency and fire regime,
resulted in the largest reductionTC,in east Cascades forests, storing between 69
93% of the control group.

Simulations of west Cascades and Coast Range forests showed a decrease in C
storage for all treatmenypies and frequencies. Fuel reduction treatments with the
smallest effect oMEC,were either SL or UR, which were nearly the same in effect. The

treatment that most reduc@&C,was UR+OT+PF. Depending on treatment frequency
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and fire regime, this treaemt resulted in C storage of betwé#h82% of the control
group for the west Cascades, and betwee8335% of the control group for the Coast
Range. Simulations with clegutting (UR+OR+PF), depending on application
frequency and fire regime, resultedGrstorage that was between2®% of the control
group for the west Cascadasd between 487% of the control group for the Coast
Range.

Similar toTEC,; E[Fs] was significantly affected by fuel reduction treatments.
Fuel reduction treatments were effective in reduéiffg] for all simulations. UR
treatments had the smallest effectEjRs] in the east Cascades simulations Bfigy] in
the east Cascad simulations was most affected by combined UR+PF treatments applied
every 5 years, which reducé&flF¢] by an average of 6.01 units (units range froa00,
see equation 3) for stands with an MFRI=8 and by 11.08 units for stands with an
MFRI=16. Inthe vest Cascades and Coast Rarkj&] was least affected by UR
treatments, similar to the east Cascades simulations. The most substantial reductions in
E[Fs] were exhibited by treatments that removed overstory as well as understory trees, as
in treatmentdJR+OT+PF and UR+OR+PF. In the west Cascades simulations,
depending on treatment frequenE&yl-s] was reduced by an average of 1118268 units
where the MFRI=143 and by an average of 28212 units where the MFRI=230 when
UR+OT+PF was applied. When URH+PF was applied to the Coast Rarigd;] was
reduced by an average of 7-28.72units where the MFRI=250 and by an average of
1.9520.62 units where the MFRI=500, depending on treatment frequency. Some
UR+OR+PF treatmentsyhen applied at a frequenoy 25 years, resulted B[F4] that

was higher than that seen in UR+OT+PF in spite of |oOM&L,,in UR+OT+PF. A result
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such as this is most likely due to an increased presence of lower canopy tree fuels as a
consequence of the increased lower stratunt &ghilability that follows a cleacut, as
lower canopy tree fuels are among the highest weighted fuels in our simulated stands.

Modeled estimates &[F] were reflective of the mean amounts of C lost in a
wildfire (C,.). C,= Was lower in the stands simulated with fuel reduction treatments

compared to the control groups, with the exception of the east Cascades stands subjected
to understory removal. Reductions in the amount of C lost in a wildfire, depending on
treatmentype and frequency, were as much as 50% in the east Cascades, 57% in the
west Cascades, and 50% in the Coast Range. In the east Cascades simulations, amounts
lost in wildfires were inversely related to the amounts of C removed in an average fire
returninterval for each ecosystem (FiguB&), except for the Light Fire Regime #1
(MFRI=8 years). Simulations in this fire regime revealed a slightly increasing amount of
C lost in wildfires with increasing amounts removed, though amounts removed were
nonethéess larger than the amounts lost in a typical wildfire.
Biofuels

Biofuels cannot offset the reductionsTiBC,resulting from fuel reduction, at
least not over the next 100 years. For example, our simulation results suggest that an
undisturbed CoastdahgeTsuga heterophyli#®icea sitchensistand (where MFRI=500
years) has aEC,,0f 1089 Mg C h&. By contrast, £oast Rangstand that is subjected
to UR+OT+PF every 25 years ha3&C,0f 757.30Mg C ha’. Over a typical fire return
interval of 450 gars (estimated MFRI was 500 years, MFRI generated from the model
was 450 years) this stand HE)7Mg C ha' removed, a forest fuel/biomass production

