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A SAMPLING CRITERION ENABLING SIGNAL
RECONSTRUCTION WITH SPECIFIED LIMIT ERROR

I. INTRODUCTION

Today much information is handled in digital form. Digital

computers process ever increasing quantities of data for the engineer-

ing and scientific disciplines. Deep-space probes and earth-bound

communications links digitize and multiplex signals in a bid for great-

er efficiency. Yet, much physical data with which engineers and sci-

entists are concerned is analog in nature. When continuous data is

digitized, the information processing equipment must ignore the sig-

nal for finite periods of time. If the analog signal varies during such

an interval, there will not be digital data taken to define the signal at

times between the sample points. Higher sampling rates provide

more data points at increased cost and, in the case of stored data

computers, at the expense of memory space. If some practical sam-

pling rate is chosen, the question arises as to how well and by what

means can one recover the original signal from the given samples.

The sampling theorem states that if a signal is sampled at two

samples per cycle of bandwidth, all the information content of the sig-

nal is captured. Thus, the signal itself can be recovered, in theory.

The problem which confronts the engineer is how to actually recover

the signal. It is known that a signal cannot be recovered exactly from
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its samples taken at two samples per cycle of bandwidth using a physi-

cally realizable linear system (14, p. 2.19). This comes about be-

cause an ideal filter cannot be built.

A practical approach to recovery of a signal is to interpolate

between its sample points according to some mathematical scheme.

A first-order linear interpolation is a rather easy one to accomplish,

but with such a scheme the sampling theorem does not hold. Two

samples per cycle of a sine wave, if linearly interpolated, will not

reproduce the sine wave.

The object of this thesis is to provide a means for predicting

the accuracy of the reconstruction of a signal when linear interpola-

tion of its samples is used. An expression for the relationship of sam-

pling rate to worst-case peak error is derived, implemented, and

tested on a variety of real signals.
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II. DERIVATION AND PROPERTIES OF THE SAMPLING
CRITERION

A. Derivation of the Sampling Criterion

The derivative sampling criterion presented in this thesis is

based upon an investigation by Professor Robert R. Michael of Oregon

State University (11). As originally conceived, the study determined

a method of estimating the number and distribution of taps required

on a linear slidewire potentiometer in order to generate an empirical

function to a prescribed limit of error. In this paper, where the cri-

terion is applied to an amplitude-time function, the original form of

the derivation applies.

A sampling criterion, to be useful, must describe numerically

the relationship between sampling rate and a given specific measure

of error for any physically realizable signal. The criterion here de-

rived shall describe numerically what peak error can occur between

a signal and a linear interpolation of its samples. A fixed limit of

error is specified in preference to probable or mean square error

because it more precisely describes error conditions when consider-

able significance is attributed to a single interpolation value. Limit

error is taken to mean worst-case peak error. First order linear

interpolation is used as the basis for reconstruction because of its

widespread use and ready implementation.
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It should be emphasized that this paper is concerned only with

errors resulting from the linear interpolation of sample points.

Errors arising from limitations of sampling equipment and from sub-

sequent analytic procedures must be superimposed on the limit error

here derived.

Figure 1 shows a region of interest of a typical amplitude-time

function. A limit as the angle 24 approaches zero is assumed. A

result of this assumption is that the second derivative of the function

must be nearly constant over the interval b. The consequences of

this limitation will be observed near the end of this chapter. Using

definitions of analytic geometry, angle 0 can be written

2. 1 0 = arctan (y1)

where

y
cT.t-dY

at point P.

Differentiating 0 with respect to time,

2. 2 d0 d(arctan(yo ))
dt dt

2. 3

where

de
dt

1+(y')2

2

Y"
dyIt

dt 2
at point P .



y

Amplitude time
function y(t)

Linear
reconstruction

of y(t)

y

Figure 1. A region of interest of an amplitude-
time function.

t

5
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The angle 2(1) can be expressed as the change of 0 over the inter-

val 6:

2. 4
d0

2`1)

Substituting Equation 2. 3 into 2.4,

2. 5 Y" S.
1+ (y')

2

Referring to Figure 1, if 21) is small, the radial distance

Er from the chord to the curve is

2. 6 E = p - p COS CO.r

2. 7 E = p(1- COS (1)).r

In terms of Taylor's series expansion

2 4
2. 8 cos c = 1 - (i) (i)

Since this series converges rapidly for small values of 4,

ci)22. 9 E r = p(1-1+T).

2. 10 E -r 2

Now p, the radius of curvature, can be expressed in terms of



derivatives as

2.11 [1+
2

P
Y."

Then Equation 2.5 can be expressed as

2.12 24)
[1+ (Yr)

2 1/2
6.

P

(Ref. 13, p. 396).

Dividing both sides of Equation 2. 12 by two and squaring

2.13

therefore

2.14

(I)-2 [1+ (y9
5

2]
2

4p
2

- [1+ (y9
5

2]
2

.E r -
8p

In the limit as 24, approaches zero, the greatest vertical distance

from the chord to the curve in Figure 1 occurs at the midpoint of the

curve and designated by E .

