AN ABSTRACT OF THE THESIS OF

DENNIS JAMES WILKINS for the MASTER OF SCIENCE
(Name) (Degree)

ELECTRICAL AND
in ELECTRONICS ENGINEERING presented on  Dec. )3, 19(8
(Major) (Date)

Title: A SAMPLING CRITERION ENABLING SIGNAL

RECONSTRUCTION WITH SPECIFIED LIMIT ERROR

avstract approveaivedacted for Privacy

Robert'R. Michael = ° !

A sampling criterion which provides a numerical relationship
between sampling rate and worst-case peak error for linear interpo-
lation of sample points is presented. The criterion, based upon the
second derivative of a waveform, is derived, its properties are ob-
served for a sine wave, and its applicability to complex signals is
discussed.

An approximate measure of the second derivative for an
amplitude-time function is implemented using a linear analog circuit,
and this device in conjunction with an analog computer is used to con-
firm the validity of the sampling criterion., Possible application to
on-line variable-rate sampling control for data compression is dis-

cussed in the conclusion.



A Sampling Criterion Enabling Signal Reconstruction
with Specified Limit Error

by

Dennis James Wilkins

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

June 1969



APPROVED:

Redacted for Privacy

Associate Profe$sor of Electrical and Electronics
Engineering

in charge of major

Redacted for Privacy

Hdad of Department of £lectrical and Electronics
Engineering

Redacted for Privacy

Dean of Graduate School

Date thesis is presented Qg_, )3 /9L K

Typed by Clover Redfern for Dennis James Wilkins




ACKNOWLEDGMENT

The author is indebted to Professor Robert R. Michael who con-
ceived the original form of the derivative sampling criterion and pro-
vided much enlightenment and encouragement during the investigation
of its properties, and during the preparation of the manuscript.

The author is most appreciative of his wife, Linda, for her

typing of the manuscript and her help and patience throughout its

preparation.



TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1

II. DERIVATION AND PROPERTIES OF THE SAMPLING

CRITERION 3
A. Derivation of the Sampling Criterion 3
B. Properties of the Sampling Criterion 9

C. Extension of the Sampling Criterion to
Complex Signals 14

III. PROCEDURE FOR VERIFICATION OF THE

SAMPLING CRITERION 21
A. Implementation of a Differentiator 21
B. Simulation of a Sampled Data System 26

IV. EXPERIMENTAL VERIFICATION OF THE

SAMPLING CRITERION 29

A. Signals Used for Tests 29

B. Tests with a Sine Wave 30

C. Tests with Bandlimited Noise 31

D. Tests with Biological Signal 33

V. CONCLUSION AND DISCUSSION 46

BIBLIOGR APHY 48

APPENDIX 50
Appendix A: Theoretical Liimit Errors for a Sine

Wave 50

Appendix B: Actual Limit Errors for a Sine Wave 52



LIST OF FIGURES
Figure Page
1. A region of interest of an amplitude-time function. 5

2a. Condition for maximum peak error for sine
wave. 13

2b. Condition for minimum peak error for sine

wave. 13

3a. An ideal bandlimited spectrum. 16
3b. A realizable bandlimited spectrum. 16
3c. A realizable bandlimited spectrum. 16
4a. A second derivative transfer function, 17
4b. Relative second derivatives for spectra of Figure 3. 17
5. Effect of aliasing on maximum peak error. 19

6. Transfer functions of ideal and realizable bandlimited

differentiators. 22
7. Electronic second derivative estimator, 22
8. Analog computer simulation of sampled data system. 28

9. Signal, reconstruction, and error for very low sampling

rates of a sine wave. 35
10a. Data plot for 8 samples per cycle of a sine wave. 36
10b. Data plot for 16 samples per cycle of a sine wave. 37
10c. Data plot for 32 samples per cycle of a sine wave. 38

lla, Data plot for 400 samples per second of bandlimited
noise. 39

11b. Data plot for 800 samples per second of bandlimited
noise. 40



Figure Page

llc. Data plot for 1600 samples per second of bandlimited
noise. 41

12a. Data plot for 200 samples per second of biological
signal. 42

12b. Data plot for 400 samples per second of biological
signal. 43

12c. Data plot for 800 samples per second of biological
signal. 44



Table

LIST OF TABLES

Component values for multiple-feedback active filters.

Test data for second derivative circuit using sine wave
input.

Observed results for the experimental verification of
the derivative sampling criterion,

Page

23

25

45



A SAMPLING CRITERION ENABLING SIGNAL
RECONSTRUCTION WITH SPECIFIED LIMIT ERROR

I. INTRODUCTION

Today much information is handled in digital form. Digital
computers process ever increasing quantities of data for the engineer-
ing and scientific disciplines. Deep-space probes and earth-bound
communications links digitize and multiplex signals in a bid for great-
er efficiency. Yet, much physical data with which engineers and sci-
entists are concerned is analog in nature. When continuous data is
digitized, the information processing equipment must ignore the sig-
nal for finite periods of time. If the analog signal varies during such
an interval, there will not be digital data taken to define the signal at
times between the sample points. Higher sampling rates provide
more data points at increased cost and, in the case of stored data
computers, at the expense of memory space. If some practical sam-
pling rate is chosen, the question arises as to how well and by what
means can one recover the original signal from the given samples.

The sampling theorem states that if a signal is sampled at two
samples per cycle of bandwidth, all the information content of the sig-
nal is captured. Thus, the signal itself can be recovered, in theory.
The problem which confronts the engineer is how to actually recover

the signal. It is known that a signal cannot be recovered exactly from



its samples taken at two samples per cycle of bandwidth using a physi-
cally realizable linear system (14, p. 2.19). This comes about be-
cause an ideal filter cannot be built.

