

AN ABSTRACT OF THE DISSERTATION OF

Sean McGregor for the degree of Doctor of Philosophy in Computer Science

presented on June 16, 2017.

Title: Machine Learning Methods for Public Policy: Simulation, Optimization,

and Visualization

Abstract approved:

Thomas G. Dietterich

Society faces many complex management problems, particularly in the area of

shared public resources such as ecosystems. Existing decision making processes

are often guided by personal experience and political ideology rather than state-

of-the-art scientific understanding. This dissertation envisions a future in which

multiple stakeholders are provided with computational tools for formalizing their

management preferences and computing optimal solutions based on state-of-the-

art computational simulations. To make this vision a reality, advances are required

in optimization and visualization, and this dissertation presents research on both

topics within the formalism of the Markov decision process (MDP). First, it de-

scribes an interactive visualization system for understanding the MDP under user-

defined management policies, reward functions, and transition dynamics. Second,

it presents a method for optimizing management policies for the user-parameterized

MDPs. The research is illustrated and validated using a combination of benchmark

MDPs and an application to the management of wildfire in ponderosa pine forests.

For the wildfire problem, an excellent high-fidelity model of forest growth and wild-

fire behavior is employed. However, this model is extremely slow, which prevents

interactive visualization and optimization. To address simulation computational

expense, the dissertation also presents a method for creating a fast surrogate model

and shows that this model is sufficiently accurate to support policy optimization

and visualization.

c©Copyright by Sean McGregor
June 16, 2017

All Rights Reserved

Machine Learning Methods for Public Policy: Simulation,
Optimization, and Visualization

by

Sean McGregor

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 16, 2017
Commencement June 2018

Doctor of Philosophy dissertation of Sean McGregor presented on June 16, 2017.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Sean McGregor, Author

ACKNOWLEDGEMENTS

My advisor, Professor Thomas Dietterich, deserves recognition for his unwavering

drive to make the world better through research. He was a constant resource and

collaborator for solving the hard problems and making a difference. I would also

like to thank my committee members, Ronald Metoyer, Prasad Tadepalli, Margaret

Burnett, and John Bolte for the time and effort they contributed. Ron’s guidance

was critical in contributing to the field of visualization. My meetings and classes

with Prasad and Margaret always showed new directions of thought that enriched

my research immensely.

My collaborators in forestry economics, especially Claire Montgomery and

Rachel Houtman, deserve special praise for their efforts at crossing disciplinary

lines. Rachel was always keen to learn new things from the world of computing,

and was eager to teach me about forestry.

I would like to thank my friends and family. Your love and kindness celebrated

my successes and buoyed me through challenges. In particular, I would like to

thank both my parents, the Buchanans, and Ashley Bromley for always making

me feel at home. Finally, my Great Uncle Ted de Werd’s support of the family’s

education enabled a whole generation of nieces and nephews to prosper and con-

tribute to the world. I thank him for his support of my educational and research

efforts.

This material is based upon work supported by the National Science Foun-

dation under grant numbers 1331932 and 0832804. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author

and do not necessarily reflect the views of the National Science Foundation.

CONTRIBUTION OF AUTHORS

This work updates and brings together three manuscripts [38, 41, 40]. Each

manuscript benefited from the guidance and editing of the co-authors, includ-

ing Thomas Dietterich, Ronald Metoyer, Claire Montgomery, Rachel Houtman,

and Hailey Buckingham. Additionally, Rachel Houtman deserves particular credit

for her work generating data from the computationally expensive wildfire simula-

tor. Similarly, Hailey Buckingham deserves credit for her work with the wildfire

simulator tested for the evaluation of the MDP visualization.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 4

2 An Interactive Visualization for Testing Markov Decision Processes: MDPvis 5

2.1 Introduction . 5

2.2 Data and Task Abstraction . 8

2.3 User Roles . 13

2.4 Related Work . 14

2.5 Visual Encoding of MDPs . 18
2.5.1 Parameter Panels . 20
2.5.2 Visualization Panels . 22
2.5.3 Parameter Space Analysis (PSA) Examples 24

2.6 MDPvis Implementation . 31
2.6.1 Integration with Reinforcement Learning Frameworks 32
2.6.2 Debugging Capabilities . 41

2.7 Use-Case Study: Wildfire Suppression Policies 42

2.8 Conclusion and Availability . 47

3 Fast Visualization with Model-Free Monte Carlo 49

3.1 Introduction . 49

3.2 Related Work . 51

3.3 Notation . 52

3.4 Factoring State to Improve MFMC 54
3.4.1 MFMC with independencies (MFMCi) 57
3.4.2 Bias and Variance Bound on V π

MFMCi(s0) 58

3.5 Experimental Evaluation . 62
3.5.1 Experimental Results . 67

3.6 Discussion . 70

TABLE OF CONTENTS (Continued)

Page

4 Fast Policy Optimization with SMAC 73

4.1 Introduction . 73

4.2 Direct Policy Search Methods . 76

4.3 The Wildfire Management Domain 79

4.4 Experiments . 83

4.5 Discussion . 89

5 Conclusion 90

6 Future Work 92

Bibliography 93

Appendix 101

A Appendix . 102

LIST OF FIGURES

Figure Page

2.1 A set of three trajectories generated starting at states drawn from
the initial state distribution (P0) and transitioned between states
si,j where i is the time step and j is the trajectory identifier. The
current policy (π(si,j)) selects actions until a trajectory depth of
3. The initial states and all subsequent states are defined on a set
of quantitative and categorical variables. Each state transitions to
resulting states by evaluating the transition function until reaching
the time horizon or terminating state. The transition function draws
the resulting states from a distribution that is a function of the
current state and the action selected by the policy function. We
highlight a set of states drawn from the distribution of states at a
particular time horizon under policy π. We label this set P1,π for
time step 1 under policy π. 9

2.2 A high level overview of the Markov Decision Process visualization
prototype: MDPvis. The top row has the three parameter con-
trols for (A) the reward specification, (B) the model modifiers, and
(C) the policy definition. A fourth panel gives the history of Monte
Carlo trajectory sets generated under the parameters of panels (A)
through (C). Changes to the parameters enable the optimization
button found under the policy definition and the Monte Carlo tra-
jectories button found under the Exploration History section. The
visualization has two buttons in the History panel for each set of
Monte Carlo trajectories, one for visualizing the associated Monte
Carlo trajectories and another for comparing two sets of trajectories.
Below the control panels are visualization areas for (E) histograms
of the initial state distribution, (F) fan charts for the distribution of
variables over time, and (G) a series of individual states rendered by
the simulator as images. For a readable version of the visualization
we invite users to load the visualization in their browser by visiting
MDPvis.github.io. 19

LIST OF FIGURES (Continued)

Figure Page

2.3 We generated two histograms in MDPvis showing the dates a fire
started on a landscape, then filtered the trajectories based on the
action taken in this time step. In both these charts the filled portion
represents fires that were allowed to burn unsuppressed, and the
unfilled portion represents fires that were suppressed. Since ignition
date is related to weather, we expect (top) to allow more fires to
burn at the start and end of the season, but not in the middle of the
season when the landscape is much drier. A buggy result (bottom)
shows no apparent relationship. 26

2.4 When we make timber harvest more valuable, we would expect an
optimized policy to suppress more fires. Here we optimize a policy
after changing the reward function to increase timber value. We
expect the suppression expenses of the top chart to update to the
bottom chart after optimization. 27

2.5 The top row contains a single starting state and the bottom row con-
tains an expected result state (left) next to a buggy result (right).
The dotted lines show a “fire break” formed by a previous fire that
should prevent future fires from spreading directly across the land-
scape. By filtering to this outlier we can check whether the largest
wildfires are respecting fire breaks. 28

2.6 These charts show two comparisons of the number of cells burnt for
policies that allow all fires to burn or suppress all fires. When the
color in the chart is above the center line, the let-burn-all policy
has more burnt pixels in that time step. We would expect (top)
the number of cells burnt to be greater initially in the let-burn-all
policy, but for the number of cells burnt to decline as fires reduce
fuel levels. A buggy result (bottom) shows a steady increase in cells
burnt relative to the suppress-all policy. 29

LIST OF FIGURES (Continued)

Figure Page

2.7 Since we are uncertain how fire suppression effectiveness will change
through time, we want policies optimized under different effective-
ness levels to be similar. We can explore policy similarity by compar-
ing policies optimized under two different effectiveness parameters.
The top chart is a comparison fan chart showing a single line straight
across at zero. This means there is no difference in the policy prob-
abilities between the policies optimized under different suppression
effectiveness parameters. The second chart gives a buggy result,
showing many differences in the policy probability between the two
parameterizations. 29

2.8 These charts check how well the distribution of simulated vegetative
growth matches the distribution of historical vegetative growth. We
produce the data for these charts by adding a variables to each
state that maps the vegetative growth to the percentile the growth
represents in the historical dataset. Thus we expect the median
value (the dark red) to surround the 50th growth percentile, and
the lighter colors to match up with the percentiles as is appropriate.
The top chart shows the simulated distribution exactly matches the
historical distribution, and the bottom chart is comparatively very
buggy. 30

2.9 The two charts show the Mountain Car domain before (top) and
after (bottom) fixing the noise parameter, which is set to 0.2 in
both cases. The top chart shows no variation across trajectories
despite the expectation that the actions would stochastically change
in proportion to the noise parameter. 34

2.10 Four fan charts represent each of the actions taken for a Grid World
domain. In this grid world map the agent starts in the lower left
corner with a pit immediately to its right. Successful policies will
move up, right, then down to reach the goal grid cell. We created a
stochastic policy that more frequently moves “up,” followed by less
frequent moves in other directions. The fan charts show our sim-
plistic policy does not change action selection probability through
time. If we want to know what actions lead to or from a particular
state, we can apply filters to state variables and view the action fan
charts. 35

LIST OF FIGURES (Continued)

Figure Page

2.11 The virus counts (V) for patients under three policies. The top fan
chart was generated by a policy with a probability of administering
RTI and PI of 0.4. The middle chart has the probabilities of 0.01
and the bottom chart only administers the drug when the virus
count is spiking. You can see the top chart largely keeps the virus
to a minimum. The middle chart is dominated by the automatic
administration of RTI and PI when the patient is spiking, but the
stochastic administration of the drugs in other time steps produces
some variation. The last chart shows the determinism of the HIV
domain. All the patients have the same patient histories when the
policy and transition dynamics are both deterministic. 38

2.12 MDPvis displays a media player for the video generated by the
Pendulum domain included in OpenAI Gym. This video is displayed
by clicking the trajectory associated with it in the Fan Charts. . . 40

2.13 An annotated time series displayed within MDPvis for the Ms. Pac-
Man Atari domain. The graphic on the right side is the image used
to generate similarity scores by summing the difference in each pixel
between the displayed image and the image generated within the tra-
jectory. Many Atari games render different game state every other
frame, which accounts for the jitter in the time series. The text an-
notations (from left to right) show the initial phase of the game, fol-
lowed by a phase in which the ghosts are hunting the dot-consuming
player, before a ghost catches the character and the character and
ghost positions reset to the position found in the image on the right. 41

2.14 Two sequential spatial snapshots of timber values for a state tran-
sition that includes one of the largest fire loss events from 200 tra-
jectories of 60 years. The management area is visible in the center
due to the rectangular timber harvests. These rectangular harvests
obscure the irregular boundary of small fires. (A) shows a medium
size fire obscured by a mixture of small fires and timber harvests in
(B). The straight edge of the largest fire introduced in (C) clearly
shows the fire is not spreading in all directions. 44

LIST OF FIGURES (Continued)

Figure Page

2.15 Fan charts for the suppression choice and the ignition date shown
in comparison mode for two trajectory sets. We generated one tra-
jectory set under a suppress-all policy and a second trajectory set
under a let-burn-all policy. We confirmed that the proper action is
being selected for each state by observing the differences in suppres-
sion choices is always 1. However, there is an unexpected difference
in the dates, which should be consistent between the two trajectory
sets. 46

3.1 MDP probabilistic graphical models. 53

3.2 The landscape totals approximately one million pixels, each of which
has 13 state variables that influence the spread of wildfire on the
landscape. We use summary statistics of the dynamic state variables
in MFMC’s distance metric. (Map is copyright of OpenStreetMap
contributors) . 62

3.3 Top: A fan chart generated by Monte Carlo simulations from the ex-
pensive simulator. Bottom: A fan chart generated from the MFMC
surrogate model. x axis is the time step and y axis is the value of the
state variable at each time step. Each change in color shows a quan-
tile boundary for a set of trajectories generated under policy π. Mid-
dle: Error measure is the distance between the median of the Monte
Carlo simulations (left) and the median of the MFMC/MFMCi sur-
rogate simulations (right). The error is normalized across fan charts
according to Hv(π), which is the Monte Carlo fan chart height for
policy π and variable v. 66

3.4 Visual fidelity errors for a weather intensity policy class. Fires are
suppressed based on a combination of the weather and how much
time is left in the fire season. 67

3.5 Visual fidelity errors for a ignition location policy class. Fires are
always suppressed if they start on the top half of the landscape,
otherwise they are always allowed to burn. 68

3.6 Visual fidelity errors for a fuel accumulation policy class. Fires are
always suppressed if the landscape is at least 30 percent in high
fuels, otherwise the fire is allowed to burn. 68

LIST OF FIGURES (Continued)

Figure Page

3.7 Example of MFMC’s autoregressive tendency for a grid world do-
main where the only available actions are “up” and “right”. The
green arrows show a trajectory that we would like to synthesize
from two different MFMC databases where the distance metric is
Euclidean with arbitrarily large weight given to the time step and
action. The gray arrows show the grid world transitions in the two
databases. In the debiased database the stitching operation will stay
on the rightward trajectory despite there being transitions that more
closely track the target trajectory. The biased database forces the
stitching operation to hop to the policy more consistent with the
target policy. In some instances it is better to bias the exogenous
variables than repeatedly stitch to the same trajectories. 69

4.1 The layers of the decision tree used to select wildfires for suppression.
The top layer splits on whether the fire will likely be extinguished
by a storm in the next 8 days regardless of the suppression decision.
The next layers then have 14 parameters for the number of pixels
that are in high fuel (parameters 1 and 2,

[
0, 1000000

]
), the inten-

sity of the weather conditions at the time of the fire (3 through 6,[
0, 100

]
), and a threshold that determines whether the fire is close

to either the start or end of the fire season (7 through 14,
[
0, 90

]
). 84

4.2 Average reward achieved for 30 trajectories. Blue diamonds are
selected by the EI heuristic and red diamonds are randomly sampled
points. 87

4.3 Each set of box charts show the performance of various policies for
a constituency. The individual box plots show the expected dis-
counted reward for each of the policies optimized for a constituency,
as well as the hard-coded policies of suppress-all and let-burn-all.
The red dashed lines indicate the expected discounted reward esti-
mated by MFMCi. 88

LIST OF TABLES

Table Page

4.1 Components of each reward function. The “politics” constituency
approximates a decision maker that is not responsible for funding
firefighting operations. The “home owner” constituency only cares
about air quality and recreation. The “timber” companies only care
about how much timber they harvest, and how much money they
spend protecting that timber. The “composite” reward function
takes an unweighted sum of all the costs and revenues produced for
the constituencies. Additional reward functions can be specified by
users interactively within MDPvis. 81

LIST OF APPENDIX TABLES

Table Page

A.1 Fitting MDP Testing Questions. 102

A.2 Outlier MDP Testing Questions. 103

A.3 Partition MDP Testing Questions. 103

A.4 Optimization MDP Testing Questions. 103

A.5 Uncertainty MDP Testing Questions. 104

A.6 Sensitivity MDP Testing Questions. 104

Machine Learning Methods for Public Policy: Simulation,

Optimization, and Visualization

1 Introduction

Recent advances in artificial intelligence technology are making it possible to create

systems that automatically (or collaboratively) make decisions in natural resource

management [27, 16], infrastructure investment [36], law enforcement [67], and

other domains of public policy. A theoretical formulation for these and other

problems of public policy optimization is the Markov Decision Process (MDP). In

an MDP, the state of the world evolves stochastically from one state to another

depending on the action chosen at each time step. A scalar reward is received at

each time step depending on the simulated state and the chosen action. An MDP

is solved by finding a decision making rule (policy) that maximizes the long-term

sum of rewards.

Some MDPs are small enough to be solved by exact algorithms [8], but most

MDPs of practical interest must be solved using Monte Carlo (MC) methods. In

these cases, the standard approach is to implement a software simulation of the

MDP and apply a MC optimizer to find a near-optimal policy. When simulators

are simplified versions of the real world, it is possible that the specification, imple-

mentation, or optimization of the MDP simulator will result in a bad policy rec-

ommendation, i.e. one lacking ecological validity. Since inappropriate public policy

decisions can bring about a variety of harms, it is necessary to develop methods for

2

testing public policy MDPs and explaining their recommendations. Further, since

public policy recommendations need to balance divergent stakeholder interests,

such as economic development, ecological diversity, etc., adopting machine-learned

policies in the real world requires facilitating compromise. This thesis centers its

three contributions around testing public policy MDPs, explaining recommenda-

tions, and supporting multi-stakeholder negotiations. We motivate and evaluate

our contributions through a wildfire suppression MDP.