2.15 E
- [1+ (y°)2] 2

y 8p cos 0

As a consequence of the Pythagorean Theorem cos 0 can be ex-

pressed in terms of derivatives as

2.16
2 -1/2

cos 0 = [1+ (30) ] .

7



Equation 2.15 becomes

2.17

Let

so that

Then

2.18

E =
{1+ (y1 )

2 3/2
62

8p

E - -[1+ (y'
2I3/2

52
8p

E = - E .

E 41+ (yr) 213/2

5
2 8p

Substituting the derivative form of p (Equation 2. 11) into Equation

2.18 yields

2.19
8e

2 -Y"
5

1Setting
5

= R, where R is the sampling rate in samples per

second, and rearranging:

2.20 R (1-Y-L)1/2

Note that E is positive when y" is negative and vice versa, so

that R is real. Rearranging 2.20,

2.21 E -
8R 2 '

yl I

8
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where 6 is the sampling interval in seconds, R is the sampling

rate in samples per second, E is the error in units of y, y" is

the second derivative with respect to time of the waveform in units of

y per (second)2.

B. Properties of the Sampling Criterion

Some properties of the derivative criterion may be observed by

applying it to a sine function y(t) = A sin (wt). Using Equation 2.21

1 -d 2 (Asin (cat))
El (2)

8R dt2

(.o2A sin (cot)
E

1
-

8(R) 2

If the sampling rate is doubled,

thus,

E2 8(2R)2
co

2A
s in (cot)

If, for a given sampling rate, the amplitude of the sine wave is

doubled,

w2 (2A) sin (wt)
E3 -

8R
2



and

E
3

=el

10

The above demonstrates two properties of the limit error pre-

dicted by the derivative criterion when applied to a sinusoidal wave:

(1) The limit error is inversely proportional to the square of the sam-

pling rate; (2) the limit error is proportional to the amplitude of the

sine wave.

These properties can be tested numerically. The derivative

sampling criterion indicates that the limit error for a sine function
Tr

A sin (wt) will occur at wt =
2

the peak of the sine wave, since

the second derivative, -w
2A sin (wt), is a maximum there. Figure

2a shows an arrangement of samples which will produce such a worst-
1

,case peak error condition. At a given sampling rate R1 = the
1 61

actual limit error can be found from

Tr

2R
2Tr

E
1 2

= A sin (2) - A sin (-2 --)
1

If R1 is equal to ten samples per second,

E
1

= A(0. 048943).

The theoretical limit error can be calculated from the sine

function using the derivative sampling criterion. The function is
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y(t) = A sin (cot)

= A sin (arrit).

Let f = 1 Hz, then y" = -47 A sin (27t). The peak value of

occurs at 2Trt = Tr
2

.or = -472A(peak)

= -39.4784A.

II

For ten samples per cycle of a one Hz sine wave, R equals ten

samples per second. Using Equation 2.21

E =
8R2

E = A(0. 049340).

This value is slightly larger than the actual limit error pre-

viously calculated. The difference between the predicted limit error

and the actual maximum error is less than . 05% of A (less than 1%

of the actual error) even though the second derivative varies by near-

ly 5% during the sampling interval.

If the sampling rate is doubled to 2R = 2 = 20 samples per
1 81

cycle of the sine wave, the actual limit error is

E2 = A sin - A sin (112 --2=1T--)
4R1

E2 = A(0. 012312)



so that

12

E
2 = 0.25153.

El

This is very nearly 1/4 as it should be.

If the sampling rate is constant and the amplitude of the sine

wave is doubled the actual limit error is

E
3

= 2A sin 2
(2) = 2A sin (Tr

2R
2Tr

1

Tr 2Tr
= 2[ (A sin (12-) - A sin

"`l
E3

= 2. 000 ... as the sampling criterion predicts.
El

If the samples fall as shown in Figure 2b, the peak error occur-

ring between samples will not occur at the peak value of the sine wave,

and thus the peak error will be somewhat less than the limit error of

Figure Za. Figure 2b represents the minimum peak error case for

the given sampling rate. The limit error predicted by Equation 2. 22

using the maximum value of the derivative corresponds to the maxi-

mum peak error case of Figure 2a. If a very low sampling rate is

used (less than five samples per cycle) the difference between the

maximum and minimum peak errors becomes appreciable, and pos-

sibly more important, the reconstruction based on linear interpolation

becomes meaningless (see Figure 9). For such a sampling rate the
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Linear reconstructio

Sine wave:
A sin (wt)

t

Figure 2a. Condition for maximum peak error for
sine wave.

Linear
reconstruction

t

Sine wave:
A sin (cot)

Figure 2b. Condition for minimum peak error for
sine wave.
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assumption that the variation of the second derivative is small over

the sampling interval will not be valid. In this case the predicted

limit error will exceed the actual limit error by some small amount,

but in light of the breakdown of the reconstruction, this decrease in

the accuracy of the predicted limit error is of little consequence (see

Appendices A and B for comparison of predicted and actual maximum

peak errors for a sine wave).

