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TRANSIENT BEHAVIOR OF TRANSMISSION CIRCUITS 
WITH SERIES-REACTOR COMPENSATION 

INTRODUCTION 

The necessity for long distance transmission of 

1rge blocks of power has grown rapidly during the last 

few years. Some of the large scale hydro-elootrie devel- 

oprnents In the estern States are located in relatively 

remote districts and have created transmission problems 

involvin distances of the order of 250 miles and blocks 

of power of the order of 300,000 kIlowatts. One of the 

most important considerations of a power development is 

to deliver the power to a natural load center with a 

minimum annual cost, and that this cost not exceed that 

of another source of available power. 

The problem discussed In this thesIs has arisen 

as a result of some speculations regarding a transmission 

tie-lIne between the . 'onneville Dam power generating 

station and the Grand Coulee Dam generating station. 

Since a normal 230-kilovolt transmission line of that 

length (240 miles) has a normal power limit of approxi- 

rnatelyl3O,000 kilowatts, a number of lines may have to 

be constructed in order to provide sufficient power trans- 

fer. The power limit of a transmIssion system is deter- 

mined largely by its impedance, most of which is reactance. 
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The high voltage used on a power transmission line re- 

quires that there be a large spacing between the conduc- 

tors; then, each conductor is surrounded by a large 

magnetic field resulting in a high reactance. The most 

economical point at which to operato a transmission line 

may be at two to three times its ordinary power limit. 

The transmission line proper does not contain all of the 

reactance; the reactance in the generators themselves is 

quite large. If, however, the reactance in the trans- 

formers and the transmission line could be compensated, 

then the most economical operating point may be approached. 

Because of recent manufacturing trends, it is now 

possible to construct capacitors of sufficient voltage 

and current rating to be used or compensating the line 

reactance. The conjecture is that a capacitor may be 

placed in series with each conductor in a transmission 

system to compensate for all or part of the inductive 
reactance. 

The behavior of a power system as a whole is 

quite complex. This study has been narrowed down to a 

few of the more pertinent points in connection with the 

steady-state behavior and a few of the possible types of 

transients that would occur on the transmission line. 

This thesis was developed from the standpoint of consi- 

dering each effect in its individuality so that for any 



total eÍect the proper coniponente could be put together. 

The idea being that since this development is not carried 

through to its completion, a complete correlation of the 

results would not be of much value at this point. 

There have been a number of instances where a 

series o' capacitors have been used in small feeder lines 

for the purpose of voltage regulation, which is of no 

consequence In the problem; but to date, there has been 

no installation for the purpose of increasing the power 

limit of a transmission system. Hence, the literature 

on the background 0± this investigation is limited. The 

bibliography will consist of material relevant to the 

nature of behavior of transmission systems; but, it will 

not pretend to be comprehensive. 

There have been new trends in the notation of 

engineering functions and quantities. These new conven- 

tions have been adhered to whenever possible. For a 

complete list of the notation and symbols, consult 

Appendix I. 



Charter I 

PROBLEMS OF POWER TRANSFER IN A FOT3R TERMINAL NETWORK 
AS A FUNCTION OF VOLTAGE ANGLE 

AND TERMINAL VOLTAGES 

Since e. transmission line may be considered, as a 

four terminal network, the performance ay be represented 

by the matrix equation 

II E, A E II II E2 II 

II i, il e A liii i ii 

where the subscript i indicates sending end quantities, 

and the subscript 2 indicates receiving end quantities. 

The n 

E1 AE.4-'I 
1: CEL AI2, 

but the power received 

The n 

E,AE 
E2. 

solving for P2 

P,= - AELL t 
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Let 

E= 1E11 

B IBI&s(Y) 

A IAIeìs (T) 

E=IE,J i(cS+4) 

and are to be determined later 

Pa. = i1kI is C-S-4)-. NIEJZ . 
I 

cs(e) 

IEIIIEZI C ¡.S (c4i) - 1A11E1J2 c.;s (gP) (1) 

II 

lE IIJ 
(s 'Y) - IADEJ G3 

t%)) 
(2) 

IBI IBI 

If is chosen so that it is the displacement from the 

anile of zero power, then 

4= cos'[IA1IaI COS(?_W)]_'t' 
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Equation (2) represents, then, the equation cf 

power transfer for a four terminal network. It is noted 

that if an ancle cannot be found that, under those 
conditions, there can be no power transfer. Consider 

now a special case of the above equation. In the case of 
a smooth transmission line used for power transmission, 

the constants A, B, and C have the following values 

Ac05k e 

5 'Z £%1% O 

C Linhe 

Consider the case where A is real and B Is pure 
reactance. This condition Is approached very closely 

in power transmission circuits. Then 

AIAI 

B181 cs)'I 

P = IEIIEI tn5 
II 

Prom Equation (1) 

p = IE1IIEJ 

II 
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If the line le compeneated for by a series capa- 

citar at any point, the angle of k, B, and C is not niateri- 

a11, effected; hence, the above expressions will apply 

approximately. 

For the nominal pl consideration of a transmis- 

clon line, the quantity B in the above eu&tions is the 

series reactance of the section. The nominal pl cal- 

culation of power for a given angle g Ives a smaller amount 

of power thazì does the same calculation on the basis of 

equations above. 

