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Chapter 1: Introduction

Climate change presents many research challenges to environmental and resource

economists, including the problem of how to estimate the economic value of the nu-

merous costs and benefits arising from a changing climate. The past two decades

has seen an increasing number of empirical studies analyzing the effects of climate on

various types of economic activity, including agricultural production [47, 48], labor

allocation [17], war [26], and electricity demand [4]. Within the recent strand of em-

pirical studies on human-climate linkages is the Ricardian method that is commonly

used to estimate the effects of climate on agricultural land values using cross-sectional

data on agricultural net returns and climate [36, 37, 47]. Ricardian analyses suggest

that current climate change projections will generate a range of impacts on agricul-

tural land values, from costly declines in low latitudes of the globe to potential gains

in higher latitudes. The key advantage of Ricardian analyses is that they implic-

itly account for privately optimal adaptation to climate, by empirically relating a

regions climate to the land-use specific economic net returns that arise from private

management decisions under that climate.

Climate affects economic outcomes in two ways [25]. First, climate has a direct

effect on economic outcomes by affecting the biophysical conditions that humans face.

For example, warmer winters can increase growth of a forest landowners trees by ex-

tending the growing season. Second, climate has a belief effect on economic outcomes
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by influencing peoples decisions through adaptive measures. For example, a forest-

land owner located in the inter-mountain western United States plants ponderosa

pine trees because the landowner believes ponderosa will be more profitable than

Douglas-fir trees given the regions dry climate and cold winters, or the landowner

could leave forest use entirely in favor of an alternative land system. Both direct

and belief effects are important when analyzing the effects of climate on economic

outcomes. The framework developed in this dissertation allows analysis of climate

impacts on land-use in a manner that accounts for both the direct and belief effects

of climate.

This dissertation fills a gap between climate’s impact within single systems and

the drivers of land-use change across broad systems. A limitation of the Ricardian

approach is that potential adaptations are restricted by the choice of economic out-

come to measure. Recent results for climate’s impact on agriculture indicate climate

change will have significant negative impacts on agriculture, with little evidence of

adaptation [9]. A possible explanation for the lack of predicted adaptation may be

the omission of adaptations out of agriculture into substitute land systems such as

forestry or urban use. In order to encompass the full range of climate change adapta-

tion across and within each broad land-use system I develop a discrete choice model

where separately estimated Ricardian functions drive land-use change incentives un-

der alternate climate change scenarios.

The model developed and executed here is the first discrete choice land-use model

that predicts the probability of broad land-use change as an explicit function of cli-

mate. A significant strand of the literature on land-use and climate is concerned with
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how land-use change alters local climate [42], species habitat [32], and species diver-

sity [28]. Feddema et al [13] demonstrate how changes in agricultural land cover alter

the results of climate change simulations. Kalnay & Cai [29] estimate the impact

of urbanization on near surface warming, finding a significant influence of land-use

change on local climate. My work differs from the aforementioned literature by study-

ing the counter relationship: how climate drives land-use change. To accomplish my

objective, I build on a rich literature on the economic and climatic drivers of land-use

change. Lawler et al [32] use a discrete choice model to generate projections of future

land-use change under alternative crop demand scenarios. Fezzi & Bateman [15, 5]

use a spatially explicit structural approach to the economic modeling of agricultural

land-use change as determined by economic, policy, and environmental factors, and

further consider how the resulting adaptive response further alters environmental im-

pacts [16]. My land-use change model differs by establishing an empirical link between

climate and the determinants of land-use choice, and using that relationship to sim-

ulate future changes in land cover that result from discrete changes to temperature

and precipitation.

A novel Ricardian analysis is conducted that estimates the effects of climate on the

annualized net economic returns to forestry across the conterminous United States.

Climate has been shown to affect the forestry sector of the economy through its effects

on the biological growth and productivity of trees [31, 27, 45]. Recent numerical

analyses have highlighted the potential economic value of extensive margin adaptation

in forestry, particularly through replanting choices [20]. However, there have been

no large-scale empirical analyses that link observable measures of the net economic
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returns to forestry in a region with climate conditions in that region [10].

The foundation of my forest Ricardian analysis is a novel county-level database

of net returns to forestry for the conterminous United States compiled and estimated

from numerous data sources. Unlike U.S. agriculture − the focus of many Ricardian

analyses − there is no readily available national database of net economic returns

to forestry. Two primary data products are brought together to develop the full

database. First, stumpage price data is compiled for numerous tree species across

dozens of public and private data sources across the country encompassing the years

1998 to 2014. Second, highly localized timber growth equations are developed and

estimated by exploiting a big data set comprised of over 32 million observations of

growing stock volume and stand age from the U.S. Forest Services Forest Inventory

and Analysis (FIA) data across the conterminous U.S. My unique database includes

approximately 59,000 separately estimated timber growth equations that generate

timber yields which vary by county and by tree species group. The relatively fine-

scale variation in the estimated timber growth equations embed localized climatic

factors such as direct productivity impacts and belief effects arising from landowners

intensive margin adaptation decisions from managing particular tree species.

My dissertation is organized as follows. Chapter 2 characterizes the analytic

framework used to construct and analyze the functional relationship between climate

and land-use change. In chapter 3, measures of the economic net returns to alternative

land-uses are developed for the conterminous U.S. including the novel estimation of

tree growth equations used to construct forest rents. Chapter 4 presents the results

for separately estimated Ricardian functions of crop, pasture, forest, and urban land-
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use types. In chapter 5, climate impact results from chapter 4 are integrated into a

broad land-use choice model. Climate’s impact on broad land-use change is analyzed

for the southeastern U.S. in section 5.2.2. Chapter 6 concludes.
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Chapter 2: Analytic Framework

Developing a model of climate’s impact on land-use change is accomplished by i)

estimating the effects of climate on the net returns to alternative land-uses in the

manner of the existing Ricardian literature (e.g. [36]) and ii) estimating the effects

of net returns to land on observed land-use decisions in the manner of the existing

econometric land-use literature (e.g. [35]).

This chapter is laid out as follows. First, I present the discrete choice modeling

framework used to predict land-use transitions for land starting in crop, pasture, and

forest use. The analysis accounts for conversion to crops, pasture, forest, and urban

use. These four systems define the major land-uses in the eastern U.S., the region

examined in great detail in section 5.2. Second, I describe the framework underlying

chapter 4’s estimation of separate Ricardian functions, uniquely specified to describe

climate’s affect on the economic net returns to each alternative land-use system. In

chapter 5 these frameworks are integrated to analyze the impact of climate change

on land-use change. Finally, later analysis of climate impact on transition probability

and the future landscape are motivated in sections 2.3 and 2.4.
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2.1 Land-use Change Model

This analysis builds on an extensive body of research concerned with land-use choice

and the resulting impacts to ecosystem services. Stavins and Jaffe [52] demonstrated

how relative economic returns to land drive land-use change, recognizing the signifi-

cant difference between agricultural land and forest land in terms of the provision of

ecosystem services, and that policies that incentivize one land system over another

can have unintended consequences. Bockstael [7] highlighted the inherently spatial

nature of land-use and ecosystem services, presenting the necessary framework for

modeling land owner decisions and simulating landscape changes. The key insight in

[7] was that the choice probabilities resulting from a discrete choice model must be

updated each period so as to account for the influence of land supply on the decision

to convert from one system to another. Lubowski built on that earlier work by ex-

tending the spatial scale of the land-use change problem to the U.S. national level,

analyzing the market and land quality drivers of land-use change [35], and study-

ing the potential costs associated with a national carbon sequestration policy [34].

Radeloff et al [44] simulate, at the national level, the future U.S. landscape under

alternative policy scenarios. It is from this rich base of knowledge that the current

study begins.

I employ an econometric model of the revealed preferences of landowners based

on detailed micro-data of land-use and land quality spanning four major land-uses.

Because the choice of land-use on an individual parcel can be described by a finite

discrete set, the conversion decision can be modeled with a discrete choice framework.
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Land owners are assumed to choose the productive use k that maximizes the net

present discounted return to land.

Rinkt =

∫
(PinkT+tQinkT+t − SinkT+tZinkT+t)e−rtdt (2.1)

Where R is the economic net return to land-use k on parcel i located in county

n in time t, P is the output price, Q is the output quantity, S is a vector of input

prices, Z is a vector of inputs, and r is the discount rate.

Following the land-use conversion framework outlined by [49], we assume land

owners have static expectations of conversion costs and future net returns so that

land owner’s will convert from land-use j to k in time t when the net returns less

conversion costs Cjkt for use k exceed the net returns from the current land-use j.

arg max
k

(Rkt − rCjkt) ≥ Rjt (2.2)

Assuming the factors that determine R are additively separable into observable

and unobservable components, we can decompose R into a deterministic portion Vinkt

and a random portion εinkt so that

Rinkt = Vinkt + εinkt, (2.3)
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and define Vinkt linearly as

Vinkt = β
′

kXinkt. (2.4)

Where Xinkt is a vector of observable characteristics of the land-use k (e.g. net

returns, land quality, etc.), and βk is a vector of unobserved parameters to be esti-

mated. If we further assume that land-use conversion follows a Markovian process

then the probability of conversion between land-uses can be modeled as a function of

the parcel’s current land-use and exogenous parcel and county level attributes [53].

Then the probability that a land parcel converts from use j to use k in time t is

Pr(β
′

kXinkt − β
′

jXinjt > εinjt − εinkt). (2.5)

If the εinkt are assumed to be iid according to a type I extreme value distribution

then the probability that land owner i converts from land-use j to k is given by the

logit structure where

Pinjkt =
exp(β

′

kXinkt)∑K
m=1 exp(β

′
mXinmt)

. (2.6)

The specification in equation 2.6 embodies the property of Independence of Irrele-

vant Alternatives (IIA). Specifically, IIA restricts the idiosyncratic error terms (εinkt)

to be uncorrelated across choice options for a given land owner. In the next section I
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lay out the framework for identifying the effect of climate on the value of land which

enter as independent variables in equation 2.6.

2.2 Climate Econometrics & the Ricardian Framework

Climate plays a significant role in determining the value of land in each of its potential

uses because landowners are assumed to maximize net returns to land given their local

climactic conditions. Climate change impacts and the suite of adaptation strategies

vary significantly by region and system requiring different econometric treatment

for each land-use. Many variables affect land-use decisions including the market

return associated with each system. A key driver of these market returns is climate

and weather. Where weather describes the current realizations of variables such as

temperature or precipitation, and climate describes the distribution of weather over

time.

This section formalizes the concept of adaptation and develops the intuition be-

hind my empirical strategy using a forest system as motivation. Consider an alteration

of the Ricardian climate model from the seminal work of Mendelsohn, Nordhaus, and

Shaw [36]. Suppose there exists a functional relationship between the net return to

land in forest use and a climate variable such as temperature. Consider figure 2.1,

the curve labeled species 1 presents net economic returns as an optimized function

over climate, whereby small changes in climate induce the landowner to make small

decisions continuously to maximize the return to having the land planted in species

1. We refer to these continuous management decisions as actions on the intensive
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margin. Intensive margin decisions may include altering the rotation age, thinning

out the parcel to encourage growth, or treating the parcel to reduce fire risk, all while

continuing to keep the land planted in species 1.

In addition to small continuous adaptations, there is a set of discrete management

choices that can characterized by a threshold that defines the extensive margin. An

important extensive margin choice in forestry is the decision to switch from species

1 to species 2 in figure 2.1. A key insight from [36] was that regressing land value

on climate implicitly captures all continuous and discrete land owner adaptations by

tracing out a function akin to the upper envelope of the curves in figure 2.1. Guo and

Costello [20] extend Mendelsohn et. al.s setup and develop an analytic framework

for valuing climate change adaptation on the extensive margin. Consider figure 2.2,

where climate begins at C and changes to C′. At C, the landowner optimally replants

species 1 and their net return is found at point a. At C′, the landowner optimally

plants species 2 and their net return is found at point b. If they had remained in

species 1 with new climate C′, then their net return would have been found at point

c. The impact of the discrete change in climate from C to C′ in figure 2.2 is the

difference in net returns from point a to point b, and implicitly includes the value

of adaptation on the extensive margin. The value of adaptation in figure 2.2 is the

difference between the net returns at point b and the net returns at point c. The

value of adaptation is contingent on the level of climate [20].

The flexibility of the Ricardian model to capture extensive margin adaptation

increases as the land value measure encompasses more potential land-uses. For ex-

ample, if I define value as the net return to ponderosa pine forests only, then we
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capture adaptations within a ponderosa pine system. However, if we define net re-

turns as that accruing to forestry in general (i.e. all potential species) then we capture

adaptations both within each forest type system and across multiple substitute tree

species. For example, the net return functions in figure 2.2 would capture the ability

to switch between species 1 and species 2, but they would not capture the ability to

adapt by switching to a species other than species 1 or species 2, or leaving forestry

entirely. The preceding thought exercise can also be applied to agricultural and urban

land values and their associated adaptation strategies.

Hsiang [25] formalizes the econometric study of climate and weather effects on eco-

nomic outcomes. Applying Hsiang’s framework to forestry, climate affects economic

outcomes through a direct effect on the productive capacity of land (e.g. warmer tem-

peratures increase tree growth rate). Further, climate affects decisions by landowners

that are driven by their expectation of how climate and weather affects their produc-

tion, known as the belief effect. Let NRk be the net economic return to production

in land-use k, and C be a vector containing temperature and precipitation.

NRk(C) = NRk(c(C),b(C)) (2.7)

The net returns to a land-use system k are a function of the direct c(C) and belief

b(C) effects of climate. If we assume that landowners have a good sense of C at their

location, then it is reasonable to assume they have adapted their current land-use

practices to best fit their local climate. Therefore, data on observed net returns will
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reflect both direct effects and belief effects. The cross-sectional (Ricardian) approach

uses spatial variation in climate variables to identify the total effect of climate on net

returns, which is the differential of NRk with respect to C.

dNR(C)

dC
= ∇cNR(C) · dc

dC
+∇bNR(C) · db

dC
(2.8)

=
K∑
k=1

∂NR(C)

∂ck

dck
dC

+
N∑
n=1

∂NR(C)

∂bn

dbn
dC

(2.9)

Equation 2.8 provides an expression where the total marginal effects of climate

are equal to the sum of the direct effects and the belief effects. The goal is to identify

the total effect of climate on net returns in an econometric estimation of adaptation.

The empirical problem is to estimate the average treatment effect β for a change in

climate δCnτ on the net returns to land.

β = E[NRnτ | Cnτ + ∆Cnτ , xnτ ]− E[NRnτ | Cnτ , xnτ ] (2.10)

That is, the difference in expected outcomes given all non-climactic factors under

two different climates. We cannot directly observe β because county n can never be

in both climate states at the same time, which is known as the fundamental problem

of causal inference [23]. If two counties n and m were identical in every way except

for their climate then the unit homogeneity assumption holds. This assumption is

represented by the equality
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E[NRnτ | C, xnτ ] = E[NRmτ | C, xmτ ]. (2.11)

Unit homogeneity is the identifying assumption for the Ricardian approach and

assumes that no unobserved drivers of NRk are also correlated with climate. When

the unit homogeneity assumption holds we can use the following unbiased estimator

which compares net returns in different locations which differ by climate

β̂ = E[NRmτ | Cnτ + ∆Cnτ , xmτ ]− E[NRnτ | Cnτ , xnτ ]

= E[NRnτ | Cnτ + ∆Cnτ , xnτ ]− E[NRnτ | Cnτ , xnτ ]

= β.

I rely on the extensive revealed preference literature to estimate a variant of the

following equation to recover the functional relationship between climate and the net

return to land-use k.

NRk
n = αkn + βknC

k
n + γknxn + εkn (2.12)

Where C is a vector of climate variables specific to county n and land-use k, and

xn is a vector of non-climactic variables that also affect net returns. Four Ricardian

functions are developed and estimated in chapter 4, corresponding to the four broad
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land-uses modeled in chapter 5.

2.3 The Effects of Climate Change on Land-use Change Probability

By substituting equation 2.12 into equation 2.6, I define a function Pinjk that returns

the probability of plot i converting from land-use j to k given the economic net returns

to alternative land-uses as determined by local climate and land quality.

Pinjk = f(NRk1(C), NRk2(C), · · · , NRK(C)|LCCi) (2.13)

The total derivative of P with respect to climate is composed of the sum of the

partial effects relative to each land-use assuming that the probability function is

evaluated near the current level of net returns, climate, and land quality distribution.

dPinjk =
∂f

∂NRk1
· ∂NR

k1

∂C
+ · · ·+ ∂f

∂NRK
· ∂NR

K

∂C
(2.14)

The total increment of P is derived from a linear approximation from the derivative

defined in 2.13.

∆Pinjk = f(∆NRk1 ,∆NRk2 , · · · ,∆NRK)− f(NRk1 , NRk2 , · · · , NRK) (2.15)
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Where ∆NRk = NRk(∆C)−NRk(C) is the difference in net return between the

future and present climate levels holding all other net return determinants fixed. The

partial increment in probability with respect to use k deriving from climate’s impact

on the net returns to use j can be stated as:

∆jPinjk = f(∆NRj, NR2, · · · , NRK)− f(NRj, NR2, · · · , NRK) (2.16)

A set of partial increments (effects) can be calculated for each starting land-use,

and represent climate’s effect isolated on one land-use system at a time, holding it’s

effect on the other uses fixed. Construction of the probability function ensures that

before and after any changes in probability, the sum of the probabilites for each

starting use must sum to one, and that the sum of changes to those probabilites must

equal zero. Such that
∑J

j=1 Pinjk = 1 and
∑J

j=1 ∆jPinjk = 0.

2.4 The Impact of Climate Change on Future Land Area

The ultimate impact of climate change on the future landscape is driven by the

starting land-use, land quality distribution, and path of predicted climate changes.

In addition, non-climatic factors define a baseline trend in each land-use such that the

number of acres in each system is either increasing, decreasing, or remains unchanged

on net. Further, climate change can amplify, dampen, or have no effect on the baseline

trend.
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Consider four possible impacts of climate change on land-use change. Figure

2.3 illustrates the four cases. An accelerated decline is characterized by a declining

baseline trend that is amplified by the total effect of climate. Inhibited decline occurs

when a declining trend in land area is slowed by climate change. An increasing

baseline may be accelerated or inhibited depending on climate’s total effect as defined

in equation 2.15. Each of these scenarios assumes that climate’s impact is small

relative to non-climatic drivers of land-use change such that the trend is monotonic.

From these relationships between future land area and climate change impact, I

define a climate change impact factor that describes climate’s impact on land-use

change relative to the non-climatic drivers embedded in the baseline trend.

ccfact =
∆C

∆B
(2.17)

Where ∆B is the percentage change between future land area and today’s land

area under the baseline (i.e. without climate change), and ∆C is the percentage

difference between future land area under climate change and future land area under

the baseline. The sign of ∆B indicates the direction of the baseline trend, and the sign

of ccfact indicates whether climate change accelerates (positive) or inhibits (negative)

the baseline trend.
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Chapter 3: The Economic Net Return to Land

The land-use model developed and estimated in chapter 5 relies on the economic

incentives that drive land-use management decisions. I assume that the suite of

choices faced by landowners is revealed by the current choices observed across the

landscape, and the resulting spatial distribution of the economic net return to land.

The present chapter describes the development of measures for the economic net

return to four broad land-use systems: forest, crop, pasture, and urban. A strength

of this economic approach is that the drivers of land-use change are measured in a

common unit, dollars per acre of land, allowing comparison of value across systems.

Special attention is given to the novel construction of forest net returns.

3.1 Forest Net Return

This analysis features a novel construction of current county-level annualized net eco-

nomic returns to forestland for the conterminous U.S., which comprises the primary

dependent variable in the forest Ricardian function. Classical forest economics posits

that forest land values depend on timber growth, stumpage prices, a discount rate,

and the rotation period with which harvests occur [12]. In contrast to agriculture,

forestry rotations occur over decades rather than annually requiring a novel approach

to forest net return construction. The aim is to construct a measure of the current



21

annual profitability of U.S. timberland at the county-level. Development of land rents

builds from the strategy in [34] by constructing annualized county-level net returns

to forestry. Relative to [34], the present approach captures far greater spatial and

species variation in timber yields and avoids imposing belief effects about future cli-

mate by using empirically-derived rotation lengths from the FIA data rather than

basing rotation lengths on Faustmann optimized cut periods.

3.1.1 Basic theory of forestry land values and net returns

Rotational forestry consists of periodic harvests with subsequent replanting. The

landowner only earns profit at harvest, and the landowners value function can be

written in dynamic programming form as follows [20]:

Vt(a, s) = max



P (s, t) · vol(a, t, s)− C + ρVt+1(1, s1)

P (s, t) · vol(a, t, s)− C + ρVt+1(1, s2)

...

P (s, t) · vol(a, t, s)− C + ρVt+1(1, sS)

ρVt+1(a+ 1, s)

(3.1)

Where P (s, t) is the stumpage price of species s at time t, vol(a, t, s) is the timber

volume of age a trees, C is the cost of afforestation, and ρ is a discount factor. At each

point in time t, the landowner chooses whether to harvest and earn a one-time profit
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of P (s, t) · vol(a, t, s) − C, with subsequent replanting optimized over the choice of

which tree species s to plant. If the landowner chooses not to harvest, then their trees

grow by vol(a+1, t+1, s)−vol(a, t, s) over the next period. The volume function has

time t as an argument to capture the fact that climate change might alter tree growth.

The classic Faustmann version of the problem is embedded in 3.1 and emerges when

landowners have static expectations and expect no future changes in price, the timber

volume function, nor afforestation costs.

Guo and Costello [20] show how climate change can be introduced into the forestry

land value function in 3.1 when timber volume functions for alternative tree species

are a function of climate, and so the landowners optimal replanting choice and harvest

time depend on climate change. In particular, their approach assumes that landown-

ers have knowledge about climate change into the future as well as the functional link

between vol(a, t, s) and climate. The optimized land value function Vt(a, s) can be

used to construct an annualized net return (rental value) of forestland as Vt(a, s) · δ,

where δ is the discount rate embedded in ρ. Lubowski et. al. [34] constructed county-

level annualized net returns to forestry by collecting data on stumpage prices P and

afforestation costs C, incorporating regional aggregated timber volume functions from

U.S. Forest Service reports to approximate vol(a, t, s), and then derived a fixed rota-

tion time T by solving the maximization problem in 3.1 for each county under a static

expectations Faustmann assumption. Guo and Costello [20] and Lubowski et al. [34]

impose different belief effects on landowners. Guo and Costello impose a belief about

a climate change trajectory and dynamically optimized responses by landowners to

climate change. Lubowski et al. [34] imposes a belief that nothing changes in the
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future, and so the same rotation length T occurs in perpetuity. My approach is to

construct county-level net return measures that impose as little as possible about

landowners belief effects with respect to climate change.