Using a sine wave it has been shown that the derivative sampling

criterion provides an accurate prediction of the limit error for mean-

ingful sampling rates.. Both Equations 2.20 and 2.21 will be valid

allowing one to determine the required sampling rate for a specified

limit error or to predict the limit error for a given sampling rate.

Extension of the criterion to complex waveforms will be valuable.

C. Extension of the Sampling Criterion to Complex Signals

In terms of Fourier series, any well behaved waveform can be

expressed as a linear combination of sinusoidal waves (10, p. 4-96).

Therefore, the properties observed in the last section should, in

theory, apply to the sampling of any real signal as long as the second

derivative of the waveform does not change appreciably during the

interval between samples.

A real signal may have frequency components extending over

many decades. The signal spectrum is one way of indicating the
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distribution of these components. Figure 3a shows an ideal case of

flat spectrum (equal amplitude components) out to a cutoff frequency

beyond which no signal power exists. For such a signal it is clear

that the highest existing frequency component will determine the maxi-

mum value of the second derivative (see Figure 4b). Two possibly

more realistic spectra are shown in Figures 3b and 3c. These repre-

sent realizable band limitations on the frequency components. If the

sloping tail of such spectra rolls off at a rate exceeding -40 db per

decade (Figure 3c) the second derivative will be finite due to its na-

ture in the frequency domain (see Figure 4) (15, p. 458-460). A dif-

ficulty arises if the spectrum rolls off at less than -40 db per decade

(Figure 3b). For the case where the tail maintains a slope of less

than -40 db per decade to an infinite frequency (in theory) the second

derivative will approach an infinite magnitude and the sampling criter-

ion will specify an infinite sampling rate for any finite limit error.

Only as the sampling rate approaches infinity will the assumption that

the second derivative is nearly constant between samples be valid.

Since this assumption is a necessary one for the validity of the deri-

vation, the criterion will not hold for finite sampling rates of such a

signal. In other words, if a signal of this nature were sampled at a

finite rate, the actual limit error would be finite, not infinite as the

criterion predicts. The limit error would be finite because the mag-

nitude of the frequency components beyond the capabilities of the
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Figure 4a. A second derivative transfer function.
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Figure 4b. Relative second derivatives for spectra of Figure 3.
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sampling rate would be small.

Aliasing is a term used to denote false low frequencies arising

from the sampling of a component at less than twice its frequency (14,

p. 2. 6). For linear interpolation the aliasing error for a component

is equal to the magnitude of that component. If a signal to be sampled

contains high frequency components which are small in comparison

with the desired limit error, the components can be ignored in choos-

ing a sampling rate. Figure 5 shows how the aliasing error of small

high frequency components combines with the sampling error of larg-

er low frequency components to produce a total maximum peak error.

The high frequency components create, in effect, a band of error

which must be superimposed upon the error predicted by the sampling

criterion. In order for the sampling criterion to predict a limit error

based upon the lower frequency components, the derivative used in

the criterion must be influenced by only these lower frequencies.

This implies low-pass filtration of the signal before measuring the

second derivative. Care must be exercised in order not to filter out

significant components. If a similar low-pass filter is used as a pre-

sampling filter, the effects of aliasing will be decreased. This tech-

nique is commonly used to minimize false frequency components when

sampled data is to be harmonically analyzed. Such pre-filtering does

modify the signal; whether or not significant distortion occurs depends

upon the specific case (8).



Effective
error band

Low-pass filtered
waveform

Worst-case linear interpolation

Actual waveform y(t)

t

E is peak error predicted by

is actual worst-case peak error
which can occur.

derivative sampling theorem
ignoring high frequency components.

EM
1 BE 1 -F E

EB is peak to peak value of high
frequency noise components.

EM

Figure 5. Effect of aliasing on maximum peak error.
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Since this paper is concerned with peak errors arising from

linear interpolation of sampled data, aliasing will be taken as a con-

tribution to limit error in the reconstruction.

In this section it has been suggested that the derivative sampling

criterion is useful for physically realizable signals if the limitations

of the criterion are observed. The near impossibility of an analytic

approach for the demonstration of the validity of the criterion for

complex waveforms necessitates an experimental procedure.
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III. PROCEDURE FOR VERIFICATION OF THE
SAMPLING CRITERION

A. Implementation of a Differentiator

In order to carry out an experimental verification of the value

of the derivative sampling criterion, a method for determining the

second derivative of a real time signal must be implemented. Elec-

tronic differentiation is inherently a noisy process since high fre-

quency components are most accentuated. Thus, it is good practice

to bandlimit the signal to frequencies of interest before taking the

derivative. This agrees with the suggestion of the last chapter to fil-

ter out insignificant high frequency components of a signal in order

that the derivative measured not vary appreciably between samples.

Figure 6 shows the kind of gain-transfer function desired for effec-

tively ignoring frequency components above a given value. An ideal

such function would be as that labeled a. A realizable transfer func-

tion might be as the line labeled b. The solid line b is, of course,

the asymptotic representation of the actual response shown as a

dashed line.