The equaticn for power transfer in a four-ter- 

minal network is of the same type as that for a simple 

series Impedance except that the series impedance Is 

effected by the shunt admittance and an equivalent im- 

pedance must be used. 



Chapter II 

STEADY STATE BEHAVIOR OP SERIES CAPACITORS 

The general problem of determining the size of 

a series capacitor to neutralize a given length of line 

has several sibdivisions, and the logical one to dis- 

cuss first is the problem of the series capacitor being 

located at the generator end of the transmission line. 

The problem ïs to find a value of series capacitance such 

that the line behaves as pure resistance. This same con- 

dition is satisfied if a value of capacitance is found 

such that the angle between the sending end voltage vec- 

tor and the receiving end voltage vector Is independent 

of the load provided, the load is of pure resistance. 

The problem is attacked In the following manner: 

The load Is introúuced into the netv.ork representing the 

transmission line as ari element, and the receiving end 

current will be considered zero. The receiving end cur- 

rent in this case is not the load current. The load is 

considered as a conductance G-. 

A. The Case of the Series Capacitor Located 
at the Sending End of the Line 

I 
I 

I I 

E, uc 

; 

.w 

G 

I 

I 

I 

I 

I 

TI I 

T 
I 

I I 

I 

I 

I 

t 

I 



E_I ¿CAs l O 

I Ql CA & CL 

AZC G(B+Ph) 
- C+AG 

Since 12 0 

4- G (B 4Ac)] = ì$ (4) 

here c is to be a constant. 
Let 

zc 3Xc) 

= Br 4- 3B3 C : C JC. 

The n 

.. 
[Ar4C:)(c4&(br4A;Xc 

#3jA3- c x G ( - 

I2 



*on c1 
ACrX + G (Br AX) 
A CrXC + &(Br ApXc 

If 

ACrXc - A+CX 
- ArXc 4 A)Ç 

then tan is independent of G. X must satisfi the 

£ol1owin relation. 

x:rArc ACr]+,NjA A CrBr C:B.) + 

(3) 

{AjrAr) 0 

There will e two solutions to this equation. 

One solution will ìake equal to 900 and the other one 

will make equa1 to 0°, which is the value which is wanted. 

The latter one may be recognized easily since it will 

be the smaller value. The other value may be negative 

indicating that it would take inductive reactance to 

accomplish that result. The solution equation (3) may 

be written down with the aid o± the Hindu formula. 

The general method of solution was carried to completion 

in this case to show the method of attack. For the suc- 

ceeding cases some assumptions will be made in order to 

simplify the equations. These assumptions introduce an 



error of very small magnitude for power transmission 

circuits. They are: 

A=Arj Ao 
B 5B rO 
C =JC C 
These assumptions are equivalent to saying that the line 

consists of pure inductance and capacitance. 

Tne solutions to equatIon (3) under these condi- 

tions are 

___ -A 
J 

ca. 

If the long line equations are considered, 

B E0 Acosie 
For the previous assumptions e is pure imaginary= 

Let L and C be the inductance and capacitance per unit 

length arid 1 the length of the line. 

e=JJy 3JJLCwJ8 

Therefore 

X:Z tG.h,.d (4) 

In terms of the nominal pi. representation of the 

transmission line 

B = ;J-1LUJ A,' i-PLC 
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In terms of the nominal pi representation of the 

transmission line 

JL 
X IrLCWL (5) 

B. The Case Where the Series Capacitor is to be Placed 
on the Reoeivinß End of the Transmission Line. 

E, AB 41 0 E2 

IL CA O I 

E1 = A+G(ßzA Bz0A 
CG(AC) 

Since Ia:O, then 

L 
E2 

By the previous assumptions is real, then Z must be 
E2 

chosen so that the coefficient of G- is zero. 

O=B+ZA 
Then 

)( C = * for the equivalent pi line 



Le 

V 
"C for the nominal pi line. 

lo 

It is noted that these are the same as for the 

previou$ case. 

C. The Case Where the Series Capacitor 
is in the Center of the Line 

If a series capacitor were to be placed in the 

center of a transmission line to compensate for the re- 
actance of the entire line, it may be considered to coin- 

pensate for the line in each direction, and its reactance, 

then, would equal twice the reactance of that necessary 

to compensate one-half the line. 

Then 

xc,: *on,8 

where4is the phase constant for one-half the line, and 

is the reactance necessary to compensate for tue 

whole line. 
Then the decrease in reactance necessary to corn- 

pensate for the entire line when the capacitor is placed 

at the center of the line is 

'IxG =ze:.*ori 24- 2 *a,4] (6) 
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where/is the phase constant for one-half the line. 

In terms of the nominal pi constants whereJ is 

the total length of the line and L and C are the inductance 

and, capacity per unit length 

3Cu? 
c - 

For a 300 aille line, where Z0 is 400 and4is 

19.6° (for one-half the line) then 

1 installed at one end is 326 ohm. 

X installed In the center is 286 ohm. 

From observing the results of the three cases, 

the question might be asked; is there a position in the 

transmission line where a given series capacitor may be 

installed so that its effect may be a maximum or a 

mini murr? 

The problem now will be to find the position in 

the transmission line for a given series capacitor and 

a given load on the line such that the angle between the 

sending end voltage veotor and the receiving end voltage 

vector is a minimum or maximum. 

Let the line be of length 1, the distance from 

the sending end of the series capacitor x, and G the 

load. 

