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TRANSIENT BEHAVIOR OF TRANSMISSION CIRCUITS
WITH SERIES-REACTOR COMPENSATION

INTRODUCTION

The necessity for long distance transmission of
large blocks of power has grown rapidly during the last
few years. Some of the large scale hydro-electric devel-
opments in the Western States are located in relatively
remote districts and have created transmission problems
involving distances of the order of 250 miles and blocks
of power of the order of 300,000 kilowatts. One of the
most important considerations of a power development is
to deliver the power to & natural load center with a
minimum annual cost, and that this cost not exceed that
of another source of available power.

The problem discussed in this thesis has arisen
as a result of some speculations regarding a transmission
tie-line between the Bonneville Dam power generating
station and the Grand Coulee Dam generating station.
Since a normal 230-kilovolt transmission line of that
length (240 miles) has a normel power limit of approxi-
matelyl130,000 kilowatts, a number of lines may have to
be construeted in order to provide sufficient power trans-
fer. The power limit of a transmission system is deter-

mined largely by its impedance, most of which is reactance.



The high voltage used on a power transmission line re-
quires that there be a large spacing between the conduc-
tors; then, each conduector is surrounded by a large
magnetic field resulting in a high reactance. The most
economical point at which to operate a transmission line
may be at two to three times its ordinary power limit.
The transmission line proper does not corntain all of the
reactance; the reactance in the generators themselves is
quite large. If, however, the reactance in the trans-
formers and the transmission line could be compensated,
then the most economical operating point may be approached.

_ Because of recent manufacturing trends, it is now
possible to construet capacitors of sufficient voltage
and current rating to be used for compensating the line
reactance. The conjecture is that a capaqitor may be
placed in series with each conductor in a transmission
system to compensate for all or part of the induective
reactance.

The behavior of a power system as a whole is
quite complex. This study has been narrowed down to &
few of the more pertinent points in connection with the
Steady-state behavior end a few of the possible types of
transients that would occur on the transmissidn line.
This thesis was developed from the standpoint of consi-

dering each effect in its individuality so that for any
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total effect the proper components could be put together.
The idea being that since this development is not carried
through to its completion, a complete correlation of the
results would not be of much value at this point.

There have been a number of instances where a
geries of capacitors have been used in small feeder lines
for the purpose of voltage regulation, which is of ho
consequence in the problem; but to date, there has been
no installation for the purpose of increasing the power
limit of a transmission system. Hence, the literature
on the background of this investigation is limited. The
bibliography will consist of material relevant to the
nature of behavior of transmission systems; but, it will
not pretend to be comprehensive. ’

There have been new trends in the notation of
engineering functions and quantities. These new conven-
ticns have been adhered to whenever possible. For a
complete 1ist of the notation and symbols, consult

Appendix I.



Chapter 1

PROBLEMS OF POWER TRANSFER IN A FOUR TERMINAL NETWORK
AS A FUNCTION OF VOLTAGE ANGLE
AND TERMINAL VOLTAGES

Since & transmission line may be considered as a

four terminal network, the performance mey be represented

by the matrix equation

E.=|AB .
Ll fc Al |1

where the subscript 1 indicetes sending end quantities,

and the subsecript 2 indicates receiving end quantities.

Then

E =AE,+Bl,

T: CE.+ AL,

but the power received
A

F-LE,

Then

E. < AE,+B —FE_

2
solving for Ey




da

3

B |eis(Y)
=[A cis (¥)
E,=|E]cis(5+¢)

dand § are to be determined later

B, = [EfE]cis C3-0- JAl|Ef* cioa

|B|cis(t)

...YE 1s (RS-0 -Y) — els -
...J_‘I.IBI.%J.CS S-&-4) ]ﬁuuﬁdf (a-=Y) (l)»

ler=E = cos (6+¢*"‘P)—A COSO"'\‘,)

2)
B B ‘

If § is chosen so that it is the displacement from the

angle of zero power, then

$ = cos™ [|A\ :%‘I. cos (- w] =Y
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Equation (2) represents, then, the equation of
power transfer for a four terminal network. It is noted
that if an angle ¢’cannot be found that, under those
conditions, there can be no power iransfer. Consider
now a special case of the above equation. In the case of
& smooth transﬁission line used for power transmission,

the constants A, B, and C have the following values

A = cosh e

B*Z, smho
.l
o) 7 sinho

Consider the case where A is real and B is pure
reactance. This condition is approached very closely

in power trensmission circuits. Then
A=Al yA= 0

BBl cis®,¥=-%

b+ o

Eir =.B§JE§&L s\iné

B

From Equation (1)

pu_ = |E|{E|_z|_ c6s &
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If the line is compensated for by a series capa-
citor at any point, the angle of A, B, and C is not materi-
ally effected; hence, the above expressions will apply
approximately.

For the nominal pi consideration of & transmis-
sion line, the quantity B in the above equations is the
series reactance of the section. The nominal pi cal-
culation of power for a given angle gives a smaller amount
of power than does the same calculation on the basis of
equations above.

The equatiocn for power transfer in a four-ter-
minal network is of the same type as that for a simple
series impedance except that the series impedance is
effected by the shunt admittance and an equivalent im-

pedence must be used.



Chapter II
STEADY STATE BEHAVIQOR OF SERIES CAPACITORS

The general problem of determining the size of
& series capacitor to neutralize a given length of line
has several subdivisions, and the logical one to dis-
cuss first is the problem of the series ceapacitor being
located at the generator end of the transmission line.
The problem is to find & value of series capacitance such
that the line behaves as pure resistance. This same con-
dition is satisfied if & value of capacitance is found
such that the angle between the sending end voltage vee-
tor and the receiving end voltege vector is independent
of the load provided,the load is of pure resistance.

