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While the stability of time-homogeneous Markov chains have been extensively

studied through the concept of mixing times, the stability of time-inhomogeneous

Markov chains has not been studied as in depth. In this manuscript we will in-

troduce special types of time-inhomogeneous Markov chains that are defined

through an adiabatic transition. After doing this, we define the adiabatic

and the stable adiabatic times as measures of stability these special time-

inhomogeneous Markov chains. To construct an adiabatic transition one needs

to make a transitioning convex combination of an initial and final probability

transition matrix over the time interval [0, 1] for two time-homogeneous, dis-

crete time, aperiodic and irreducible Markov chains. The adiabatic and stable

adiabatic times depend on how this convex combinations transitions. In the

most general setting, we suggested that as long as P : [0, 1]→ Pian is a Lipschitz

continuous function with respect to the ‖ · ‖1 matrix norm, then the adiabatic

time is bounded above by a function of the mixing time of the final probability

transition matrix

tad(P(0),P(1), ε) ≤ Lt2mix(P1, ε)

ε
.

For the stable adiabatic time, the most general result we achieved was for non-

linear adiabatic transitions Pφ(t) = (1−φ(t))P0 +φ(t)P1 where φ is a Lipschitz

continuous functions that is piecewise defined over a finite partition of the inter-

val [0, 1] so that on each subinterval φ is a bi-Lipschitz continuous function. In



this setting we asymptotically bounded the stable adiabatic time by the largest

mixing of Pφ(t) over all t ∈ [0, 1]. We found that

tsad (P0,P1, ε) = O
(
t4mix(ε)

ε3

)
.

We also have some additional results at bound the stable adiabatic time in this

manuscript, but they are included to show the different attempts we took and

highlight how important it is to pick the right variables to compare. We also

provide examples to queueing and statistical mechanics.
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Preface

In this text I organize the primary topics of my graduate research at Ore-

gon State University. This research was conducted from the Fall of 2009 to

the Spring of 2013. Collaboration with my academic advisor, Dr. Yevgeniy

Kovchegov, began after his first journal publication [16] on the topic of the

adiabatic time. Together we made another journal publication [4], on the adia-

batic time, before talks with with Dr. Thinh Nguyen and his graduate research

assistant Leena Zacharias. Dr. Kovchegov, Dr. Nguyen and I made a journal

submission on the topic of the stable adiabatic time and the four of us published

a conference proceeding on adaptive queueing policies through an adiabatic ap-

proach [27]. I have plans to make another journal submission on the stable

adiabatic time by the end of the year and we have expanded upon the confer-

ence proceeding to make yet another journal submission on adaptive queueing

policies. With so many bodies of work, I found it prudent to use this disserta-

tion to fully explain our motivation for this research and to outline all of our

results in one location. I also want to bring attention to some ideas that did

not make it into publication.

Because both the adiabatic time and the stable adiabatic time are mea-

surements of stability of finite-state, time-inhomogeneous Markov chains, we

first organize this text with a split between discrete-time and continuous-time

Markov chains. Chapters 1, 2, 3 and 4 cover discrete-time Markov chains while

Chapters 5, 6, 7 and 8 cover continuous-time Markov chains.

In Chapter 1 we review some basic concepts of finite-state, discrete-time

Markov chains, define the mixing time of a Markov chain and outline the con-

ditions necessary for the mixing time to exist. We also outline the relationship

between the mixing time of a Markov chain and the spectral gap of its proba-

bility transition matrix before outlining a new relationship between the mixing



time of a Markov chain and a singular value measurement of its probability

transition matrix.

In Chapter 2 we find an upper bound of the adiabatic time by considering a

function of a related mixing time and in Chapter 3 we find an asymptotic bound

of the stable adiabatic time by considering a different function of a related

mixing time. We split Chapter 2 into three parts depending on the kind of

adiabatic evolution used in the creation of the time-inhomogeneous Markov

chains and we similarly split Chapter 3 into two parts. Each type of adiabatic

evolution demanded different proof techniques to find the upper bound of the

adiabatic time and the asymptotic bound of stable adiabatic time. I included

the different evolutions in these two chapters to give the reader a sense of how

the proofs change in each setting. In Chapter 2 we also provide examples to

show that our results are optimal.

Chapter 4 contains our attempts to find either an upper bound or an asymp-

totic bound of the stable adiabatic time with respect to a function of a related

spectral gap. Our study is motivated in part by the Quantum Adiabatic theorem

which characterizes the quantum adiabatic time for the evolution of a quantum

system as a result of applying of a series of Hamiltonian operators, each is a lin-

ear combination of two pre-specified initial and final Hamilton operators. These

linear combinations are similar to those of initial and final probability transition

matrices described in Sections 2.1 and 3.1. The quantum adiabatic time of a

quantum system specifies the rate at which Hamiltonian operators change so

that the ground state of the system at any time s will always remain ε-close to

that induced by the Hamilton operator at time s. The first Quantum Adiabatic

theorem was stated in the 1920s by M. Born and V.A. Fock [9], and have been

subsequently studied in [15] among others. Recently, the quantum adiabatic

time plays an important role in the development of quantum adiabatic comput-



ing. Specifically, quantum adiabatic algorithms are constructed as a sequence

of Hamilton operators applied to a quantum system in such a way that drives

the system to the desirable state or output, see for example [17]. Thus, the

quantum adiabatic time is a natural choice for characterizing the running times

of adiabatic quantum algorithms.

In Section 4.1 we outline the Quantum Adiabatic theorem described in [2]

and we establish that the quantum adiabatic time is of the order of the inverse

cube of the smallest spectral gap over the entire transition of the energy func-

tion. This result gave us hope that we could asymptotically bound the stable

adiabatic time by an inverse power of the smallest spectral gap over the entire

transition. We were unable to find a bound for a general finite-state, discrete-

time time-inhomogeneous Markov chain under a linear adiabatic evolution by

the spectral gap, so we attempted different scenarios. The first scenario is out-

lined in Section 4.2. In this scenario we find a bound of the stable adiabatic time

when the initial and final probability transition matrices have only two states.

The second scenario is outlined in Section 4.4. In this scenario we attempt to

find an asymptotic bound when the initial and final probability transition ma-

trices are reversible. This attempt ultimately failed because the non-hermitian

nature of Markov chains limits our ability to accurately discuss the spectrum

of the probability transition matrices. In an attempt to solve this problem for

reversible Markov chains (i.e. the probability transition matrices are self-adjoint

in the l2(Rn+, πt) space), we used spectral techniques described in [6]; however,

the use of the local norm in the l2(Rn+, 1/πt) space does not allow us to extract

information in such a way so that the magnitude of the adiabatic time is solely

in terms of the spectral gap. Finally, the third scenario is outlined in Section 4.6.

In this scenario we again attempt to find an asymptotic bound when the initial

and final probability matrices are birth-death matrices. Because birth-death



Markov chains are reversible, this is an attempt to restrict even further, and use

known information about birth-death Markov chains to derive a result. This

result failed as well and led us to end the endeavor of comparing the stable adi-

abatic time to the spectral gap and turn our attention to comparing the stable

adiabatic time to the mixing time. I still find the attempts in this chapter allur-

ing and I feel that they can be useful to somebody in the future, so I included

them in this work.

The final chapters discuss continuous-time Markov chains. Chapter 5 we in-

troduce the core concepts of finite-state, continuous-time Markov chains, define

the mixing time of a time-homogeneous Markov chain, and discuss the condi-

tions necessary for the mixing time to exist. This parallels the introductory

style of Chapter 1.

In Chapter 6 we find both upper bounds and asymptotic upper bounds of the

adiabatic time with respect to a related mixing time. We again split the results

into scenarios of different adiabatic evolution. The results from this chapter

mirror the results from Chapter 2.

The continuous-time, time-inhomogeneous Markov chains described in Sec-

tions 6.1 have been used to describe queueing models [27] for networks. Specif-

ically, in the setting described in Chapter 7, the arrival rate of a packet at the

queue is assumed to be unknown and is estimated progressively. An appropri-

ate sending rate is then determined based on this estimation. As a result, the

probability transition matrix at each discrete time describes a queuing policy

(or sending rate) which varies with time based on the new statistics. The adi-

abatic time is then used to characterize the performance of the queuing model

under uncertainty due to error in estimation. The stable adiabatic time has

also found practical applications in network design. The recent work of Ra-

jagoplan et al. [19] used the adiabatic time to design optimal medium access



protocols in wireless networks. In Chapter 7 we discuss some of the results of

these applications.

We apply our asymptotic bound of the adiabatic time to a statistical me-

chanical model in Chapter 8, namely the Ising model with Glauber dynamics.

We consider a general adiabatic evolution between two Hamiltonian (energy)

functions on different dimensional tori. Finally, in Chapter 9, I will briefly

discuss my plans for conducting future research in this area.

At this point I feel that I cannot continue without acknowledging the people

that helped this research take place. I have already mentioned the members

of our research group that contributed to adiabatic time publications and I

naturally owe these people a great deal of thanks for their contribution and

inspiration. I want to extend further thanks to both Yevgeniy Kovchegov and

Thinh Nguyen for their advice and guidance while helping me publish papers

and start my career as a research mathematician. I want to recognize Oregon

State University and their excellent mathematics, statistics, physics and engi-

neering departments - I could not exist without their support. During my stay,

I have worked with many great minds and instead of listing all of these people,

I want to name a few people (listed alphabetically) that helped shape my views

in probability: Max Brugger, Bob Burton, Zlatko Dimcovic, Bechir Hamdaoui,

Mina Ossiander, Bob Smythe, Enrique Thomann and Ed Waymire. I have to

thank all members of my family for helping me to survive as a student and I

lastly have to thank my best friend, Shannon Baker, for her love and encour-

agement.

Kyle B. Bradford
Corvallis, OR, USA
http://bradfordmathematics.tumblr.com/



Chapter 1

Background on Discrete
Markov Chains

This chapter is not necessary for advanced readers, but it contains information

that might be useful when reading the later chapters. The first section will

define a discrete-time Markov chain along with many properties of these chains.

The second section will define the mixing time of an irreducible and aperiodic,

discrete-time Markov chain. This section contains multiple propositions that

outline special bounds on the mixing time.

1.1 Discrete Markov Chains

In this section we are going to consider the creation and development of discrete-

time Markov chains. Markov chains have been studied for many years and

these definitions and propositions are well-known to most readers, but I want to

restate them here to give us a foundation which will lead to a clear understanding

of the spectral structure of the probability transition matrices of the discrete-

time Markov chains.
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First consider a finite dimensional, n× n, matrix with real entries

P =


p11 · · · p1n

...
...

pn1 · · · pnn


The space of all matrices of this form Mn(R) form a noncommutative ring

with identity. A subset of this ring is the space of all n × n matrices with

nonnegative (positive) entries. The following definition gives an apt name for

matrices in this subset.

Definition 1 A matrix P with real entries is called nonnegative (positive) if all

its entries are nonnegative (positive). This is denoted P ≥ 0 (P > 0).

Next we consider a subset of the space of all n × n nonnegative matrices

that is vital in the construction of discrete-time Markov chains. The following

definition gives a name for matrices in this subset.

Definition 2 A nonnegative matrix P is called stochastic if
∑n
j=1 pij = 1 for

all 1 ≤ i ≤ n.

Before I describe how these matrices help in the construction of discrete-time

Markov chains, I will stop to consider some of the spectral properties of stochas-

tic matrices. The following two propositions have been known for generations,

so much so that I could readily find them in my introductory graduate linear

algebra text [10]. I included their proofs in Section 1.2 since they are so short.

Proposition 1 If P is a stochastic matrix, then 1 is an eigenvalue of P.

Proposition 2 If λ is an eigenvalue of the stochastic matrix P, then |λ| ≤ 1.

We will return to these two propositions in a moment. We turn our attention

to the creation of a discrete-time Markov chain. We start with a finite state
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space E. This can be an abstract collection of objects with no ordering, but we

can enumerate this collection and impose an ordering so that we can consider

E = {1, · · · , n}. Given this state space, we make our definition.

Definition 3 A discrete-time Markov chain is a random process in the set of

all sequences X : Z+ → E, where each sequence has a probability associated with

it uniquely determined (up to initial distribution). This probability is governed

by a sequence of stochastic matrices P[k] which give the conditional probability

at time k ∈ Z+: P(Xk+1 = j|Xk = i) = p[k]ij where the p[k]ij is the ij entry of

P[k].

Because the entries of the stochastic matrices P[k] determine the conditional

probabilities at time k we call it the probability transition matrix of the Markov

chain at time k. There are two basic types of discrete-time Markov chains that

we will now define and we will consider both types throughout this dissertation.

Definition 4 A discrete-time Markov chain is said to be time-homogeneous if

there exists a stochastic matrix P such that P[k] = P for all k ∈ Z+.

If there exists a pair j, k ∈ Z+ such that P[j] 6= P[k] the Markov chain is called

time-inhomogeneous.

Next we highlight two important properties of the probability transition

matrices of discrete-time, time-homogeneous Markov chains. We will consider

matrices with these two properties many times throughout the paper, so we

want to know as much about these matrices as possible. We start by defining

irreducibility, but before we can define this we must first consider the concept

of accessibility and communication between states in our state space E.

Definition 5 Let 1k be a column vector of length n with 1 in the kth entry and

0 in every other entry.
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For a time-homogeneous Markov chain, a state j ∈ E is said to be accessible

from a state i ∈ E if there exists k ∈ Z such that 1Ti Pk1j > 0.

A state i ∈ E is said to communicate with a state j ∈ E if both i is accessible

from j and j is accessible from i.

Being able to communicate is an equivalence relationship, ∼ on E, so a

communicating class is an element in the quotient space E/ ∼. The structure

of this quotient space tells us whether or not our probability transition matrix

is irreducible.

Definition 6 If E/ ∼ consists of one element, then the matrix P is said to be

irreducible.

We finish by defining aperiodicity, but to do this we have to understand the

period of a given state in our state space.

Definition 7 The period of a state i ∈ E for a time-homogeneous Markov chain

is defined by k = gcd{m : P(Xm = i|X0 = i) > 0}.

If the period of every state is one, then P is said to be aperiodic.

We briefly return to Propositions 1 and 2 before continuing. Remember that

these propositions describe some spectral properties of stochastic matrices. Now

we explore some further spectral properties of irreducible and aperiodic, often

called primitive, matrices. We begin with the statement of the Perron-Frobenius

Theorem for irreducible and aperiodic matrices as it was written in [6]. We will

not include the proof to this theorem, but there is a nice proof of the Theorem

of Frobenius in [11].
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Theorem 1 For an irreducible and aperiodic n × n stochastic matrix P, the

eigenvalue 1 has algebraic multiplicity one and all other eigenvalues have mod-

ulus less than 1.

This theorem gives us two very important conditions to place on our stochas-

tic matrix to guarantee the existence of a unique left-handed eigenvector for the

matrix P. Furthermore, this theorem leads to an explanation of the convergence

of any probability vector to this unique left-handed eigenvector under repeated

applications on the right by P. For a more complete explanation, consider the

following: for any vector

u =

[
u1 · · · un

]

such that ui ≥ 0 for 1 ≤ i ≤ n and
∑n
i=1 ui = 1 we see that uP is also a

vector such that each entry is nonnegative and its sum is one. This tells us that

multiplication of row probability vectors on the right by P preserves the l1(Rn)

structure. Naturally, for every n ∈ Z+, uPn is a vector such that each entry is

nonnegative and its sum is one. What happens as n→∞?

For irreducible and aperiodic matrices, [6] shows that Pn tends to a matrix

with every row equal to the unique-left handed eigenvector of P. You could also

show this through a Jordan Decomposition of your matrix P. This would imply

that any vector u multiplied on the right by this matrix many times would

eventually approach the unique left-handed eigenvector of P. For this reason,

the vector was given a name and we end this section with its definition.

Definition 8 For a discrete-time, time-homogeneous Markov chain with irre-

ducible and aperiodic probability transition matrix P, the unique left-handed

eigenvector associated with the eigenvalue 1, denoted π, is called the stationary distribution

of P.
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1.2 Proofs

1.2.1 Proof of Proposition 1

If we multiply the vector

vT =


1

...

1


on the left by P, then we find that


p11 · · · p1n

...
...

pn1 · · · pnn




1

...

1

 =


∑n
j=1 p1j

...∑n
j=1 pnj

 =


1

...

1

 .

This tells us that PvT = 1vT .

1.2.2 Proof of Proposition 2

Let vT be a right-handed eigenvector of P associated with λ.

Let

vT =


v1

...

vn

 .

Let vm be the entry of vT with the largest modulus.
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|vm||λ− pmm| = |λvm − pmmvm|

= |
n∑
j=1

pmjvj − pmmvm|

= |
∑
j 6=m

pmjvj |

≤
∑
j 6=m

pmj |vj |

≤
∑
j 6=m

pmj |vm|

= |vm|
∑
j 6=m

pmj

= |vm| (1− pmm) .

We now have that |λ− pmm| ≤ 1− pmm.

This will imply that

|λ| = |λ− pmm + pmm|

≤ |λ− pmm|+ pmm

≤ (1− pmm) + pmm

≤ 1.

1.3 Mixing Time for Discrete Markov Chains

I ended Section 1.1 with a definition of the stationary distribution of a discrete-

time, time-homogeneous Markov chain with a probability transition matrix that
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is irreducible and aperiodic. I described in rough terms why any initial proba-

bility distribution tends to the stationary distribution through consecutive ap-

plications of the probability transition matrix. A natural question arose from

this: how does the structure of the irreducible and aperiodic matrix affect how

quickly the Markov chain converges to its stationary distribution? To measure

this stability one needs a norm to measure the size of the changes in these prob-

ability vectors, so I am going to use the total variation norm, denoted ‖ · ‖TV

throughout this paper. One measurement of ’how quickly’ the Markov chain

converges was given a name many years ago, and I recall this definition.

Definition 9 Let P be the probability transition matrix for an irreducible, ape-

riodic, discrete-time, time-homogeneous Markov chain with stationary distribu-

tion π. Given an ε > 0, the time tmix(P, ε) is called the mixing time if it is the

least T ∈ N such that

max
ν
‖νPT − π‖TV ≤ ε

where the maximum is taken over all probability distribution ν.

The mixing time is a topic of great interest in and of itself and it has been

thoroughly researched. I want to highlight one aspect of this research that

pertains to comparing the mixing time to the spectral gap of the probability

transition matrix. First I will define what I mean by spectral gap.

Definition 10 For a stochastic matrix P that is both irreducible and aperiodic,

the spectral gap of the matrix is the difference of its largest two eigenvectors in

magnitude. Specifically, if we denote ∆ as the spectral gap of the matrix and we

denote λ2 ∈ (−1, 1) as an eigenvalue of P such that for any other eigenvalue λ,

|λ2| ≥ |λ|, then

∆ = 1− |λ2|.
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The author of [18] provides upper and lower bounds on the mixing time

with respect to the spectral gap for reversible Markov chains. Notice, however,

that the upper bound is not entirely in terms of the spectral gap. Before I cite

these two theorems, I will first define what it means for a Markov chain to be

reversible.

Definition 11 A Markov chain, {Xm}m∈Z+ is reversible if there exists a prob-

ability distribution π ∈ Rn such that for all m ∈ Z+ and all states i, j ∈ E

π(i)P (Xm+1 = j|Xm = i) = π(j)P (Xm+1 = i|Xm = j) .

Another way to describe reversibility is saying that the probability transition

matrix is self-adjoint with respect to the the inner product < ·, · >π, but we

will return to this definition is Section 4.4.

Theorem 2 For a probability transition matrix, P, of a time-homogeneous,

discrete-time, reversible and irreducible Markov chain over a finite state space

E, if we are given ε > 0 and we let πmin := minx∈E π(x) and ∆ be the spectral

gap of P, then

tmix(P, ε) ≤ log

(
1

επmin

)
1

∆
. (1.1)

Theorem 3 For a probability transition matrix, P, of a time-homogeneous,

discrete-time, reversible, irreducible and aperiodic Markov chain, if we are given

ε > 0 and let ∆ be the spectral gap, then

tmix(P, ε) ≥
(

1

∆
− 1

)
log

(
1

2ε

)
. (1.2)

It seems that the mixing time almost acts like the inverse of the spectral

gap, but not quite. Chapter 4 addresses our attempts to asymptotically bound
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the stable adiabatic time with a power of the inverse spectral gap, but we

unable to find a reasonable bound. Chapter 3 addresses our successful attempt

to asymptotically bound the stable adiabatic time with a power of a related

mixing time. The difference of these two attempts seems to be very slight if

you consider the previous two theorems, but this difference turned out to be

significant. To address this difference we are now going to develop a singular

value relative of the spectral gap and show that this relative has a much more

intrinsic relationship with the mixing time when compared to its spectral gap

cousin.

The derivation of the following proposition was original work. We included

it in [5] and we include the proof in Section 1.4. It is an important aspect

of the reason behind exchanging the spectral gap with the mixing time when

switching from the l2 (Rn) dynamics of the Quantum Adiabatic theorem to the

l1 (Rn) dynamics of the Stable Adiabatic Theorem, see Chapter 4.

We know that irreducible, aperiodic time-homogeneous Markov chains gov-

erned by a probability transition matrix P has a unique stationary distribution,

making the nullity of (Iλ−P) equal to one when λ = 1. This would necessarily

imply that the rank of (I−P) is n− 1.

Let σ1 ≥ · · · ≥ σn−1 = σ be the positive singular values of (I − P) with

respect to the Euclidean inner product, which we will denote ‖ · ‖2 throughout

this paper. We will similarly denote the l1 (Rn)-norm by ‖ · ‖1 throughout the

paper. By definition our singular value decomposition gives us an orthonormal

basis {v1, · · · ,vn} such that vj(I − P)(I − P)T = σ2
jvj for 1 ≤ j ≤ n − 1 and

vn(I−P)(I−P)T = 0.

Clearly vn = π/‖π‖2.

Proposition 3 We have that for an time-homogeneous, discrete-time, n-state,

irreducible and aperiodic Markov chain, if we are given ε > 0, then if σ is the
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smallest singular value of I−P

4− nε
4tmix(P, ε/2)

≤ σ. (1.3)

There have been many results bounding the inverse spectral gap for re-

versible Markov chains on weighted graphs, for example conductance bounds

and weighted path upper bounds. In both [1] and [6] the authors introduce the

necessary spectral structure to find these bounds. They also define a Dirichlet

form to help derive the well-known Rayleigh Theorem and the Perron-Frobenius

Theorem, which also describe bounds on the inverse spectral gap. Our work,

however, does not employ these techniques directly, but these topics will be

reviewed again in Chapter 4.

1.4 Proofs

1.4.1 Proof of Proposition 3

For t ∈ N define Mt−1 = I + P + P2 + · · ·+ Pt−1.

Also define π to be the stationary distribution of P.

Notice that I−Pt = (I−P)Mt−1.

For irreducible, aperiodic Markov chains we have that if λ1, · · ·λn are the eigen-

values of P such that 1 = λ1 > |λ2| ≥ · · · ≥ |λn|, then

t,
1− λt2
1− λ2

, · · · , 1− λtn
1− λn
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are the eigenvalues of Mt−1. Notice that Mt−1 must be invertible because all

eigenvalues are nonzero and also notice that t is the largest eigenvalue.

This implies that I−P = (I−Pt)Mt−1
−1 and we see that

σ = ‖vn−1(I−P)‖2 = ‖vn−1(I−Pt)Mt−1
−1‖2.

We see that if ‖ · ‖∗ is the standard matrix norm, then

‖vn−1(I−Pt)‖2 = ‖vn−1(I−Pt)Mt−1
−1Mt−1‖2

≤ ‖vn−1(I−Pt)Mt−1
−1‖2‖Mt−1‖∗

≤ t‖vn−1(I−Pt)Mt−1
−1‖2

≤ tσ.

If we let u be a vector such that for 1 ≤ i ≤ n, u(i) = 0 whenever vn−1(i) ≥ 0

and u(i) = −vn−1(i) whenever vn−1(i) < 0, then we have that ν1 = u/‖u‖1

and ν2 = (vn−1 + u)/‖vn−1 + u‖1 are probability distributions and

vn−1(I−Pt) = vn−1 + (‖u‖1 − ‖vn−1 + u‖1)π

−
(
‖vn−1 + u‖1 (ν2 − π) Pt − ‖u‖1 (ν1 − π) Pt

)
.