Then 
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II E, I B, II, I 
t 

I H 
? II I ' o 

I Esall 

I, 
O H if 

° 'till C,. dAIi 
f 

G 
f li 'III 

E., (A(B2+A2) AL) Ej 
(q [Acj+ GCB+&)] +A(cG.A) C, (AÇAA) ' iJ 

Let 

- [, A A C + B B, A LG A, ec- + ,AZG G) 

For this problem the long line equations will 

be more convenient. For this case, let G be the pro- 

pagation constant length and xø be the propagation con- 

stant for the length x. 

A cosxe B= 5,(-x) e 

A c05(ix)e C, - snxe 
B, Z0 s)nIixG cz.t sirJi (,Q-x)e 

By substitution and combining multiple angle Lormulas 

t±tZcosie+c[- ipke 

+ 2 G sir2e [c05iJ cosk (xi)e) 

In order to idealize the solution, the restric- 

tions imposed by the lossless line are assumed. No loss 
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oÍ enera1itr is suÍered, however. 

2: -'5X 
coihle 

= 

Then 

L..2coj,8+: [s.Qe_ S,P 

+G[2E0.-X cas(ac'.Qfl)J) 

/p2.+Qa [ta&' 1j 
Since Z0 will normally be relatively large as compared to 

then R is not eÍ±ected to a large extent by a vari- 

ation in x, so that the maximum and minimum of ta.fllniay 

be coincident with the maximum and minimum of Q. 

2Q : 

= O when 

(2x-J) O) 11 

It is assumed that X ,d$ o 
- 9 
-z 

L 
These values form a maximum or a minimum if the second 

derivative of Q Is negative or positive. 
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-2)Ç G4 Co5 

atX1 

at 

î: 
Therefore, Q. is a mininium at X2 and a maximum at x1. 

Since, in the ordinary power transmission line, 
the line ang1eJ/ is less than 900, the point x1 does 

not lie in the line. Hence, it Is concluded that the 

position of the capoitor for the minitnum effect is at 
either end of the line. (The n.xImum effect Is consi- 
dered to be the minimum voltage angle displaoent.) 
A capacitor at the center of tbe line will provide a 

maximum effect. 
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COIvtEì'SATION FOR TRANSFORMER REACTANCE 

It may be desirous to compensate for the sending 

end transformer reactance when the series capacitor is 
at the receiving end oÍ the line. For this problem the 

usual procedure is followed. 

E, I A 
' 

i O 

Il O i OA o 
. 

I IL 

E, [A(#zcz 
II Ci.&(A#C) ACZ. . 

Then 

t: A#+C+G[A(4+)+ CZ2+) 
and Z must be such that 

A (Z-)+ o 

2c_ A#C 
Using the equivalent pl relationships 

?( (7) 
C5;#d. sv 

The increase in reactance of the capacitor due 

to the presence of the transfortuer 

- ' 



cos,6 (cosfl- giv'i4) 

Frani these results it appears that the series 

(8) 

capacitor will compensate for only a limited amount of 

transformer reactance. The limiting condition being when 

the denominator of the above expression becomes zero. 

Por the nominal pl consideration 

:JJL A'IJ2LCw 

C JJCu (2PLCw") 

- L LC ) -/Cw(2-PLCw)X 

or 

X (10) 
C A-XCI 
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VOLTAGE AID CURRENT RELATIONS IN TIlE SERIES CAPACITOR 

Proni the standDoint o this iivestig.tiofl, there 

were oniy two ;os$ible locations for a series capacitor 

in a transtnision line. In consideration o au1t on 

the transmission line, iÍ the series capacitor were at 

the sending end of the line, and a au1t occurred near 

that ends then the series capacitor would tend to neutra1- 

ize the part of the line out to the fault and the remain- 

Ing capacitive rectanee would neutralize. machine reactance. 

The resu1tin condition would produce very high short- 

circuit currents. Synchronous machines for power genera- 

tion are constructed with a low short-circuit current ratio 

so that a short-circuit on the terminals of the machine 

will not produce excessive currents because of the machine 

reactance. If, however, part of the machine reactance 

were neutralized with a series capacitor, then the short- 

circuit current would become excessive. 

With this in mind, then it would seem reasonable 

that the best place to install a series capacitor would 
be in such a position that if a fault occurred in the worst 

possible manner that the effect on the machine would not 

be greater than if a fault occurred on the terminals of 

the machine. If a generator is supplying a load, then 

the proper location would be at the receiving end of the 
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line with the series capacitor compensating for everything 

back to the terminals of the generator. IÍ, however, 

the serles capacitor is to be used to reduce the line re- 

actance between two eneratixig stations, then one solution 

would be to have the capacitor in the center of the line 

comjensating for one-half the line. If further compen- 

sation is desired, the line riay be broken into a number 

of sections each of which is compensated. It must be 

necessary to arrange the sectioning such that for the 

worst possible fault condition that severe conditions will 

not be placed on either machine. 

In calculating the voltge and current relations 

and line loss, it will be necessary to consider the re- 

sistance o the line. The value of series capacitors 

may be calculated by the approximate formulas, and then 

used in the equations for the exact behavior of the 

line. The exact value of series capacitors, found by 

considering resistance, does not differ within slide rule 

accuracy with the value found by the approximate formulas. 