Our first study asks, how can we discover problems in the specification or

implementation of the MDP (i.e., test for “bugs”)? For the simulator defining the

wildfire suppression MDP, a single 100 year trajectory is 1.7 gigabytes and the

optimization algorithm can process many terabytes of trajectories. Intelligently

testing such large datasets requires tools supporting exploration and comparison

to user expectations. For this purpose, we introduce a visual analytic system for

MDPs: MDPvis. Our first study introduces MDPvis in the context of the wildfire

suppression simulator and generalizes its design for the class of all simulator-defined

MDPs.

The wildfire simulator highlights the challenge of integrating MDP simulators

with visual analytic systems. Generating a single 100-year trajectory of wildfire

simulations takes up to 7 hours to complete, which makes the MDP exploration

process non-interactive. This thesis addresses the simulation time issue with its

second manuscript by extending Model-Free Monte Carlo (MFMC) [23] to exploit

independencies between simulator variables. Our algorithm successfully generates

complete state-action histories for the wildfire problem in less than a second.

3

Finally, since different stakeholders in public policy problems will have different

reward functions, we desire a method for interactively testing and analyzing how

changing the rewards leads to changes in the optimized policy function. Thus we

require an optimization algorithm that is both fast and adaptable to a variety

of MDPs. Our third manuscript is a method for searching over policy functions

quickly after the user issues a reward query. We show the optimization method

performs well for a variety of reward functions on the wildfire suppression problem.

1.1 Contributions

This work makes contributions to the fields of forestry and computer science. In

forestry, our modeling and optimization results are the first instance of successfully

optimizing 100-year, full-fidelity fire suppression policies. Further, our approach of

supporting the optimization of multiple reward functions within a visual analytic

system provides a novel approach for exploring the effect of rewards for non-market

resources (like clean air, ecological diversity, and recreation).

Our computer science contributions address problems within visualization, sur-

rogate modeling, and optimization. MDPvis is the first visualization targeting the

MDP formulation. Our extension to the MFMC algorithm gives the first case of

state space factorization for MFMC. The MFMC surrogate enables the first case

of optimizing a decision tree policy function, which we accomplish with the SMAC

global optimization procedure. Finally, our chosen optimization algorithm is the

first application of random forests as a direct policy search model. Collectively

4

these contributions define a visual analytic environment supporting the testing

and policy analysis of high-dimensional MDPs.

1.2 Organization

These contributions are presented in the following three chapters. First, we in-

troduce MDPvis as our MDP visualization system. Next we introduce MFMCi

as our surrogate modeling technique that speeds up simulation by several orders

of magnitude. Finally, we introduce an interactive-speed optimization technique

with the final manuscript.

5

2 An Interactive Visualization for Testing Markov Decision

Processes: MDPvis

2.1 Introduction

Policies for Markov Decision Processes (MDPs) are selected by optimization sys-

tems that are subject to failures of specification, implementation, integration, and

optimization. Since the system stochastically expresses and hides these failures

(referred to as “bugs”), testing requires exploration. Visual analytics is a common

approach to exploration that combines automated analysis techniques with inter-

active visualizations for understanding, reasoning, and decision making [30]. We

introduce a visual analytic system (see Figure 2.2), MDPvis, to support the MDP

testing process.

The design of MDPvis tests for bugs whose underlying cause can be ascribed

to several different components. For example, Andrew Ng relays an unusual solu-

tion to a soccer playing MDP [45]. The developer of the MDP created a reward

function that gave the soccer agent a reward for touching the ball under the theory

that possession time is associated with scoring goals. A reinforcement learning al-

gorithm was applied to find a decision-making policy to optimize this reward. The

resulting policy exhibited a surprising behavior: Instead of using ball possession

to advance down the field, the agent stood by the ball and began to “vibrate”

6

to produce the maximum number of ball touches. This bug can be viewed as a

problem in specification (the agent should not be rewarded for touching the ball),

implementation (the agent should not be able to vibrate next to the ball), integra-

tion (the frequency of reward granted by the transition function for ball touches is

too high), and optimization (the optimizer may have failed to find the true opti-

mal policy). The multitude of possible MDP bugs and causes give rise to a highly

iterative development process.

During our design process for MDPvis, we conducted a series of semi-structured

interviews [54] with MDP researchers to elicit current practices for MDP develop-

ment. We found a variety of ad hoc testing systems in support of an “informed

trial and error” [52] process whereby MDP practitioners iteratively explore the

parameter space. MDP practitioners generally first write an interactive client to

manually execute transitions, followed by a visualization of state evolution as a

policy rule is followed. None of the researchers we interviewed use a generic tool

supporting this process. We hypothesize this is because researchers have heretofore

not had access to a visualization they can easily connect to their MDP simulator

and MDP optimizer.

The MDPvis system makes three contributions. First, it introduces a domain

independent protocol by which the visualization system can interact with the MDP

optimizer and MDP simulator. Second, it provides a visual interface that supports

the data analysis tasks that problem domain experts, software developers, and

optimization researchers need to perform. Third, it provides an interface by which

the users can interact with the MDP simulator and optimizer to define different

7

settings of the MDP parameters and compare their effects on the resulting behavior

of the system.

These three contributions relate to the three challenges identified by Sedlmair

et al. [52]: the data acquisition gap (getting the data into the visualization tool),

the data analysis gap (helping the user visualize the data), and the cognition gap

(helping the user uncover important behavior embedded within high-dimensional

systems).

Software testing is a subfield of software engineering that includes more precise

definitions of testing and bugs. In this paper, we take a high-level view of testing.

In particular, we define testing as the “...execution of a program with the intent

to produce some problems - especially a failure” [66]. These failures are generally

called “bugs.”

In other words, developers test software for bugs by comparing the results

of execution to the expected results. It is clear from this definition that testing

requires the developer to 1) associate program output with program input in order

to create test cases and 2) compare actual outputs to expected outputs. Our

visualization tool supports these two tasks within the context of MDPs.

Our design process for MDPvis followed Munzner’s nested model [44], which

includes steps for characterizing the problem domain and designing visual encod-

ings. Our starting point in the design process was a challenging large state space

MDP for wildfire suppression policy [27]. In the wildfire problem the goal is to

find a policy minimizing the cost of fire suppression and smoke inhalation, while

maximizing the rewards from timber harvest, ecological diversity, and recreation.

8

We evaluate the effectiveness of MDPvis in the context of a simplified version of

the wildfire simulator, and we show the generality of MDPvis by integrating it

with additional domains common in the MDP researcher community.

In the following sections we formally introduce MDPs with their Data and

Task Abstraction, detail the contexts where users test and debug MDPs in section

2.3, review the optimization visualization literature in section 2.4, give our visual

encoding for MDPs in section 2.5, and present the MDPvis prototype in section

2.6.

2.2 Data and Task Abstraction

While several different MDP formulations are used in the literature, there is a

de facto standard formulation from which other formulations are viewed as spe-

cializations. The standard formulation is the infinite horizon discounted Markov

Decision Process (MDP) with a designated start state distribution [7, 48] M =

〈S,A, P,R, γ, P0〉. S is a finite set of states of the world; A is a finite set of possible

actions that can be taken in each state; P : S × A× S 7→ [0, 1] is the conditional

probability of entering state s′ when action a is executed in state s; R(s, a) is the

reward received after performing action a in state s; γ ∈ (0, 1) is the discount

factor, and P0 is the distribution over starting states. Generally the goal for opti-

mizing an MDP is to find a policy, π, that selects actions maximizing the expected

discounted sum of rewards of the MDP. For convenience we also define Pn|π to be

the distribution of states at time n when following policy π.

9

Figure 2.1: A set of three trajectories generated starting at states drawn from
the initial state distribution (P0) and transitioned between states si,j where i is
the time step and j is the trajectory identifier. The current policy (π(si,j)) selects
actions until a trajectory depth of 3. The initial states and all subsequent states are
defined on a set of quantitative and categorical variables. Each state transitions
to resulting states by evaluating the transition function until reaching the time
horizon or terminating state. The transition function draws the resulting states
from a distribution that is a function of the current state and the action selected
by the policy function. We highlight a set of states drawn from the distribution of
states at a particular time horizon under policy π. We label this set P1,π for time
step 1 under policy π.

When we execute a fixed policy π for T steps starting in a state drawn from

P0, we produce a T -step trajectory through the state space. We will refer to this

as a Monte Carlo trajectory. Our approach to visualization generates a collec-

tion of T -step trajectories (see Figure 2.1) and then visualizes them over time.

These trajectories are the output of the system under test, and their distribution

10

is controlled by the parameters of the MDPs’ constituent functions.

Sedlmair et al. [52] label techniques for understanding the relationship between

input parameters and outputs as Parameter Space Analysis (PSA), “...the system-

atic variation of model input parameters, generating outputs for each combination

of parameters, and investigating the relation between parameter settings and cor-

responding outputs.” This is a suitable definition for the MDP testing process

since trajectories are typically produced by changing the parameters of the policy,

transition, and reward functions.

Table A.1 in Appendix A give a series of testing questions derived from experi-

ence optimizing for the wildfire suppression policy domain and from interviewing

MDP algorithm researchers not involved in the wildfire policy project. The table

classifies these questions according to the tasks of Sedlmair et al. for visual param-

eter space analysis: fitting, outliers, partitioning, optimization, uncertainty, and

sensitivity. In several cases we broaden the definition from Sedlmair et al. to fit

the scope of MDPs.

Fitting, “Where in the input parameter space would actual mea-

sured data occur?”: In many applications, the MDP simulator simulates real-

world phenomena. While we typically do not have access to real-world validated

data across the entirety of the state and action space, we do often have state transi-

tion data for a subset of the parameter space. Further, while the MDP practitioner

may not have access to ground truth data for their system, they can often iden-

tify when the system is producing unrealistic outcomes. See Table A.1 for fitting

questions.

11

Outliers, “What outputs are special?”: Sedlmair et al. break the outlier

task into learning from the outliers of a model and checking the plausibility of the

more extreme cases. The outliers are particularly important during the testing

phase of MDP development because an optimization algorithm moves through

many potential policy functions while searching for an optimal policy. Each of

these outliers may push the MDP towards more extreme, and potentially less

plausible, states or state transitions. See Table A.2.

Partition, “How many different types of model behaviors are pos-

sible?”: Here Sedlmair et al. focus on relating partitions of the output space to

the inputs. Testing an MDP is less concerned with what types of behaviors are

possible, but instead focuses on whether the human tester’s mental partition of

inputs produces the expected partition of outputs. Thus we expand Sedlmair et

al.’s definition to include both the partitioning of inputs and outputs. A tester will

generate trajectories for one partition of the parameter space, compare it to a dif-

ferent partition, and check whether the differences in results match expectations.

In interactive visualization for MDPs, many partitioning tasks involve filtering tra-

jectories (defined here as interactively subsetting the trajectories) to look at more

specific cases or generating additional trajectories under new parameters. These

steps are often part of other PSA tasks, as can be seen in the overlap of Table A.3

with other PSA tasks.

Optimization, “Find the best parameter combination given some ob-

jectives.”: We expand on this definition to also include testing the optimization

algorithm itself. When testing new optimization algorithms on complex MDPs,

12

it is often not obvious whether the algorithm is stuck in a local optimum, has

exploited a bug in the simulator, or got stuck in a local optimum. It is important

to have tools that enable the optimization researcher and domain expert to col-

laborate towards improving the optimizer and the specification of the MDP. See

Table A.4.

Uncertainty, “How reliable is the output?”: MDPs present aleatoric/statistical

uncertainty in the transition and reward functions. The stochasticity may make

the optimizer uncertain which actions are optimal. See Table A.5.

Sensitivity, “What ranges/variations of outputs to expect with changes

of input?”: Sedlmair et al.’s definition of sensitivity shows the fluidity of PSA

tasks, since it touches all the other PSA tasks in one respect or another. A par-

ticularly important aspect for MDPs is sensitivity of the policy to changes in the

reward function to find why a learned policy is deemed near-optimal. If a learned

policy is not stable within its neighborhood of similar reward functions, it is likely

that the policy is not one that should be relied on in the real-world. See Table A.6

for cross-cutting questions.

Section 2.5.3 has additional MDP testing discussion in the context of visuals

from MDPvis. Next we describe the roles that may be filled by users of MDP

visualization.

13

2.3 User Roles

We identify four MDP development roles and give examples of these roles in the

context of wildfire suppression and autonomous helicopters.

Policy stakeholders : MDP-derived policies often affect people that are not party

to the MDP optimization process. In the wildfire domain, this stakeholder could be

a home owner in the region modeled by the MDP. For an autonomous helicopter,

this stakeholder could be a person purchasing a finished helicopter product. Our

visualization in section 2.6 does not target this population because it limits the

design options for the following three groups.

Non-programmer domain experts : The MDP formulation can be applied to

many problems for which a non-programmer is the authority on the simulated

phenomena. A domain expert in the wildfire domain could be a US Forest Service

land manager tasked with writing timber harvest and fire suppression policies.

In the autonomous helicopter domain, a domain expert could be a professional

RC stunt pilot. Visualizations help these domain experts validate the MDP by

viewing the output of the system without needing to directly interact with code

or terabytes of raw output. Here the domain expert provides input to the software

team regarding where the current system is producing unrealistic results.

Software developers : Software developers may develop complex MDPs from a

specification written by domain experts. In the wildfire setting, developers collab-

orate with several domain experts from silviculture, fire modeling, and economics

to produce a model integrating all these disciplines. In the autonomous helicopter

14

domain, the developers may collaborate with domain experts from mechanical en-

gineering, computational physics, aviation, and the RC community. Here software

developers may use visualization to test against expectations, or use visualization

as a collaboration tool to share simulations and policies with domain experts.

Optimization researchers : After constructing an MDP, the optimization re-

searcher finds policies by applying existing optimization algorithms or developing

new optimization algorithms. In either case, the complexities of representing a

problem domain in a form that can be efficiently optimized requires optimization

experience. The optimization researchers may use visualization to test the correct-

ness and performance of their algorithms. In both the wildfire and autonomous

helicopter domains, optimization researchers will typically have formal training in

optimization methods but little grounding in the problem domain.

In real-world settings, these roles are not well-defined. Each role can be filled

by a single person or by a large team of developers and domain experts. MDPvis’

target users are domain experts who are willing to spend time learning the MDP

formulation, software developers tasked with developing an MDP, and optimization

researchers tasked with optimizing a policy for the MDP.

2.4 Related Work

Many problems have been formulated as MDPs, including domains as diverse as

RC car control [2, 14], invasive species management [16], and real time strategy

games [61].

15

While no general visualization for large MDPs has heretofore been proposed

covering all these domains, there are numerous works that could be viewed as

visualization for more restricted classes of MDPs.

Several works present systems for exploring decisions at a single time step.

Broeksema et al. [13] give a decision analysis tool to examine recommendations

made by an expert system. Decisions are plotted as Voronoi diagrams by means of

Multiple Correspondence Analysis (MCA), which is a version of Multidimensional

Scaling (MDS). The Voronoi diagrams lack a comprehensible coordinate system in

two dimensions, but adjacency of attributes plotted over the diagram show how

the decision variable changes as other attributes vary.

MDP policies are often specified via learned classifiers. Effectively testing and

debugging classifiers is an active area of research, but published research does not

address MDP policy classifiers. Groce et al. [26] explore methods for prioritizing

classified data points for user inspection. Once a datapoint is selected the end

user can decide whether they agree with its classification. The user debugs the

classifier by correcting data labels, which leads to an update of the model. This

debugging strategy assumes that the only form of error was an incorrect data label.

In MDPs, however, there are no labels on the data, and the central testing question

is whether the simulator and policy are generating the right data to begin with.

Kulesza et al. [31] includes a classifier debugging system for email messages.

The user provides model correction through an interactive bar chart for a naive

Bayes model. Kulesza et al. selected naive Bayes for its interpretability since it

has a natural visual representation that end users can understand without formal

16

training in machine learning.

Migut and Worring [42] compose several information visualizations into a visual

analytic dashboard for exploring a dichotomous choice as determined by a machine

learning classifier. The system does not examine multiple sequential timesteps.

In ensemble visualization, the goal is to provide a compact representation of

many predictive models of a singular ground truth [47]. Uncertainty in the pre-

dicted result is reduced by viewing a visualization of model agreement. In contrast,

the uncertainty in MDP visualization arises from the stochastic responses of the

world as the agent acts upon it. Ensemble visualization requires building con-

sensus, but MDP visualization requires exploring the complete set of the world’s

potential responses to a policy.