For x,y ∈ Rn such that x and y are probability measures, we see that

1

2
‖x− y‖2 ≤ ‖x− y‖TV ≤

√
n

2
‖x− y‖2.
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Through the triangle inequality we see that if we select t = tmix(P, ε/2), then

‖
(
‖vn−1 + u‖1 (ν2 − π) Pt − ‖u‖1 (ν1 − π) Pt

)
‖2

≤ ‖vn−1 + u‖1‖ (ν2 − π) Pt‖2

+ ‖u‖1‖ (ν1 − π) Pt‖2

≤
√
n‖vn−1 + u‖1‖ (ν2 − π) Pt‖TV

2

+

√
n‖u‖1‖ (ν1 − π) Pt‖TV

2

≤
√
n(‖vn−1 + u‖1 + ‖u‖1)ε

4

≤
√
n‖vn−1‖1ε

4

≤ n‖vn−1‖2ε
4

≤ nε

4
.

Because vn−1 and π are orthogonal, we see that

‖vn−1 + (‖u‖1 − ‖vn−1 − u‖1)π‖2 =

√
1 + (‖u‖1 − ‖vn−1 + u‖1)2 (‖π‖2)

2

≥ 1.

Now through the reverse triangle inequality, meaning that for vectors x and y,

‖x− y‖2 ≥ ‖x‖2 − ‖y‖2, we see that if t = tmix(P, ε/2), then

‖vn−1(I−Pt)‖ ≥ 1− nε

4
.

This now implies that

4− nε
4tmix(P, ε/2)

≤ σ.
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Chapter 2

The Adiabatic Time Versus

The Mixing Time For

Discrete Markov Chains

This chapter first introduces three types of evolutions between two irreducible

and aperiodic time-homogeneous Markov chains. For each type of evolution, a

class of time-inhomogeneous Markov chains is created. We then turn our atten-

tion to the stability of these time-inhomogeneous Markov chains. We introduce

a measurement called adiabatic time and bound this adiabatic time by a func-

tion of the mixing time of the final time-homogeneous Markov chain. We also

provide an example to show that this bound is optimal.

2.1 Linear Evolution

This section introduces the notion of a linear evolution between the probability

transition matrices of two discrete-time, time-homogeneous Markov chains. We

15
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then define our first type of discrete-time, time-inhomogeneous Markov chain

and study a metric of stability called the adiabatic time. This nomenclature

was first introduced in [16].

Definition 12 Let P0 and P1 be the probability transition matrices for two

discrete-time, time-homogeneous Markov chains. We call P0 the initial tran-

sition matrix and P1 the final transition matrix. We define a class of proba-

bility transition matrices based on a linear evolution between P0 and P1 to be

{Pt}t∈[0,1] so that

Pt = (1− t)P0 + tP1 (2.1)

for each t ∈ [0, 1].

We define πt to be the stationary distribution of Pt for each t ∈ [0, 1]. Given

T ∈ N, the specific time-inhomogeneous Markov chain being considered in this

section is the one such that the probability transition matrix at time k is P k
T

for 0 ≤ k ≤ T . We consider the class of all time-inhomogeneous Markov chains

of this type over all T ∈ N. We will say that any Markov chain in this class is

governed by an linear adiabatic evolution between P0 and P1.

The adiabatic time is the smallest integer T guaranteeing that any distri-

bution will evolve under consecutive applications of P k
T

for 1 ≤ k ≤ T to an

epsilon-ball of the stationary distribution P1. We summarize this in the follow-

ing definition.

Definition 13 Given ε > 0, a time tad(P0,P1, ε) is called the adiabatic time

for a linear adiabatic evolution between P0 and P1 if it is the least T ∗ ∈ N such

that

max
ν
‖νP 1

T
P 2

T
· · ·PT−1

T
P1 − π1‖TV ≤ ε (2.2)

for all T ≥ T ∗ where the maximum is taken over all probability distributions ν.
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It is crucial to note that we are using a linear evolution of discrete Markov

chains for this definition, because we will later allow for evolutions that are not

linear. We also remark that this definition only requires the uniqueness of the

stationary distribution π1.

Under this definition, we make a relationship between the adiabatic time

for a linear adiabatic evolution between two discrete-time, time-homogeneous

Markov chains and the mixing time of the final Markov chain. We attach the

proof of the following corollary in Section 2.2.

Theorem 4 Given a discrete-time, time-inhomogeneous Markov chain governed

by a linear adiabatic evolution between two discrete-time, time-homogeneous, ir-

reducible and aperiodic Markov chains with probability transition matrices P0

and P1, we have for ε > 0

tad(P0,P1, ε) ≤
2t2mix(P1, ε/2)

ε
. (2.3)

The following is a direct result of the previous theorem. This corollary was

shown in [16].

Corollary 1 Given a discrete-time, time-inhomogeneous Markov chain gov-

erned by a linear adiabatic evolution between two discrete-time, time-homogeneous,

irreducible and aperiodic Markov chains with probability transition matrices P0

and P1, the asymptotic behavior of the adiabatic time as ε↘ 0 is

tad(P0,P1, ε) = O

(
t2mix(P1, ε/2)

ε

)
. (2.4)

We next give an example to show that the asymptotic bound from Corollary

1 is the best bound in this setting. That is to say that there exists at least one
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pair of Markov chains such that

tad(P0,P1, ε) =
Ct2mix(P1, ε/2)

ε

for some constant C. This was shown in [4] and you can reference a more

detailed explanation of why this example is a lower bound in Section 2.2.

Example 1 (The lower bound.) Let there be n+ 1 states, {0, 1, 2, . . . , n}.

P0 =



1 0 · · · 0

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0



P1 =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1
. . .

...

...
...

...
. . .

. . . 0

0 0 0 · · · 0 1

0 0 0 · · · 0 1


The probability transition matrices mentioned above are not irreducible,

but they have a unique stationary distribution, so that the adiabatic time can

be defined in this case. Also note that we can perturb them to make them

irreducible, and for these irreducible Markov chains, our adiabatic time will be

a constant multiplied by the mixing time squared.

There are many practical applications for the linear adiabatic evolution be-

tween two time-homogeneous Markov chains, but there are many problems that

are unaccessible by a mere linear evolution. In Sections 2.3 and 2.5 we will find

a similar bound for more general types of evolution.
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2.2 Proofs

2.2.1 Proof of Theorem 4

From the proof in [16], we notice that

tad(P0,P1, ε) ≤ Ktmix(P1, ε/2)

where

1 +


(

1 + 1
K−1

)K−1

e


tmix(P1,ε/2)

≤ ε/2.

After performing some basic algebra and taking the natural logarithm of either

side of the equation, we see that

ln (1− ε/2) ≤ tmix (P1, ε/2)

(
ln

((
1 +

1

K − 1

)K−1
)
− 1

)

≤ tmix (P1, ε/2)

(
(K − 1) ln

(
1 +

1

K − 1

)
− 1

)

≤ tmix (P1, ε/2)

(K − 1)

 ∞∑
j=1

(−1)j+1 1

j(K − 1)j

− 1


≤ tmix (P1, ε/2)

 ∞∑
j=2

(−1)j+1 1

j(K − 1)j−1


≤ tmix (P1, ε/2)

 ∞∑
j=1

(−1)j+1 1

j(K − 1)j

(
−j
j + 1

) .

It is clear now that if we select K large enough so that

ln (1− ε/2) ≤ −tmix (P1, ε/2)

 ∞∑
j=1

(−1)j+1 1

j(K − 1)j


≤ −tmix (P1, ε/2) ln

(
1 +

1

K − 1

)
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then K will be large enough to satisfy the previous inequality.

Exponentiating either side of the equation and performing the basic algebra

required to solve for K we see that

K ≥ 1 +

(
e

(
− ln(1−ε/2)
tmix(P1,ε/2)

)
− 1

)−1

≥ 1 +

 ∞∑
j=0

(
1

j!

(
− ln(1− ε/2)

tmix(P1, ε/2)

)j)
− 1

−1

≥ 1 +

− ln(1− ε/2)

tmix(P1, ε/2)

∞∑
j=1

1

j!

(
− ln(1− ε/2)

tmix(P1, ε/2)

)j−1
−1

≥ 1 +
tmix(P1, ε/2)

− ln(1− ε/2)

 ∞∑
j=1

1

j!

(
− ln(1− ε/2)

tmix(P1, ε/2)

)j−1
−1

.

Notice that the infinite sum that we have is the sum of positive terms and the

first term in the sum is 1. This tells us that

1 ≤
∞∑
j=1

1

j!

(
− ln(1− ε/2)

tmix(P1, ε/2)

)j−1

therefore

1 ≥

 ∞∑
j=1

1

j!

(
− ln(1− ε/2)

tmix(P1, ε/2)

)j−1
−1

.

This tells us that if we select K such that

K ≥ 1 +
tmix(P1, ε/2)

− ln(1− ε/2)

then the above inequality will be satisfied.
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Finally we can expand ln(1− ε/2) to find that

K ≥ 1 +
2tmix(P1, ε/2)

ε

 ∞∑
j=1

1

j

( ε
2

)j−1

−1

.

Again the infinite sum is the sum of positive terms and the first term in the

sum is 1. This tells us that

1 ≥

 ∞∑
j=1

1

j

( ε
2

)j−1

−1

.

We conclude that if we select K such that

K ≥ 2tmix(P1, ε/2)

ε

then

1 +


(

1 + 1
K−1

)K−1

e


tmix(P1,ε/2)

≤ ε/2.

Therefore, we see that

tad(P0,P1, ε) ≤
2t2mix(P1, ε/2)

ε
.
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2.2.2 Proof of Example 1

Recall that there are n + 1 states, {0, 1, 2, . . . , n} and our probability matrices

are

P0 =



1 0 · · · 0

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0



P1 =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1
. . .

...

...
...

...
. . .

. . . 0

0 0 0 · · · 0 1

0 0 0 · · · 0 1


.

Notice that π1 = (0, · · · , 0, 1).

Also notice that ‖νP1
n − π1‖TV = 0 for all distributions ν and

‖(1, 0, · · · , 0)P1
n−1 − π1‖TV = 1.

This implies that for 0 < ε < 2

t2mix(P1, ε/2)

ε
=
n2

ε
.
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We also have that νP0 = (1, 0, · · · , 0) for all distributions ν which implies that

‖νP 1
T
·P 2

T
· · ·PT−1

T
·P1 − π1‖TV

≥

∥∥∥∥∥∥
T−1∑
j=0

(
1− j

T

)
T !

j! · TT−j

((1, 0, · · · , 0)P1
T−j − π1

)∥∥∥∥∥∥
TV

.

Observe that νP1
T−j − π1 = 0 for any 0 ≤ j ≤ T − n. Therefore

‖νP 1
T
·P 2

T
· · ·PT−1

T
·P1 − π1‖TV ≥

T−1∑
j=T−n+1

(
1− j

T

)
T !

j! · TT−j

≥
T−1∑

j=T−n+1

(
T !

j! · TT−j
− T !

(j − 1)! · TT−(j−1)

)
≥ 1− T !

(T − n)! · Tn

≥ 1− T − n+ 1

T
· · · T − 1

T
.

Now, because T−n+1
T · · · T−1

T ≤
(
T−n2
T

)n
2

for n ≥ 2, we see that

‖νP 1
T
·P 2

T
· · ·PT−1

T
·P1 − π1‖TV ≥ 1−

(
T − n

2

T

)n
2

≥ 1− e−
(
n2

4T

)
.

Thus ε ≥ ‖νP 1
T
·P 2

T
· · ·PT−1

T
·P1 − π1‖TV ≥ 1− e−

(
n2

4T

)
implies

T ≥ n2

−4 log(1− ε)
≈ 1

4
· n

2

ε
.

This indeed tells us that

tad(P0,P1, ε) = O
(
t2mix(P1, ε/2)

ε

)
.
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2.3 Nonlinear Evolution

We now extend the results in Section 2.1 to cover more general evolutions be-

tween the probability transition matrices of two discrete-time, time-homogeneous

Markov chains. In this section we will consider nonlinear evolutions rather than

linear evolutions, but we find a familiar result. We will extend our results even

further in the following section. We first develop our terminology for this sec-

tion. Although our definitions look similar to those in the previous section,

notice the different notation associated with the nonlinear evolution.

Definition 14 Let P0 and P1 be the probability transition matrices for two

irreducible, aperiodic, discrete-time, time-homogeneous Markov chains. We call

P0 the initial transition matrix and P1 the final transition matrix. We define

a class of probability transition matrices based on a nonlinear evolution between

P0 and P1 to be

Pφ(t) = (1− φ(t))P0 + φ(t)P1 (2.5)

where φ : [0, 1]→ [0, 1] is continuous functions such that φ(0) = 0 and φ(1) = 1.

We similarly define πφ(t) to be the stationary distribution of Pφ(t) for each

t ∈ [0, 1]. Given T ∈ N, we now consider a time-inhomogeneous Markov chain

such that the probability transition matrix at time k is Pφ( k
T ) for 0 ≤ k ≤ T .

We consider the class of all time-inhomogeneous Markov chains of this type over

all T ∈ N. We will say that any Markov chain in this class is governed by a

nonlinear adiabatic evolution between P0 and P1 by the function φ.

For these types of adiabatic evolutions, the adiabatic time is now the small-

est integer T guaranteeing that any distribution will evolve under consecutive

applications of Pφ( k
T ) for 1 ≤ k ≤ T to an ε-ball of the stationary distribution

of P1. Our formal definition accounts for this nonlinear evolution.
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Definition 15 Given ε > 0, a time tad(P0,P1, ε) is called the adiabatic time

for a nonlinear adiabatic evolution between P0 and P1 by the function φ if it is

the least T ∗ ∈ N such that

max
ν
‖νPφ( 1

T )Pφ( 2
T ) · · ·Pφ( T−1

T )P1 − π1‖TV ≤ ε (2.6)

for all T ≥ T ∗ where the maximum is taken over all probability distributions ν.

We want to compare this definition of the adiabatic time to the mixing

time of the final Markov chain as we did in the previous section, however, the

techniques used in the previous section will not help us derive this result. We

will find a result on a dense subset of the continuous functions from the unit

interval to itself. Our dense subset will be the space of Lipschitz continuous

functions with finite Lipschitz constant. We will first remind the reader of what

it means to be Lipschitz continuous.

Definition 16 A function φ : [0, 1] → [0, 1] is Lipschitz continuous with posi-

tive, real Lipschitz constant L if for x, y ∈ [0, 1],

∣∣φ(x)− φ(y)
∣∣ ≤ L∣∣x− y∣∣. (2.7)

Typically we understand the Lipschitz constant L to be the smallest such

positive, real number under which the inequality holds. It should be clear

that the space of Lipschitz continuous functions with finite Lipschitz constant

mapping the unit interval to itself is dense in the space of continuous functions

mapping the unit interval to itself. This is because continuous functions on the

unit interval are uniformly continuous. For ε > 0 and continuous function φ

there exists n ∈ N (depending on the uniform continuity condition) such that
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the interpolation function

φn(t) =



(1− nt)φ(0) + ntφ( 1
n ) if 0 ≤ t ≤ 1

n

(1− nt)φ( 1
n ) + ntφ( 2

n ) if 1
n ≤ t ≤

2
n

...

(1− nt)φ(n−1
n ) + ntφ(1) if n−1

n ≤ t ≤ 1

has the following property:

max
t∈[0,1]

∣∣φ(t)− φn(t)
∣∣ < ε.

Notice that φn is a Lipschitz continuous function with Lipschitz constant

L = max
1≤k≤n

∣∣n(φ(k
n

)
− φ

(
k − 1

n

)) ∣∣.
To begin our comparison between the adiabatic time and the mixing time

of the final probability transition matrix, we consider the case where φ is a

Lipschitz continuous function with Lipschitz constant L such that φ(0) = 0 and

φ(1) = 1. The proof of the following theorem is given in Section 2.4.

Theorem 5 Given a time-inhomogeneous, discrete-time Markov chain governed

by a nonlinear adiabatic evolution between the two irreducible and aperiodic P0

and P1 by the Lipschitz function φ with Lipschitz constant L, for ε > 0

tad(P0,P1, ε) ≤
4Lt2mix(P1, ε/2)

ε
. (2.8)

Our next goal is to expand the class of functions in the nonlinear evolution

to all continuous functions on the unit interval. This has proven to be elusive,

but there hope that even if we cannot do this we can expand the class to all
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Hölder continous functions on the unit interval. We now turn our attention to

defining a general evolution, rather than a nonlinear evolution. In Section 2.5

we will define a general evolution to account for even more adiabatic evolutions

2.4 Proofs

2.4.1 Proof of Theorem 5

Observe that

νPφ( 1
T )Pφ( 2

T ) · · ·Pφ(T−1
T )P1 =

 T∏
j=N+1

φ (j/T )

 νNP1
T−N + E

where νN = νPφ( 1
T )Pφ( 2

T ) · · ·Pφ(NT ), and E is the rest of the terms, and both

T and N are natural numbers with N < T .

By the triangle inequality, we have

max
ν
‖νPφ( 1

T )Pφ( 2
T ) · · ·Pφ(T−1

T )P1 − π1‖TV

≤ max
ν
‖νP1

T−N − π1‖TV ·

 T∏
j=N+1

φ (j/T )

+ SN

where 0 ≤ SN ≤ 1−
[∏T

j=N+1 φ (j/T )
]
.

Setting T = Ktmix(P1, ε/2) and N = (K − 1)tmix(P1, ε/2), where ε > 0 is

small, we see that

max
ν
‖νP1

T−N − π1‖TV ·

 T∏
j=N+1

φ (j/T )

 ≤ ε/2.
It now suffices to select K large enough so that 1 −

∏T
j=N+1 φ (j/T ) ≤ ε/2 in
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order to show that tad(P0,P1, ε) = Ktmix(P1, ε).

Assume that

K ≥ 4Ltmix(P1, ε/2)

ε

where L is the Lipschitz constant for the Lipschitz continuous function φ.

Because 1 ≤
∑∞
j=1 (ε/2)

j−1
/j, we see then that

K ≥ 2Ltmix(P1, ε/2)

(ε/2)
∑∞
j=1 (ε/2)

j−1
/j

=
2Ltmix(P1, ε/2)∑∞

j=1 (ε/2)
j
/j

=
2Ltmix(P1, ε/2)

− log (1− ε/2)
.

After performing some algebra we find that

− log (1− ε/2) ≥ 2Ltmix(P1, ε/2)

K
.

First note that 2 > π2/6 where here we mean π to be the irrational number.

Remember that
∑∞
j=1 1/j2 = π2/6. We now find that

− log (1− ε/2) ≥ Ltmix(P1, ε/2)

K

π2

6

=
Ltmix(P1, ε/2)

K

∞∑
j=1

1

j2

≥ Ltmix(P1, ε/2)

K

∞∑
j=1

1

j(j + 1)

= tmix(P1, ε/2)

(
L

K

) ∞∑
j=1

1

j(j + 1)
.
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Notice that when ε ≥ 1 the tad (P0,P1, ε) = 1 because the total variation dis-

tance between two probability distributions is always going to be less than 1.

We need only concern ourselves of the case when ε < 1 and in this case it is

easy to show that K > L.

This being the case we see that 1 ≥ (L/K)
j−1

for j ∈ N.

This would now imply that

− log (1− ε/2) ≥ tmix(P1, ε/2)

(
L

K

) ∞∑
j=1

1

j(j + 1)

≥ tmix(P1, ε/2)

(
L

K

) ∞∑
j=1

(L/K)
j−1

j(j + 1)

= tmix(P1, ε/2)

∞∑
j=1

(L/K)
j

j(j + 1)

= tmix(P1, ε/2)

∞∑
j=1

(
L

K

)j [
1

j
− 1

j + 1

]

= tmix(P1, ε/2)

 ∞∑
j=1

(L/K)
j

j
−
(
K

L

) ∞∑
j=1

(L/K)
j+1

j + 1


= tmix(P1, ε/2)

 ∞∑
j=1

(L/K)
j

j
+ 1−

(
K

L

) ∞∑
j=1

(L/K)
j

j

 .
Using the Taylor series representation of log (1− x) around x = 0, we see that

we can write the previous inequality as

− log (1− ε/2) ≥ tmix(P1, ε/2)

[
1 +

(
K

L

)
log

(
1− L

K

)
− log

(
1− L

K

)]
.

Performing some basic algebra, we find that

− log (1− ε/2) ≥ −Ktmix(P1, ε/2)

L

[(
1− L

K

)(
1− log

(
1− L

K

))
− 1

]
.
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We can now use the fact that T = Ktmix(P1, ε/2) and 1/K = (1 − N/T ) to

write the previous expression as

− log (1− ε/2) ≥ −T
L

[
(−1)−

(
1− L+

LN

T

)(
log

(
1− L+

LN

T

)
− 1

)]
.

We see that the right hand expression is an integral of a logarithm function. In

fact

− log (1− ε/2) ≥ T

L

∫ 1

1−L+LN
T

− log (x) dx.

Notice that − log (x) is strictly decreasing on the interval [1 − L + LN
T , 1], so

we can find a lower bound to the integral by taking a well known right hand

sum from introductory integral calculus. Here we partition [1−L+ LN
T , 1] into

T −N subintervals of length L/T and we have that

∫ 1

1−L+LN
T

− log (x) dx ≥
T−N∑
j=1

−
(
L

T

)
log

((
1− L+

LN

T

)
+
Lj

T

)
.

We now have that

− log (1− ε/2) ≥ −
T−N∑
j=1

log

((
1− L+

LN

T

)
+
Lj

T

)
.

With a change of indices on the summation we find that

− log (1− ε/2) ≥ −
T−N∑
j=1

log

((
1− L+

LN

T

)
+
Lj

T

)

= −
T∑

j=N+1

log

(
(1− L) +

Lj

T

)

= −
T∑

j=N+1

log

(
1− L

(
1− j

T

))
.

Multiplying both sides by negative one and then exponentiating either side, we
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see that

1− ε/2 ≤
T∏

j=N+1

(
1− L

(
1− j

T

))
.

Now we notice that because φ is a Lipschitz continuous function with Lipschitz

constant L

T∏
j=N+1

(
1− L

(
1− j

T

))
=

T∏
j=N+1

(
1− L

∣∣1− j/T ∣∣)
≤

T∏
j=N+1

(
1−

∣∣φ (1)− φ (j/T )
∣∣)

≤
T∏

j=N+1

(1− (1− φ (j/T )))

=

T∏
j=N+1

φ (j/T ) .

After some basic algebra, we can now state that

1−
T∏

j=N+1

φ (j/T ) ≤ ε/2

when

K ≥ 4Ltmix(P1, ε/2)

ε
.

From this we now conclude that

tad(P0,P1, ε) ≤
4Lt2mix(P1, ε/2)

ε
.
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2.5 General Evolution

This section is devoted to extending our results from Sections 2.1 and 2.3. We

begin by introducing terminology and we again find a familiar result. We will

also discuss a more descriptive result at the end of this section. For the following

definition we use the Matrix notation P (t) = (Pt(i, j))i,j .

Definition 17 Let P0 and P1 be two probability transition matrices where P0

is an initial transition matrix and P1 is a final transition matrix. We define a

class of probability transition matrices based on a general evolution between P0

and P1 to be a class of matrices P (t) such that

P(t)(i, j) = (1− φi,j(t))P0(i, j) + φi,j(t)P1(i, j) (2.9)

where φi,j : [0, 1] → [0, 1] are continuous functions such that φi,j(0) = 0 and

φi,j(1) = 1 for all 1 ≤ i, j ≤ n and
∑
j φi,j(t) (P1(i, j)−P0(i, j)) = 0 for all

t ∈ [0, 1] and each 1 ≤ i ≤ n.

We can also describe a general evolution using matrix notation. LetMn([0, 1])

be the collection of all n× n matrices with entries in [0, 1]. Define

Pn = {P ∈Mn([0, 1]) : P1 = 1}

where 1 is the n dimensional column vector with all entries 1 and define

Pian = {P ∈ Pn : P is irreducible and aperiodic}.

In this section we could also define the class of probability transition matrices

based on a general evolution between P0 and P1 as a continuous function P :

[0, 1] → Pian such that P (0) = P0 and P (1) = P1. We would also define a
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function π : [0, 1]→ Rn such that π (t) is the stationary distribution of P (t).

Given T ∈ N, we now consider a time-inhomogeneous Markov chains such

that the probability transition matrix at time k is P
(
k
T

)
for 0 ≤ k ≤ T . We

consider the class of all time-inhomogeneous Markov chains of this type over all

T ∈ N. We will say that any Markov chain in this class is governed by a general

adiabatic evolution between P0 and P1 by the function P.