3.1.2 Stumpage price and afforestation cost data

Analysis of forestry rents at the national level has been limited by the lack of a

centralized and consistently reported data source for stumpage prices. I compile

a unique national level stumpage price data set from numerous sources including

state-level departments of natural resources, University extension services, the US

Forest Service, and private reporting services (see appendix B for a complete list).

In locations where price data is not observed, either because it was not reported

and/or collected, or when the there is little-to-no market activity, county-species

price is extrapolated by taking advantage of correlation across space using neighboring

counties and regions.

All stumpage prices are georeferenced to the county level, and the reported species

were mapped to species groups defined by the U.S. Forest Service. Missing years for

each county-species pair are interpolated linearly using the observed values. Ob-

served stumpage prices are used to spatially interpolate missing prices for counties

that did not have a reported stumpage price. The interpolation is executed whenever

the observed species was present in large enough volumes to estimate growth in that

county. The spatial interpolation algorithm first looks for the missing price in neigh-

boring counties that share a boundary. If multiple prices are found, then the volume
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weighted average price is used. This is repeated for 2nd and 3rd degree neighbors (i.e.

two and three counties away). Finally, when county-neighbor price is unavailable, the

state or regional weighted average is used.

Forest establishment costs were econometrically estimated by Nielsen et al [40] for

each county in the contiguous United States. Their estimation is based on enrollment

data from the USDAs Conservation Reserve Program.

3.1.3 Tree Growth Functions

Past natural science literature has shown examples of how climate affects tree growth

for particular species and regions, vol(a, t, s) [31, 45]. Given the substantial climate

variability across the conterminous U.S., tree growth functions that differ across space

are ideal. I estimate approximately 59,000 county-species specific timber growth

equations specific to county, forest type and species group using a permutation of von

Bertalanffys function for organic growth [56, 54].

V (a)ns = αns(1− e−βa)3 (3.2)

Where a is stand age as defined above, and αns and βns are parameters to be

estimated which vary across county n and forest species s. The α parameter is

interpreted as the asymptotic limit of tree volume, the volume at which growth is

zero, and the β parameter is the rate of growth. The FIA observations also include
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information on stand size, site class (i.e. land productivity), and land disturbance

(e.g. clear cutting, fire occurrence, etc.). The inclusion of these variables in the

sample implicitly incorporates their effects into the growth function. The growth

function V (a)ns for each ns is estimated using a non-linear least squares algorithm

where the observed FIA data is fit to a growth curve by minimizing the sum of the

squared deviations using the quasi-Newton method BFGS.

Bertalanffy growth functions have been used extensively in natural resource sci-

ences and apply generally to any organic life. For example, Van Deusen and Heath

[54] use von Bertalanffy functions to estimate growth for the measurement of carbon

characteristics in U.S. forestland. The growth parameter estimates rely on over 32

million FIA observations of stand age (in years) and growing stock volume (cubic

feet per tree). Variation within species group between individual trees identifies the

functional relationship between volume and age given the unique characteristics of

each county-species pairing.

The complete FIA data set covers 52 forest species groups that combine to form

167 different forest types. When averaged across all county-species equations in the

conterminous U.S., estimated values for α and β are 39.9 and 0.068, respectively.

Figure 3.1 contrasts two estimated von Bertalanffy growth functions for Douglas-fir

for two different Oregon counties Deschutes county (α = 124.4, β = 0.023) in the

semi-arid central portion of Oregon, and Benton county (α = 753.6, β = 0.021)

in a much wetter and more temperate portion of western Oregon. The difference

in estimated growth functions across these two climates within the same state is a

striking example of how climate affects tree growth at relatively fine spatial scales.
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3.1.4 An annualized net returns to forestry measure for one rotation

With an available price Pns, afforestation cost Cn, and estimated volume functions

vol(a)ns for each county (n) species (s) pair, what remains is to choose a harvest age

(rotation length) to determine the one-rotation forestry profit for an acre of land.

Focus is placed on the first rotation to obtain a reasonable measure for the current

profitability of timberland. The belief effect assumptions of [20, 34] are relaxed by

deriving an observed harvest age from FIA plots that recorded timber harvesting

activities. In particular, the average age of all recent removals of species s at the

state level are used to calculate a rotation length Tns. The present value of the

one-rotation profit from harvesting vol(Tns, s)ns in Tns years is given by:

[P̄ns · vol(Tns, s)− Cn]ρTns = PV Profitns (3.3)

Where P̄ns is the average stumpage price for forest species s in county n over the

period 1997 to 2014, vol(Tns, s) is the estimated von Bertalanffy volume of timber

for species s evaluated at age Tns, and Cn and ρ are cost and discount factors. This

measure of annualized net returns is the annual payment NRns, in which a landowner

would be indifferent to receiving PV Profitns today or a series of annual payments

NRns for Tns years:

NRns(ρ
1 + ρ2 + . . .+ ρTns) = PV Profitns (3.4)
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Finally, the composite net return NRn for all species and forest types is con-

structed using the species-weighted average volume observed in each county.

NRn =
Sn∑
s=1

NRns · Sharens (3.5)

Where Sharens is the share of county n’s private timberland in forest species

s, and Sn is the total trees of the observed forest species in county n. Average net

returns from equation 3.5 are presented in tables 4.1 - 4.4, and the spatial distribution

of the composite net return is presented in figure 3.2.

As a robustness check, the Faustmann Tns solution is applied where the rotation

period is optimal and rent is derived from perpetual harvests. The corresponding

assumption is that landowners have static expectations, do not expect climate change,

and are pure profit maximizers. The Faustmann optimized net return exhibits a

comparable numerical and spatial distribution as the net returns derived from the

observed rotation periods.

3.2 Urban Net Return

Following the work of Lubowski [35], county-specific proxies are constructed to serve

as the net return to urban land. The proxy is derived from the average price per acre

of recently developed land. Annualized net returns to urban land are constructed

from data in the PUMS survey conducted by the U.S. Census. For the year 2000,
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the data comes from the decennial census. Starting in 2005 the PUMS survey was

conducted as part of the American Community Survey (ACS). The ACS is done

annually and collects owner-reported property value. The value of land is backed

out by subtracting from property value the value of newly constructed single family

homes from Survey of Construction (SOC) reports. The SOC also reports the average

lot size which is used to generate per acre land price. This per acre land price serves

as proxy for net returns.

Data on property value, including land and structures, is compiled from the U.S.

Census’ Public Use Microdata Samples (PUMS 5% sample). The PUMS data is re-

ported at the Public Use Microdata Area (PUMA) geographic unit. PUMA bound-

aries lie completely within state boundaries; however, their overlaps with county

boundaries vary across the country. In some cases, multiple PUMAs will be con-

tained within a single county, while other PUMAs may have multiple counties falling

within a single PUMA. I developed an algorithm that scaled the PUMS data accord-

ing to neighbor relationships using a GIS to estimate the county-level sales price of

recently developed homes.

County sales price is the weighted average of the PUMS property value, where

the weight is the area of overlap between county and PUMA boundary. This scal-

ing introduced measurement error when the PUMA boundary was large relative to

the county boundary. This is particularly acute in the western US because there are

large areas of open space with very little population from which to survey households.

When measurement error is correlated with the size of the PUMA, it may be appro-

priate to scale the weights with the size of the county. Where-by larger PUMAs are
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given a systematically lower property value relative to smaller PUMAs. This may be

explored in future iterations of this data set, especially for analysis of the western U.S.

This error is apparent when looking at the spatial distribution of urban net returns

in figure 3.3, and results from the relatively large size of western counties. For this

reason, Ricardian analysis of urban land is restricted to the eastern U.S.

Net returns to urban land are calculated as follows:

NRur
n = (SalesPrice)n ∗ (LotShare)d/(LotAcres)d

Where net returns in county n equals the sales price times the average lot share

in census division d divided by the average lot size in acres in division d. Lot share is

derived from SOC data by dividing the sales price of the lot by the total sales price

including the house. Dividing by average lot size converts the measure to a per acre

unit. Finally, urban net returns are annualized using a 5% discount rate.

3.3 Crop and Pasture Net Returns

The economic net return to crop and pasture land is derived from regional economic

accounts reported by the U.S. Department of Commerce’s Bureau of Economic Anal-

ysis (BEA). The BEA’s regional program tracks the geographic distribution of eco-

nomic activity, providing data on farm income and expenses at the county level for

the time period 1969 - 2014. The BEA defines farms as including both crop and
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animal production. Crop establishments include farms in the production of food and

fiber, including orchards, groves, greenhouses, and nurseries, primarily engaged in

growing crops, plants, vines or trees and their seeds. Livestock operations are com-

prised of ranches, farms, and feedlots whose purpose is to keep and raise animals for

the products they yield.

The BEA reports farm income separately for crop and livestock production. How-

ever, not all of the farm expense variables are clearly divided between those related to

crop and those related to pasture. Therefore, total net farm income for each county is

partitioned into two parts: net income deriving from crop production and net income

deriving from livestock production. In addition to cash receipts, the total net income

measure also includes other income such as government payments, labor expenses,

and the value of changes in inventory. Income is included for both sole proprietors

and corporate farms.

A crop-livestock ratio is derived using the cash receipts data from crop and live-

stock operations. This ratio is applied to total net income to yield separate measures

for crop and livestock net revenue. The resulting measures comprise the dependant

variable in the associated Ricardian functions defined and estimated in chapter 4.

All values are converted to per acre measures in 2010 dollars in order to make then

comparable across land-use systems (i.e. to match forest and urban net returns). The

spatial distribution of crop and pasture net returns is presented in figures 3.4 and 3.5.
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Chapter 4: Ricardian Analysis of the Economic Net Return to Land

The United States comprises many distinct regions with varying demographic and

institutional differences. By establishing a functional relationship between climate

and the net returns to land, the impacts of potential climate changes can be inferred

by the estimated parameters of a statistical model. This chapter presents Ricardian

models of four distinct but related land-uses: crop, pasture, forest, and urban use. The

Ricardian approach, regressing local climate on economic returns to land, captures

the ability of landowners to adapt to climate variability within the suite of choices

unique to the modeled system. In a study by Polsky et. al. [43], a county’s ability

to adapt was not only influenced by its local climate but also by social factors, their

result was revealed by estimating an agricultural Ricardian at multiple spacial scales.

For example, the forest Ricardian function captures the ability of forest owners to

adapt to climate changes by changing the species planted, intensifying management

practices, adjusting rotation length, among many other decisions on their forest land.

However, a forest Ricardian does not account for adaptations outside of the forest

system such as converting their land to an urban use. The goal of this chapter

then, is to account for intensive margin adaptations within each land system, and in

chapter 5 combine the climate functions into a non-linear land-use choice model that

subsequently captures adaptation across land-use systems.
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4.1 Forest Ricardian and the Impact of Climate Change

Globally climate change is expected to shift potential vegetation zones north as new

areas in the tundra become suitable for growth [30]. Perez et al [41] implement an

integrated assessment model to analyze the impacts of climate change on the global

forest sector, finding net positive changes to welfare, but identify significant regional

variation where some regions gain while other lose. Using FIA data from the U.S.

Forest Service, Huang [27] performs a two-stage estimation of climate’s effect on

Loblolly pine trees in the southern U.S. They find that productivity increases, and

the magnitude of increase varies spatially across the region. Latta et. al. [31] find

similar results for forests in the pacific northwest U.S., their predictions of increased

forest productivity are robust to multiple climate models and scenarios. Because the

U.S. spans such a large area with vastly different climate regimes, we can expect there

to be a corresponding spatial variation in forest impact. My analysis will exploit this

spatial variation in climate and forest rents to identify climate’s effect on forest net

returns.

The forest Ricardian analysis presented here uses empirical methods with observed

data to reveal the combined direct and belief effects of climate on forestland net re-

turns. In contrast, most numerical analyses of climate-forest linkages assume specific

belief effects through adaptation. Sohngen and Mendelsohn′s [50] dynamic optimiza-

tion model of the global timber market assumes adaptation and finds that climate

change projections will benefit many timber markets, especially in the United States

as result of increased supply, even when accounting for price effects. Perez-Garcia et.
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al.s [41] integrated assessment model also finds net positive changes to global welfare

from changes in global timber markets, but with significant regional variation where

some regions gain while others lose. More recent numerical analyses of global timber

markets largely confirm the positive productivity effects of climate change on forestry

[51]. In a parcel-level approach, Guo and Costello [20] use numerical dynamic pro-

gramming techniques to examine the value of adaptation on California timberlands

using an approach that assumes all landowners have homogeneous beliefs about how

a particular climate change scenario affects tree growth, and respond optimally.

4.1.1 Econometric Estimation

The following specification for the economic net returns to timberland is used to

capture climate’s role in the determination of forest land value. Net returns in county

n for species group s is weighted by the observable shares of a countys timberland

in species group s to obtain an estimable function explaining weighted average net

returns to timberland. See section 3.1 for more information on the construction of

forest net returns.

NRf
n = αn + βnf(Tn, Pn) + γnLCCn + δr + εn (4.1)

Where f(Tn, Pn) is a quadratic function of temperature and precipitation that

includes an interaction, Tn is an annual measure of temperature on forested land in
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county n, Pn is the total annual precipitation on forested land in county n, xn is a set

of county control variables such as soil quality, and δr is a set of region r fixed effects.

Summary statistics for the forest Ricardian estimations are presented in tables 4.1 -

4.4. All climate variables are weighted by forest area (see appendix A). Identification

relies on variation in net returns and climate so that including δr may soak up the

necessary variation when the study region is too small.

The cross-sectional operationalization employed here to estimate climates effect on

land rents builds on the framework popularized by Mendelsohn et al [36]. The Ricar-

dian approach remain popular, with many follow-up articles examining agricultural-

climate Ricardian models throughout the world [37]. This is the first application of

the Ricardian approach for U.S. forestry.

I assume that climate enters the model exogenously. That is, climate is not corre-

lated with some unobservable that directly drives the net returns to forestland. The

agricultural-climate literature has identified irrigation infrastructure as a problematic

omitted variable that has spurred numerous panel data applications [6]. However,

irrigation is not used for timberland. Further supporting the use of cross-sectional

analysis is the long-term nature of timber management decisions. A key difference

between agriculture and timber is the way timber managers respond to short run fluc-

tuations in weather versus long run fluctuations. Timber harvest decisions are made

on much longer time horizons than those in agriculture. According to the data con-

structed for this dissertation, observed harvest and replanting decisions are made over

15-100 year horizons on average. The panel solutions advanced in the agricultural-

climate literature that rely on a climate binning approach do not apply to a forestry
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model since the variation of year-to-year weather shocks on timber growth is averaged

out by the broader climate over the multi-decade period.

Drought or fire risk indices are omitted in the model of forest net returns because

including these measures result in a bad control problem [3]. Including a variable

such as fire risk is challenging because fire risk is a direct function of climatic mea-

sures like precipitation. There is no ceteris paribus nature to a regression function

that includes both climate and fire risk as separate variables. However, fire risk is

implicitly captured in the forest Ricardian function through the observed impact of

fire occurrence on average timber growth used in constructing the dependent variable.

4.1.2 National Forest Ricardian

In this section, the national forest Ricardian is critically examined by i) estimating

a forest system Ricardian for the conterminous U.S. to recover the total impact of

climate on the economic net returns to forestry, and ii) checking the robustness of

the results to functional form and climate scenario choice. Predictions made using

the national Ricardian model approximate the outer envelope from figure 2.1 and

implicitly account for the total impact (direct plus belief effects) of climate change on

annualized net returns to U.S. forestland. That is, the Ricardian models estimated

impact of climate change implicitly includes all potential forestland adaptations, in-

cluding intensive margin changes to management practices for particular species and

extensive margin changes involving switching plantings to alternative tree species and

forest types. Climate change impact on the net returns to forestry are evaluated us-
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ing global circulation model projections for the period (2021-2050) versus a baseline

period (1983-2012).

The annualized net returns to an acre of private forestland in county n is the de-

pendent variable. Maximum and minimum temperatures enter separately to account

for the difference between extreme heat and extreme cold, which has been the focus

of some past natural science literature on forests and climate [57, 45]. Annual precip-

itation and its square are also included. Finally, an interaction between precipitation

and temperature extremes is included. FIA defined sub-regions serve as fixed effects

to control for unobservable factors that vary across regions and are correlated with

net returns and climate. Within state variation is too low to find significance using a

state fixed effect. Land quality is controlled for by using county shares of forestland

in alternative categories of the land capability class (LCC) measure. LCC is used to

approximate soil quality effects on each countys forests, where LCC is derived from

the USDAs 2012 National Resource Inventory (NRI) observed LCC data on each

countys forestland.

The main result of this section uses the multi-model mean from 20 Global Climate

Models under emissions scenario RCP 8.5. Predictions are calculated for 2,390 U.S.

counties. Warming is predicted to occur across the entire U.S. and under every

GCM as presented in figure 4.1. Temperature increases are relatively greater in the

northern region as compared to the south. The distribution of changes in annual

precipitation is presented in figure 4.2. Most areas of the U.S. are expected to see

increased precipitation at the median for all GCMs except one. However, the majority

of climate models predict both wetter and drier conditions across space. The multi-
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model mean predicts the eastern U.S. getting wetter relative to the west, with the

exception of the northern Pacific coast region.

The base estimates in table 4.5 include maximum temperatures, minimum tem-

peratures, and annual precipitation specified as a quadratic, temperature and precip-

itation interactions, and separate variables indicating shares of each countys forests

in the eight alternative LCC soil quality classes, and sub-regional spatial fixed effects.

U.S. Forest Ricardian parameter estimates include White’s robust standard errors.

LCC is a measure of the soils capability to produce commonly cultivated crops and

pasture where LCC 1 is the most productive for agriculture and LCC 8 is the least

productive. Sub-regions are defined by the FIA as northeast, northern lake states,

northern prairie states, pacific northwest, pacific southwest, rocky mountain north,

rocky mountain south, south central, and southeast. Given the quadratic specifica-

tions, I focus on the estimated average marginal effects of the key climate variables in

table 4.6. Average estimated marginal effects indicate that a 100 mm increase in an-

nual precipitation increases forestland value by approximately $3.11/acre. A marginal

increase in maximum temperature of 1 degree C◦ generates an increase in net returns

of $5.25/acre. The marginal effects of maximum temperature and precipitation are

significant at the 1% level. Parameter estimates for minimum temperature and its

square are statistically significant, although the marginal effect is not significantly

different from zero.

There are numerous possible alternative specifications of climate impacts on for-

est net returns, and the existing natural science literature has not found a consistent

functional form in which tree growth is influenced by climate [31, 27, 57]. Therefore,
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twenty-six alternative specifications of the national Ricardian model are estimated

differing by i) the functional form in which climate is specified, ii) whether soil con-

trols (measured as LCC shares) are included, and iii) whether regional fixed effects

are included. Table 4.7 presents average marginal effects of the principal climate mea-

sures across all twenty-six alternative specifications. Clear robustness is found in the

estimated marginal effects of annual precipitation, mean temperature, and maximum

temperature, with very little variation across the alternative specifications. Some sen-

sitivity to the estimated marginal effects are found for minimum temperature. The

base model in table 4.5 is model number 17 in table 4.7. Comparison of model 17

with models 8 and 14 in table 4.7 indicate that the estimated marginal effects vary

across models that do and do not include soil controls. Since estimated parameters

on the individual soil control measures are strongly significant (see appendix C), then

omitting soil controls appears to induce bias in measuring the effects of minimum

temperatures on forest net returns, which suggests correlation between soil quality

and minimum temperatures (e.g. colder climates have poorer soils). However, results

in table 4.7 suggest minimal bias from omitting soil variables when modeling mean

temperature alone, rather than maximum and minimum temperatures separately.

The impact of projected climate change to the year 2050 on annualized net returns

to forest production is positive on average across the U.S. Climate change impact

predictions vary significantly over space, where some counties will experience a loss in

forest net returns, and others experience a gain. Using the multi-model mean change

in climate we find that forest net returns will increase on average by approximately

$22.31/acre, an increase of 57% from the baseline value.
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Following Burke et. al.′s [8] suggestion to incorporate uncertainty in climate model

predictions, I estimate changes in U.S. forestland returns across twenty alternative

global circulation models and find robust positive aggregate impacts of future climate

on U.S. forest returns. The national Ricardian function is used to make predictions

under each of the 20 available down-scaled GCMs to explore how the projected climate

change impact results vary by choice of model. The median change in forest net

returns ranges from $11.58 to $33.52 (mean change ranges from $12.64 to $32.00) per

acre, remaining positive regardless of the GCM chosen (figure 4.3).

4.1.3 Under the hood of the national Ricardian: extensive versus in-

tensive margin adaptation in forestry

Projected increases in average forestry returns from climate change using the national

Ricardian model could be explained by many direct and belief effects. For example,

climate change may have a direct effect by positively affecting the biophysical yield

of tree growth across all tree species, and so projected net return increases may occur

without any extensive margin adaptations across planted tree species. Alternatively,

some tree species may experience biophysical growth from climate change that is

larger than the growth experienced by other tree species, and so projected net re-

turn increases are driven by landowners adapting along the extensive margin (e.g.

replanting different species).

However, the Ricardian models implicit assumption about no barriers to exten-

sive margin adaptation may be problematic in the forestry sector where replanting
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decisions on a stand occur once over multiple decade harvest rotation cycles. I ex-

plore the extent to which extensive margin adaptations are likely driving the national

Ricardian model results by separately estimating Ricardian functions for the overlap-

ping major forest types of Douglas-fir and ponderosa pine in the U.S. northwest, and

loblolly and shortleaf pine in the U.S. southeast. By using observed growing stock

data, each forest type-specific Ricardian function implicitly accounts for adaptation

along the intensive margin within each forest type (e.g. rotation length, site prepara-

tion, seeding strategies etc.). By comparing separately estimated Ricardian functions

across forest types, we are then able to examine whether the projected changes from

the national model may be explained by intensive margin changes within each tree

species, or whether extensive margin changes across tree species are needed to explain

the national model projections.