The matrix equations of voltage and current for the 

three cases mentioned will be calculated explicitly. For 

this work the long line formulas greatly expedite the 

process. 
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CASE I Series capacitor at the receiving end. 

o the transnission line. 

E, A B i Z Ea, 

Ea, CA 01 Ia, 

II A A2 
II 

Ea,II 

IIc 
f 
A C E 

Ii 
12,11 

A: cosI9 A# TA3. 

C :! £inlio 

Le 

: 

The n 

43BT 

:C. JC7 

E, (Ar'Ai)E2, 3(sXcArF)J I (11) 

: (C,4'3C1' Ea,i [(Ar 4'CX)9 J(PT _ XcCr)] 12) 

I a Lault occurred at the receiving end, the 

steady state current at the sending end would be 

I - 
(Ar+C7X+ J(AyXC)1 - (13) 

IfX:.n4, then 
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TrA. 
For the ordinary case, Ar is nearly unity and 

Br is the architrave resistance of the equivalent pl. 

For the nominal pi consideration, it is the line resistance. 

The voltage across the series capacitor as a 

function of power 

: 

IEI (l5 

The effect of the sending-end and the receiving- 
end transformer may easily be included in the above 

equations. 

CASE II For a line with the series capacitor 

in the exact center, where A, B, and C are the line 
constants for one-half the line 

E, A 

II 
C 

6« 

C, 

BII i 

elI 
' 

B 
, ( 

4 k 
' 

ii II 

C A 
Ii 

'L 

B'II 
IIEL 

io:II' 11hz 

The re 

A:cojZê+-'-C 

Z0S1h .t- 
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c#- sII,hZe+k!j(co$IZe.l) 
o 

Let L be the voltage from the end of the serles 

caec1tor nearest the receiving end, and 13 be the current, 

then 

II E II ¡iA 311 il EM 

II 1311 Oc All 
O '4 

Lc cL3 

: (16) 

E.3 AEL # B., (1'?) 

Assume that the line Is free from resistance 

and. that the series capacitor is compensating for one 

half the line. 

A' k{coskze'J fr[cosz,f+i] (18) 

'%±0sIkZe . zr±0 sDia.A (19) 

C':Ì[j sih Z +toike] irL 
Lz 

o 0 (20) 

It is seen from equations 18, 19, and 20 that 

the resulting line behaves as a line of slightly less 
than one half the total length. 
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CASE III If it is desirous to break the line into 

a number of smaller sections and compensate for each sec- 

tion, the problem may be handled in the following manner: 

Assume that there are n sections all identical. Let A, 

B, and C be the line constants of a section. 

AB AB Ea 

CA CA 01 CA 

If the number of sections is large, they may be grouped 

and multiplied by Sylvester's theorem or by the follow- 

ing theorem. 

v:osh 
sivk4 c: 

Y:ckchcI PV'sink.+ 

V si1k rcosk4 r1 sIb,kc4 r 
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EFFECT OF CHANGE OF FREQUENCY ON VOLTAGE DISPLACEMENT ANGLE 

a transrnission line is used as a tie-line 

between tWO generating stations, and a au1t occurs on 

the system, the disturbance may be so great as to cause 

a reduction of the nachine speed, and hence, a reduction 

in frequency. Since the capacitive reactance increases 

and the inductive reactance decreases with a decrease in 

frequency, then the line anile may decrease and the im- 

pedanoe connection between the two stations may behave 

as pure capacitive reactance. Under this condition, 

the system will be very unstable, as will be shown later. 

The problem is now to discover the change in line angle as a 

function of the change in frequency. For a given appli- 
cation to a line, then, knowledge of the possible change 

in frequency is necessary so that the capcitor may be 

chosen of such a value that under faulty conditions, the 

shift of line angle is of no serious consequence. 

Let the change in frequency be designated byAw 

and the change in phase position of the sending end 

voltage with respect to the receiving end voltage be 

Then 

ft 
' II = 

A B q u E II 

II 
t 

V ii 
C Ah il 'LII 
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E 
cJB II 

ELI' 

iI 

I AwII' P 

'TI IIÀ.c 4...II 
'LII l'i iIdw âWII 

AE, 
cIA A-E Aw I 2 

Where E1 is the change in sending. end voltage to main- 

tain E2 and 12 with the given change in frequency. 

LAEI 
-i j1[E,4- fWIJ (21) 

Aw Ç 
1AE11 

The change in voltage is of little couse- 

quence. The change in phase angle is 

: to.n' (&m Ea. (22) 

and ifAwis small 

¿B +_____1. i %11E,. 
I&M 'LJ (23) M Aw rlEL+JT 3 

As an example, consider a tieline which has a 

series capacitor in the exact center, compensating for 

one-half the line in one direction. Assume that the 

load. is of unity power factor, and the line resistance 
Is neglected. 
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Then 

___ SIPi 

z 

c-- 

Where C//E ¿being one-1f the length of the line, 
L and C being the inductance and capacitance per unit 
length. 

dA 
dw E. 