For these types of adiabatic evolutions, the adiabatic time is now the smallest

integer T guaranteeing that any distribution will evolve under consecutive appli-

cations of P
(
k
T

)
for 1 ≤ k ≤ T to an epsilon-ball of the stationary distribution

of P (1). We summarize this in the following definition.

Definition 18 For ε > 0 the adiabatic time of a time-inhomogeneous, discrete-

time Markov chain governed by an adiabatic evolution between P0 and P1 by

the function P, is defined as:

tad(P0,P1, ε) = inf{T ∗ ∈ N :

max
ν
‖νP (0) P

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ ε for T ∈ N, T ≥ T ∗},

(2.10)

where ν is a probability distribution.

We again want to compare this definition of the adiabatic time to the mixing

time of the final Markov chain as we did in the two previous sections. We will

follow an approach similar to the one outlined in Section 2.3. We will find a

result on a dense subset of the space of continuous functions, now mapping the

unit interval to Pian . This dense subset is the space of Lipschitz continuous

functions with finite Lipschitz constant, again mapping the unit interval to Pian .

It should be understood that this is a dense subspace if you follow a similar
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treatment as the one in Section 2.3. Our notion of Lipschitz continuous has

now changed, however, so we define what it means to be Lipschitz continuous

in this setting.

Definition 19 A function P : [0, 1] → Pian is Lipschitz continuous with posi-

tive, real Lipschitz constant L, if for x, y ∈ [0, 1],

‖P (x)−P (y) ‖ ≤ L
∣∣x− y∣∣ (2.11)

where ‖ · ‖ is some Matrix norm.

The matrix norm we will use in this section for a matrix M is ‖M‖1 =

maxν ‖νM‖1 where the maximum is taken over all probability distributions ν

and the vector norm ‖ · ‖1 is the standard l1-norm.

To begin our comparison between the adiabatic time and the mixing time

of the final probability transition matrix, we now consider P to be a Lipschitz

continuous function with Lipschitz constant L such that P (0) = P0 and P (1) =

P1. The proof of the following Theorem is given in Section 2.6.

Theorem 6 Given a time-inhomogeneous, discrete-time Markov chain governed

by a general adiabatic evolution between the two irreducible and aperiodic P0 and

P1 by the Lipschitz function P with Lipschitz constant L, for ε > 0

tad(P0,P1, ε) ≤
Lt2mix(P1, ε/2)

ε
. (2.12)

We now wish to make a slight improvement which takes into account exactly

how these general adiabatic evolutions are continuous. To do this we return to

the notation that we developed at the beginning of the section from Defini-

tion 17. The following Theorem describes our more precise result and the proof

is given in Section 2.6.
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Theorem 7 Suppose P0 and P1 are irreducible and aperiodic Markov chains.

Consider a general adiabatic evolution between P0 and P1. Let ε > 0. Letting

φ be the piecewise minimum function of all of the φi,j functions, if m is the first

positive integer such that φ(m)(1) 6= 0 then

tad(P0,P1, ε) = O

(
t
m+1
m

mix (P1, ε/2)

ε
1
m

)
(2.13)

This is in fact the best bound in this new setting as shown through the

example in Section 2.1; however, the proof is somewhat different. We include

the following example and the proof of why this example shows our bound in

Theorem 7 is optimal. This was shown in [4].

Example 2 (The lower bound.) Let there be n+ 1 states, {0, 1, 2, . . . , n}.

P0 =



1 0 · · · 0

1 0 · · · 0

...
...

. . .
...

1 0 · · · 0



P1 =



0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1
. . .

...

...
...

...
. . .

. . . 0

0 0 0 · · · 0 1

0 0 0 · · · 0 1


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2.6 Proofs

2.6.1 Proof of Theorem 6

Observe that

νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)

= νN

(
P (1) +

(
P

(
N + 1

T

)
−P (1)

))
P∗N+2

= νNP (1) P∗N+2 + νN

(
P

(
N + 1

T

)
−P (1)

)
P∗N+2.

where νN = νP
(

1
T

)
P
(

2
T

)
· · ·P

(
N
T

)
, P∗k = P

(
k
T

)
· · ·P (1), and both T and N

are natural numbers with N < T .

By continuing this process for P
(
N+2
T

)
and so on, we find that

νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)

= νN (P (1))
T−N

+

T−N−2∑
k=0

νN (P (1))
k

(
P

(
N + 1 + k

T

)
−P (1)

)
P∗N+2+k.

By the triangle inequality, we have

‖νP
(

1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ ‖νN (P (1))
T−N − π (1) ‖TV

+

T−N−2∑
k=0

‖νN (P (1))
k

(
P

(
N + 1 + k

T

)
−P (1)

)
P∗N+2+k‖TV .

Because 2‖µ−ν‖TV = ‖µ−ν‖1 whenever µ and ν are probability distributions,
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we see that

‖νP
(

1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV ≤ ‖νN (P (1))

T−N − π (1) ‖TV

+
1

2

T−N−2∑
k=0

‖ν∗kP∗N+2+k‖1

where ν∗k = νN (P (1))
k (

P
(
N+1+k

T

)
−P (1)

)
.

Notice that for 0 ≤ k ≤ T−N−2, because P∗N+2+k is a probability distribution,

we have that

‖ν∗kP∗N+2+k‖1 =

n∑
j=1

∣∣ n∑
i=1

ν∗k (i) P∗N+2+k (i, j)
∣∣

≤
n∑
j=1

n∑
i=1

∣∣ν∗k (i)
∣∣P∗N+2+k (i, j)

=

n∑
i=1

∣∣ν∗k (i)
∣∣ n∑
j=1

P∗N+2+k (i, j)

=

n∑
i=1

∣∣ν∗k (i)
∣∣

= ‖ν∗k‖1.

We therefore see that

‖νP
(

1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ ‖νN (P (1))
T−N − π (1) ‖TV

+
1

2

T−N−2∑
k=0

‖νN (P (1))
k

(
P

(
N + 1 + k

T

)
−P (1)

)
‖1.

It is clear to see that νN (P (1))
k

is a probability vector for 0 ≤ k ≤ T −N − 2,
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so we can see that

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ max
ν
‖ν (P (1))

T−N − π (1) ‖TV

+
1

2

T−N−2∑
k=0

max
ν
‖ν
(

P

(
N + 1 + k

T

)
−P (1)

)
‖1

where the maximum is taken over all probability vectors ν.

We observe that the terms in the sum of the right hand side of the inequality are

now the matrix norm for the matrix P
(
N+1+k

T

)
−P (1) for 0 ≤ k ≤ T −N − 2.

This would imply that

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ max
ν
‖ν (P (1))

T−N − π (1) ‖TV

+
1

2

T−N−2∑
k=0

‖P
(
N + 1 + k

T

)
−P (1) ‖1.

At this point we consider ε > 0 and we use the fact that the space of Lipschitz

continuous functions with finite Lipschitz constant from [0, 1] to Pian is dense in

the space of continuous functions from [0, 1] to Pian to find a Lipschitz continuous

function P∗ : [0, 1] → Pian with Lipschitz constant L such that P∗ (0) = P0,

P∗ (1) = P1 and

‖P(t)−P∗(t)‖1 ≤
ε

2tmix (P (1) , ε/2)

for all t ∈ [0, 1].
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We can use our previous inequality to write

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ max
ν
‖ν (P (1))

T−N − π (1) ‖TV

+
1

2

T−N−2∑
k=0

‖P∗
(
N + 1 + k

T

)
−P∗ (1) ‖1

+
1

2

T−N−2∑
k=0

‖P
(
N + 1 + k

T

)
−P∗

(
N + 1 + k

T

)
‖1

Because P∗ : [0, 1] → Pian is a Lipschitz continuous function with Lipschitz

constant L, we see then that

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ max
ν
‖ν (P (1))

T−N − π (1) ‖TV

+
L

2

T−N−2∑
k=0

∣∣N + 1 + k

T
− 1
∣∣

+
1

2

T−N−2∑
k=0

ε

2tmix (P (1) , ε/2)
.

After relabeling our sum, we can easily see that

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ max
ν
‖ν (P (1))

T−N − π (1) ‖TV

+
L

4T
(T −N − 1)(T −N)

+
ε

4tmix (P (1) , ε/2)
(T −N − 1).

Setting T = Ktmix(P (1) , ε/2) and N = (K − 1)tmix(P (1) , ε/2), where ε > 0
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is small, we see that

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ 3ε

4
+

L

4K
(tmix (P (1) , ε/2)− 1)

≤ 3ε

4
+

L

4K
tmix (P (1) , ε/2) .

Selecting

K =
Ltmix (P1, ε/2)

ε

we find that

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV ≤ ε.

This implies that

tad (P0,P1, ε) ≤
Lt2mix (P1, ε/2)

ε
.

2.6.2 Proof of Theorem 7

Recall that for each s ∈ [0, 1] we have φ(s) = mini,j{φi,j(s)}.

We see that

P(s)(i, j) = (1− φi,j(s))P0(i, j) + (φi,j(s)− φ(s))P1(i, j) + φ(s)P1(i, j)

will give us a well defined transition matrix P̂ such that

(1− φ(s))P̂(i, j) = (1− φi,j(s))P0(i, j) + (φi,j(s)− φ(s))P1(i, j).
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We will thus have that

P(s) = (1− φ(s))P̂ + φ(s)P1.

Observe that

νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1) =

 T∏
j=N+1

φ(
j

T
)

 νNP1
T−N + E

where νN = νP
(

1
T

)
P
(

2
T

)
· · ·P

(
N−1
T

)
P
(
N
T

)
, and E is the rest of the terms,

and both T and N are natural numbers with N < T .

By the triangle inequality, we have

max
ν
‖νP

(
1

T

)
P

(
2

T

)
· · ·P

(
T − 1

T

)
P (1)− π (1) ‖TV

≤ max
ν
‖νP1

T−N − π1‖TV

 T∏
j=N+1

φ(
j

T
)

+ SN

where 0 ≤ SN ≤ 1−
[∏T

j=N+1 φ( jT )
]
.

Supposing we set T −N = tmix(P1, ε/2) where ε > 0 is small, we have that

max
ν
‖νP1

T−N − π1‖TV

 T∏
j=N+1

φ(
j

T
)

 ≤ ε/2.
Setting 1−

[∏T
j=N+1 φ( jT )

]
≤ ε/2 we obtain

log (1− ε/2) ≤
T∑

j=N+1

log φ(
j

T
).
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We plug in the approximation of the minimum function φ around x = 1

φ(x) = 1 +
φ(m)(1)(x− 1)m

m!
+O

(
|x− 1|m+1

)
obtaining

− log(1− ε/2)

≥ −
T∑

j=N+1

log

(
1 +

(−1)mφ(m)(1)(T − j)m

Tm ·m!
+O

(
(1− j/T )m+1

))
.

Therefore

− log (1− ε/2) ≥ (−1)m+1φ(m)(1)

Tm ·m!

T−N−1∑
j=1

jm +O
(

(T −N)m+2

Tm+1

)
.

Observe that (−1)m+1φ(m)(1) ≥ 0 as φ : [0, 1]→ [0, 1] and φ(1) = 1.

Because
n−1∑
j=1

jk =

k∑
j=0

Bj
(k + 1)− j

 k

j

n(k+1)−j

we see that

tmix(P1,ε/2)−1∑
j=1

jm =

m∑
k=0

Bk
(m+ 1)− k

 m

k


· tmix (P1, ε/2)

(m+1)−k
+O

(
(T −N)

m+2

Tm+1

)
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where Bk is the kth Bernoulli number, and therefore

ε > − log(1− ε/2)

≥ (−1)m+1φ(m)(1)

Tm ·m!

m∑
k=0

Bk
(m+ 1)− k

 m

k


· tmix (P1, ε/2)

(m+1)−k
+O

(
(T −N)m+2

Tm+1

)

In order for the right hand side of the above equation to be − log(1− ε/2) close

to zero, it is sufficient for T to be of order

O

(
t
m+1
m

mix (P1, ε/2)

ε
1
m

)
.

2.6.3 Proof of Example 2

Recall that in this general adiabatic setting

P(t)(i, j) = (1− φi,j(t)) P0(i, j) + φi,j(t)P1(i, j).

Suppose φi,j(t) = φ(t) for all 1 ≤ i, j ≤ n and suppose m ≥ 1 is the smallest

integer such that φ(m)(1) 6= 0. Then noticing that for any distribution ν, νP0 =

e1 = (1, 0, · · · , 0), we have that

‖νP
(

1

T

)
· · ·P (1)− π(1)‖TV

≥
∥∥e1

T−1∑
l=0

(1− φ(l/T ))

T∏
j=l+1

φ(j/T )

PT−l(1)− π(1)
∥∥
TV
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and therefore

‖νP
(

1

T

)
· · ·P(1)− π(1)‖TV ≥

T−1∑
l=T−n+1

(1− φ(l/T ))

T∏
j=l+1

φ(j/T )

=

T−1∑
l=T−n+1

 T∏
j=l+1

φ(j/T )−
T∏
j=l

φ(j/T )


= 1−

T∏
j=T−n+1

φ(j/T ).

The minimum function φ(x) = 1 + φ(m)(1)(x−1)m

m! +O
(
|x− 1|m+1

)
and

‖νP
(

1

T

)
· · ·P(1)− π(1)‖TV

≥ 1−
T∏

j=T−n+1

(
1 +

(−1)mφ(m)(1)(T − j)m

Tmm!
+O

(
(1− j/T )m+1

))

= 1− e
∑T
j=T−n+1 log

(
1+

(−1)mφ(m)(1)(T−j)m
Tmm! +O((1−j/T )m+1)

)

≥ 1− e
(−1)mφ(m)(1)

Tm
∑n−1
j=1 j

m+O((n/T )m+1)

as log(1 + x) ≤ x.

It is a well known fact that

n−1∑
j=1

jk =

k∑
j=0

Bj
(k + 1)− j

 k

j

n(k+1)−j ,

where Bj is the jth Bernoulli number.
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Suppose ε ≥ ‖νP
(

1
T

)
· · ·P(1)− π(1)‖TV , then

ε ≈ − log(1− ε)

≥ (−1)m+1φ(m)(1)

Tm

m∑
j=0

Bj
(m+ 1)− j

 m

j

n(m+1)−j +O
(
(n/T )m+1

)

Thus confirming that the order of the adiabatic time in Theorem 7 is optimal

tad (P(0),P(1), ε) = O

(
t
m+1
m

mix (P(1), ε/2)

ε
1
m

)
.



Chapter 3

The Stable Adiabatic Time

Versus The Mixing Time

For Discrete Markov

Chains

This chapter will consider both linear and nonlinear evolutions between two

irreducible and aperiodic time-homogeneous Markov chains. We consider the

corresponding time-inhomogeneous Markov chains from Chapter 2: Section 3.1

considers linear adiabatic evolutions and Section 3.3 considers nonlinear adia-

batic evolutions. We now seek to to find a stricter form of stability of these

Markov chains. We introduce a measurement called the stable adiabatic time

and asymptotically bound this measurement by a function of the largest mixing

time over the entire adiabatic evolution.

46
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3.1 Linear Evolution

This section is going to define a new metric of stability for the time-inhomogeneous

Markov chains introduced in Section 2.1. Recall that Definition 13 suggests for

ε > 0 and any T ≥ tad(P0,P1, ε) that any probability distribution will evolve

under consecutive applications of P k
T

to an ε-ball around π1 in the space of

probability distributions with respect to the total variation norm. We desire a

stronger notion of stability in this paper to match the description of the quan-

tum adiabatic theorem mentioned in [9]. We want to select T large enough so

that starting at π0, the distribution will evolve under consecutive applications

of P k
T

within an ε-corridor of π k
T

for 1 ≤ k ≤ T . This leads us to the following

definition.

Definition 20 Given ε > 0, a time tsad(P0,P1, ε) is called the stable adiabatic time

for a linear adiabatic evolution between P0 and P1 if it is the least such T ∈ N

such that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV < ε (3.1)

for 1 ≤ k ≤ T .

The goal of this section is to find an asymptotic bound for the stable adi-

abatic time with respect to the maximum mixing time over all the probability

transition matrices in the linear adiabatic evolution. For ε > 0 we let

tmix(ε) = sup
s∈[0,1]

{tmix(Ps, ε)} (3.2)

and we seek our bound in terms of this tmix(ε).

The following theorem gives us insight into the nature of the stable adiabatic

time. Its proof is given in Section 3.2.
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Theorem 8 Given a time-inhomogeneous, discrete-time Markov chain governed

by a linear adiabatic evolution between the irreducible and aperiodic P0 and P1

and given δ ∈ (0, 1], for any ε > 0,

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ε

for

T ≥ 2t2mix(ε/2)

εδ
, (3.3)

and δ ≤ k/T ≤ 1.

If we can find T ≥ 2t2mix(ε/2)
εδ that satisfies ‖π0P 1

T
· · ·P k

T
−π k

T
‖TV ≤ ε for k/

T ∈ [0, δ], then this value of T would be an upper bound for the stable adiabatic

time. Notice that we can choose δ ∈ (0, 1] to be as small as we like. If we find

a bound of ‖π0P 1
T
· · ·P k

T
− π k

T
‖TV in terms of ‖π0 − π k

T
‖TV then we can use

the continuity of πs at s = 0 to find this value of T . We devote the following

propositions to this endeavor and their proofs are shown in Section 3.2.

Proposition 4 For 1 ≤ k ≤ T

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ‖π k

T
− π0‖TV +

(k + 1)2

2T
. (3.4)

Now we can use the continuity of πs at s = 0 to find an appropriate bound for

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV for 0 ≤ k/T ≤ δ. We devote the following proposition

to the discovery of how πs is continuous at s = 0. The spectral structure of P0

is crucial to this development. Its proof is given in Section 3.2

Proposition 5 πs is continuous with respect to the total variation norm at

s = 0. In particular, for ε > 0 if we let σ be the smallest nonzero singular value

of I−P0, then if

δ =
εσ

2n3/2
(3.5)



49

we have for all s ≤ δ, ‖πs − π0‖TV ≤ ε.

Now we can use Proposition 3 along with the fact that tmix(P0, ε) ≤ tmix(ε)

to derive the following Corollary to Proposition 5.

Corollary 2 πs is continuous with respect to the total variation norm at s = 0.

In particular, for 0 < ε < 1/
√
n if

δ =
ε(1−

√
nε)

4n3/2tmix(ε/2)
(3.6)

we have for all s ≤ δ, ‖πs − π0‖TV ≤ ε/2.

We now have all the necessary tools to find a bound for the stable adiabatic

time. The proof is in Section 3.2.

Theorem 9 Given a time-inhomogeneous, discrete-time Markov chain governed

by a linear adiabatic evolution between the irreducible and aperiodic P0 and P1,

for any ε > 0,

tsad(P0,P1, ε) = O

(
t4mix(ε/2)

ε3

)
. (3.7)

We will see in Section 4.1 that this result somewhat reaffirms what has been

shown in the Quantum Adiabatic Theorem in [3], but a main difference is that

the inverse spectral gap bound for the quantum system is replaced with a mixing

time bound in our result. Our result also has an extra multiple of 1/ε. Notice

that the inverse spectral gap was a natural choice for the Quantum Adiabatic

Theorem due to the Hamiltonian matrix being self-adjoint. For general, not

necessarily reversible, Markov Chains, the Adiabatic Theorem is expressed using

mixing times.
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3.2 Proofs

3.2.1 Proof of Theorem 8

To develop the tools for this theorem, we consider the following treatment of

our probability transition matrices. If we are given s ∈ (0, 1], then we see that

Pt =

(
1− t

s

)
P0 +

t

s
Ps

for all t ∈ [0, s].

Defining P
(s)
t = Pst, we see that

P
(s)
t = (1− t)P(s)

0 + tP
(s)
1

for all t ∈ [0, 1]. We also define πt
(s) = πst.

We see that {P(s)
t }t∈[0,1] is a class of probability transition matrices where

P0 = P
(s)
0 and Ps = P

(s)
1 .

Since the time-homogeneous Markov chains determined by P0 and Ps are

irreducible and aperiodic, we can consider a time-inhomogeneous, discrete-

time Markov chain governed by adiabatic evolution between these two time-

homogeneous Markov chains.

Now let ε > 0 and δ ∈ (0, 1].

For s ∈ [δ, 1] we have that T ∗ = tad(P
(s)
0 ,P

(s)
1 , ε) is the adiabatic time between

P
(s)
0 and P

(s)
1 .
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This tells us that

max
ν
‖νP(s)

1
T∗

P
(s)
2

T∗
· · ·P(s)

1 − π1(s)‖TV ≤ ε.

Because π0
(s) is a specific distribution, we have that

ε ≥ ‖π0(s)P
(s)
1

T∗
P

(s)
2

T∗
· · ·P(s)

1 − π1(s)‖TV

= ‖π0(s)P
(s)
(1/s)

(T∗/s)
P

(s)
(2/s)

(T∗/s)
· · ·P(s)

(T∗/s)
(T∗/s)

− π(s)
1 ‖TV

= ‖π0P 1
(T∗/s)

P 2
(T∗/s)

· · ·P s(T∗/s)
(T∗/s)

− π s(T∗/s)
(T∗/s)

‖TV .

Clearly if T = tad(P
(s)
0 ,P

(s)
1 , ε)/s, then

‖π0P 1
T

P 2
T
· · ·P sT

T
− π sT

T
‖TV ≤ ε.

We showed in Theorem 4 that for ε > 0

tad(P
(s)
0 ,P

(s)
1 , ε) ≤ 2t2mix(Ps, ε/2)

ε
.

It follows that for ε > 0

tad(P
(s)
0 ,P

(s)
1 , ε) ≤ 2t2mix(ε/2)

ε
.

For ε > 0 if we let T any integer such that

T ≥ 2t2mix(ε/2)

εδ
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we have

‖π0P 1
T

P 2
T
· · ·P k

T
− π k

T
‖TV ≤ ε

for all δ ≤ k/T ≤ 1.

3.2.2 Proof of Proposition 4

Because π0P j
T

= π0 + j
T π0(P1 −P0) for 1 ≤ j ≤ k we notice that

π0P j
T
· · ·P k

T
− π k

T
= π0P j+1

T
· · ·P k

T
− π k

T
+
j

T
π0(P1 −P0)P j+1

T
· · ·P k

T

for 1 ≤ j ≤ k − 1 and

π0P k
T
− π k

T
= (π0 − π k

T
) +

k

T
π0(P1 −P0).

Using the convention Pj+1 · · ·Pk = I when j ≥ k, we would see that

π0P 1
T
· · ·P k

T
− π k

T
= (π0 − π k

T
) +

k∑
j=1

j

T
π0(P1 −P0)P j+1

T
· · ·P k

T
.

Taking the total variation norm to either side of the inequality, using the triangle

inequality and pulling out constants, we see that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV = ‖(π0 − π k

T
) +

k∑
j=1

j

T
π0(P1 −P0)P j+1

T
· · ·P k

T
‖TV

≤ ‖π0 − π k
T
‖TV +

k∑
j=1

j

T
‖π0(P1 −P0)P j+1

T
· · ·P k

T
‖TV .

Notice that for 1 ≤ j ≤ k − 1

π0(P1 −P0)P j+1
T
· · ·P k

T
= π0P1P j+1

T
· · ·P k

T
− π0P0P j+1

T
· · ·P k

T
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is the difference between two probability distributions and

π0(P1 −P0) = π0P1 − π0P0

is also the difference between two probability distributions.

Because we are taking the total variation norm to the difference of two proba-

bility distributions we see that ‖ · ‖TV = 1
2‖ · ‖1 where ‖ · ‖1 is the l1-norm.

We have that for probability distributions µ and ν, ‖µ− ν‖TV = 1
2‖µ− ν‖1 ≤

1
2 (‖µ‖1 + ‖ν‖1) ≤ 1.

This tells us that ‖π0(P1 −P0)P j+1
T
· · ·P k

T
‖TV ≤ 1 for 1 ≤ j ≤ k.

We see then that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ‖π k

T
− π0‖TV +

k∑
j=1

j

T

= ‖π k
T
− π0‖TV +

1

T

k∑
j=1

j

= ‖π k
T
− π0‖TV +

k(k + 1)

2T

≤ ‖π k
T
− π0‖TV +

(k + 1)2

2T
.

3.2.3 Proof of Proposition 5

We begin with the creation of an orthonormal basis of eigenvectors associated

with (I−P0)(I−P0)T by a singular value decomposition similar to the process

we mentioned in Proposition 3.
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Here we let σ1 ≥ · · · ≥ σn−1 = σ be the positive singular values of (I − P0)

with respect to the Euclidean inner product. This implies that there exists

an orthonormal basis {v1, · · · ,vn} such that vj(I − P0)(I − P0)T = σ2
jvj for

1 ≤ j ≤ n− 1 and vn(I−P0)(I−P0)T = 0.