The national Ricardian model from section 4.1.2 presented estimates of the im-

pacts of climate change on the net annual returns to forestry with the implicit as-

sumption that an unrestricted set of intensive and extensive margin adaptations can

occur by 2050. Since the national model approximates the outer envelope of forestry

returns from 2.1, the drivers of projected changes in net returns can be explored. One

hypothesis is that net returns to forestry may change with climate change because the

volume functions for all species change such that natural growth is increased, and only

intensive margin adaptations are needed to re-optimize. In contrast, an alternative

hypothesis is that net returns to forestry may change with climate change because

some forest species experience relatively higher natural growth changes and provide

extensive margin adaptation possibilities for existing forest species that experience
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lower (and potentially negative) growth effects from climate change.

The stylized example in figures 2.1 and 2.2 showed climate ranges where returns

to one tree species decline with climate change while returns to another species may

increase with climate change. Either of the above two hypotheses could be consistent

with results from the national model. Therefore, in this section Ricardian net return

functions are separately estimated for four commercially important forest types in

two distinct regions: Douglas fir and ponderosa pine in the western U.S., and loblolly

and shortleaf pine in the southern U.S. By estimating Ricardian functions that differ

across forest types, I can examine whether extensive margin adaptations are likely to

explain the predictions of the national model.

Loblolly & shortleaf pine Separate Ricardian net return functions are estimated

for two of the primary timber species in the southern U.S., loblolly and shortleaf

pine. An analysis is conducted to explore whether the projected gains in net returns

to forestry in the southeast from the national Ricardian model could be explained

by growth in the value of these two pine species, or whether some of the projected

gains are from some type of extensive margin adaptation. Summary statistics for

this restricted sample are presented in table 4.8. The average county contains ap-

proximately 46,000 acres of land classified as either loblolly or shortleaf pine. Of the

southern U.S. forest types included in the national Ricardian, loblolly and shortleaf

forest types account for 39.2% and 2% of the forest acres, respectively. Mean net

returns for loblolly and shortleaf pine are about 2.4 times higher than the national

average of all species, and the southern U.S. is generally warmer, wetter, and has



47

more productive soils relative to the national average.

Parameter estimates for mean temperature and its square are significant at the 1%

level for both loblolly and shortleaf pine (table 4.10). Estimated marginal effects of

both mean temperature and precipitation for shortleaf pine are approximately double

the effects for loblolly (table 4.11). Using the multi-model mean climate change

projections the model predicts that net returns to loblolly production will remain

roughly unchanged on average, while the projected net returns to land in shortleaf

pine production will increase by about 38% on average. Loblolly and shortleaf pine

are projected to experience both losses and gains in net returns across space, with

losses in the southern latitudes and gains in the northern latitudes (see figures 4.4

and 4.5). Since climate change is predicted to reduce net returns to both loblolly and

shortleaf pine in the southern region of their range, the national Ricardian models

positive projected gains in net returns in this region illustrate incentives for extensive

margin adaptation away from loblolly/shortleaf to an alternative forest type.

To further explore the potential for extensive margin adaptation, consider the

difference between the currently observed net returns to loblolly and the average net

returns to all forest types in the same region, defined here as the loblolly premium.

For the 651 counties currently home to loblolly forests, nearly all of them (647) have

a positive loblolly premium. By 2050, the premium is predicted to be positive in only

559 of those counties. On average, loblolly remains the more profitable species under

future climate, but its value relative to all forest types will shrink. By differencing the

predicted future loblolly premium from its current level, I find that climate change

lowers the loblolly premium by $37/acre. As with each of our results, there is signif-
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icant spatial variation in premium change. The loblolly premium change increases in

111 counties and decreases in the remaining 540 counties. The current premium to

shortleaf pine is positive on average with a mean of approximately $5/acre. Under

future climate change the model predicts that the shortleaf premium will be reduced

by $9.15/acre. Over the range of shortleaf, 131 counties are predicted to experience

gains in the shortleaf premium, but not enough to outweigh the premium decreases

in the remaining 240 counties.

By comparing the estimated climate impacts between the forest type Ricardian

and the composite forest Ricardian that includes all potential forest types, the model

can explain how the projected total impact of climate change on the net returns

to forestry are likely driven by extensive margin adaptations in loblolly and shortleaf

production. Consider the 299 southern U.S. counties where both loblolly and shortleaf

forest types are currently observed. Loblolly net returns decrease by $2.48/acre,

and shortleaf net returns increases by $20.20/acre. However, since loblolly forests

represent a much greater share of forest land, the acreage weighted impact of climate

change on loblolly/shortleaf net returns is only $1.04/acre. In contrast, the climate

change impact on the net returns to all forest types is $35.97/acre, implying significant

incentives for extensive margin adaptation out of loblolly and shortleaf pine in the

southern latitudes of the southeast.

Douglas-fir & ponderosa pine Ricardian functions are separately estimated for

two of the most commercially important forest species in the American west: Douglas-

fir and Ponderosa pine. These two species overlap for most of their observed range.
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However, by restricting the sample to these specific forest types, much of the climate

variation within LCC classes that the full national model relied on are lost. This re-

quires modeling climate′s effect using a simplified functional form that excludes LCC

shares. Climate enters the species-specific Ricardian model as mean annual temper-

ature and its square, total annual precipitation and its square, and an interaction

between mean temperature and precipitation. This specification is supported by ro-

bustness checks of the national model which found that the marginal effects of mean

annual temperature are unaffected by the inclusion of soil quality variables. Summary

statistics for the restricted sample are presented in table 4.9. Average net returns are

about 40% lower for Douglas-fir and ponderosa pine than the national average across

all forestland. The western U.S. counties included here are generally colder, dryer,

and have less productive soil relative than the national average.

Parameter estimates for the western Ricardian models are presented in table 4.10

and marginal effects are shown in table 4.11. Although many of the individual climate

parameter estimates are insignificant in table 4.10, the average marginal effect of

precipitation on Douglas-fir and ponderosa pine is positive and significant at the 1%

level. The average marginal effect of mean temperature is positive and significant at

the 1% level for ponderosa pine, and at the 10% level (p = 0.053) for Douglas-fir (table

4.11). While both forest types have positive marginal effects for mean temperature,

marginal effects for ponderosa pine are larger than Douglas-fir. Further, the marginal

effect of precipitation on ponderosa pine net returns is almost double the effect for

Douglas-fir.

Using the multi-model mean climate change projections, the net returns to Dou-
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glas fir production are predicted to increase by approximately $10.93/acre (44%) on

average, and the net returns for ponderosa pine are predicted to increase by about

$23.28/acre (101%). The spatial distribution of projected climate impacts are pre-

sented in figures 4.6 and 4.7, and indicate the largest positive effects for Douglas-fir

(in level form) are found in the northern Rocky Mountain sub-region, and the highest

gains to ponderosa are concentrated in the Pacific coast region. Even though the

range of these two forest types overlap in many places, extensive margin adaptations

may not be necessary in order to get to the net return gain found when including all

forest types because the relative gains and losses occur in distinct regions.

Consider the difference between the currently observed net returns to Douglas-

fir and the average net returns to all forest types, defined here as the Douglas-fir

premium. For the 133 western counties currently home to Douglas-fir forests, ap-

proximately 52% have a positive premium indicating Douglas-fir is the most prof-

itable species in its range. By 2050, the share of counties with a positive Douglas-fir

premium is predicted to remain nearly unchanged. However, climate change is pro-

jected to increase the premium for ponderosa pine by $9.01/acre on average across the

west. For the 99 counties that currently have both Douglas-fir and ponderosa forests,

Douglas-fir net returns are projected to increase by $11.48/acre while ponderosa net

returns increase by $22.17/acre. The acreage weighted average climate impact for

Douglas-fir/ponderosa production is $13.94/acre, which is almost identical to the av-

erage projected increase in net returns from the U.S. national Ricardian model for this

same region. In contrast to the southeastern U.S., there does not appear to be large

economic incentives for extensive margin adaptation out of the currently dominant
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Douglas-fir and ponderosa forests of the west to other species. However, there may be

some incentive for extensive margin adaptation between Douglas-fir and ponderosa

forests.

Further Discussion The role of extensive margin adaptations in forestry is an im-

portant consideration when examining the national results. The national Ricardian

model essentially assumes no constraints or hysteresis in adaptation, whereas there

are reasons to think that extensive margin adaptations in forestry may happen slug-

gishly. Forest landowners do not make harvest and replanting choices annually, but

rather once over several decades. In an econometric analysis and dynamic simula-

tion of replanting choices in forestry along the U.S. west coast, Hashida and Lewis

[22] found that landowner-driven changes in forest landscapes occur slowly under pro-

jected climate change, primarily due to the periodic nature of when replanting choices

are made over multiple decades. It can take time to radically convert a forested land-

scape from one dominant tree species to another. Therefore, the national results

should be treated as an upper bound on the potential gains to U.S. forestry under

climate change because the Ricardian framework assumes that the full set of optimal

adaptation can and will happen by 2050. The results also suggest numerous new

research questions. For example, how quickly can extensive margin adaptation in

forestry occur, and what barriers exist? Do current landowners anticipate future cli-

mate change by planting species that may grow better in the future than today? Guo

and Costellos (2013) numerical analysis of extensive margin adaptation in forestry

assume that landowners anticipate future climate, but a study of family foresters in
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the northwestern U.S. found little evidence that landowners are making management

decisions in response to climate change forecasts (Grotta et al. 2013).

4.2 Crop and Pasture Ricardians and the Impact of Climate Change

There is a rich and extensive body of research concerned with the impact of climate

and climate change on agricultural outcomes [10]. The modern literature on climate

adaptation and agriculture begins with [36] who conceptualized how agricultural land

owners would adapt to changes in climate and analyzed the impact of temperature and

precipitation on future farm values by establishing a statistical relationship between

current climate and land value. Deschenes et. al. [11] exploit random year-to-

year weather fluctuations to develop a fixed effects model of climate’s impact on

agricultural profits. Schlenker et. al. [48] quantify the non-linear relationship between

temperature and crop yields. Burke et. al. [9] combine the cross-sectional and time

series approaches of earlier work to begin explicitly measuring adaptation in U.S.

agriculture.

A large strand of the current literature on agricultural climate impact examine

particular crops or small groups of crops (e.g. corn, wheat, soybeans), and focus

on yield as the dependant variable [10]. When studying a single crop’s yield, the

researcher can choose a form of temperature that better captures non-linear climate

impacts. Measures of this type, known as growing degree days, have been developed

for several major food crops in the U.S. [48]. The gain in climate specification comes

at the cost of limiting adaptation possibles. By studying climate change impact on
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corn yield, adaptations to non-corn crops are not accounted for.

A common dependent variable in Ricardian analyses is land value, which closely

parallels the hedonic approach of valuing climate as an amenity that is capitalized

into the sale price of agricultural land [36, 37, 55]. An advantage of the land value

measure is that the full range of land adaptations are included. A drawback is that

land near urban areas capitalizes the value of urban development potential requiring

far greater spatial information to control for proximity to the urban boundary. My

measure of net returns combines the strength of the two most prominent methods,

yield and land value, by encompassing a broader suite of adaptations options and

abstracting away from the market capitalized value.

The goal of this dissertation is not to advance the literature on the structure of

climate’s impact on agricultural yields nor profit, but rather to estimate a tractable

function for the relationship between long term climate and agricultural net returns

to be used as an input to a broad land-use change model. Therefore, I implement a

standard OLS Ricardian function as described in section 2.2. A principle difference

between existing Ricardian studies is the choice of dependant variable. The dependent

variable that I have chosen is a broadly defined measure of net farm revenue including

that accruing to fruit trees and livestock production. The choice of dependant variable

sets the scope of system being modeled, and therefore the set of intensive margin

adaptations faced by owners of crop and pasture land.

In a study of climate change impact on corn and soybean profits, [11] found that

climate change would increase annual profits significantly. Burke & Emerick [9] come

to a different conclusion, finding that crop and soybeans will suffer productivity losses
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under future climate, and they provide evidence that adaptation to mitigate losses

among the top six U.S. crops will be limited. In a recent Ricardian analysis of the U.S.

Great Plains region, Polsky et al [43] found that higher July temperature increased

agricultural land value at currently observed levels while the functional relationship

exhibited an inverted u-shape which is consistent with the results presented below

for crop and pasture Ricardian functions as shown in tables 4.17 and 4.24. The take

away from the current literature is that direction and magnitude of climate change’s

impact on agriculture depends on the choice of dependant variable, the functional

form of climate’s relationship to the outcome, and the spatial aspect of the analysis.

The crop and pasture Ricardian functions estimated here take the following form

where NRk
n, the net economic return per acre in county n and land-use k, is the

outcome of interest. Ricardian functions are estimated for crop and pasture uses. See

section 3.3 for details on the construction of the dependant variables.

NRk
n = αkn + βknf(Tnξ, Pnξ) + γknLCCn + εkn (4.2)

Where f(Tnξ, Pnξ) is a quadratic specification of seasonal temperature and pre-

cipitation that includes an interaction, Tnξ is the mean temperature in county n and

season ξ measured in degrees Celsius, and Pnξ is the total precipitation in county n

and season ξ measured in millimeters. The year is broken into four seasons: win-

ter, spring, summer and fall. Climate variables enter as the 30-year historical average

taken over the years 1975 - 2004. LCCn is the share of a county’s land in each of eight
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Land Capability Classes as defined and reported by the National Resource Inventory.

Crop and pasture Ricardian functions are estimated at four spatial scales: the

conterminous U.S., the eastern U.S. counties east of the 100th meridian, the south-

eastern U.S., and the northeast U.S. Notable differences are apparent in the summary

statistics presented in tables 4.12 - 4.15 and 4.19 - 4.22, respectively. Although the

mean crop net return in the east is comparable with that in all conterminous U.S.

counties, the distribution is quite different. Negative crop net returns are observed

for western counties over the period of this analysis, whereas the minimum eastern

crop net return is relatively high at $135 per acre. The highest average net returns

are observed in the southeastern region while the lowest average is found in the north-

eastern region. Within each of these regions there is significant spatial variation as

demonstrated by the map of crop net returns in figure 3.4.

The climate in the southeast is warmer and wetter in every season relative to the

northeast. These differences in climate and net returns help to identify the effect of

climate on net returns in the Ricardian estimation. Average soil quality is markedly

higher in the northeast relative to the southeast, the local climate results in different

crops being produced with consequently differing levels of net return. The share of

land in the top three soil classes (LCC 1-3) is approximately 52.2% in the northeast

and 42.7% in the southeast. Despite the higher average land quality of the northeast,

the net return to crop land is higher on average in the southeast. The opposite is

true for pasture rents, with higher values observed in the northeast relative to the

southeast.

Twenty climate parameters are estimated for each region and agricultural system
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including temperature and precipitation for each of four seasons, a squared term for

each climate variable-season, and an interaction between temperature and precipita-

tion for each season. For the crop model, 15 of 20 parameters are significant at the

U.S. level, 10 of 15 for the east, 5 of 20 for the northeast, and 15 of 20 in the south-

east (table 4.16). Identification varies according to the level of variation in climate.

Even though the significance varies across regions for the crop model parameter es-

timates, average marginal effects are significant for the majority of climate variables

and regions as seen in table 4.17.

With the exception of the northeast, the pasture model’s estimated average marginal

effects are highly significant for all climate variables except fall precipitation in the

U.S. and eastern U.S., and fall and summer temperature in the southeast (table 4.24).

In the northeast, pasture net returns appear to be driven exclusively by winter and

spring climate. In the U.S. and eastern U.S., cool dry spring seasons and warm wet

summers are highly correlated with greater pasture rents.

The crop model results suggest that locations with higher winter precipitation are

correlated with greater crop net returns. The average marginal effect of spring precipi-

tation is significantly positive in the eastern region, but insignificant elsewhere. Across

all regions, higher fall precipitation is associated with lower net returns. Warmer sum-

mers are beneficial to crop net returns in the east and northeast, but insignificant in

the southeast and conterminous U.S.

The impact of climate change on crop and pasture net returns is analyzed by

restricting attention to the Ricardian model of the eastern U.S. presented in tables

4.16 and 4.23. Average regional impact varies over the study area. The full spatial
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distribution of climate change impact on agriculture is shown in figure 4.8. The pre-

dictions represent the potential impact of a discrete change in climate from the 1983

- 2012 baseline to a possible future climate from 2021 - 2050 under climate model

NorESM1-M scenario RCP 8.5. Pasture net returns per acre increase for nearly all

counties, while crop returns increase in northeast but decrease in the southeast. Av-

erage climate impacts are reported in table 4.18. On average, the impact of climate

change on pasture net returns is positive. The south to north gradient of pasture

impacts observed in figure 4.8, mirrors the spatial pattern of projected future tem-

perature increases. Pasture in the southern region starts at a lower level than the

north, and experiences a subsequent decline. This suggests that the likelihood of

remaining in pasture and converting to pasture from other uses will be relatively

lower under climate change. Although, as explored in chapter 5, the ultimate effect

of climate change on land-use will depend on the simultaneous impact of climate on

all substitute land-uses.

4.3 Urban Ricardian and the Impact of Climate Change

In this section, the impact of climate on urban net returns is estimated and predictions

made under climate scenario NorESM1-M RCP 8.5. land-use decisions in an urban

setting are nearly irreversible so that year-to-year weather fluctuations are unlikely

to influence urban net returns. However, it is plausible to expect long term shifts in

the distribution of weather (i.e. climate) to impact urban rents.

Albouy et. al. [2] estimate the willingness to pay for climate using a hedonic
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framework (similar to the approach employed here), finding that households are re-

sponsive to changes in temperature. They find that households prefer temperatures

close to 65 degrees Fahrenheit, and are willing to pay more to avoid extreme heat

relative to extreme cold. This result, that households are willing to pay more to live

in places where the climate amenities are greater given their preferences naturally

extends to climate’s effect on the net returns to urban land.

The following specification is used to estimate the functional relationship between

climate and urban net returns.

NRn = αn + βnf(Tn, Pn) + γnXn + εn (4.3)

Where f(Tn, Pn) is a quadratic function of temperature and precipitation that

includes and full set of interactions. The unit of analysis is the county. Precipitation is

measured as the annual total. The term Xn is comprised of county-level demographic

control variables including population density, median income, racial composition,

and educational attainment. Temperature enters the specification in the form of

heating degree days (HDD) and cooling degrees days (CDD). HDD is a measure of cold

relative to 65 ◦F (i.e. days that require expending energy on heating). CDD measures

warmth relative to 65 ◦F (i.e. days that require expending energy on cooling). The

temperature 65 ◦F can be thought of as a bliss point for human comfort and this

threshold is confirmed through non-linear estimation in the work by [2]. In the current

context, degree days measure deviations away from the most desirable temperatures
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so the sign of marginal effects is expected to be negative on both HDD and CDD.

Parameter estimates for the urban Ricardian and average marginal effects are

presented in tables 4.29 and 4.30, respectively. Consider the eastern urban Ricardian.

The average marginal effect of a one unit increase in HDD is −$3.90, suggesting that

cooler temperatures decrease urban rents. The average marginal effect of a one unit

increase in CDD is −$5.96, suggesting that warmer temperatures also decrease urban

rents. The negative sign affirms the construction of degree days, as the further away

the temperature is from the bliss point, the less attractive an urban area is. More

revealing is that urban rents are more sensitive to heat than to cold, confirming

the finding in [2] that Americans are willing to pay more to avoid excess heat than

extreme cold. The model implicitly accounts for adaptation possibilities within an

urban system, implying that there exist fewer adaptations to heat than cold. The

average marginal effect of precipitation on urban rents is negative, implying that

people prefer relatively dryer locations.