___ = J"[E.0co5 Z4w.-- p, 

dC 
chu = 

(cos £CÇC.J (! vZoii 
O zÒwz 

ciTh 

dA 
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i 

A w r 20sW+ZZô]I2 
2 w + I (coS 2W)+flokW]E 

i;) 

(24) 

And very generally 
-%J I A - w 

(25) 

It was hoped that from this study that a value 

o:ff series capacitive reactance could be sound such that 
the phase shift could be minimized, but the resulting 
Íunction permitted a min1num for inductive reactance 
only. 
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Chapter III 

TRLWSIENT BEHAVIOR OF SERIES CAPACITORS 

For the consideration of this part of the problem 

only a few of the special oases i1l be considered. There 

are innumerable possibilities which can be considered, 

but this thesis is very limited in scope. 

The first type of problem to be considered is 

that of cbaring an infinite line with a series capacitor. 

There are two extreme possibilities; closing the breaker 

at the zero point of the voltage wave and at the maximum 

point of the voltage wave. Each of these are introduced 

into the problem simultaneously. 

Notation: 

C.(p) = 

ÇK) : 

where 

(Read ?lmate 0ftt) 

G(p) : 

/ 
f(t) exp (pt) dt 

feo 

fI1- lIGO 

.f(i:i.:J 
C.(p) etp(pt)dp 

ItI'OO 



h must be chosen so that the path of integration 

11es to the right of the singularities of G (p). 

Por any physical system where the principle of 

superposition hold, then; where C(tì Is the cause, (t) 
is the effect, Z(p) is the steady state impedance, and 

P0 J the imaginary radian frequency, 

E (t) 9r 

S0(t) Is tbe unit impulse function 

51(t) is the unit step, equal to Heavislde's 

unit function 

6i equals cos4t) S_1(t) 

J Sin() s_1(t) 

&() 
ar 31(t) J- 

C'S 
(w0t) 

5 (.) 
i 

Consider a capacitor C1 in a series itb an in- 

finite transmission line consisting of only inductance 

and capacitance per unit length of characteristic im- 

pedance Z0 ( which is pure resistance). 
Then for steady state 

E, 



For E0 as a function of time where 

E'e er 

i. r 

(t+C1t0p0) 
[ 

The real part 

to cos(,t)S, (t) 

sponse to Sir) () 

RecJ (E 

29 

(wt) xp (26) 

of this expression is the response 

and the imaginary part is the re- 

(t) 

(.ut .-4) 

t 

(27) 

t 
-e- (C 

*cLh (C10a10') 

5'r' (wt - c.t) 
-L- 

exp 
(28) 11,110_s (E 

ji.t1Lu.zo)L jt+ (c104) 

It would be desirous to have an explicit v.lue 

of the maximum value of this function as a function of 

cl , but this is impossible since the derivative set equal 

to zero is a transcendental equation. For C1 equal to 

20 mfd, Z0 400 ohm, and W0 77 (60 cycles), the maxi- 

mum value o Imag(E0) is O4 volts, and the steady state 

value is 0.3 volts. 
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THE RESPONSE OF A FINITE LIiE TO A UNIT IIVU?ULSE 

The problem to be investigated next is that of 

the voltage across a series capacitor when the line is 

charged with the unit impulse, S0(t). The direct appli- 

cation of the result to be obtained from this solution 

to a transmission line is rather obscure, but the know- 

ledge of the physical system and of the result may be 

used to interpret the results oÍ' succeeding problems. 

Consider a capacitance C1 in series with a trans- 

mission 1iue consisting of inductance and capacitance per 

unit length. Assume that the line is open on the re- 

ceiving end. 

Let: (The notation in this and succeeding parts 

may be àifferent than in preceding chapters.) 

z0 be the characteristic impedance 

be the length of time for a wave to travel 

the length of the line : 

p be the imaginary radian frequency. 

Then, for steady state conditions 

E 
impE () 

C. SIhkcAp+ Z0Cpeost 

The response to the unit impulse S0(t) is 

Sip, J,p 
irhcip+0C1p coS1c)%I' 

( 30) 



F: 

Let and 

SI1JIJp 4- cosI,dp 

By long division rmay be expanded into the 

['41 

(31) 

following series which is seen to be convergent for all 
values of p to the right of the imaginary axis in the 

complex plane. (The value of Y is always real and 

positive.) 

+ 

J 

(32) 

In order to find the mate of r it will be 

necessary to find the vsiue of an integral of the type 

Ipt) 
dp (33) 

=the sum of residues of in the finite plane. 
It may be shown easily by Cauchy's residue theorem that 

£J _ 

(pi) 

(p+I-1' 
. _ expfrVt) s_I(.e) ( 34) 

By expanding (30) in a Laurent series and applying (31) 
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c- ! (. Zr) (.- y t) exp -Y ) 
S (t / (1-I)f(n_)i g' -1 

z..:I (3e) 

It may also be shown by Cauchy's residue theorem 

that if 

(t) :r &(p) 
then (36) 

= Z G (p) exp (-j p) 

This is the integral equation form of Heaviside's shift- 

ing theorem. 

Denoting 

M[fl,v C*)} J 

then by (30), (31), (32), (34), (35), and (36) 

exp (-i) Mfn ct-z 

for ZcJ 

Sinte : E and S,(t)4()aria referring 
to (35) 

II S0(*) -i- 
_2(-') (-t-Zrk) 

o 'o 
i 

e1 -z(-') N [y, (zrc4)J (38) 
I 

o 
)L:I 



for 

( 2(&+i)A 

t' 

where 

N [h, I: 
I) t 

(39) 

The line under question is a distortionless line, 

since RC LG, meaning that any wave Is propagated along 

the line without distortion. The magnitude of the current 

inapulse is changed by the reflection from the closed end, 

which is the sending end. The change in magnitude of the 

voltage across the capacitor does not influence the order 

of manitude of the current julse,50(t-Zno). The first 

current julse is unity, and each succeeding pulse is twice 

unity because of the reflection Îro the closed end. 