The problem is attacked in the following manner:
The load is intrpduced into the network representing the
transmission line as an element, and the receiving end
current will be considered zero. The receiving end cur-
rent in this case is not the load current. The loed is

considered as a conductance G.

A. The'Case of the Series Capacitor Loecated
at the Sending End of the Line

000~

m
™

-

»

L



Efl. v 2] [a B, 0 £,
I 0o | C A G | I,

A+Z.C+GB+2Z A B+ZA Ea
B c +AG A 1,

Since I, = 0

-% - [avzc va(BrAZ) | eis e

Where ¢ is to be a constant.

Let

2, = —JX, A=A+ JA;

B - Br"’JBJJ C'-'Cy-"'JCJ-

Then

E . LA', +CsX.+*G (B, + A:Xc)]

+JT|A;- Cp X, +G (B; ~AX)]




tan ¢ 2AtGiet GBrt AX)
Crx +G(B~T Arxa

If

A:r" CrXc. = A+ CrXe
Br - ArXc Br + AKX,

then tan ¢’is independent of G. X must satisfy the

following relation.

X:[ACs -AC]* X, [A% + AX~C,B, ~C; By .
[AsBr-A.B] =0

There will be two solutions to this equation.
One solution will make 4? equal to 90° and the other one
will make ¢pequal to 00, which is the value which is wanted.
The latter one may be recognized easily sinece it will
be the smaller value. The other velue may be negative
indicating that it would take inductive reactance to
accomplish that result. The solution equation (3) may
be written down with the aid of the Hindu formula.
The general method of solution was carried to completion
in this case to show the method of attack. For the sue-
ceeding cases some assumptions will be made in order to

simplify the equations. These assumptions introduce an



error of very small magnitude for power transmission

cireuits. They are:
A=APJ A:-=o

B =:rE%I, Br=0

C =JCJJ Cp=°
These assumptions ere equivalent to saying that the line
consists of pure inductance and capacitance.

The solutions to equation (3) under these condi-

tions are

X =—B_L ‘:A.L

<" A, ' C,

If the long line equations are considered,

B =Z, sinhe , A=coshe

For the previous assumptions @ is pure imaginaryefjﬁ
Let L and C be the inductance and capacitance per unit

length and 1 the length of the line.

©:=0ZY =JTA/ICw =77

Z = _%_ a _L
oy V C
Therefore
X, =Z, tan & (4)
In terms of the nominal pi representation of the

transmission line

B = JC‘L.uJ 5 !\ = |"JZZ'L.c:uft



In terms of the nominal pi representation of the

transmission line

AL
X&=|-I‘LCw”

(5)

B. The Case Where the Series Capacitor is to be Placed
on the Receiving End of the Transmission Line.

AB||_IE,__IO_
c Ajl IO I§IG |

"E." . |a+ceriz A BrZA|
I C+G (A+Z.,C) A+z2.C

E,
L

Es
I,

E.
1.

Since Iz =Q, then

% =A+G(B+ZA)
)

| E, -
By the previous assumptions‘EL is real, then Ze must be
2

chosen so that the coefficient of G is zero.

O=B+Z A

Then

Xc = 'h;n,j for the equivalent pi line
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or

)( ..ael.w
c™" 7 221 P .2 for the nominal pi line.

|-L2LCw?

It is noted that these are the same as for the

previous cease.
C. The Case Where the Series Capacitor
is in the Center of the Line

If a series capacitor were to be placed in the
center of a transmission line to compensate for the re-
actance of the entire line, it may be considered to com-
pensate for the line in each direction, and its reactance,
then, would egual twice the reactance of that necessary
to compensate one-helf the line.
Then
><c.=JZiE° fam,f?
wherq/c?is the phase constant for one-half the line, and
)(c'is the reactance necessary to compensate for the
whole line.

Then the decrease in reactance neceessary to com-
pensate for the entire line when the capacitor is pleced

at the center of the line is

AX, =2, [ten 238~ 2 tan S ] (6)



XX

where,f is the phase constant for one-half the line.
In terms of the nominal pi constants wherel is
the total length of the line and L and C are the inductance

and capacity per unit length

_ 3 Y ol | 3Cw?
AX. = GLLC) G2 LCH

For a 300 mile line, where Zy is 400 and Ais

19.6° (for one-half the line) then
X, installed at one end is 326 ohm.
X, installed in the center is 286 ohm.

From observing the results of the three cases,
the question might be asked; is there a position in the
transmission line where a given series capacitor may be
installed so that its effect may be a maximum or a
ninimum?

The problem now will be to find the position in
the trensmission line for a given series capacitor and
a given load on the line such that the angle between the
sending end voltage vector and the receiving end voltage
veetor is a minimum or maximum.

Let the’line be of length 1, the distance from
the sending end of the series capacitor x, and G the
load.

Then
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el o Bl Z| (A Bf]r o [Ee

I, c. Alfo 1ffc.a Allle | .

E, _ [AIA;C‘LZC-!-G(BZ" ZZC)]+B‘(CL+GAQ) {A,(B;Azzc),» B|A1; . E,
Ll | Chczremmalnaconyfcmnzinn)| |1
Let 1o=0
‘%; = {A‘A&*- ACZ +BC,+BA,G+ABG+AAZ G)
For this problem the long line equations will
be more convenient. For this case, let © be the pro-

pagation constant length and xe be the propagation con-

stant for the length x.