A practical approach to recovery of a signal is to interpolate
between its sample points according to some mathematical scheme.

A first-order linear interpolation is a rather easy one to accomplish,
but with such a scheme the sampling theorem does not hold. Two
samples per cycle of a sine wave, if linearly interpolated, will not
reproduce the sine wave.

The object of this thesis is to provide a means for predicting
the accuracy of the reconstruction of a signal when linear interpola-
tion of its samples is used. An expression for the relationship of sam-
pling rate to worst-case peak error is derived, implemented, and

tested on a variety of real signals.



II. DERIVATION AND PROPERTIES OF THE SAMPLING
CRITERION

A. Derivation of the Sampling Criterion

The derivative sampling criterion presented in this thesis is
based upon an investigation by Professor Robert R. Michael of Oregon
State University (11). As originally conceived, the study determined
a method of estimating the number and distribution of taps required
on a linear slidewire potentiometer in order to generate an empirical
function to a prescribed limit of error. In this paper, where the cri-
terion is applied to an amplitude-time function, the original form of
the derivation applies.

A sampling criterion, to be useful, must describe numerically
the relationship between sampling rate and a given specific measure
of error for any physically realizable signal. The criterion here de-
rived shall describe numerically what peak error can occur between
a signal and a linear interpolation of its samples. A fixed limit of
error is specified in preference to probable or mean square error
because it more precisely describes error conditions when consider-
able significance is attributed to a single interpolation value. Limit
error is taken to mean worst-case peak error. First order linear
interpolation is used as the basis for reconstruction because of its

widespread use and ready implementation.



It should be emphasized that this paper is concerned only with
errors resulting from the linear interpolation of sample points.
Errors arising from limitations of sampling equipment and from sub-
sequent analytic procedures must be superimposed on the limit error
here derived.

Figure 1 shows a region of interest of a typical amplitude-time
function. A limit as the angle 2¢ approaches zero is assumed. A
result of this assumption is that the second derivative of the function
must be nearly constant over the interval 6. The consequences of
this limitation will be observed near the end of this chapter. Using

definitions of analytic geometry, angle © can be written

2.1 6 = arctan (y')
where
1 - __dy i
y n at point P,

Differentiating © with respect to time,

de d(arctan(y'))

22 at T ar ’
5 3 46 __y"
dt 2
1+(y")
where
2
y”:g-'—zz at point P.



Amplitude time
function y(t)

Linear
reconstruction
of y(t)

Figure 1. A region of interest of an amplitude-
time function.



The angle 2¢ can be expressed as the change of 6 over the inter-

val §&:

de
2.4 2¢ :'(E(S.

Substituting Equation 2. 3 into 2. 4,

11
2.5 2¢ = —L— 5.

1+ (Y')2

Referring to Figure 1, if 2¢ 1is small, the radial distance

€. from the chord to the curve is
2.6 € =p - p cos o

2.7 €

p(l- cos o).

In terms of Taylor's series expansion

Since this series converges rapidly for small values of ¢,

¢2
2.9 Gr:p(l-l+j).
2
2.10 ¢ R
r 2

Now p, the radius of curvature, can be expressed in terms of



derivatives as

203/2

) _ [+ )

r (Ref. 13, p. 396).

Then Equation 2.5 can be expressed as

_Legn1'?
p

2.12 26 5.

Dividing both sides of Equation 2. 12 by two and squaring

2 Dl 2

2.13 ¢ ;
2
4p
therefore
2
~ ! 2
2.14 zlr ] g2

r 8p

In the limit as 2¢ approaches zero, the greatest vertical distance
from the chord to the curve in Figure 1 occurs at the midpoint of the

curve and designated by e .

2 s = Lliegn®l,2

y 8pcos®H

As a consequence of the Pythagorean Theorem cos 6 can be ex-

pressed in terms of derivatives as

2.16 cos 0 = [1+(y')2]'1/2.



Equation 2. 15 becomes

2:3/2
t
2. 17 ¢ = [1+ ()] 5°
y 8p
Let
2
i+ )21 2
€ )
8p
so that
€ ; - €.
y
Then
2.18 e _-[1+ (Y')2]3/2
62 B 8p

Substituting the derivative form of p (Equation 2.11) into Equation

2.18 yields

2.19 %z-y".
&

Setting %: R, where R 1is the sampling rate in samples per

second, and rearranging:
_ _Yn 1/2
2.20 R = (-——8€ ) .

Note that ¢ is positive when y" is negative and vice versa, so

that R is real. Rearranging 2. 20,

2.21 =L,



where & is the sampling interval in seconds, R 1is the sampling
rate in samples per second, ¢ is the error in units of vy, y" is
the second derivative with respect to time of the waveform in units of

2
y per (second) .

B. Properties of the Sampling Criterion

Some properties of the derivative criterion may be observed by

applying it to a sine function y(t) = A sin (wt). Using Equation 2.21

1 -d%(Asin (wt))

)
8R ° at

e. = (

sz sin (wt)
8(R )2

If the sampling rate is doubled,

2
_w Asin (wt)

8(2R)°

€

2
thus,

62—
c =

1

]

If, for a given sampling rate, the amplitude of the sine wave is

doubled,
_ wZ(ZA) sin (wt)

€., =
3 8R2
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and

€
3.2,
€

1

The above demonstrates two properties of the limit error pre-
dicted by the derivative criterion when applied to a sinusoidal wave:
(1) The limit error is inversely proportional to the square of the sam-
pling rate; (2) the limit error is proportional to the amplitude of the
sine wave.