Each pulse that is returned to the sending end is re- 

versed in sign over the preceeding one. There are dis- 

continuities in the voltage across the capacitor since 

and 

;jfi 

r50()dt 
J-0V? 
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But each time the unit impulse is reversed in sign changing 

the sign of the voltage across the capacitor, there are 

other voltages across the capacitor because oÍ reflections 
of finite magnitude, but these voltages are continnous. 

Therefore,. from the consideration o± the physics of this 

Droblen, without going into the mathematical analysis, 

E0 15 a bounded function with a maximum bound of - 
and the maximum bound of 

-I)'M[h,r,12so)} is j (40) 

By the integration of equation (40) with respect 
to time from zero to t, the response of the line to the 

unit step may be found. 

In a general way, equation (40) indicates the re- 
sponse to a liglithing impulse on the line. For the 

purposes of analysis, the lightning impulse may be thought 

of as of very short duration, but of high value. 
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TEE: PO OF A SERIES CAPACITOR 
TO A FAULT ON TEE SYSTT 

The problem to be considered now is that of 

determining the voltage across a series capacitor which 

is on the receiving end of a transmission line as a func- 

tion of time immediately after a fault occurs on the load 

side of the capacitor. B' applying the theorem of super- 

position, a volta,e is applied at the point of short 

circuit equal and opposite to the voltage that existed 

before the short circuit. The total effect on the capa- 

citer is tìe sum of the voltage caused by the application 

of the new voltage and the voltage that existed before the 

short circuit. In consideration of the transient response 

it will be assumed that the line îs being sùpplied by 

an infinite bus, so that this part of the analysis nar- 

rows to the transient solution of a line shorted at the 

receiving end and being charged with a unit cissoid, 

cis(%t), in series with a capacitor 01. 

For steady state conditions 

CoSo pE1 
I) 

(40) 

'-o 'P 

and for E0 as a function of time 

COShc4 f 

(0C Slrih.(p+Cosk4p)(PP0) 
(41) 



Let 

f1 a Z0Cp sirthd p+ cosp 

I-I 
+ 

1,+1. 

E C rPo 

Çr (p - r 
7 

(13..y)?I+I 

(42) 

ecr (-Ziip) }(43) 

Consider E0 as made up of two parts, an oscillating corn- 

ponent and a component due to the refleotion of the 

transient waves. The mate of the oscillating component 
may be obtained by expanding each term in a 

Laurent series. The oscillating terms, then, are the 

residues of the pole 

p 
(1,)h_f 

(p 1;)( 
h4 - +1'1 

PO (P.-?)"' 
-1- 

(_p0')(p0# y) 

(0.)h_l 
(1)'expC-Jznö) 

F P4 
p0+Yi re -Y 

( other teraìs 

i which are ana- 

( 
lytica.t Po. 

where 
wo :taM 
-ç;-' 

The oscillating component of E0 E00 is then, 



J 

- 
FLY 

>(_cxP 
(_r2h+)ep(2h)j 

PPo 
(44) 

Since the result is a geometric series, it may be writ- 

ten in tbe form 

E. 

P0t ZP0 Vesrp[Pet _2(T+Pc,ot)J X 

epo p0+p. 

I- 
i_ _ -'í"erp[z-&4r4 4?oc1)) (45) 

I. 

4' exr[-zcr4.P.43 

fora t *. ¿(&+i)c 

It is noted that the denominator of the quantity 

in brackets is zero when . By the theory of 

indeterminate forms, when this is true, the value of 

the quantity in brackets is equal to n. Although this 
function appears to be discontinuous, the total voltage 

across the capacitor is continuous since this is only 

part of the Íunction. It is noted that when the size of a 

series capacitor is determined to compensate for the entire 

line, that the voltage under abort circuit rises approxi- 
mately linearly with time. For this case 



wo ir Wa 
-V- r - 

X :Z *o..nW,? (46) 

andW is equai, in the previous discussion of steady 

state behavior. 

It is not necessary tnat4+4'obe limited to 

, for if it were (W,4-J)(Th an integer) , then the same 

condition would exist. This discussion would also apply 

to high frequency transmission lines and radiators. It 
may be observed from these derivations the reason that a 

series capacitor in a radiating antenna shortens the 

antenna, and by a similar derivation why an inductance 

lengthens it. 
Although the other part of E0 is not pertinent 

to this discussion, it is of interest to record it. 

Let 

L"''"0'] g.:' 

; 

(j)T ()9)+t 

( .3..'.)!(p04.)) 34.g 

C 

(47) 
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ThenEor = 2r Q[,r,_2.,i)] 

_ 
r exp (-rt) (48) 

4-Y 

By applying a similar type of reasoning to this 
problem as to the previous problem, it is seen that this 

function must be bounded for 4+w#since, in this ease, 

the current pulses are of finite value, and hence, the 

voltage across the series capacitor must be continuous. 