A‘= coshxe B,z Z, sinh (£-x) o
Ag,'-‘- cosh (Z‘X)e C, ='ZL' sinh x o
B, ""Zo Sin“' Xoe Cz"'—zL' slnl'\ (f—x) (<]

By substitution and combining multiple angle formulas

E?‘z, =z {2. cosh @ +Zc[-zL° simhl o - i—o sinh(2x-4) e]

+2GZ, smhfe ¥ GZ’C[Cos‘\[e + cosk(zx'j)e‘l}

In order to idealize the solution, the restric-

tions imposed by the lossless line are assumed. No loss
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of generality is suffered, however.

Zc ® —ch
coshle = cos{S
sinh{e = Tsw\fﬁ

Then

-E€:=J£ {2 c'os],f*é':‘[ sm]ﬂ- sin (z.x-,?)’g]
+T6[22,7%, coslF- ¥, sostan-t4]]}

= R+ TQ

'-"/R"* Q* ¢ [tan" %]

Since Zy will normelly be relatively large as compared to

X,, then R is not effected to a large extent by a vari-
=1

ation in x, so that the maximum and minimum of ton %may

be coincident with the maximum and minimum of Q.

i_a'. =+ X, G-ﬂ sm(ZK—f)/

= 0 when

(2x-£)8= O, T
It is assumed that Xc )G—)ﬂf (@)

- /-4
' 24

These values form a maximum or & minimum if the second

derivative of Q is negative or positive.
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2.0 -2 Xy GE* cos (ax-L)g

2X*

at X,

= - 2 X, GS*

at x@

% = 4+ A, G/iz’
Therefore, Q is a minimum at Xy and a maximum at X o
Since, in the ordimary power transmission line,
the line anglej/ﬁ is less than 90°, the point x; does
not lie in the line. Hence, it is econcluded that the
position of the capeitor for the minimum effeet is at
either end of the line. (The maximum effeet is consi-
dered to be the minimum voltage angle displecement.)
A capacitor at the center of the line will provide a

maximum effeect.
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COMPENSATION FOR TRANSFORMER REACTANCE
It may be desirous to compensate for the sending
end transformer reactance when the series capacitor is

at the receiving end of the line. For this problem the

usual procedure is followed.

EJ ' Zf [A Bl [ & (' ©f &
LI o {lo Ao 1]l | |5
El [A+iC£[A(zt+zc>+Cthc+B} [A(z;zchcz;ZgB} E,
v I C+G(A+CZ) ACz,. ||l L.
Then

“L: AvZ,C0[AZ+Z )+ C2,2, +3]
and Z, must be such that

A(Z+Z)+CZZ+B =0
z o B" Azf
¢« A+CZ,

Using the equivalent pi relationships
_X.cos B -2 sin
X, = a—
eos,d‘zfs S\V\,ﬁ
°

The inecrease in reactance of the capacitor due

(7)

to the presence of the transformer is AX.-.

-[*tCOqu'ifglhqAﬂ
xc-l-cos/f’it MhﬂJ ) Z° t‘n/!
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Xe
AX.= cosd (cosﬂ-é‘f sin/)

From these results it appears that the series

(8)

capacitor will compensate for only a limited amount of
transformer resctance. The limiting condition being when
the denominator of the above expression becomes zero.

For the nominel pi consideration

B=J/lLw, A=1-L*Cu*

C-= Jij (2-2*LC w?)

X =Xt(l"1zLCw")-£LW
S (1-L2LCw?) -f0w(2-£2LCuw?) X,

(9)

or

_XeA- B

(10)
¢ A-X,ICl
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VOLTAGE AND CURRENT RELATIONS IN THE SERIES CAPACITOR

From the standpoint of this investigation, there
were only two possible locations for a series capacitor
in a transmission line. 1In consideration of faults on
the transmission line, if the series capacitor were at
the sending end of the line, and a fault occurred near
that end, then the series capacitor would tend to neutral-
ize the part of the line out to the fesult and the remain-
ing capacitive reactance would neutralize machine reactance,
The resulting condition would produce very high short-
circuit currents. Synchronous machines for power genera-
tion are constructed with & low short-circuit current ratio
so that a short-circuit on the terminals of the machine
will not produce excessive currents because of the machine
reactance. If, however, part of the machine reactance
were neutralized with a series capacitor, then the short-
circuit current would become excessive.

With this in mind, then it would seem reasonable
that the best place to install a series capacitor would
be in such a position thet if & fault occurred in the worst
possible menner that the effeet on the machine would not
be greater then if a feault occurred on the terminals of
the machine. If a generator is supplying a load, then

the proper location would be at the receiving end of the
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line with the series capacitor compensating for everything
back to the terminals of the generator. If, however,

the seriés capacitor is to be used to reduce the line re-
actance between two generating stations, then one solution
would be to have the capacitor in the center of the line
compensating for one-half the line. If further compen-
sation is desired, the line may be broken into a number

of sections each of which is eompensated. It must be

A necessary to arrange the sectioning such that for the
worst possible fault condition that severe conditions will
not be placed on either machine.

In caleulating the voltage and current relations
and line loss, it will be necessary to consider the re-
sistance of the line. The value of series capacitors
may be calculated by the approximate formulas, and then
used in the equations for the exact behavior of the
line. The exaect value of series capacitors, found by
considering resistance, does not differ within slide rulé
accufacy with the value found by the aepproximate formulas.

The matrix equations of voltage and eurrent for the
three cases mentioned will be caleculated explicitly. For
this work the long line formulas greatly expedite the

process.