The impact of a discrete change in climate under scenario NorESM1-M RCP 8.5

is mapped in figure 4.9. Predicted increases occur across much of the far south and

along the Canadian border with Wisconsin and Minnesota, but losses are predicted

for large areas of the great plains and northeast. Negative impacts to urban rents are

also present in the counties surrounding Atlanta, Georgia. Regional average impacts

are reported in table 4.18. Predicted urban rents are negatively impacted by a discrete

climate shock across the east, balanced by an average increase when looking at the

southeastern counties only.
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Figure 4.1: Change in Mean Temperature Across 20 Global Climate Models
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Figure 4.2: Change in Annual Precipitation Across 20 Global Climate Models
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Table 4.1: Summary of Estimation Data for Forest Ricardian: Conterminous U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 38.908 50.244 −2.000 351.353
County forest acres 211,041.700 193,205.100 1,561.122 3,751,603.000
Max Temp (Celsius) 19.418 4.224 9.150 31.330
Min Temp 5.241 5.051 −9.520 17.230
Mean Temp 12.371 4.464 1.406 23.724
Precip (mm) 1,111.566 293.810 315.036 3,039.402
Share of forest in LCC 1 0.008 0.031 0.000 0.741
Share of forest in LCC 2 0.162 0.174 0.000 1.000
Share of forest in LCC 3 0.182 0.155 0.000 1.000
Share of forest in LCC 4 0.148 0.130 0.000 1.000
Share of forest in LCC 5 0.050 0.100 0.000 0.909
Share of forest in LCC 6 0.193 0.182 0.000 1.000
Share of forest in LCC 7 0.242 0.243 0.000 1.000
Share of forest in LCC 8 0.016 0.060 0.000 0.803

Table 4.2: Summary of Estimation Data for Forest Ricardian: Eastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 39.601 49.222 0.188 312.835
County forest acres 216,674.400 192,282.400 2,398.417 3,751,603.000
Max Temp (Celsius) 19.628 4.263 9.610 30.080
Min Temp 6.267 4.150 −5.460 17.230
Mean Temp 13.015 4.172 2.750 23.724
Precip (mm) 1,136.132 220.204 490.400 1,821.994
Share of forest in LCC 1 0.009 0.033 0.000 0.741
Share of forest in LCC 2 0.180 0.175 0.000 1.000
Share of forest in LCC 3 0.197 0.152 0.000 1.000
Share of forest in LCC 4 0.154 0.128 0.000 1.000
Share of forest in LCC 5 0.055 0.104 0.000 0.909
Share of forest in LCC 6 0.178 0.162 0.000 0.974
Share of forest in LCC 7 0.215 0.223 0.000 1.000
Share of forest in LCC 8 0.013 0.055 0.000 0.803
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Table 4.3: Summary of Estimation Data for Forest Ricardian: Northeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 15.341 15.056 0.188 148.522
County forest acres 194,899.400 229,976.600 2,398.417 3,751,603.000
Max Temp (Celsius) 16.055 2.544 9.610 21.240
Min Temp 3.155 2.767 −5.460 8.870
Mean Temp 9.644 2.552 2.957 15.165
Precip (mm) 1,010.642 157.929 565.831 1,439.869
Share of forest in LCC 1 0.009 0.030 0.000 0.418
Share of forest in LCC 2 0.196 0.197 0.000 1.000
Share of forest in LCC 3 0.200 0.155 0.000 1.000
Share of forest in LCC 4 0.143 0.122 0.000 0.969
Share of forest in LCC 5 0.037 0.082 0.000 0.909
Share of forest in LCC 6 0.191 0.163 0.000 0.974
Share of forest in LCC 7 0.213 0.212 0.000 1.000
Share of forest in LCC 8 0.011 0.041 0.000 0.632

Table 4.4: Summary of Estimation Data for Forest Ricardian: Southeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 62.359 59.333 0.551 312.835
County forest acres 254,201.600 147,392.900 6,844.573 847,860.000
Max Temp (Celsius) 23.096 2.381 17.850 30.080
Min Temp 9.309 2.901 0.440 17.230
Mean Temp 16.302 2.580 8.977 23.724
Precip (mm) 1,287.061 148.160 830.486 1,821.994
Share of forest in LCC 1 0.007 0.021 0.000 0.374
Share of forest in LCC 2 0.156 0.135 0.000 0.835
Share of forest in LCC 3 0.205 0.145 0.000 0.929
Share of forest in LCC 4 0.167 0.121 0.000 0.814
Share of forest in LCC 5 0.067 0.112 0.000 0.783
Share of forest in LCC 6 0.156 0.146 0.000 0.960
Share of forest in LCC 7 0.227 0.235 0.000 0.999
Share of forest in LCC 8 0.015 0.067 0.000 0.803
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Table 4.5: Parameter estimates for forest Ricardian function
Conterminous U.S. Eastern U.S. Northeast Southeast

Max Temp −17.401∗∗∗ −23.408∗∗∗ 4.716 40.483∗∗

(2.883) (5.153) (5.322) (19.867)

Max Temp Squared 0.283∗∗∗ 0.713∗∗∗ −0.476∗∗∗ −1.878∗∗∗

(0.077) (0.166) (0.157) (0.519)

Min Temp 2.988∗∗ −9.070∗∗ 1.780 25.539∗∗

(1.291) (4.341) (2.990) (12.258)

Min Temp Squared −0.182∗∗∗ −0.714∗∗∗ 0.207∗∗ −0.722∗∗

(0.053) (0.124) (0.088) (0.293)

Precip −0.209∗∗∗ −0.010 0.013 −0.192
(0.029) (0.067) (0.050) (0.248)

Precip Squared 0.00002∗∗∗ −0.0001∗ −0.0001∗∗∗ −0.0003∗∗∗

(0.00001) (0.00003) (0.00003) (0.0001)

Max Temp:Precip 0.010∗∗∗ 0.005 0.010∗∗ 0.050∗∗∗

(0.001) (0.005) (0.004) (0.016)

Min Temp:Precip −0.002 0.011∗∗∗ −0.002 −0.014
(0.001) (0.004) (0.003) (0.011)

Constant 171.861∗∗∗ 115.089∗ −33.075 −669.661∗∗

(33.800) (60.802) (47.310) (273.967)

Soil Control (LCC) Yes Yes Yes Yes
Regional Fixed Effect Yes Yes Yes Yes

Observations 2,390 2,130 957 1,058
R2 0.380 0.396 0.115 0.361
Adjusted R2 0.374 0.391 0.099 0.351
Residual Std. Error 39.762 (df = 2366) 38.422 (df = 2110) 14.290 (df = 939) 47.796 (df = 1041)
F Statistic 62.983∗∗∗ (df = 23; 2366) 72.846∗∗∗ (df = 19; 2110) 7.191∗∗∗ (df = 17; 939) 36.743∗∗∗ (df = 16; 1041)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.6: Average marginal effects of climate on forest net returns

Variable Conterminous U.S. Eastern U.S. Northeast Southeast

Max Temp 5.252∗∗∗ (0.735) 10.160∗∗∗ (1.004) −0.039 (0.683) 17.572∗∗∗ (1.992)
Min Temp −0.785 (0.6439) −5.483∗∗∗ (0.942) 0.0701 (0.591) −5.340∗∗∗ (1.799)
Precip 0.031∗∗∗ (0.006) 0.037∗∗∗ (0.008) −0.009 (0.007) 0.057∗∗∗ (0.013)
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Table 4.7: Functional Form Sensitivity Analysis

Model Specification Precip Mean Temp Max Temp Min Temp

1 Linear precip & mean temp 0.0396∗∗∗ (0.0038) 3.8121∗∗∗ (0.2473)

2 Linear climate & interaction 0.0599∗∗∗ (0.0041) 3.3156∗∗∗ (0.2457)

3 Quadratic climate 0.0269∗∗∗ (0.0042) 4.6863∗∗∗ (0.2662)

4 Quadratic climate & interaction 0.0392∗∗∗ (0.0048) 4.3416∗∗∗ (0.2731)

5 Linear precip, max temp, & min temp 0.0411∗∗∗ (0.0037) 3.5415∗∗∗ (0.3572) 0.5456∗ (0.3025)

6 Linear climate & interaction 0.0458∗∗∗ (0.0045) 5.0822∗∗∗ (0.4575) −0.8875∗∗ (0.3530)

7 Quadratic climate 0.0303∗∗∗ (0.0042) 4.0035∗∗∗ (0.4928) 0.7179 (0.4584)

8 Quadratic & interaction 0.0289∗∗∗ (0.0051) 5.3611∗∗∗ (0.5238) −0.3313 (0.4719)

9 Quadratic, interaction & sub-region FE 0.0331∗∗∗ (0.0054) 4.5513∗∗∗ (0.3890)

10 Quadratic, interaction, & region FE 0.0397∗∗∗ (0.0054) 4.2271∗∗∗ (0.3385)

11 Quadratic, interaction, & lcc share 0.0436∗∗∗ (0.0048) 3.9232∗∗∗ (0.2936)

12 Quadratic, interaction, sub-region FE, & lcc 0.0367∗∗∗ (0.0054) 3.7961∗∗∗ (0.4170)

13 Quadratic, interaction, region FE, & lcc 0.0491∗∗∗ (0.0054) 3.0716∗∗∗ (0.3702)

14 Quadratic, interaction, sub-region FE 0.0247∗∗∗ (0.0058) 4.0090∗∗∗ (0.7300) 1.0805∗ (0.5970)

15 Quadratic, interaction, & region FE 0.0397∗∗∗ (0.0059) 2.4924∗∗∗ (0.6554) 1.5229∗∗∗ (0.5224)

16 Quadratic, interaction, & lcc 0.0387∗∗∗ (0.0052) 6.5177∗∗∗ (0.5332) −2.0695∗∗∗ (0.5209)

17 Quadratic, interaction, sub-region FE, & lcc 0.0311∗∗∗ (0.0058) 5.2520∗∗∗ (0.7350) −0.7851 (0.6439)

18 Quadratic, interaction, region FE, & lcc 0.0497∗∗∗ (0.0059) 3.5149∗∗∗ (0.6534) −0.3056 (0.5677)

19 Quadratic, interaction, sub-region FE, & 2 lcc groups 0.0280∗∗∗ (0.0057) 5.1056∗∗∗ (0.6527) −0.0548 (0.5466)

20 Quadratic, interaction, region FE, & 2 lcc groups 0.0488∗∗∗ (0.0059) 3.3114∗∗∗ (0.6527) −0.0548 (0.5466)

21 Quadratic, interaction, east/west FE, & lcc 0.0471∗∗∗ (0.0053) 4.9051∗∗∗ (0.5853) −0.4274 (0.5763)

22 Quadratic, interaction, east/west FE, & 2 lcc groups 0.0434∗∗∗ (0.5832) 4.7166∗∗∗ (0.5832) −0.1509 (0.5600)

23 Quadratic, interaction, & 4 lcc groups 0.0451∗∗∗ (0.0048) 3.7737∗∗∗ (0.2798)

24 Quadratic, interaction, & 2 lcc groups 0.0420∗∗∗ (0.0047) 3.8583∗∗∗ (0.2787)

25 Quadratic, interaction, & 4 lcc groups 0.0391∗∗∗ (0.0051) 6.4421∗∗∗ (0.5296) −2.0172∗∗∗ (0.5002)

26 Quadratic, interaction, & 2 lcc groups 0.0353∗∗∗ (0.0051) 6.3141∗∗∗ (0.5298) −1.8018∗∗∗ (0.4993)
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Figure 4.3: Climate Change Impact on Forest Rents Across 20 Global Climate Models
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Table 4.8: Summary of Estimation Data for Loblolly / Shortleaf Pine Ricardian

Statistic Mean St. Dev. Min Max

Net return per acre 131.62 107.11 0.105 481.89
County forest acres (1000s) 46 55 0.671 334
Max Temp (Celsius) 23.57 1.855 18.06 28.46
Min Temp 9.649 2.174 2.81 15.24
Mean Temp 16.717 1.940 11.208 21.803
Precipitation (mm) 1,305 137 982 1,769
Share of forest in LCC 1 0.008 0.022 0.000 0.374
Share of forest in LCC 2 0.190 0.133 0.000 0.643
Share of forest in LCC 3 0.227 0.133 0.000 0.801
Share of forest in LCC 4 0.176 0.110 0.000 0.792
Share of forest in LCC 5 0.066 0.092 0.000 0.597
Share of forest in LCC 6 0.151 0.130 0.000 0.643
Share of forest in LCC 7 0.176 0.191 0.000 0.976
Share of forest in LCC 8 0.006 0.028 0.000 0.436

Table 4.9: Summary of Estimation Data for Douglas-fir / Ponderosa Pine Ricardian

Statistic Mean St. Dev. Min Max

Net return per acre 23.56 56.13 0.001 373.91
County forest acres (1000s) 76 105 0.948 827
Max Temp (Celsius) 17.751 2.929 11.4 29.350
Min Temp -3.421 3.312 -9.52 6.57
Mean Temp 6.918 2.632 1.406 14.631
Precipitation (mm) 956 595 359 3,039
Share of forest in LCC 1 0.0003 0.002 0.000 0.030
Share of forest in LCC 2 0.009 0.021 0.000 0.118
Share of forest in LCC 3 0.051 0.089 0.000 0.733
Share of forest in LCC 4 0.106 0.131 0.000 0.577
Share of forest in LCC 5 0.007 0.028 0.000 0.250
Share of forest in LCC 6 0.325 0.257 0.000 0.999
Share of forest in LCC 7 0.471 0.264 0.000 1.000
Share of forest in LCC 8 0.031 0.060 0.000 0.313
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Table 4.10: Forest Type Ricardian Parameter Estimates

All Species Douglas-fir Ponderosa Loblolly Shortleaf

Mean Temperature −4.407∗∗∗ 5.185 −27.0977∗∗∗ 169.7557∗∗∗ 80.5597∗∗∗

(1.066) (7.625) (6.186) 32.651) (37.142)

Mean Temp Squared 0.119∗∗ −0.165 0.650 −4.2217∗∗∗ −3.8027∗∗∗

(0.051) (0.650) (0.401) (0.953) (1.080)

Annual Precipitation −0.105∗∗∗ 0.060 −0.136∗∗ 0.903∗ −0.093
(0.105) (0.045) (0.054) (0.501) (0.571)

Precip Squared 0.00004∗∗∗ −0.00002 −0.00003 −0.0002 −0.0002
(0.00000) (0.00001) (0.00002) (0.0002) (0.0002)

Mean temp · precip 0.005∗∗∗ 0.001 0.031∗∗∗ −0.016 0.042∗∗∗

(0.001) (0.005) (0.004) (0.016) (0.015)

Constant 66.298∗∗∗ −52.243 128.8087∗∗∗ −1931.3757∗∗∗ −713.614
(9.762) (35.737) (37.657) (357.323) (467.243)

Observations 2,390 135 107 651 371
Adjusted R2 0.316 0.163 0.668 0.080 0.199
Residual Std. Error 41.563 53.074 31.049 99.309 75.163

(df = 2384) (df = 129) (df = 101) (df = 645) (df = 365)
F Statistic 221.450∗∗∗ 6.218∗∗∗ 43.616∗∗∗ 12.280∗∗∗ 19.410∗∗∗

(df = 5; 2384) (df = 5; 129) (df = 5; 101) (df = 5; 645) (df = 5; 365)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.11: Average marginal effects for forest type Ricardian models

Variable All Species Douglas-fir Ponderosa Loblolly Shortleaf

Mean Temp 4.342∗∗∗ (0.273) 4.290∗∗ (2.216) 5.759∗∗∗ (1.424) 5.034∗∗ (2.189) 11.63∗∗∗ (2.223)
Precip 0.039∗∗∗ (0.005) 0.034∗∗∗ (0.013) 0.037∗∗∗ (0.014) 0.071∗∗ (0.033) 0.167∗∗∗ (0.033)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Change in
Net return per acre

−67.6 to −44.1
−44.1 to −27.1
−27.1 to −14.8
−14.8 to 1.0
1.0 to 15.2
15.2 to 38.0
38.0 to 137.0

Figure 4.4: Map of Climate Change Impact on Loblolly Pine

Change in
Net return per acre

−49.45 to 3.81
3.81 to 12.14
12.14 to 21.03
21.03 to 30.20
30.20 to 40.94
40.94 to 54.78
54.78 to 94.08

Figure 4.5: Map of Climate Change Impact on Shortleaf Pine
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Change in
Net return per acre

5.13 to 7.61
7.61 to 8.81
8.81 to 10.43
10.43 to 11.70
11.70 to 13.22
13.22 to 14.03
14.03 to 16.32

Figure 4.6: Map of Climate Change Impact on Douglas-fir

Change in
Net return per acre

−12.5 to −1.0
−1.0 to 4.1
4.1 to 9.9
9.9 to 19.1
19.1 to 31.7
31.7 to 55.9
55.9 to 113.5

Figure 4.7: Map of Climate Change Impact on Ponderosa Pine
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Table 4.12: Summary of Estimation Data for Crop Ricardian: Conterminous U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 62.171 76.811 −135.929 442.939
Winter Temp 1.280 6.158 −13.783 20.205
Winter Precip 210.477 139.773 18.871 1,294.182
Spring Temp 11.954 4.707 −1.095 24.104
Spring Precip 261.422 88.871 12.679 707.270
Summer Temp 23.099 3.386 9.903 32.454
Summer Precip 280.402 98.012 2.814 709.614
Fall Temp 13.257 4.379 1.305 25.778
Fall Precip 238.601 89.417 17.661 851.605
Share of land in LCC 1 0.023 0.052 0.000 0.563
Share of land in LCC 2 0.222 0.196 0.000 0.936
Share of land in LCC 3 0.196 0.142 0.000 0.900
Share of land in LCC 4 0.124 0.103 0.000 0.852
Share of land in LCC 5 0.025 0.047 0.000 0.418
Share of land in LCC 6 0.142 0.146 0.000 0.954
Share of land in LCC 7 0.148 0.184 0.000 0.954
Share of land in LCC 8 0.015 0.051 0.000 0.807
Share of land w/o LCC 0.105 0.140 0.002 1.000
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Table 4.13: Summary of Estimation Data for Crop Ricardian: Eastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 61.843 72.034 −135.929 442.939
Winter Temp 1.620 6.277 −13.783 20.205
Winter Precip 221.124 109.580 30.196 484.220
Spring Temp 12.628 4.480 2.157 24.104
Spring Precip 285.954 63.666 105.307 436.401
Summer Temp 23.754 2.827 16.298 30.478
Summer Precip 315.504 65.951 147.518 709.614
Fall Temp 13.914 4.107 4.216 25.778
Fall Precip 261.911 59.539 90.907 451.851
Share of land in LCC 1 0.026 0.054 0.000 0.563
Share of land in LCC 2 0.254 0.194 0.000 0.936
Share of land in LCC 3 0.206 0.134 0.000 0.900
Share of land in LCC 4 0.120 0.095 0.000 0.654
Share of land in LCC 5 0.028 0.050 0.000 0.418
Share of land in LCC 6 0.116 0.120 0.000 0.849
Share of land in LCC 7 0.122 0.167 0.000 0.954
Share of land in LCC 8 0.012 0.051 0.000 0.807
Share of land w/o LCC 0.116 0.147 0.004 1.000
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Table 4.14: Summary of Estimation Data for Crop Ricardian: Northeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 54.377 54.359 −94.699 387.933
Winter Temp −3.241 3.561 −13.515 3.768
Winter Precip 172.676 70.780 44.739 317.795
Spring Temp 9.042 2.613 2.157 15.287
Spring Precip 270.260 51.243 120.945 392.332
Summer Temp 21.495 1.954 16.298 26.280
Summer Precip 306.769 31.823 211.889 425.589
Fall Temp 10.780 2.277 4.405 15.971
Fall Precip 251.198 43.665 128.823 368.677
Share of land in LCC 1 0.032 0.060 0.000 0.484
Share of land in LCC 2 0.294 0.223 0.000 0.936
Share of land in LCC 3 0.196 0.132 0.000 0.714
Share of land in LCC 4 0.103 0.093 0.000 0.501
Share of land in LCC 5 0.016 0.030 0.000 0.250
Share of land in LCC 6 0.107 0.121 0.000 0.849
Share of land in LCC 7 0.111 0.159 0.000 0.896
Share of land in LCC 8 0.008 0.024 0.000 0.361
Share of land w/o LCC 0.132 0.169 0.008 1.000
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Table 4.15: Summary of Estimation Data for Crop Ricardian: Southeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 69.520 88.026 −135.929 442.939
Winter Temp 6.761 3.710 −1.386 20.205
Winter Precip 291.610 90.599 56.269 484.220
Spring Temp 16.239 2.779 8.419 24.104
Spring Precip 312.559 59.269 110.553 436.401
Summer Temp 25.829 1.861 18.919 30.478
Summer Precip 330.133 84.113 147.518 709.614
Fall Temp 17.172 2.733 9.952 25.778
Fall Precip 289.896 48.210 127.113 451.851
Share of land in LCC 1 0.016 0.033 0.000 0.346
Share of land in LCC 2 0.199 0.143 0.000 0.810
Share of land in LCC 3 0.212 0.136 0.000 0.900
Share of land in LCC 4 0.135 0.096 0.000 0.654
Share of land in LCC 5 0.041 0.062 0.000 0.418
Share of land in LCC 6 0.116 0.111 0.000 0.774
Share of land in LCC 7 0.148 0.179 0.000 0.954
Share of land in LCC 8 0.017 0.069 0.000 0.807
Share of land w/o LCC 0.116 0.132 0.004 1.000
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Table 4.16: Parameter estimates for crop Ricardian function
Conterminous U.S. Eastern U.S. Northeast Southeast

Winter Temp 1.136 11.361∗∗∗ −24.560∗∗∗ −60.402∗∗∗

(2.662) (3.745) (8.939) (17.252)

Winter Temp Squared 0.518∗∗∗ 1.186∗∗∗ −1.074∗ 4.826∗∗∗

(0.143) (0.250) (0.627) (0.920)

Spring Temp 47.267∗∗∗ −3.174 30.473 252.052∗∗∗

(6.641) (14.539) (20.705) (55.848)

Spring Temp Squared −2.660∗∗∗ −1.466∗∗∗ −2.673∗ −10.023∗∗∗

(0.269) (0.534) (1.446) (1.620)

Summer Temp 12.851 123.782∗∗∗ −58.350 −74.057
(11.997) (34.740) (79.688) (89.126)

Summer Temp Squared −0.473∗ −2.453∗∗∗ 2.033 2.418
(0.271) (0.654) (1.871) (1.624)

Fall Temp −35.366∗∗∗ −3.912 −51.477 −50.181
(10.246) (22.592) (41.829) (91.309)

Fall Temp Squared 2.553∗∗∗ 1.376 4.387∗∗ 3.844
(0.439) (0.860) (1.782) (2.755)

Winter Precip 0.346∗∗∗ 0.450∗∗∗ 0.479 1.952∗∗∗

(0.048) (0.106) (0.485) (0.255)

Winter Precip Squared −0.0004∗∗∗ −0.001∗∗∗ −0.0003 −0.003∗∗∗

(0.0001) (0.0002) (0.001) (0.0004)

Spring Precip −0.199 0.356 1.039∗ −4.885∗∗∗

(0.134) (0.300) (0.605) (1.200)

Spring Precip Squared 0.001∗∗∗ −0.0005 −0.001 0.003∗∗

(0.0002) (0.001) (0.001) (0.001)

Summer Precip −0.826∗∗∗ 0.189 −0.295 5.931∗∗∗

(0.154) (0.386) (1.175) (1.149)

Summer Precip Squared 0.0001 −0.001∗∗∗ 0.0001 −0.002∗∗∗

(0.0001) (0.0003) (0.001) (0.0004)

Fall Precip 0.397∗∗ 0.094 −0.010 1.652∗∗

(0.172) (0.265) (0.675) (0.742)

Fall Precip Squared 0.0004∗∗ 0.002∗∗∗ 0.001 0.003∗∗∗

(0.0002) (0.001) (0.001) (0.001)

Winter Temp:Precip 0.008 0.002 0.045 0.003
(0.005) (0.008) (0.032) (0.021)

Spring Temp:Precip −0.019∗∗ 0.011 −0.065 0.187∗∗∗

(0.009) (0.016) (0.056) (0.047)

Summer Temp:Precip 0.032∗∗∗ 0.021 0.005 −0.170∗∗∗

(0.008) (0.015) (0.032) (0.044)

Fall Temp:Precip −0.058∗∗∗ −0.097∗∗∗ −0.059 −0.221∗∗∗

(0.009) (0.016) (0.047) (0.032)

Constant −81.950 −1,560.684∗∗∗ 322.409 −1,128.314
(96.809) (351.045) (680.346) (810.688)

Soil Control (LCC) Yes Yes Yes Yes

Observations 3,070 2,489 1,036 1,229
R2 0.343 0.282 0.370 0.350
Adjusted R2 0.337 0.274 0.353 0.335
Residual Std. Error 62.547 (df = 3042) 61.386 (df = 2461) 43.729 (df = 1008) 71.773 (df = 1201)
F Statistic 58.753∗∗∗ (df = 27; 3042) 35.740∗∗∗ (df = 27; 2461) 21.903∗∗∗ (df = 27; 1008) 23.931∗∗∗ (df = 27; 1201)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.17: Average marginal effects of climate on crop net returns

Variable Conterminous U.S. Eastern U.S. Northeast Southeast

Winter Temperature 4.185 (2.850) 15.564∗∗∗ (3.900) −9.820∗∗ (5.009) 5.809 (11.440)
Winter Precipitation 0.190∗∗∗ (0.038) 0.108∗∗ (0.053) 0.239∗∗∗ (0.100) 0.067 (0.086)
Spring Temperature −21.290∗∗∗ (3.366) −37.039∗∗∗ (5.487) −35.559∗∗∗ (8.219) −15.091 (14.664)
Spring Precipitation 0.006 (0.053) 0.235∗∗∗ (0.077) 0.118 (0.126) −0.043 (0.149)
Summer Temperature 0.111 (3.405) 13.983∗∗∗ (5.809) 30.710∗∗∗ (10.113) −5.340 (13.313)
Summer Precipitation −0.006∗∗ (0.025) 0.090 (0.057) −0.098 (0.091) 0.344∗∗∗ (0.089)
Fall Temperature 18.394∗∗∗ (4.993) 8.908 (7.445) 28.355∗∗∗ (10.034) 17.814 (15.097)
Fall Precipitation −0.202∗∗∗ (0.050) −0.248∗∗∗ (0.061) −0.217∗∗ (0.103) −0.334∗∗∗ (0.099)

Table 4.18: Climate Change Impact on the Economic Net Return to Land

East U.S. Southeast U.S. Northeast U.S.