Simulation steering is one branch of visualization that attempts to bring the

user into a optimization process by allowing the user to select actions at each

timestep as the simulator executes. Simulation steering for epidemic response

decisions presented by Afzal et al. [3] shows individual outcomes through time.

The user can change decisions at various points along a future trajectory to see how

the mortality rate responds. This visualization supports user-based optimization

for a deterministic MDP.

Waser et al. [58] give another simulation steering visualization, “World Lines,”

that invites users to control emergency response for flooding events. This visualiza-

tion generates a small set of alternative futures based on an action in the present.

Subsequent versions of World Lines [60, 49, 50, 59] support stochasticity through

secondary simulation controls (random levee breach locations) on the probabilistic

17

parameters of the model.

In contrast to the current approaches in the literature that attempt to give the

best visualization possible for a particular problem domain, our approach defines

the visualization in terms of a formal definition of sequential decision making prob-

lems. While our analysis focuses on the core MDP formulation, it is possible to use

MDPvis with broader classes of MDPs, including ones with partial observability,

continuous-time, continuous-actions, and multiple agents.

Simulator-defined Partially observable MDPs (POMDPs) hide state variables

from the optimizer. For example, a helicopter simulator will simulate wind effects

on the helicopter’s position while not giving the optimizer access to wind data

because a physical helicopter cannot observe the velocity of wind impacting its

frame. When optimizing POMDPs from Monte Carlo trajectories, the simulator

will strip hidden variables after they are simulated or add noise to the observations

available to the optimizer. While this is necessary for faithfully simulating the

operational conditions of the policy, for purposes of testing and debugging, it is

useful to visualize the values of the hidden variables as well. We would also want

to be able to visualize the belief state of the POMDP controller, perhaps in terms

of a sample of points.

In continuous-time MDPs, the action can be selected at any time scale. For

instance, in a helicopter domain the rotor angles can change at any fraction of a

second. MDPvis assumes actions occur at consistent time scales, so to visual-

ize continuous-time domains it is necessary to discretize time. In the helicopter

domain, this would take the form of selecting a sampling frequency for saving

18

the state and action information in the simulator. MDPvis handles continuous

actions, such as changing the angle of the rotor blade, by treating them as a

continuous variable.

Multi-agent MDPs model the interaction of multiple decision makers. Each

decision maker can have its own policy function, but the MDP simulator gathers

the actions chosen by the multiple agents into a single action vector, simulates

the transition to the next state, and computes the reward signal for the agents.

In a helicopter domain, this could take the form of several helicopters lifting cut

timber after harvest. MDPvis can support multi-agent MDPs by having separate

variables and parameters for each agent, but a visualization intended specifically

for multi-agent MDPs would be valuable future work.

2.5 Visual Encoding of MDPs

Our visualization for MDPs in Figure 2.2 is shown in four parameter controls

and three visualization panels. The controls give the reward, model, and policy

parameters that are exposed by the MDP’s software. These panels are cached in an

exploration history that records the parameters and trajectories computed by the

MDP. Here we explain the visual interface of MDPvis, followed by implementation

details in section 2.6. Each of the following subsections describes the example in

Figure 2.2.

19

Figure 2.2: A high level overview of the Markov Decision Process visualization
prototype: MDPvis. The top row has the three parameter controls for (A) the
reward specification, (B) the model modifiers, and (C) the policy definition. A
fourth panel gives the history of Monte Carlo trajectory sets generated under
the parameters of panels (A) through (C). Changes to the parameters enable the
optimization button found under the policy definition and the Monte Carlo tra-
jectories button found under the Exploration History section. The visualization
has two buttons in the History panel for each set of Monte Carlo trajectories, one
for visualizing the associated Monte Carlo trajectories and another for comparing
two sets of trajectories. Below the control panels are visualization areas for (E)
histograms of the initial state distribution, (F) fan charts for the distribution of
variables over time, and (G) a series of individual states rendered by the simulator
as images. For a readable version of the visualization we invite users to load the
visualization in their browser by visiting MDPvis.github.io.

20

2.5.1 Parameter Panels

Reward Specification: R(s, a)

Since the goal of policy optimization is typically to find the policy maximizing

the expected sum of discounted rewards, the optimization can be highly sensitive

to changes in the parameters of the reward function. To explore these changes we

expose the set of real valued reward parameters specified by the MDP as a list of

HTML input elements.

Whenever the reward function parameters change, elements of MDPvis related

to optimality and expected value are no longer valid. The user interface updates to

offer buttons for optimizing a new policy and generating trajectories. Supporting

these buttons for computationally expensive MDPs will be explored in chapters 3

and 4.

Model Definition: P

The MDP’s simulator may expose model parameters that control the system, or

eliminate complexity for testing a specific component. These can include modifiers

of the transition function, the total number of transitions to simulate (otherwise

known as the horizon or sampling depth), the number of potential futures to sample

(otherwise known as the sampling width), modifiers to the initial state distribution,

flags for deactivating parts of the model, and fidelity switches for trading execution

time for higher fidelity simulations.

A second purpose of the model parameters is to expose elements of the MDP’s

optimization algorithm to the user. Many MDP optimization algorithms are highly

21

sensitive to parameters for learning rate, search depth, heuristics, convergence tol-

erance, and optimality requirements. Selecting a reasonable set of these parameters

is often an iterative process.

When these parameters change, MDPvis enables buttons for optimizing a new

policy and/or generating new trajectories.

Policy Definition: π(s) 7→ a

The policy parameters specify the current policy. Just as was the case in the

prior sections, it is appropriate to present this control as a set of user-editable

real numbers. When the policy is represented by parameters that have no human

interpretable meaning as is the case with neural networks and sufficiently large

decision trees, then this simplistic policy representation is no longer appropriate.

In such cases it is still possible to explore the trajectories produced by the policy.

Policy parameters will update if the user clicks the “optimize” button.

Exploration History

As the user repeatedly generates sets of trajectories under different parameter

settings, they may want to return to a prior parameter set to continue explo-

ration or to compare sets of trajectories generated under prior parameter sets.

Here we add two buttons for every set of trajectories that have been generated.

One button will reload the prior set of parameters and the trajectories that they

generated into the visualization. The other button will put the visualization into

“comparison mode,” which displays the difference between two trajectory sets in

the visualization areas.

When in comparison mode, the reward, model, and policy parameters cannot

22

be edited, since they display the differences in the parameter values between the

current set of trajectories and the one being applied as a comparator. More in-

formation about the comparison mode is included in the following visualization

areas.

2.5.2 Visualization Panels

Having specified all the parameters, we can request trajectory sets from the MDP

simulator and display them in the visualization areas. The first two visualization

areas show sets of trajectories and support applying filters to the current trajectory

set. When we apply filters to the trajectory set in one visualization area, the

displayed trajectory sets update throughout the visualization, i.e. the visualization

is cross-linked.

State Variable Distribution at Event: Pn|π

We show the distribution of states at a particular timestep as a histogram.

The user can select a range of values in the histogram to filter trajectories. This

supports a global-to-local [52] testing process where exploration starts with an

overview of all trajectories before drilling down into specific trajectories. When

the user drills down to specific trajectories, the count of filtered trajectories is

shown as the unfilled portion of the histogram bar.

When the visualization is in comparison mode, the histograms transform into

a a bar chart showing the difference in counts for the bins between the two sets of

trajectories.

23

State Variable Evolution: P

An important question when testing an MDP is “Do the state distributions

reflect the real-world?” (See Table A.1). In MDPs, there can be many variables

that evolve over time to produce a distribution of outcomes at each time step. In

this area, we represent distributions as fan charts giving the deciles of each variable

across trajectory timesteps.

To produce the fan chart, we first plot a lightly colored area whose top and

bottom represent the largest and smallest value of the variable in each time step.

On top of this lightest color, we plot a series of colors increasing in darkness with

nearness to the trajectory set’s median value for the timestep.

By giving the percentiles, we are able to show both the diversity of outcomes

and the probability of particular ranges of values. If the number of trajectories is

small enough to avoid the visual clutter of many intersecting lines, we render the

trajectories as a line chart.

The histograms and fan charts both support the visualization of conditional

distributions, where the user specifies a set of filters that subset the trajectories

shown in the fan charts and histograms. The filters between the fan charts and

histograms are cross-linked. When filtering the fan chart, the filters in the cor-

responding histogram updates, and vice versa. Changing the timestep of the fan

chart’s filter updates the histograms to the newly-selected timestep.

When in comparison mode, the color extents are plotted by subtracting a color’s

maximum (minimum) extent from the corresponding maximum (minimum) extent

of the other fan chart. Figures 2.6, 2.7, and 2.15 show fan charts rendered in

24

comparison mode.

Once the user filters out enough trajectories, the fan charts switch to line charts.

Clicking on one of the lines in the line charts requests the state detail.

State Detail:Si,j

We considered but ultimately rejected rendering the details of individual tra-

jectories with a scatterplot matrix, parallel coordinates, Multi-Dimensional Scal-

ing (MDS), or Multiple Correspondence Analysis (MCA). We found all these ap-

proaches would unnecessarily tie the MDP practitioner to an inadequate represen-

tation. Instead, we allow the MDP simulator to render a two dimensional array of

images or videos that will be shown at the bottom of MDPvis.

For example, in the wildfire domain the state of the world is captured by

four images of the landscape’s timber and fuel values. Our co-authors in forestry

were already rendering these landscapes, as shown in Figure 2.2, so we integrated

MDPvis with these standard visualizations. Non-spatial MDPs would not render

landscapes, but they could return a visualization relevant to their practitioners.

2.5.3 Parameter Space Analysis (PSA) Examples

Here we demonstrate the functionality of MDPvis for the PSA categories given by

Sedlmair et al. [52] with fictitious examples from a wildfire domain. The intent of

these examples is to illustrate how visualization with MDPvis is analogous to unit

testing with visual expectations. In some cases, these expectations could be written

in closed form as traditional unit tests, but traditional unit tests presume the

25

developer has the resources, expertise, and foreknowledge to codify the expectation.

We expand on the examples of this section with real-world bugs in Section 2.7.

Testing Sensitivity with Interaction: Testing Question 26 in Table A.6 asks

“What are the most important drivers of policy?” Policies are typically functions

mapping states to actions. This is an instance of a function visualization problem

with a domain of |S| inputs and a codomain of |A| outputs. However, a policy’s

tendency to inhabit a particular region of the state space means we do not need to

examine how the policy function maps all states to actions. We can focus on the

states produced by Monte Carlo trajectories under the policy function. Testing a

policy’s sensitivity to the state variables involves filtering (excluding) actions to

see which state variables in the trajectory set mapped to the unfiltered actions.

Figure 2.3 shows a visual expectation next to a buggy result.

Testing Optimization by Optimizing : Question 17 in Table A.4 asks, “Is the

policy converged to an acceptable local optimum?” The expected reward of MDPs

are typically non-convex functions, meaning the optimization can terminate with

policies that are clearly suboptimal when viewing how the states map to actions.

For bad policies we want to know if the optimizer received an unlucky set of

Monte Carlo trajectories, started from a bad initial policy, or broke due to a

buggy implementation. To detect these three cases, we can change the parameters

of the MDP to predict how the optimizer should improve the policy and compare

to the prediction.

For example, let’s use optimization to test the optimizer of a wildfire MDP.

Specifically, let’s start with a landscape covered by a species whose timber is not

26

Figure 2.3: We generated two histograms in MDPvis showing the dates a fire
started on a landscape, then filtered the trajectories based on the action taken in
this time step. In both these charts the filled portion represents fires that were
allowed to burn unsuppressed, and the unfilled portion represents fires that were
suppressed. Since ignition date is related to weather, we expect (top) to allow
more fires to burn at the start and end of the season, but not in the middle of
the season when the landscape is much drier. A buggy result (bottom) shows no
apparent relationship.

valuable at harvest time. We would expect suppression expenses to dominate

timber harvests and produce a policy that never suppresses fires as shown at the

top of Figure 2.4. If we change the parameters of the MDP so that harvests

are worth billions of dollars, we would expect a newly optimized policy to begin

suppressing fires (the bottom of Figure 2.4).

If the optimized policy does not change in response to these large reward func-

tion changes, then there is likely a bug.

Testing Outliers with State Detail : Question 8 in Table A.2 asks, “Are the

most extreme state transitions realistic?” With optimization algorithms, it is im-

portant to validate the most extreme trajectories, since they have disproportionate

effect.

27

Figure 2.4: When we make timber harvest more valuable, we would expect an
optimized policy to suppress more fires. Here we optimize a policy after changing
the reward function to increase timber value. We expect the suppression expenses
of the top chart to update to the bottom chart after optimization.

In the wildfire domain, we may ask whether the most extreme wildfires respect

firebreaks established by previous fires. We can generate state details for the largest

fires by filtering the time step with the largest fires in the fan chart. Once fewer

trajectories are displayed, we can generate the state snapshots whose expectations

and buggy results are shown in 2.5.

Testing Partition by Comparing : Question 14 in Table A.3 asks, “Do policies

differ in their resultant state distributions as expected?” Domain experts may

have mental models of MDP behavior subject to various policies. In MDPvis the

domain expert can compare state partitions produced by different policies. Figure

2.6 shows a comparison’s expectation and a buggy result.

Testing Uncertainty by Re-Parameterizing : Question 20 of Table A.5, “How

certain is the policy function about a specific choice?” We don’t want the policy

to change if we change the simulator’s parameters within the range consistent with

real-world data.

28

Figure 2.5: The top row contains a single starting state and the bottom row
contains an expected result state (left) next to a buggy result (right). The dotted
lines show a “fire break” formed by a previous fire that should prevent future fires
from spreading directly across the landscape. By filtering to this outlier we can
check whether the largest wildfires are respecting fire breaks.

For example, fire management practices are more effective today than in the

year 1900, but what if fire fighting practices continue to improve (a form of struc-

tural uncertainty)? Fire managers will want to know if the policy optimized for

a future with better firefighting technology will be different from the policy op-

timized for a continued status quo. MDPvis supports exploration of structural

uncertainty by permitting the user to change parameters, such as “suppression

effect,” and re-optimize. Figure 2.7 shows two potential results of this analysis.

Testing Fit by Augmenting : Question 4 of Table A.1 asks, “Do simulated

transitions result in realistic state distributions?” Many domains will have datasets

29

Figure 2.6: These charts show two comparisons of the number of cells burnt for
policies that allow all fires to burn or suppress all fires. When the color in the chart
is above the center line, the let-burn-all policy has more burnt pixels in that time
step. We would expect (top) the number of cells burnt to be greater initially in
the let-burn-all policy, but for the number of cells burnt to decline as fires reduce
fuel levels. A buggy result (bottom) shows a steady increase in cells burnt relative
to the suppress-all policy.

Figure 2.7: Since we are uncertain how fire suppression effectiveness will change
through time, we want policies optimized under different effectiveness levels to be
similar. We can explore policy similarity by comparing policies optimized under
two different effectiveness parameters. The top chart is a comparison fan chart
showing a single line straight across at zero. This means there is no difference in
the policy probabilities between the policies optimized under different suppression
effectiveness parameters. The second chart gives a buggy result, showing many
differences in the policy probability between the two parameterizations.

30

for historical policies. These data give distributions of state variables that can be

compared against the simulated distributions. We can add historical distributions

by augmenting the dataset with a derived variable for each state variable having

historical data. This technique is best demonstrated with an example.

In the wildfire domain, we take a variable for which we have many real-world

samples, such as “Growth Percentile.” Based on historical data, we can assign a

“Historical Growth Percentile” as the percentile value of each Growth Percentile

value within the historical dataset. Figure 2.8 shows the visual expectation in the

fan chart, which has consistent percentiles across all time steps. A buggy result

given in Figure 2.8 shows the percentiles of the simulated dataset departing from

the historical distribution.

Figure 2.8: These charts check how well the distribution of simulated vegetative
growth matches the distribution of historical vegetative growth. We produce the
data for these charts by adding a variables to each state that maps the vegetative
growth to the percentile the growth represents in the historical dataset. Thus we
expect the median value (the dark red) to surround the 50th growth percentile,
and the lighter colors to match up with the percentiles as is appropriate. The top
chart shows the simulated distribution exactly matches the historical distribution,
and the bottom chart is comparatively very buggy.

31

2.6 MDPvis Implementation

We built MDPvis as a data-driven web application. Building on the web applica-

tion stack affords two primary benefits. First, Brehmer and Munzner [10] identify

sharing as an important feature to implement, and the ubiquity of web browsers

makes it an ideal platform for collaboration. Second, the web stack emphasizes

standard data interchange formats that ease integration with MDP simulators and

optimization algorithms. We identified four HTTP requests (initialize, trajecto-

ries, optimize, and state) that are answered by the MDP simulator. These requests

do not assume a particular domain or implementation language. In most cases,

the requests should be able to interface with the MDP simulator and optimizer

using the same command-line client they would typically implement for testing a

domain.