19

CASE I Series capacitor at the receiving end

of the transmission line.

E | A Bl.[' Z|.[E.
I, c Al oI I,
1A {e -« Azcj E,
e (A czc} I,
A=f.os|-.e = A.,-\'J'AI
15==iﬁ,snnhc» = B, -b;IES‘

(e -'--ZL simhe =C, rJ'c,

zc : -ch

Then
E, =(A+TANE, «[(BrAX Y+ T(B;-X.AN] T, (1)
T =(Cr+TCE+[(A +C X )+ T(A;-XC] I,  (12)

If a fault occurred at the receiving end, the

steady state current at the sending end would be

I =€ [ﬂ-"’C,X}* J(Ag -XeC..)]
T8, +AX)+ T(B,- X, A)
1f X&Z tan S, then

(13)



20

L= elg]

For the ordinary case, A, is nearly unity and

By is the architrave resistence of the equivelent pi.

For the nominal pi consideration, it is the line resistaunce.
The voltage aeross the series ceapacitor as a

funetion of power

Rh=l gz
IE,| -Ill;a-lb(c | (15)
2

The effect of the sending-end and the receiving-
end trensformer may eesily be included in the above

equations.

CASE II TFor a line with the series capacitor
in the exaset center, where A, B, and C are the line

constants for one-half the line

el _la & |1 2] |~=] [E.
I,-CA.OI.CA.I,,
_ (A B JfE,]
et AL HT,
Where |
A':coshze*"z"—é sinh2 @

Z,
Bl""zo Sihh 26 + "Zl' Z.(cosh26+1)
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C"’iL’ Sinh 26 "'i".: 22—"&(0.055\26 ~-1)

°

Let Ez be the voltage from the end of the series
capacitor nearest the receiving end, and I5 be the eurrent,
then

E& - A B Ei

LI [c Al [z

E =21,

- Pa

"Z,_.[C Ez"A'E: (16)
E_3 = AE, + B%": (17)

Assume that the line is free from resistance
and that the series capacitor is compensating for one

half the line.

A =‘—'z-[cosk2.e+'] =';'E' Gan z/f“] e

B's—é'zo sinh 260 = J'-;:Z, SMZ/S (19)
' | &= J o

c -_Z—O[-;- sinh 20 ++.a.n|neJ -Z[z st/*t‘(v;}z]

It is seen from equations 18, 19, and 20 that
the resulting line behaves as a line of slightly less
than one half the total length.
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CASE III If it is desirous to break the line into
a number of smaller sections and compensate for each sec-
tion, the problem may be handled in the following manner:
Assume that there are n seetions all identical. Let A,

B, and C be the line constants of a section.

E, ABll I 2L (AR It 2] A B Ep

I, CA o | cC A 01 c A I

o

If the number of sections is large, they may be grouped
and multiplied by Sylvester's theorem or by the follow-

ing theorem.

¥ cosh & sinh & %_ r¥eosh °0'¢ r$'.|5lnk$.¢

r* sinhd rcoshé i r%ﬂsmh%4’ rVeoshq §
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EFFECT OF CHANGE OF FREQUENCY ON VOLTAGE DISPLACEMENT ANGLE

If a transmission line is used as a tie-line
between two generating stations, and a fault occurs on
the system, the disturbanee may be so great as to cause
a reduction of the machine speed, and hence, a reduction
in frequency. Since the capacitive reactance increases
and the inductive reactance decreases with a decrease in
frequency, then the line angle may decrease and the im-
pedance connection between the two stations may behave
&s pure capacitive reactance. Under this condition,
the system will be very unstable, as will be shown later.
The problem is now to discover the change in line angle as a
function of the change in frequency. For a given appli-
cation to a line, then, knowledge of the possible change
in frequeney is necessary so that the capescitor may be
chosen of such a value that under faulty conditions, the
shift of line angle is of no serious consequence.

Let the change in frequency be designated by Aw
ang the change in phase position of the sending end
voltage with respect to the receiving end voltage be A¢-

Then

E.|. [AB] [E;

L c Al I,
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E dd B | g
A ! = Awl|dw dw I | 2
d <
T e - I R
AE, = Du g—-”-‘ E, * 0wl 1,

Where A Ey is the change in sending end voltage to main-

tain E, and I, with the given change in frequency.

5 1
-1 lmg[ dw Em Izh (21)
Ire“"[‘m Ext "B Iz])

AE
Dw is of 1little conse-

quence. The change in phase angle is

AE, _|AE,

Aw AN

c1§ (tan

The change in voltage

dA
Ad = tan~'{A lmc-,s[dw Ez.*dw "]1 (22)

wual[-ﬂ-:— E,‘-t- duw &]}

and if Awis smell

\mc._g[au Ea,*\- Iz]

(23)
N rea.lh-; Eg e -d—“;-'[l ]

a0 %

As an example, consider a tie-line which has a
series capacitor in the exact center, compensating for
one-half the line in one direction. Assume that the
load is of unity power factor, and the line resistance

is neglected.
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Then
\
A =7 (cos 2 w+i)

B - j[ég sin 24w
2

C = J‘l’ '12‘ Qih]aw +'¢"-"'4W]
Z

Where o= /LC, Zbeing one-half the length of the line,

L and C being the inductence and capacitance per unit
length.