The transfer function of Figure 6b is implemented using a

second-order high-pass filter in cascade with a second-order low-pass

filter with coincident corner frequencies. Multiple-feedback active

filters are used (6, p. 74-77). Figure 7 shows the filters along with
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a variable-gain input buffer (4, p. 12-15). The component values for

the filters are tabulated in Table 1. The basic range of the corner

frequency, fc, is 100 Hz, 1 KHz, and 10 KHz with a multiplier of

1. 0 or 3.16 available. This range of fc allows some flexibility in

the range of frequencies to be measured. The gain-bandwidth product

of the operational amplifiers limits the maximum value of fc;

capacitive loading of the input buffer imposes a limitation on the low

value of this frequency. Internal noise of the ± 1 0 volt operational

amplifiers limits their useful dynamic output ratio to approximately

1000 : 1. This restricts the frequency range for a constant amplitude

input at a given fc to a ratio of approximately 30 : 1.

Table 1. Component values for multiple-feedback active filters.
High pass Low pass

frequency in
Basic corner

C
1=

C C4 C2 C5

Hz

100 . 1 . 01 . 01 . 22
1, 000 . 01 . 001 . 001 . 022

10, 000 . 001 . 0001 . 0001 . 0022

Frequency R2 R5
R1 R2 R3

multiplier x 103 S 2 x 103 x 103 x 103 C2 x 103

1 10.7 236 11. 25 10.2 112
3.16 3. 39 74. 8 3. 56 3.2 35. 6

Note: This table applies to Figure 7.

With a peak gain of 100 (40 db) at the corner frequency (accord-

ing to the asymptotes of the transfer function) the expected gain at
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0. 1 fc is 0 db (unity gain). Since the actual response of the circuit

departs from the asymptotic representation at frequencies about the

corner, it is desirable to test the circuit using a sine wave. The re-

sults of this test appear in Table 2. The listed time delay is the time

difference of the occurrence of the peak value of the measured deriva-

tive with respect to the expected peaking time of the ideal second de-

rivative. The time delay (which causes an effective phase-lag of the

measured derivative from the ideal) is the most apparent fault of the

derivative implementation. Since both phase and magnitude must be

correct in order for the transfer function to truly represent a second

derivative operator, the circuit should be restricted to use at fre-

quencies less than about one-tenth of the corner frequency for an ac-

curate approximation. The transition region from 0. 1 fc to 10 fc

will cause problems if frequency components of the input signal exist

in that range. Above 10 fc the gain rolls off rapidly so that higher

frequency components are attenuated.

Using Appendix A, the theoretical limit error for a given nor-

malized sampling rate of a unit amplitude sine wave can be deter-

mined. The actual value of error for a sine wave of amplitude Al

is simply Al times the value listed in Appendix A. The sampling

rate for a sine wave of frequency W Hz is W times the samples

per cycle value corresponding to the desired limit error. Using the

circuit of Figure 7 the value of the measured second derivative of a



Table 2. Test data for second derivative circuit using sine wave input.

Frequency
in Hz

Input
voltage in
peak volts

Ideal
derivative in
peak volts

Derivative circuit
output in peak
volts

Pe rcent
magnitude
error

Time delay
of measured
derivative
in milliseconds

Phase-lag
of measured
der ivative
from ideal

50 5. 0 1. 25 1. 25 - -- O. 4 70

100 5. 0 5. 0 4.95 1. 0% 0.4 14°

200 1. 0 4. 0 3. 90 2. 5% 0. 4 290

400 0. 50 8. 0 7. 78 2. 8% 0. 4 58°

800 0. 20 12. 8 9.40 26. 5% 0. 5 144°

1000 0.20 20.0 10.0 50 % 0.5 180°

Note: Above data is for 1000 Hz corner frequency.
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signal may be related to the second derivative of a sine wave and the

limit error for a given sampling rate determined from data in Appen-

dix A. An example will illustrate this procedure.

The differentiation circuit, used to estimate the derivative of a

signal, outputs a peak voltage of 10 volts with fc

Since the gain of the circuit is unity at 0. 1 fc,

set to 316 Hz.

a 10 volt peak sine

wave would produce an output of 10 volts if its frequency were 31.6 Hz.

The signal being applied to the circuit has the same second derivative

as a 10 volt peak, 31. 6 Hz sine wave. Therefore, if a sampling rate

of 316 samples per second is used to sample either the given signal

or a 10 volt peak, 31. 6 Hz sine wave, the limit error expected is the

same and is 0. 49340 volts (316 samples per second is 10 samples per

cycle of 31. 6 Hz sine wave. The error corresponding to 10 samples

per cycle is 0. 049340 per unit of sine wave amplitude. Thus, an er-

ror of 0.49340 volts is to be expected for a 10 volt peak sine function).

A limit on the validity of the above procedure is the accuracy of

the second derivative measured. Significant components of frequency

above one-tenth of the fc used will contribute to errors in this es-

timation.