MDPvis issues the following HTTP requests to the MDP simulator and opti-

mizer:

1. /initialize – Ask for the parameters that should be displayed to the user.

The parameters are a list of tuples, each containing the name, description,

minimum value, maximum value, and current value of a parameter. These

parameters are then rendered as HTML input elements for the user to modify.

Following initialization, MDPvis automatically requests trajectories for the

initial parameters.

2. /trajectories?QUERY – Get trajectories for the parameters that are cur-

rently defined in the user interface. The server returns an array of arrays

32

containing the state variables that should be rendered for each time step.

3. /optimize?QUERY – Get a newly optimized policy. This sends all the

parameters defined in the user interface for the MDP and the MDP’s opti-

mization algorithm returns a newly optimized policy as a new set of policy

parameters.

4. /state?IDENTIFIER – Get the full state details and images associated

with a state selected by the user.

All relevant languages have web server libraries that can be integrated with

the MDP’s code base for serializing Monte Carlo trajectories. We integrated the

wildfire domain with the visualization by adding a serialization library (one line

of code) and modifying a dummy data file to initialize the domain. The most

challenging integration task was parsing the HTTP parameters into the expected

data types for the simulation code and writing the loop to invoke the simulator

multiple times.

2.6.1 Integration with Reinforcement Learning Frameworks

Machine learning researchers typically evaluate new algorithms on interesting chal-

lenge domains or toy domains that illustrate some capability or failure of an al-

gorithm. The problem domain collections of Geramifard et al. [25], Bellemare et

al. [6], Duan et al. [18], and Brockman et al. [12] aim to unify the reinforcement

learning research community behind shared implementations with consistent APIs.

33

We integrated MDPvis with two reinforcement learning frameworks to test our

claims of implementation generality.

RLPy (Reinforcement Learning Python) is a collection of 26 problem domains.

We integrated three of RLPy’s 26 problem domains, including the toy domains of

Mountain Car and grid world and the more challenging domain of HIV Treatment

introduced by Ernst et al. [19]. The web server and data formatting code are

available online [35] and can be adapted to the 23 additional domains in RLPy.

We now discuss our experience with three of the domains.

Mountain Car models an underpowered car trapped between two hills. Suc-

cessful policies in Mountain Car store energy by rocking the car back and forth

between the hills until it has enough momentum to escape. We created a policy

function for Mountain Car with a parameter controlling the probability of reinforc-

ing the current direction of travel by accelerating in that direction. We exposed

this parameter to MDPvis to explore different policy outcomes. The domain has

a parameter for “noise,” which gives the probability of replacing the action chosen

by the policy with a randomly chosen action.

After integrating RLPy’s Mountain Car implementation with MDPvis, we

discovered the capitalization of the noise parameter in the constructor differed

from the default noise level. The result was a failure to update the domain to the

selected noise value. We discovered this bug when testing RLPy’s integration with

MDPvis. Figure 2.9 shows two fan charts for the car’s x position. The bug would

not be apparent to Mountain Car’s developers, because their visualization tools

do not show the absence of variance. We subsequently submitted a bug fix to the

34

RLPy maintainers, who merged the fix a day later. For more details, see the pull

request on GitHub [33].

Figure 2.9: The two charts show the Mountain Car domain before (top) and after
(bottom) fixing the noise parameter, which is set to 0.2 in both cases. The top
chart shows no variation across trajectories despite the expectation that the actions
would stochastically change in proportion to the noise parameter.

Grid World models navigation tasks in two dimensions. Researchers often use

it to explore an algorithm’s ability to avoid obstacles (pits) and learn increasingly

long series of actions in order to reach a terminal reward. Unlike Mountain Car

and our wildfire domain, which have only two actions, the Grid World domains

have an action for each of the four cardinal directions. To accommodate filtering

trajectories based on action selection, we defined an indicator variable for each of

the four actions which is equal to 1 when that action is chosen by the policy and 0

otherwise. Figure 2.10 shows the resulting fan charts for the actions as drawn by

a random policy.

Grid World domains also show the importance of allowing the simulator to

35

Figure 2.10: Four fan charts represent each of the actions taken for a Grid World
domain. In this grid world map the agent starts in the lower left corner with a
pit immediately to its right. Successful policies will move up, right, then down to
reach the goal grid cell. We created a stochastic policy that more frequently moves
“up,” followed by less frequent moves in other directions. The fan charts show our
simplistic policy does not change action selection probability through time. If we
want to know what actions lead to or from a particular state, we can apply filters
to state variables and view the action fan charts.

return images and videos for the state detail view. Grid Worlds have a natural

2-dimensional representation (a grid) that is easier to interpret than the fan chart

36

representation.

HIV Treatment is a medical treatment domain with six immune system state

variables that are measured every 5 days over 1000 days:

• T1: the number of healthy CD4+ T-lymphocytes

• T2: the number of healthy macrophages

• T ∗1 : the number of infected CD4+ T-lymphocytes

• T ∗2 : the number of infected macrophages

• V : the number of free virus particles

• E: the number of HIV-specific cytotoxic T-cells

HIV Treatment policies dynamically select one of four drug therapy options,

including reverse transcriptase inhibitor (RTI), protease inhibitor (PI), a combi-

nation of these drugs, or no treatment. Each drug affects a different step of the

virus’s replication process. Successful policies produce a drug schedule that jointly

minimizes virus count and medication side effects. A typical real world policy in-

cludes “Structured Treatment Interruption” (STI), which cycles patients between

treatment and non-treatment periods.

We created a parameterized policy class that mimicked our interpretation of

STI. The parameters are independent probabilities of administering RTI and PI.

We automatically administer both HIV drugs if the patient’s infected cells or free

viruses are “spiking.”

37

Figure 2.11 shows fan charts under three different policies. The top chart is

for a policy with high probabilities of administering both drugs, and the bottom

chart only administers drugs under the “spiking” condition. Since the domain is

implemented as a deterministic integration of differential equations, we can see

the outcomes converge to a single patient history as the policy becomes more

deterministic. The scale of the spikes on the top chart is also greater than the spikes

on the charts administering less medication. This suggests that the medication

carries risks requiring further study.

The second set of domains we integrated are implemented in the OpenAI

“Gym” framework of Brockman et al. [12]. OpenAI Gym is both a collection

of problem domains for researchers and a leaderboard website showing the rela-

tive performance of optimization algorithms developed by various researchers. It

includes eight “environments” that range from the simplistic classical control prob-

lems to the Atari 2600 games from Bellemare et al. [6]. The environments provide

a total of 176 domains.

OpenAI Gym includes custom trajectory animations for domains. Developers

can upload videos of these animations to OpenAI’s servers for display with their

leaderboard entries. We integrated these videos with MDPvis through the state

detail panel.

OpenAI Gym problem domains can be classified as either classic control prob-

lems, or raw perception problems. Optimization in classic control problems use

relatively short state vectors where each entry in the vector is a “feature.” These

vectors typically have fewer dimensions than the complete state space, as is the

38

Figure 2.11: The virus counts (V) for patients under three policies. The top fan
chart was generated by a policy with a probability of administering RTI and PI
of 0.4. The middle chart has the probabilities of 0.01 and the bottom chart only
administers the drug when the virus count is spiking. You can see the top chart
largely keeps the virus to a minimum. The middle chart is dominated by the auto-
matic administration of RTI and PI when the patient is spiking, but the stochastic
administration of the drugs in other time steps produces some variation. The last
chart shows the determinism of the HIV domain. All the patients have the same
patient histories when the policy and transition dynamics are both deterministic.

case in our wildfire example where we employ summary statistics of a landscape

rather than the full landscape. In raw perception problems, the optimization al-

gorithm is given the complete state information in the form of an image, similar

to the way a human would perceive the domain. Solving these problems typically

requires the application of deep learning methods.

Optimization in raw perception domains blends selecting actions and learn-

39

ing what combinations of pixel values are important. Machine learning research

calls this process “feature learning.” The advantage of feature learning is that it

eliminates the need for the programmer to define features. A drawback is that

the resulting features are often difficult to understand and do not correspond to

the features a human programmer would create. Developing techniques for un-

derstanding complex learned features is an active area of research (e.g. Zahavy et

al. [65]).

We integrated all four of OpenAI Gym’s classical control domains, which in-

clude Pendulum, Acrobot, Cartpole, and Mountain Car. We also integrated all

55 Atari games bundled into OpenAI Gym via the Arcade Learning Environment.

The web server and data presentation code developed for both these domain col-

lections share a single lightweight web server found at GitHub [34]. The server

integrates with each domain by specifying the name of the domain and the names

of the visualized state variables when starting the server. This makes it possible

to switch between the domains without touching the web server’s implementation.

Next we highlight two of the domains we integrated.

Pendulum is a domain concerned with balancing a pendulum by applying

torque either left or right so as to maintain the position of the pendulum. Unlike

all domains presented to this point, Inverted Pendulum has a continuously valued

action space bounded by the maximum and minimum torque values. Continu-

ous action spaces are typically more challenging to optimize than discrete action

spaces, but they have an intuitive mapping within MDPvis. The histograms and

fan charts both vary continuously and can thus render continuous actions.

40

OpenAI Gym includes a visualization for pendulum that shows the position of

the pendulum and the force applied. Figure 2.12 shows the video for a selected

trajectory in the State Detail area of MDPvis.

Figure 2.12: MDPvis displays a media player for the video generated by the
Pendulum domain included in OpenAI Gym. This video is displayed by clicking
the trajectory associated with it in the Fan Charts.

Ms. Pac-Man is a perception domain based on the popular 1982 title of the

same name. The goal is to produce a series of actions that avoid ghosts while

consuming all the dots on the screen. To support perception domains like Ms. Pac-

Man, we extended MDPvis with the ability to label axes with an image. Figure

2.13 shows a time series defined by an image saved from the initial game state.

The image defines a similarity score for each game frame. The similarity score

displays in the fan chart next to the image.

41

Figure 2.13: An annotated time series displayed within MDPvis for the Ms. Pac-
Man Atari domain. The graphic on the right side is the image used to generate
similarity scores by summing the difference in each pixel between the displayed
image and the image generated within the trajectory. Many Atari games render
different game state every other frame, which accounts for the jitter in the time
series. The text annotations (from left to right) show the initial phase of the
game, followed by a phase in which the ghosts are hunting the dot-consuming
player, before a ghost catches the character and the character and ghost positions
reset to the position found in the image on the right.

Our similarity metric comparing pixels at consistent screen coordinates is not

tied to the visual features that the optimization algorithm determines are impor-

tant. The work of Zahavy et al. [65] show we can use components of neural networks

for both selecting the images and determining the similarity among images based

on what the network is paying attention to. We leave this effort to future work.

2.6.2 Debugging Capabilities

Bugs may result from bad implementation (code) or from bad parameters. In

the case of parameter values, it is possible to fix (debug) the problem without

leaving MDPvis. However, non-programmer domain experts cannot fix bad im-

42

plementation without sharing a bug report with the software developer. More

robust integration of MDPvis with the software developer’s Integrated Develop-

ment Environment (IDE) and version control would expand MDPvis’s debugging

capabilities. In particular, MDPvis is not currently aware of versions of the MDP

simulator or optimizer. As code changes, it would be useful to treat each build

as a selectable parameter in the interface. This would allow for more robust col-

laboration between team members as implementations change. Further, selecting

versions would allow for visual regression testing.

2.7 Use-Case Study: Wildfire Suppression Policies

We arrived at our generalized visualization by following Munzner’s nested model

[44] for the problem domain of Wildfire Suppression and then generalized the

results to all MDPs. Since the Wildfire Domain has high-dimensional states, it is

representative of a particularly challenging class of MDPs.

We used MDPvis in a use-case study to provide anecdotal evidence of the

utility of MDPvis. This case study is based on user sessions with our forestry

economics collaborators who formulated fire suppression policies as an MDP op-

timization problem. Throughout the design and development process, we worked

closely with these domain experts, to identify their needs as developers of MDP

solutions. The analyses in this section were performed by these experts during

their first use of MDPvis, in conjunction with the author (a PhD student from

computer science who implemented MDPvis but did not contribute to the devel-

43

opment of the MDP).

The wildfire suppression domain tested in this section combines models for

fire spread, vegetative growth, weather, suppression effectiveness, suppression cost,

and harvest. The domain is an idealized version of the wildfire suppression domain

explored in Chapters 3 and 4, meaning it is both simpler and faster to evaluate

than the full-fidelity version it is based on. We evaluate on the idealized simulator

because it generates trajectory sets within a few seconds of user time, whereas the

full-fidelity version takes 7 hours to generate a single 100-year trajectory.

We expressed the suppression policy as a differentiable function with inter-

pretable coefficients. Each coefficient resembles a weight that would be generated

by a logistic regression. Increasing a coefficient’s value makes it more likely that

a wildfire will be suppressed for increasing values of the corresponding state vari-

able. We applied policy gradient methods [55, 5, 46] to optimize new policies,

which have the advantage of being both fast and likely to improve the policy from

an uninformed policy for all sample sizes.

We detected bugs for most of the questions of A.1 and highlight interesting

cases with their interactions under their corresponding analysis tasks below.

Fitting: Several failures to simulate real conditions were detected. Upon fil-

tering the trajectories to the ones containing the most extreme fires, we examined

the state details and found that the fires were not spreading east or south from the

ignition site (see Figure 2.14). We could only see this on the larger fires, because

the rectangular timber harvests were masking the unusual shape of the fire spread.

Outliers: A common real-world wildfire suppression policy suppresses the vast

44

Figure 2.14: Two sequential spatial snapshots of timber values for a state transition
that includes one of the largest fire loss events from 200 trajectories of 60 years. The
management area is visible in the center due to the rectangular timber harvests.
These rectangular harvests obscure the irregular boundary of small fires. (A) shows
a medium size fire obscured by a mixture of small fires and timber harvests in (B).
The straight edge of the largest fire introduced in (C) clearly shows the fire is not
spreading in all directions.

45

majority of wildfires, so it forms a natural baseline for comparisons. To better illus-

trate the outcomes of a suppress-all policy, we compared it to a let-burn-all policy

and found a surprising fact: the let-burn-all policy has higher expected reward

than the suppress-all policy. This shows that either the models do not balance the

various rewards of fire suppression properly or a policy that is completely opposite

from current forestry practices produces better outcomes. We found the reason for

this counterintuitive result after filtering trajectories to only display outlier fires.

Large fires immediately increase the harvest reward, because the maximum allow-

able harvest is a function of tree growth. The harvest level is depressed without

large fires creating the conditions for explosive post-fire growth.

Partition: When comparing two different policies (see Figure 2.15) under oth-

erwise consistent parameters, we observed a slight difference in the percentiles of

the weather events. Since these weather events are exogenously determined by

a random number generator with a consistent seed, this difference indicates that

the random number generator is called differently depending on the action that is

selected. Without fixing this bug, we cannot compare a landscape’s response to

different policies under the same set of ignition events. Further, this effectively al-

lows optimization algorithms to choose the weather by running experiments under

different policies until they experience the best possible weather conditions.

Optimization: Although the policies reported by our policy gradient algo-

rithm improved upon our naive baselines, we found it easy to improve upon the

machine optimized policies by making small changes to the policy parameters.

This shows that the optimizer is failing to find a local optimum.

46

Figure 2.15: Fan charts for the suppression choice and the ignition date shown in
comparison mode for two trajectory sets. We generated one trajectory set under
a suppress-all policy and a second trajectory set under a let-burn-all policy. We
confirmed that the proper action is being selected for each state by observing the
differences in suppression choices is always 1. However, there is an unexpected
difference in the dates, which should be consistent between the two trajectory
sets.

47

We were able to identify the most likely source of the problem: when we op-

timized policies for increasing trajectory depths, we found a runtime bug with

our implementation of importance sampling that produces a division by zero. We

hypothesize that this runtime fault is causing our optimization function’s other

anomalous results.

Sensitivity: When viewing the timber harvest chart in comparison mode, the

lack of substantial differences in harvest volumes for different policies indicates

that the harvest volume is not sensitive to the policy. Additional comparisons

after fixing bugs showed harvests are only significantly impacted when old growth

forest dominates the landscape and trees stop growing. Since the model rarely

reaches 100 percent old growth, the harvest level is not sensitive to the policy.

Uncertainty: The invariant harvest reward means it is always better to let

a wildfire burn. After using MDPvis with other US federal land wildfire simula-

tors, we found this lack of uncertainty to be faithful to real world tradeoffs. This

poses an epistemological problem to our team of wildfire suppression optimization

researchers. Finding interesting research questions requires changing to a privately

managed landscape or including a case analysis of policies optimized for different

harvest levels.