Here vn = π0/‖π0‖2.

To show continuity at s = 0 let ε > 0 and first notice that for any s ∈ [0, 1],

(πs − π0)(I−P0) = sπs(P1 −P0).

Using the Euclidean norm, we see that if P0 6= P1 and s 6= 0, then

‖(πs − π0)(I−P0)‖2
‖πs − π0‖2

= s
‖πs(P1 −P0)‖2
‖πs − π0‖2

.

Throughout this proof we will use < ·, · > as the Euclidean inner product.

For 1 ≤ j ≤ n let cj =< πs − π0,vj >. Then we see that πs − π0 =
∑n
j=1 cjvj.
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We have that

‖(πs − π0)(I−P0)‖22
‖πs − π0‖22

=
< (πs − π0)(I−P0), (πs − π0)(I−P0) >

< πs − π0, πs − π0 >

=
< πs − π0, (πs − π0)(I−P0)(I−P0)T >

< πs − π0, πs − π0 >

=
<
∑n
j=1 cjvj,

∑n−1
j=1 σ

2
j cjvj >

<
∑n
j=1 cjvj,

∑n
j=1 cjvj >

=

∑n−1
j=1 σ

2
j c

2
j∑n

j=1 c
2
j

≥ σ2
n−1

∑n−1
j=1 c

2
j∑n

j=1 c
2
j

= σ2
n−1

(
1− c2n∑n

j=1 c
2
j

)

= σ2
n−1

(
1−

(
< πs − π0,vn >

‖πs − π0‖2

)2
)
.

If we let w(s) = (πs − π0)/‖πs − π0‖2 then we see that

σ2
n−1

(
1− (< w(s),vn >)

2
)
≤ s2 ‖πs(P1 −P0)‖22

‖πs − π0‖22
.

Because w(s) and vn are unit vectors, we can use the fact that

‖w(s)‖22 − 2 < w(s),vn > +‖vn‖22 = ‖w(s)− vn‖22

to show that

1− < w(s),vn >=
1

2
‖w(s)− vn‖22

and we can use the fact that

‖w(s)‖22 + 2 < w(s),vn > +‖vn‖22 = ‖w(s) + vn‖22
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to show that

1+ < w(s),vn >=
1

2
‖w(s) + vn‖22.

From this we see that 1 − (< w(s),vn >)
2

= ‖w(s) − vn‖22 · ‖w(s) + vn‖22/4.

Plugging this into our previous equation, we can see that

σ2
n−1

4
‖w(s)− vn‖22 · ‖w(s) + vn‖22 ≤ s2 ‖πs(P1 −P0)‖22

‖πs − π0‖22
.

After performing some basic algebra we see that

‖πs − π0‖2 ≤
2s‖πs(P1 −P0)‖2

σn−1‖w(s)− vn‖2 · ‖w(s) + vn‖2
.

Notice that < w(s),1 > /
√
n = 0 and < vn,1 > /

√
n = 1/ (

√
n‖π0‖2) for

all s ∈ [0, 1]. Because these are the scalar components of the projections of

w(s) and vn onto 1 respectively, we see that the minimum possible value for

‖w(s)− vn‖2 and ‖w(s) + vn‖2 is at least 1/ (
√
n‖π0‖2) .

We now have that

‖πs − π0‖2 ≤
2sn‖π0‖22 · ‖πs(P1 −P0)‖2

σn−1

≤ 2sn‖πs(P1 −P0)‖2
σn−1

=
2sn‖πs(P1 −P0)‖2

σ
.

Again for x,y ∈ Rn such that x and y are probability measures, we see that

1

2
‖x− y‖2 ≤ ‖x− y‖TV ≤

√
n

2
‖x− y‖2.



57

This will imply that

‖πs − π0‖TV ≤
2sn3/2‖πs(P1 −P0)‖TV

σn−1
.

Because πs(P1 −P0) = πsP1 − πsP0 is the difference of two probability distri-

butions, we see that ‖ · ‖TV = 1
2‖ · ‖1 where ‖ · ‖1 is the l1-norm. This implies

that

‖πs(P1 −P0)‖TV =
1

2
‖πsP1 − πsP0‖1 ≤

1

2
(‖πsP1‖1 + ‖πsP0‖1) ≤ 1.

This shows that

‖πs − π0‖TV ≤
2sn3/2

σ
.

Clearly if ε > 0, then

s ≤ δ =
εσ

2n3/2

implies ‖πs − π0‖TV ≤ ε.

This shows that πs is continuous at s = 0.

3.2.4 Proof of Theorem 9

We first provide a sketch of the proof followed by the technical details. Our

proof is based on the results of Theorem 8, Proposition 4, and Corollary 2.

Specifically, we divide our proof into two cases. In the first case, we will show

how to select T and δ in order to satisfy the two conditions in Theorem 8,

namely:

T ≥ 2t2mix(ε/2)

εδ
,
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and

δ ≤ k/T ≤ 1.

Therefore, by Theorem 8, we have

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ε.

However, the selected T is not yet tsad(P0,P1, ε) since this only holds for k

such that

δ ≤ k/T ≤ 1.

In the second case, we will use the results of Proposition 4 and Corollary 2 to

show that for the same selected T and δ,

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ε,

even in the case when

k/T ≤ δ < 1.

Therefore, we conclude that the selected T is a sufficient condition for tsad(P0,P1, ε).

We now proceed with the details of the proof, starting with the first case.

Let ε > 0. For this fixed ε, we choose T be an integer such that

T ≥ 4t4mix(ε/2)

ε3
+

4t2mix(ε/2)

ε2
+

1

ε

=

(
2t2mix(ε/2)

ε
√
ε

+
1√
ε

)2

.

This implies

√
T ≥ 2t2mix(ε/2)

ε
√
ε

+
1√
ε
.
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Multiplying either side by
√
ε and subtracting 1 from either side, we obtain

√
ε
√
T − 1 ≥ 2t2mix(ε/2)

ε
.

Notice that
√
ε
√
T − 1 > 0 because

2t2mix(ε/2)

ε
> 0.

Dividing either side of the above inequality by
√
ε
√
T − 1, we obtain

1 ≥ 2t2mix(ε/2)

ε
(√

ε
√
T − 1

) .
Multiplying either side by T , we obtain

T ≥ 2t2mix(ε/2)

ε
(√

ε
T −

1
T

) .
Now, let

δ =

√
ε

T
− 1

T
,

then clearly

T ≥ 2t2mix(ε/2)

εδ
.

Next, let k be an integer such that

δ =

√
ε

T
− 1

T
≤ k

T
≤ 1.

Then by Theorem 8, we conclude that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ε.
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Now in the second (complementary) case, i.e., when k/T ≤ δ < 1, we will

show that for the same selected δ =
√

ε
T −

1
T , and T , it is still true that:

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ε,

Let k be an integer such that

0 ≤ k

T
≤
√
ε

T
− 1

T
= δ.

Then,

k + 1

T
≤
√
ε

T
.

Using Proposition 4, we have

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ‖π k

T
− π0‖TV +

(k + 1)2

2T

= ‖π k
T
− π0‖TV +

T

2

(
k + 1

T

)2

≤ ‖π k
T
− π0‖TV +

T

2

(√
ε

T

)2

= ‖π k
T
− π0‖TV +

ε

2
.

Next, from Corollary 2, as long as ε < 1/
√
n and

√
ε
T −

1
T ≤

ε(1−
√
nε)

4n3/2tmix(ε/2)
,

we have

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤ ε

for

0 ≤ k

T
≤
√
ε

T
− 1

T
.
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It should be clear that as ε→ 0,

√
ε

T
− 1

T
≤ ε(1−

√
nε)

4n3/2tmix(ε/2)

when

T ≥ 4t4mix(ε/2)

ε3
+

4t2mix(ε/2)

ε2
+

1

ε
.

This tells us that as ε→ 0,

tsad(P0,P1, ε) ≤
4t4mix(ε/2)

ε3
+

4t2mix(ε/2)

ε2
+

1

ε
.

We conclude that

tsad(P0,P1, ε) = O

(
t4mix(ε/2)

ε3

)
.

3.3 Nonlinear Evolution

We devote this section to the creation of a stable adiabatic time for the time-

inhomogeneous Markov chains introduced in Section 2.3. We will again find

an asymptotic bound of the stable adiabatic time as ε → 0 with respect to an

inverse power of ε multiplied by a power of the largest mixing time over the

entire adiabatic evolution for a subclass of continuous functions.

Recall how we defined a nonlinear evolution between the probability tran-

sition matrices of two irreducible, aperiodic, discrete-time, time-homogeneous

Markov chains in Definition 14. Denoting the initial and the final matrices P0

and P1 respectively, we defined for t ∈ [0, 1] a class of probability transition

matrices {Pφ(t)}t∈[0,1] such that

Pt = (1− φ(t))P0 + φ(t)P1
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where φ : [0, 1]→ [0, 1] is a continuous function such that φ(0) = 0 and φ(1) = 1.

We similarly define πφ(t) as the stationary distribution of Pφ(t).

We used these matrices to define a class of time-inhomogeneous Markov

chains. Any Markov chain in this class was said to be governed by a nonlinear

adiabatic evolution between P0 and P1 by the function φ. We defined the

adiabatic time in Section 2.3 as the smallest integer T guaranteeing that any

distribution will evolve under consecutive applications of Pφ( kT ) for 1 ≤ k ≤ T

to an ε-ball of the stationary distribution of P1. As we did in Section 3.1, we

are now going to demand that Pφ( kT ) remain in an ε-corridor of πφ( kT ) for all

1 ≤ k ≤ T . We now define this new metric of stability.

Definition 21 Given ε > 0, a time tsad(P0,P1, ε) is called the stable adiabatic

time for a nonlinear adiabatic evolution between P0 and P1 by the function φ

if it is the least such T ∈ N such that

‖π0Pφ( 1
T ) · · ·Pφ( kT ) − πφ( kT )‖TV < ε (3.8)

for 1 ≤ k ≤ T .

Again, our goal is to seek an asymptotic bound for the stable adiabatic time

only now it is with respect to the maximum mixing time over all the transition

probability matrices in the nonlinear adiabatic evolution. For ε > 0 we again

let

tmix(ε) = sup
s∈[0,1]

{tmix(Ps, ε)}

and we seek our bound in terms of this tmix(ε).

To find this result for any continuous φ proved to be difficult. As we did in

Section 2.3, we attempted to restrict the types of functions φ that we consider

so that they are contained in a dense subset of the continuous functions on

[0, 1], namely the Lipschitz continuous functions with finite Lipschitz constant.
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To find an asymptotic bound for Lipschitz continuous functions also proved to

be difficult, so we restrict even further by considering bi-Lipschitz continuous

functions φ with Lipschitz constant L, so we first define what it means to be

bi-Lipschitz continuous.

Definition 22 Assume a, b ∈ R with a < b. A function φ : [a, b] → R is

bi-Lipschitz continuous if there exists a positive constant L, called the Lipschitz

constant, so that

1

L

∣∣x− y∣∣ ≤ ∣∣φ (x)− φ (y)
∣∣ ≤ L∣∣x− y∣∣ (3.9)

for x, y ∈ [a, b].

The following proposition outlines an important property of bi-Lipschitz

continuous functions that we will use throughout this section. The proof of this

proposition is given in Section 3.4.

Proposition 6 If φ : [a, b] → R is a bi-Lipschitz continuous function with

Lipschitz constant L, then φ is either strictly increasing or strictly decreasing

on [a, b].

We can find an asymptotic bound for the stable adiabatic time if φ is a

bi-Lipschitz continuous function with finite Lipschitz constant L. We do this

using nearly the same process of that in Section 3.1, however, each theorem has

a slightly different process. Instead of considering only bi-Lipschitz continuous

functions on the interval [0, 1] we will consider bi-Lipschitz continuous functions

on the interval [a, b] where 0 ≤ a < b ≤ 1. We do this because we ultimately

want to consider Lipschitz continuous functions on [0, 1] that are not bi-Lipschitz

and this generalization helps us in this cause. Notice that if we pick a = 0

and b = 1 we will have found an asymptotic result for the stable adiabatic
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time when φ is bi-Lipschitz continuous. We start by considering a general

continuous function φ : [0, 1] → [0, 1] with φ(0) = 0 and φ(1) = 1 such that

φ is bi-Lipschitz continuous on a subinterval [a, b] with 0 ≤ a < b ≤ 1. The

following theorem finds a bound for ‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

when δ∗ ≤ a+ k/T ≤ b for some δ∗ ∈ (a, b] when φ is strictly increasing on

[a, b]. Its proof is given in Section 3.4. We will return to the case when φ is a

continuous function on [0, 1] such that it is bi-Lipschitz continuous and strictly

decreasing on [a, b] later.

Theorem 10 Suppose a, b ∈ R such that 0 ≤ a < b ≤ 1. Given a time-

inhomogeneous, discrete-time Markov chain governed by a nonlinear adiabatic

evolution between the irreducible and aperiodic P0 and P1 by the continuous

function φ such that φ is a strictly increasing, bi-Lipschitz continuous function

on the interval [a, b] having Lipschitz constant L and given δ∗ ∈ (a, b], for any

ε > 0,

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε

for

T ≥ 4L2t2mix(ε/2)

ε(δ∗ − a)
, (3.10)

and δ∗ ≤ a+ k/T ≤ b.

If we can find T ≥ 4L2t2mix(ε/2)
ε(δ∗−a) that satisfies

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε

for a + k/T ∈ [a, δ∗], then this value of T would guarantee that the nonlinear

adiabatic transition between a and kmax/T ≤ b is within an ε-corridor of πφ(t).

Notice that we can choose δ∗ ∈ (a, b] to be as small as we like. If we find a



65

bound of

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

in terms of ‖πφ(a)−πφ(a+ k
T )‖TV then we can use the continuity of πφ(s) at s = a

to find this value of T . We devote the following propositions to this endeavor

and their proofs are shown in Section 3.4.

Proposition 7 For 1 ≤ k ≤ T and φ : [a, b] → R a strictly increasing, bi-

Lipschitz continuous function with Lipschitz constant L,

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T )−πφ(a+ k
T )‖TV ≤ ‖πφ(a+ k

T )−πφ(a)‖TV +L
(k + 1)2

2T
.

(3.11)

Now we can use the continuity of πφ(s) at s = a to find an appropriate bound

for ‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV for a ≤ a + k/T ≤ δ∗ where δ∗

is the unique number in (a, b] such that φ(δ∗) = δ, φ(t) < δ for t < δ∗ and

φ(t) > δ for t > δ∗. We devote the following proposition to the discovery of how

πφ(s) is continuous at s ∈ [a, b] when φ is a bi-Lipschitz continuous function with

Lipschitz constant L. The spectral structure of Ps is crucial to this development.

The proof is in Section 3.4.

Proposition 8 For a, b ∈ R such that 0 ≤ a < b ≤ 1 we have that πφ is

continuous with respect to the total variation norm on [a, b] when φ is a bi-

Lipschitz continuous function with Lipschitz constant L. In particular, for ε > 0

if we let σ be the smallest nonzero singular value of I−Ps over all s∗, s ∈ [a, b],

then if

δ∗ =
εσ

2Ln3/2
(3.12)

we have for all
∣∣s∗ − s∣∣ ≤ δ∗, ‖πφ(s∗) − πφ(s)‖TV ≤ ε.
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Now we can use Proposition 3 along with the fact that tmix(P0, ε) ≤ tmix(ε)

to derive the following corollary to Proposition 8.

Corollary 3 πφ is continuous with respect to the total variation norm on [a, b]

when φ is a bi-Lipschitz continuous function with Lipschitz constant L. In

particular, for 0 < ε < 1/
√
n if

δ∗ =
ε(1−

√
nε)

4Ln3/2tmix(ε/2)
(3.13)

we have for all
∣∣s∗ − s∣∣ ≤ δ∗, ‖πφ(s∗) − πφ(s)‖TV ≤ ε/2.

We now have all the necessary tools to find an asymptotic value of T with

respect to ε that ensures

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε

for all 1 ≤ k ≤ T when φ is a strictly increasing bi-Lipschitz continuous function

with Lipschitz constant L. The proof is in Section 3.4.

Theorem 11 Suppose a, b ∈ R such that 0 ≤ a < b ≤ 1. Given a time-

inhomogeneous, discrete-time Markov chain governed by a nonlinear adiabatic

evolution between the irreducible and aperiodic P0 and P1 by the continuous

function φ such that φ is a strictly increasing, bi-Lipschitz continuous function

on the interval [a, b] having Lipschitz constant L we see that as ε→ 0, if

T ≥ 16L5t4mix(ε/2)

ε3
+

8L3t2mix(ε/2)

ε2
+
L

ε
(3.14)

then we have

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV < ε
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for a ≤ a+ k/T ≤ b.

Again, notice that if we select a = 0 and b = 1, we have found a bound on

the adiabatic time when φ is a bi-Lipschitz continuous function on [0, 1]. We

summarize this in the following corollary.

Corollary 4 Given a time-inhomogeneous, discrete-time Markov chain gov-

erned by adiabatic evolution between two time-homogeneous, discrete-time, n-

state, irreducible and aperiodic Markov chains with probability transition matri-

ces P0 and P1 by the bi-Lipschitz function φ with Lipschitz constant L, for any

ε > 0,

tsad(P0,P1, ε) = O

(
t4mix(ε/2)

ε3

)
. (3.15)

Now we want to use this information to find a bound for

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

for a ≤ a + k/T ≤ b when φ is a continuous function φ : [0, 1] → [0, 1] with

φ(0) = 0 and φ(1) = 1 such that φ is bi-Lipschitz continuous and strictly

decreasing on a subinterval [a, b] with 0 ≤ a < b ≤ 1.

Consider the Markov chain that is governed by a nonlinear adiabatic evolu-

tion between P1 and P0 by the function ψ where ψ(t) = 1− φ(t) for t ∈ [0, 1].

Notice now that

P∗ψ(t) = (1− ψ(t))P1 + ψ(t)P0

= φ(t)P1 + (1− φ(t))P0

= Pφ(t)

and π∗ψ(t) = πφ(t).
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Naturally this would imply that

‖π∗ψ(a)P
∗
ψ(a+ 1

T ) · · ·P
∗
ψ(a+ k

T ) − π
∗
ψ(a+ k

T )‖TV

= ‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

only now ψ is a bi-Lipschitz continuous function on [a, b] with Lipschitz constant

L that is strictly increasing. This would imply that Theorem 11 would also be

applicable to functions where φ is strictly decreasing on [a, b]. I summarize this

in the following corollary.

Corollary 5 Suppose a, b ∈ R such that 0 ≤ a < b ≤ 1. Given a time-

inhomogeneous, discrete-time Markov chain governed by a nonlinear adiabatic

evolution between the irreducible and aperiodic P0 and P1 by the continuous

function φ such that φ is a bi-Lipschitz continuous function on the interval [a, b]

having Lipschitz constant L we see that as ε→ 0, if

T ≥ 16L5t4mix(ε/2)

ε3
+

8L3t2mix(ε/2)

ε2
+
L

ε

then we have

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV < ε

for a ≤ a+ k/T ≤ b.

Our ultimate goal is to find a similar result for Lipschitz continuous functions

with finite Lipschitz constant, but we will work incrementally toward this goal. I

want to highlight the following property of bi-Lipschitz functions. This property

will be important when defining the next class of functions for which we have

a stable adiabatic theorem. The proof of the following proposition is given in

Section 3.4.
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Proposition 9 Let φ1 : [a, b] → R be a bi-Lipschitz continuous function with

Lipschitz constant L1 and let φ2 : [b, c]→ R be a bi-Lipschitz continuous function

with Lipschitz constant L2 such that φ1(b) = φ2(b). Suppose that either both φ1

and φ2 are strictly increasing or both φ1 and φ2 are strictly decreasing. Define

a function φ : [a, c]→ R such that

φ(t) =


φ1(t) if t ∈ [a, b]

φ2(t) if t ∈ [b, c].

Then we have that φ is a bi-Lipschitz continuous function with Lipschitz constant

max{L1, L2}.

Let M ∈ N. Let PM be a partition of [0, 1] into 2M − 1 intervals. By

creating a partition, we pick numbers 0 = a0 < a1 < · · · < a2M−2 < a2M−1 = 1

to divide the set [0, 1]. We will denote Ii = [ai−1, ai]. Now we want to consider

continuous functions Φ = φM,PM : [0, 1]→ [0, 1] so that there exists a partition

PM of the interval [0, 1] so that Φ = ΦM,PM is a piecewise defined function

Φ(t) =



φ1(t) if t ∈ I1

φ2(t) if t ∈ I2
...

φ2M−2(t) if t ∈ I2M−2

φ2M−1(t) if t ∈ I2M−1

where φi : Ii → [0, 1] is a bi-Lipschitz continuous function with Lipschitz con-

stant Li and φi(ai) = φi+1(ai).

Proposition 9 tells us that a minimal such partition exists, so we will as-

sume that PM is the minimal partition. We also know that since Φ(0) = 0 and
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Φ(1) = 1, then Φ is strictly increasing on I2i−1 for 1 ≤ i ≤ M and strictly

decreasing on I2i for 1 ≤ i ≤ M − 1. We will use the results from Corol-

lary 5 and Corollary 3 to find an asymptotic bound of the stable adiabatic time

with respect to the largest mixing time for a time-inhomogeneous, discrete-time

Markov chain governed by adiabatic evolution between two time-homogeneous,

discrete-time, n-state, irreducible and aperiodic Markov chains with probabil-

ity transition matrices P0 and P1 by the Lipschitz function Φ with Lipschitz

constant max{L1, · · · , L2M−1}.

Theorem 12 Given a time-inhomogeneous, discrete-time Markov chain gov-

erned by adiabatic evolution between two time-homogeneous, discrete-time, n-

state, irreducible and aperiodic Markov chains with probability transition matri-

ces P0 and P1 by the Lipschitz function Φ defined above with Lipschitz constant

max{L1, · · · , L2M−1}, for any ε > 0,

tsad(P0,P1, ε) = O

(
t4mix(ε/2)

ε3

)
. (3.16)

Now to complete the process we must consider general Lipschitz continuous

functions φ, however, this proved more difficult that I had hoped. We would

like to take the Lipschitz constant to large so that depends on 1/ε and find the

subintervals of [0, 1] where
∣∣φ(x) − φ(y)

∣∣ < ε and make a bound of the stable

adiabatic time or these intervals by suggesting that the adiabatic transition

doesn’t change our initial matrix that much in these intervals. The proof is

likely to come in the near future, but getting the precise details ironed out for

this manuscript was not possible.
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3.4 Proofs

3.4.1 Proof of Proposition 6

Let x, y ∈ [a, b] so that x < y and assume that φ(x) = φ(y). From the definition

of bi-Lipschitz we see that

1

L

∣∣x− y∣∣ ≤ ∣∣φ (x)− φ (y)
∣∣.

If φ(x) = φ(y) then we see that the previous equation implies

∣∣x− y∣∣ = 0.

But this can only happen if x = y. This contradicts our declaration that x < y.

This would imply that φ(x) 6= φ(y).

There exists a point z ∈ [a, b] such that φ(x) < φ(z) for all x ∈ [a, b] because φ

is a continuous function over a compact set. Assume that z ∈ (a, b). Because

φ is continuous and φ(z) is maximal, there exists some z1 < z and z2 > z such

that φ(z1) = φ(z2) and we showed this cannot happen. Therefore the maximum

element must be φ(a) or φ(b). Through a similar argument, we see that the

minimum element must also be φ(a) or φ(b). We also know that the minimum

element and the maximal element cannot be the same, because that would im-

ply that the function is constant, and not bi-Lipschitz.

First consider the case where φ(a) is minimal and φ(b) is maximal. For x, y ∈

[a, b] such that x < y assume that φ(x) > φ(y). This would imply that y 6= b

because if φ(x) > φ(b), then this contradicts our assertion that φ(b) is maximal.

Because φ is continuous on the interval [y, b] and φ(x) ∈ (φ(y), φ(b)], we can use
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the intermediate value theorem to claim that there exists a constant c ∈ [y, b]

so that φ(c) = φ(x). But we now have two numbers c, x ∈ [a, b] with x < c and

φ(x) = φ(c). This is a contradiction, so we now know that φ(x) < φ(y). We

have that φ is strictly increasing

Next consider the case where φ(b) is minimal and φ(a) is maximal. For x, y ∈

[a, b] such that x < y assume that φ(x) < φ(y). This would imply that x 6= a

because if φ(a) < φ(y), then this contradicts our assertion that φ(a) is maximal.