Current Climate Percent Current Climate Percent Current Climate Percent
Climate Changed Change Climate Changed Change Climate Changed Change

Crop 68.11 -51.11 -75% 83.24 -74.25 -89.2% 66.19 2.16 +3.36%
Pasture 174.75 650.61 +372% 139.14 465.03 +334.2% 194.44 1027.7 +528%
Forest 49.76 31.60 +63.5% 80.78 43.76 +54.2% 13.58 17.21 +126.7%
Urban 33575 -1726 -5.1% 34638 684 +1.97% 32932 -4084 -12.4%
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Climate Change Impact

on Crop Net Returns

($2010)
−409.5 to −231.0
−231.0 to −166.5
−166.5 to −94.2
−94.2 to −46.7
−46.7 to 0.7
0.7 to 57.8
57.8 to 724.2
Missing

Climate Change Impact

on Pasture Net Returns

($2010)
−1,311 to 177
177 to 429
429 to 786
786 to 1,081
1,081 to 1,261
1,261 to 1,477
1,477 to 2,529
Missing

Figure 4.8: Climate Change Impact Map: Crop and Pasture Rents
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Climate Change Impact

on Forest Net Returns

($2010)
−19.67 to 12.68
12.68 to 25.27
25.27 to 33.30
33.30 to 38.84
38.84 to 44.10
44.10 to 48.21
48.21 to 56.71
Missing

Climate Change Impact
on Urban Net Returns
($2010)

−33,127 to −5,999
−5,999 to −1,897
−1,897 to −849
−849 to 83
83 to 1,554
1,554 to 3,839
3,839 to 16,209
Missing

Figure 4.9: Climate Change Impact Map: Forest and Urban Rents
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Table 4.19: Summary of Estimation Data for Pasture Ricardian: Conterminous U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 343.237 836.911 −467.488 13,369.660
Winter Temp 1.098 6.226 −13.783 19.891
Winter Precip 212.925 140.218 18.871 1,294.182
Spring Temp 11.898 4.713 −0.163 24.104
Spring Precip 266.550 86.971 36.019 707.270
Summer Temp 23.066 3.361 10.774 31.443
Summer Precip 282.195 94.938 2.814 709.614
Fall Temp 13.170 4.395 2.173 25.587
Fall Precip 242.175 88.056 29.187 851.605
Share of land in LCC 1 0.022 0.049 0.000 0.563
Share of land in LCC 2 0.229 0.192 0.000 0.904
Share of land in LCC 3 0.205 0.136 0.000 0.900
Share of land in LCC 4 0.131 0.102 0.000 0.852
Share of land in LCC 5 0.025 0.046 0.000 0.415
Share of land in LCC 6 0.138 0.135 0.000 0.812
Share of land in LCC 7 0.140 0.171 0.000 0.918
Share of land in LCC 8 0.011 0.039 0.000 0.705
Share of land w/o LCC 0.097 0.117 0.003 0.915
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Table 4.20: Summary of Estimation Data for Pasture Ricardian: Eastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 284.626 598.599 −278.804 13,369.660
Winter Temp 1.514 6.335 −13.783 19.891
Winter Precip 220.688 111.088 30.196 480.895
Spring Temp 12.619 4.505 2.725 24.104
Spring Precip 287.369 64.669 105.307 436.401
Summer Temp 23.752 2.843 16.298 30.266
Summer Precip 313.563 64.469 148.956 709.614
Fall Temp 13.864 4.135 4.216 25.587
Fall Precip 262.029 58.806 90.907 451.851
Share of land in LCC 1 0.025 0.051 0.000 0.563
Share of land in LCC 2 0.258 0.189 0.000 0.904
Share of land in LCC 3 0.212 0.129 0.000 0.900
Share of land in LCC 4 0.124 0.093 0.000 0.654
Share of land in LCC 5 0.028 0.049 0.000 0.415
Share of land in LCC 6 0.116 0.114 0.000 0.774
Share of land in LCC 7 0.122 0.163 0.000 0.918
Share of land in LCC 8 0.008 0.037 0.000 0.705
Share of land w/o LCC 0.106 0.121 0.005 0.915
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Table 4.21: Summary of Estimation Data for Pasture Ricardian: Northeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 292.684 529.276 −278.804 7,301.914
Winter Temp −3.396 3.531 −13.515 3.632
Winter Precip 167.429 69.632 44.739 312.941
Spring Temp 9.024 2.621 2.725 15.270
Spring Precip 268.585 51.972 120.945 392.332
Summer Temp 21.489 1.944 16.298 26.280
Summer Precip 306.625 32.142 221.015 425.589
Fall Temp 10.697 2.248 4.732 15.920
Fall Precip 249.029 42.816 128.823 368.677
Share of land in LCC 1 0.032 0.058 0.000 0.343
Share of land in LCC 2 0.297 0.213 0.000 0.904
Share of land in LCC 3 0.208 0.130 0.000 0.705
Share of land in LCC 4 0.109 0.092 0.000 0.501
Share of land in LCC 5 0.015 0.030 0.000 0.227
Share of land in LCC 6 0.108 0.115 0.000 0.601
Share of land in LCC 7 0.108 0.151 0.000 0.896
Share of land in LCC 8 0.006 0.015 0.000 0.187
Share of land w/o LCC 0.116 0.134 0.008 0.914
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Table 4.22: Summary of Estimation Data for Pasture Ricardian: Southeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 220.334 627.724 −273.185 13,369.660
Winter Temp 6.720 3.731 −1.386 19.891
Winter Precip 293.968 92.083 56.269 480.895
Spring Temp 16.259 2.763 8.419 24.104
Spring Precip 316.080 59.082 110.553 436.401
Summer Temp 25.857 1.852 18.919 30.266
Summer Precip 325.695 82.510 148.956 709.614
Fall Temp 17.160 2.736 9.952 25.587
Fall Precip 290.397 48.633 127.113 451.851
Share of land in LCC 1 0.015 0.032 0.000 0.346
Share of land in LCC 2 0.204 0.143 0.000 0.810
Share of land in LCC 3 0.213 0.129 0.000 0.900
Share of land in LCC 4 0.138 0.094 0.000 0.654
Share of land in LCC 5 0.041 0.061 0.000 0.415
Share of land in LCC 6 0.121 0.112 0.000 0.774
Share of land in LCC 7 0.149 0.179 0.000 0.918
Share of land in LCC 8 0.011 0.051 0.000 0.705
Share of land w/o LCC 0.108 0.114 0.005 0.915



83

Table 4.23: Parameter estimates for pasture Ricardian function
Conterminous U.S. Eastern U.S. Northeast Southeast

Winter Temp 164.791∗∗∗ 290.259∗∗∗ −28.959 23.246
(33.246) (36.191) (98.961) (146.336)

Winter Temp Squared 1.772 2.282 −3.028 −0.079
(1.821) (2.533) (6.825) (8.013)

Spring Temp 307.800∗∗∗ −690.623∗∗∗ −593.245∗∗∗ −1,206.320∗∗

(87.105) (137.906) (222.026) (555.494)

Spring Temp Squared −22.658∗∗∗ 18.943∗∗∗ 9.783 29.066∗

(3.844) (5.277) (16.050) (15.328)

Summer Temp −451.612∗∗∗ 1,615.620∗∗∗ 134.674 1,694.014∗∗

(162.537) (349.337) (896.967) (797.137)

Summer Temp Squared 21.052∗∗∗ −21.542∗∗∗ 5.202 −23.981∗

(3.670) (6.515) (20.867) (14.436)

Fall Temp −381.764∗∗∗ −55.001 138.657 1,002.977
(141.971) (235.262) (474.148) (883.121)

Fall Temp Squared 9.128 −15.737∗ −15.812 −32.263
(6.113) (8.850) (20.711) (25.963)

Winter Precip 4.695∗∗∗ −0.366 1.971 6.192∗∗∗

(0.607) (1.001) (5.275) (2.193)

Winter Precip Squared −0.007∗∗∗ 0.001 −0.001 −0.004
(0.001) (0.002) (0.012) (0.003)

Spring Precip −8.767∗∗∗ 4.219 42.512∗∗∗ −50.630∗∗∗

(1.832) (2.876) (6.436) (10.559)

Spring Precip Squared 0.029∗∗∗ −0.005 −0.071∗∗∗ 0.031∗∗∗

(0.003) (0.005) (0.016) (0.010)

Summer Precip 8.886∗∗∗ 16.982∗∗∗ −3.471 54.614∗∗∗

(1.963) (3.742) (12.623) (10.182)

Summer Precip Squared 0.006∗∗∗ 0.003 0.012 −0.004
(0.002) (0.002) (0.015) (0.003)

Fall Precip −1.042 −4.363∗ −23.769∗∗∗ 7.359
(2.203) (2.465) (7.188) (6.386)

Fall Precip Squared 0.0004 0.004 0.031∗∗ −0.014
(0.002) (0.005) (0.015) (0.009)

Winter Temp:Precip 0.353∗∗∗ 0.029 0.830∗∗ −0.720∗∗∗

(0.065) (0.081) (0.356) (0.185)

Spring Temp:Precip −0.876∗∗∗ −0.219 −0.028 1.639∗∗∗

(0.129) (0.157) (0.622) (0.410)

Summer Temp:Precip −0.415∗∗∗ −0.685∗∗∗ −0.185 −1.766∗∗∗

(0.099) (0.149) (0.359) (0.385)

Fall Temp:Precip 0.009 0.212 0.676 0.243
(0.112) (0.155) (0.521) (0.282)

Constant 3,804.552∗∗∗ −17,917.030∗∗∗ −3,583.881 −23,804.610∗∗∗

(1,329.320) (3,409.255) (7,724.579) (7,188.718)

Soil Control (LCC) Yes Yes Yes Yes

Observations 2,620 2,180 917 1,076
R2 0.281 0.228 0.348 0.185
Adjusted R2 0.274 0.218 0.329 0.164
Residual Std. Error 713.191 (df = 2592) 529.178 (df = 2152) 433.697 (df = 889) 573.821 (df = 1048)
F Statistic 37.573∗∗∗ (df = 27; 2592) 23.563∗∗∗ (df = 27; 2152) 17.601∗∗∗ (df = 27; 889) 8.832∗∗∗ (df = 27; 1048)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4.24: Average marginal effects of climate on pasture net returns

Variable Conterminous U.S. Eastern U.S. Northeast Southeast

Spring Temperature −464.895∗∗∗ (48.204) −275.360∗∗∗ (60.050) −424.300∗∗∗ (89.500) 257.015∗ (151.351)
Spring Precipitation −3.642∗∗∗ (0.707) −1.479∗∗ (0.756) 4.2573∗∗∗ (1.403) −4.284∗∗∗ (1.263)
Summer Temperature 402.333∗∗∗ (44.833) 377.416∗∗∗ (55.665) −0.276 (1.1425) −121.372 (118.000)
Summer Precipitation 2.700∗∗∗ (0.328) 2.857∗∗∗ (0.562) −0.276 (1.000) 60128∗∗∗ (0.823)
Fall Temperature −139.136∗∗ (64.585) −435.903∗∗∗ (77.446) −31.341 (126.878) −33.672 (153.355)
Fall Precipitation −0.705 (0.642) 0.691 (0.583) −1.058 (1.112) 3.142∗∗∗ (0.875)
Winter Temperature 243.828∗∗∗ (34.885) 303.510∗∗∗ (36.230) 130.545∗∗ (56.500) −189.381∗ (99.549)
Winter Precipitation 2.088∗∗∗ (0.485) 0.1579 (0.492) −1.308∗∗ (1.143) −1.232∗ (0.737)

Table 4.25: Summary of Estimation Data for Urban Ricardian: Conterminous U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 34,661 36,825 3,455 409,492
Heating degree days 2,755 1,211 150 6,393
Cooling degree days 714 446 0 2,344
Mean Temp 12 4 0 23
Precip 992 349 84 2,941
Population Density 237 1,392 0 49,412
Medium income 29,603 5,632 15,223 69,076

Table 4.26: Summary of Estimation Data for Urban Ricardian: Eastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 25,113 17,206 3,455 158,383
Heating degree days 2,613 1,159 150 5,668
Cooling degree days 781 427 70 2,234
Mean Temp 13 4 3 23
Precip 1,086 247 449 1,815
Population Density 266 1,502 0 49,412
Medium income 29,660 5,577 15,223 69,076
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Table 4.27: Summary of Estimation Data for Urban Ricardian: Northeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 26,260 16,814 3,455 134,437
Heating degree days 3,526 738 2,028 5,667
Cooling degree days 452 198 70 1,067
Mean Temp 10 3 3 15
Precip 1,001 158 556 1,436
Population Density 398 2,245 2 49,412
Medium income 31,271 5,856 17,031 61,023

Table 4.28: Summary of Estimation Data for Urban Ricardian: Southeastern U.S.

Statistic Mean St. Dev. Min Max

Net return per acre 24,731 18,687 4,200 158,383
Heating degree days 1,672 607 150 3,451
Cooling degree days 1,090 365 154 2,234
Mean Temp 16 3 9 23
Precip 1,225 213 529 1,815
Population Density 197 556 0 9,002
Medium income 28,611 5,276 15,502 69,076
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Table 4.29: Parameter estimates for urban Ricardian function
Conterminous U.S. Eastern U.S. Northeast Southeast

Heating Degree Days (HDD) −83.118∗∗∗ 40.475∗∗∗ 8.085 70.618∗∗∗

(5.067) (7.131) (20.011) (19.694)

HDD Squared 0.005∗∗∗ −0.003∗∗∗ 0.001 −0.018∗∗∗

(0.001) (0.001) (0.001) (0.003)

Cooling Degree Days (CDD) −199.232∗∗∗ −21.771∗ 51.675 −184.142∗∗∗

(8.428) (11.171) (38.489) (31.820)

CDD Squared 0.030∗∗∗ 0.014∗∗∗ −0.008 0.054∗∗∗

(0.003) (0.003) (0.019) (0.007)

Annual Precipitation −154.521∗∗∗ 195.345∗∗∗ 103.864 90.104
(16.685) (30.559) (114.495) (64.436)

Annual Precipitation Squared 0.026∗∗∗ −0.060∗∗∗ −0.007 −0.056∗∗∗

(0.003) (0.007) (0.029) (0.010)

HDD:Precip 0.021∗∗∗ −0.025∗∗∗ −0.022∗ −0.012
(0.003) (0.004) (0.013) (0.013)

CDD:Precip 0.043∗∗∗ −0.005 −0.042 0.053∗∗

(0.007) (0.009) (0.044) (0.021)

Constant 312,735.400∗∗∗ −172,768.500∗∗∗ −125,209.100 −33,679.940
(18,480.760) (30,744.630) (95,477.290) (64,721.410)

Demographic Controls Yes Yes Yes Yes

Observations 3,089 2,506 1,038 1,244
R2 0.531 0.362 0.439 0.383
Adjusted R2 0.528 0.357 0.430 0.375
Residual Std. Error 25,292.360 (df = 3071) 13,795.180 (df = 2488) 12,694.290 (df = 1020) 14,776.840 (df = 1226)
F Statistic 204.417∗∗∗ (df = 17; 3071) 82.862∗∗∗ (df = 17; 2488) 47.018∗∗∗ (df = 17; 1020) 44.818∗∗∗ (df = 17; 1226)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.30: Average marginal effects of climate on urban net returns

Variable Conterminous U.S. Eastern U.S. Northeast Southeast

HDD −37.882∗∗∗ (1.549) −3.896∗∗∗ (1.379) −6.917∗∗∗ (2.477) −4.734∗∗ (2.8322)
CDD −113.950∗∗∗ (3.580) −5.964∗ (3.300) 1.658 (6.341) −2.223 (4.760)
Precip −15.096∗∗∗ (2.278) −5.855∗∗∗ (2.150) −8.046 (6.841) −8.957∗∗∗ (3.016)
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Chapter 5: Climate and Land-use Change

This chapter presents the explicit modeling of the effects of climate on land-use con-

version (i.e. adaptation) through climate’s impact on the economic net returns to

land. Plot-level land-use data on privately owned land for the period 1981-2012 were

obtained from the National Resource Inventory (NRI) of U.S. Department of Agri-

culture. The NRI is a longitudinal panel survey of land-use, land cover and soil

characteristics in the conterminous U.S. The 2012 NRI data set used here is com-

prised of 1,362,936 unique plots covering 3,096 U.S. counties. For each transition

period a pooled cross-section is taken representing the current distribution of a par-

ticular land-use within a defined spatial region. The observed land area in each broad

land-use type and transitions between land-uses for the recent historical past are pre-

sented in tables 5.1 - 5.6. Each model presented below is separately estimated for

land starting in a particular use within either the eastern, northeastern, southeast-

ern, or conterminous U.S. The current land-use chosen on a parcel embeds all of the

characteristics that drove that parcel to end up in that land-use system.

5.1 Logit Model Specification & Estimation Results

Combining the climate driven net return predictions from chapter 4 with the plot-

level land quality data from the NRI, I specify the alternative specific utility that
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enters into equation 2.6 as

Uinkt = αk + βkLCCi + γkNRnkt + εinkt. (5.1)

Where αk is an alternative specific constant. The parameters to be estimated

are βk and γk. The constant and LCC variables are estimated relative to crop use

by normalizing their values to zero in the crop utility equation. The LCC measure

ranges from 1 to 8, where LCC 1 is the most productive and LCC 8 is the least

productive. Assuming that conversion costs are strongly correlated with land quality,

the sum of the first two terms on the right hand side of equation 5.1 serve as proxy

for conversion costs [35].

land-use conversion is modeled using two-year transition periods starting in 2008

and ending in 2012 creating 2 transition periods. The observed transitions for each

period create three choice data sets used for estimation, one for each starting use

(crop, pasture, and forest). The structure of the response to an extra dollar of rents

is assumed to be the same today as it will be in the future so that parameters estimated

by observing recent land transitions remain relevant for predicting land transitions

under a future climate scenario. Landowner i in county n converts from use j to k

when Uinkt > Uinjt for j 6= k.

All estimations are weighted according to how many acres each observation rep-

resents relative to the whole sample. This avoids bias that may be caused because

some plots are more intensively sampled than others, that is, some plots represent a
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greater number of acres than other plots. Each plot’s weight is the number of acres

it represents divided by the total number of acres in the sample, and then the weight

is scaled by the total number of plots in the sample. This plot weighting structure

allows the resulting predicted probability to be interpreted as the probability of an

acre of land either remaining in its current use or converting to an alternative.

Tables 5.8 - 5.12 present the full set of parameter estimates. This set of models is

defined by starting uses crop, pasture, forest and ending uses crop, pasture, forest, and

urban for the period 2008-2012. The economic net return to land enters the full model

set in four alternative specifications; the mean level over the two-year period prior to

the starting year, the change in net return over the transition period, the mean level

over the period of my net return data (1998-2012), and the mean transition period

change between 1998 and 2012. The alternative specifications are used to test two

important assumptions; the influence of option value, and the presence of unobserved

heterogeneity that may be correlated with net returns.

5.1.1 Specification Issues

The specifications that include the change in net returns impose different assumptions

about how land owners form expectations about the future. The land-use decision

is driven by the relative net returns to each use, and expectations about how those

rents will change in the future help to determine the optimal choice. Uncertainty in

how future rents will evolve, combined with costly conversion, leads to option value.

The greater the uncertainty, the higher the option value (i.e. the option to reverse the



90

land-use decision in the future). The presence of conversion costs and option value

leads to the negative sign on αk in the results, because it is often optimal to simply

delay the cost of conversion by doing nothing. Conversion occurs when the benefit of

the new use, including the option value, exceeds the conversion cost (see section 2.1).

Assuming the landscape is in equilibrium and option value is negligible, then

only changes in net returns matter in the land-use conversion decision [46]. In the

presence of option values, the levels of net return drive the relative threshold that

induces conversion. Because the Ricardian climate models developed in chapter 4

yield predictions of net returns levels, the main analysis presented in section 5.2

assumes that the conversion threshold (i.e. net return levels) dominates land-use

decisions.

In order to shed light on the potential impact of option value on land-use, I

estimate the following alternative specification of the discrete choice model.

Uinkt = αk + βkLCCi + γ1k∆NRnkt + εinkt (5.2)

Where ∆NRnkt is the change in net returns to use k over the transition period.

Parameter estimates for equation 5.2 are presented in table 5.10. A third specification

includes both levels and changes in net returns. Comparisons between models 5.2

and 5.3 may reveal evidence of the presence of option value in explaining land-use

conversion.
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Uinkt = αk + βkLCCi + γ0kNRnkt + γ1k∆NRnkt + εinkt (5.3)

Likelihood ratio tests between the model estimates in tables 5.10 and 5.11 result

in rejection of the hypothesis that γ0k is zero in each of the twelve model iterations.

The test results suggest that the assumption of no option value does not hold for

these transition types and study areas.

In the presence of correlation between individual effects and net returns, the

Mundlak approach [38] to the random effects model provides a means of testing

whether a model that includes the mean of net returns is preferred to the model with

levels only. In the standard random effects model it is assumed that individual effects

are uncorrelated with the other regressors such that unobserved random effect may

lead to inconsistent estimates. The Mundlak device uses the group means to correct

for possible violations of the random effects assumption that unobservable character-

istics are uncorrelated with the independent variables [18]. The Mundlak approach

is applied to my estimation of land-use choice and serves as a form of fixed effect

in equation 5.4. First, I estimate a model that includes only the mean level of net

returns over the two-year period preceding the starting year. Secondly, a model is

specific that also includes the group means of net returns.