2.8 Conclusion and Availability

This chapter presented MDPvis, a domain-independent tool supporting the test-

ing and debugging of MDP simulation and optimization software. MDPvis em-

ploys a simple web service protocol to interact with the MDP simulator and opti-

48

mizer and supports many visual analysis tasks related to MDP testing. MDPvis

allows for viewing trajectory distributions over time and making temporal com-

parisons between policies (either policies produced by the optimizer or policies

designed by the user). When we integrated MDPvis with a simple reinforcement

learning domain (Mountain Car), we unexpectedly found a bug, which we reported

to the framework authors. We presented a use-case study in which our users im-

mediately discovered several serious bugs. We also discovered interesting behavior

that is either a bug or an indication that real-world policies diverge significantly

from the optimal policy. Our users report that MDPvis is already greatly ac-

celerating their testing and debugging processes, and they are looking forward to

applying it to other MDP simulators.

A live version of MDPvis, the source code, and integration instructions are

available at MDPvis.github.io.

The wildfire simulator tested in the use-case study of this chapter is a simplified

reimplementation of the computationally expensive wildfire simulator explored in

the next two chapters. While the simplified simulator is ideal for prototyping and

evaluating MDPvis, it is not sufficiently faithful to the real world to make policy

recommendations. In the next chapter we show how to create a fast surrogate

model based on data from the expensive simulator. The surrogate model allows

users to interactively test, explain, and configure MDP simulators.

49

3 Fast Visualization with Model-Free Monte Carlo

3.1 Introduction

Visual analytics is particularly useful for problem domains with high-dimensional

state spaces, but these high-dimensional problems are also the ones that tend

to be computationally expensive to simulate. The transition dynamics of our

fire management MDP are defined by a simulator that can take up to 7 hours

to simulate a single 100-year trajectory of fire ignitions and resulting landscapes.

How can we support interactive policy analysis when the simulator is so expensive?

Our approach is to develop a surrogate model that can substitute for the sim-

ulator. We start by designing a small set of “seed policies” and invoking the slow

simulator to generate several 100-year trajectories for each policy. This gives us

a database of state transitions of the form (st, at, rt, st+1), where st is the state at

time t, at is the selected action, rt is the resulting reward, and st+1 is the result-

ing state. Given a new policy π to visualize, we apply the method of Model-Free

Monte Carlo (MFMC) developed by Fonteneau et al. [23] to simulate trajectories

for π by stitching together state transitions according to a specified distance met-

ric ∆. Given a current state s and desired action a = π(s), MFMC searches the

database to find a tuple (s̃, ã, r, s′) that minimizes the distance ∆((s, a), (s̃, ã)).

It then uses s′ as the resulting state and r as the corresponding one-step reward.

50

We call this operation “stitching” (s, a) to (s̃, ã). MFMC is guaranteed to give

reasonable simulated trajectories under assumptions about the smoothness of the

transition dynamics and reward function and provided that each matched tuple is

removed from the database when it is used. Algorithm 1 provides the pseudocode

for MFMC generating a single trajectory.

Fonteneau et al. [22] apply MFMC to estimate the expected cumulative return

of a new policy π by calling MFMC n times and computing the average cumulative

reward of the resulting trajectories. We will refer to this as the MFMC estimate

V π
MFMC(s0) of V π(s0).

Algorithm 1: MFMC for a single trajectory. When generating multiple
trajectories for a single trajectory set, the state transitions from D must not
be reused [22].

Input Parameters: Policy π, horizon h, starting state s0, distance metric
∆(., .), database D;

Returns: (s, a, r)1, ..., (s
′, a′, r′)h;

t← ∅;
s← s0;
while length(t)< h do

a← π(s);

H ← argmin
(
∼
s,
∼
a,r,s′)∈D

∆((s, a), (
∼
s,
∼
a));

r ← Hr;
append(t, (s, a, r));

s← Hs′ ;
D ← D \ H;

end
return(t);

In high-dimensional spaces (i.e., where the states and actions are described by

many features), MFMC breaks because of two related problems. First, distances

51

become less informative in high-dimensional spaces. Second, the required number

of seed-policy trajectories grows exponentially in the dimensionality of the space.

The main technical contribution of this chapter is to introduce a modified algo-

rithm, MFMCi, that reduces the dimensionality of the distance matching process

by factoring out certain exogenous state variables and removing the features de-

scribing the action. In many applications, this can very substantially reduce the

dimensionality of the matching process to the point that MFMC is again practical.

This chapter is organized as follows. First, we briefly review previous research in

surrogate modeling. Second, we introduce our method for factoring out exogenous

variables. The method requires a modification to the way that trajectories are

generated from the seed policies. With this modification, we prove that MFMCi

gives sound results and that it has lower bias and variance than MFMC. Third, we

conduct an experimental evaluation of MFMCi on our fire management problem.

We show that MFMCi gives good performance for three different classes of policies

and that for a fixed database size, it gives much more accurate visualizations than

MFMC.

3.2 Related Work

Surrogate modeling is the construction of a fast simulator that can substitute for

a slow simulator. When designing a surrogate model for our wildfire suppression

problem, we can consider several possible approaches.

First, we could write our own simulator for fire spread, timber harvest, weather,

52

and vegetative growth that computes the state transitions more efficiently. For

instance, Arca et al. [4] use a custom-built model running on GPUs to calculate fire

risk maps and mitigation strategies. However, developing a new simulator requires

additional work to design, implement, and (especially) validate the simulator. This

cost can easily overwhelm the resulting time savings.

A second approach would be to learn a parametric surrogate model from data

generated by the slow simulator. For instance, Abbeel et al. [1] learn helicopter

dynamics by updating the parameters of a function designed specifically for he-

licopter flight. Designing a suitable parametric model that can capture weather,

vegetation, fire spread, and the effect of fire suppression would require a major

modeling effort.

Instead of pursuing these two approaches, we adopted the method of Model-

Free Monte Carlo (MFMC). In MFMC, the model is replaced by a database of

transitions computed from the slow simulator. MFMC is “model-free” in the sense

that it does not learn an explicit model of the transition probabilities. In effect,

the database constitutes the transition model (c.f., Dyna; [56]).

3.3 Notation

We work with the standard finite horizon undiscounted MDP, which is consistent

with the notation given in the previous chapter after assigning the discount factor

(γ) to 1.

In this chapter, we focus on two queries about a given MDP. First, given a

53

(a) The standard MDP transition.

(b) MDP transition with exogenous (w) and Markovian variables (x).

Figure 3.1: MDP probabilistic graphical models.

policy π, we wish to estimate the expected cumulative reward of executing that

policy starting in state s0: V π(s0) = E[
∑h

t=0 R(st, π(st))|s0, π]. Second, we are

interested in visualizing the distribution of the states visited at time t: P (st|s0, π).

In particular, let v1, . . . , vm be functions that compute interesting properties of

a state. For example, in our fire domain, v1(s) might compute the total area of

old growth Douglas fir and v2(s) might compute the total volume of harvestable

wood. Visualizing the distribution of these properties over time gives policy makers

insight into how the system will evolve when it is controlled by policy π.

54

3.4 Factoring State to Improve MFMC

We now describe how we can factor the state variables of an MDP in order to

reduce the dimensionality of the MFMC stitching computation. State variables

can be divided into Markovian and Time-Independent random variables. A time-

independent random variable xt is exchangeable over time t and does not depend

on any other random variable (including its own previous values). A (first-order)

Markovian random variable xt+1 depends on its value xt at the previous time

step. In particular, the state variable st+1 depends on st and the chosen action

at. Variables can also be classified as endogenous and exogenous. The variable xt

is exogenous if its distribution is independent of at′ and st′ \ {x′t} for all t′ ≤ t.

Non-exogenous variables are endogenous. The key insight of this chapter is that

if a variable is time-independent and exogenous, then it can be removed from the

MFMC stitching calculation as follows.

Let us factor the MDP state s into two vectors of random variables: w, which

contains the time-independent, exogenous state variables and x, which contains

all of the other state variables (see Figure 3.1). In our wildfire suppression do-

main, the state of the forest from one time step to another is Markovian, but our

policy decisions also depend on exogenous weather events such as rain, wind, and

lightning.

We can formalize this factorization as follows.

Definition 3.4.1. A Factored Exogenous MDP is an MDP such that the state

(x,w) and next state (x′, w′) are related according to

55

Pr(x′, w′|x,w, a) = Pr(w′)Pr(x′|x,w, a). (3.1)

This factorization allows us to avoid computing similarity in the complete state

space s. Instead we only need to compute the similarity of the Markov state x.

Without the factorization, MFMC stitches (s, a) to the (s̃, ã) in the database D

that minimizes a distance metric ∆, where ∆ has the form ∆((s, a), (s̃, ã)) 7→

R+. Our new algorithm, MFMCi, makes its stitching decisions using only the

Markov state. It stitches the current state x by finding the tuple (x̃, w̃, a, r, x′) that

minimizes the lower-dimensional distance metric ∆i(x, x̃). MFMCi then adopts

(x̃, w̃) as the current state, computes the policy action ã = π(x̃, w̃), and then

makes a transition to x′ with reward r. The rationale for replacing x by x̃ is

the same as in MFMC, namely that it is the nearest state from the database D.

The rationale for replacing w by w̃ is that both w and w̃ are exchangeable draws

from the exogenous time-independent distribution P (w), so they can be swapped

without changing the distribution of simulated paths.

There is one subtlety that can introduce bias into the simulated trajectories.

What happens when the action ã = π(x̃, w̃) is not equal to the action a in the

database tuple (x̃, w̃, a, r, x′, w′)? One approach would be to require that a = ã

and keep rejecting candidate tuples until we find one that satisfies this constraint.

We call this method, “Biased MFMCi”, because doing this introduces a bias.

Consider again the graphical model in Figure 3.1. When we use the value of a

to decide whether to accept w̃, this couples w̃ and x̃ so that they are no longer

56

Algorithm 2: Populating D for MFMCi by sampling whole trajectories.

Input Parameters: Policy π, horizon h, trajectory count n, transition
simulator fx, reward simulator fr, exogenous distribution P (w),
stochasticity distribution P (z)

Returns: nh transition sets B
D ← ∅
while |D| < nh do

x = fx(·, ·, ·, ·) // Draw initial Markov state
l = 0
while l < h do

B ← ∅
w ∼ P (w)
z ∼ P (z)
for a ∈ A do

r ← fr(x, a, w, z)
x′ ← fx(x, a, w, z)
B ← B ∪ {(x,w, a, r, x′)}

end
append(D,B)

x← Bx′

π(x,w)

l← l + 1

end

end
return(D)

independent.

An alternative to Biased MFMCi is to change how we generate the database

D to ensure that for every state (x̃, w̃), there is always a tuple (x̃, w̃, a, r, x′, w′) for

every possible action a. To do this, as we execute a trajectory following policy π,

we simulate the result state (x′, w′) and reward r for each possible action a and not

just the action a = π(x,w) dictated by the policy. We call this method “Debiased

MFMCi”. This requires drawing more samples during database construction, but

57

it restores the independence of w̃ from x̃.

3.4.1 MFMC with independencies (MFMCi)

For purposes of analyzing MFMCi, it is helpful to make the stochasticity of

P (s′|s, a) explicit. To do this, let z be a time-independent random variable dis-

tributed according to P (z). Then we can “implement” the stochastic transition

P (s′|s, a) in terms of a random draw of z and a state transition function fx as

follows. To make a state transition from state s = (w, x) and action a, we

draw samples of both the exogenous variable w′ ∼ P (w′) and from z ∼ P (z)

and then evaluate the function x′ = fx(x,w, a, z). The result state s′ is then

(x′, w′). Similarly, to model stochastic rewards, we can define the function fr such

that r := fr(x,w, a, z). This encapsulates all of the randomness in P (s′|s, a) and

R(s, a) in the variables w′ and z.

As noted in the previous section, stitching only on x can introduce bias unless

we simulate the effect of every action a for every x ∈ D. It is convenient to

collect together all of these simulated successor states and rewards into transition

sets. Let B(x,w) denote the transition set of tuples {(x,w, a, x′, r)} generated by

simulating each action a in state (x,w). Given a transition set B, it is useful to

define selector notation as follows. Subscripts of B constrain the set of matching

tuples and superscripts indicate which variable is extracted from the matching

tuples. Hence, Bx′
a denotes the result state x′ for the tuple in B that matches

action a. With this notation, Algorithm 2 describes the process of populating the

58

database with transition sets.

Algorithm 3: MFMCi

Input Parameters: Policy π, horizon h, starting state x0, distance metric
∆i(·, ·), database D

Returns: (x0, w, a, r)1, . . . , (x
′, w′, a′, r′)h

t← ∅
x← x0

while length(t)< h do

B̂ ← argminB∈D ∆i(x,B
x′)

ŵ ← B̂w

a← π(x, ŵ)

r ← B̂r
a

append(t, (x,w, a, r))

D ← D \ B̂
x← Bx′

a

end
return(t)

Algorithm 3 gives the pseudo-code for MFMCi. Note that when generating

multiple trajectories with Algorithm 3 for a single policy query, the transition sets

are drawn without replacement. To estimate the cumulative return of policy π,

we call MFMCi n times and compute the mean of the cumulative rewards of the

resulting trajectories. We refer to this as the MFMCi estimate V π
MFMCi(s0) of

V π(s0).

3.4.2 Bias and Variance Bound on V π
MFMCi(s0)

Fonteneau et al. [23, 24, 22] derived bias and variance bounds on the MFMC

value estimate V π
MFMC(s0). Here we rework this derivation to provide analogous

59

bounds for V π
MFMCi(s0). The Fonteneau et al. bounds depend on assuming Lips-

chitz smoothness of the functions fs, fr and the policy π. To do this, they require

that the action space be continuous in a metric space A. We will impose the same

requirement for purposes of analysis. Let Lf , LR, and Lπ be Lipschitz constants

for the chosen norms ‖ · ‖S and ‖ · ‖A over the S and A spaces, as follows:

‖fs(s, a, z)− fs(s′, a′, z)‖S ≤ Lf (‖s− s′‖S + ‖a− a′‖A) (3.2)

|fr(s, a, z)− fr(s′, a′, z)| ≤ LR(‖s− s′‖S + ‖a− a′‖A) (3.3)

‖π(s)− π(s′)‖A ≤ Lπ(‖a− a′‖A). (3.4)

To characterize the database’s coverage of the state-action space, let αk(D) be

the maximum distance from any state-action pair (s, a) to its k-th nearest neighbor

in database D. Fonteneau, et al. call this the k-dispersion of the database.

Theorem 1. [22] For any Lipschitz continuous policy π, let V π
MFMC be the MFMC

estimate of the value of π in s0 based on n MFMC trajectories of length h drawn

from database D. Under the Lipschitz continuity assumptions of Equations 3.2,

3.3, and 3.4, the bias and variance of V π
MFMC are

|V π
MFMC(s0)− V π(s0)| ≤ Cαnh(D) (3.5)

60

V arπn,D(s0) ≤
(σπh(s0)√

n
+ 2Cαnh(D)

)2

(3.6)

where σπh(s0) is the variance of the total reward for h-step trajectories under π

when executed on the true MDP and C is defined in terms of the Lipschitz constants

as

C = LR

h−1∑
i=0

h−i−1∑
j=0

[Lf (1 + Lπ)]j. (3.7)

Now we derive analogous bias and variance bounds for V π
MFMCi(s0). To this

end, define two Lipschitz constants LFi and LRi such that the following conditions

hold for the MDP:

‖fx(x, a, w, z)− fx(x′, a, w, z)‖X ≤ Lfi(‖x− x′‖X) (3.8)

|fr(x, a, w, z)− fr(x′, a, w, z)| ≤ LRi(‖x− x′‖X). (3.9)

Where ‖ · ‖X is the chosen norm over the X space.

Let αi,k(D) be the maximum distance from any Markov state x to its k-th

nearest neighbor in database D for the distance metric ∆i. Further, let x0 be the

initial Markov state. Then we have

Corollary 1. For any Lipschitz continuous policy π, let V π
MFMCi be the MFMCi

estimate of the value of π in x0 based on n MFMCi trajectories of length h drawn

from database D. Under the Lipschitz continuity assumptions of Equations 3.8

61

and 3.9, the bias and variance of V π
MFMCi are

|V π
MFMCi(s0)− V π(s0)| ≤ Ciαi,nh(D) (3.10)

V arπi,n,D(x0) ≤
(σπh(x0)√

n
+ 2Ciαi,nh(D)

)2

(3.11)

where Ci is defined as

Ci = LRi

h−1∑
b=0

h−b−1∑
j=0

[Lfi]
j. (3.12)

Proof. (Sketch) The result follows by observing that because there is always a

matching action for each transition set, a will equal a′ and ‖a− a′‖A will be zero,

so we can eliminate Lπ. Similarly, because we can factor out w, we only match

on x, so we can replace Lf with Lfi and replace the norms with respect to S by

the norms with respect to X. Finally, as we argued above, by using transition sets

we do not introduce any added bias by adopting w instead of matching against it.