B. Simulation of a Sampled Data System

To actually test the sampling criterion an analog computer sim-

ulation of a sampled data system is used. A block diagram of the
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circuit is shown in Figure 8. Repetitive mode is used for control of

four of the lower six amplifiers to sample the input and construct a

delayed-time linear interpolation of the samples. The three track-

store units are alternately switched between states to provide succes-

sive samples at points S2 and S
3
--the difference between these

samples is applied to the input of the reconstruction integrator (the

time constant of which must be properly adjusted) so that it may

ramp from the value at S2 to that of S3 during the operate time of

the computer. The interval between samples is equal to the operate

time plus the reset time of the computer; the reset time is necessary

(so that the track- store units can track to new values accurately) but

should be minimized.

In order to compare the reconstruction (which is delayed by a

time equal to one sampling interval) with the original signal, a de-

layed version of the input must be provided. The upper six ampli-

fiers of Figure 8 are connected as a fourth-order Pade time delay

approximation (7, p. 285-287). With this circuit any time delay T

may be obtained by proper selection of coefficients and integrator

time constants if frequency limitations are observed. A test of this

circuit shows it to be precise within 2% delay time with better than

0.1% amplitude accuracy for frequencies up to 1/T Hz, which is

adequate for the present treatment.
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IV. EXPERIMENTAL VERIFICATION OF THE SAMPLING
CRITERION

A. Signals Used for Tests

Three signals are applied to the circuitry of Chapter III to ver-

ify the properties of the sampling criterion: a sine wave, bandlimited

random noise, and a signal of biological origin similar to an electro-

cardiograph (but of no intended medical significance). Each of these

signals is first recorded on an Ampex FR 1300 analog tape recorder

along with the corresponding derivative as measured by the circuit of

Figure 7. Use of the tape recorder limits the signal-to-noise ratio

to a maximum of approximately 40 db (100:1) for all three signals.

The frequency range of this noise extends to 20 KHz at a tape speed

of 60 ips and is proportionally lower for slower tape speeds reaching

minimum bandwidth of 625 Hz at 1 7/8 ips. Even at this slowest speed

the noise contains frequency components far beyond the 10 and 100

samples per second sampling rates used in the circuit of Figure 8.

The variable-speed feature of the recorder is used to change the ef-

fective sampling rate for the signals since the simulation circuit

which samples and reconstructs these signals is a carefully adjusted

circuit which can be easily changed from 10 samples per second to

100 samples per second by time scaling, but cannot be practically

varied by any factor less than this without extensive and time
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consuming readjustment of the circuit parameters.

The chart recordings of Figures 10, 11, and 12 are portions of

output data for the sine, bandlimited noise and biological signal re-

spectively. In each case the uppermost trace (channel 1) is a record

of the signal itself; the second trace is of a linear reconstruction of

the sample points; the third trace is a plot of the error between the

linear reconstruction and the original signal; the lower trace is a

record of the second derivative of the signal scaled to show the proper

magnitude and phase of the limit error for each effective sampling

rate used.

B. Tests with a Sine Wave

The sine wave tests afford a view of some properties of the

sampling criterion and several effects of linear interpolation. The

signal is recorded as a 5 Hz sine wave from a Hewlett-Packard

200 CD oscillator at 60 ips tape speed so that a minimum frequency of

5/32 Hz can be obtained at 1 7/8 ips. This allows a real-time sam-

pling rate of 10 samples per second to be used for effective sampling

rates of from 2 samples per cycle to 64 samples per cycle. Figure

9 shows some results for very low sampling rates. Figure 10a shows

signal, reconstruction, and error, along with predicted limit error,

for 8 samples per cycle. The straight-line segments of the linear

interpolation are clearly visible on channel 2. A comparison of the

two lower tracks shows that the actual limit error is approximately
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equal to the predicted limit error plus the peak-to-peak value of the

high frequency noise (a measurement made with a Tektronix 565

oscilloscope shows this noise to be about 0.18 volt peak-to-peak for

the 7. 5 volt peak amplitude sine wave). The scaled value of the deri-

vative was determined by the method of Chapter III, Section A.

One property of the error for linear reconstruction is that it

returns to zero at each sampled data point--this is observed on chan-

nel 3 of Figure 10a (pen dynamics causes some departure from an

ideal trace of this phenomena). Another property visible in Figure

10 is that the peak error varies periodically due to the positions of

the samples changing relative to the signal. The samples can actually

be observed drifting through the sine wave in Figure 10a, channel 2.

As the sampling rate is increased, the limit error decreases in

theory, and in practice as Figures 10b and 10c demonstrate. The

high frequency noise is observed to take over as the major contributor

of error as the sampling rate is increased. Since the frequency com-

ponents of this noise are beyond the capabilities of the simulation

circuit it is not possible to try to sample at a rate adequate to recon-

struct the noise itself.

C. Tests with Band limited Noise

The noise used for the tests of Figure 11 is a recording of the

output of a General Radio 1390-B random noise generator filtered
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through a fourth-order low-pass filter with an upper corner frequency

(-12 db point) of 48 Hz and a first-order bass-boost circuit (7, p. 112-

113) with 20 db of boost below 5 Hz (to compensate for a first-order

rolloff of the noise generator below 5 Hz as determined from its cir-

cuit configuration--below 0. 5 Hz the noise generator rolls off more

rapidly). Thus, the bandlimited noise as recorded is approximately

flat from 0. 5 Hz to 24 Hz (-4 db point). The actual spectrum is not

known and is not needed in order to test the derivative sampling cri-

terion.