The model of net return levels only is specified in 5.1 and the Mundlak specification

is
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Uinkt = αk + βkLCCi + γ1kNRnkt + γ2kNRnkt + εinkt. (5.4)

A likelihood ratio test is performed to test the null hypothesis that γ2k is equal

to zero by comparing the estimated models in tables 5.8 and 5.9. In all twelve

models estimated, I reject the hypothesis that γ2k equals zero. This suggests that the

mean net return level does impact the estimates, however in many cases the variation

between the level and its group mean is too low to provide significant estimates

for the parameters of interest due to the correlation between net return levels and

their respective means. Since I am most interested in recovering the parameters

on net returns levels (because these are the variables for which climate has been

parameterized), I settle on the net returns only model estimates for climate impact

analysis.

5.1.2 Estimation Results

For land starting in crop across all regions, the results indicate, as expected, that

plots in higher LCC categories (i.e. lower quality land) are more likely to convert

from crop to pasture. That is, crop systems are more likely to be found on higher

quality land. This result is consistent in all 55 model estimates presented in this

chapter. Conversions to forest land are also more likely to occur on lower quality

land. The parameter on LCC in the forest utility equation is always greater than
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LCC in the pasture utility equation. Taken together the models capture the fact that

from high to low quality land, we can expect to find relative movements from crop

to pasture to forest. Lower quality land is also positively correlated with urban land,

but its impact relative to pasture and forest is less clear.

Nine models are estimated using the levels only specification (equation 5.1): three

starting uses by three spatial scales. In a logit model, the parameter estimate and

the marginal effect will have the same sign [53]. Further, the law of demand implies

that as net returns to land-use k increase, so too should the probability of converting

to or remaining in that particular use. The coefficient on crop net returns is positive

and significant for all levels only models. There is a positive effect of crop rents on

the probability of remaining in crops, given that the land started in crop use. Land

starting in pasture is more likely to convert to forest use when forest net returns in-

crease in all regions. Higher forest net returns drive conversions to forestry from both

pasture and crop systems. The relationship between urban rents and the probability

of conversion is clear: positive and significant in all levels-changes models found in

table 5.11.

5.2 Climate Change Impact on Conversion Probability and the Future

Landscape in the U.S. Southeast

The eastern United States has long experienced an active margin between agriculture

and forestry, and past research has shown that increases in net returns to forestry will

increase land-use changes from agriculture to forestry (e.g. [35, 33]). Further, in a
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Ricardian analysis of agriculture in the eastern U.S., Schlenker et al. [48] found that

climate change can result in reductions in agricultural returns by 2050. Since agricul-

ture and forestry are substitute land-uses in the eastern U.S., climate changes that are

more favorable to forestry than agriculture suggest potential afforestation, and prior

studies have shown that afforestation from agriculture to forestry can have potentially

large effects on many non-market ecosystem services, from carbon sequestration to

wildlife habitat [32].

To begin answering the broader question of whether climate will drive more conver-

sions along the agricultural-forestry land-use margin, I present here a single scenario

of the potential impact of climate change on land-use in the southeastern U.S. Of

the numerous specifications estimated above, three models are chosen to analyze the

impact of climate change on the probability of converting between alternative land-

uses. Parameter estimates for the models of interest are presented in table 5.13. In

the climate change scenario evaluated below, the focus is on showing how climate

induced change in the level of net returns affects the probability of conversion.

For this analysis, geography is restricted to counties in the southeast U.S. for which

all three starting uses were present in the respective estimation data (867 counties).

Transition periods are restricted to the final two periods of the sample, 2008-2010

and 2010-2012. The model includes three starting uses, and four ending uses. Land

starting in urban use is not modeled as these parcels so rarely leave the urban system.

The preferred models include only the level of net returns, parcels located east of the

100th meridian and in the southern region as defined by the U.S. Forest Service.

As a reference point for exploring the many impacts of climate on land-use conver-
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sion, consider the observed rates of conversion in the selected southeastern counties

over the final transition period (table 5.7). For land starting in crop use, the share

of crop acres remaining in crop use is approximately 98.8%. The percentage of acres

converting to pasture is 0.93%, to forest is 0.089%, and to urban is 0.089%. For

land starting in pasture use, the share of pasture land remaining in pasture use is

approximately 97.84%. The percentage of acres converting to crop use is 1.21%, to

forest is 0.667%, and to urban is 0.134%. Movement out of pasture is relatively more

fluid than movements out of crop use. For land starting in forest use, the percentage

of forest acres remaining in forest is approximately 99.71% with 0.0167% converting

to crop land, 0.0844% to pasture land, 0.117% to urban use. The alternative specific

constants included in all of the land-use models ensures that the predicted shares

in each land-use matches the observed shares over the estimation period. The most

active land-use margins in the southeast U.S. over the period 2000-2012 have been

crop-pasture (9.5 million acres), pasture-forest (4.6 million acres, and forest to urban

(3 million acres).

5.2.1 The Partial and Total Effects of Climate Change

Using the framework developed in section 2.3, I analyze the impact of climate change

on the probability of conversion between broad land-use systems. The partial climate

effect with respect to land-use k is found by calculating the increment in probability

(equation 2.16) resulting from shifting net returns to a single land-use while holding

fixed climate’s impact on the alternative land-use rents. Because each net return
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measure is optimized over climate, holding net return fixed implies failure to re-

optimize for the new climate. The counter-factual underlying the partial effect is

that intensive margin adaptation occurs only within the kth land-use system. The

total effect (equation 2.15) is calculated by simultaneously shifting all four net returns

levels by a discrete change in climate from today’s baseline to the climate of 2050

under scenario NorESM1-M RCP 8.5. The total effect allows for intensive adaptation

within all four land-use types.

The box-plots in figures 5.1 - 5.3 summarize the partial and total effect of climate

change on the probability of land conversion. Each distribution is over parcels in the

study area. The box represents the 1st and 3rd quartile and the median change in

probability. The point inside the box is the mean probability change for an acre of

land and this is labeled in each box-plot. Because this model is highly non-linear,

the partial climate effects do not necessarily sum to the total impact. Recall that

partial effects will sum to zero across all four probabilites for each starting use by

construction.

Consider climate’s effect on the probability that land starting in crop use will

remain in crop use (figure 5.1). The model predicts that climate change will lower

the probability of remaining in crop use. This result is largely driven by climate’s

partial effect on pasture rents. As pasture becomes relatively more profitable, more

crop land can be expected to convert to pasture land. The probability of crop land

remaining in crop use is lower regardless of the partial effect considered.

Looking at climate’s effect on crop net returns alone may lead to the false conclu-

sion that crop land is more likely to convert to pasture, but when the total increment
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is calculated the effect is clearly negative. The negative total effect of climate on

the probability of converting from crop to pasture is driven by climate’s effect on

pasture net returns. Partial and total effects of climate’s impact on the probability

of converting from crop to forest are near zero suggesting little climate effect on this

transition type. Under climate change the likelihood of converting from crop to urban

use is higher under all partial effects. The total climate effect indicates that crop land

is 10.4% more likely to convert to urban land under this scenario.

Consider forest land remaining in forest use (figure 5.3). The model for land

starting in forest use predicts that forest land is less likely to convert to crop use

under each partial effect and under the total effect of climate change. Crop, urban,

and forest partial effects on the probability of forest converting to pasture indicate

lower likelihood, but the pasture partial effect and the total effect are positive. When

climate impacts occur within crop and urban systems, forest land is less likely to leave

forest use, but the total effect suggests the opposite result. That is, the total effect

of climate reduces the probability that forest land will remain in forest use.

Climate change impacts increase the probability of converting from forest to urban.

The own partial effect dominates climate’s total effect. The own partial effect is the

relationship between starting use impact and that uses’ partial effect (e.g. the own

partial effect for land starting in forest is the partial effect associated with forest net

returns). The positive sign on forest partial effects here suggests there are incentives

within forest systems to adapt to climate change by converting from forestry to urban

use. On average, conversion to crop use is less likely under climate change, as is the

probability of remaining in forestry, and conversions to pasture and urban systems
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are more likely.

The spatial distribution of total climate effects are mapped in figures 5.4 - 5.6.

Looking at land currently in crop and pasture, there will be less land in these uses,

with conversion to forest and urban increasingly likely. The results suggest that there

is an incentive to move into forest and urban uses from pasture use. The results

also imply that there will be an incentive for current forest land to move into urban

and pasture uses, with land that would otherwise have gone into urban use instead

moving into pasture or remaining in forestry (figure 5.6).

5.2.2 The Future Southeastern Landscape under Climate Change

In this section, consider the path that climate takes and how that translates into a

path of land-use change. The climate data is re-formulated to trace out changes from

today’s climate to the climate in 2050 under scenario NorESM1-M RCP 8.5. The set

of transition probabilities calculated from table 5.13 satisfy the Markov property, so

that the probability of conversion depends only on the current state and the transition

period. Markov processes are said to be memory-less in the sense that earlier states

are independent because information about the past is embedded in the current state.

I employ a discrete time Markov chain at two-year time steps from 2014 to 2050 with

four states evolving according to the estimated transition probabilities. The four

states to be traced out are crop, pasture, forest, and urban. Acreage in each land-

use system begins at the observed level in 2012. Under the baseline, the acreage for

each land-use is determined by the predicted probability held fixed at its 2012 level.
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Under the climate change scenario, the transition matrix is a function of climate

variables that evolve along a climate changed future path. The goal of this exercise is

to calculate how much climate change adds (or takes away from) the baseline trend

in land area. The results presented below are driven by the starting land distribution

in the chosen study area, and do not generally apply to other regions in the U.S.

Recall from section 2.4 that there are four potential scenarios arising from climate’s

impact on land area; i) accelerated increase, ii) accelerated decline, iii) inhibited

increase, and iv) inhibited decline. Within each county, land in a particular use is

either increasing or decreasing under the baseline trend. Climate change impact will

either amplify or dampen the non-climatic pressures of land-use change. When the

climate impact factor is positive (negative), land-use change is accelerated (inhibited).

The baseline land-use and climate changed trend, and the climate impact factors

for each broad land-use type are mapped in figures 5.7 - 5.10. To explore the changes

underlying these figures I have selected a small set of counties and land-uses that help

to illustrate the range of potential climate change impacts in this study region.

In Washington County, Oklahoma where pasture is the dominant land-use type

(50% of county acres) climate change impact is positive for all four land-use types

implying that climate accelerates the baseline acreage trends in this county. Forest

acres in Washington County decline under the baseline, and climate change accelerates

this by approximately 3.42%. Pasture is predicted to decline, while crop and urban

land area is predicted to experience accelerated increase.

In Lee County, Mississippi climate change accelerates baseline losses in both pas-

ture and forest land area by 1.88% and 0.46%, relatively minor impacts. Crop acres
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are declining under the baseline, but climate change inhibits this loss by 21.1%. This

is a relatively large impact for Lee County, where 89,000 acres (33%) of land is in

crop use. A similar impact on crop land is predicted for Baldwin County, Alabama

where crop declines are slowed by 21.4%. While cropland in Baldwin is comparable

to Lee at 81,000 acres, this land-use comprises only 8.4% of total county land area.

Baldwin county pasture land provides an example of inhibited increase, with gains to

pasture land reduced by 7.66% under climate change.

Finally, consider St. Lucie, Florida where an example of accelerated increase can

be found. Crop land comprises the greatest share of land area in this county at

35% and is predicted to increase in the future with climate change accelerating that

increase by 9.68%. Urban land, which is increasing across the region, is slowed by

climate change in St Lucie by approximately 1.04%.

The regionally aggregated climate impact results are presented in table 5.14. Ur-

ban land is increasing under the baseline trend and climate change is accelerating the

increase by 0.33%, a minor impact relative to the overall changes expected to occur in

urban land area. Forest land experiences an accelerated decline, but the magnitude is

only 0.005% across the study region. Pasture land trends are mixed spatially, but in

aggregate pasture experiences an accelerated decline in acres. Crop land is generally

increasing under the baseline trend. However, current crop areas are on an increasing

trend, and climate change will result in relatively more crop acres over a large portion

of the southeastern U.S (figure 5.7). The aggregate climate impact factor for crop

land is positive implying that crop gains are accelerated by climate change.

Forest acres are decreasing in most counties, and the declining trends are predicted
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to be amplified by future climate. Climate impact follows a south to north gradient,

lower in the south and increasing as you move northward (figure 5.9). Notice that the

counties experiencing the greatest decline in baseline acres have the highest level of

climate impact. These results are consistent with the analysis of loblolly and shortleaf

pine detailed in section 4.1.3. Predictions also indicate that relatively more crop land

will convert to pasture land, and that climate change will slow urban growth in the

northern part of the study area and amplified urban growth in the southern portion.
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Table 5.8: Logit Model Set 1: Net Return Levels

Land Starting in Crop Land Starting in Pasture Land Starting in Forest

(East) (South) (North) (East) (South) (North) (East) (South) (North)

fr:(intercept) −8.098∗∗∗ −6.406∗∗∗ −11.179∗∗∗ −2.455∗∗∗ −2.421∗∗∗ −2.678∗∗∗ 6.522∗∗∗ 6.622∗∗∗ 6.092∗∗∗

(0.286) (0.395) (0.621) (0.108) (0.152) (0.163) (0.245) (0.386) (0.315)

ps:(intercept) −5.135∗∗∗ −4.613∗∗∗ −5.699∗∗∗ 3.380∗∗∗ 3.716∗∗∗ 2.890∗∗∗ 0.215 0.840∗∗ −1.671∗∗∗

(0.069) (0.093) (0.110) (0.060) (0.088) (0.084) (0.284) (0.415) (0.500)

ur:(intercept) −7.460∗∗∗ −7.341∗∗∗ −7.297∗∗∗ −3.351∗∗∗ −2.788∗∗∗ −4.306∗∗∗ −0.282 0.286 −1.237∗∗∗

(0.228) (0.367) (0.301) (0.217) (0.273) (0.355) (0.273) (0.412) (0.385)

fr:lcc 0.054 −0.403∗∗∗ 0.749∗∗∗ 0.386∗∗∗ 0.360∗∗∗ 0.421∗∗∗ 0.521∗∗∗ 0.609∗∗∗ 0.519∗∗∗

(0.099) (0.152) (0.131) (0.026) (0.037) (0.039) (0.065) (0.111) (0.081)

ps:lcc 0.181∗∗∗ 0.102∗∗∗ 0.252∗∗∗ 0.248∗∗∗ 0.235∗∗∗ 0.273∗∗∗ 0.238∗∗∗ 0.335∗∗∗ 0.343∗∗∗

(0.020) (0.029) (0.030) (0.017) (0.026) (0.023) (0.074) (0.118) (0.113)

ur:lcc −0.031 −0.092 −0.041 0.163∗∗∗ 0.146∗∗ 0.204∗∗ 0.399∗∗∗ 0.448∗∗∗ 0.466∗∗∗

(0.073) (0.120) (0.096) (0.052) (0.067) (0.082) (0.069) (0.115) (0.089)

cr:nr 0.004∗∗∗ 0.003∗∗∗ 0.006∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.003∗∗

(0.0004) (0.0004) (0.001) (0.0002) (0.0003) (0.0005) (0.001) (0.001) (0.001)

fr:nr 0.0005∗∗∗ 0.001∗∗∗ −0.0001 0.001∗∗∗ 0.001∗∗∗ 0.0002∗∗∗ −0.0001∗∗ 0.0001 −0.0002∗∗∗

(0.0001) (0.0002) (0.001) (0.00003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

ps:nr −0.001∗∗∗ −0.001∗∗∗ −0.0005∗∗∗ −0.0002∗∗∗ −0.0003∗∗ 0.0002∗∗ 0.001∗∗∗ 0.0005∗∗ 0.001∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0004)

ur:nr 0.00002∗∗∗ 0.00002∗∗∗ 0.00001∗∗∗ 0.00002∗∗∗ 0.00001∗∗∗ 0.00003∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Observations 273,825 82,461 191,364 126,364 75,296 51,068 427,707 236,980 190,727
R2 0.362 0.291 0.473 0.090 0.205 −0.086 0.757 0.739 0.788
Log Likelihood −12,010.400 −5,645.650 −5,643.502 −16,646.860 −8,618.243 −8,030.537 −7,112.908 −4,783.248 −2,301.467
LR Test (df = 10) 13,654.130∗∗∗ 4,625.179∗∗∗ 10,144.970∗∗∗ 3,304.957∗∗∗ 4,432.779∗∗∗ −1,267.182 44,327.870∗∗∗ 27,065.520∗∗∗ 17,121.980∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.9: Logit Model Set 2: Net Return Levels with Mundlak

Land Starting in Crop Land Starting in Pasture Land Starting in Forest

(East) (South) (North) (East) (South) (North) (East) (South) (North)

fr:(intercept) −8.062∗∗∗ −6.282∗∗∗ −10.932∗∗∗ −2.507∗∗∗ −2.414∗∗∗ −2.722∗∗∗ 6.514∗∗∗ 6.954∗∗∗ 5.970∗∗∗

(0.288) (0.397) (0.649) (0.108) (0.153) (0.165) (0.251) (0.411) (0.328)

ps:(intercept) −5.130∗∗∗ −4.520∗∗∗ −5.547∗∗∗ 3.302∗∗∗ 3.677∗∗∗ 2.899∗∗∗ 0.206 1.217∗∗∗ −1.831∗∗∗

(0.073) (0.099) (0.117) (0.061) (0.092) (0.086) (0.292) (0.440) (0.511)

ur:(intercept) −7.537∗∗∗ −7.348∗∗∗ −7.193∗∗∗ −3.430∗∗∗ −2.884∗∗∗ −4.257∗∗∗ −0.380 0.546 −1.492∗∗∗

(0.239) (0.379) (0.328) (0.229) (0.286) (0.376) (0.280) (0.437) (0.395)

fr:lcc 0.057 −0.404∗∗∗ 0.756∗∗∗ 0.386∗∗∗ 0.360∗∗∗ 0.422∗∗∗ 0.523∗∗∗ 0.611∗∗∗ 0.525∗∗∗

(0.099) (0.153) (0.132) (0.026) (0.037) (0.039) (0.065) (0.112) (0.082)

ps:lcc 0.180∗∗∗ 0.103∗∗∗ 0.246∗∗∗ 0.249∗∗∗ 0.237∗∗∗ 0.272∗∗∗ 0.238∗∗∗ 0.335∗∗∗ 0.345∗∗∗

(0.020) (0.029) (0.030) (0.017) (0.026) (0.023) (0.074) (0.118) (0.114)

ur:lcc −0.031 −0.079 −0.049 0.165∗∗∗ 0.154∗∗ 0.203∗∗ 0.400∗∗∗ 0.449∗∗∗ 0.473∗∗∗

(0.073) (0.121) (0.096) (0.052) (0.067) (0.082) (0.069) (0.116) (0.090)

cr:nr 0.005∗∗∗ −0.002∗∗ 0.005∗∗∗ 0.004∗∗∗ 0.001 0.002 0.003 −0.005 0.009∗∗

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.003) (0.003) (0.004)

fr:nr 0.006∗∗∗ 0.004∗∗∗ 0.010∗∗ 0.00003 0.001∗∗∗ −0.002∗∗∗ −0.001∗∗∗ −0.001∗∗ −0.001
(0.001) (0.001) (0.005) (0.0003) (0.0003) (0.001) (0.0003) (0.0004) (0.001)

ps:nr −0.001∗∗ −0.001∗∗∗ 0.002∗∗∗ −0.001∗∗∗ −0.001∗∗∗ 0.0004 0.0001 0.001 −0.001
(0.0003) (0.0004) (0.0004) (0.0002) (0.0003) (0.0003) (0.001) (0.001) (0.001)

ur:nr 0.00000 0.00000 0.00002 0.00001 −0.00001 0.00003∗∗ −0.00001∗ −0.00001 −0.00001
(0.00001) (0.00002) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

cr:nrmean −0.001 0.005∗∗∗ 0.002 −0.003∗∗∗ 0.0005 −0.0001 0.001 0.012∗∗∗ −0.008
(0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.003) (0.004) (0.005)

fr:nrmean −0.005∗∗∗ −0.003∗∗ −0.010∗∗ 0.001∗∗ −0.0002 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗ 0.0005
(0.001) (0.001) (0.005) (0.0003) (0.0003) (0.0005) (0.0003) (0.0003) (0.001)

ps:nrmean −0.0003 0.0003 −0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ −0.0003 0.001 −0.0003 0.002
(0.0003) (0.0003) (0.0005) (0.0002) (0.0003) (0.0004) (0.001) (0.001) (0.001)

ur:nrmean 0.00002 0.00002 −0.00000 0.00001 0.00002 −0.00001 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00001) (0.00002) (0.00002) (0.00001) (0.00002) (0.00002) (0.00001) (0.00001) (0.00001)

Observations 273,825 82,461 191,364 126,364 75,296 51,068 427,707 236,980 190,727
R2 0.363 0.292 0.475 0.091 0.205 −0.085 0.758 0.740 0.789
Log Likelihood −12,002.200 −5,632.734 −5,624.929 −16,632.410 −8,613.269 −8,024.448 −7,099.039 −4,768.808 −2,295.922
LR Test (df = 14) 13,670.540∗∗∗ 4,651.012∗∗∗ 10,182.110∗∗∗ 3,333.855∗∗∗ 4,442.728∗∗∗ −1,255.003 44,355.600∗∗∗ 27,094.400∗∗∗ 17,133.070∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.10: Logit Model Set 3: Net Return Changes

Land Starting in Crop Land Starting in Pasture Land Starting in Forest

(East) (South) (North) (East) (South) (North) (East) (South) (North)

fr:(intercept) −8.411∗∗∗ −6.481∗∗∗ −11.848∗∗∗ −2.276∗∗∗ −1.988∗∗∗ −2.709∗∗∗ 6.188∗∗∗ 6.278∗∗∗ 5.843∗∗∗

(0.279) (0.383) (0.585) (0.105) (0.144) (0.156) (0.227) (0.357) (0.296)

ps:(intercept) −5.757∗∗∗ −4.916∗∗∗ −6.483∗∗∗ 3.270∗∗∗ 3.635∗∗∗ 2.829∗∗∗ 0.074 0.464 −1.676∗∗∗

(0.061) (0.088) (0.092) (0.057) (0.086) (0.076) (0.267) (0.388) (0.482)

ur:(intercept) −7.222∗∗∗ −6.912∗∗∗ −7.404∗∗∗ −2.823∗∗∗ −2.406∗∗∗ −3.393∗∗∗ 0.055 0.346 −0.761∗∗

(0.198) (0.327) (0.254) (0.189) (0.240) (0.313) (0.252) (0.380) (0.359)

fr:lcc 0.078 −0.390∗∗∗ 0.793∗∗∗ 0.378∗∗∗ 0.348∗∗∗ 0.425∗∗∗ 0.538∗∗∗ 0.611∗∗∗ 0.533∗∗∗