Formally, we can view this as converting w from being an observable exogenous

variable to being part of the unobserved exogenous source of stochasticity z. With

these changes, the proof of Fonteneau, et al., holds.

We believe that similar proof techniques can bound the bias and variance of

estimates of the quantiles of P (vj(st)) for properties vj(st) of the state at time

step t. We leave this to future work.

62

Figure 3.2: The landscape totals approximately one million pixels, each of which
has 13 state variables that influence the spread of wildfire on the landscape. We
use summary statistics of the dynamic state variables in MFMC’s distance metric.
(Map is copyright of OpenStreetMap contributors)

3.5 Experimental Evaluation

In our experiments we test whether we can generate accurate trajectory visualiza-

tions for a wildfire, timber, vegetation, and weather simulator [27]. The aim of the

wildfire management simulator is to help US Forest Service land managers decide

whether suppress a wildfire on National Forest lands. Each 100-year trajectory

takes up to 7 hours to simulate.

Figure 3.2 shows a snapshot of the landscape as generated by the simulator.

The landscape is comprised of approximately one million pixels, each with 13 state

variables. When a fire is ignited by lightning, the policy must choose between two

63

actions: Suppress (fight the fire) and Let Burn (do nothing). Hence, |A| = 2.

The simulator spreads wildfires with the FARSITE fire model [21] according

to the surrounding pixel variables (X) and the hourly weather. Weather variables

include hourly wind speed, hourly wind direction, hourly cloud cover, daily max-

imum/minimum temperature, daily maximum/minimum humidity, daily hour of

maximum/minimum temperature, daily precipitation, and daily precipitation du-

ration. These are generated by resampling from 25 years of observed weather [62].

MFMCi can treat the weather variables and the ignition location as exogenous vari-

ables because the decision to fight (or not fight) a fire has no influence on weather

or ignition locations. Further, changes in the Markov state do not influence the

weather or the spatial probability of lightning strikes.

After computing the extent of the wildfire on the landscape, the simulator

applies a cached version of the Forest Vegetation Simulator [17] to update the

vegetation of the individual pixels. Finally, a harvest scheduler selects pixels to

harvest for timber value.

We constructed three policy classes that map fire ignitions to fire suppression

decisions. We label these policies intensity, fuel, and location. The inten-

sity policy suppresses fires based on the weather conditions at the time of the

ignition and the number of days remaining in the fire season. The fuel policy

suppresses fires when the landscape accumulates sufficient high-fuel pixels. The

location policy suppresses fires that are ignited in the top half of the landscape,

but allows fires on the bottom half of the landscape to burn (which mimics the sit-

uation that arises when houses and other buildings occupy part of the landscape).

64

We selected these policy classes because they are functions of different compo-

nents of the Markov and exogenous state. The intensity policies are a function

of the exogenous variables and should be difficult for MFMC, because the sequence

of actions along a trajectory will be driven primarily by the stochasticity of the

weather circumstances. This contrasts with the fuel policy, which should follow

the accumulation of vegetation between time steps in the Markov state. Finally,

the location policy should produce landscapes that are very different from the

other two policy classes as fuels become spatially imbalanced in the Markov state.

The analysis of Fonteneau et al. [23] assumes the database is populated with

state-action transitions covering the entire state-action space. The dimensionality

of the wildfire state space makes it impossible to satisfy this assumption. We

focus sampling on states likely to be entered by future policy queries by seeding

the database with one trajectory for each of 360 policies whose parameters are

sampled according to a grid over the intensity policy space. The intensity

policy parameters include a measure of the weather conditions at the time of

ignition known as the Energy Release Component (ERC) and a measure of the

seasonal risk in the form of the calendar day. These measures are drawn from[
0, 100

]
and

[
0, 180

]
, respectively.

The three policy classes are very different from each other. One of our goals is

to determine whether MFMCi can use state transitions generated from the inten-

sity policy to accurately simulate state transitions under the fuel and location

policies. We evaluate MFMCi by generating 30 trajectories for each policy from

the ground truth simulator.

65

For our distance metric ∆i, we use a weighted Euclidean distance computed over

the mean/variance standardized values of the following landscape features: Canopy

Closure, Canopy Height, Canopy Base Height, Canopy Bulk Density, Stand Den-

sity Index, High Fuel Count, and Stand Volume Age. All of these variables are given

a weight of 1. An additional feature, the time step (Year), is added to the distance

metric with a very large weight to ensure that MFMCi will only stitch from one

state to another if the time steps match. Introducing this non-stationarity ensures

we exactly capture landscape growth stages for all pixels that do not experience

fire.

Our choice of distance metric features is motivated by the observation that the

risk profile (the likely size of a wildfire) and the vegetation profile (the total tree

cover) are easy to capture in low dimensions. If we instead attempt to capture the

likely size of a specific fire, we need a distance metric that accounts for the exact

spatial distribution of fuels on the landscape. Our distance metric successfully

avoids directly modeling spatial complexity.

To visualize the trajectories, we employ the visualization tool MDPvis ([37]

and Chapter 2). The key visualization in MDPvis is the fan chart, which de-

picts the time evolution of various state, action, and reward variables for the set

of trajectories as a function of time (see Figure 3.3). Each fan chart plots the

distribution of the value of one variable in terms of a set of quantiles.

To evaluate the quality of the fan charts generated using surrogate trajecto-

ries, we define visual fidelity error in terms of the difference in vertical position

between the true median and its position under the surrogate. Specifically, we

66

Figure 3.3: Top: A fan chart generated by Monte Carlo simulations from the
expensive simulator. Bottom: A fan chart generated from the MFMC surrogate
model. x axis is the time step and y axis is the value of the state variable at
each time step. Each change in color shows a quantile boundary for a set of
trajectories generated under policy π. Middle: Error measure is the distance
between the median of the Monte Carlo simulations (left) and the median of the
MFMC/MFMCi surrogate simulations (right). The error is normalized across fan
charts according to Hv(π), which is the Monte Carlo fan chart height for policy π
and variable v.

67

Figure 3.4: Visual fidelity errors for a weather intensity policy class. Fires are
suppressed based on a combination of the weather and how much time is left in
the fire season.

define error(v, t) as the offset between the correct location of the median and its

MFMCi-modeled location for state variable v in time step t. We normalize the

error by the height of the fan chart for the rendered policy (Hv(π)). The weighted

error is thus
∑
v∈S

h∑
t=0

error(v,t)
Hv(π)

.

This error is measured for 20 variables related to the counts of burned pixels,

fire suppression expenses, timber loss, timber harvest, and landscape ecology.

3.5.1 Experimental Results

We evaluated the visual fidelity under three settings: (a) debiased MFMCi (exoge-

nous variables excluded from the distance metric ∆i; debiasing tuples included in

the database D), (b) MFMC (exogenous variables included in ∆), and (c) biased

68

Figure 3.5: Visual fidelity errors for a ignition location policy class. Fires are
always suppressed if they start on the top half of the landscape, otherwise they
are always allowed to burn.

Figure 3.6: Visual fidelity errors for a fuel accumulation policy class. Fires are
always suppressed if the landscape is at least 30 percent in high fuels, otherwise
the fire is allowed to burn.

69

Figure 3.7: Example of MFMC’s autoregressive tendency for a grid world domain
where the only available actions are “up” and “right”. The green arrows show a
trajectory that we would like to synthesize from two different MFMC databases
where the distance metric is Euclidean with arbitrarily large weight given to the
time step and action. The gray arrows show the grid world transitions in the
two databases. In the debiased database the stitching operation will stay on the
rightward trajectory despite there being transitions that more closely track the
target trajectory. The biased database forces the stitching operation to hop to the
policy more consistent with the target policy. In some instances it is better to bias
the exogenous variables than repeatedly stitch to the same trajectories.

70

MFMCi (exogenous variables excluded from ∆i and the extra debiasing tuples re-

moved from D). We also compare against two baselines that explore the upper and

lower bounds of the visual error. First, we show that the lower bound on visual

error is not zero. Although each policy has true quantile values at every time step,

estimating these quantiles with 30 trajectories is inherently noisy. We estimate

the achievable visual fidelity by bootstrap resampling the 30 ground truth trajec-

tories and report the average visual fidelity error. Second, we check whether the

error introduced by stitching is worse than visualizing a set of random database

trajectories. Thus the bootstrap resample forms a lower bound on the error, and

comparison to the random trajectories detects stitching failure. Figures 3.4, 3.5,

3.6 plot “learning curves” showing the visualization error as a function of the size

of the database D. The ideal learning curve should show a rapid decrease in visual

fidelity error as |D| grows.

3.6 Discussion

For each policy class, we chose one target policy from that class and measured how

well the behavior of that policy could be simulated by our MFMC variants. Recall

that the database of transitions was generated using a range of intensity policies.

When we apply the MFMC variants to generate trajectories for an intensity

policy, all methods (including random trajectory sampling) produce an accurate

representation of the median for MDPvis. When the database trajectories do

not match the target policy, MFMCi outperforms MFMC. For some policies, the

71

debiased database outperforms the biased databases, but the difference decreases

with additional database samples. Next we explore these findings in more depth.

Intensity Policy. Figure 3.4 shows the results of simulating an intensity

policy that suppresses all fires that have an ERC between 75 and 95, and ignite

after day 120. This policy suppresses approximately 60 percent of fires. There are

many trajectories in the database that agree with the target policy on the majority

of fires. Thus, to simulate the target policy it is sufficient to find a policy with a

high level of agreement and then sample the entire trajectory. This is exactly what

MFMC, MFMCi, and Biased MFMCi do. All of them stitch to a good matching

trajectory and then follow it, so they all give accurate visualizations as indicated

by the low error rate in Figure 3.4. Unsurprisingly, we can approximate intensity

policies from a very small database D built from other intensity policies.

Location Policy. Figure 3.5 plots the visual fidelity error when simulating

a location policy from the database of intensity policy trajectories. When

D is small, the error is very high. MFMC is unable to reduce this error as D

grows, because its distance metric does not find matching fire conditions for similar

landscapes. In contrast, because the MFMCi methods are matching on the smaller

set of Markov state variables, they are able to find good matching trajectories.

The debiased version of MFMCi outperforms the biased version for the smaller

database sizes. In the biased version, the matching operation repeatedly stitches

over long distances to find a database trajectory with a matching action. Debiased

MFMCi avoids this mistake. This explains why debiased MFMCi rapidly decreases

the error while biased MFMCi takes a bit longer but then catches up at roughly

72

|D| =40,000.

Fuel Policy. The fuel policy shows a best case scenario for the biased

database. Within 7 time steps, fuel accumulation causes the policy action to switch

from let-burn-all to suppress-all. Since all of the trajectories in the database have

a consistent probability of suppressing fires throughout all 100 years, the ideal

algorithm will select a trajectory that allows all wildfires to burn for 7 years (to

reduce fuel accumulation), then stitch to the most similar trajectory in year 8

that will suppress all future fires. The biased database will perform this “policy

switching” by jumping between trajectories to find one that always performs an

action consistent with the current policy.

Policy switching is preferable to the debiased database in some cases. To illus-

trate this, consider the grid world example in Figure 3.7. It shows that debiased

samples can offer stitching opportunities that prevent policy switching and hurt

the results.

In summary, our experiments show that MFMCi is able to generalize across

policy classes and that it requires only a small number of database trajectories to

accurately reproduce the median of each state variable at each future time step.

In general, it appears to be better to create a debiased database than a biased

database having the same number of tuples.

Our results allow our forestry stakeholders to interactively explore a range of

policies within MDPvis. We further show how these results support interactive

policy optimization for user-specified reward functions in Chapter 4.

73

4 Fast Policy Optimization with SMAC

4.1 Introduction

When lightning ignites a fire in the US National Forest system, the forest manager

must decide whether to suppress that fire or allow it to burn itself out. This deci-

sion has immediate costs in terms of fire fighting expenses and smoke pollution and

long-term benefits, including increased timber harvest revenue and reduced sever-

ity of future fires. Different stakeholders place different values on these various

outcomes, and this leads to contentious and difficult policy debates. In the US Pa-

cific Northwest, a period in the 1990s is referred to as the “Timber Wars” because

of the troubling and occasionally violent conflicts that arose between stakeholder

groups over forest management policies during that period. This is typical of many

ecosystem management problems—the complexity of ecosystem dynamics and the

broad array of interested parties makes it difficult to identify politically-feasible

policies.

One way that visual analytics can help is to provide a high-fidelity simulation

environment in which stakeholders can explore the policy space, experiment with

different reward functions, compute the resulting optimal policies, and visualize

the behavior of the ecosystem when it is managed according to those policies.

This process can elicit missing aspects of the reward function, and it can help

74

the stakeholders reach a policy consensus that is informed by the best available

ecosystem models. To create such a simulation environment, we need a tool that

meets the following requirements:

i. Modifiability: users should be able to modify the reward function to repre-

sent the interests of various stakeholders.

ii. Automatic Optimization: users should be able to optimize policies for

the updated reward functions without the involvement of a machine learning

researcher.

iii. Visualization: users should be able to explore the behavior of the system

when it is controlled by the optimized policies.

iv. Interactivity: all these tasks should be performed at interactive speeds.

MDPvis supports requirements i and iii, but it does not support the optimiza-

tion capability needed for requirement ii. Furthermore, the full-fidelity wildfire

simulator is very slow, so even if we had an optimization algorithm for this noisy,

high-dimensional problem, the optimization could not meet the interactive speeds

needed for requirement iv.

This chapter simultaneously addresses requirements ii and iv by applying the

SMAC [28] black-box function optimization algorithm to the surrogate developed

in Chapter 3. SMAC is similar to Bayesian methods for black box optimization.

However, unlike those methods, SMAC does not employ a Gaussian process to

model the black box function. Instead, it fits a random forest ensemble [11]. This

75

has three important benefits. First, it does not impose any smoothness assumption

on the black box function. We will see below that wildfire policies are naturally

expressed in the form of decision trees, so they are highly non-smooth. Second,

SMAC does not require the design of a Gaussian process kernel. This makes it

more suitable for application by end users such as our policy stakeholders. Third,

the CPU time required for SMAC scales as O(n log n) where n is the number of

evaluations of the black box function, whereas standard GP methods scale as O(n3)

because they must compute and invert the kernel matrix.

This chapter makes two contributions. First, it shows that SMAC can rapidly

find high-scoring policies for a range of different reward functions that incorporate

both short-term and long-term rewards. Second, it confirms that this is possible

even though SMAC is using an approximate surrogate for the high-fidelity simu-

lator. Taken together, these contributions mark the first successful optimization

a wildfire suppression policy for a full 100-year planning horizon. Since SMAC

is also fast, these contributions also produce an algorithm for optimizing policies

within interactive time frames.

The chapter is structured as follows. First, we provide an overview of direct

policy search and SMAC. This is followed by a description of the fire management

problem including a review of the different components of the reward function

and the relative weight that different stakeholder constituencies place on these

components. We then describe the parameterized policy representation for wildfire

management policies. The results of applying SMAC to optimize these policies are

shown next. Finally, the surrogate estimates of the values of these policies are

76

checked by running them on the full-fidelity simulator. The results confirm the

accuracy of the surrogate estimates.

4.2 Direct Policy Search Methods

We work with the standard finite horizon discounted MDP introduced in Chapter

2. Let Π be a class of deterministic policies with an associated parameter space

Θ. Each parameter vector θ ∈ Θ defines a policy πθ : S 7→ A that specifies what

action to take in each state. Let τ = 〈s0, s1, . . . , sh〉 be a trajectory generated

by drawing a state s0 ∼ P0(s0) according to the starting state distribution and

then following policy πθ for h steps. Let ρ = 〈r0, . . . , rh−1〉 be the corresponding

sequence of rewards. Both τ and ρ are random variables because they reflect the

stochasticity of the starting state and the probability transition function. Let Vθ

define the expected cumulative discounted return of applying policy πθ starting in

a state s0 ∼ P0(s0) and executing it for h steps:

Vθ = Eρ[r0 + γr1 + γ2r2 + · · ·+ γh−1rh−1]

The goal of direct policy search is to find θ∗ that maximizes the value of the

corresponding policy:

θ∗ = argmax
θ∈Θ

Vθ.

Two prominent forms of policy search are policy gradient methods and sequential

model-based optimization. Policy gradient methods [63, 55, 15, 51] estimate the

77

gradient of Vθ with respect to θ and then take steps in parameter space to ascend

the gradient. This is often challenging because the estimate is based on Monte

Carlo samples of τ and because gradient search only guarantees to find a local

optimum.