|
= —[dsunﬁ,.lw 'PZ‘;(I-C’OS Zdw)+°<t¢”dw]

a|a
£ >

-ji = J‘[Zoo(cos Zc{w-l'—é’l—;) Sin 2o{w +J\Z,o]
w

C
-j—w = J[—?—: (cos 24w *’)“E_LZ, (—-;’ SIN2Aw +t’ﬁﬂa!9)]
dB I
A¢ * + Aw de T2
dA E
2

dw
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1
A¢ 2 A [Zoa\ws 2o W +5, sn 20w +2 Z, ]Iz
w [o? sin 24 w +721_, (1- cos 2duw)+d tan alw]F_

w

2
(24)
And very generally

A(b?" -Aw Zo Iz,

2

(25)

It was hoped that from this study that a value
of series capacitive reactanece could be found such that
the phase shift could be minimized, but the resulting
function permitted & minimum for inductive reactance

only.
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Chapter III

TRANSIENT BEHAVIOR OF SERIES CAPACITORS

For the consideration of this part of the problem
only a few of the speciel ceses will be considered. There
are innumerable possibilities which can be considered,
but this thesis is very limited in scope.

The first type of problem to be counsidered is
that of charging an infinite line with a series capacitor.
There are two extreme possibilities; closing the breaker
at the zero point of the voltage wave and at the maximum
point of the voltege wave. Each of these are introduced

into the problem simulteneously.

Notaetion:
G = Zﬂ[f(t)]’ (Read "mate of")
te = 2n{ep)
where
oo
G(p) ® f(t) exp (-pt) dt
oo
h+ Joo
£ () =2—|!'|-'J- G (p) exp(ptrdp

h- Joo
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h must be chosen so that the path of integration
lies to the right of the singularities of G (p).

For any physical system where the prineiple of
superpos ition hold, then; where C(t) is the cause, E(t)
| is the effect, Z(p) is the steady state impedance, and
P=Jw = the imaginary radian frequency,
E© -on anICw) ]

Z (p)

So(t) is the unit impulse funetion

S.1(t) is the unit step, equal to Heaviside's
unit funetion

Cis(Wit) S_y equals cos (Kt ) S_;(t)
J sin(%?) s_, ()

R S, =1
_ A

an S, =<

on  cie (%) S (8=

P"Po

Consider a ecapacitor Cl in a series with an in-
finite transmission line consisting of only inductance
and capascitance per unit length of charscteristic im-
pedance Z, ( whieh is pure resistance).

Then for steady state

E,
.Eﬁ ) ZQCP+|
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For Ec‘as & function of time where El=cus(a§)§i$¥)

1 "1
E. == EQ - —
v Z.C, (P-7.)(p Z‘,C.)
) 1 _ 2 | 26)
“(+Czp) [“S(w"t) = (‘ﬁa] |

The real part of this expression is the response
to cog(w.%) S__' (t) and the imaginary part is the re-

sponse to sin (WX) 5_‘ (t) .

cos (Wt -4)  _ exp (je?' ) (27)
VI + (Cuz,)* [l + (G, wozd)z}

Real (E) =

¢ = tan! (Cz,4,)

sin (we - ¢) L _&xp fzfc)

Ji+e,w,2,)* [1+ (clw,Z,)’"]

(28)

‘l’l‘l ag (Ec) =

It would be desirous to have an explicit value
of the maximum value of this function as a funection of
Cl , but this is impossible since the derivative set equal
to zero is a transcendental equation. For Cl equal to
20 mfd, Z 400 ohm, and Wo 377 (60 ecycles), the maxi-
mum value of Imag(Ec) is 0.4 volts, and the steady state

value is 0.3 volts.
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THE RESPCNSE OF A FINITE LINE TO A UNIT IMPULSE

The problem to be investigated next is that of
the voltage across a series capacitor when the line is
cherged with the unit impulse, So(t). The direet appli-
cation of the result to be obteined from this solution
to a transmission line is rather obscure, but the know-
ledge of the physical system and of the result may be
used to interpret the results of succeeding problems.

Consider a cepacitance Cy in series with a trans-
mission line consisting of inductance and capacitance per
unit length. Assume that the line is open on the re-
ceiving end.

Let: (The notation in this and succeeding parts
may be different than in preceding chapters.)

Z, be the characteristic impedance =U[:%;-

d be the length of time for a wave to travel
the length of the line = !/E

P be the imaginary radian frequency.

Then, for steady state conditions

_ sinhapk, m%.

© Stinhdp + Z.C, peosh dp

The response to the unit impulse Sy(t) is

Sinhd&p

30)
sinhap +Z Cp coshdr (

Ec = 2R
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Let Y= -1— and

ZL

r= !lﬂhdp (31)
sinhap + -':,- coshdp

By long division [ﬂmay be expanded into the
following series which is seen to be convergent for all
values of p to the right of the imaginary axis in the
complex plane. (The value of Y is always real and

positive.)

&L
2 Z{-n"p(p-v)"" exp(-2hdp)
.F=Y[p+r + 2 - (P*Y)nﬂ (22)

In order to find the mate of I.“1 it will be

necessary to find the velue of an integral of the type

213 (Pi-\’)h"'

Br
=the sum of residues ofd) in the finite plane.

n=I
¢ = | P (p-r) exp (pt) dP (33)

It may be shown easily by Cauchy's residue theorem that

I exp (pt) dp = 'tﬂ"exp (-v ¢ S (&) (34)
ATT | (p+r )R (R-i)! B
Br

By expanding (30) in e Laurent series and applying (31)



2

b - (n n! (- Zr)* (g-re)t &' exp (-Yt)s(’
(o-1)1(Nn-9)7 ¢/ -l
- A g s

It may also be shown by Cauchy's residue theorem
that if
£t) =2 GCp)
then
'f'(f-g) =2N G (p) exp (-9p)