of 2.46 Mg C ha' year*, which amounts to emissions 082Mg C ha' year* and0.96
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Mg C ha' year" that can be avoided by substituting biomass and ethanol, respectively,
for fossil fuels (see calculations Appendix B. This means that it would takéd years
for C offsets via solid woody biofuels an8Byears for C offsets via ethanol production
before ecosystem processes result in net C storage offsets (seeF3gyur€onverting
Coast Range oldrowth forest to secorgrowth forest reduces the amount of time
required for atmospheric C offsets3d years for biomass and 201 years for ethana, an
like all other biofuel calculations in our analysis, these are assuming a perfect conversion
of potential energies. West Cascadisaga heterophylldPseudotsuga menziesii
ecosystems (where MFRI=230 years) that are subjected to UR+OT+PF every 25 years
would require 28 years for C offsets using biomass as an offset of fossil fuel derived C
and459years using ethanol. Converting west Cascadegrolth forest to second
growth forest reduces the amount of time required for atmospheric C offseféyeatd
for biomass fuels an838years for ethanol. Simulations of east Casc&iess
ponderosaecosystems had cases where stands treated with UR stored more C than
control stands, implying that there is little or no tradein managing stands of the east
Cascades for both fuel reduction and ldagn C storage.
Discussion

We employed an ecosystem simulation model, STANDCARB, to examine the
effects of fuel reduction on expected fire severity and long term C dynamics in three
Pacific Northwest ecosystentfie Pinus ponderoséorests of the east Cascades, the
Tsuga heterophyli#seudotsuga menziefirests of the west Cascades, andTibega
heterophyllaPicea sitchensiforests of the Coast Range. Our fuel reduction treatments

for east Cascades forestsluded salvage logging, understory removal, prescribed fire,
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and a combination of understory removal and prescribed fire. West Cascades and Coast
Range simulations included these treatments as well as a combination of understory
removal, overstory thiring, and prescribed fire. We also examined the effects ofclear
cutting followed by prescribed fire on expected fire severity andieng C storage in

the west Cascades and Coast Range.

Our results suggest that fuel reduction treatments can be effegcteducing fire
severity,a conclusion that is shared by sofiedd (Stephens 199&ollet and Omi 2002
Stephens and Moghaddas 2005) amatleling studies (Fulét al.2001) However, fuel
removal almost always reduces C storage more than the add@idinat a stand is able
to store when made more resistant to wildfire. Leaves and leaf litter can and do have the
majority of their biomass consumed in a hggverity wildfire, but most of the C stored
in forest biomass (stem wood, branches, coarse ydelbris) remains unconsumed even
by high-severity wildfires. For this reason, it is inefficient to remove large amounts of
biomass to reduce the fraction by which other biomass components are consumed via
combustion. Eel reduction treatmentbhatinvolve aremoval ofoverstory biomass are,
perhaps unsurprisinglyhe mostinefficient methods ofedwcing wildfire-related C losses
because they remove largmounts ofC for only a marginal reduction in expected fire
severity For example, total biomassmoval from fuel reduction treatments over the
course of a higiseverity fire return interval (MFRI=230) in the west Cascades could
exceed 500 Mg C Hawhile reducing wildfirerelated forest biomass losses by only ~70
Mg C ha® in a given fire (Figur8.2). Coast Range forests could have as much as 2000
Mg C ha* removed over the course of an average fire return interval (MFRI = 500), only