Sequential model-based optimization methods [32, 43, 68, 28, 53, 64, 57] con-

struct a model of Vθ called a Policy Value Model and denoted PVM(θ). The PVM

estimates both the value of Vθ and a measure of the uncertainty of that value. The

most popular form of PVM is the Gaussian Process, which models Vθ as the GP

mean and the uncertainty as the GP variance. The basic operation of sequential

model-based optimization methods is to select a new point θ at which to query

the PVM, observe the value of Vθ at that point (e.g., by simulating a trajectory τ

using πθ), and then update the PVM to reflect this new information. In Bayesian

Optimization, the PVM is initialized with a prior distribution over possible policy

value functions and then updated after each observation by applying Bayes rule.

The new points θ are selected by invoking an acquisition function.

SMAC [28] is a sequential model-based optimization method in which the PVM

is a random forest of regression trees. The estimated value of Vθ is obtained by

“dropping” θ through each of the regression trees until it reaches a leaf in each tree

and then computing the mean and the variance of the training data points stored

in all of those leaves. In each iteration, SMAC evaluates Vθ at 10 different values

of θ, adds the observed values to its database R of (θ, Vθ) pairs, and then rebuilds

the random forest.

SMAC chooses 5 of the 10 θ values with the goal of finding points that have

78

high “generalized expected improvement”. The (ordinary) expected improvement

at point θ is the expected increase in the maximum value of the PVM that will

be observed when we measure Vθ under the assumption that Vθ has a normal

distribution whose mean is µθ (the current PVM estimate of the mean at θ) and

whose variance is σ2
θ (the PVM estimate of the variance at θ). The expected

improvement at θ can be computed as

EI(θ) := E
[
I(θ)

]
= σθ

[
z·Φ(z) + φ(z)

]
, (4.1)

where z := µθ−fmax
σθ

, fmax is the largest known value of the current PVM, Φ denotes

the cumulative distribution function of the standard normal distribution, and φ

denotes the probability density function of the standard normal distribution [29].

The generalized expected improvement (GEI) is obtained by computing the

expected value of I(θ) raised to the g-th power. In SMAC, g is set to 2. Hutter et

al. [28] show that this can be computed as

GEI(θ) = E
[
I2(θ)

]
= σ2

θ

[
(z2 + 1)·Φ(z) + z·φ(z)

]
. (4.2)

Ideally, SMAC would find the value of θ that maximizes GEI(θ) and then

evaluate Vθ at that point. However, this would require a search in the high-

dimensional space of Θ, and it would also tend to focus on a small region of Θ.

Instead, SMAC employs the following heuristic strategy to find 10 candidate values

of θ. First, it performs a local search in the neighborhood of the 10 best known

values of θ in the PVM. This provides 10 candidate values. Next, it randomly

79

generates another 10,000 candidate θ vectors from Θ and evaluates the GEI of

each of them. Finally, it chooses the 5 best points from these 10,010 candidates

and 5 points sampled at random from the 10,000 random candidates, and evaluates

Vθ at each of these 10 points. This procedure mixes “exploration” (the 5 random

points) with “exploitation” (the 5 points with maximum GEI), and it has been

found empirically to work well.

Hutter et al. [28] prove that the SMAC PVM is a consistent estimator of V and

that given an unbounded number of evaluations of V , it finds the optimal value

θ∗.

4.3 The Wildfire Management Domain

To evaluate our methods, we have selected a portion of the Deschutes National

Forest in Eastern Oregon. This area is being managed with the goal of restoring the

landscape to the condition it was believed to be in prior to the arrival of Europeans.

Figure 3.2 shows a map of the study site. It is comprised of approximately one

million pixels, each described by 13 state variables.

We employ the high-fidelity simulator described in Houtman et al. [27], which

combines a simple model of the spatial distribution of lightning strikes (based on

historical data) with the state-of-the-art Farsite fire spread simulator [21], a fire

duration model [20], and the high-resolution FVS forest growth simulator [17].

Weather is simulated by resampling from the historical weather time series ob-

served at a nearby weather station.

80

The MDP advances in a sequence of decision points. Each decision point cor-

responds to a lightning-caused ignition, and the MDP policy must decide between

two possible actions: Suppress (fight the fire) and Let Burn (do nothing). Hence,

|A| = 2. Based on the chosen action and the (simulated) weather, the intensity,

spread, and duration of the fire is determined by the simulator. In order to cap-

ture the long-term impacts of our policy decisions, we employ a planning horizon

of h = 100 years.

Unfortunately, the simulator is very expensive. Simulating a 100-year trajec-

tory of fires can take up to 7 hours of clock time. This is obviously too slow for

interactive use. We therefore have adopted the surrogate modeling approach of

Chapter 3 during the optimization.

Wildfires produce a variety of immediate and long term losses and benefits. For

market-based rewards, such as suppression costs and timber revenues, there is a sin-

gle defensible reward function. Since wildfire decisions also affect many outcomes

for which there is no financial market, such as air, water, ecology, and recreation,

there are potentially many different composite reward functions. A benefit of the

random forest method is the ability to change the reward function and re-optimize

without making any assumptions about the character of the response surface V .

In our experimental evaluation, we optimize and validate policies for four different

reward functions as an approximation of different stakeholder interests. Table 4.1

details each of these reward function constituencies.

The reward functions are compositions of five different reward components.

The Suppression component gives the expenses incurred for suppressing a fire.

81

Constituency Su
pp

re
ss

io
n

C
os

ts

T
im

be
r
R
ev

en
ue

s

Eco
lo
gy

Tar
ge

t

A
ir

Q
ua

lit
y

R
ec

re
at

io
n

Tar
ge

t

Composite X X X X X
Politics - X X X X
Home Owners - - - X X
Timber X X - - -

Table 4.1: Components of each reward function. The “politics” constituency ap-
proximates a decision maker that is not responsible for funding firefighting oper-
ations. The “home owner” constituency only cares about air quality and recre-
ation. The “timber” companies only care about how much timber they harvest,
and how much money they spend protecting that timber. The “composite” reward
function takes an unweighted sum of all the costs and revenues produced for the
constituencies. Additional reward functions can be specified by users interactively
within MDPvis.

Fire suppression expenses increase with fire size and the number of days the fire

burns. Without fire suppression effort, the fire suppression costs are zero, but

the fire generally takes longer to self-extinguish. Timber harvest values are de-

termined by the number of board feet harvested from the landscape. A harvest

scheduler included in the simulator determines the board feet based on existing

forest practice regulations. Generally we would expect timber harvest to increase

with suppression efforts, but complex interactions between the harvest scheduler

and tree properties (size, age, species) often results in high timber harvests fol-

lowing a fire. Ecological value is a function of the squared deviation from an

officially-specified target distribution of vegetation on the landscape known as the

“restoration target.” Since our landscape begins in a state that has a recent his-

tory of fire suppression efforts, there is much more vegetation than the target. A

82

good way to reach the target is to allow wildfires to burn, but increased timber

harvest can also contribute to this goal. Air Quality is a function of the number

of days a wildfire burns. When fires burn, the smoke results in a large number of

home-owner complaints. We encode this as a negative reward for each smoky day.

Finally, the recreation component penalizes the squared deviation from a second

vegetation target distribution—namely, one preferred by people hiking and camp-

ing. This distribution consists of old, low-density ponderosa pine trees. Frequent,

low-intensity fires produce this kind of distribution, because they burn out the un-

dergrowth while leaving the fire-resilient ponderosa pine unharmed. If we optimize

for any single reward component, the optimal policy will tend to be one of the

trivial policies “suppress-all” or “letburn-all”. When multiple reward components

are included, the optimal policy still tends to either suppress or let burn most fires

by default, but it tries to identify exceptional fires where the default should be

overridden. See Houtman et al. [27] for a discussion of this phenomenon.

A natural policy class in this domain takes the form of a binary decision tree

as shown in Figure 4.1. At each level of the tree, the variable to split on is fixed in

this policy class. With the exception of the very first split at the root, which has

a hard-coded threshold, the splitting thresholds θ1, . . . , θ14 are all adjusted by the

policy optimization process. Moving from the top layer of the tree to the bottom,

the tree splits first on whether the fire will be extinguished within the next 8 days

by a “fire-ending weather event” (i.e., substantial rain or snowfall). The threshold

value of 8 is fixed (based on discussions with land managers and on the predictive

scope of weather forecasts). The next layer splits on the state of fuel accumulation

83

on the landscape. The fuel level is compared either to θ1 (left branch, no weather

event predicted within 8 days) or θ2 (right branch; weather predicted within 8

days). When the fuel level is larger than the corresponding threshold, the right

branch of the tree is taken. The next layer splits on the intensity of the fire at the

time of the ignition. In this fire model, the fire intensity is quantified in terms of

the Energy Release Component (ERC), which is a composite measure of dryness in

fuels. Finally, the last layer of the tree asks whether the current date is close to the

start or end of the fire season. Our study region in Eastern Oregon is prone to late

spring and early fall rains, which means fires near the boundary of the fire season

are less likely burn very long. We note that this policy function is difficult for

gradient-based policy search, because it is not differentiable and exhibits complex

responses to parameter changes.

4.4 Experiments

To train the MFMCi surrogate model, we sampled 360 policies from a policy class

that suppresses wildfires based on the ERC at the time of the ignition and the day

of the ignition (see Chapter 3 for details). Every query to the MFMCi surrogate

generates 30 trajectories, and the mean cumulative discounted reward is returned

as the observed value of Vθ.

We apply SMAC with its default configuration. When SMAC grows a random

regression tree for its PVM, there is a parameter that specifies the fraction of the

parameter dimensions (i.e., θ1, . . . , θ14) that should be considered when splitting a

84

Figure 4.1: The layers of the decision tree used to select wildfires for suppression.
The top layer splits on whether the fire will likely be extinguished by a storm in
the next 8 days regardless of the suppression decision. The next layers then have
14 parameters for the number of pixels that are in high fuel (parameters 1 and
2,
[
0, 1000000

]
), the intensity of the weather conditions at the time of the fire (3

through 6,
[
0, 100

]
), and a threshold that determines whether the fire is close to

either the start or end of the fire season (7 through 14,
[
0, 90

]
).

85

regression tree node. We set this parameter to 5/6. A second parameter determines

when to stop splitting, namely: a random forest node can only be split if it contains

at least 10 examples. Finally, the size of the random forest is set to 10 trees.

Figure 4.2 shows the results of applying SMAC to find optimal policies for

the four reward function constituencies. The left column of plots show the order

in which SMAC explores the policy parameter space. The vertical axis is the

estimated cumulative discounted reward, and the point that is highest denotes the

final policy output by SMAC. Blue points are policy parameter vectors chosen by

the GEI acquisition function whereas red points are parameter vectors chosen by

SMAC’s random sampling process. Notice that in all cases, SMAC rapidly finds

a fairly good policy. The right column of plots gives us some sense of how the

different policies behave. Each plot sorts the evaluated policy parameter vectors

according to the percentage of fires that each policy suppresses. In 4.2(b), we see

that the highest-scoring policies allow almost all fires to burn, whereas in 4.2(f),

the highest-scoring policies suppress about 80% of the fires.

Let us examine these policies in more detail. The optimal policies for the

politics and timber reward constituencies allow most wildfires to burn, but for

different reasons. For the politics constituency, it is the Ecological reward that

encourages this choice, whereas for the timber constituency, it is the increased

harvest levels that result. The composite reward function produces a very similar

optimal policy, presumably because it contains both the Ecological and Harvest

reward components. These results indicate that timber company and political

interests largely coincide insofar as fire policy is concerned.

86

The most interesting case is the home owner constituency reward function,

which seeks to minimize smoke (which suggests suppressing all fires) and maximize

recreation value (which suggests allowing fires to burn the understory occasionally).

We can see in 4.2(f) that the best policy found by SMAC allows 20% of fires to

burn and suppresses the remaining 80%.

These results agree with our intuition for each reward constituency and provide

evidence that SMAC is succeeding in optimizing these policies. However, the

expected discounted rewards in Figure 4.2 are estimates obtained from the modified

MFMC surrogate model. To check that these estimates are valid, we invoked each

optimal policy on the full simulator at least 50 times and measured the cumulative

discounted reward under each of the reward functions. We also evaluated the

Suppress All and Let Burn All policies for comparison. The results are shown in

Figure 4.3.

Each panel of boxplots depicts the range of cumulative returns for each policy

on one reward function. For the policy that SMAC constructed, we also plot

a dashed red line showing the MFMC estimate of the return. In all cases, the

estimates are systematically biased high. This is to be expected, because any

optimization against a noisy function will tend to fit the noise and, hence, over-

estimate the true value of the function. Nonetheless, the MFMC estimates all fall

within the inter-quartile range of the full simulator estimates. This confirms that

the MFMC estimates are giving an accurate picture of the true rewards.

Note that because of the stochasticity of this domain, using only 50 trajectories

from the full simulator is in general not sufficient to determine which policy is

87

(a) Composite reward function. (b) Composite reward function.

(c) Politics reward function. (d) Politics reward function.

(e) Home owner reward function. (f) Home owners reward function.

(g) Timber reward function. (h) Timber reward function.

Figure 4.2: Average reward achieved for 30 trajectories. Blue diamonds are selected
by the EI heuristic and red diamonds are randomly sampled points.

88

(a) Policies for composite reward function. (b) Policies for politics reward function.

(c) Policies for home owner reward func-
tion.

(d) Policies for timber reward function.

Figure 4.3: Each set of box charts show the performance of various policies for
a constituency. The individual box plots show the expected discounted reward
for each of the policies optimized for a constituency, as well as the hard-coded
policies of suppress-all and let-burn-all. The red dashed lines indicate the expected
discounted reward estimated by MFMCi.

89

optimal for each reward function. The only clear case is for the home owner

reward function where the SMAC-optimized policy is clearly superior to all of the

other policies.

4.5 Discussion

Previous work on high-fidelity wildfire management [27] has focused only on pol-

icy evaluation, in which the full simulator was applied to evaluate a handful of

alternative policies. This chapter reports the first successful policy optimization

for wildfire suppression at scale. This chapter demonstrates that SMAC applied

to our MFMC-based surrogate model is able to find high-quality policies for four

different reward functions and do so at interactive speeds. This combination of op-

timization efficiency and robust ease of use has the potential to provide a basis for

interactive decision support that can help diverse groups of stakeholders explore

the policy ramifications of different reward functions and perhaps reach consensus

on wildfire management policies.

90

5 Conclusion

The three chapters of this thesis explore three questions surrounding the applica-

tion of machine learning methods to public policy problems. First, we developed a

visual analytics environment for testing MDPs. Such testing methods are required

if the field of machine learning is to be trusted for public policy decision making.

Our evaluation of the visualization on a simplified version of our wildfire simulator

illustrated this point when we found a large number of bugs showing the simulator

lacked ecological validity.

Having shown the utility of the visualization for a simplified simulator, we then

turned to dealing with the full-fidelity simulator. However, the computational

expense of the simulator prevented adequate exploration of the policy parameter

space. Consequently, we developed an extension to Model-Free Monte Carlo that

supports the rapid visualization of state variables for a changing policy function.

The resulting algorithm is the first successful application of Model-Free Monte

Carlo to a large state space MDP.

In our final manuscript, we provided an optimization method that is both fast

enough to run interactively and capable of handling a variety of reward and policy

function spaces. Collectively, the contributions of fast simulation, optimization,

and visualization allow domain experts and researchers to detect bugs and ex-

plore why the optimization system makes a particular recommendation. Further,

91

we note that our motivating domain of wildfire suppression policy has heretofore

never successfully been optimized over 100 year time horizons with a high fidelity

simulator.

92

6 Future Work

Machine learning public policy recommendations should be testable for correctness,

explainable, and negotiable to reconcile stakeholder preferences. Our completed

research focuses on developing and evaluating a visual analytic system for the

testing use case. The immediate next step is to formally address the use cases of

explainability and negotiability. Future work in these areas potentially includes

changes to the visual interface, additional algorithms, and a formal evaluation with

stakeholders.

Supporting the negotiation use case involves exploring the decisions selected by

policies optimized for different constituencies. In the current visualization design,

it is the user’s responsibility to select reward parameters that may be informative.

A potential algorithmic improvement for the visualization would provide a model

predicting the policy response surface for changes to the reward function. With

a model predicting the optimized policy, it is possible to more quickly identify

where stakeholders may disagree in the behavior of the policy, and seek out in-

stances where a composite reward function may produce a policy that is mutually

agreeable.

We also identify research opportunities building on the findings of our surrogate

wildfire simulator. The surprisingly strong performance of the biased version of

MFMCi suggests that a distance metric that is aware of trajectory sampling biases

93

may substantially improve performance. Current distance metrics can repeatedly

incur small errors even when a more carefully stitched state could reduce the

accumulation of error by finding a policy in the database that largely agrees with

the target policy.