(0.097) (0.150) (0.129) (0.026) (0.037) (0.039) (0.065) (0.111) (0.081)

ps:lcc 0.239∗∗∗ 0.114∗∗∗ 0.333∗∗∗ 0.252∗∗∗ 0.232∗∗∗ 0.277∗∗∗ 0.243∗∗∗ 0.336∗∗∗ 0.347∗∗∗

(0.020) (0.029) (0.029) (0.017) (0.025) (0.023) (0.074) (0.118) (0.114)

ur:lcc −0.025 −0.081 0.0003 0.148∗∗∗ 0.133∗∗ 0.173∗∗ 0.390∗∗∗ 0.449∗∗∗ 0.441∗∗∗

(0.073) (0.117) (0.095) (0.052) (0.066) (0.086) (0.069) (0.115) (0.090)

cr:nrchange 0.003∗∗∗ 0.003∗∗∗ 0.001 0.001 −0.0003 0.0003 0.003∗∗ 0.001 0.003
(0.0004) (0.0004) (0.001) (0.0004) (0.001) (0.001) (0.001) (0.002) (0.002)

fr:nrchange −0.003∗∗∗ −0.003∗∗∗ −0.002∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.001∗ 0.001∗∗∗ 0.0005∗∗ −0.00001
(0.0004) (0.001) (0.001) (0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0004)

ps:nrchange 0.001∗∗∗ 0.0004∗∗ 0.0004∗∗ −0.0002 −0.00004 −0.0002 0.001∗∗∗ 0.001∗∗∗ 0.001
(0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) (0.001)

ur:nrchange −0.00000 0.00000 −0.00000 −0.00000 0.00000 −0.00001 0.00001∗∗∗ 0.00001∗ 0.00001∗∗

(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00000) (0.00001) (0.00000)

Observations 273,825 82,461 191,364 126,364 75,296 51,068 427,707 236,980 190,727
R2 0.354 0.286 0.467 0.085 0.194 −0.088 0.755 0.737 0.786
Log Likelihood −12,160.890 −5,680.374 −5,711.711 −16,748.930 −8,727.510 −8,050.187 −7,165.345 −4,818.789 −2,320.083
LR Test (df = 10) 13,353.160∗∗∗ 4,555.732∗∗∗ 10,008.550∗∗∗ 3,100.831∗∗∗ 4,214.246∗∗∗ −1,306.482 44,222.990∗∗∗ 26,994.440∗∗∗ 17,084.750∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.11: Logit Model Set 4: Net Return Levels & Changes

Land Starting in Crop Land Starting in Pasture Land Starting in Forest

(East) (South) (North) (East) (South) (North) (East) (South) (North)

fr:(intercept) −8.044∗∗∗ −6.379∗∗∗ −11.067∗∗∗ −2.457∗∗∗ −2.462∗∗∗ −2.673∗∗∗ 6.505∗∗∗ 6.538∗∗∗ 6.105∗∗∗

(0.285) (0.394) (0.643) (0.108) (0.153) (0.163) (0.246) (0.387) (0.317)

ps:(intercept) −5.137∗∗∗ −4.637∗∗∗ −5.702∗∗∗ 3.374∗∗∗ 3.722∗∗∗ 2.891∗∗∗ 0.220 0.856∗∗ −1.665∗∗∗

(0.069) (0.092) (0.110) (0.060) (0.088) (0.084) (0.285) (0.415) (0.502)

ur:(intercept) −7.435∗∗∗ −7.375∗∗∗ −7.302∗∗∗ −3.347∗∗∗ −2.784∗∗∗ −4.287∗∗∗ −0.290 0.277 −1.222∗∗∗

(0.228) (0.365) (0.301) (0.218) (0.273) (0.355) (0.274) (0.413) (0.387)

fr:lcc 0.048 −0.387∗∗ 0.741∗∗∗ 0.386∗∗∗ 0.359∗∗∗ 0.419∗∗∗ 0.523∗∗∗ 0.611∗∗∗ 0.517∗∗∗

(0.098) (0.151) (0.131) (0.026) (0.037) (0.039) (0.065) (0.111) (0.081)

ps:lcc 0.178∗∗∗ 0.100∗∗∗ 0.253∗∗∗ 0.248∗∗∗ 0.235∗∗∗ 0.272∗∗∗ 0.239∗∗∗ 0.334∗∗∗ 0.344∗∗∗

(0.020) (0.029) (0.030) (0.017) (0.026) (0.023) (0.074) (0.118) (0.113)

ur:lcc −0.035 −0.092 −0.039 0.163∗∗∗ 0.145∗∗ 0.203∗∗ 0.401∗∗∗ 0.450∗∗∗ 0.464∗∗∗

(0.073) (0.119) (0.096) (0.052) (0.067) (0.082) (0.070) (0.115) (0.090)

cr:nr 0.004∗∗∗ 0.003∗∗∗ 0.006∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.004∗∗∗ 0.005∗∗∗ 0.003∗∗

(0.0004) (0.0004) (0.001) (0.0002) (0.0003) (0.0005) (0.001) (0.001) (0.001)

fr:nr 0.00003 0.0001 −0.001 0.001∗∗∗ 0.001∗∗∗ 0.0002∗∗ −0.00004 0.0004∗∗∗ −0.0002∗∗∗

(0.0002) (0.0004) (0.001) (0.00003) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

ps:nr −0.001∗∗∗ −0.001∗∗∗ −0.0005∗∗∗ −0.0002∗∗∗ −0.0003∗∗ 0.0002∗∗ 0.001∗∗∗ 0.0004∗ 0.001∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0004)

ur:nr 0.00002∗∗∗ 0.00002∗∗∗ 0.00001∗∗∗ 0.00002∗∗∗ 0.00001∗∗∗ 0.00003∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

cr:nrchange 0.003∗∗∗ 0.003∗∗∗ −0.00002 0.0004 −0.0004 0.0002 0.002 0.001 0.002
(0.0004) (0.0005) (0.001) (0.0004) (0.0005) (0.001) (0.001) (0.002) (0.002)

fr:nrchange −0.002∗∗∗ −0.003∗ −0.004∗∗ −0.0003∗ 0.001∗∗∗ −0.0004 0.0005∗ 0.001∗∗∗ −0.0001
(0.001) (0.002) (0.002) (0.0001) (0.0003) (0.0003) (0.0002) (0.0004) (0.0003)

ps:nrchange 0.001∗∗∗ 0.0004∗∗ 0.0004∗ −0.0002 −0.00001 −0.0003 0.001∗∗∗ 0.001∗∗∗ 0.001
(0.0002) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) (0.001)

ur:nrchange −0.00000 0.00000 −0.00000 −0.00000 0.00000 −0.00001 0.00000 0.00000 0.00000
(0.00000) (0.00001) (0.00001) (0.00000) (0.00001) (0.00001) (0.00000) (0.00000) (0.00000)

Observations 273,825 82,461 191,364 126,364 75,296 51,068 427,707 236,980 190,727
R2 0.364 0.293 0.474 0.090 0.205 −0.085 0.757 0.739 0.788
Log Likelihood −11,986.170 −5,629.809 −5,639.707 −16,643.560 −8,613.155 −8,028.202 −7,105.976 −4,771.372 −2,299.650
LR Test (df = 14) 13,702.600∗∗∗ 4,656.861∗∗∗ 10,152.560∗∗∗ 3,311.554∗∗∗ 4,442.956∗∗∗ −1,262.513 44,341.730∗∗∗ 27,089.280∗∗∗ 17,125.610∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.12: Logit Model Set 5: Net Return Changes with Mundlak

Land Starting in Crop Land Starting in Pasture Land Starting in Forest

(East) (South) (North) (East) (South) (North) (East) (South) (North)

fr:(intercept) −8.353∗∗∗ −6.479∗∗∗ −11.825∗∗∗ −2.276∗∗∗ −1.977∗∗∗ −2.745∗∗∗ 6.192∗∗∗ 6.287∗∗∗ 5.903∗∗∗

(0.280) (0.383) (0.584) (0.105) (0.145) (0.156) (0.227) (0.357) (0.302)

ps:(intercept) −5.690∗∗∗ −4.905∗∗∗ −6.448∗∗∗ 3.278∗∗∗ 3.642∗∗∗ 2.818∗∗∗ 0.030 0.381 −1.705∗∗∗

(0.062) (0.088) (0.093) (0.057) (0.086) (0.077) (0.267) (0.389) (0.490)

ur:(intercept) −7.368∗∗∗ −7.288∗∗∗ −7.530∗∗∗ −3.214∗∗∗ −2.854∗∗∗ −3.650∗∗∗ −0.369 −0.075 −1.027∗∗∗

(0.207) (0.355) (0.259) (0.205) (0.267) (0.328) (0.255) (0.386) (0.365)

fr:lcc 0.069 −0.393∗∗∗ 0.793∗∗∗ 0.377∗∗∗ 0.348∗∗∗ 0.427∗∗∗ 0.538∗∗∗ 0.612∗∗∗ 0.529∗∗∗

(0.097) (0.150) (0.129) (0.026) (0.037) (0.039) (0.065) (0.111) (0.081)

ps:lcc 0.230∗∗∗ 0.112∗∗∗ 0.332∗∗∗ 0.251∗∗∗ 0.232∗∗∗ 0.279∗∗∗ 0.238∗∗∗ 0.329∗∗∗ 0.349∗∗∗

(0.020) (0.029) (0.029) (0.017) (0.025) (0.023) (0.074) (0.118) (0.114)

ur:lcc −0.052 −0.080 −0.010 0.168∗∗∗ 0.156∗∗ 0.183∗∗ 0.405∗∗∗ 0.463∗∗∗ 0.441∗∗∗

(0.075) (0.120) (0.095) (0.052) (0.067) (0.085) (0.069) (0.115) (0.090)

cr:nrchange 0.003∗∗∗ 0.003∗∗∗ 0.001 0.001 −0.0001 0.0005 0.002∗ 0.002 0.003
(0.0004) (0.0004) (0.001) (0.0004) (0.001) (0.001) (0.001) (0.002) (0.002)

fr:nrchange −0.003∗∗∗ −0.003∗∗∗ −0.002∗∗ −0.002∗∗∗ −0.003∗∗∗ −0.001∗ 0.001∗∗ 0.0004∗ 0.0001
(0.0004) (0.001) (0.001) (0.0002) (0.0003) (0.0003) (0.0002) (0.0002) (0.0004)

ps:nrchange 0.001∗∗∗ 0.0005∗∗ 0.0005∗∗ −0.0001 −0.00002 −0.0001 0.001∗∗∗ 0.001∗∗∗ 0.001
(0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.0002) (0.0003) (0.0003) (0.001)

ur:nrchange −0.00001 −0.00001 −0.00001 −0.00001 −0.00000 −0.00001 0.00001 0.00001 0.00000
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00001) (0.00000) (0.00001) (0.00000)

cr:nrchangemean 0.012∗∗∗ 0.002 0.003 0.001 −0.005∗∗ −0.006∗∗ 0.002 −0.008 0.007
(0.002) (0.002) (0.003) (0.002) (0.002) (0.003) (0.006) (0.009) (0.009)

fr:nrchangemean −0.008 −0.017 −0.011 0.003 −0.0002 0.005 0.135∗∗∗ 0.090∗∗∗ 0.171∗∗∗

(0.029) (0.034) (0.068) (0.013) (0.031) (0.014) (0.025) (0.010) (0.027)

ps:nrchangemean −0.001∗∗ −0.002∗∗ −0.001 −0.002∗∗∗ −0.001 −0.002∗∗ −0.009∗∗∗ −0.009∗∗∗ 0.004
(0.001) (0.001) (0.001) (0.0005) (0.001) (0.001) (0.001) (0.001) (0.003)

ur:nrchangemean 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0002∗∗∗

(0.00002) (0.00003) (0.00003) (0.00002) (0.00002) (0.00003) (0.00001) (0.00001) (0.00002)

Observations 273,825 82,461 191,364 126,364 75,296 51,068 427,707 236,980 190,727
R2 0.357 0.288 0.468 0.086 0.196 −0.087 0.758 0.740 0.789
Log Likelihood −12,113.320 −5,669.851 −5,703.304 −16,721.480 −8,712.880 −8,043.627 −7,079.349 −4,765.011 −2,296.674
LR Test (df = 14) 13,448.300∗∗∗ 4,576.777∗∗∗ 10,025.370∗∗∗ 3,155.718∗∗∗ 4,243.505∗∗∗ −1,293.362 44,394.980∗∗∗ 27,102.000∗∗∗ 17,131.570∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5.13: Logit Estimates: Net Returns in the Southeastern U.S.

Dependent variable:

Land Starting in:

(Crop) (Pasture) (Forest)

fr:(intercept) −6.406∗∗∗ −2.421∗∗∗ 6.622∗∗∗

(0.395) (0.152) (0.386)

ps:(intercept) −4.613∗∗∗ 3.716∗∗∗ 0.840∗∗

(0.093) (0.088) (0.415)

ur:(intercept) −7.341∗∗∗ −2.788∗∗∗ 0.286
(0.367) (0.273) (0.412)

fr:lcc −0.403∗∗∗ 0.360∗∗∗ 0.609∗∗∗

(0.152) (0.037) (0.111)

ps:lcc 0.102∗∗∗ 0.235∗∗∗ 0.335∗∗∗

(0.029) (0.026) (0.118)

ur:lcc −0.092 0.146∗∗ 0.448∗∗∗

(0.120) (0.067) (0.115)

cr:nr 0.003∗∗∗ 0.002∗∗∗ 0.005∗∗∗

(0.0004) (0.0003) (0.001)

fr:nr 0.001∗∗∗ 0.001∗∗∗ 0.0001
(0.0002) (0.0001) (0.0001)

ps:nr −0.001∗∗∗ −0.0003∗∗ 0.0005∗∗

(0.0001) (0.0001) (0.0002)

ur:nr 0.00002∗∗∗ 0.00001∗∗∗ 0.00002∗∗∗

(0.00000) (0.00000) (0.00000)

Observations 82,461 75,296 236,980
R2 0.291 0.205 0.739
Log Likelihood −5,645.650 −8,618.243 −4,783.248
LR Test (df = 10) 4,625.179∗∗∗ 4,432.779∗∗∗ 27,065.520∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Change in Probability

of Remaining in Crop Use

−0.258 to −0.178
−0.178 to −0.151
−0.151 to −0.124
−0.124 to −0.101
−0.101 to −0.073
−0.073 to −0.026
−0.026 to 0.338

Change in Probability

of Converting to Pasture Use

−0.000097 to −0.000049
−0.000049 to −0.000040
−0.000040 to −0.000032
−0.000032 to −0.000025
−0.000025 to −0.000018
−0.000018 to −0.000010
−0.000010 to 0.000018

Change in Probability
of Converting to Forest Use

−0.000000666 to 0.000000000
0.000000000 to 0.000000003
0.000000003 to 0.000000008
0.000000008 to 0.000000013
0.000000013 to 0.000000027
0.000000027 to 0.000000151
0.000000151 to 0.000002801

Change in Probability
of Converting to Urban Use

−0.338 to 0.026
0.026 to 0.073
0.073 to 0.101
0.101 to 0.124
0.124 to 0.151
0.151 to 0.178
0.178 to 0.258

Figure 5.4: Land Starting in Crop Use: Maps of Conversion Probability Change
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Change in Probability

of Converting to Crop Use

−0.0225 to −0.0018
−0.0018 to −0.0011
−0.0011 to −0.0007
−0.0007 to −0.0005
−0.0005 to −0.0002
−0.0002 to −0.0000
−0.0000 to 0.0145

Change in Probability

of Remaining in Pasture Use

−0.00277 to −0.00017
−0.00017 to −0.00010
−0.00010 to −0.00007
−0.00007 to −0.00005
−0.00005 to −0.00003
−0.00003 to −0.00001
−0.00001 to 0.00020

Change in Probability
of Converting to Forest Use

−0.0102 to 0.0000
0.0000 to 0.0003
0.0003 to 0.0006
0.0006 to 0.0009
0.0009 to 0.0013
0.0013 to 0.0020
0.0020 to 0.0183

Change in Probability
of Converting to Urban Use

−0.00447 to −0.00034
−0.00034 to −0.00013
−0.00013 to −0.00005
−0.00005 to −0.00001
−0.00001 to 0.00003
0.00003 to 0.00022
0.00022 to 0.00858

Figure 5.5: Land Starting in Pasture Use: Maps of Conversion Probability Change
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Change in Probability

of Converting to Crop Use

−0.00078 to −0.00011
−0.00011 to −0.00007
−0.00007 to −0.00005
−0.00005 to −0.00003
−0.00003 to −0.00002
−0.00002 to −0.00000
−0.00000 to 0.01247

Change in Probability

of Converting to Pasture Use

−0.0004 to 0.0001
0.0001 to 0.0003
0.0003 to 0.0004
0.0004 to 0.0004
0.0004 to 0.0005
0.0005 to 0.0007
0.0007 to 0.3878

Change in Probability
of Remaining in Forest Use

−0.38738 to −0.00063
−0.00063 to −0.00049
−0.00049 to −0.00040
−0.00040 to −0.00032
−0.00032 to −0.00025
−0.00025 to −0.00012
−0.00012 to 0.00045

Change in Probability
of Converting to Urban Use

−0.00027 to −0.00003
−0.00003 to −0.00001
−0.00001 to 0.00001
0.00001 to 0.00002
0.00002 to 0.00003
0.00003 to 0.00006
0.00006 to 0.00028

Figure 5.6: Land Starting in Forest Use: Maps of Conversion Probability Change
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Baseline Trend in Crop Acreage

(Percent Change 2014−2050)

−0.17 to −0.04
−0.04 to 0.05
0.05 to 0.24
0.24 to 0.84
0.84 to 12.28

Climate Impact on Crop Baseline

(Percent Change 2014−2050)

−0.0023 to 0.0001
0.0001 to 0.0006
0.0006 to 0.0016
0.0016 to 0.0029
0.0029 to 0.0107

Climate Change Impact Factor

−10.484 to −0.004
−0.004 to 0.000
0.000 to 0.002
0.002 to 0.012
0.012 to 22.960

Figure 5.7: Climate Change Impact on Future Crop Acreage
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Baseline Trend in Pasture Acreage
(Percent Change 2014−2050)

−0.991 to −0.171
−0.171 to −0.109
−0.109 to −0.039
−0.039 to 0.154
0.154 to 7.344

Climate Impact on Pasture Baseline

(Percent Change 2014−2050)

−0.0098 to −0.0017
−0.0017 to −0.0010
−0.0010 to −0.0002
−0.0002 to 0.0002
0.0002 to 0.0027

Climate Change Impact Factor

−12.787 to −0.002
−0.002 to 0.000
0.000 to 0.004
0.004 to 0.012
0.012 to 31.064

Figure 5.8: Climate Change Impact on Future Pasture Acreage
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Baseline Trend in Forest Acreage
(Percent Change 2014−2050)

−0.995 to −0.044
−0.044 to −0.032
−0.032 to −0.016
−0.016 to 0.011
0.011 to 0.908

Climate Impact on Forest Baseline
(Percent Change 2014−2050)

−0.00901 to −0.00008
−0.00008 to −0.00002
−0.00002 to 0.00007
0.00007 to 0.00016
0.00016 to 0.00365

Climate Change Impact Factor

−230.010 to −0.005
−0.005 to −0.000
−0.000 to 0.002
0.002 to 0.003
0.003 to 6.772

Figure 5.9: Climate Change Impact on Future Forest Acreage
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Baseline Trend in Urban Acreage

(Percent Change 2014−2050)

0.006 to 0.129
0.129 to 0.242
0.242 to 0.387
0.387 to 0.664
0.664 to 7.368

Climate Impact on Urban Baseline
(Percent Change 2014−2050)

−0.0119 to −0.0016
−0.0016 to −0.0008
−0.0008 to −0.0002
−0.0002 to 0.0002
0.0002 to 0.0017

Climate Change Impact Factor

−0.014 to −0.006
−0.006 to −0.003
−0.003 to −0.001
−0.001 to 0.000
0.000 to 0.003

Figure 5.10: Climate Change Impact on Future Urban Acreage
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Table 5.14: Regional Aggregate Climate Impact on Landscape

Current Future Baseline Future Climate Climate
Acres Acres Trend Acres Impact Impact

(in 1000s) (no CC) ∆B (w/ CC) ∆C Factor

Crop 43,241 46,202 0.0685 46,211 0.00084 0.0123
Pasture 45,138 41,240 −0.0863 41,214 −0.00063 0.0073
Forest 149,122 144,687.9 −0.0297 144,688.1 0.000006 −0.000047
Urban 27,253 32,605 0.1964 32,592 −0.0004 0.0033

Note:
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Chapter 6: Conclusion

The analyses in this dissertation provide multiple contributions to the literature on

the economic costs and benefits of climate change. First, this paper fills a gap in

the literature by conducting the first large-scale Ricardian analysis of climate on

forestland value. A recent review article of empirical climate-human linkages did

not include any analysis of the forestry sector of the United States economy [24].

However, about one-third of the U.S. land base is comprised of forests, and 68%

of U.S. forest area is timberland. The majority of the current forestry literature

that uses empirical analysis primarily focuses on climates biophysical effects, where

results suggest that climate change projections will increase biophysical productivity

of particular tree species in the U.S. southeast [27] and the Pacific Northwest [31].

The strength of the Ricardian approach is its flexibility in capturing the optimized

response of land rents to differences in climate. This advantage is extended to estimate

functional relationships between local climate and four alternative land-uses; crop,

pasture, forest, and urban. The Ricardian functions implicitly account for human

driven management decisions central to the land-use change process.

Secondly, I develop and implement a land-use change model that is driven by

climate’s simultaneous impact on broad land-use alternatives. My analysis further

contributes to the broad inquiries into how society may adapt to future climatic

conditions. Haim et al. [21] estimate an econometric land-use model similar to
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my own where climate’s impact on net returns enter exogenously as the output of

global models of urban population and income, and crop and timber. My dissertation

extends the work in [21] by i) incorporating intensive margin adaptation through the

Ricardian estimation of net returns, ii) parameterizing urban rents directly by climate

variables in addition to population and income, iii) modeling the growth of forest

species to implicitly account for climate’s effect on yield at a highly dis-aggregated

level. In addition, the independent variables that enter the land-use choice model are

constructed at a high spatial resolution without down-scaling measures from global

models.