Figure lla shows the results of sampling the bandlimited noise

at a rate equivalent to 400 samples per second. The striking aspect

of channels 3 and 4 is their similarity. The second derivative of

track 4 is scaled to reflect the limit error to the same scale as track

3 plots the actual error. It is observed that the actual error never

exceeds the limit error (even though the high frequency noise com-

ponents on the signal are 0. 2 volts peak-to-peak), and in some cases

the actual error is quite small where the limit error is appreciable.

This indicates that the second derivative of the bandlimited noise is

changing somewhat between samples. Figure llb shows the results

for an equivalent of 800 samples per second. In this case the pre-

dicted limit error plus the peak-to-peak high frequency noise is closer

to the observed actual limit error. Figure 11c shows the results of

using an equivalent of 1600 samples per second. Here the error due
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to the high frequency components of the noise almost obscures the

error due to the linear interpolation of the samples. Note that in Fig-

ure 11, and in Figure 12, the real-time sampling rate used is 100

samples per second so that the dynamics of the pen recorder do not

allow it to return to zero at each sample point. However, it can be

seen in these Figures that the pen does try to return to zero one

hundred times a second: it can be observed with an oscilloscope that

the error does behave as expected.

D. Tests with Biological Signal

The signal displayed in Figure 12 is of a biological potential de-

rived from a measuring procedure similar to that of taking an elec-

trocardiogram. However the waveform of Figure 12 is not intended

to imply anything of medical significance. It is a kind of signal which

is inherently different from a sine wave (deterministic in theory) or

random noise (purely random in theory). It is not actually periodic,

nor is it truly random. It is a real signal which is representative of

a. type of physically occurring phenomena.

Figure 12a presents a set of traces for an equivalent sampling

rate of 200 samples per second for the biological signal. The pre-

dicted limit error is observed to be a good indication of the actual

limit error, though conservative in that the true limit error never

reaches the value predicted by the second derivative (this was
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observed to be the case for a much greater length of signal record

than is included in this thesis). The second derivative must therefore

change somewhat during the interval between samples. Notice at what

location the major positive and negative errors occur: the positive

error corresponds to the positive peak of the biological waveform,

but the negative error corresponds to the steep section of signal just

previous to the negative peak of the waveform. The second derivative

predicts this behavior.

Figure 12b displays the results of sampling the biological signal

400 times per second. The predicted limit error plus the peak-to-

peak value of the high frequency components of noise agrees very well

with the observed limit error. Figure 12c shows the traces corres-

ponding to 800 samples per second. Again the predicted limit error

taking into account the higher frequency noise level agrees very well

with the maximum occurring peak error.

Table 3 lists the predicted limit errors, noise levels, and

actual worst-case errors observed for the Figures 10, 11, and 12.
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Table 3. Observed results for the experimental verification of the derivative sampling criterion.

Figure

Predicted limit
error E in
volts

Error band
EB* in
volts

Total expected
limit error Em*
in volts

Observed worst-
case error in
volts

10

11

a
b
c

0. 56
O. 14
0. 035

O. 18
O. 18
O. 18

0.74
O. 320
O. 215

O. 66
O. 225
O. 20

a -0. 60 0. 2 0. 80 0. 45
b 0. 042 0. 2 0. 242 0. 145
c -0. 006 0. 2 0. 206 O. 125

12
a 1. 7 O. 2 1. 90 1. 2
b O. 50 0.2 0.70 0.60
c O. 15 O. 2 O. 35 O. 265

* As defined in Figure 5.
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V. CONCLUSION AND DISCUSSION

This thesis has presented a sampling criterion which provides

a conservative estimate of possible errors arising from use of linear

interpolation between sample points. The criterion can be used to

determine the necessary sampling rate for a given signal in order

that the worst-case peak error between a linear reconstruction of its

samples and the signal itself will not exceed a specified limit. Con-

versely, if a sampling rate is chosen, the criterion will indicate what

limit error is to be expected. The sampling criterion is based upon

an instantaneous parameter, the second derivative, and is equally

applicable to statistically stationary and non-stationary waveforms.

It has been shown that a measurement of the second derivative

of an amplitude-time function can be approximated conveniently and

economically using linear analog circuits so that the criterion may be

implemented. Since this approximation to the second derivative of a

signal can be made in delayed real-time, the methods developed in

this paper might be extended to the control of a variable-rate sam-

pling scheme for data compression where linear interpolation of sam-

ple points is used. Such a system would not necessitate a costly

digital data processor for the control of the sampling rate.

As the bandwidth and noise specifications for operational ampli-

fiers are improved, it will become possible to more accurately
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estimate the second derivative of a signal over a wider frequency

range than has been accomplished in this project. Use of non-linear

feedback techniques might lead to direct implementation for the square

root of the absolute value of the second derivative as needed in vari-

able-rate sampling control.