These properties can be tested numerically. The derivative
sampling criterion indicates that the limit error for a sine function
the peak of the sine wave, since

A sin (wt) will occur at wt =

2

M

2 . . . .
the second derivative, -w A sin (wt), is a maximum there. Figure

2a shows an arrangement of samples which will produce such a worst-

case peak error condition. At a given sampling rate Rl = _6L , the
1

actual limit error can be found from

o 2T
2.-2R1)'

. ™ .
€ = A sin (-E)- A sin (
If R1 is equal to ten samples per second,

¢, = A(0.048943).

The theoretical limit error can be calculated from the sine

function using the derivative sampling criterion. The function is
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y(t) = A sin (wt)

A sin (2wft).

Let f=1Hz, then vy" = -41r2A sin (2wt). The peak value of y"
occurs at 2wt :%
2
1n = _4
Y (peak) ™A
= -39, 4784A.

For ten samples per cycle of a one Hz sine wave, R equals ten

samples per second. Using Equation 2.21

-y"

€ = —=x

8R2

e = A(0. 049340).

This value is slightly larger than the actual limit error pre-
viously calculated. The difference between the predicted limit error
and the actual maximum error is less than .05% of A (less than 1%
of the actual error) even though the second derivative varies by near-
ly 5% during the sampling interval.

1

If the sampling rate is doubled to 2R = —6—2— = 20 samples per
1

cycle of the sine wave, the actual limit error is

. ™, . . 27
€ _Asm(z)-Asm(E-Z—ﬁ; N

€. = A(0.012312)
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so that

€
2 - 0.25153.
‘1

This is very nearly 1/4 as it should be.
If the sampling rate is constant and the amplitude of the sine

wave is doubled the actual limit error is

in (%) - in (T_2T
63—2As1n(2)-2As1n(2-2R1)
- 2[(A sin (Z) - Asin (2-25)]
=2l (Asin{3) - 2 7R
€5
= 2. 000 ... as the sampling criterion predicts.
1

If the samples fall as shown in Figure 2b, the peak error occur-
ring between samples will not occur at the peak value of the sine wave,
and thus the peak error will be somewhat less than the limit error of
Figure 2a. Figure 2b represents the minimum peak error case for
the given sampling rate, The limit error predicted by Equation 2, 22
using the maximum value of the derivative corresponds to the maxi-
mum peak error case of Figure 2a. If a very low sampling rate is
used (less than five samples per cycle) the difference between the
maximum and minimum peak errors becomes appreciable, and pos-
sibly more important, the reconstruction based on linear interpolation

becomes meaningless (see Figure 9). For such a sampling rate the
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assumption that the variation of the second derivative is small over
the sampling interval will not be valid. In this case the predicted
limit error will exceed the actual limit error by some small amount,
but in light of the breakdown of the reconstruction, this decrease in
the accuracy of the predicted limit error is of little consequence (see
Appendices A and B for comparison of predicted and actual maximum
peak errors for a sine wave).

Using a sine wave it has been shown that the derivative sampling
criterion provides an accurate prediction of the limit error for mean-
ingful sampling rates.. Both Equations 2.20 and 2.21 will be valid
allowing one to determine the required sampling rate for a specified
limit error or to predict the limit error for a given sampling rate,

Extension of the criterion to complex waveforms will be valuable.

C. Extension of the Sampling Criterion to Complex Signals

In terms of Fourier series, any well behaved waveform can be
expressed as a linear combination of sinusoidal waves (10, p. 4-96).
Therefore, the properties observed in the last section should, in
theory, apply to the sampling of any real signal as long as the second
derivative of the waveform does not change appreciably during the
interval between samples.

A real signal may have frequency components extending over

many decades. The signal spectrum is one way of indicating the
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distribution of these components., Figure 3a shows an ideal case of
flat spectrum (equal amplitude components) out to a cutoff frequency
beyond which no signal power exists. For such a signal it is clear
that the highest existing frequency component will determine the maxi-
mum value of the second derivative (see Figure 4b). Two possibly
more realistic spectra are shown in Figures 3b and 3c. These repre-
sent realizable band limitations on the frequency components. If the
sloping tail of such spectra rolls off at a rate exceeding -40 db per
decade (Figure 3c) the second derivative will be finite due to its na-
ture in the frequency domain (see Figure 4) (15, p. 458-460). A dif-
ficulty arises if the spectrum rolls off at less than -40 db per decade
(Figure 3b). For the case where the tail maintains a slope of less
than -40 db per decade to an infinite frequency (in theory) the second
derivative will approach an infinite magnitude and the sampling criter-
ion will specify an infinite sampling rate for any finite limit error.
Only as the sampling rate approaches infinity will the assumption that
the second derivative is nearly constant between samples be valid.
Since this assumption is a necessary one for the validity of the deri-
vation, the criterion will not hold for finite sampling rates of such a
signal. In other words, if a signal of this nature were sampled at a
finite rate, the actual limit error would be finite, not infinite as the
criterion predicts. The limit error would be finite because the mag-

nitude of the frequency components beyond the capabilities of the
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sampling rate would be small.