to reduce wildfirerelated biomass combustion by ~80 M&& (Figure3.2).
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East Cascades simulations also showéend of decreasirtg Fs| with
increasing biomass removal, though a higheC,,was seen in some understory removal
treatments compared to control groups. We believe that the removal of highly flammable
understory vegetation led to a reduction in olldir@ severity that consequently lowered
overall biomass combustion, thereby allowing increased overall C storage. Such a result
may be indicative of actual behavior under field conditions, but the very low magnitude
of the differences between the tegigroups and the control group (0-8%2%) suggests
caution in assuming that understory removal in this or any ecosystem can be effective in
actually increasing long term C storage. Furthermore, we recognize that the statistically
significant differencebetween the treated and control groups are likely to overestimate
the significance of the differences between groups that would occur in the field, as the
differences we are detecting are modeled differences rather than differences in field
based estimase Fieldbased estimates are more likely to exhibit higher iraed intra
site variation than modeled estimates, even when modeled estimates incorporate
stochastic processes, such as those in STANDCARB. Our general findings, however, are
nonetheless gwistent with many of the trends revealed by prior fledded research on
the effects of fuel reduction on C storage (Tilnedral.2000), though differences
between modeled and fielthsed estimates are also undoubtedly apparent throughout
other comparisns of treated and control stands in our study.

We note an additional difference that may exist between our modeled data and
field conditions. Our study was meant to ascertain the long term average C storage
(TEC, and expected fire severitids[E]) for different fuel reduction treatment types

and application frequencies, a goal not be confused with an assessment of exactly what
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treatments should be applied at the landscape level in the near future. Sucwaudpbal
require sitespecific data on the patterns of fuel accumulation that have occurred in lieu of
the policies and patterns of fire suppression that have been enacted in the forests of the
Coast Range, west Cascades, and east Cascades for over a d&fatalig not

incorporate the highly variable effects of a centlaryg policy of fire suppression on

these ecosystems, as we know of no way to account for such effects in a way that can be
usefully extrapolated for all stands in the landscdpi@us ponérosaforests may exhibit

the greatest amount of variability in this respect, as they are among the ecosystems that
have been most significantly altered as a result of fire suppression (\é:lae2000,
Schoennagedt al.2004, Moeur et al. 2005). Fadrmore, additional differences may be
present in our estimates of soil C storage for the east Cascades. Our estimates of soil C
storage match up very closely with current estimates from the Pringle Falls Experimental
Forest, but it is unclear how muchrastimates would differ under different fuel

reduction treatment types and frequencies. Many understory community types exist in
east Cascadddnus ponderoséorests (i.eFestuca idahoensis, Purshia tridentata,
Agropyron spicatum, Stipa comata, Physpcs malvaceusand Symphoricarpos albus
communities) (Franklin and Dyrness 1988) and an alteration of these communities may
result from fuel reduction treatments such as understory removal or prescribed fire,
leading to a change in the amount and comjposdf decomposing materials, which can
influence longterm belowground C storage (Wardle 2002). Furthermore, there may be
an increase in soil C storage resulting from the addition of charcoal to the soil C pool,

whether from prescribed fire or wildfir®gLuca and Aplet 2008).
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By contrast, ecosystems with lengthy fire return intervals such as those of the
west Cascades and Coast Range may not be strongly altered by such a policy, as many
stands would not have accumulated uncharacteristic levels afutief a time of fire
suppression that is substantially less than the mean fire return intervals for these systems.
Forests such as these may actually have little or no need for fuel reduction due to their
lengthy fire return intervals. Furthermore, fgeverity in many forests may be more a
function of severe weather events rather than fuel accumulation (Bessie and Johnson
1995, Schoennaget al.2004, Browret al.2004). Thus, the application of fuel
reduction treatments such as understory remaevdaught to be unnecessary in such
forests and may provide only limited effectiveness (Agee and Huff 1986, Brbain
2004). Our results provide additional support for this notion, as they show a minimal
effect of understory removal on expected fireeséy in these forests, and if in fact
climate has far stronger control over fire severity in these forests than fuel abundance,
then the small reductions in expected fire severity that we have modeled for these fuel
reduction treatments may be even saralh reality.