The advantage of variable-rate sampling is apparent from the

tests of the biological signal. Most of the time signal activity is low

and the error is small. When the signal moves, the error can be-

come quite large for a short duration of time. A high sampling rate

will minimize the error during the period of high activity, but will

greatly over-sample the waveform most of the time. Variable-rate

sampling could provide greater efficiency than is possible with

fixed-rate techniques.
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APPENDIX A

Theoretical Limit Errors for a Sine Wave

1.100 LE=2
1.200 ROR=4.9340/(LE**2)
1.300 " SAMPLES PER CYC"LE," LIMIT FRITCE:
1.400 LE=LE+1, 1.2.

THIS PROGRAM IS IN HYTRAN OPERATIONS INTFRPRFIlli,
AN INTER-ACTIVE: ON-LINE. LANGUAGE SYSTEM AVAILABLE
ON THE EAI 690 HYBRID COMPUTER.

SAMPLES PER CYCLE: = 2.00000, LIMIT ERROR = 1.23350
SAMPLES PER CYCLE = 3.00000, LIMIT ERROR = .548222
SAMPLES PER CYCLE = 4.00000, LIMIT ERROR = .308375
SAMPLES PER CYCLE = 5.00000, LIMIT ERROR = .197360
SAMPLES PER CYCLE = 6.00000, LIMIT ERROR = .137056
SAMPLES PER CYCLE. = 7.00000, LIMIT ERROR = .100694
SAMPLES PER CYCLE = 8.00000, LIMIT ERROR = .077093
SAMPLES PER CYCLE = 9.00000, LIMIT ERROR = .060913
SAMPLES PER CYCLE = 10.0000, LIMIT ERROR = .0493/t0
SAMPLES PER CYCLE = 11.0000, LIMIT ERROR = .040776
SAMPLES PER CYCLE: = 12.0000, LIMIT ERROR = .034263
SAMPLES PER CYCLE = 13.0000, LIMIT ERROR = .029195
SAMPLES PER CYCLE = 14.0000, LIMIT ERROR = .025173
SAMPLES PER CYCLE = 15.0000, LIMIT ERROR = .021928
SAMPLES PER CYCLE = 16.0000, LIMIT ERROR = .019273
SAMPLES PER CYCLE = 17.0000, LIMIT ERROR = .017072
SAMPLES PER CYCLE = 18.0000, LIMIT ERROR = .015228
SAMPLES PER CYCLE = 19.0000, LIMIT ERROR = .013667
SAMPLES PER CYCLE = 20.0000, LIMIT ERROR = .012335
SAMPLES PER CYCLE = 21.0000, LIMIT ERROR = .011188
SAMPLES PER CYCLE = 22.0000, LIMIT ERROR = .010194
SAMPLES PER CYCLE = 23.0000, LIMIT ERROR = .009327
SAMPLES PER CYCLE = 24.0000, LIMIT ERROR = .008565
SAMPLES PER CYCLE = 25.0000, LIMIT ERROR = .007894
SAMPLES PER CYCLE = 26.0000, LIMIT ERROR = .007298
SAMPLES PER CYCLE = 27.0000, LIMIT ERROR = .006768
SAMPLES PER CYCLE = 28.0000, LIMIT ERROR = .006293
SAMPLES PER CYCLE = 29.0000, LIMIT ERROR = .005866
SAMPLES PER CYCLE = 30.0000, LIMIT ERROR = .005482
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APPENDIX B

Actual Limit Errors for a Sine Wave

2.100 LE=2
2.200 X=6.28318/LE
2.300 ROR=1-COS(X/2)
2.400 " SAMPLES PER CY C"L " LIMIT ER"}iOR:
2.500 LE=LE+1, 2.2.

THIS PROGRAM IS IN HY IRAN OPERATI ONS I NTERPRET'ER,
AN INTER - ACTIVE ON-LINE LANGUAGE SYSTEM AVAILABLE,
ON THE FPI 690 HYBRID COMPUTER.