This is the integral equation form of Heaviside's shift-

(36)

ing theorem.
Denoting

M[ny, (6] =4
then by (30), (31}, (32), (34 (35), and (36)

o ), - "
zQ exp(z;c)*zc Z( )" M[,Zc,(t -2 d)]

(37)
tor 28 d $¢ <2(h+)a

Sinee I. =.‘%'. E. ana c%-s" =8 (Wana ‘referring

I -t |
+Z— C R + zX(-n" N[n,r,(t—znd)] (38)
n:l



33

for

2Ba £t L2(f+)a

N[nrt]=s8 w(_‘" otear enntre) g (g Lapeds r*ﬂ-l; |
WY, ]- -1 L (;..l)'l(” ;)'/Z"/

The line under question is a distortionless line,

(29)

gince RC = LG, meaning that any wave is propagated along
the line without distortion. The magnitude of the current
impulse is changed by the reflection fro@ the closed end,
whieh is the sending end. The change in magnitude of the
voltage across the capacitor does not influence the order
of megnitude of the current pulse, S,(¢-2nd)k The first
current pulse is unity, and each succeceeding pulse is twice
unity because of the reflection from the closed end.

Fach pulse that is returned to the sending end is re-
versed in sign over the preceeding one. There are dis-

continuities in the voltage across the capacitor since
| A

E.»g [ I dt
and
oo

Sb(tidt =1

-00
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But each time the unif impulse is reversed in sign changing
the sign of the voltage across the capacitor, there are
other voltages across the capacitor because of reflections
of finite magnitude, but these voltages are continuous.
Therefore, from the consideration of the physics of this
problem, without going into the mathematieel analysis,

2

Ec is a bounded function with a maximum bound oOf ===

c

and the maximum bound of °

Zt-n”m[n,n(t-zm] s 1. (40)

L H ]
By the integration of equation (40) with respect

to time from zero to t, the response of the line to the
unit step may be found.

In a general way, equation (40) indicates the re-
sponse to a lightning impulse on the line. For the
purposes of analysis, the lightning impulse may be thought

of as of very short duration, but of high value.
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THE RESPONSE OF A SERIES CAPACITOR
TO A FAULT ON THE SYSTEM

The problem to be considered now is that of
determining the voltage across a series capacitor which
is on the receiving end of a transmission line as a funec-
tion of time immediately after a fault oecurs on the load
gside of the capacitor. By applying the theorem of super-
position, a voltage is applied at the point of short
eircuit equal and opposite to the voltage that existed
before.the short ceircuit. The total effect on the capa-
citor is the sum of the voltege ceused by the application
of the new voltage and the voltage that existed before the
short circuit. In consideration of the transient response
it will be assumed that the line is being supplied by
an infinite bus, so that this part of the anelysis nar-
rows to the transient solution of a line shorted at the
receiving end and being charged with a unit eissoid,
cis (%), in series with a capacitor Cy.

For steady state conditions
_coshd pE,

) 40
Ee Z,Cp sinhe p + coshdp (40)
and for E, as a function of time
E coshd p )

c © (ZOCP smh-fp-l-c.osho\p)(P-P,)
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Let
™« coshdlp (42)
-ZEP Sinhol p+ cosh.\r
29 h-l
- J f(p-r) ) -
R F zZ(p-n"“ exp(-2nre) [(42)
hzi
Ec = 2l7-—r—

P-Po
Consider Ec as made up of two parts, an oscillating com-
ponent and a component due to the reflection of the
transient waves. The mate of the oscillating component
may be obtained by expanding each term of.[11n a

Laurent series. The oscillating terms, then, are the

residues of the pole Py

h=1 nh-l other terms
p (p-v) = Po (Po-p) + { which are ana-

(p-P.)(p+ M (p-p,)(p+ Y) L lyticat p,.

(Po-¥)""' (N "exp(-J2nd)

(p+y)™" Pot-r?
where
¢ » tan 3>

The oscillating component of Ec= E‘-"Po is then,
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as
- -n" - -2hdl
B, = Yo L an[2Y NWexp CT2ndlexe )
o ReEr Po™= P -Po
n=| (44)

Since the result is a geometric series, it may be writ-

ten in the form

e _ VeP"t +ZP° rexp[P,t-2(3'¢+F,’,d)] X
cpo P°+y Pez-yz

[ I- (-I)*exp -2 (T +PN] © (45)
l [+ exp[-2(T+Pe)]

for 2 ha ¢ ¢ € 2(f+1)d
It is noted that the denominator of the quantity

in brackets is zero when ¢+“{, =.E- . By the theory of
indeterminate forms, when this is true, the value of

the quantity in brackets is equal to n. Although this
funetion appears to be discontinuous, the total voltage
across the ceapacitor is continuous since this is only

part of the funcetion. It is noted that when the size of a
series capacitor is determined to compensate for the entire
line, thet the voltage under short circuit rises approxi-

mately linearly with time. For this case
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ctam-l Yo . T _w,a
X, = Fz-(". = Z, tan w,a (46)

and Wap\ is equal/.? in the previous discussion of steady
state behavior.

It is not necessery that ¢+ Wpdbe limited to
I, for if it were% (m*l)l('m an integer), then the same
condition would exist. This discussion would ealso apply
to high frequency transmission lines and radiators. It
may be observed from these derivations the reason that a
series capacitor in a radiating antenna shortens the
entenna, and by a similar derivation why an inductance
lengthens it.

Although the other part of E, is not pertinent
to this discussion, it is of interesf to record it.