Aliasing is a term used to denote false low frequencies arising
from the sampling of a component at less than twice its frequency (14,
p. 2.6). For linear interpolation the aliasing error for a component
is equal to the magnitude of that component. If a signal to be sampled
contains high frequency components which are small in comparison
with the desired limit error, the components can be ignored in choos-
ing a sampling rate. Figure 5 shows how the aliasing error of small
high frequency components combines with the sampling error of larg-
er low frequency components to produce a total maximum peak error.
The high frequency components create, in effect, a band of error
which must be superimposed upon the error predicted by the sampling
criterion. In order for the sampling criterion to predict a limit error
based upon the lower frequency components, the derivative used in
the criterion must be influenced by only these lower frequencies.
This implies low-pass filtration of the signal before measuring the
second derivative. Care must be exercised in order not to filter out
significant components. If a similar low-pass filter is used as a pre-
sampling filter, the effects of aliasing will be decreased. This tech-
nique is commonly used to minimize false frequency components when
sampled data is to be harmonically analyzed. Such pre-filtering does
modify the signal; whether or not significant distortion occurs depends

upon the specific case (8).
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Since this paper is concerned with peak errors arising from
linear interpolation of sampled data, aliasing will be taken as a con-
tribution to limit error in the reconstruction.

In this section it has been suggested that the derivative sampling
criterion is useful for physically realizable signals if the limitations
of the criterion are observed. The near impossibility of an analytic
approach for the demonstration of the validity of the criterion for

complex waveforms necessitates an experimental procedure.
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III. PROCEDURE FOR VERIFICATION OF THE
SAMPLING CRITERION

A. Implementation of a Differentiator

In order to carry out an experimental verification of the value
of the derivative sampling criterion, a method for determining the
second derivative of a real time signal must be implemented. Elec-
tronic differentiation is inherently a noisy process since high fre-
quency components are most accentuated. Thus, it is good practice
to bandlimit the signal to frequencies of interest before taking the
derivative. This agrees with the suggestion of the last chapter to fil-
ter out insignificant high frequency components of a signal in order
that the derivative measured not vary appreciably between samples.
Figure 6 shows the kind of gain-transfer function desired for effec-
tively ignoring frequency components above a given value. An ideal
such function would be as that labeled a. A realizable transfer func-
tion might be as the line labeled b. The solid line b is, of course,
the asymptotic representation of 'the actual response shown as a
dashed line.

The transfer function of Figure 6b is implemented using a
second-order high-pass filter in cascade with a second-order low-pass
filter with coincident corner frequencies. Multiple-feedback active

filters are used (6, p. 74-77). Figure 7 shows the filters along with
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a variable-gain input buffer (4, p. 12-15). The component values for
the filters are tabulated in Table 1. The basic range of the corner
frequency, fc, is 100 Hz, 1 KHz, and 10 KHz with a multiplier of
1. 0 or 3.16 available. This range of fC allows some flexibility in
the range of frequencies to be measured. The gain-bandwidth product
of the operational amplifiers limits the maximum value of fc;
capacitive loading of the input buffer imposes a limitation on the low
value of this frequency. Internal noise of the 10 volt operational
amplifiers limits their useful dynamic output ratio to approximately .

1000 : 1. This restricts the frequency range for a constant amplitude

input at a given fc to a ratio of approximately 30 : 1.

Table 1. Component values for multiple-feedback active filters.

Hi
Basic corner C -C igh passc C Low pasg
frequency in 1 73 4 2 5

Hz pf pf pf pf

100 .1 . 01 .01 . .22

1, 000 . 01 . 001 . 001 . 022

10, 000 . 001 . 0001 . 0001 . 0022
Frequency RZ 3 R5 3 Rl 3 RZ 3 R3 3
multiplier Q2 x10 Q2 x10 Q2 x10 2 x10 2 x10
1 10.7 236 11.25 10. 2 112
3.16 3. 39 74.8 3. 56 3.2 35.6

Note: This table applies to Figure 7.

With a peak gain of 100 (40 db) at the corner frequency (accord-

ing to the asymptotes of the transfer function) the expected gain at
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0.1 fc is 0 db (unity gain). Since the actual response of the circuit
departs from the asymptotic representation at frequencies about the
corner, it is desirable to test the circuit using a sine wave. The re-
sults of this test appear in Table 2. The listed time delay is the time
difference of the occurrence of the peak value of the measured deriva-
tive with respect to the expected peaking time of the ideal second de-
rivative. The time delay (which causes an effective phase-lag of the
measured derivative from the ideal) is the most apparent fault of the
derivative implementation. Since both phase and magnitude must be
correct in order for the transfer function to truly represent a second
derivative operator, the circuit should be restricted to use at fre-
quencies less than about one-tenth of the corner frequency for an ac-
curate approximation. The transition region from 0.1 fc to 10 fc
will cause problems if frequency components of the input signal exist
in that range. Above 10 fc the gain rolls off rapidly so that higher
frequency components are attenuated.

Using Appendix A, the theoretical limit error for a given nor-
malized sampling rate of a unit amplitude sine wave can be deter-
mined. The actual value of error for a sine wave of amplitude A1
is simply Al times the value listed in Appendix A. The sampling
rate for a sine wave of frequency W Hz is W times the samples

per cycle value corresponding to the desired limit error. Using the

circuit of Figure 7 the value of the measured second derivative of a



Table 2. Test data for second derivative circuit using sine wave input,

Time delay Phase-lag
Input Ideal Derivative circuit Percent of measured of measured

Frequency voltage in derivative in output in peak magnitude derivative derivative

in Hz peak volts peak volts volts error in milliseconds from ideal
50 5.0 1. 25 1.25 - 0.4 7°
100 5.0 5.0 4,95 1. 0% 0.4 14°
200 1.0 4. 0 3.90 2.5% 0.4 29°
400 0. 50 8.0 7.78 2. 8% 0.4 58°
800 0.20 12. 8 9. 40 26. 5% 0.5 144°
1000 - 0.20 20. 0 10. 0 50 % 0.5 180°

Note: Above data is for 1000 Hz corner frequency.

K4
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signal may be related to the second derivative of a sine wave and the
limit error for a given sampling rate determined from data in Appen-
dix A. An example will illustrate this procedure.