Because φ is continuous on the interval [a, x] and φ(y) ∈ (φ(x), φ(a)], we can

use the intermediate value theorem again to claim that there exists a constant

c ∈ [a, x] so that φ(c) = φ(y). But we again have two numbers c, y ∈ [a, b] with

c < y and φ(c) = φ(y). This is a contradiction, so we know that φ(x) > φ(y).

We have that φ is strictly decreasing.

3.4.2 Proof of Theorem 10

We first pick a number s ∈ (φ(a), φ(b)]. Because φ is a strictly increasing, con-

tinuous function on [a, b] with φ(a) the minimum value of φ on [a, b] and φ(b)

the maximum value of φ on [a, b], we know from the intermediate value theorem

that there exists s∗ ∈ (a, b] such that φ(s∗) = s. We know that there is only one

such s∗ ∈ (a, b] because φ is strictly increasing. We would also see that φ(t) < s

for t ∈ [a, s∗) and φ(t) > s for t ∈ (s∗, b].

We next consider the following treatment of our probability transition matrices:

Pφ(t) =

(
1− φ(t)− φ(a)

s− φ(a)

)
Pφ(a) +

φ(t)− φ(a)

s− φ(a)
Ps

for all t ∈ [a, s∗].
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Defining P(s)(t) = Pφ(a+t(s∗−a)), we see that

P(s)(t) =

(
1− φ(a+ t(s∗ − a))− φ(a)

s− φ(a)

)
P(s)(0)

+
φ(a+ t(s∗ − a))− φ(a)

s− φ(a)
P(s)(1)

for all t ∈ [0, 1]. We also define π(s)(t) = πφ(a+t(s∗−a)).

We see that {P(s)(t)}t∈[0,1] is a class of probability transition matrices where

P(s)(0) = Pφ(a) and P(s)(1) = Ps, however, the transition function is no longer

the bi-Lipschitz continuous function φ. The function of transition is now a

function depending on s, ψs : [0, 1]→ [0, 1] such that ψs(0) = 0, ψs(1) = 1 and

ψs(t) =
φ(a+ t(s∗ − a))− φ(a)

s− φ(a)
.

For x, y ∈ [0, 1] notice that

∣∣ψs(x)− ψs(y)
∣∣ =

∣∣φ(a+ x(s∗ − a))− φ(a)

s− φ(a)
− φ(a+ y(s∗ − a))− φ(a)

s− φ(a)

∣∣
=

1

s− φ(a)

∣∣φ(a+ x(s∗ − a))− φ(a+ y(s∗ − a))
∣∣

≤ L

s− φ(a)

∣∣x(s∗ − a)− y(s∗ − a)
∣∣

=
L(s∗ − a)

s− φ(a)

∣∣x− y∣∣.
Because φ is bi-Lipschitz continuous on [a, b] we see that (s∗ − a)/(s− φ(a)) =

(s∗ − a)/(φ(s∗)− φ(a)) ≤ L.

We see that for any s ∈ (0, 1], ψs is a Lipschitz continuous function with Lips-

chitz constant L2.
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Since the time-homogeneous Markov chains determined by P(s)(0) and P(s)(1)

are irreducible and aperiodic, we can consider a time-inhomogeneous, discrete-

time Markov chain governed by adiabatic evolution between these two time-

homogeneous Markov chains by the Lipschitz continuous function ψs.

Now let ε > 0 and δ ∈ (φ(a), φ(b)].

For s ∈ [δ, φ(b)] we have that T ∗ = tad(P
(s)(0),P(s)(1), ε) is the adiabatic time

of a time-inhomogeneous Markov chain governed by the adiabatic evolution be-

tween P(s)(0) and P(s)(1) by the Lipschitz function ψs.

This tells us that

max
ν
‖νP(s)

(
1

T ∗

)
P(s)

(
2

T ∗

)
· · ·P(s)(1)− π(s)(1)‖TV ≤ ε.

Because π(s)(0) is a specific distribution, we have that

ε ≥ ‖π(s)(0)P(s)

(
1

T ∗

)
P(s)

(
2

T ∗

)
· · ·P(s)(1)− π(s)(1)‖TV

= ‖πφ(a)Pφ
(
a+

(s∗−a)
T∗

)P
φ
(
a+

2(s∗−a)
T∗

) · · ·P
φ
(
a+

T∗(s∗−a)
T∗

) − π
φ
(
a+

T∗(s∗−a)
T∗

)‖TV .

Clearly if T = tad(P
(s)(0),P(s)(1), ε)/(s∗ − a), then

‖πφ(a)Pφ(a+ 1
T )Pφ(a+ 2

T ) · · ·Pφ(s∗) − πφ(s∗)‖TV ≤ ε.

Because ψs is a Lipschitz continuous function with Lipschitz constant L2 we
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can reference Theorem 5 to see that for ε > 0

tad(P
(s)(0),P(s)(1), ε) ≤ 4L2t2mix(Ps, ε/2)

ε
.

It follows that for ε > 0

tad(P
(s)(0),P(s)(1), ε) ≤ 4L2t2mix(ε/2)

ε
.

This would imply that if T is any integer such that

T ≥ 4L2t2mix(ε/2)

ε(δ∗ − a)

we have

‖πφ(a)Pφ(a+ 1
T )Pφ(a+ 2

T ) · · ·Pφ(s∗) − πφ(s∗)‖TV ≤ ε

for all δ∗ ≤ s∗ ≤ b.

In particular, if we consider the values of 1 ≤ k ≤ T such that

δ∗ ≤ a+ k/T ≤ b

we see that

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε.
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3.4.3 Proof of Proposition 7

Because πφ(a)Pφ(a+ j
T ) = πφ(a) +

(
φ
(
a+ j

T

)
− φ(a)

)
πφ(a)(P1−P0) for 1 ≤ j ≤

k we notice that

πφ(a)Pφ(a+ j
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )

= πφ(a)Pφ(a+
(j+1)
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )

+

(
φ

(
a+

j

T

)
− φ(a)

)
πφ(a)(P1 −P0)P

φ(a+
(j+1)
T ) · · ·Pφ(a+ k

T ).

for 1 ≤ j ≤ k − 1 and

πφ(a)Pφ(a+ k
T ) − πφ(a+ k

T )

= (πφ(a) − πφ(a+ k
T )) +

(
φ

(
a+

k

T

)
− φ(a)

)
πφ(a)(P1 −P0).

Using the convention P
φ(a+

(j+1)
T ) · · ·Pφ(a+ k

T ) = I when j ≥ k, we would see

that

πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )

=
(
πφ(a) − πφ(a+ k

T )

)
+

k∑
j=1

(
φ

(
a+

j

T

)
− φ(a)

)
πφ(a)(P1 −P0)P

φ(a+
(j+1)
T ) · · ·Pφ(a+ k

T ).

Taking the total variation norm to either side of the inequality, using the triangle
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inequality and pulling out constants, we see that

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

= ‖
(
πφ(a) − πφ(a+ k

T )

)
+

k∑
j=1

(
φ

(
a+

j

T

)
− φ(a)

)
πφ(a)(P1 −P0)P

φ(a+
(j+1)
T ) · · ·Pφ(a+ k

T )‖TV

≤ ‖πφ(a) − πφ(a+ k
T )‖TV

+
k∑
j=1

(
φ

(
a+

j

T

)
− φ(a)

)
‖πφ(a)(P1 −P0)P

φ(a+
(j+1)
T ) · · ·Pφ(a+ k

T )‖TV .

Notice that for 1 ≤ j ≤ k − 1

πφ(a)(P1 −P0)P
φ(a+

(j+1)
T ) · · ·Pφ(a+ k

T ) = πφ(a)P1P
φ(a+

(j+1)
T ) · · ·Pφ(a+ k

T )

− πφ(a)P0P
φ(a+

(j+1)
T ) · · ·Pφ(a+ k

T )

is the difference between two probability distributions and

πφ(a)(P1 −P0) = πφ(a)P1 − πφ(a)P0

is also the difference between two probability distributions.

Because we are taking the total variation norm to the difference of two proba-

bility distributions we see that ‖ · ‖TV = 1
2‖ · ‖1 where ‖ · ‖1 is the l1-norm.

We have that for probability distributions µ and ν, ‖µ− ν‖TV = 1
2‖µ− ν‖1 ≤

1
2 (‖µ‖1 + ‖ν‖1) ≤ 1.

This tells us that ‖πφ(a)(P1−P0)P
φ(a+

(j+1)
T ) · · ·Pφ(a+ k

T )‖TV ≤ 1 for 1 ≤ j ≤ k.
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We see then that

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ‖πφ(a+ k

T ) − π0‖TV

+

k∑
j=1

(
φ

(
a+

j

T

)
− φ(a)

)
.

Remember that φ is a bi-Lipschitz continuous function with Lipschitz constant

L, we see that

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

≤ ‖πφ(a+ k
T ) − πφ(a)‖TV

+

k∑
j=1

(
φ

(
a+

j

T

)
− φ(a)

)

≤ ‖πφ(a+ k
T ) − πφ(a)‖TV +

k∑
j=1

L
∣∣a+

j

T
− a
∣∣

= ‖πφ(a+ k
T ) − πφ(a)‖TV +

L

T

k∑
j=1

j

= ‖πφ(a+ k
T ) − πφ(a)‖TV + L

k(k + 1)

2T

≤ ‖πφ(a+ k
T ) − πφ(a)‖TV + L

(k + 1)2

2T
.

3.4.4 Proof of Proposition 8

We begin with the creation of an orthonormal basis of eigenvectors associated

with (I − Pφ(t))(I − Pφ(t))
T by a singular value decomposition similar to the

process we mentioned in Proposition 3, where t ∈ [a, b].

Here we let σ1,t ≥ · · · ≥ σn−1,t = σt be the positive singular values of (I−Pφ(t))

with respect to the Euclidean inner product. This implies that there exists an

orthonormal basis {v1,t, · · · ,vn,t} such that vj,t(I−Pφ(t))(I−Pφ(t))
T = σ2

j,tvj,t
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for 1 ≤ j ≤ n− 1 and vn,t(I−Pφ(t))(I−Pφ(t))
T = 0.

Here vn,t = πφ(t)/‖πφ(t)‖2.

To show continuity of πφ(s) on [a, b] let ε > 0 and first notice that for any

s∗, s ∈ [a, b], (πφ(s∗) − πφ(s))(I−Pφ(s)) = (φ(s∗)− φ(s))πφ(s∗)(P1 −P0).

Using the Euclidean norm, we see that if P0 6= P1 and s∗ 6= s, then

‖(πφ(s∗) − πφ(s))(I−Pφ(s))‖2
‖πφ(s∗) − πφ(s)‖2

= (φ(s∗)− φ(s))
‖πφ(s∗)(P1 −P0)‖2
‖πφ(s∗) − πφ(s)‖2

.

Throughout this proof we will use < ·, · > as the Euclidean inner product.

For 1 ≤ j ≤ n let cj,s =< πφ(s∗)−πφ(s),vj,s >. Then we see that πφ(s∗)−πφ(s) =∑n
j=1 cj,svj,s.



80

We have that

‖(πφ(s∗) − πφ(s))(I−Pφ(s))‖22
‖πφ(ss) − πφ(s)‖22

=
< (πφ(s∗) − πφ(s))(I−Pφ(s)), (πφ(s∗) − πφ(s))(I−Pφ(s)) >

< πφ(s∗) − πφ(s), πφ(s∗) − πφ(s) >

=
< πφ(s∗) − πφ(s), (πφ(s∗) − πφ(s))(I−Pφ(s))(I−Pφ(s))

T >

< πφ(s∗) − πφ(s), πφ(s∗) − πφ(s) >

=
<
∑n
j=1 cj,svj,s,

∑n−1
j=1 σ

2
j,scj,svj,s >

<
∑n
j=1 cj,svj,s,

∑n
j=1 cj,svj,s >

=

∑n−1
j=1 σ

2
j,sc

2
j,s∑n

j=1 c
2
j,s

≥ σ2
n−1,s

∑n−1
j=1 c

2
j,s∑n

j=1 c
2
j,s

= σ2
n−1,s

(
1−

c2n,s∑n
j=1 c

2
j,s

)

= σ2
n−1,s

(
1−

(
< πφ(s∗) − πφ(s),vn,s >

‖πφ(s∗) − πφ(s)‖2

)2
)
.

If we let w(s∗, s) = (πφ(s∗) − πφ(s))/‖πφ(s∗) − πφ(s)‖2 then we see that

σ2
n−1,s

(
1− (< w(s∗, s),vn,s >)

2
)
≤ (φ(s∗)− φ(s))

∗ ‖πφ(s∗)(P1 −P0)‖22
‖πφ(s∗) − πφ(s)‖22

.

Because w(s∗, s) and vn,s are unit vectors, we can use the fact that

‖w(s∗, s)‖22 − 2 < w(s∗, s),vn,s > +‖vn,s‖22 = ‖w(s∗, s)− vn,s‖22

to show that

1− < w(s∗, s),vn,s >=
1

2
‖w(s∗, s)− vn,s‖22

and we can use the fact that

‖w(s∗, s)‖22 + 2 < w(s∗, s),vn,s > +‖vn,s‖22 = ‖w(s∗, s) + vn,s‖22



81

to show that

1+ < w(s∗, s),vn,s >=
1

2
‖w(s∗, s) + vn,s‖22.

From this we see that 1− (< w(s∗, s),vn,s >)
2

= ‖w(s∗, s)−vn,s‖22 · ‖w(s∗, s)+

vn,s‖22/4.

Plugging this into our previous equation, we can see that

σ2
n−1,s

4
‖w(s∗, s)−vn,s‖22·‖w(s∗, s)+vn,s‖22 ≤ (φ(s∗)− φ(s))

2 ‖πφ(s∗)(P1 −P0)‖22
‖πφ(s∗) − πφ(s)‖22

.

After performing some basic algebra we see that

‖πφ(s∗) − πφ(s)‖2 ≤
2
∣∣φ(s∗)− φ(s)

∣∣ · ‖πφ(s∗)(P1 −P0)‖2
σn−1,s‖w(s∗, s)− vn,s‖2 · ‖w(s∗, s) + vn,s‖2

.

Notice that < w(s∗, s),1 > /
√
n = 0 and < vn,s,1 > /

√
n = 1/

(√
n‖πφ(s)‖2

)
for all s∗, s ∈ [a, b]. Because these are the scalar components of the projections

of w(s∗, s) and vn,s onto 1 respectively, we see that the minimum possible value

for ‖w(s∗, s)− vn,s‖2 and ‖w(s∗, s) + vn,s‖2 is at least 1/
(√
n‖πφ(s)‖2

)
.

Letting σ = inft∈[a,b]{σn−1,s}, we now have that

‖πφ(s∗) − πφ(s)‖2 ≤
2n
∣∣φ(s∗)− φ(s)

∣∣ · ‖πφ(s)‖22 · ‖πφ(s∗)(P1 −P0)‖2
σn−1,s

≤
2n
∣∣φ(s∗)− φ(s)

∣∣ · ‖πφ(s∗)(P1 −P0)‖2
σn−1,s

=
2n
∣∣φ(s∗)− φ(s)

∣∣ · ‖πφ(s∗)(P1 −P0)‖2
σ

.

Again for x,y ∈ Rn such that x and y are probability measures, we see that

1

2
‖x− y‖2 ≤ ‖x− y‖TV ≤

√
n

2
‖x− y‖2.
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This will imply that

‖πφ(s∗) − πφ(s)‖TV ≤
2n3/2

∣∣φ(s∗)− φ(s)
∣∣ · ‖πφ(s∗)(P1 −P0)‖TV
σ

.

Because πφ(s∗)(P1 − P0) = πφ(s∗)P1 − πφ(s∗)P0 is the difference of two prob-

ability distributions, we see that ‖ · ‖TV = 1
2‖ · ‖1 where ‖ · ‖1 is the l1-norm.

This implies that

‖πφ(s∗)(P1 −P0)‖TV =
1

2
‖πφ(s∗)P1 − πφ(s∗)P0‖1

≤ 1

2

(
‖πφ(s∗)P1‖1 + ‖πφ(s∗)P0‖1

)
≤ 1.

This shows that

‖πφ(s∗) − πφ(s)‖TV ≤
2n3/2

∣∣φ(s∗)− φ(s)
∣∣

σ
.

Remember that φ is a bi-Lipschitz continuous function with Lipschitz constant

L, we see that

‖πφ(s∗) − πφ(s)‖TV ≤
2n3/2

∣∣φ (s∗)− φ (s)
∣∣

σ

≤
2n3/2L

∣∣s∗ − s∣∣
σ

.

Clearly if ε > 0, then ∣∣s∗ − s∣∣ ≤ δ =
εσ

2Ln3/2

implies ‖πφ(s∗) − πφ(s)‖TV ≤ ε.

This shows that πφ(s) is continuous on [a, b].
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3.4.5 Proof of Theorem 11

We first provide a sketch of the proof followed by the technical details. Our

proof is based on the results of Theorem 10, Proposition 7, and Corollary 3.

Specifically, we divide our proof into three cases. In the first case, we will show

how to select T and δ in order to satisfy the two conditions in Theorem 10,

namely:

T ≥ 4L2t2mix(ε/2)

ε(δ∗ − a)
,

and

δ∗ ≤ a+ k/T ≤ b.

Therefore, by Theorem 10, we have

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε.

However, the selected T is not large enough to bound this for all 1 ≤ k ≤ kmax

since this only holds for k such that

δ∗ ≤ a+ k/T ≤ b.

In the second case, we will use the results of Proposition 7 and Corollary 3 to

show that for the same selected T and δ,

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε,

even in the case when

a ≤ a+ k/T ≤ δ∗ < b.

In the final case, we will do something to fix the remaining problem. Therefore,
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we conclude that the selected T is a sufficient condition to remain in our ε-

corridor for 1 ≤ k ≤ T .

We now proceed with the details of the proof, starting with the first case. Let

ε > 0. Let L be the Lipschitz constant associated with the strictly increasing,

bi-Lipschitz function φ. For this fixed ε, we choose T be an integer such that

T ≥ 16L5t4mix(ε/2)

ε3
+

8L3t2mix(ε/2)

ε2
+
L

ε

=

(
4L2
√
Lt2mix(ε/2)

ε
√
ε

+

√
L

ε

)2

.

This implies

√
T ≥ 4L2

√
Lt2mix(ε/2)

ε
√
ε

+

√
L

ε
.

Multiplying either side by
√
ε/L) and subtracting 1 from either side we obtain

the following after switching the direction of the inequality

4L2t2mix(ε/2)

ε
≤
√
εT

L
− 1

≤ T
(√

ε

LT
− 1

T

)

Now, letting

δ∗ − a =

√
ε

LT
− 1

T

and dividing both sides by δ∗ − a, we clearly have

T ≥ 4L2t2mix(ε/2)

ε(δ∗ − a)
.
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Next, let k be an integer such that

a < δ∗ = a+

√
ε

LT
− 1

T
≤ a+

k

T
≤ b.

Then by Theorem 10, we conclude that

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε.

Now in the second (complementary) case, i.e., when a + k/T ≤ δ∗ < b, we

will show that for the same selected δ∗ =
√

ε
LT −

1
T , and T , it is still true that:

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε,

Let k be an integer such that

a ≤ a+
k

T
≤ a+

√
ε

LT
− 1

T
= δ∗.

Then,

k + 1

T
≤
√

ε

LT
.

Using Proposition 7, we have

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV

≤ ‖πφ(a+ k
T ) − πφ(a)‖TV +

L(k + 1)2

2T

= ‖πφ(a+ k
T ) − πφ(a)‖TV +

LT

2

(
k + 1

T

)2

≤ ‖πφ(a+ k
T ) − πφ(a)‖TV +

LT

2

(√
ε

LT

)2

= ‖πφ(a+ k
T ) − πφ(a)‖TV +

ε

2
.
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Next, from Corollary 3, as long as ε < 1/
√
n and

√
ε
LT −

1
T ≤

ε(1−
√
nε)

4Ln3/2tmix(ε/2)
,

we have

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV ≤ ε

for

a ≤ a+
k

T
≤ a+

√
ε

LT
− 1

T
.

It should be clear that as ε→ 0,

√
ε

LT
− 1

T
≤ ε(1−

√
nε)

4Ln3/2tmix(ε/2)

when

T ≥ 16L5t4mix(ε/2)

ε3
+

8L3t2mix(ε/2)

ε2
+
L

ε
.

This tells us that as ε→ 0 and

T ≥ 16L5t4mix(ε/2)

ε3
+

8L3t2mix(ε/2)

ε2
+
L

ε

we have

‖πφ(a)Pφ(a+ 1
T ) · · ·Pφ(a+ k

T ) − πφ(a+ k
T )‖TV < ε

for 1 ≤ k ≤ kmax.

3.4.6 Proof of Proposition 9

Let x, y ∈ [a, c] with x < y.

First suppose that x, y ∈ [a, b].

We see then that
∣∣φ(x)− φ(y)

∣∣ =
∣∣φ1(x)− φ1(y)

∣∣.
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This would imply that

1

max{L1, L2}
∣∣x−y∣∣ ≤ 1

L1

∣∣x−y∣∣ ≤ ∣∣φ(x)−φ(y)
∣∣ ≤ L1

∣∣x−y∣∣ ≤ max{L1, L2}
∣∣x−y∣∣.

Now suppose that x, y ∈ [b, c].

We see then that
∣∣φ(x)− φ(y)

∣∣ =
∣∣φ2(x)− φ2(y)

∣∣.
This would imply that

1

max{L1, L2}
∣∣x−y∣∣ ≤ 1

L2

∣∣x−y∣∣ ≤ ∣∣φ(x)−φ(y)
∣∣ ≤ L2

∣∣x−y∣∣ ≤ max{L1, L2}
∣∣x−y∣∣.

Finally suppose that x ∈ [a, b] and y ∈ [b, c].

We see then that

∣∣φ(x)− φ(y)
∣∣ =

∣∣φ1(x)− φ2(y)
∣∣

=
∣∣φ1(x)− φ1(b) + φ2(b)− φ2(y)

∣∣.
Notice that if both φ1 and φ2 are strictly increasing, then

∣∣φ1(x)− φ1(b) + φ2(b)− φ2(y)
∣∣ = φ1(b)− φ1(x) + φ2(y)− φ2(b)

=
∣∣φ1(x)− φ1(b)

∣∣+
∣∣φ2(b)− φ2(y)

∣∣.
Similarly, if both φ1 and φ2 are strictly decreasing, then

∣∣φ1(x)− φ1(b) + φ2(b)− φ2(y)
∣∣ = φ1(x)− φ1(b) + φ2(b)− φ2(y)

=
∣∣φ1(x)− φ1(b)

∣∣+
∣∣φ2(b)− φ2(y)

∣∣.
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In either case we see that
∣∣φ(x)− φ(y)

∣∣ =
∣∣φ1(x)− φ1(b)

∣∣+
∣∣φ2(b)− φ2(y)

∣∣.
We see then that both

1

max{L1, L2}
(∣∣x− b∣∣+

∣∣b− y∣∣) ≤ 1

L1

∣∣x− b∣∣+
1

L2

∣∣b− y∣∣ ≤ ∣∣φ(x)− φ(y)
∣∣

and

∣∣φ(x)− φ(y)
∣∣ ≤ L1

∣∣x− b∣∣+ L2

∣∣b− y∣∣ ≤ max{L1, L2}
(∣∣x− b∣∣+

∣∣b− y∣∣) .
Because x < b and b < y, we see that

∣∣x− b∣∣+
∣∣b− y∣∣ = b− x+ y − b

= y − x

=
∣∣x− y∣∣.

This would imply that

1

max{L1, L2}
∣∣x−y∣∣ ≤ 1

L2

∣∣x−y∣∣ ≤ ∣∣φ(x)−φ(y)
∣∣ ≤ L2

∣∣x−y∣∣ ≤ max{L1, L2}
∣∣x−y∣∣.

We see that regardless of where x and y are in the interval [a, c], φ has the

right inequality to be a bi-Lipschitz continuous function with Lipschitz constant

max{L1, L2} and because depending on the maximum value, there are x, y ∈

[a, c] to where this inequality is tight, φ will be bi-Lipschitz continuous with

Lipschitz constant max{L1, L2}.
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3.4.7 Proof of Theorem 12

For a partition PM and positive integer T large enough, there exists positive

integers k1,T , · · · , k2M−1,T so that k2M−1,T = T and

ki,T
T
≤ ai ≤

ki,T + 1

T

for 1 ≤ i ≤ 2M − 2.