Let

n g-i
- ! ¢ (g-r¢)epl-vt) x

7/

Q[nmn,,f] =
320

n'
n*7 (ansr T

' (47)
n-g-7) [ (g +T-0) ) (gey) T+

O

U
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Then E,, = R P Q[n,r’& (t-an)]

h=J y exp (-rt)
Pot+ ¥

(48)

By applying a similar type of reasoning to this
problem as to the previous problem, it is seen that this
function must be bounded for ¢+Wd#%since, in this case,
the current pulses are of finite value, and hence, the
voltage across the series capacitor must be continuous.

It is noted from (43), since it does not possess the
alternating sign, that if & unit impulse hed been impressed
on a line whieh was closed at the receiving end, that the
voltage across the series capacitor would have increased
indefinitely with time. In the case of an ordinary
transmission line, the resistance would be sufficient

to provide dissipation for these transient exponential
waves. To the knowledge of the writer very little work
has been done on the mathemetical behavior of the M, N,
and Q fﬁnctions. Functions of this nature occur fre-
quently in transient studies.

It is noted that the initial transient before the
return of the first reflection is the same as that of an

infinite line.
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Chapter IV

TRANSIENT BEHAVIOR OF THE LUMPED CONSTANT EQUIVALENT
OF A TRANSMISSION LINE AND SERIES CAPACITOR
From the standpoint of interest, it may be well
to develop the transient solution for the lumped constant
representation of the transmission line. Assume that
a fault is to occur on the load side of the series capa-
citor. Let it be required to find the voltage across
the series capacitor as a funetion of time. By the
theorem of superposition, the effeect will be the same
as to consider the response of the system to an applied
unit cissoid. Part of the notation in this secetion is

different from that of preceding sections.

C L
ii 2000

Ea

Il
=

|
|
o

C‘=
I, I,

The resistance of the short cirecuit is consi-
dered for the purpose of analysis, but for the final

equation, R is placed equael to zero.
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E, Vsl Y O | Le | O |E,
Il fo | fee 2| lo | (& 1| [Ia
{l+'_'£ +.'c'lF[-'-R-*cP(I+\:§P. )]] {LP +€:'P [“‘chzl}

(hecramp] {1evert)”
(49)
For R equals zero for steady state behavior.
Ee, = {Lee + 1) E, (50)

Vo L(C,*C)p" +|
Then for Ecl as & funection of ‘time in response to

the unit cissoid

- (51)
Ee, = L(c+c,) AN R (T M (prd M
where ‘
\ = .
L(c+C,)
Aa.
Ee,® ',P,.—w[ (1+LCp 2 ) exp (7)
* (LCA*-1) cos At
*J (1-LCXY) Po sm}\-c,] (52)

A
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For a value of A\ such that )\=w° (sincep= Juw, )
the denohinator of the coefficient of the above expres-
sion will approaeh zero, and the oscillations will build
up indefinitely of the form exp (Pst) (as can be shown

from the theory of indeterminant forms).

)ﬁ. - |

L(C+C,)
or
Lwe
Ko * Tlcun (52)

Therefore, for a line whieh is compensated for
entirely by a series capeitor, the transient analysis on
the basis of a lumped constant network shows that the
voltage across the series capacitor approaches an in-
definitely high value. This may also have been noticed
from the steady state equations, since the input admittance
is infinite.

It is noted from the equations that the tramsient
behavior of a Iumped constant network is very di fferent
than that of a distributed constant network. In the
analysis of a lumped constant network, the finite velocity
of propagation is neglected. However, from the standpoint
of a steady state analysis, the lumped constant network

is quite adequate.
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Chapter V
MACHINE TRANSIENTS

In connection with the transients of the trans-
mission line, there must be some consideration given to
the machine transients. While the machine transients
are too slow to effect the line in generasl, particularly
with heavy maéhines, the effect of a purely capacity re-
actance coupling between machines may produce violent
machine transients. This situation may come about if a
fault occurred in such a manner as to eliminate part of
the system, and the remeining part was left to carry
the load; henece, a reduction in frequency. If a series
capacitor were in the line, and for this situation it
was overcompensating for the line and machine impedances,
then the restoring torque on the machine for a displace-
ment is the negative of the displacement. The differen-
tial equation of the machine is represented as follows,
where d is the displacement for the position of equili-
brium and'azis a constant representing the moment of
inertia, the total impedance, the terminal and excitation
voltage.

d*d
dt*

-‘fza’ sind =0 (54)
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This equation neglects a number of factors, one
of them being the non-saliency of the machine, but that
effect is small at small angles. The other effect is the
damping due to the damper winding and other effects.

The solution to this equation will merely indicate a
tendency. There has been considerable work done on the
numerical integration of the damped equation. That
equation has no explieit solution in terms of elementary
funetions. (Refer to the bibliography.}

Equation (54) admits a solution with the follow-

ing terminal conditious.

=,

dd .
3t - °

This is the same as sayiug that 8y is the displacement

t=0

from the normel and that its velocity at that point is

zero at time equal to zero.

R§

~sin? i’ ad. 2 (55)
t:T J 1-cos £ sin*¢

o

This is an elliptiec integral of the first kind, known as
Legendre's normal form.

Rewriting, where sn is the abbreviation for

sine-amplitude
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Sﬂ[?.ﬁ cscz.-‘—%—t] = -sin 24

(56)

The sine-amplitude funetion is & periodic function, the
meximum value of which (as a function of a real variable)
is a function of the modulus which is in this case eos -2125—’
When the modulus is equel to unity, the sine-amplitude
function is the sine funetion. When the modulus is less
than unity, the maximum value of the oscillation is
less than unity. It is easily seen, then, for Sas a
function of t will be an oscillating function if So
does not equal zero or W. The mechanical analogy of
this problem is an inverted pendulum with S measured
from the vertical upward position.