The differentiation circuit, used to estimate the derivative of a
signal, outputs a peak voltage of 10 volts with fc set to 316 Hz.
Since the gain of the circuit is unity at 0.1 fc, a 10 volt peak sine
wave would produce an output of 10 volts if its frequency were 31.6 Hz.
The signal being applied to the circuit has the same second derivative
as a 10 volt peak, 31. 6 Hz sine wave. Therefore, if a sampling rate
of 316 samples per second is used to sample either the given signal
or a 10 volt peak, 31. 6 Hz sine wave, the limit error expected is the
same and is 0. 49340 volts (316 samples per second is 10 samples per
cycle of 31. 6 Hz sine wave. The error corresponding to 10 samples
per cycle is 0. 049340 per unit of sine wave amplitude. Thus, an er-
ror of 0.49340 volts is to be expected for a 10 volt peak sine function).

A limit on the validity of the above procedure is the accuracy of
the second derivative measured. Significant components of frequency
above one-tenth of the fc used will contribute to errors in this es-

timation.

B. Simulation of a Sampled Data System

To actually test the sampling criterion an analog computer sim-

ulation of a sampled data system is used. A block diagram of the



27
circuit is shown in Figure 8. Repetitive mode is used for control of
four of the lower six amplifiers to sample the input and construct a
delayed-time linear interpolation of the samples. The three track-
store units are alternately switched between states to provide succes-
sive samples at points S2 and S3--the difference between these
samples is applied to the input of the reconstruction integrator (the
time constant of which must be properly adjusted) so that it may
ramp from the value at S2 to that of S3 during the operate time of
the computer. The interval between samples is equal to the operate
time plus the reset time of the computer; the reset time is necessary
(so that the track-store units can track to new values accurately) but
should be minimized.

In order to compare the reconstruction (which is delayed by a
time equal to one sampling interval) with the original signal, a de-
layed version of the input must be provided. The upper six ampli-
fiers of Figure 8 are connected as a fourth-order Padé time delay
approximation (7, p. 285-287). With this circuit any time delay T
may be obtained by proper selection of coefficients and integrator
time constants if frequency limitations are observed. A test of this
circuit shows it to be precise within 2% delay time with better than
0.1% amplitude accuracy for frequencies up to 1/T Hz, which is

adequate for the present treatment.
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IV. EXPERIMENTAL VERIFICATION OF THE SAMPLING
CRITERION

A. Signals Used for Tests

Three signals are applied to the circuitry of Chapter III to ver-
ify the properties of the sampling criterion: a sine wave, bandlimited
random noise, and a signal of biological origin similar to an electro-
cardiograph (but of no intended medical significance). Each of these
signals is first recorded on an Ampex FR 1300 analog tape recorder
along with the corresponding derivative as measured by the circuit of
Figure 7. Use of the tape recorder limits the signal-to-noise ratio
to a maximum of approximately 40 db (100:1) for all three signals.
The frequency range of this noise extends to 20 KHz at a tape speed
of 60 ips and is proportionally lower for slower tape speeds reaching
minimum bandwidth of 625 Hz at 1 7/8 ips. Even at this slowest speed
the noise contains frequency components far beyond the 10 and 100
samples per second sampling rates used in the circuit of Figure 8.
The variable-speed feature of the recorder is used to change the ef-
fective sampling rate for the signals since the simulation circuit
which samples and reconstructs these signals is a carefully adjusted
circuit which can be easily changed from 10 samples per second to
100 samples per second by time scaling, but cannot be practically

varied by any factor less than this without extensive and time
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consuming readjustment of the circuit parameters.

The chart recordings of Figures 10, 11, and 12 are portions of
output data for the sine, bandlimited noise and biological signal re-
spectively. In each case the uppermost trace (channel 1) is a record
of the signal itself; the second trace is of a linear reconstruction of
the sample points; the third trace is a plot of the error between the
linear reconstruction and the originé.l signal; the lower trace is a
record of the second derivative of the signal scaled to show the proper
magnitude and phase of the limit error for each effective sampling
rate used.

B. Tests with a Sine Wave

The sine wave tests afford a view of some properties of the
sampling criterion and several effects of linear interpolation. The
signal is recorded as a 5 Hz sine wave from a Hewlett- Packard
200 CD oscillator at 60 ips tape speed so that a minimum frequency of
5/32 Hz can be obtained at 1 7/8 ips. This allows a real-time sam-
pling rate of 10 samples per second to be used for effective sampling
rates of from 2 samples per cycle to 64 samples per cycle. Figure
9 shows some results for very low sampling rates. Figure 10a shows
signal, reconstruction, and error, along with predicted limit error,
for 8 samples per cycle. The straight-line segments of the linear
interpolation are clearly visible on channel 2. A comparison of the

two lower tracks shows that the actual limit error is approximately
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equal to the predicted limit error plus the peak-to-peak value of the
high frequency noise (a measurement made with a Tektronix 565
oscilloscope shows this noise to be about 0. 18 volt peak-to-peak for
the 7. 5 volt peak amplitude sine wave). The scaled value of the deri-
vative was determined by the method of Chapter III, Section A.

One property of the error for linear reconstruction is that it
returns to zero at each sampled data point--this is observed on chan-
nel 3 of Figure 10a (pen dynamics causes some departure from an
ideal trace of this phenomena). Another property visible in Figure
10 is that the peak error varies periodically due to the positions of
the samples changing relative to the signal. The samples can actually
be observed drifting through the sine wave in Figure 10a, channel 2.