We also note that the extent to which fuel reductions in these forests can result in
a reduction in fire severity during the extreme climate conditions that lead to broad scale
catastrophic wildfires may be different from the effects shbwour modeling results
and are likely to be an area of significant uncertainty. Fuel reductions, especially
overstory thinning treatments, can increase air temperatures near the ground and wind
speeds throughout the forest canopy (van Wagtendonk 19@@, #nd Skinner 2005),
potentially leading to an increase in fire severity that cannot be accounted for within our

particular fire model. In addition to the microclimatic changes that may follow an
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overstory thinning, logging residues may be presentterfalowing such a procedure

and may potentially nullify the effects of the fuel reduction treatment or may even lead to
an increase in fire severity (Stephens 1998). Halsked increases in fire severity that
occur in stands subjected to overstory imig may in fact be an interaction between the
fine fuels created by the thinning treatment and the accompanying changes in forest
microclimate that may lead to drier fuels and allow higher wind speeds throughout the
stand (Raymond and Peterson 2005). [gvbur model does incorporate the creation of
logging residue that follows silvicultural thinning, increases in fire spread and intensity
due to interactions between fine fuels and increased wind speed wind are neglected.
However, we note that even if omodel is failing to capture these dynamics, our general
conclusion that fuel reduction results in a decrease intienmg C storage would then

have even stronger support, since the fuel reduction would have caused C loss from the
removal of biomass whilalsoincreasingthe amount that is lost in a wildfire.

The amounts of C lost in fuel reduction treatments, whether nearly equal to or
greater than our estimates, can be utilized in the production of biofuels. It is clear,
however, that an attempt to stibute forest biomass for fossil fuels is not likely to be an
effective forest management strategy for the next 100 years. CoastRagge
heterophyllaPicea sitchensiscosystems have some of the highest known amounts of
biomass production and storaggpacity, yet under the UR+OT+PF treatment a 169 year
period is necessary to reach the point at which biomass production will offset C emitted
from fossil fuels and 338 years for ethanol production. Likewise, managed forests in the
west Cascades requiiene scales that are too vast for biofuel alternatives to make a

difference over the next 100 years. Even convertingyodavth forests in these
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ecosystems would require at least 33 and 107 years for woody biomass utilization in the
Coast Range and wesastades, respectively, and these figures assume that all possible
energy in these fuels can be utilized. Likewise, our ethanol calculations assumed that the
maximum theoretical ethanol yield of biomass is realized, which is yet to be done
(Schubert 2006) 70% realization of our maximum yield is a more realistic
approximation of contemporary capacities (Galbe and Zacchi 2002).

In addition to these lags, management constraints could preclude any attempt to
fully utilize Pacific Northwest forests for theill biofuels production potential.
Currently in the Pacific Northwest there are approximately 3.6’ xa®f forests in need
of fuel reduction treatments (Stephens and Ruth 2005) and in 2004 the annual treatment
goal for this area was 52000 ha (1.44%less a significantly larger fuel reduction
treatment workforce is employed, it would take 69 years to treat this area once, a period
that approximates the effective duration of fire suppression (Stephens and Ruth 2005).
The use of SPLATSs (strategicalijaced area treatments) may be necessary to reduce the
extent and effects of landscajewel fire (Finney 2001). SPLATSs are a system of
overlapping area fuel treatments designed to minimize the area burned ‘ytérgity
head fires in diverse terrairthese treatments are costly, and estimates of such treatment
costs may be underestimating the expense of fuel reduction in areas wittehgjty
understory tree cohorts that are tis@nsuming to extract and have little monetary value
to aid in offseting removal expenses (Stephens and Ruth 2005). Nevertheless, it is clear
that not all of the Pacific Northwest forests that are in need of fuel reduction treatments
can be reached, and the use of strategically placed fuel reduction treatments such as

SPLATs may represent the best option for a-@f&ctive reduction in wildfire severity,
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particularly in areas near the wildlandban interface. However, the application of
strategicallyplaced fuel reduction treatments is unlikely to be a sufficient meatself
toward ecosystem restoration in the forests of the east Cascades.le8thedosystem
restoration efforts such as understory removal and prescribed fire may need to be
commenced once landscalgeel reductions in fire spread risk have beenléngnted.
Conclusions