While land-use decisions and adaptation to climate are driven by land owners

incentive to maximize their private economic returns, decisions based on private eco-

nomic returns have consequences for landscape composition, and therefore, ecosys-

tem services that have public goods characteristics. For example, the distribution

and abundance of forest and agricultural lands directly affect the habitat suitability

for numerous wildlife species [32]. In addition, the aggregate stock of land devoted

to timber and agriculture is affected by the relative net returns to both substitute

land-uses, and influences local water quality and the amount of carbon sequestered

from the atmosphere [34].

A new finding from my national forest Ricardian analysis is that average U.S.

forest rents are increasing in precipitation and average maximum summer tempera-

ture and decreasing in average minimum winter temperature. Results are robust to

numerous alternative specifications of climate variables, regional fixed effects, and soil

quality controls. When examining simultaneous changes in multiple climate variables
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through projected climate change scenarios to 2050, I find that forest net returns

are projected to increase by an average of $22/acre, which is a sizable increase over

the current average of $39/acre. However, there is significant spatial variation in

projected climate change impacts as some regions are expected to lose while others

are expected to gain. Projected gains in forest rents from climate change could be

driven by uniformly higher growth effects of climate on all tree species or by differen-

tial growth effects of climate across tree species and corresponding extensive margin

adaptation by landowners across planted tree species. The possible extent to which

extensive margin adaptation incentives exist is explored by separately estimating Ri-

cardian functions for four major timber species in the western and southeastern U.S.

Results indicate that both major timber species in the western U.S. (Douglas-fir and

ponderosa pine) are projected to see increases in net returns from climate, though

ponderosa pine returns are projected to go up faster than Douglas-fir for large por-

tions of the inter-mountain west. Evidence suggests that total gains in forestry are

driven by intensive margin adaptations such as growth in existing stock. In contrast,

results indicate that lower latitude portions of the southeastern U.S. are projected to

see declines in net returns to two of the dominant commercial pine species: loblolly

and shortleaf. The national model projects increases in overall forest net returns

for these same lower latitudes of the southeastern U.S. Projected overall increases

in net returns to forestry in the southeastern U.S. cannot be explained by increases

in growth of the currently dominant loblolly/shortleaf system, suggesting significant

incentives for extensive margin adaptation away from loblolly and shortleaf. The

upper latitude portions of the southeastern U.S. are projected to see increases in net
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returns to loblolly and shortleaf, suggesting potential northward range shifts of these

species for profitability reasons. Past natural science research has similarly found

potential climate-induced range shifts in tree species [14], but their projections have

never included human management in response to profit.

The results from my discrete choice land-use model are used to simulate the future

southeastern U.S. landscape. My simulation accounts for net changes in land area

as land moves between alternative productive systems, and how these transitions are

affected by climate change. The results suggest that under climate change crop land is

far more likely to move into urban use, and that crop land that would otherwise have

converted to pasture is more likely to convert to forest use. Analysis of land starting

in forest and pasture imply that this margin will be more active under climate change

relative to current rates of conversion. Growth in urban development will be slowed

near the major cities of the southeast including Houston, Atlanta, and Charlotte as

the probability of converting from pasture and forest into urban use is less likely.

There is a clear spatial pattern of climate′s impact along the gulf coast states where

urban development is accelerated at the expense of forest and pasture.

Regional aggregation of simulation results reveals that the magnitude of impact

is small relative to a baseline scenario of land-use change that holds climate fixed at

today′s level. The baseline trend is driven by the non-climatic factors that influence

land-use change. Although climate change impacts are relatively small, the spatial

pattern of changes may have implications for the distribution of the costs and benefits

of climate change. Understanding the linkages between broad land-use choice, climate

change, and natural systems is vital for understanding the non-market economic costs



130

of climate change. The models constructed and parameterized in this dissertation

provide a foundation to explore numerous questions regarding the interaction between

climate change, land-use, ecosystem services, and conservation policy.
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Romero, J Bradley St Clair, Laura P Leites, and Dennis G Joyce. Comparative
genetic responses to climate for the varieties of pinus ponderosa and pseudotsuga
menziesii: Realized climate niches. Forest Ecology and Management, 324:126–
137, 2014.

[46] Michael J Roberts and Ruben N Lubowski. Enduring impacts of land retire-
ment policies: evidence from the conservation reserve program. Land Economics,
83(4):516–538, 2007.

[47] Wolfram Schlenker, Michael W. Hanemann, and Anthony C. Fisher. Will U.S.
Agriculture Really Benefit from Global Warming? Accounting for Irrigation in
the Hedonic Approach. The American Economic Review, 95(1):395–406, March
2005.

[48] Wolfram Schlenker and Michael J. Roberts. Nonlinear temperature effects indi-
cate severe damages to US crop yields under climate change. Proceedings of the
National Academy of sciences, 106(37):15594–15598, 2009.

[49] Kathleen Segerson, Andrew J Plantinga, and Elena G Irwin. Theoretical back-
ground. Economics of Rural Land-Use Change, Bell K., Boyle K. and Rubin
J.(Eds), pages 79–111, 2006.



136

[50] Brent Sohngen and Robert Mendelsohn. Valuing the impact of large-scale eco-
logical change in a market: The effect of climate change on us timber. American
Economic Review, pages 686–710, 1998.

[51] Brent Sohngen and Xiaohui Tian. Global climate change impacts on forests and
markets. Forest Policy and Economics, 72:18–26, 2016.

[52] Robert N Stavins and Adam B Jaffe. Unintended impacts of public investments
on private decisions: the depletion of forested wetlands. The American Economic
Review, pages 337–352, 1990.

[53] Kenneth Train. Discrete choice methods with simulation. Cambridge university
press, 2003.

[54] Paul C Van Deusen and Linda S Heath. Weighted analysis methods for mapped
plot forest inventory data: tables, regressions, maps and graphs. Forest ecology
and management, 260(9):1607–1612, 2010.

[55] Steven Van Passel, Emanuele Massetti, and Robert Mendelsohn. A ricardian
analysis of the impact of climate change on european agriculture. Environmental
and Resource Economics, 67(4):725–760, 2017.

[56] Ludwig Von Bertalanffy. A quantitative theory of organic growth (inquiries on
growth laws. ii). Human biology, 10(2):181–213, 1938.

[57] Aaron R Weiskittel, Nicholas L Crookston, and Gerald E Rehfeldt. Projected
future suitable habitat and productivity of douglas-fir in western north america.
Schweizerische Zeitschrift fur Forstwesen, 163(3):70–78, 2012.



137

APPENDICES



138

Appendix A: Climate Data

A.1 Climate Data

Historical Climate Historically observed weather and climate data are obtained

from Oregon State Universitys PRISM Climate Group [19]. PRISM data is obtained

for three climate variables; precipitation, minimum temperature, maximum tempera-

ture. Mean temperature is derived from the minimum and maximum values. Because

we are interested in the impact of climate on the net return to land, we use the long

term average (normal) of each locations weather variable. We use the annual average

temperature and precipitation for the period 1981-2010 measured in degrees Celsius

and millimeters (mm), respectively. A DEM (digital elevation model) is used by

PRISM to interpolate climate variables at an 800m spatial resolution.

The PRISM climate data is aggregated to the level of U.S. counties for each

variable using the weighting scheme described below. The current distribution of 30-

year normal temperature and precipitation on forest land is shown in figures 10 and

11, respectively. Corresponding to the spatial variation in forest growth, we observe

considerable east-west variation in temperature in the western US, and north-south

variation in the eastern US.

Predicted Climate Predictions of future climate are obtained from the Univer-

sity of Idaho, MACA Statistically Downscaled Climate Data for CMIP5. MACAv2-
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METDATA (Multivariate Adaptive Constructed Analogs) was developed by Abat-

zoglou et al [1]. Climate variables are reported at a 4km (1/24-deg) resolution, and

include mean daily maximum temperature (C◦), mean daily minimum temperature,

daily total precipitation (mm). The raw data from MACA includes 20 GCMs, each

GCM run under scenarios RCP 4.5 and RCP 8.5, creating 40 total climate scenarios.

These RCPs (Representative Concentration Pathways) were specified to create an

upper and lower bound of the path of future greenhouse emissions.

In the forest Ricardian estimation, temperature and precipitation enter the func-

tion as the annual mean and sum of temperature and precipitation, respectively.

Aggregating to an annual measure allows execution of all 40 available climate change

scenarios when analyzing potential climate driven shifts in future forest rents (see

chapter 4). However, climate enters the urban and agricultural Ricardian estimations

as a function of daily climate measures. Processing climate variables at the daily scale

comes at a significant computational expense. Therefore, a single climate change sce-

nario is chosen for climate change impact analysis of future urban and agricultural

rents. The chosen scenario is carried through to the land-use change modeling and

analysis in chapter 5.

As part of the upcoming Resource Planning Act (RPA) assessment for 2020, the

U.S. Forest Service has identified a subset of MACA scenarios to represent a full range

of future climates (e.g. wet, dry, etc.). Models were evaluated on the bases of their

strength at predicting the historically observed climate. Of the five scenarios they

identify, the Norwegian Climate Center model NorESM1-M captures a middle of the

road scenario between hot and warm, and wet and dry. NorESM1-M is used here for
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climate impact analysis of urban and agricultural rents, and for climate impact on

land-use conversion.

Climate change impacts for the national forest Ricardian (section 4.1 rely on pro-

jections from a multi-model mean. The climate variables are weighted by forest land

area within a county. Warming occurs across the entire U.S. with greater increases

as you move south to north. Changes in precipitation vary spatially across the U.S.

with most regions getting wetter, but large sections of the southern U.S. experiencing

dryer conditions relative to historical levels.

Forest Weighted Climate Data I develop a custom ArcGIS and python algo-

rithms are used to geo-reference the climate variables from the grid level to the

county level. County temperature and precipitation are the spatially weighted av-

erage of grid observations that occur within a county. Climate variables used in the

forest analysis are the spatially weighted values (i.e. climate measured only on forest

land). Timberland area weights are recovered from spatially referenced timberland

data sourced from the FIA data. Nelson and Vissage [39] combine satellite land

cover data with FIA observations of timberland to generate a map of timberland in

the U.S. The timberland area map is overlaid with observed and projected climate

data to aggregate climate variables to the county level. Climate observations that

occur outside of the observed forest cover are dropped, and the remaining observa-

tions (those within forested areas) are averaged within a county. Weighting climate

measures by timberland is particularly important in the western U.S., where forests

tend to be found in mountainous regions whose climates differ significantly from the
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valleys where agriculture is common.
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Appendix B: Stumpage Price Data Sources

Table B.1: Timber stumpage price data sources

Alabama Timber Mart-South

Arizona U.S. Forest Service Southwestern Region

Arkansas Timber Mart-South

California California State Board of Equalization

Colorado U.S. Forest Service Rocky Mountain Region

Connecticut University of Massachusetts Extension

Delaware University of Maryland Extension

Florida Timber Mart-South

Georgia Timber Mart-South

Idaho Idaho Department of Lands

Illinois University of Illinois Extension

Indiana Purdue Extension

Iowa No Data

Kansas No Data

Kentucky Kentucky Division of Forestry

Louisiana Louisiana Department of Agriculture & Forestry

Maine Maine Forest Service
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Maryland University of Maryland Extension

Massachusetts University of Massachusetts Extension

Michigan Michigan Department of Natural Resources

Minnesota Minnesota Department of Natural Resources

Mississippi Mississippi State University Extension

Missouri Missouri Department of Conservation

Montana U.S. Forest Service Northern Region

Nebraska Nebraska Forest Service

Nevada No Data

New Hampshire New Hampshire Department of Revenue

New Jersey No Data

New Mexico U.S. Forest Service Southwestern Region

New York New York Department of Environmental Conservation

North Carolina Timber Mart-South

North Dakota No Data

Ohio Ohio State University Extension

Oklahoma Data extrapolated from Texas price data

Oregon Oregon Department of Forestry

Pennsylvania Penn State Extension

Rhode Island University of Massachusetts Extension

South Carolina Timber Mart-South

South Dakota U.S. Forest Service Rocky Mountain Region

Tennessee Timber Mart-South
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Texas Timber Mart-South

Utah U.S. Forest Service Intermountain Region

Vermont Vermont Department of Forests

Virginia Timber Mart-South

Washington Washington State Department of Revenue

West Virginia West Virginia

Wisconsin Wisconsin Department of Natural Resources

Wyoming U.S. Forest Service Intermountain Region
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Appendix C: Alternative Specifications for Forest Ricardian

Estimation

Table C.1: Forest Ricardian Alternative Specifications 1

Model 1 Model 2 Model 3 Model 4

Mean Temp 3.812*** -5.716*** -2.599** -4.407***
(0.247) (0.905) (1.012) (1.066)

Mean Temp Squared 0.294*** 0.119**
(0.038) (0.051)

Precip 0.040*** -0.041*** -0.060*** -0.105***
(0.004) (0.008) (0.013) (0.015)

Mean Temp:Precip 0.008*** 0.005***
(0.001) (0.001)

Precip squared 0.00004*** 0.00004***
(0.00000) (0.00000)

Constant -52.296*** 36.700*** 34.960*** 66.298***
(3.499) (8.833) (7.686) (9.762)

Soil Control (LCC) No No No No
Regional Fixed Effect No No No No
Sub-Regional Fixed Effects No No No No

Adjusted R2 0.262 0.297 0.308 0.316
Residual Std. Error 43.162 (df = 2387) 42.130 (df = 2386) 41.786 (df = 2385) 41.563 (df = 2384)
F Statistic 425.150*** (df = 2; 2387) 337.274*** (df = 3; 2386) 267.278*** (df = 4; 2385) 221.450*** (df = 5; 2384)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.2: Forest Ricardian Alternative Specifications 2

Model 5 Model 6 Model 7 Model 8

Max Temp 3.542*** -8.196*** -13.356*** -14.065***
(0.357) (1.105) (2.114) (2.089)

Max Temp Squared 0.447*** 0.219***
(0.060) (0.066)

Min Temp 0.546* 2.552*** 1.404*** 3.822***
(0.302) (0.875) (0.348) (0.926)

Min Temp Squared -0.065 -0.070
(0.042) (0.047)

Precip 0.041*** -0.170*** -0.051*** -0.229***
(0.004) (0.020) (0.013) (0.027)

Max Temp:Precip 0.012*** 0.010***
(0.001) (0.001)

Min Temp:Precip -0.003*** -0.003***
(0.001) (0.001)

Precip Squared 0.00004*** 0.00004***
(0.00000) (0.00000)

Constant -78.420*** 128.202*** 126.033*** 216.117***
(6.184) (19.322) (19.545) (22.518)

Soil Control (LCC) No No No No
Regional Fixed Effect No No No No
Sub-Regional Fixed Effects No No No No

Adjusted R2 0.268 0.309 0.314 0.332
Residual Std. Error 42.977 (df = 2386) 41.752 (df = 2384) 41.605 (df = 2383) 41.075 (df = 2381)
F Statistic 293.107*** (df = 3; 2386) 215.132*** (df = 5; 2384) 183.539*** (df = 6; 2383) 149.215*** (df = 8; 2381)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C.3: Forest Ricardian Alternative Specifications 3
Model 9 Model 10 Model 11 Model 12 Model 13

Mean Temp -4.746*** -4.844*** -6.245*** -5.977*** -6.825***
(1.268) (1.062) (1.070) (1.252) (1.054)

Mean Temp Squared 0.040 0.089* 0.127** 0.045 0.084*
(0.055) (0.050) (0.052) (0.056) (0.051)

Precip -0.107*** -0.071*** -0.122*** -0.109*** -0.064***
(0.018) (0.017) (0.015) (0.018) (0.017)

Precip Squared 0.00002*** 0.00002*** 0.00004*** 0.00002*** 0.00001**
(0.00001) (0.00001) (0.00000) (0.00001) (0.00001)

Mean Temp:Precip 0.007*** 0.006*** 0.006*** 0.008*** 0.007***
(0.001) (0.001) (0.001) (0.001) (0.001)

Constant 71.110*** 47.298*** 8.819 0.903 -26.038
(13.865) (11.673) (15.438) (18.169) (16.339)

Soil Control (LCC) No No Yes Yes Yes
Regional Fixed Effect No Yes No No Yes
Sub-Regional Fixed Effects Yes No No Yes No

Adjusted R2 0.338 0.336 0.338 0.364 0.370
Residual Std. Error 40.884 (df = 2376) 40.955 (df = 2381) 40.871 (df = 2377) 40.061 (df = 2369) 39.878 (df = 2374)
F Statistic 94.781*** (df = 13; 2376) 151.833*** (df = 8; 2381) 102.784*** (df = 12; 2377) 69.444*** (df = 20; 2369) 94.563*** (df = 15; 2374)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.4: Forest Ricardian Alternative Specifications 4
Model 14 Model 15 Model 16 Model 17 Model 18

Max Temp -19.776*** -17.296*** -11.358*** -17.401*** -15.517***
(2.902) (2.208) (2.118) (2.883) (2.229)

Max Temp Squared 0.292*** 0.310*** 0.192*** 0.283*** 0.311***
(0.078) (0.069) (0.066) (0.077) (0.069)

Min Temp 5.905*** 3.182*** 0.671 2.988** 0.207
(1.270) (0.926) (0.979) (1.291) (0.972)

Min Temp Squared -0.171*** -0.107** -0.088* -0.182*** -0.136***
(0.053) (0.048) (0.047) (0.053) (0.048)

Precip -0.221*** -0.124*** -0.216*** -0.209*** -0.104***
(0.030) (0.030) (0.026) (0.029) (0.030)

Precip Squared 0.00002*** 0.00001** 0.00004*** 0.00002*** 0.00001**
(0.00001) (0.00001) (0.00000) (0.00001) (0.00001)

Max Temp:Precip 0.011*** 0.007*** 0.009*** 0.010*** 0.006***
(0.001) (0.001) (0.001) (0.001) (0.001)

Min Temp:Precip -0.003** -0.0005 -0.002* -0.002 0.001
(0.001) (0.001) (0.001) (0.001) (0.001)

Constant 273.207*** 200.642*** 109.142*** 171.861*** 98.699***
(31.040) (22.333) (26.697) (33.800) (26.379)

Soil Control (LCC) No No Yes Yes Yes
Regional Fixed Effect No Yes No No Yes
Sub-Regional Fixed Effects Yes No No Yes No

Adjusted R2 0.349 0.349 0.358 0.374 0.376
Residual Std. Error 40.545 (df = 2373) 40.546 (df = 2378) 40.250 (df = 2374) 39.762 (df = 2366) 39.695 (df = 2371)
F Statistic 80.981*** (df = 16; 2373) 117.316*** (df = 11; 2378) 89.919*** (df = 15; 2374) 62.983*** (df = 23; 2366) 80.919*** (df = 18; 2371)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.5: Forest Ricardian Alternative Specifications 5

Model 19 Model 20 Model 21 Model 22

Max Temp -18.051*** -15.455*** -16.693*** -16.666***
(2.875) (2.186) (2.258) (2.227)

Max Temp Squared 0.293*** 0.307*** 0.302*** 0.298***
(0.077) (0.068) (0.068) (0.067)

Min Temp 3.883*** 0.885 2.834*** 3.666***
(1.281) (0.951) (1.027) (1.010)

Min Temp Squared -0.188*** -0.138*** -0.177*** -0.173***
(0.053) (0.047) (0.048) (0.048)

Precip -0.209*** -0.097*** -0.157*** -0.157***
(0.029) (0.030) (0.028) (0.028)

Precip Squared 0.00002*** 0.00001* 0.00002*** 0.00002***
(0.00001) (0.00001) (0.00001) (0.00001)

Max Temp:Precip 0.011*** 0.006*** 0.009*** 0.009***
(0.001) (0.001) (0.001) (0.001)

Min Temp:Precip -0.002** 0.0005 -0.001 -0.002*
(0.001) (0.001) (0.001) (0.001)

Constant 232.757*** 148.352*** 125.309*** 183.080***
(31.093) (22.831) (26.592) (23.050)

Soil Control (LCC) No No Yes No
Soil Control (2 LCC Groups) Yes Yes No Yes
Regional Fixed Effect No Yes No No
Sub-Regional Fixed Effect Yes No No No
East-West Fixed Effect No No Yes Yes

Adjusted R2 0.365 0.368 0.369 0.360
Residual Std. Error 40.045 (df = 2372) 39.943 (df = 2377) 39.912 (df = 2373) 40.195 (df = 2379)
F Statistic 81.703*** (df = 17; 2372) 116.931*** (df = 12; 2377) 88.313*** (df = 16; 2373) 135.386*** (df = 10; 2379)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



149

Table C.6: Forest Ricardian Alternative Specifications 6

Model 23 Model 24

Mean Temp -5.738*** -5.357***
(1.067) (1.064)

Mean Temp Squared 0.113** 0.124**
(0.051) (0.050)

Precip -0.111*** -0.111***
(0.015) (0.015)

Precip Squared 0.00004*** 0.00004***
(0.00000) (0.00000)

Mean Temp:Precip 0.006*** 0.006***
(0.001) (0.001)

Constant 59.872*** 64.693***
(9.745) (9.665)

Soil Control (2 LCC Groups) No Yes
Soil Control (4 LCC Groups) Yes No
Regional Fixed Effect No No
Sub-Regional Fixed Effect No No
East-West Fixed Effect No No

Adjusted R2 0.334 0.330
Residual Std. Error 41.019 (df = 2381) 41.138 (df = 2383)
F Statistic 150.438*** (df = 8; 2381) 196.794*** (df = 6; 2383)
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Table C.7: Forest Ricardian Alternative Specifications 7

Model 25 Model 26

Max Temp -10.686*** -11.456***
(2.113) (2.086)

Max Temp Squared 0.174*** 0.191***
(0.066) (0.065)

Min Temp 0.860 (0.969) 1.492 (0.957)
(0.065) (0.065)

Min Temp Squared -0.086* -0.088*
(0.046) (0.046)

Precip -0.209*** -0.214***
(0.026) (0.026)

Precip Squared 0.00003*** 0.00004***
(0.00000) (0.00000)

Max Temp:Precip 0.009*** 0.009***
(0.001) (0.001)

Min Temp:Precip -0.002* -0.002**
(0.001) (0.001)

Constant 147.570*** 165.498***
(23.692) (23.068)

Soil Control (2 LCC Groups) No Yes
Soil Control (4 LCC Groups) Yes No
Regional Fixed Effect No No
Sub-Regional Fixed Effect No No
East-West Fixed Effect No No

Adjusted R2 0.354 0.350
Residual Std. Error 40.387 (df = 2378) 40.522 (df = 2380)
F Statistic 119.960*** (df = 11; 2378) 143.649*** (df = 9; 2380)