For this partition PM and value of T , we see then that for 1 ≤ l ≤ k1,T ,

π0PΦ( 1
T ) · · ·PΦ( lT ) − πΦ( lT ) = π0Pφ1( 1

T ) · · ·Pφ1( lT ) − πφ1( lT )

and for 1 ≤ i ≤ 2M − 2 and ki,T + 1 ≤ l ≤ ki+1,T ,

π0PΦ( 1
T ) · · ·PΦ( lT ) − πΦ( lT )

= π0Pφ1( 1
T ) · · ·Pφ1

(
k1,T
T

) − π
φ1

(
k1,T
T

)

+

i−1∑
j=1

(
π
φj+1

(
kj,T+1

T

)P
φj+1

(
kj,T+2

T

) · · ·P
φj+1

(
kj+1,T
T

) − π
φj+1

(
kj+1,T
T

))
l∏

j1=kj1,T+1

P
Φ( j1T )

+ π
φi+1

(
ki,T+1

T

)P
φi+1

(
ki,T+2

T

) · · ·Pφi+1( lT ) − πφi+1( lT )

+

i∑
j=1

(
π

Φ
(
kj,T
T

) − π
Φ
(
kj,T+1

T

)) l∏
j1=kj,T+1

P
Φ( j1T ).

Taking the total variation norm to either side and using the triangle inequal-

ity and the fact that ‖(µ−ν)P‖TV ≤ ‖µ−ν‖TV for any probability distributions

µ and ν and stochastic matrix P, we see that for 1 ≤ l ≤ k1,T ,

‖π0PΦ( 1
T ) · · ·PΦ( lT ) − πΦ( lT )‖TV = ‖π0Pφ1( 1

T ) · · ·Pφ1( lT ) − πφ1( lT )‖TV
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and for 1 ≤ i ≤ 2M − 2 and ki,T + 1 ≤ l ≤ ki+1,T ,

‖π0PΦ( 1
T ) · · ·PΦ( lT ) − πΦ( lT )‖TV

= ‖π0Pφ1( 1
T ) · · ·Pφ1

(
k1,T
T

) − π
φ1

(
k1,T
T

)‖TV
+

i−1∑
j=1

‖π
φj+1

(
kj,T+1

T

)P
φj+1

(
kj,T+2

T

) · · ·P
φj+1

(
kj+1,T
T

) − π
φj+1

(
kj+1,T
T

)‖TV
+ ‖π

φi+1

(
ki,T+1

T

)P
φi+1

(
ki,T+2

T

) · · ·Pφi+1( lT ) − πφi+1( lT )‖TV

+

i∑
j=1

‖π
φj
(
kj,T
T

) − πφj(aj)‖TV + ‖πφj+1(aj) − πφj+1

(
kj,T+1

T

)‖TV .

Because φ1 is strictly increasing on [0, k1,T /T ] and φi is either strictly increasing

or strictly decreasing on [(ki,T + 1)/T, ki+1,T /T ] for 1 ≤ i ≤ 2M − 2 we can use

Corollary 5 to say that as ε→ 0, if

T ≥ 16L5(4M − 2)3t4mix(ε/(8M − 4))

ε3

+
8L3(4M − 2)2t2mix(ε/(8M − 4))

ε2
+
L(4M − 2)

ε

then we have for 1 ≤ l ≤ k1,T ,

‖π0Pφ1( 1
T ) · · ·Pφ1( lT ) − πφ1( lT )‖TV <

ε

4M − 2

and for 1 ≤ i ≤ 2M − 2 and ki,T + 1 ≤ l ≤ ki+1,T ,

‖π
φi+1

(
ki,T+1

T

)P
φi+1

(
ki,T+2

T

) · · ·Pφi+1( lT ) − πφi+1( lT )‖TV <
ε

4M − 2
.
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This implies that regardless of the subinterval containing k/T , we have that

‖π0PΦ( 1
T ) · · ·PΦ( kT ) − πΦ( kT )‖TV

≤
2M−1∑
j=1

‖π
φj
(
kj,T
T

) − πφj(aj)‖TV + ‖πφj+1(aj) − πφj+1

(
kj,T+1

T

)‖TV
+ ε/2.

We finally use Corollary 3 to say that on the inteval Ii, if

δ∗ =
ε((8M − 4)−

√
nε)

4Lin3/2tmix(ε/(8M − 4))

we have for all
∣∣s∗ − s∣∣ ≤ δ∗, ‖πφi(s∗) − πφi(s)‖TV ≤ ε/(8M − 4).

This would imply that as ε→ 0, if

T ≥ 16L5(4M − 2)3t4mix(ε/(8M − 4))

ε3

+
8L3(4M − 2)2t2mix(ε/(8M − 4))

ε2
+
L(4M − 2)

ε

then

‖π0PΦ( 1
T ) · · ·PΦ( kT ) − πΦ( kT )‖TV ≤ ε.

This implies that

tsad(P0,P1, ε) = O

(
t4mix(ε/2)

ε3

)
.



Chapter 4

The Stable Adiabatic Time

Versus The Spectral Gap

For Discrete Markov

Chains

Before we derived the results in Chapter 3 we had a different goal in mind.

Our goal was to bound the stable adiabatic time with a spectral gap measure-

ment, rather than a mixing time measurement. The beginning of this chapter

is dedicated to a detailed explanation of the motivation of this goal. Section 4.1

will discuss one form of the Quantum Adiabatic Theorem, which is related our

research. Our goal was to asymptotically bound the stable adiabatic time as

a function of ε by an inverse power of the smallest spectral gap over a linear

adiabatic evolution multiplied by an inverse power of ε. The latter sections

provide bounds for the stable adiabatic time in different scenarios, however, we

92
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see that these results will not be as general and concise as the results in Chap-

ter 3. In these sections we see some partial evidence that the stable adiabatic

time is asymptotically bounded by a constant multiple of an inverse cube of the

smallest spectral gap multiplied by the multiplicative inverse of ε.

4.1 The Quantum Adiabatic Theorem

Adiabatic transitions are probably best known in the context of quantum me-

chanics. There is a well-known Quantum Adiabatic Theorem documented in

many sources. In this section we will outline one version of the Quantum Adi-

abatic Theorem as it was given in [3]. The result of this theorem motivated us

to pursue an analogue for Markov processes.

For s ∈ [0, 1] let H(s) be a Hamiltonian, also called an energy function,

dependent on the parameter s. Although the authors of [3] do not require the

Hamiltonian to have a finite number of states, we will only focus on finite state

Hamiltonian operators. Hamiltonian operators over n states are l2(Cn)-norm

preserving, i.e the energy functions are Hermitian. We call H(0) and H(1) the

initial and final Hamiltonians respectively. We will use the notation ‖H‖ to

denote maxs∈[0,1] ‖H(s)‖ where we will denote ‖ · ‖ as the usual operator norm.

The quantum adiabatic results often concern one eigenstate of the energy

function, the ground state, because the proofs follow from the results on one

eigenstate. Let Φ(s) be the ground state of H(s) with eigenvalue γ(s). Hamil-

tonians are often used like the generators of continuous-time Markov processes

(we will see more about this in Chapters 5, 6 and 8), so for a given T > 0

when we say that we apply the adiabatic evolution given by H and Φ for time

T we mean that we initialize a system in the state Φ(0) and then apply the

continuously varying Hamiltonian H(t/T ) for time t ∈ [0, T ].

Given ε > 0 the Quantum Adiabatic Theorem informally says that if we
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assume that the change in the Hamiltonian happens slowly enough, by selecting

a large enough value of T , then when we apply the adiabatic evolution given

by H and Φ for time T we will be in an ε-ball of Φ(1). The time T is called

the quantum adiabatic time. The Quantum Adiabatic Theorem addresses how

large this quantum adiabatic time must be to guarantee the above result. We

cite the theorem from [3].

Theorem 13 For s ∈ [0, 1] let H(s) be a time dependent Hamiltonian, let Φ(s)

be the ground state and let γ(s) be the eigenvalue associated with the ground

state. Assume that for any s ∈ [0, 1] all other eigenvalues of H(s) are either

smaller than γ(s) − ∆ or larger than γ(s) + ∆ (i.e. there is a spectral gap of

∆ around γ(s)). Consider the adiabatic evolution given by H and Φ for time

T . Then, the following condition is enough to guarantee that the final state is

at distance at most ε from Φ(1):

T ≥ 105

ε2
max { ‖H′‖3

∆4
,
‖H′‖‖H′′‖

∆3
} . (4.1)

In our work we try make an analogue to the quantum process described

above, only now it is for time inhomogeneous Markov processes. The defini-

tion of the adiabatic time will be the appropriate analogue. Here the ground

state in quantum mechanics corresponds to the stationary state of a Markov

process. The Hamiltonian operator described above, in the context of quan-

tum mechanics, most accurately corresponds to the generator matrix of a time-

inhomogeneous, continuous-time Markov process.

Notice that the quantum adiabatic time is bounded by the inverse square of

ε multiplied by an inverse power of the smallest spectral gap over the adiabatic

evolution given by H and Φ for time T , however, there are some operator norm

measurements that we are not necessarily able to write in terms of ε or the

smallest spectral gap. The bound on the quantum adiabatic time led us to
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believe that we could find a similar bound on the stable adiabatic time for a

l1 (Rn)-norm preserving Markov processes. The following sections outline our

attempts to find this bound.

4.2 Two-State Markov Chains

This section establishes a relationship between the stable adiabatic time and

the smallest spectral gap over the entire transition for two-state, discrete-time

Markov chains under a linear adiabatic evolution, see Definition 12 in Sec-

tion 2.1.

To begin, I adopt a new notation for our probability transition matrices that

agrees with the notation for birth-death processes. We will return to birth-death

processes in Section 4.6. We define constants p
(0)
1 , p

(1)
1 , q

(0)
2 , q

(1)
2 ∈ [0, 1]. The

general initial and final two-state probability transition matrices are written as

follows:

P0 =

 1− p(0)
1 p

(0)
1

q
(0)
2 1− q(0)

2

 and P1 =

 1− p(1)
1 p

(1)
1

q
(1)
2 1− q(1)

2



We can succinctly write a linear adiabatic evolution between P0 and P1 if

we define p
(t)
1 = (1 − t)p(0)

1 + tp
(1)
1 and q

(t)
2 = (1 − t)q(0)

2 + tq
(1)
2 . We see then

that

Pt = (1− t)P0 + tP1 =

 1− p(t)
1 p

(t)
1

q
(t)
2 1− q(t)

2



I first want to explore the spectral structure of Pt. The following Propo-
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sition finds the eigenvalues of Pt and the proof of this proposition is given in

Section 4.3.

Proposition 10 The eigenvalues of Pt are 1 and 1−
(
p

(t)
1 + q

(t)
2

)
.

If Pt is irreducible and aperiodic, then
∣∣1 − (p(t)

1 + q
(t)
2

) ∣∣ 6= 1. In the case

that Pt is irreducible and aperiodic we use Definition 10 to see that the spectral

gap of Pt is ∆ = 1 −
∣∣1 − (p(t)

1 + q
(t)
2

) ∣∣. In this chapter, however, we reserve

the symbol ∆ for the smallest spectral gap of a linear adiabatic evolution.

Definition 23 Let {Pt}t∈[0,1] be a linear evolution between two stochastic ma-

trices P0 and P1 that are both irreducible and aperiodic. Letting λ1(t) = 1 be the

largest eigenvalue in modulus of Pt and λ2(t) be the second largest eigenvalue

in modulus of Pt we define the smallest spectral gap of the adiabatic transition

to be

∆ = inf
0≤t≤1

{1−
∣∣λ2(t)

∣∣}. (4.2)

Clearly, in this section ∆ = inf0≤t≤1{1−
∣∣1−(p(t)

1 + q
(t)
2

) ∣∣}. We also denote

∆t = p
(t)
1 + q

(t)
2 to ease notation throughout this section.

The following two propositions describe the eigenvectors of Pt. The proofs

of these propositions can be found in Section 4.3.

Proposition 11 For t ∈ [0, 1] the stationary distribution of Pt is

πt =

[
q
(t)
2

∆t

p
(t)
1

∆t

]
. (4.3)
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Proposition 12 For t ∈ [0, 1]

[
1 −1

]
Pt = (1−∆t)

[
1 −1

]
(4.4)

.

Using Proposition 11 we calculate the difference between fractionally con-

secutive stationary distributions. The work behind this calculation is given in

Section 4.3.

Proposition 13 Given T ∈ N we have that

π j−1
T
− π j

T
=
p

(1)
1 q

(0)
2 − p(0)

1 q
(1)
2

T∆ j−1
T

∆ j
T

[
1 −1

]
(4.5)

for j = 1, · · · , T .

Proposition 13 tells us that the difference of fractionally consecutive station-

ary distributions is an eigenvector of Pt for all t ∈ [0, 1]. This idea helped us

measure ‖π0P 1
T
· · ·P k

T
−π k

T
‖TV in the following lemma through some telescop-

ing algebra. The proof is given in Section 4.3.

Lemma 1 One can show that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV =

∣∣∣p(1)
1 q

(0)
2 − p(0)

1 q
(1)
2

∣∣∣
T

∣∣ k∑
j=1

(∏k
m=j

(
1−∆m

T

)
∆ j−1

T
∆ j

T

)∣∣.
(4.6)

With this measurement we can find a bound of the stable adiabatic time for

the two-state case in terms of the smallest spectral gap over the entire linear

adiabatic evolution. We find this bound in the following theorem. The proof

can be found in Section 4.3.
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Theorem 14 Given ε > 0 we have for a linear adiabatic evolution between

two-state Markov chains P0 and P1,

tsad(P0,P1, ε) ≤
1

ε∆3
. (4.7)

In this case we have a nice bound of the stable adiabatic time, but this is

a severely limited result. In Sections 4.4 and 4.6, we attempt to find a similar

result for a general n-state Markov chain.

4.3 Proofs

4.3.1 Proof of Proposition 10

We can see that the characteristic equation of Pt will be

(1− p(t)
1 − λ) · (1− q(t)

2 − λ)− p(t)
1 · q

(t)
2 = 0.

We can write this as

λ2 − (2−∆t)λ+ (1−∆t) = 0.

This factors to

(λ− 1) · (λ− (1−∆t)) = 0.

Indeed the roots are 1 and 1−∆t.

4.3.2 Proof of Proposition 11

First notice that ∆t > 0 and both p
(t)
1 ≥ 0 and q

(t)
2 ≥ 0. This implies that the

entries of our suggested πt are nonnegative.
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Next notice that

πt(1) + πt(2) =
q

(t)
2

∆t
+
p

(t)
1

∆t

=
p

(t)
1 + q

(t)
2

∆t

=
∆t

∆t

= 1.

This suggests that πt is a probability distribution. Finally we show that

πtPt =

[
q
(t)
2

∆t

p
(t)
1

∆t

]
·

 1− p(t)
1 p

(t)
1

q
(t)
2 1− q(t)

2


=

[
q
(t)
2

∆t
− p

(t)
1 q

(t)
2

∆t
+

p
(t)
1 q

(t)
2

∆t

p
(t)
1 q

(t)
2

∆t
+

p
(t)
1

∆t
− p

(t)
1 q

(t)
2

∆t

]
=

[
q
(t)
2

∆t

p
(t)
1

∆t

]
= πt.

4.3.3 Proof of Proposition 12

[
1 −1

]
Pt =

[
1 −1

] 1− p(t)
1 p

(t)
1

q
(t)
2 1− q(t)

2


=

[
1− p(t)

1 − q
(t)
2 p

(t)
1 − 1 + q

(t)
2

]
= (1−∆t)

[
1 −1

]
.
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4.3.4 Proof of Proposition 13

Remember from Proposition 11 that

πt =

[
p
(t)
1

∆t

q
(t)
2

∆t

]
.

This will imply that

π j−1
T
− π j

T

=

[
q
(
j−1
T

)

2

∆ j−1
T

− q
(
j
T

)

2

∆ j
T

p
(
j−1
T

)

1

∆ j−1
T

− p
(
j
T

)

1

∆ j
T

]
=

1

∆ j−1
T

∆ j
T

[
q

( j−1
T )

2 ·∆ j
T
− q( jT )

2 ·∆ j−1
T

p
( j−1
T )

1 ·∆ j
T
− p( jT )

1 ·∆ j−1
T

]
=

1

∆ j−1
T

∆ j
T

[
q

( j−1
T )

2 p
( jT )
1 − q( jT )

2 p
( j−1
T )

1 p
( j−1
T )

1 q
( jT )
2 − p( jT )

1 q
( j−1
T )

2

]

=
q

( j−1
T )

2 p
( jT )
1 − q( jT )

2 p
( j−1
T )

1

∆ j−1
T

∆ j
T

[
1 −1

]

=
j
T q

(0)
2 (p

(1)
1 − p

(0)
1 ) + j−1

T p
(0)
1 (q

(1)
2 − q(0)

2 )− q( jT )
2 p

( j−1
T )

1

∆ j−1
T

∆ j
T

[
1 −1

]

=
j
T q

(0)
2 p

(1)
1 + j−1

T p
(0)
1 q

(1)
2 − j

T p
(0)
1 (q

(1)
2 − q(0)

2 )− j−1
T q

(0)
2 (p

(1)
1 − p

(0)
1 )

∆ j−1
T

∆ j
T

[
1 −1

]

=
j
T q

(0)
2 p

(1)
1 + j−1

T p
(0)
1 q

(1)
2 − j

T p
(0)
1 q

(1)
2 − j−1

T q
(0)
2 p

(1)
1

∆ j−1
T

∆ j
T

[
1 −1

]

=
p

(1)
1 q

(0)
2 − p(0)

1 q
(1)
2

T∆ j−1
T

∆ j
T

[
1 −1

]
.
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4.3.5 Proof of Lemma 1

Notice that

π0P 1
T
· · ·P k

T
− π k

T
= (π k−1

T
− π k

T
)P k

T

+ (π k−2
T
− π k−1

T
)P k−1

T
P k

T

+ (π k−3
T
− π k−2

T
)P k−2

T
P k−1

T
P k

T

+ · · ·

+ (π0 − π 1
T

)P 1
T

P 2
T
· · ·P k

T
.

Indeed

π0P 1
T
· · ·P k

T
− π k

T
=

k∑
j=1

(
π j−1

T
− π j

T

)
P j

T
· · ·P k

T

=

k∑
j=1

(
π j−1

T
− π j

T

) k∏
m=j

Pm
T
.

We can see from Proposition 13 that this becomes

π0P 1
T
· · ·P k

T
− π k

T

=
p

(1)
1 q

(0)
2 − p(0)

1 q
(1)
2

T

k∑
j=1

1

∆ j−1
T

∆ j
T

[
1 −1

] k∏
m=j

Pm
T
.

From Proposition 12, we can use that the fact that

[
1 −1

]
is an eigenvector for all Pt to show

π0P 1
T
· · ·P k

T
− π k

T

=
p

(1)
1 q

(0)
2 − p(0)

1 q
(1)
2

T

k∑
j=1

(∏k
m=j

(
1−∆m

T

)
∆ j−1

T
∆ j

T

)[
1 −1

]
.
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Now taking the the norm, we find

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV

=
|p(1)

1 q
(0)
2 − p(0)

1 q
(1)
2 |

T

∣∣ k∑
j=1

(∏k
m=j

(
1−∆m

T

)
∆ j−1

T
∆ j

T

)∣∣.
4.3.6 Proof of Theorem 14

From Lemma 1 we have that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV =

|p(1)
1 q

(0)
2 − p(0)

1 q
(1)
2 |

T

∣∣ k∑
j=1

(∏k
m=j

(
1−∆m

T

)
∆ j−1

T
∆ j

T

)∣∣.
We see then that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤

|p(1)
1 q

(0)
2 − p(0)

1 q
(1)
2 |

T

k∑
j=1

(∏k
m=j |1−∆m

T
|

∆ j−1
T

∆ j
T

)
.

Because ∆ ≤ 1−
∣∣1−∆t

∣∣ ≤ ∆t for all t ∈ [0, 1] we see that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤

|p(1)
1 q

(0)
2 − p(0)

1 q
(1)
2 |

T∆2

k∑
j=1

 k∏
m=j

sup
0≤t≤1

{
∣∣1−∆t

∣∣}
 .

It is clear then that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤

|p(1)
1 q

(0)
2 − p(0)

1 q
(1)
2 |

T∆2

k∑
j=1

(
sup

0≤t≤1
{
∣∣1−∆t

∣∣})k−j+1

≤ |p
(1)
1 q

(0)
2 − p(0)

1 q
(1)
2 |

T∆2

k∑
j=0

(
sup

0≤t≤1
{
∣∣1−∆t

∣∣})j .
Noticing the geometric series we can write this as

‖π0P 1
T
· · ·P k

T
−π k

T
‖TV ≤

|p(1)
1 q

(0)
2 − p(0)

1 q
(1)
2 |

T∆2

(
1− (sup0≤t≤1{|1−∆t|})k+1

1− sup0≤t≤1{|1−∆t|}

)
.



103

Because inf0≤t≤1{1−
∣∣1−∆t

∣∣} = 1− sup0≤t≤1{
∣∣1−∆t

∣∣} it is easy to see that

‖π0P 1
T
· · ·P k

T
− π k

T
‖TV ≤

1

T∆3
.

Because this is true for 1 ≤ k ≤ T , then

max{‖π0P 1
T
· · ·P k

T
− π k

T
‖TV : 1 ≤ k ≤ T} ≤ 1

T∆3
.

Now for ε > 0 setting

1

T∆3
≤ ε

and solving for T we see that

T ≥ 1

ε∆3
.

This implies that

tsad(P0,P1, ε) ≤
1

ε∆3
.

4.4 Reversible Markov Chains

This section attempts to improve upon the results from Section 4.2. We consider

n-state, discrete-time Markov chains that are called reversible. Recall that

Definition 11 in Section 1.3 defines a reversible Markov chain. We again attempt

to bound the stable adiabatic time by the smallest spectral gap of a linear

adiabatic evolution, but now it is between two reversible Markov chains. We

will derive a result that is similar to the results from Section 3.1. To achieve

our result we have to explore what it means to be reversible and to develop this

requires the introduction of the following inner products.
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Definition 24 For vectors x,y, πt ∈ Rn we define the inner product

< x,y >πt=

n∑
i=1

x(i) · y(i) · πt(i). (4.8)

Definition 25 For vectors x,y, πt ∈ Rn we define the inner product

< x,y > 1
πt

=

n∑
i=1

x(i) · y(i) · 1

πt(i)
. (4.9)

Before we talk about reversibility we relate the norm created by the inner

product in Definition 25 and the total variation norm. This is a small detour,

but this relationship will be important in the development of our result. This

proposition has been shown in [6], but we include its proof in Section 4.5 since

it is so short.

Proposition 14 For any probability distribution ν and any time t ∈ [0, 1],

‖ν − πt‖TV ≤
1

2
‖ν − πt‖ 1

πt
. (4.10)

The inner products from Definitions 24 and 25 are commonly used in the

context of stochastic processes and we want to use Definition 24 to redefine

reversible Markov chains in a second way. We highlight the following proposition

from [6] and we include its proof in Section 4.5.

Proposition 15 Pt is self-adjoint with with respect to < ·, · >πt if and only if

Pt is reversible with with respect to πt.

The results in this section will apply to transitions, Pt, that are self-adjoint

with respect to < ·, · >πt for all t ∈ [0, 1].

The inner products defined above are important because we can find bases

of Rn consisting of left eigenvectors and right eigenvectors of Pt that are or-

thonormal with respect to < ·, · >πt and < ·, · > 1
πt

respectively. To find these
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bases we must first define a matrix and perform the spectral theorem of linear

algebra on this matrix. We assume that πt(i) 6= 0 for all t ∈ [0, 1]. The following

proposition can be found in [6] and we include its proof in Section 4.5.

Proposition 16 Defining P∗t = Dt
1
2 PtDt

− 1
2 where Dt =

diag{πt(1), · · · , πt(n)} is a n×n diagonal matrix, we see that P∗t is a symmetric

matrix.

Because P∗t is symmetric, we see that it is self-adjoint with respect to the

usual Euclidean inner product. A nice property of self-adjoint matrices with real

entries is that all the eigenvalues of the matrix are real. For a given t ∈ [0, 1] let

λ1(t), · · · , λn(t) be the not-necessarily-distinct, real eigenvalues for P∗t ordered

such that |λ1(t)| ≥ · · · ≥ |λn(t)|. Because P∗t is self-adjoint with respect to the

Euclidean inner product, we know that there exists an orthonormal basis with

respect to the Euclidean inner product for Rn consisting of left eigenvectors of

P∗t . Let w1,t, · · · ,wn,t be this orthonormal basis with respect to the Euclidean

inner product such that wi,t corresponds to the eigenvalue λi(t). Because P∗t is

symmetric, we see that w1,t, · · · ,wn,t is also an orthonormal basis with respect

to the Euclidean inner product whose transposes consist of right eigenvectors.