SAMPLES PER CYCLE = 2.00000, LIMIT ERROR = .999999
SAMPLES PER CYCLE = 3.00000, LIMIT ERROR = 500000
SAMPLES PER CYCLE = 4.00000, LIMIT ERROR = .29 289 3
SAMPLES PER CYCLE = 5.00000, LIMIT ERROR = 19 0983
SAMPLES PER. CYCLE = 6.00000, LIMIT ERROR = . 1339 75
SAMPLES PER CYCLE = 7.00000, LIMIT ERROR = .099031
SAMPLES PER CYCLE = 8.00000, LIMIT ERROR = 076120
SAMPLES PER CYCLE = 9.00000, LIMIT ERROR = .060307
SAMPLES PER CYCLE = 10.0000, LIMIT ERROR = .0489 43
SAMPLES PER CYCLE = 11.0000, LIMIT ERROR = .040507
SAMPLES PER CYCLE = 12.0000, LIMIT ERROR = .034074
SAMPLES PER CYCLE = 13.0000, LIMIT ERROR = .0290 58
SAMPLES PER CYCLE = 14.0000, LIMIT ERROR = .025072
SAMPLES PER CYCLE = 15.0000, LIMIT ERROR = 0218 52
SAMPLES PER CYCLE = 16.0000, LIMIT ERROR = .019215
SAMPLES PER CYCLE = 17.0000, LIMIT ERROR = .017027
SAMPLES PER CYCLE = 18.0000, LIMIT ERROR = .015192
SAMPLES PER CYCLE = 19.0000, LIMIT ERROR = .013639
SAMPLES PER CYCLE = 20.0000, LIMIT ERROR = 012312
SAMPLES PER CYCLE = 21.0000, LIMIT ERROR = .011169
SAMPLES PER CYCLE = 22.0000, LIMIT ERROR = 010179
SAMPLES PER CYCLE. = 23.0000, LIMIT ERROR = .009314
SAMPLES PER CYCLE = 24.0000, LIMIT ERROR = .008 555
SAMPLES PER CYCLE = 25.0000, LIMIT ERROR = .00788 5
SAMPLES PER CYCLE = 26.0000, LIMIT ERROR = .00729 1
SAMPLES PER CYCLE = 27.0000, LIMIT ERROR = 006762
SAMPLES PER CYCLE = 28.0000, LIMIT ERROR = .006288
SAMPLES PER CYCLE = 29.0000, LIMIT ERROR = .005862
SAMPLES PER CYCLE = 30.0000, LIMIT ERROR = .005478
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SAMPLES PER CYCLE = 31.0000, LIMIT ERROR = .005131
SAMPLES PER CYCLE = 32.0000, LIMIT FRECF = .004815
SAMPLES PER CYCLE. = 33.0000, LIMIT ERROR = .004528
SAMPLES PER CYCLE = 34.0000, LIMIT ERROR = 004266
SAMPLES PER CYCLE = 35.0000, LIMIT ERROR = .004026
SAMPLES PER CYCLE = 36.0000, LIMIT ERROR = .003805
SAMPLES PER CYCLE = 37.0000, LIMIT ERROR = .003603
SAMPLES PER CYCLE = 38.0000, LIMIT ERROR = .003416
SAMPLES PER CYCLE = 39.0000, LIMIT ERROR = .003243
SAMPLES PEE CYCLE = 40.0000, LIMIT ERROR = .003083
SAMPLES PER CYCLE = 41.0000, LIMIT ERROR = .002934
SAMPLES PER CYCLE = 42.0000, LIMIT ERROR = .002796
SAMPLES PER CYCLE = 43.0000, LIMIT ERROR = .002668
SAMPLES PER CYCLE = 44.0000, LIMIT ERROR = .002548
SAMPLES PER CYCLE = 45.0000, LIMIT ERROR = .002436
SAMPLES PER CYCLE = 46.0000, LIMIT ERROR = .002331
SAMPLES PER CYCLE = 47.0000, LIMIT ERROR = .002233
SAMPLES PER CYCLE = 48.0000, LIMIT ERROR = .002141
SAMPLES PER CYCLE. = 49.0000, LIMIT ERROR = .002055
SAMPLES PER CYCLE = 50.0000, LIMIT ERROR = .001973
SAMPLES PER CYCLE = 51.0000, LIMIT ERROR = .001897
SAMPLES PER CYCLE = 52.0000, LIMIT ERROR = .001824
SAMPLES PER CYCLE = 53.0000, LIMIT ERROR = .001756
SAMPLES PER CYCLE = 54.0000, LIMIT ERROR = .001692
SAMPLES PER CYCLE = 55.0000s LIMIT ERROR = .001631
SAMPLES PER CYCLE = 56.0000, LIMIT ERROR = .001573
SAMPLES PER CYCLE = 57.0000, LIMIT ERROR = .001518
SAMPLES PER CYCLE = 58.0000, LIMIT ERROR = .001467
SAMPLES PER CYCLE = 59.0000, LIMIT ERROR = .001417
SAMPLES PER CYCLE = 60.0000, LIMIT ERROR = .001371
SAMPLES PER CYCLE = 61.0000, LIMIT ERROR = .001326
SAMPLES PER CYCLE = 62.0000, LIMIT ERROR = .001284
SAMPLES PER CYCLE = 63.0000, LIMIT ERROR = .001243
SAMPLES PER CYCLE = 64.0000, LIMIT ERROR = .001205
SAMPLES PER CYCLE = 65.0000, LIMIT ERROR = .001168
SAMPLES PER CYCLE = 66.0000, LIMIT ERROR = .001133
SAMPLES PER CYCLE = 67.0000, LIMIT ERROR = .001099
SAMPLES PER CYCLE = 68.0000, LIMIT ERROR = .001067
SAMPLES PER CYCLE = 69.0000, LIMIT ERROR = .001036
SAMPLES PER CYCLE = 70.0000, LIMIT ERROR = .001007
SAMPLES PER CYCLE = 71.0000, LIMIT ERROR = .000979
SAMPLES PER CYCLE = 72.0000, LIMIT ERROR = .000952
SAMPLES PER CYCLE = 73.0000, LIMIT ERROR = .000926
SAMPLES PER CYCLE = 74.0000, LIMIT ERROR = .000901
SAMPLES PER CYCLE = 75.0000, LIMIT ERROR = .000877