Managing forests for the future is a complex issue that necessitates the
consideration of multiple spatial and temporal scales and multiple management goals.
We explored the tradeoffs for managing forests for fuel reduction v®r&ge using an
ecosystem simulation model capable of simulating many types of forest management
practices. With the possible exception of some xeric ecosystems in the east Cascades,
our work suggests that fuel reduction treatments should be foregonesif €écosystems
are to provide maximal amelioration of atmospheric, 6@er the next 100 years. Much
remains to be learned about the effects of forest fuel reduction treatments on fire severity,
but our results demonstrate that if fuel reduction treatsnere effective in reducing fire
severities in the Western hemlé&kouglas firforests of the west Cascades and the
Western hemlodkSitka spruce forests of the Coast Range it will come at the cost of
long-term C storage, even if harvested materials aliead as biofuels. We agree with
the policy recommendations of Stephens and Ruth (2005) that the application of fuel
reduction treatments may be essential for ecosystem restoration in forests with
uncharacteristic levels of fuel buildup, as is oftendhse in the xeric forest ecosystems
of the east Cascades. However, this is often impractical and may even be

counterproductive in ecosystems that do not exhibit uncharacteristic or undesirable levels
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of fuel accumulation. Ecosystems such as the Westmiolek Douglas firforests in

the west Cascades and the Western hermitka spruce forests of the Coast Range may

in fact have little sensitivity to forest fuel reduction treatments and may be best utilized

for their high C sequestration capacities.
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Tables

Pringle Falls HJ Andrews Cascade Head
Vegetation PIPO TSHEPSME TSHEPISI
Elevation 1359 785 287
Mean AnnuallTemperature (°C) 5.5 8.4 8.6
Mean Annual Precipitation (mm) 544 2001 2536
Soil Porosity Sandy Loam Loam Loam
Mean C Storage Potential 183MgChd | 829MgC hd | 1127 Mg C hd

Table 3.1. Site characteristics from Smithwick et alO(2). Species codes: PIPRnus

ponderosaTSHE, Tsuga heterophyltaP SME,Pseudotsuga menzied1SI, Picea

sitchensis




99

Treatment Abbreviation

Treatment

SL

UR

PF

UR+PF

UR+PF+OT

UR+PF+OR

Salvage Logging
Understory Tree Removal
Prescribed Fire
Understory Tree Removal + Prescribed Fire
Understory Removal + Prescribed Fire + Overstory Thinnin

Understory Removal + Prescribed Fire + Overstory Removz:

Table 3.2. Treatment Abbreviations
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Figure Legends

Legend

Deschutes National Forest
- Willamette National Forest
- Siuslaw National Forest

Figure3.1 legend.

---------- mean C storage (UR+OT+PF applied every 25 years)

msmnn C storage (UR+OT+PF applied every 25 years)

----- mean C storage (Control Group)

== == = C storage (Control Group)

cumulative C offsets from ethanol production (from UR+OT+PF applied every 25 years)
= cumulative C offsets from biomass production (from UR+OT+PF applied every 25 years)

Figure3.3 legend.
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Figures

Cascade Head

H.J. Andrews

Pringle Falls

|
| 250 km |

Figure 3.1. Site locationsn Oregon Pringle Falls is our representative site for the east
Cascades, HJ Andrews is our representative site for the west Cascetl€sscade

Head is our representative site for the Coast Range.
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Figure 3.2. Scatterplots of C removed in fuel reduction treatments between wildfires
Crrmand C lost in wildfires Ge(r) for the east Cascades, west Cascades and Coast
Range. Ndte the differences in the axes values. Also note the downward sloping trend

for all ecosystems except for the east Cascades where MFRI=8 years.