It is noted from (43), since it does not possess the 

alternating sign, that if a unit iipulse had been impressed 

on e. line which was closed at the receiving end, that the 

voltage across the series capacitor would have increased 
indefinitely with time. In the case of an ordinary 
transmission line, the resistance would be sufficient 
to provide dissipation for these transicnt exponential 
waves. To the knowledge of the writer very little work 

has been done on the mathematical behavior of the M, N, 

and Q. functions. Functions of this nature occur íre- 
quently in transient studies. 

It is noted that the initial transient before the 

return of the first reflection is the same as that of an 
infinite line. 
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Chapter IV 

TRANSIENT BEHAVIOR OF THE LUMPED CONSTANT EQ.UIVALENT 
OF A TRANSMISSION LINE AND. SERIES CAPACITOR 

Fron the standpoint of interest, it may be well 

to develop the transient solution for the lumped constant 

representation of the transmission line. Assume that 

a fault is to occur on the load side of the series capa- 

citar. Let it be required to find the voltage across 

the series capacitor as a function of time. By the 

theorem of superposition, the eflect will be the same 

as to consider the response of the system to an applied 

unit cissoid. Part of the notation in this section is 
different from that of preceding sections. 

c L 
I poop ___ 

u 

E 

C C 1k 

II 

The resistance of the short circuit is consi- 

dered for the purpose of analysis, but for the final 
equation, R is placed equal to zero. 
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' 11 
i oil i 

II 
' ° 

I II EL 11 H = li' ii 
il i il i' 

li 

i 1 Ii II 
° " lID Cp Q 

L' 
#E-k+co+']) (LP+-P1ILCP1) 

¿.1+ LCp&) 

For R equals zero for steady state behavior. 

_ (LCp'+i) E1 

- LCC1+C)p' +1 

(49) 

(50) 

Then for E as a function of time in response to 
cl 

the unit cissoid 

E 
L(C+c,) 

where 

A 

I 
2r (p-p0)(p-3A)(p+J%) 

(51) 

r 
E1 (2>d)[(I+LCpo)e3cP(t) 

+ (LCAi) 0sÀt 

4. 
J. (%_LC>%'i?. j 

(52) 
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For a value o:f X such that > LAi0 (aincep= fw0 ) 

the denominator o:f the coefficient of the above expres- 

sion will approach zero, and the oscillations will build 

up indefinitely of the form exp (p6t) (as can be shown 

from the theory of indetermiint forms). 

>z_ t 

L(C+C) 
or 

X- Lt*.0 
(53) 

Therefore, for a line which is compensated for 

entirely by a series capcitor, the transient analysis on 

the basis of a lumped constant network shows tbat the 

voltage across the series capacitor appaches an in- 

definitely high value. This may also bave been noticed 

from the steady state equations, since the input admittance 

is infinite. 
It is noted from the eqation.s that the transient 

behavior of a lumped constant network is very different 
an that of a distributed constant network. In the 

analysis of a lumped constant network, the finite velocity 
of propagation is neglected. However, from the standpoint 
of a steady state analysis, the lumped constant network 

is q.uite adequate. 
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Chapter V 

MAClIThE TRÁiSIENTS 

In connection with the transients of the traus- 

mission line, there must be some consideration given to 

the machine transients. bi1e the machine transients 

are too slow to effect the line in general, particularly 

with heavy machines, the effect o1 a purely capacity re- 

aetance coupling between machines may produce violent 

machine transients. This situation may corne about if a 

fault occurred in such a manner as to eliminate part of 

the system, and the remaining part was left to carry 

the load; hence, a reduction in frequency. If a series 

capacitor were in. the line, and for this situation it 

was overcompensating for tue line and machine impedances, 

then the restoring torque on the machine for a displace- 

ment is th negative cf the displacement. The difieren- 

tial equation of the machine is represented as follows, 

where d is the displacement for the position of equili- 

brium and a constant representing the moment of 

inertia, the total impedance, the terminal and excitation 

voltage. 

izr 
O 54 
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This equation neglects a nuaiber oÍ factors, one 

of them being the non-saliency of the niachine, but that 

effect is small at small angles. The other effect is the 

damping due to the damper winding and other effects. 
The solution to this equation will merely indicate a 

tendency. There hasbeen considerable work done on the 

numerical integration of the damped equation. That 

equation has no explicit solution in terms of elementary 

functions. (Refer to the bibliography.) 

Equation (54) admits a solution with the follow- 

Ing terminal conditions. 

d':0 ) 

¿t- 
This is the same as saying that 0 is the displacement 

from the normal and tbt its velocity at that point is 

zero at time equal to zero. 

5Zd'O I _______________ 
t: I JI-CDÇ2L s1,a.. (55) 

Jo 
L 

This is an elliptic integral of the first kind, known as 

Legendre's normal form. 

Rewriting, where Sn. is the abbreviation for 

sine -amplitude 
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-Sin 
(56) 

The sine-amplitude function Is a periodic Lunotlon, the 

maximum value oÍ which (as a function o a real variable) 

is a function o the modulus which Is in this case .os -' 

When the modulus is equal to unity, the sine-amplitude 

function is the sine function. When the modulus is less 

than unity, the maximum value o the oscillation is 

1e88 than unity. It is easily seen, then, or 'as a 

function oÍ t will be an oscillating !unction i 

does not equal zero or tT. The mechanical analogy of 

this problem is an inverted pendulum with S measured 

from the vertical upward position. 