As the sampling rate is increased, the limit error decreases in
theory, and in practice as Figures 10b and 10c demonstrate. The
high frequency noise is observed to take over as the major contributor
of error as the sampling rate is increased. Since the frequency com-
ponents of this noise are beyond the capabilities of the simulation
circuit it is not possible to try to sample at a rate adequate to recon-

struct the noise itself.

C. Tests with Bandlimited Noise

The noise used for the tests of Figure 11 is a recording of the

output of a General Radio 1390-B random noise generator filtered
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through a fourth-order low-pass filter with an upper corner frequency
(-12 db point) of 48 Hz and a first-order bass-boost circuit (7, p. 112-
113) with 20 db of boost below 5 Hz (to compensate for a first-order
rolloff of the noise generator below 5 Hz as determined from its cir-
cuit configuration--below 0. 5 Hz the noise generator rolls off more
rapidly). Thus, the bandlimited noise as recorded is approximately
flat from 0. 5 Hz to 24 Hz (-4 db point). The actual spectrum is not
known and is not needed in order to test the derivative sampling cri-
terion.

Figure lla shows the results of sampling the bandlimited noise
at a rate equivalent to 400 samples per second. The striking aspect
of channels 3 and 4 is their similarity. The second derivative of
track 4 is scaled to reflect the limit error to the same scale as track
3 plots the actual error. It is observed that the actual error never
exceeds the limit error (even though the high frequency noise com-
ponents on the signal are 0. 2 volts peak-to-peak), and in some cases
the actual error is quite small where the limit error is appreciable.
This indicates that the second derivative of the bandlimited noise is
changing somewhat between samples. Figure 11b shows the results
for an equivalent of 800 samples per second, In this case the pre-
dicted limit error plus the peak-to-peak high frequency noise is closer
to the observed actual limit error. Figure 1lc shows the results of

using an equivalent of 1600 samples per second. Here the error due
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to the high frequency components of the noise almost obscures the
error due to the linear interpolation of the samples. Note that in Fig-
ure 11, and in Figure 12, the real-time sampling rate used is 100
samples per second so that the dynamics of the pen recorder do not
allow it to return to zero at each sample point. However, it can be
seen in these Figures that the pen does try to return to zero one
hundred times a second: it can be observed with an oscilloscope that

the error does behave as expected.

D. Tests with Biological Signal

The signal displayed in Figure 12 is of a biological potential de-
rived from a measuring procedure similar to that of taking an elec-
trocardiogram. However the waveform of Figure 12 is not intended
to imply anything of medical significance. It is a kind of signal which
is inherently different from a sine wave (deterministic in theory) or
random noise (purely random in theory). It is not actually periodic,
nor is it truly random. It is a real signal which is representative of
a type of physically occurring phenomena,

Figure 12a presents a set of traces for an equivalent sampling
rate of 200 samples per second for the biological signal. The pre-
dicted limit error is observed to be a good indication of the actual
limit error, though conservative in that the true limit error never

reaches the value predicted by the second derivative (this was



34
observed to be the case for a much greater length of signal record
than is included in this thesis). The second derivative must therefore
change somewhat during the interval between samples. Notice at what
location the major positive and negative errors occur: the positive
error corresponds to the positive peak of the biological waveform,
but the negative error corresponds to the steep section of signal just
previous to the negative peak of the waveform. The second derivative
predicts this behavior,

Figure 12b displays the results of sampling the biological signal
400 times per second. The predicted limit error plus the peak-to-
peak value of the high frequency components of noise agrees very well
with the observed limit error, Figure 12c shows the traces corres-
ponding to 800 samples per second, Again the predicted limit error
taking into account the higher frequency noise level agrees very well
with the maximum occurring peak error,

Table 3 lists the predicted limit errors, noise levels, and

actual worst-case errors observed for the Figures 10, 11, and 12,
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Table 3. Observed results for the experimental verification of the derivative sampling criterion.

Predicted limit Error band Total expected Observed worst-
error ¢ in eR* in limit error ¢)\* case error in
Figure volts volts in volts volts
10
a 0. 56 0.18 0.74 0. 66
b 0. 14 0.18 0. 320 0. 225
c 0. 035 0.18 0. 215 0.20
11
a -0.60 0.2 0. 80 0. 45
b 0. 042 0.2 0. 242 0. 145
c -0. 006 0.2 0. 206 0.125
12
a 1.7 0.2 1.90 1.2
b 0. 50 0.2 0.70 0. 60
c ; 0.15 0.2 0. 35 0. 265

* As defined in Figure 5,

5 4
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V. CONCLUSION AND DISCUSSION

This thesis has presented a sampling criterion which provides
a conservative estimate of possible errors arising from use of linear
interpolation between sample points., The criterion can be used to
determine the necessary sampling rate for a given signal in order
that the worst-case peak error between a linear reconstruction of its
samples and the signal itself will not exceed a specified limit. Con-
versely, if a sampling rate is chosen, the criterion will indicate what
limit error is to be expected. The sampling criterion is based upon
an instantaneous parameter, the second derivative, and is equally
applicable to statistically stationary and non-stationary waveforms.

It has been shown that a measurement of the second derivative
of an amplitude-time function can be approximated conveniently and
economically using linear analog circuits so that the criterion may be
implemented. Since this approximation to the second derivative of a
signal can be made in delayed real-time, the methods developed in
this paper might be extended to the control of a variable-rate sam-
pling scheme for data compression where linear interpolation of sam-
ple points is used. Such a system would not necessitate a costly
digital data processor for the control of the sampling rate.

As the bandwidth and noise specifications for operational ampli-

fiers are improved, it will become possible to more accurately
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estimate the second derivative of a signal over a wider frequency
range than has been accomplished in this project. Use of non-linear
feedback techniques might lead to direct implementation for the square
root of the absolute value of the second derivative as needed in vari-
able-rate sampling control.