Here wT
i,t corresponds to λi(t).

For 1 ≤ i ≤ n define ui,t such that wi,t = ui,tDt
− 1

2 and define vi,t such that

wi,t = vi,tDt
1
2 . The following two propositions tell us that we have found a

collection of left eigenvectors of Pt and a collection of right eigenvectors of Pt.

These were also shown in [6] and we will show the proofs of these propositions

in Section 4.5.

Proposition 17 For 1 ≤ i ≤ n, λi(t) is an eigenvalue for Pt and ui,t is a left

eigenvector of Pt that corresponds to λi(t).
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Proposition 18 For 1 ≤ i ≤ n, vTi,t is a right eigenvector of Pt that corre-

sponds to λi(t).

Now we relate these above collections of eigenvectors to the two inner prod-

ucts that we defined at the beginning of this section. We will see that the

collection of left eigenvectors of Pt are orthonormal with respect to < ·, · > 1
πt

and using the dimension of Rn we conclude that this collection of eigenvectors

forms a basis of Rn. Similarly we see that the collection of right eigenvectors

forms an orthonomral basis of Rn with respect to < ·, · >πt . These bases were

expressed in [6]. We summarize this information in the following propositions,

and we prove that these eigenvectors form an orthonormal basis in Section 4.5.

Proposition 19 u1,t, · · · ,un,t is an orthonormal basis for Rn with respect to

< ·, · > 1
πt

.

Proposition 20 v1,t, · · · ,vn,t is an orthonormal basis for Rn with respect to

< ·, · >πt .

Proposition 19 is used in the proof of the following Proposition. The in-

equality in the Proposition was coined the Perron-Frobenius inequality in [6].

We originally tried to use this inequality along with some telescoping algebra

to find a bound of the stable adiabatic time, but the norm created by < ·, · > 1
πt

is called a ‘local’ norm and we were unable to find a reasonable bound for a

general reversible matrix. The proof of the following proposition was included

in Section 4.5.

Proposition 21 For self-adjoint matrices with respect to < ·, · >πt , we have

that for any distribution νT ,

‖νPt − πt‖ 1
πt
≤ |λ2(t)|‖ν − πt‖ 1

πt
. (4.11)
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We can also use Proposition 19 in the development of a process called eigen-

value perturbation. This process can be referenced in [25]. We use eigenvalue

perturbation to find an upper bound of the ‖ · ‖ 1
πt

-norm of the difference of

fractionally consecutive stationary distributions in our linear adiabatic evolu-

tion with respect to the smallest spectral gap over the entire evolution. We

summarize this in the following proposition. The proof of this proposition can

be found in Section 4.5.

Proposition 22 Given 1 ≤ i ≤ T we see that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤ 1

T∆
‖π i−1

T
(P1 −P0) ‖ 1

π i
T

(4.12)

We can now apply the mathematics discussed in Propositions 21 and 22 to

find an upper bound for ‖π0P 1
T
· · ·P k

T
− π k

T
‖TV with respect to the smallest

spectral gap of the linear adiabatic evolution between P0 and P1 and some other

terms. The following lemma describes this bound and we include the proof of

this lemma in Section 4.5.

Lemma 2 Define ν k
T

= π0P 1
T
· · ·P k

T
for 1 ≤ k ≤ T and ν0 = π0. Also let ∆

be the smallest spectral gap over the linear adiabatic evolution between P0 and

P1.

Letting

c(
k

T
) = min

0≤i≤k

{
min

1≤m≤n

{
π i
T

(m)
}}
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we see that under the assumption that πt(m) > 0 for all t ∈ [0, 1] and 1 ≤ m ≤ n,

‖ν k
T
− π k

T
‖TV

≤ 1

2T∆
max

0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}
k−1∑
j=0

(1−∆)
j+1

1 +
1

T∆

1√
c( kT )

max
0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}j+1

(4.13)

At this point our goal was to find the nature of the stable adiabatic time

strictly of a function of ∆ but there were some complications getting this bound.

As we have mentioned earlier, ‖ · ‖ 1
πt

is a ‘local’ norm, so we cannot determine

the nature of

max
0≤i≤T−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}

in terms of ∆ as ∆ → 0. Due to this, we wrote the most descriptive result in

this setting. The following theorem describes a bound of the stable adiabatic

time and we include the proof of this theorem in Section 4.5

Theorem 15 Let ε > 0 and let ∆ be the smallest spectral gap over the lin-

ear adiabatic evolution between P0 and P1 where both matrices are reversible

Markov chains with respect to π0 and π1 respectively. Letting

c∗ = min
t∈[0,1]

{
min

1≤m≤n
{πt(m)}

}

we see under the assumption that πt(m) > 0 for t ∈ [0, 1] and 1 ≤ m ≤ n,

tsad(P0,P1, ε) ≤
1
ε + 1

∆2
√
c∗

max
T∗≥2

{
max

0≤i≤T∗−1

{
‖π i

T∗
(P1 −P0)‖ 1

π i+1
T∗

}}
(4.14)
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Because we were unable to find a general result for reversible Markov chains,

we decided to look at a subclass of these Markov chains called Birth-Death

Markov chains. Instead of applying what we know about Birth-Death Markov

chains to the previous theorem, we instead introduce an entirely new devel-

opment of the bound. This is done to highlight the many attempts we made

toward our final result and to give the reader some food for thought. We return

to Birth-Death Markov chains in Section 4.6.

4.5 Proofs

4.5.1 Proof of Proposition 14

We start by looking at the right hand side of the equation squared.

‖ν − πt‖21
πt

=

n∑
i=1

(ν(i)− πt(i))2 1

πt(i)

=

n∑
i=1

(
ν(i)

πt(i)
− 1

)2

πt(i).

Using the Cauchy-Schwarz inequality, we see that

(
n∑
i=1

| ν(i)

πt(i)
− 1|

√
πt(i)

)2

≤
n∑
i=1

(
| ν(i)

πt(i)
− 1|

√
πt(i)

)2

.

Because πt(i) ≤ 1 for 1 ≤ i ≤ n, we see that

(
n∑
i=1

| ν(i)

πt(i)
− 1|

√
πt(i)

)2

πt(i) ≤
n∑
i=1

(
| ν(i)

πt(i)
− 1|

√
πt(i)

)2

= ‖ν − πt‖21
πt

.
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However

(2‖ν − πt‖TV )
2

=

(
n∑
i=1

|ν(i)− πt(i)|

)2

=

(
n∑
i=1

| ν(i)

πt(i)
− 1|

√
πt(i)

)2

πt(i).

We therefore see that

‖ν − πt‖TV ≤
1

2
‖ν − πt‖ 1

πt
.

4.5.2 Proof of Proposition 15

Letting µ, ν ∈ Rn be column vectors we have that if Pt is self-adjoint with

respect to < ·, · >πt , then < µ,Ptν >πt=< Ptµ, ν >πt .

Letting µ = ei and ν = ej be standard basis vectors, we see that < µ,Ptν >πt=

πt(i)Pt(i, j) and < Ptµ, ν >πt= πt(j)Pt(j, i).

It is clear that πt(i)Pt(i, j) = πt(j)Pt(j, i) for 1 ≤ i, j ≤ n, therefore Pt is

reversible with respect to πt.

If Pt is reversible with respect to πt, then < ei,Ptej >πt=< Ptei, ej >πt for

1 ≤ i, j ≤ n.

For column vectors µ, ν ∈ Rn there exist constants c1, · · · , cn and d1, · · · , dn ∈ R
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such that µ =
∑n
i=1 ciei and ν =

∑n
j=1 djej we have that

< µ,Ptν >πt =<

n∑
i=1

ciei,Pt

n∑
j=1

djej >πt

=

n∑
i=1

n∑
j=1

cidj < ei,Ptej >πt

=

n∑
i=1

n∑
j=1

cidj < Ptei, ej >πt

=< Pt

n∑
i=1

ciei,

n∑
j=1

djej >πt

=< Ptµ, ν >πt .

It is clear that if Pt is reversible with respect to πt, then Pt is self-adjoint with

respect to < ·, · >πt .

4.5.3 Proof of Proposition 16

We see that

(P∗t(i, j))n×n =

(√
πt(i)√
πt(j)

Pt(i, j)

)
n×n

Notice that for reversible Markov chains,

√
πt(i)√
πt(j)

Pt(i, j) =
1√

πt(i)
√
πt(j)

πt(i)Pt(i, j)

=
1√

πt(i)
√
πt(j)

πt(j)Pt(j, i)

=

√
πt(j)√
πt(i)

Pt(j, i).

This tell us that P∗t(i, j) = P∗t(j, i).
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Therefore P∗t is symmetric.

4.5.4 Proof of Proposition 17

For 1 ≤ i ≤ n, we see that

ui,tPt = ui,t

(
Dt
− 1

2 P∗tDt
1
2

)
=
(
ui,tDt

− 1
2

)
P∗tDt

1
2

= wi,tP
∗
tDt

1
2

= λi(t)wi,tDt
1
2

= λi(t)
(
ui,tDt

− 1
2

)
Dt

1
2

= λi(t)ui,tDt
− 1

2 Dt
1
2

= λi(t)ui,t.

4.5.5 Proof of Proposition 18

For 1 ≤ i ≤ n, we see that

Ptv
T
i,t =

(
Dt
− 1

2 P∗tDt
1
2

)
vTi,t

= Dt
− 1

2 P∗t

(
vi,tDt

1
2

)T
= Dt

− 1
2 P∗tw

T
i,t

= λi(t)Dt
− 1

2 wT
i,t

= λi(t)Dt
− 1

2

(
vi,tDt

1
2

)T
= λi(t)Dt

− 1
2 Dt

1
2 vTi,t

= λi(t)v
T
i,t.



113

4.5.6 Proof of Proposition 19

Notice that because w1,t, ·,wn,t is orthonormal with respect to the Euclidean

inner product, denoted < ·, · >2, we see that

< ui,t,uj,t > 1
πt

= ui,tDt
−1uTj,t

= ui,tDt
− 1

2

(
Dt
− 1

2

)T
uTj,t

=
(
ui,tDt

− 1
2

)
·
(
uj,tDt

− 1
2

)T
= wi,t ·wT

j,t

=< wi,t,wj,t >2

= δi,j .

4.5.7 Proof of Proposition 20

Notice again that

< vi,t,vj,t >πt = vi,tDtv
T
j,t

= vi,tDt
1
2

(
Dt

1
2

)T
vTj,t

=
(
vi,tDt

1
2

)
·
(
vj,tDt

1
2

)T
= wi,t ·wT

j,t

=< wi,t,wj,t >2

= δi,j .
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4.5.8 Proof of Proposition 21

Notice that ‖νPt − πt‖ 1
πt

= ‖(ν − πt)Pt‖ 1
πt

.

Because u1,t, · · · ,un,t is an orthonormal basis, as shown in proposition 19, we

can say that

ν − πt =

n∑
j=1

< ν − πt,uj,t > 1
πt

uj,t.

Remember that u1,t = πt.

This means that

< ν − πt,u1,t > 1
πt

=

n∑
i=1

(ν(i)− πt(i))πt(i)
1

πt(i)

=

n∑
i=1

ν(i)− πt(i)

=

n∑
i=1

ν(i)−
n∑
i=1

πt(i)

= 1− 1

= 0.

Therefore

ν − πt =
n∑
j=2

< ν − πt,uj,t > 1
πt

uj,t.

We see, because the ui,t are orthogonal, that

‖ν − πt‖21
πt

= ‖
n∑
j=2

< ν − πt,uj,t > 1
πt

uj,t‖21
πt

=

n∑
j=2

‖ < ν − πt,uj,t > 1
πt

uj,t‖21
πt

.
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We also see that

(ν − πt)Pt =

n∑
j=2

λi(t) < ν − πt,uj,t > 1
πt

uj,t.

This, along with the fact that the ui,t are orthogonal, implies that

‖(ν − πt)Pt‖21
πt

= ‖
n∑
j=2

λi(t) < ν − πt,uj,t > 1
πt

uj,t‖21
πt

=

n∑
j=2

‖λi(t) < ν − πt,uj,t > 1
πt

uj,t‖21
πt

=

n∑
j=2

|λi(t)|2‖ < ν − πt,uj,t > 1
πt

uj,t‖21
πt

≤
n∑
j=2

|λ2(t)|2‖ < ν − πt,uj,t > 1
πt

uj,t‖21
πt

= |λ2(t)|2
n∑
j=2

‖ < ν − πt,uj,t > 1
πt

uj,t‖21
πt

= |λ2(t)|2‖ν − πt‖21
πt

.

We conclude that ‖νPt − πt‖ 1
πt
≤ |λ2(t)|‖ν − πt‖ 1

πt
.

4.5.9 Proof of Proposition 22

Suppose that I want to perturb Pt by a small amount δ. By this I mean that

Pt+δ = Pt + δ (P1 −P0).

Under this definition we expect the corresponding eigenvalues and eigenvectors

for the equations involving Pt+δ to resemble

λi(t+ δ) = λi(t) + λi[δ]
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ui,t+δ = ui,t + ui[δ]

where λi[δ] and ui[δ] are the right quantities to make the equations work.

We now want to solve the equation

ui,t+δPt+δ = λi(t+ δ)ui,t+δ

by expanding all the terms.

We see that

(ui,t + ui[δ]) (Pt + δ (P1 −P0)) = (λi(t) + λi[δ]) (ui,t + ui[δ]) .

This will expand to

ui,tPt + δui,t (P1 −P0) + ui[δ]Pt + δui[δ] (P1 −P0)

= λi(t)ui,t + λi(t)ui[δ] + λi[δ]ui,t + λi[δ]ui[δ].

We can first cancel the terms from the equation ui,tPt = λi(t)ui,t, then we can

collect the terms in the equation to separate higher order terms of δ objects.

(δui,t (P1 −P0) + ui[δ]Pt) + δui[δ] (P1 −P0)

= (λi(t)ui[δ] + λi[δ]ui,t) + λi[δ]ui[δ].
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Letting hi[t, δ] = δui[δ] (P1 −P0)− λi[δ]ui[δ] we can write

δui,t (P1 −P0) + ui[δ]Pt + hi[t, δ] = λi(t)ui[δ] + λi[δ]ui,t.

It was mentioned earlier that the left eigenvalues of Pt are orthonormal with

respect to ‖ · ‖ 1
πt

and therefore they create a basis for Rn.

This means that we can write our vectors

ui[δ] =

n∑
j=1

aijuj,t

where the aij ∈ R.

Plugging this sum into our previous equation, we have that

δui,t (P1 −P0) +

n∑
j=1

aijuj,tPt + hi[t, δ] = λi(t)

n∑
j=1

aijuj,t + λi[δ]ui,t.

Now we would multiply both sides of the equation on the right by D−1t uTk,t

where k 6= i, we see that



118

δui,t (P1 −P0) D−1t uTk,t +

n∑
j=1

aijλj(t)uj,tD
−1
t uTk,t + hi[t, δ]D

−1
t uTk,t

= λi(t)

n∑
j=1

aijuj,tD
−1
t uTk,t + λi[δ]ui,tD

−1
t uTk,t.

Using the orthonormality of the inner product this simplifies to

δui,t (P1 −P0) D−1t uTk,t + aikλk(t) + hi[t, δ]D
−1
t uTk,t = λi(t)aik.

Solving for the aik terms, we see that

aik =
δui,t (P1 −P0) D−1t uTk,t

λi(t)− λk(t)
+

hi[t, δ]D
−1
t uTk,t

λi(t)− λk(t)
.

Also remember that aij = (ui,t+δ − ui,t) D−1t uTj,t by definition.

This would imply that

ui,t+δ − ui,t = (ui,t+δ − ui,t) D−1t uTi,tui,t +

n∑
j=1:j 6=i

δui,t (P1 −P0) D−1t uTj,t
λi(t)− λj(t)

uj,t

+

n∑
j=1:j 6=i

hi[t, δ]D
−1
t uTj,t

λi(t)− λj(t)
uj,t.
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In our case, we are particularly interested in u1,t+δ − u1,t = πt+δ − πt. This is

ideal because (u1,t+δ − u1,t) D−1t uT1,t = 0.

Using the notation that u1,t = πt and noting that λ1(t) = 1 for t ∈ [0, 1], the

previous equation becomes

πt+δ − πt = δ

n∑
j=2

πt (P1 −P0) D−1t uTj,t
1− λj(t)

uj,t +

n∑
j=2

h1[t, δ]D−1t uTj,t
1− λj(t)

uj,t.

Naturally we can combine these two sums, express h1[t, δ] = (πt+δ − πt) (P1 −P0)

and evaluate this at t = i
T and δ = − 1

T to find that

π i−1
T
− π i

T
= − 1

T

n∑
j=2

π i−1
T

(P1 −P0) D−1i
T

uT
j, iT

1− λj( iT )
uj, iT .

Taking the squared norm of either side we see that orthogonality gives us

‖π i−1
T
− π i

T
‖2 1
π i
T

= ‖ − 1

T

n∑
j=2

π i−1
T

(P1 −P0) D−1i
T

uT
j, iT

1− λj( iT )
uj, iT ‖

2
1
π i
T

=

 1

T

n∑
j=2

π i−1
T

(P1 −P0) D−1i
T

uT
j, iT

1− λj( iT )

2

· ‖uj, iT ‖
2

1
π i
T

≤ 1

T 2

n∑
j=2

π i−1
T

(P1 −P0) D−1i
T

uT
j, iT

1− λj( iT )

2

‖uj, iT ‖
2

1
π i
T

≤ 1

T 2∆2

n∑
j=2

(
π i−1

T
(P1 −P0) D−1i

T

uTj, iT

)2

‖uj, iT ‖
2

1
π i
T

=
1

T 2∆2
‖

n∑
j=2

π i−1
T

(P1 −P0) D−1i
T

uTj, iT
uj, iT ‖

2
1
π i
T

=
1

T 2∆2
‖π i−1

T
(P1 −P0)‖2 1

π i
T

.
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Now taking the square root of either side, we find that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤ 1

T∆
‖π i−1

T
(P1 −P0)‖ 1

π i
T

.

4.5.10 Proof of Lemma 2

We see that ν k
T
− π k

T
= ν k−1

T
P k

T
− π k

T
.

This implies that ‖ν k
T
− π k

T
‖ 1
π k
T

= ‖ν k−1
T

P k
T
− π k

T
‖ 1
π k
T

.

Using Proposition 21, we see that

‖ν k
T
− π k

T
‖ 1
π k
T

≤
∣∣λ2(

k

T
)
∣∣‖ν k−1

T
− π k

T
‖ 1
π k
T

=
∣∣λ2(

k

T
)
∣∣‖ν k−1

T
− π k−1

T
+ π k−1

T
− π k

T
‖ 1
π k
T

≤
∣∣λ2(

k

T
)
∣∣‖ν k−1

T
− π k−1

T
‖ 1
π k
T

+
∣∣λ2(

k

T
)
∣∣‖π k−1

T
− π k

T
‖ 1
π k
T

=
∣∣λ2(

k

T
)
∣∣√√√√ n∑

m=1

(ν k−1
T

(m)− π k−1
T

(m))2
1

π k−1
T

(m)

π k−1
T

(m)

π k
T

(m)

+
∣∣λ2(

k

T
)
∣∣‖π k−1

T
− π k

T
‖ 1
π k
T

≤
∣∣λ2(

k

T
)
∣∣ max

1≤m≤n


√√√√π k−1

T
(m)

π k
T

(m)

 ‖ν k−1
T
− π k−1

T
‖ 1
π k−1
T

+
∣∣λ2(

k

T
)
∣∣‖π k−1

T
− π k

T
‖ 1
π k
T

.
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Repeating this process for every ‖ν i
T
−π i

T
‖ 1
π i
T

with 1 ≤ i ≤ k−1 and collecting

terms we see that

‖ν k
T
− π k

T
‖ 1
π k
T

≤
k−1∑
j=0

 k∏
i=k−j

∣∣λ2(
i

T
)
∣∣ ‖π k−j−1

T
− π k−j

T
‖ 1
π k−j
T k−1∏

i=k−j

1 + max
1≤m≤n


√
π i
T

(m)−
√
π i+1

T
(m)√

π i+1
T

(m)





We note that

max
1≤m≤n


√
π i
T

(m)−
√
π i+1

T
(m)√

π i+1
T

(m)


2

= max
1≤m≤n


π i
T

(m)− π i+1
T

(m)√
π i+1

T
(m)

1√
π i
T

(m) +
√
π i+1

T
(m)


2

≤

 max
1≤m≤n

π i
T

(m)− π i+1
T

(m)√
π i+1

T
(m)

 max
1≤m≤n

 1√
π i
T

(m) +
√
π i+1

T
(m)




2

= max
1≤m≤n

 1√
π i
T

(m) +
√
π i+1

T
(m)


2

max
1≤m≤n

π i
T

(m)− π i+1
T

(m)√
π i+1

T
(m)


2

≤ max
1≤m≤n

 1√
π i
T

(m) +
√
π i+1

T
(m)


2

max
1≤m≤n


π i

T
(m)− π i+1

T
(m)√

π i+1
T

(m)

2


≤ max
1≤m≤n

 1√
π i
T

(m) +
√
π i+1

T
(m)


2

n∑
j=1

π i
T

(j)− π i+1
T

(j)√
π i+1

T
(j)

2

≤ max
1≤m≤n

 1√
π i
T

(m)


2

n∑
j=1

π i
T

(j)− π i+1
T

(j)√
π i+1

T
(j)

2
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Noticing that

n∑
m=1

π i
T

(m)− π i+1
T

(m)√
π i+1

T
(m)

2

= ‖π i
T
− π i+1

T
‖2 1
π i+1
T

we can conclude by taking the square root of either side

max
1≤m≤n


√
π i
T

(m)−
√
π i+1

T
(m)√

π i+1
T

(m)


≤ max

1≤m≤n

 1√
π i
T

(m)

 ‖π i
T
− π i+1

T
‖ 1
π i+1
T

.

Plugging this into our previous equation, we have that

‖ν k
T
− π k

T
‖ 1
π k
T

(4.15)

≤
k−1∑
j=0

 k∏
i=k−j

∣∣λ2(
i

T
)
∣∣ ‖π k−j−1

T
− π k−j

T
‖ 1
π k−j
T k−1∏

i=k−j

1 + max
1≤m≤n

 1√
π i
T

(m)

 ‖π i
T
− π i+1

T
‖ 1
π i+1
T

 (4.16)

Because
∣∣λ2( jT )

∣∣ ≤ (1−∆) for 0 ≤ j ≤ k − 1 we see that

‖ν k
T
− π k

T
‖ 1
π k
T

≤
k−1∑
j=0

(1−∆)
j+1 ‖π k−j−1

T
− π k−j

T
‖ 1
π k−j
T k−1∏

i=k−j

1 + max
1≤m≤n

 1√
π i
T

(m)

 ‖π i
T
− π i+1

T
‖ 1
π i+1
T


Now using the result from Proposition 22 we see that
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‖ν k
T
− π k

T
‖ 1
π k
T

≤ 1

T∆

k−1∑
j=0

(1−∆)
j+1 ‖π k−j−1

T
(P1 −P0)‖ 1

π k−j
T k−1∏

i=k−j

1 +
1

T∆
max

1≤m≤n

 1√
π i
T

(m)

 ‖π i
T

(P1 −P0)‖ 1
π i+1
T


Letting

c(
k

T
) = min

0≤i≤k

{
min

1≤m≤n

{
π i
T

(m)
}}

we compare ‖π i
T

(P1 −P0)‖ 1
π i+1
T

to

max
0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}

for each 0 ≤ i ≤ k − 1 to see that

‖ν k
T
− π k

T
‖ 1
π k
T

≤ 1

T∆
max

0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}
k−1∑
j=0

(1−∆)
j+1

1 +
1

T∆

1√
c( kT )

max
0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}j+1

Using the fact that ‖ν k
T
− π k

T
‖TV ≤ 1

2‖ν kT − π k
T
‖ 1
π k
T

we come to our result.
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4.5.11 Proof of Theorem 15

From Equation 4.13 in Lemma 2 we see that

‖ν k
T
− π k

T
‖TV

≤ 1

2T∆
max

0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}
k−1∑
j=0

(1−∆)
j+1

1 +
1

T∆

1√
c( kT )

max
0≤i≤k−1

{
‖π i

T
(P1 −P0)‖ 1

π i+1
T

}j+1

where

c(
k

T
) = min

0≤i≤k

{
min

1≤m≤n

{
π i
T

(m)
}}

.