If the connection to the machine had been in-
ductive reactance or resistance, the sign in the ori-
ginel differential equation would have been reversed,

and the mechanical analogy would then be an ordimary

pendulum.
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SUMMARY AND CONCLUSION

It has been shown that it is possible to find a
size of series capacitor to compensate for a given length
of transmission line so that the effect under steady state
concitions is that of a pure resistance coupling between
the sending and the receiving end. A series capacitor
located at the exact center of a transmission line will
provide greater compensation then at any other position.
It is possible for a series capacitor located at one
end of a transmission line to compensate for the inductive
reactance of a transformer located at the other end.

There is a limited amount of reactance which may be
compensated for, but this condition is mnever approached
in ordinary power transmission circuits.

The effect of placing the series capacitor at
the receiving end of the line is Jjust the same as that
of placing it at the sending end so far as the phase
angle of the sending and receiving end voltage is concerned.
There is a slight difference as to the megnitudes of
the terminal voltages, and the behavior of the system
during fault conditions. It is not advisable to place
e series capacitor at the sending end of the line, for,
if a short-circuit fault occurred near the sending end,
the capeitor would compensate for some of the machine

reactance, causing very high fault currents. The main
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purpose of series capacitors is to reduce the phase
angle between the sending and receiving end voltages
so that the power transmitted over the system may be
increased to & more economic value.

The effect of frequency has been pointed out
and applied to a particular example. It is necessary
in a particular installation to determine the possible
reduction of fregueney of the system during feult condi-
tions, since, with & series capacitor in the line,
the phase of the éﬁﬁéﬁﬁé end voltage will advance with
respect to the ;éﬁﬁiﬁgng end voltage with a reduction
in frequenecy.

A method of analysis has been set up so that if
& line is to be sectionalized and a number of series capa-
citors distributed throughout the length of the line,
the cealeulations may be carried out.

The voltage across the series capacitor has been
derived as & function of time for the application of a
unit impulse to the transmission line. This analysis
may be used for the treatment of a lightning impulse
on the line. The voltage across the series capacitor has
been derived as a function of time after a short-circuit
fault has occurred on the load side of the capacitor.
This result is valuable in determining the voltage rating

of a capacitor is certain switehing operations are to
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occur on the line. If a line is sectionalized and a

fault occurs in one section, and it is necessary for

the capacitors to remain in the circuit until the breakers
have had time to clear the fault, then it is necessary

to know the voltage across the capacitor as a function

of time.

In the snalysis of the transmission line, ideal
conditions were assumed, such as, €.g., the omission
of resistance in the line. In the first plece, the
effeet of the resistance is quite small, resulting
in only a minor distortion of the transient wave. In
the second place, the inclusion of resistance would have
produced an answer too unwieldy to be of nmueh value.

The voltege across the series capacitor is a pessimistie
value, since the anelysis assumes that there is no energy
loss of the reflected wave at the terminals of the line.

The behavior of a lumped constant system and a
distributed constant system exhibit a noticeable dif-
ference. This difference'is revealed in the analysis
of the lumped constant network.

An anelysis of the machine differential equation
was made with a pure capacitive reactanece coupling
between a synchronous generator and an infinite bus to
show the effect of an over-compensated line on the ma-

chine. It is noted from the resulting equation that
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there is only one point of equilibrium and that the
entire system is unstable. If the rotor of the machine
is displaced from the position of equilibrium, it will
oscillate with respect to a rotating axis. Since the
original differential equation omitted the effect of
demper windings on the machineé, the resulting solution
will indicate only & tendency.

This thesis has covered only a few out of a mul-
titude of problems that may confromnt an engineer in the
installation of a series capacitor in a transmission

line.
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APPENDIX I

NOTATION AND SYMBOLS

A = coshe = A, + TA;
B = Z,snhe = B+ JTB,

C =2'-° sinh © =cr+~TC,-

e = ['/zy = Propagation constant

,e = Length of line

Z = R+ LP per unit length

Y = G+ Cp per unit length

Z° - ’ = = Characteristic impedance

Jw = Imeginary radian frequency

P =

P, = J 37T for a 60 eycle per second line

w =2T¢
P = ‘Prq. JPT = Complex power
J = Voltage displacement angle
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Phage constant

Imag (©)

L/

A+

Q
1]

Time for a wave group to the
length of the line (for a
line of pure L and C).

Sending end gquantities

|
n

Il ‘ = Receiving end quantities
A
Complex conjugate of E

'ma_,g [P] = Imaginary part of P

-RGQJ [P] =2 Reeal part of P

Pl = Absolute magnitude of P
(:l 2 Capacitance of series capacitor
2, - X,
x = —-‘—-
- wC,
exp x) = &~
ITX

0
7]
P
x
-~
]
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2‘1[ ] is read "mate of" if two functions satisfy

the following integral equation:

£0) = gkz [ G (p) crs (pt) dp

By
and inverting
Qo

G (p) = f(t) cis (-pt) ot

: -0
then

f(t) = 2n[e(p)
and

G ) = 2n[ (4]
Br is the Bromwich contour, which is a path

parallel to the imaginary axis extending from -Joo to

+ Joo passing the singularities of G(p) to the right.

S_| (t) = 70':<>00 Unit step, or Heaviside's unit
) T £
funetion.
S, (t) = :c: : zﬁg Unit impulse