The advantage of variable-rate sampling is apparent from the
tests of the biological signal. Most of the time signal activity is low
and the error is small. When the signal moves, the error can be-
come quite large for a short duration of time. A high sampling rate
will minimize the error during the period of high activity, but will
greatly over-sample the waveform most of the time. Variable-rate
sampling could provide greater efficiency than is possible with

fixed-rate techniques.
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APPENDIX A

Theoretical Limit Errors for a Sine Wave

1.100 LE=2

1.200 RCOR=4.9340/(LE**2)

1.300 ' SAMPLFS PER CYC"LF," LIMIT FR"KChs
1.400 LE=LF+1, 1.2

THIS PRCGRAM 1S IN HYTRAN CPERATICNS INTFRFKETFK,
AN INTER=ACTIVE CN-LINE LANGUAGF SYSTEM AVAILABLE
CN THF EAl 690 HYBRID CCMPUTFER.

SAMPLES PER CYCLE = 2.00000, LIMIT ERKCK = 1.23350
SAMPLFS FFK CYCLE = 3.00000, LIMIT ERRCk = 548222
SAMPLES FER CYCLE = 4.00000, LIMIT ERKCR = +308375
SAMPLFS FPFR CYCLE = 5.00000, LIMIT ERRCk = +197360
SAMPLFS PFR CYCLE = 6.00000, LIMIT ERKRCE = «1370%6
SAMPLES PFR CYCLE = 7.00000, LIMIT FRRCk = «100694
SAMFLES PER CYCLE = 8.00000, LIMIT EKkCh = +077093
SAMPLES PER CYCLF = 9.00000, LIMIT FRECK = +060913
SAMPLES PEK CYCLE = 10.0000, LIMIT ERRCk = 049340
SAMPLES PFR CYCLE = 11.0000, LIMIT ERRCR = 040776
SAMPLFS PFR CYCLE = 12.0000, LIMIT ERKRCH = 034263
SAMPLES PER CYCLE = 13.0000, LIMIT FhkCk = +029195
SAMPLES PER CYCLE = 14.0000, LIMIT ERKChk = 025173
SAMPLFS PFR CYCLE = 15.0000, LIMIT ERKCKk = +021924
SAMPLES PFR CYCLE = 16.0000, LIMIT ERKCk = 019273
SAMPLES PFR CYCLE = 17.0000, LIMIT FRRCK = 017072
SAMPLES PER CYCLE = 18.0000, LIMIT ERRCR = 015228
SAMPLES PER CYCLE = 19.0000, LIMIT ERKCRKR = +013667
SAMPLES PER CYCLE = 20.0000, LIMIT ERRCKk = 012335
SAMPLES PER CYCLE = 21.0000, LIMIT FRKCK = +011188
SAMPLES PER CYCLE = 22.0000, LIMIT ERRCk = 010194
SAMPLES PFR CYCLE = 23.0000, LIMIT FRRCK = 009327
SAMPLES PER CYCLF = 24.0000, LIMIT FRRCKk = 008565
SAMPLES PFR CYCLF = 25.0000, LIMIT ERRCK = 007894
SAMPLES PER CYCLF = 26.0000, LIMIT ERRCR = +007298
SAMPLES PFR CYCLE = 27.0000, LIMIT ERRCK = 006768
SAMPLES PFR CYCLE = 28.0000, LIMIT EKKCR = +006293
SAMPLES PER CYCLE = 29.0000, LIMIT FRRCk = 005866
SAMPLES PER CYCLE = 30.0000, LIMIT FRRCk = 005482
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40.0000,
41.0000,
42.0000,
43.0000,
4440000,
450000,
46.0000,
470000,
48 . 0000,
49 .0000,
500000,
51.0000.,
52.0000.,
53.0000,
54.0000,
550000,
560000,
57.0000.,
580000,
59.0000,
60.0000.,
61.0000,
620 0000)
63.0000,
64.0000,»
65.0C00,»
660000,
670000,
68.0000,
69 0000,
700000,
71.0000,
720000,
73.0000.,
74.0000,
75.0000.,

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

" LIMIT

LIMIT
LIMIT

FRRKCR
FRRCK
ERRCE
ERRCR
ERRCR
ERRCR
ERRCEK
ERRCR
ERRCK
ERRCR
ERRCR
FRECR
ERRCR
ERRCR
ERRCK
ERRCR
FRKCK
ERRCR
ERRCK
ERERCR
FRRCK
ERECE
ERFCR
ERECK
ERECE
ERKCE
EERCK
ERKCE
ERRCE
ERKCH
ERRCR
ERRCR
ERRCR
ERKCE
ERRCR
ERRCR
ERRCR
ERRCR
FRRCEK
ERRCE
ERRCR
ERRCR
ERRCK
ERRCEH
ERRCK

«005134
« 004818
« 004530
« 004268
« 004027
+ 003807
« 003604
« 003416
« 003243
«003083
+ 002935
« 002797
« 002668
« 002548
« 002436
« 002331
« 002233
« 002141
« 002054
« 001973
« 001896
« 001824
«001756
«001692
«001631
«001573
« 001518
« 001466
«001417
« 001370
«001325
«001283
« 001243
«001204
«001167
«001132
« 001099
«001067
«001036
«001006
« 000978
« 000951
« 000925
«000901
« 000877
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APPENDIX B

Actual Limit Errors for a Sine Wave

2.100 LF=2

2.200 X=6.28318/LE

2.300 RCK=1=-CCS(X/2)

2.400 " SAMPLES PEK CYC'LE," LIMIT ER"KCKk:
2500 LE=LE+1, e2e¢

THIS PRCGRAM IS IN HYTKAN CFERATICNS INTERFEETER,
AN INTER-ACTIVE CON-LINE LANGUAGE SYSTEM AVAILABLE
CN THE FAI 690 HYBRID CCMPUTER.