94

Bibliography

[1] Pieter Abbeel, Varun Ganapathi, and Andrew Y. Ng. Learning Vehicular
Dynamics, with Application to Modeling Helicopters. Advances in Neural
Information Processing Systems (NIPS), pages 1–8, 2005.

[2] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models
in reinforcement learning. International Conference on Machine Learning,
pages 1–8, 2006.

[3] Shehzad Afzal, Ross Maciejewski, and Davis S. Ebert. Visual Analytics Deci-
sion Support Environment for Epidemic Modeling and Response Evaluation.
In Visual Analytics Science and Technology (VAST), 2011 IEEE Conference
on, pages 191–200. IEEE, 2011.

[4] Bachisio Arca, Tiziano Ghisu, William Spataro, and Giuseppe a. Trunfio.
GPU-accelerated Optimization of Fuel Treatments for Mitigating Wildfire
Hazard. Procedia Computer Science, 18:966–975, 2013.

[5] Jonathan Baxter, Peter L Bartlett, and Lex Weaver. Experiments with
Infinite-Horizon, Policy-Gradient Estimation. Journal of Artificial Intelligence
Research, 15:351–381, 2001.

[6] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The
Arcade Learning Environment: An Evaluation Platform for General Agents.
47(IJCAI):253–279, 2012.

[7] Richard Bellman. Dynamic Programming. Princeton University Press, New
Jersey, 1957.

[8] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P
Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific Belmont, MA, 1995.

[9] Maryam Booshehrian, Torsten Möller, Randall M. Peterman, and Tamara
Munzner. Vismon: Facilitating Analysis of Trade-Offs, Uncertainty, and Sen-
sitivity In Fisheries Management Decision Making. In Proceedings of Euro-

95

graphics Conference on Visualization 2012 (EuroVis 2012), pages 1235–1244.
Computer Graphics Forum, 2012.

[10] Matthew Brehmer and Tamara Munzner. A multi-level typology of ab-
stract visualization tasks. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2376–2385, 2013.

[11] Leo Breiman. Random Forests. Machine learning, 45(1):5–32, 2001.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym, 2016.

[13] Bertjan Broeksema, Thomas Baudel, Alex Telea, and Paolo Crisafulli. Deci-
sion Exploration Lab: A Visual Analytics Solution for Decision Management.
IEEE Transactions on Visualization and Computer Graphics, 19(12):1972–
1981, 2013.

[14] Mark Cutler, Thomas J. Walsh, and Jonathan P. How. Reinforcement learn-
ing with multi-fidelity simulators. 2014 IEEE International Conference on
Robotics and Automation (ICRA), (1):3888–3895, 2014.

[15] Marc Peter Deisenroth. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, 2(2011):1–142, 2011.

[16] TG Dietterich, MA Taleghan, and Mark Crowley. PAC Optimal Planning
for Invasive Species Management: Improved Exploration for Reinforcement
Learning from Simulator-Defined MDPs. Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[17] G. Dixon. Essential FVS : A User’s Guide to the Forest Vegetation Simulator.
USDA Forest Service, Fort Collins, CO, 2002.

[18] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking Deep Reinforcement Learning for Continuous Control. In In-
ternational Conference on Machine Learning (ICML-16), volume 48, page 14,
2016.

[19] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. Clinical
data based optimal STI strategies for HIV: a reinforcement learning approach.
Proceedings of the 45th IEEE Conference on Decision and Control, pages 667–
672, 2006.

96

[20] Mark Finney, Isaac C Grenfell, and Charles W McHugh. Modeling contain-
ment of large wildfires using generalized linear mixed-model analysis. Forest
Science, 55(3):249–255, 2009.

[21] Mark A. Finney. FARSITE: fire area simulator model development and eval-
uation. USDA Forest Service, Rocky Mountain Research Station, Missoula,
MT, 1998.

[22] Raphael Fonteneau, Susan A Murphy, Louis Wehenkel, and Damien Ernst.
Model-Free Monte Carlo-like Policy Evaluation. Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (AISTATS
2010), pages 217–224, 2010.

[23] Raphael Fonteneau, Susan a Murphy, Louis Wehenkel, and Damien Ernst.
Batch Mode Reinforcement Learning based on the Synthesis of Artificial Tra-
jectories. Annals of Operations Research, 208(1):383–416, Sep 2013.

[24] Raphael Fonteneau and L A Prashanth. Simultaneous Perturbation Algo-
rithms for Batch Off-Policy Search. In 53rd IEEE Conference on Conference
on Decision and Control, 2014.

[25] Alborz Geramifard, Robert H Klein, Christoph Dann, William Dabney, and
Jonathan P How. RLPy: The Reinforcement Learning Library for Education
and Research. http://acl.mit.edu/RLPy, 2013.

[26] Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini Shamasunder, Margaret
Burnett, Weng-Keen Wong, Simone Stumpf, Shubhomoy Das, Amber Shinsel,
Forrest Bice, and Kevin McIntosh. You Are the Only Possible Oracle: Effec-
tive Test Selection for End Users of Interactive Machine Learning Systems.
IEEE Transactions on Software Engineering, 40(3):307–323, 2014.

[27] Rachel M. Houtman, Claire A. Montgomery, Aaron R. Gagnon, David E.
Calkin, Thomas G. Dietterich, Sean McGregor, and Mark Crowley. Allowing
a Wildfire to Burn: Estimating the Effect on Future Fire Suppression Costs.
International Journal of Wildland Fire, 22(7):871–882, 2013.

[28] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-
Based Optimization for General Algorithm Configuration (extended version).
University of British Columbia, Department of Computer Science, pages 507–
523, 2010.

97

[29] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient Global
Optimization of Expensive Black-Box Functions. Journal of Global Optimiza-
tion, 13:455–492, 1998.

[30] Daniel Keim, Gennady Andrienko, Jean-daniel Fekete, G Carsten, Guy Melan,
Daniel Keim, Gennady Andrienko, Jean-daniel Fekete, and G Carsten. Visual
Analytics: Definition, Process, and Challenges. Information Visualization -
Human-Centered Issues and Perspectives, pages 154–175, 2008.

[31] Todd Kulesza, Margaret Burnett, Weng-keen Wong, and Simone Stumpf.
Principles of Explanatory Debugging to Personalize Interactive Machine
Learning. In ACM Conference on Intelligent User Interfaces, 2015.

[32] H. J. Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86:97–
106, 1964.

[33] Sean McGregor. (Pull Request) fixed self.noise capitalization, 2015.

[34] Sean McGregor. Flask Server. https://github.com/MDPvis/gym/blob/feature-
mdpvis-updated/flaskserver.py, 2016.

[35] Sean McGregor. Flask Server for RLPy.
https://github.com/MDPvis/rlpy/blob/mdpvisV2Flask/flaskserver.py, 2016.

[36] Sean McGregor. IBM Watson AI XPRIZE Competitors, 2017.

[37] Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Houtman,
Claire Montgomery, and Ron Metoyer. Facilitating Testing and Debugging of
Markov Decision Processes with Interactive Visualization. In IEEE Sympo-
sium on Visual Languages and Human-Centric Computing, Atlanta, 2015.

[38] Sean McGregor, Hailey Buckingham, Thomas G. Dietterich, Rachel Hout-
man, Claire Montgomery, and Ronald Metoyer. Interactive visualization for
testing Markov Decision Processes: MDPVIS. Journal of Visual Languages
and Computing, 2016.

[39] Sean McGregor, Rachel Houtman, Claire Montgomery, Ronald Metoyer, and
Thomas G. Dietterich. Factoring Exogenous State for Model-Free Monte
Carlo. 2017.

98

[40] Sean McGregor, Rachel Houtman, Claire Montgomery, Ronald Metoyer, and
Thomas G. Dietterich. Fast Optimization of Wildfire Suppression Policies
with SMAC. 2017.

[41] Sean McGregor, Rachel Houtman, Claire Montgomery, Ronald Metoyer, and
Thomas G. Dietterich. Visualizing High-Dimensional MDPs with Model-Free
Monte Carlo. In The Multi-disciplinary Conference on Reinforcement Learn-
ing and Decision Making (RLDM), Ann Arbor, 2017.

[42] Malgorzata Migut and Marcel Worring. Visual Exploration of Classification
Models for Risk Assessment. In Visual Analytics Science and Technology
(VAST), 2010 IEEE Symposium on, pages 11–18, 2010.

[43] J. Mockus. Application of bayesian approach to numerical methods of global
and stochastic optimization. Journal of Global Optimization, 4:347–365, 1994.

[44] Tamara Munzner. A Nested Model for Visualization Design and Validation.

[45] Andrew Y. Ng. Shaping and policy search in reinforcement learning. Doctor
of philosophy, University of California, Berkeley, 2003.

[46] Andrew Y. Ng and M Jordan. PEGASUS : A policy search method for large
MDPs and POMDPs. Proceedings of the Sixteenth Conference on Uncertainty
in Artificial Intelligence, 2000.

[47] Kristin Potter, Andrew Wilson, Peer Timo Bremer, Dean Williams, Charles
Doutriaux, Valerio Pascucci, and Chris R. Johnson. Ensemble-vis: A frame-
work for the statistical visualization of ensemble data. ICDM Workshops 2009
- IEEE International Conference on Data Mining, pages 233–240, 2009.

[48] Martin Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience, 1st edition, 1994.

[49] Hrvoje Ribicic, Jurgen Waser, Raphael Fuchs, Gunter Bloschl, and Eduard
Groller. Visual Analysis and Steering of Flooding Simulations. IEEE Trans-
actions on Visualization and Computer Graphics, 19(6):1062–1075, 2013.

[50] Benjamin Schindler, Hrvoje Ribicic, Raphael Fuchs, and Ronald Peikert. Mul-
tiverse data-flow control. In IEEE Transactions on Visualization and Com-
puter Graphics, volume 19, pages 1005–1019, 2013.

99

[51] John Schulman, Sergey Levine, Michael Jordan, and Pieter Abbeel. Trust Re-
gion Policy Optimization. In International Conference on Machine Learning,
2015.

[52] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller. Visual
parameter space analysis: A conceptual framework. IEEE Transactions on
Visualization and Computer Graphics, 20(12), 2014.

[53] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger.
Gaussian Process Optimization in the Bandit Setting: No Regret and Exper-
imental Design. Proceedings of the 27th International Conference on Machine
Learning (ICML 2010), pages 1015–1022, 2010.

[54] Neville A. Stanton, Paul M. Salmon, Laura A. Rafferty, Guy H. Walker, Chris
Baber, and Daniel P. Jenkins. Human Factors Methods: A Practical Guide
for Engineering And Design. Ashgate Publishing Company, Burlington, VT,
second edition, 2013.

[55] R S Sutton, D Mcallester, S Singh, and Y Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in Neural
Information Processing Systems, 12:1057–1063, 2000.

[56] Richard S. Sutton. Integrated architectures for learning, planning, and re-
acting based on approximating dynamic programming. In Proceedings of the
Seventh International Conference on Machine Learning, pages 216–225, San
Francisco, CA, 1990. Morgan Kaufmann.

[57] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando
de Freitas. Bayesian optimization in high dimensions via random embeddings.
Journal of Artificial Intelligence Research, 55:361–387, 2016.

[58] Jürgen Waser, Raphael Fuchs, Hrvoje Ribicic, Benjamin Schindler, Gunther
Bloschl, and M. Eduard Groller. World Lines. IEEE transactions on visual-
ization and computer graphics, 16(6):1458–1467, 2010.

[59] Jürgen Waser, A Konev, B Sadransky, Z Horváth, Hrvoje Ribicic, R. Car-
necky, P. Kluding, and B. Schindler. Many Plans: Multidimensional Ensem-
bles for Visual Decision Support in Flood Management. Eurographic Confer-
ence on Visualization (EuroVis), 33(3), 2014.

100

[60] Jürgen Waser, Hrvoje Ribičić, Raphael Fuchs, Christian Hirsch, Benjamin
Schindler, Günther Blöschl, and M Eduard Gröller. Nodes on ropes: a compre-
hensive data and control flow for steering ensemble simulations. IEEE trans-
actions on visualization and computer graphics, 17(12):1872–81, dec 2011.

[61] Stefan Wender and Ian Watson. Applying reinforcement learning to small
scale combat in the real-time strategy game StarCraft:Broodwar. 2012 IEEE
Conference on Computational Intelligence and Games, CIG 2012, pages 402–
408, 2012.

[62] Western Regional Climate Center. Remote Automated Weather Stations
(RAWS). Western Regional Climate Center, Reno, NV, 2011.

[63] Ronald J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[64] Aaron Wilson, Alan Fern, and P Tadepalli. Using Trajectory Data to Im-
prove Bayesian Optimization for Reinforcement Learning. Journal of Machine
Learning Research, 15:253–282, 2014.

[65] Tom Zahavy, Nir Ben Zrihem, and Shie Mannor. Graying the black box:
Understanding DQNs. In Proceedings of The 33rd International Conference
on Machine Learning, volume 48, 2016.

[66] Andreas Zeller. Why programs fail: a guide to systematic debugging. Elsevier,
2009.

[67] Chao Zhang, Arunesh Sinha, and Milind Tambe. Keeping Pace with Crimi-
nals: Designing Patrol Allocation Against Adaptive Opportunistic Criminals.
Proceedings of the 14th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2015), (1):1351–1359, 2015.

[68] A. Zilinskas. A review of statistical models for global optimization. Journal
of Global Optimization, 2:145–153, 1992.

101

APPENDIX

102

A Appendix

A.1 Parameter Space Analysis Testing Questions

Testing questions for each of the Parameter Space Analysis questions of [52], along

with the interaction in MDPvis pursuing the question.

ID Question Interaction

1 Is the reward function giving the ex-
pected rewards?

View the discounted or undiscounted re-
wards as a fan chart and filter down the
rollouts or regenerate rollouts with fixed
policies.

2 Do the rewards reflect stakeholder
preferences?

Filter to individual rollouts and examine
its rewards.

3 Do simulated transitions result in
realistic states?

Examine individual rollouts.

4 Do simulated transitions result in
realistic state distributions?

View the histograms of state variables at
the horizon.

5 Does the historical policy produce
the historical results?

Add a variable for each variable with his-
torical data that gives the variable’s per-
centile. Display this derived variable in a
fan chart.

Table A.1: Fitting MDP Testing Questions.

103

ID Question Interaction

6 Are rollouts that complete different
from rollouts that break?

Load the failing and completing rollouts
as a comparison.

7 Does the policy inappropriately ex-
ploit modeling choices?

Detecting this unforeseen problem re-
quires exploration.

8 Are the most extreme state transi-
tions realistic?

Filter to the most extreme transitions.

Table A.2: Outlier MDP Testing Questions.

ID Question Interaction

9 What is the state of the world when
the transition function breaks?

Select only the rollouts that don’t com-
plete and explore them.

10 Does one policy have a higher risk of
catastrophic outcome despite having
a better expected value?

Compare the rollouts from both.

11 Are action selections meaningful? Filter the histograms to a single state and
see what action is selected.

12 Does an optimized policy realisti-
cally outperform a hand-coded pol-
icy?

Compare the rollouts from both.

13 Are state transitions realistic? View state detail.

14 Do policies differ in their resultant
state distributions as expected?

Generate two sets of rollouts under differ-
ent policies and compare.

Table A.3: Partition MDP Testing Questions.

ID Question Interaction

15 Can the user do better than the op-
timized policy by changing the pa-
rameters?

Change the parameters of the policy func-
tion and generate new Monte Carlo roll-
outs.

16 Is the policy converged to a local op-
timum?

Ask it to optimize from the current posi-
tion.

17 Is the policy converged to an accept-
able local optimum?

Change the starting policy to a com-
pletely different policy and re-optimize.

18 Is the optimization algorithm mak-
ing efficient use of computation?

Add variables to the output describing
the learning process.

Table A.4: Optimization MDP Testing Questions.

104

ID Question Interaction

19 What is the distribution of states at
a particular horizon?

View the fan charts.

20 How certain is the policy function
about a specific choice?

View the shifting distribution of ac-
tion selection while filtering the state
variables.

Table A.5: Uncertainty MDP Testing Questions.

ID Question Interaction

21 Do small changes in the parameters
produce vastly different outcomes

Change parameters then compare the two
rollout sets.

22 Do small changes in the parameters
produce different policies?

Change the parameters and reoptimize.

23 Do different policies earn reward
through maximizing different com-
ponents of the reward function?

Compare rollout sets.

24 Does the policy respond properly to
changes in the reward function?

Change the reward parameters and re-
optimize.

25 What are the differences in out-
comes produced by different poli-
cies?

Load the two sets of rollouts as a compar-
ison.

26 What are the most important
drivers of policy?

Filter variables in the histogram and
watch how the proportion of selected ac-
tions update.

Table A.6: Sensitivity MDP Testing Questions.