If the connection to the machine had been in- 

ductive reactance or resistance, the sign in the ori- 

ginal differential equation would have been reversed, 

and the mechanical analogy would then be an ordinary 

pendulum. 
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SD1IMARY AND CONCLUSION 

It has been shown that it is possible to Lind a 

size o series eaacitor to compensate for a given length 

of transmission line so that the effect under steady state 

coriQitlons is that of a pure resistance coupling between 

the sending and. the receiving end. A series capacitor 

located at the exact center oÍ a transmission line will 

provide greater conpen$ation than at any other position. 

It is possible for a series ca.acitor located at one 

end of a transmission line to compensate l'or the inductive 

reactance of a transformer located at the other end. 

There is a limited amount of reactance which may be 

compensated for, but this condition is never approached 

in ordinary poer transmission circuits. 
The effect of placing the series capacitor at 

the receiving end of the line is just the same as that 

of placing it at the sending end so far as the phase 

angle of the sending and receiving end voltage is concerned. 

There is a slight difference as to the magnitudes of 

the terminal voltages, and the be1vior of the system 

during fault conditions. It is not advisable to place 

a series capacitor at tI sending end of the line, for, 

if a short-circuit fault occurred near the sending end, 
the capeitor would compensate for some of the machine 

reactance, causin very high fault currents. The main 
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purpose of serles capacitors is to reduce the phase 

angle between the sending and receiving end voltages 

so that the power trananitted over the systeni may be 

increased to a more economic value. 
The effect of frequency has been pointed out 

and applied to a particular example. It is necessary 

in. a particular installation to determine the possible 

reduction of frequency of the system during fault condi- 

tioxis, since, with a series capacitor in the line, 

the phase of the end. voltage will dvance with 

respect to the end voltage with a reduction 

In frequency. 

A method of analysis has been set up so that if 

a line is to be sectionalized and a number of series capa- 

citors distributed throughout the length of the line, 

the calculations may be carried out. 

The voltage across the series capacitor has been 
derived as a function of time for the application of a 

unit impulse to the transmission line. This analysis 

may be used for the treatment of a lightning impulse 

on the line. The voltage across the series capacitor has 

been derived as a function of time after a short-circuit 
fault has occurred on the load side of the capacitor. 

This result is valuable in determining the voltage rating 
of a capacitor is certain switching operations are to 
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occur on the line. If a line is. sectionalized and a 

fault occurs in one section, and it is necessary for 

the capacitors to remain in the circuit until the breakers 

have had titne to clear the fault, then it is necessary 

to know the voltae across the capacitor as a function 

of time. 

In tbe analysis of the transmission line, ideal 

conditions were assumed, such as, e.g., the omission 

of resistance in the line. In the first place, the 

effect of the resistance is guite small, resulting 

in only a minor distortion of t transient wave. In 

the second place, the inclusion of resistance would have 

produced an answer too unwieldy to be of much value. 

The voltage across the series capacitor is a pessimistic 

value, since the analysis assumes that there is no energy 

loss of the re.leeted wave at the terminals of the line. 

The behavior of a lumped constant system and a 

distributed constant system exhibit a noticeable dif- 

ference. This difference is revealed in the analysìs 

of the lurnped constant network. 

An analysis of the machine differential equation 

was made with a pure capacitive reactance coupling 

between a synchronous generator and an infinite bus to 

show the effect of an over-compensated line on the ma 

chine. It is noted from the resulting equation that 
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there is only one point of equilibrium and that the 

entire system is unstable. IÍ the rotor of the machine 

is displaced from the position of equilibrium, it will 

oscillate with respect to a rotating axis. Since the 

original differential equation omitted the effect of 

damper windings on the n&chiné, the resulting solution 

will indicate only a tendency. 

This thesis has covered only a few out of a mul- 

titude of problems that may confront an engineer in the 

installation of a series capacitor in a transmission 

line. 
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APPENDIX I 

NOTATION AND SYMBOLS 

AcosI10 A 

13 

C 

Propagation, constant 

: Length of line 

Z + L? per unit length 

Cp per unit length 

- Characteristic impedance 
av-r 

= Imaginary radian, frequency 

J f317 for a 60 cycle per second, line 

U =zîrf 

Complex power 

¿ Voltage displacement angle 



,ß: )m(G) 
o, 

E, 

pl 

E 

'L 

Imo9 [p3 

Bea.I [p] 

b2 

Phase constant 

: Time for a wave croup to the 
length of tìe line (for a 
line of pure L and C). 

Sending end quantities 

Receiving end quantities 

Complex conjugate of E 
Imaginary part of P 

Real part of 1 

IVI . Absolute magnitude of P 

C1 : Capacitance of series capacitor 

wC1 

ec'p(x) : 

TX 
cisOc) = E 



*1 td 

211[ 
J 

is read ttmate of if two functions satisfy 

the following integral equation: 

Ct) = fG() cts pt) p 

'Br 

and inverting 

/-00 

C. (p) : 

J 
*) C's 

- 

then 

2r?[G(p1 

and 

: 2r{f(*)J 

Br is the Bromwich contour, which is a path 

parallel to the imaginary axis extending from -Jø to 

+Jco passing the singularities of Gp) to the right. 

$1ft) 

50(t) 
00 t=0 

Unit step, or lieaviside's unit 

function. 

Unit impulse 