SAMPLES PER CYCLE = 2.00000, LIMIT ERERCRKR = 999999
SAMPLES FER CYCLE = 3.00000, LIMIT ERRCR = «500000
SAMPLES PEE CYCLE = 4.00000, LIMIT ERRCR = +292893
SAMPLES PEK CYCLE = 5.00000, LIMIT EKRCR = 4190983
SAMPLES FER CYCLE = 6.00000,» LIMIT ERKCh = 133975
SAMPLES PER CYCLE = 7.00000, LIMIT ERRCK = 099031
SAMPLES PER CYCLE = 8.00000» LIMIT ERRCE = 076120
SAMFLES PER CYCLE = 9.00000, LIMIT ERKCE = 060307
SAMPLES PER CYCLE = 10.0000» LIMIT ERRCKR = 048943
SAMPLES PER CYCLE = 11.0000,» LIMIT ERRCK = 040507
SAMPLES PER CYCLE = 12.0000, LIMIT ERRCR = «034074
SAMPLES PEK CYCLE = 13.0000, LIMIT ERRCRK = +029058
SAMPLES PER CYCLE = 14.0000, LIMIT ERRCR = 4025072
SAMPLES PER CYCLF = 15.0000, LIMIT ERRCR = +021852
SAMPLES PER CYCLE = 16.0000, LIMIT ERKCE = 4019215
SAMPLES PER CYCLE = 17.0000, LIMIT ERKCR = 017027
SAMPLES FER CYCLE = 18.0000.» LIMIT ERRCEK = +01519¢&
SAMPLES PER CYCLE = 19.0000, LIMIT ERRCE = 4013639
SAMPLES PER CYCLE = 20.0000, LIMIT ERRCR = +012312
SAMPLES PER CYCLE = 21.0000, LIMIT ERRCE = «011169
SAMPLES PER CYCLE = 22.0000, LIMIT ERRCk = 010179
SAMPLES PER CYCLE = 23.0000, LIMIT ERKKCR = 4009314
SAMPLES PER CYCLE = 24.0000,» LIMIT ERRCk = +008555
SAMPLES PER CYCLE = 250000, LIMIT ERRCEK = +007885
SAMPLES PER CYCLE = 26.0000, LIMIT EKRCR = .007291
SAMPLES PER CYCLE = 27.0000, LIMIT ERRCRK = 006762
SAMPLES PER CYCLF = 28.0000, LIMIT ERRCR = +006288
SAMPLES PER CYCLE = 29.0000, LIMIT ERRCE = 005862
SAMPLES FER CYCLE = 30.0000» LIMIT ERRCRK = «005478



SAMPLES
SAMPLES
SAMPLES
SAMPLFS
SAMPLES
SAMFLES
SAMFLES
SAMPLES
SAMPLES
SAMFLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMFLES
SAMPLES
SAMPLES
SAMFLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMFLES
SAMFLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMPLES
SAMFLES
SAMPLES

FEE
PFR
PER
PER
PEk
PEER
FEER
PER
PER
PER
FER
PER
PER
PER
PFER
PEE
FER
PER
PER
PER
PEER
PER
PER
PER
PER
PEK
PER
PFR
PER
PER
PFR
PEEK
PER
PER
PER
PER
PER
PEK
PER
PER
PER
PER
PER
PFR
FEK

CYCLE
CYCLE¥
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLEFE
CYCLE
CYCLE
CYCLE
CYCLFE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
CYCLE
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31.0000,
32.0000,
33.0000,
34.0000,
35.0000.,
36.0000,
37.0000,
38.0000,
39.0000.,
40,0000,
41,0000,
42,0000,
43.0000,
44,0000,
45,0000,
46.0000,
47.0000,
48,0000,
49.0000,
50.0000,
510000,
52.0000,
53.0000,
54.0000,
55.0000,
56.0000,
57.0000,
58.0000,
59.0000,
60.0000,
61.0000.,
62.0000,
63.0000,
64.0000,
65.0000,
66.0000,
67.0000,
68.0000,
69.0000,
70.0000.,
71.0000,
72.0000,
73.0000.,
74.0000,
75.0000,

LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT
LIMIT

ERECK
FRECK
ERKKCK
EEKCEK
ERRCE
EKEKCh
FRECE
ERKCR
FRKRCk
ERKCH
FRRCEk
EERCEK
ERKCK
EEKCK
ERKRCE
ERKRCE
ERKCE
ERRCEK
FERCEK
ERKCER
ERKCk
FERCK
ERRCE
FRRCK
ERRCK
ERRCR
EREKCE
ERKRCR
ERRCEK
ERRCER
ERRCK
ERKCE
FRECK
FERKRCER
FKRCE
ERRCE
FERKCER
ERKCH
ERKCE
ERKCE
ERRKCE
EKRCEK
ERKRCER
EKRCK
ERKCR

«005131
« 004815
« 004528
« 004266
« 004026
«003805
« 003603
« 003416
« 003243
«003083
« 0029 34
« 002796
« 002668
« 002548
« 002436
« 002331
« 002233
«002141)
« 002055
«001973
« 001897
« 001824
« 001756
«001692
«001631
«001573
«001518
«0C1467
« 001417
«001371
«001326
«001284
« 001243
«001205
«001168
«001133
«001099
« 001067
«001036
«001007
« 0009 79
« 0009 52
« 000926
« 000901
« 000877
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