Let

T =
M

∆2
√
c∗

max
T∗≥2

{
max

1≤i≤T∗−1

{
‖π i

T∗
(P1 −P0)‖ 1

π i+1
T∗

}}

where M > 1 is a positive constant.

Because
√
c∗ ≤ 2 and because of the geometric nature of the series, we see that

‖ν k
T
− π k

T
‖TV ≤

∆
√
c∗

2M

k−1∑
j=0

(1−∆)
j+1

(
1 +

∆

M

)j+1

≤ ∆

M

k−1∑
j=0

(
1−

(
M − 1

M
∆ +

1

M
∆2

))j

≤ ∆

M

1−
(
1−

(
M−1
M ∆ + 1

M∆2
))k

M−1
M ∆ + 1

M∆2

≤ ∆

M

1
M−1
M ∆ + 1

M∆2

≤ 1

(M − 1) + ∆
.
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Given ε > 0 if we let M = 1
ε + 1, then we see that

‖ν k
T
− π k

T
‖TV ≤ ε.

Now we see that if

T =
1
ε + 1

∆2
√
c∗

max
T∗≥2

{
max

0≤i≤T∗−1

{
‖π i

T∗
(P1 −P0)‖ 1

π i+1
T∗

}}

then for all 1 ≤ k ≤ T

‖ν k
T
− π k

T
‖TV ≤ ε.

This would imply that

tsad(P0,P1, ε) ≤
1
ε + 1

∆2
√
c∗

max
T∗≥2

{
max

0≤i≤T∗−1

{
‖π i

T∗
(P1 −P0)‖ 1

π i+1
T∗

}}
.

4.6 Birth-Death Markov Chains

In this section we seek to improve upon our two-state results and reversible

Markov chain results from the Sections 4.2 and 4.4. We consider n-state,

discrete-time Markov chains that are called birth-death. This is one of the

simplest types of n-state Markov chains because it restricts communication be-

tween states that are not adjacent. Birth-death Markov chains are a specific

kind of reversible Markov chain, described in Section 4.4, and the two-state

Markov chains, described in Section 4.2, are a two-state birth-death chain. We

again attempted to compare the stable adiabatic time of these types of Markov

chains to the smallest spectral gap of the linear adiabatic evolution of their

probability transition matrices. We used a variety of techniques that gave us
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results that were similar to the results in Chapter 3, but they did highlight

some of the problems that arose when comparing the stable adiabatic time to

the smallest spectral gap.

Birth-death process have many applications in a variety of areas such as

queueing theory. We devote Chapter 7 for an application of a very specific birth-

death process outlined in [27]. One can reference [14] for a full description of a

birth-death chain, but in this section we will outline some important properties

of these chains.

We now want to define the probability transition matrices for two n-state

birth-death processes. We will again call them P0 and P1.

Let P0(1, j) = P1(1, j) = 0 for j > 2. For 2 ≤ i ≤ n − 1 let P0(i, j) =

P1(i, j) = 0 for j < i−1 and j > i+1. Let P0(n, j) = P1(n, j) = 0 for j < n−1.

For a ∈ {0, 1} let p
(a)
1 , · · · p(a)

n−1, r
(a)
1 , · · · , r(a)

n , q
(a)
2 , · · · , q(a)

n ∈ [0, 1] such that for

2 ≤ i ≤ n − 1, q
(a)
i + r

(a)
i + p

(a)
i = 1, r

(a)
1 + p

(a)
1 = 1 and q

(a)
n + r

(a)
n = 1. Now

define for 2 ≤ i ≤ n− 1, Pa(i, i− 1) = q
(a)
i , Pa(i, i) = r

(a)
i , Pa(i, i+ 1) = p

(a)
i ,

Pa(1, 1) = r
(a)
1 , Pa(1, 2) = p

(a)
1 , and Pa(n, n− 1) = q

(a)
n , Pa(n, n) = r

(a)
n .

For these matrices to be irreducible and aperiodic, we must have for a ∈

{0, 1} that p
(a)
i 6= 0 for 1 ≤ i ≤ n− 1 and q

(a)
i 6= 0 for 2 ≤ i ≤ n.

The linear adiabatic evolution between P0 and P1 will define a class of

discrete-time, birth-death processes with the following probability transition

matrix for a given t ∈ [0, 1]:
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Pt =



r
(t)
1 p

(t)
1 0 · · · · · · 0 0 0

q
(t)
2 r

(t)
2 p

(t)
2

. . . · · · 0 0 0

0 q
(t)
3 r

(t)
3

. . .
. . . 0 0 0

...
. . .

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

. . .
...

0 0 0
. . .

. . . r
(t)
n−2 p

(t)
n−2 0

0 0 0 · · ·
. . . q

(t)
n−1 r

(t)
n−1 p

(t)
n−1

0 0 0 · · · · · · 0 q
(t)
n r

(t)
n



where q
(t)
i = (1−t)q(0)

i +tq
(1)
i for 2 ≤ i ≤ n, r

(t)
i = (1−t)r(t)

i +tr
(t)
i for 1 ≤ i ≤ n

and p
(t)
i = (1− t)p(0)

i + tp
(1)
i for 1 ≤ i ≤ n− 1.

In this section we are further assuming that there exists a δ > 0 such that

for a ∈ {0, 1}, p(a)
i ≥ δ for 1 ≤ i ≤ n− 1 and q

(a)
i ≥ δ for 2 ≤ i ≤ n.

We first want to understand the nature of the stationary distribution. The

following proposition gives the stationary distribution the proof of this proposi-

tion, which can be found in [14], is transcribed in Section 4.7 to emphasize how

one finds the stationary distribution.

Proposition 23 For the class of irreducible, aperiodic, discrete-time, birth-

death processes based on a linear adiabatic evolution between P0 and P1, we

have that the stationary distribution of Pt is

πt(i) =

(∏n
j=i+1 q

(t)
j

)(∏i−1
j=1 p

(t)
j

)
∑n
k=1

(∏n
j=k+1 q

(t)
j

)(∏k−1
j=1 p

(t)
j

) (4.17)

for 1 ≤ i ≤ n.

Now that we have considered the probability transition matrix and station-

ary distribution of these birth-death chains, we return our attention to compar-
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ing the stable adiabatic time to the smallest spectral gap of the linear adiabatic

evolution between P0 and P1. To do this, we first study the second largest

eigenvalue of Pt as a function of t, but not necessarily second largest in modu-

lus. The following proposition gives a new representation of this eigenvalue that

is commonly called the Rayleigh quotient, but the formula applies to reversible

Markov chains. This proposition was cited from [6], however, we include its

proof in Section 4.7.

Proposition 24 Given t ∈ [0, 1], if we let λ2(t) be the second largest eigenvalue

of Pt where Pt is a reversible matrix with respect to πt, then

λ2(t) = 1− inf

{
< (I−Pt)x, x >πt

< x, x >πt −(< x,1 >πt)
2

∣∣x 6= 0 and < x,1 >πt= 0

}
.

(4.18)

We would like to use the Rayleigh quotient to find a bound for the stable

adiabatic time, but to do this we must first simplify the quotient by using an

expression called the Dirichlet form. The following proposition describes the

Dirichlet form and its proof, which can be found in [6], is given in Section 4.7.

Proposition 25 For a reversible matrix Pt with respect to πt, we have that

< (I−Pt)x, x >πt=

n−1∑
i=1

n∑
j=i+1

πt(i)Pt(i, j) (x(j)− x(i))
2
. (4.19)

Combining Propositions 24 and 25, we find an alternative expression for the

second largest eigenvalue of Pt, which we summarize in the following corollary.

Corollary 6 Given t ∈ [0, 1], if we let λ2(t) be the second largest eigenvalue of
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Pt where Pt is a reversible matrix with respect to πt, then

λ2(t) = 1−

inf

{∑n−1
i=1

∑n
j=i+1 πt(i)Pt(i, j) (x(j)− x(i))

2∑n
i=1 πt(i)x(i)2

∣∣x 6= 0 and < x,1 >πt= 0

}
.

(4.20)

We are also concerned with bounds of the second largest eigenvalue. One

such bound is the lower conductance bound on the second largest eigenvalue.

We sum up this result from [6] in the following proposition, but we first define

some quantities necessary for the statement of the proposition.

Recall that the state space E = {1, · · · , n} and let B ⊆ E with B 6= ∅. We

define the following quantities:

πt(B) =
∑
i∈B

πt(i) (4.21)

Ft(B) =
∑

i∈B,j∈E\B

πt(i)Pt(i, j) (4.22)

ψt(B,Pt) =
Ft(B)

πt(B)
(4.23)

φt(Pt) = inf
B⊆E
{ψt(B,Pt)|πt(B) ≤ 1/2}. (4.24)

For a proof of the proposition, I refer you to [6].

Proposition 26 Assume that Pt is a reversible matrix with respect to πt and

let λ2(t) be the second largest real eigenvalue of Pt. We then have the following

inequality:

1− 2 · φt(Pt) ≤ λ2(t). (4.25)

Recalling the proof of Lemma 2, we see that before using the inequality from
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Proposition 22, we derived Equation 4.15:

‖ν k
T
− π k

T
‖ 1
π k
T

≤
k−1∑
j=0

 k∏
i=k−j

∣∣λ2(
i

T
)
∣∣ ‖π k−j−1

T
− π k−j

T
‖ 1
π k−j
T k−1∏

i=k−j

1 + max
1≤m≤n

 1√
π i
T

(m)

 ‖π i
T
− π i+1

T
‖ 1
π i+1
T


where ν k

T
= π0P 1

T
· · ·P k

T
and λ2(t) is the second largest eigenvalue in modulus.

Our goal is to find a bound for ‖ν k
T
− π k

T
‖TV . Under the assumption that

Pt is a birth-death probability transition matrix and λ2(t) is the second largest

eigenvalue and the second largest eigenvalue in modulus for t ∈ [0, 1], we are

able to utilize Corollary 6 and Proposition 26 to find a bound of ‖π i−1
T
−π i

T
‖ 1
π i
T

for 1 ≤ i ≤ n. We summarize this in the following proposition and include the

proof of this proposition in Section 4.7.

Proposition 27 Consider a linear adiabatic evolution between two birth-death

matrices P0 and P1 with λ2(t) the second largest eigenvalue for all t ∈ [0, 1]. If

we assume there exists a δ > 0 such that for a ∈ {0, 1}, p(a)
i ≥ δ for 1 ≤ i ≤ n−1

and q
(a)
i ≥ δ for 2 ≤ i ≤ n, then

‖π i−1
T
− π i

T
‖ 1
π i
T

≤
√

8

∆2T

n2

√
δ3(n−1)

. (4.26)

We now apply this apply this to Equation 4.15 along with some algebra to

derive the following corollary. The proof of this corollary is given in Section 4.7.

Corollary 7 Consider a linear adiabatic evolution between two birth-death ma-

trices P0 and P1 with λ2(t) the second largest eigenvalue for all t ∈ [0, 1] and ∆

is the smallest spectral gap over the entire evolution. If we assume there exists

a δ > 0 such that for a ∈ {0, 1}, p(a)
i ≥ δ for 1 ≤ i ≤ n − 1 and q

(a)
i ≥ δ for
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2 ≤ i ≤ n, then

‖ν k
T
− π k

T
‖TV ≤

√
2

∆2T

n2

√
δ3(n−1)

k−1∑
j=0

(1−∆)
j

(
1 +

√
8

∆2T

n5/2

δ2(n−1)

)j
. (4.27)

We use this corollary to find a bound for the stable adiabatic time for a

linear adiabatic evolution between birth-death matrices P0 and P1 when λ2(t)

is the second largest eigenvalue for all t ∈ [0, 1] and for a ∈ {0, 1}, p(a)
i ≥ δ for

1 ≤ i ≤ n − 1 and q
(a)
i ≥ δ for 2 ≤ i ≤ n. The proof of this theorem is in

Section 4.7.

Theorem 16 Consider a linear adiabatic evolution between two birth-death ma-

trices P0 and P1 with λ2(t) the second largest eigenvalue for all t ∈ [0, 1] and ∆

is the smallest spectral gap over the entire evolution. If we assume there exists

a δ > 0 such that for a ∈ {0, 1}, p(a)
i ≥ δ for 1 ≤ i ≤ n − 1 and q

(a)
i ≥ δ for

2 ≤ i ≤ n, then

tsad(P0,P1, ε) ≤
M∗

ε∆3
(4.28)

where M∗ is a constant that depends on n and δ.

It is important to note that M∗ is not a general constant, so this result

doesn’t tell us much in general. It appears that for the right conditions on

these types of Markov chains, the asymptotic bound of the stable adiabatic

time would be the multiplicative inverse of ε multiplied by the inverse cube

of smallest spectral gap. You can see that the results in Chapter 3 are much

clearer and concise. However, the results in this section combined with the

results in Theorems 2 and 3, may lead one to believe that the asymptotic bound

in Chapter 3 can be improved to the inverse cube of the largest mixing time.
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4.7 Proofs

4.7.1 Proof of Proposition 23

Remember that πt = πtPt for t ∈ [0, 1].

For this specific case, this implies that πt(1) = r
(t)
1 πt(1) + q

(t)
2 πt(2).

It also implies that for 2 ≤ i ≤ n − 1 that πt(i) = p
(t)
i−1πt(i − 1) + r

(t)
i πt(i) +

q
(t)
i+1πt(i+ 1).

Finally it implies that πt(n) = p
(t)
n−1πt(n− 1) + r

(t)
n πt(n).

We see now that

πt(2) =
(1− r(t)

1 )

q
(t)
2

πt(1) =
p

(t)
1

q
(t)
2

πt(1).

Because this process is reversible with respect to < ·, · >πt , we see that

p
(t)
i−1πt(i− 1) = q

(t)
i πt(i) for 2 ≤ i ≤ n− 1.

We therefore have q
(t)
i+1πt(i+1) = (1−q(t)

i −r
(t)
i )πt(i) = p

(t)
i πt(i) for 2 ≤ i ≤ n−1.

If we write this as πt(i+ 1) =
p
(t)
i

q
(t)
i+1

πt(i) for 2 ≤ i ≤ n− 1, then you can use the

recursion to see that

πt(i+ 1) =

∏i
j=1 p

(t)
j∏i+1

j=2 q
(t)
j

πt(1)

for 2 ≤ i ≤ n− 1.

Because πt is a probability distribution, we see that

n∑
k=1

∏k−1
j=1 p

(t)
j∏k

j=2 q
(t)
j

πt(1) = 1
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which in turn implies that

πt(1) =
1∑n

k=1

∏k−1
j=1 p

(t)
j∏k

j=2 q
(t)
j

.

We now see that

πt(i) =

∏i−1
j=1 p

(t)
j∏i

j=2 q
(t)
j∑n

k=1

∏k−1
j=1 p

(t)
j∏k

j=2 q
(t)
j

.

After some algebra to simplify the numerator and denominator, i.e. using the

convention for the product notation that if j > n, then for a sequence of number

{ak}nk=1,
∏n
k=j ak = 1, we see that

πt(i) =

(∏n
j=i+1 q

(t)
j

)(∏i−1
j=1 p

(t)
j

)
∑n
k=1

(∏n
j=k+1 q

(t)
j

)(∏k−1
j=1 p

(t)
j

)
for 1 ≤ i ≤ n.

4.7.2 Proof of Proposition 24

Assuming that the column vector x 6= 0 and < x,1 >πt= 0, we see that for

t ∈ [0, 1]

< (I−Pt)x,x >πt
< x,x >πt −(< x,1 >πt)

2
=
< (I−Pt)x,x >πt

< x,x >πt

=
< x,x >πt − < Ptx,x >πt

< x,x >πt

= 1− < Ptx,x >πt
< x,x >πt

.
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We see then that

1− inf

{
< (I−Pt)x,x >πt

< x,x >πt −(< x,1 >πt)
2

∣∣x 6= 0 and < x,1 >πt= 0

}
= sup

{
< Ptx,x >πt
< x,x >πt

∣∣x 6= 0 and < x,1 >πt= 0

}
.

We know there exists scalars c2, · · · , cn such that x = c2v2,t + · · · + cnvn,t

where v2,t, · · · ,vn,t are defined as a subset of the orthonormal basis introduced

in Proposition 18. We see that this set is orthonormal with respect to < ·, · >πt

as shown in Proposition 20 and for reversible matrices all eigenvalues are real.

This implies that

< Ptx,x >πt = λ2(t)c22 + · · ·λn(t)c2n

≤ λ2(t)c22 + · · ·λ2(t)c2n

≤ λ2(t) < x,x >πt .

This implies that

1− inf

{
< (I−Pt)x,x >πt

< x,x >πt −(< x,1 >πt)
2

∣∣x 6= 0 and < x,1 >πt= 0

}
≤ λ2(t).

Noticing that when x = v2,t,

< Ptx,x >πt
< x,x >πt

= λ2(t)

we have that the supremum is reached.
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We can conclude then that

λ2(t) = 1− inf

{
< (I−Pt)x,x >πt

< x,x >πt −(< x,1 >πt)
2

∣∣x 6= 0 and < x,1 >πt= 0

}
.

4.7.3 Proof of Proposition 25

To begin we look expand < (I−Pt)x,x >πt where x is a column vector.

< (I−Pt)x,x >πt =

n∑
i=1

x(i)−
n∑
j=1

Pt(i, j)x(j)

x(i)πt(i)

=

n∑
i=1

 n∑
j=1

Pt(i, j)x(i)−
n∑
j=1

Pt(i, j)x(j)

x(i)πt(i)

=

n∑
i=1

n∑
j=1

πt(i)Pt(i, j)x(i) (x(i)− x(j))

=

n∑
i=1

n∑
j=1

πt(i)Pt(i, j)
(
x(i)2 − x(i)x(j)

)
.

By changing the index of the above equation, replacing i with j, we have that

< (I−Pt)x,x >πt=

n∑
i=1

n∑
j=1

πt(j)Pt(j, i)
(
x(j)2 − x(i)x(j)

)
.

Because this chain is reversible with respect to πt for all t ∈ [0, 1], we have that

πt(i)Pt(i, j) = πt(j)Pt(j, i). Using this in the above equation, we have that

< (I−Pt)x,x >πt=

n∑
i=1

n∑
j=1

πt(i)Pt(i, j)
(
x(j)2 − x(i)x(j)

)
.

If we now add the right hand side of the above equation to
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∑n
i=1

∑n
j=1 πt(i)Pt(i, j)

(
x(i)2 − x(i)x(j)

)
, we have that

2 < (I−Pt)x,x >πt=

n∑
i=1

n∑
j=1

πt(i)Pt(i, j)
(
x(j)2 − 2x(i)x(j) + x(i)2

)
.

Noticing that when i = j, the entry of the double-sum is 0, and reversibility

guarantees that the (i, j)-entry of the double-sum is equivalent to the (j, i)-entry

of the double-sum, if we divide both sides of the equation by 2 we have that

< (I−Pt)x,x >πt=

n−1∑
i=1

n∑
j=i+1

πt(i)Pt(i, j) (x(j)− x(i))
2
.

4.7.4 Proof of Proposition 27

We see from Corollary 6 that for any i, T ∈ N with i ≤ T ,

∆ ≤ 1− λ2(
i

T
) = inf{∑n−1

j=1

∑n
k=j+1 π i

T
(j)P i

T
(j, k) (x(k)− x(j))

2∑n
j=1 π i

T
(j)x(j)2

∣∣x 6= 0 and < x,1 >π i
T

= 0

}
.

Selecting

x(j) =
π i−1

T
(j)− π i

T
(j)

π i
T

(j)

and using the fact that for a birth-death chain

n−1∑
j=1

n∑
k=j+1

π i
T

(j)P i
T

(j, k) (x(j + 1)− x(j))
2

=

n−1∑
j=1

π i
T

(j)p
( iT )
j (x(k)− x(j))

2
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we have that

∆ ≤

∑n−1
j=1 π i

T
(j)p

( iT )
j

(
π i−1
T

(j+1)−π i
T

(j+1)

π i
T

(j+1) −
π i−1
T

(j)−π i
T

(j)

π i
T

(j)

)2

∑n
j=1

(
π i−1
T

(j)−π i
T

(j)

)2

π i
T

(j)

.

Noticing that the denominator of this equation is ‖π i−1
T
− π i

T
‖2 1
π i
T

, we can

perform some algebra to show that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤ 1√
∆

√√√√√√n−1∑
j=1

p
( iT )
j

(
π i−1

T
(j + 1)π i

T
(j)− π i

T
(j + 1)π i−1

T
(j)
)2

(
π i
T

(j + 1)
)2

π i
T

(j)
.

Because birth-death chains are reversible, we see that πt(j)p
(t)
j = πt(j+ 1)q

(t)
j+1.

Using this to replace some of the terms in the above equation, we derive

‖π i−1
T
− π i

T
‖ 1
π i
T

≤ 1√
∆

√√√√√√√√√√
n−1∑
j=1

p
( iT )
j

(
p
( i−1
T

)

j

q
( i−1
T

)

j+1

π i−1
T

(j)π i
T

(j)− p
( i
T

)

j

q
( i
T

)

j+1

π i
T

(j)π i−1
T

(j)

)2

(
p
( i
T

)

j

q
( i
T

)

j+1

π i
T

(j)

)2

π i
T

(j)

≤ 1√
∆

√√√√√√n−1∑
j=1

(
π i−1

T
(j)
)2 (

p
( i−1
T )

j q
( iT )
j+1 − p

( iT )
j q

( i−1
T )

j+1

)2

π i
T

(j)p
( iT )
j

(
q

( i−1
T )

j+1

)2

≤ 1√
∆

√√√√√√n−1∑
j=1

(
π i−1

T
(j)
)2 (

π i−1
T

(j + 1)
)2 (

p
( i−1
T )

j q
( iT )
j+1 − p

( iT )
j q

( i−1
T )

j+1

)2

π i
T

(j)p
( iT )
j

(
π i−1

T
(j + 1)q

( i−1
T )

j+1

)2 .

By using the formulae p
( i−1
T )

j = p
( iT )
j − 1

T

(
p

(1)
j − p

(0)
j

)
and q

( i−1
T )

j+1 = q
( iT )
j+1 −

1
T

(
q

(1)
j+1 − q

(0)
j+1

)
, performing some basic algebra and using the reversibility ar-
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gument we can expand terms in the previous inequality to get the following:

‖π i−1
T
− π i

T
‖ 1
π i
T

≤ 1√
∆T

√√√√√√n−1∑
j=1

(
π i−1

T
(j)
)2 (

π i−1
T

(j + 1)
)2 (

p
(0)
j q

(1)
j+1 − p

(1)
j q

(0)
j+1

)2

(
π i
T

(j)p
( iT )
j

)3 .

If we now return our attention to our conductance bound in Proposition 26.

We divide the set E into two distinct sets. Define Bj = {1, · · · , j} and BCj =

{j + 1, · · · , n}.

Using the notation introduced in Section 4.6, we see that for a birth-death chain

πt(Bj) =

j∑
l=1

πt(l)

Ft(Bj) = πt(j)p
(t)
j

ψt(Bj ,Pt) =
πt(j)p

(t)
j∑j

l=1 πt(l)
.

We similarly see for a birth-death chain that

πt(B
C
j ) =

n∑
l=j+1

πt(l)

Ft(B
C
j ) = πt(j + 1)q

(t)
j+1 = πt(j)p

(t)
j

ψt(B
C
j ,Pt) =

πt(j)p
(t)
j∑n

l=j+1 πt(l)
.

Because either πt(Bj) ≤ 1/2 or πt(B
C
j ) ≤ 1/2, or both simultaneously, we can
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see that

φt(Pt) ≤
πt(j)p

(t)
j

min
{
πt(Bj), πt(BCj )

}
for all t ∈ [0, 1] and 1 ≤ j ≤ n.

Using the conductance bound from Proposition 26 we that for all t ∈ [0, 1] and

1 ≤ j ≤ n
min

{
πt(Bj), πt(B

C
j )
}

∆

2
≤ πt(j)p(t)

j .

We now bound 1/
(
π i
T
p

( iT )
j

)
in our bound of ‖π i−1

T
− π i

T
‖ 1
π i
T

. We see that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤ 1√
∆T

√√√√√√n−1∑
j=1

8
(
π i−1

T
(j)
)2 (

π i−1
T

(j + 1)
)2 (

p
(0)
j q

(1)
j+1 − p

(1)
j q

(0)
j+1

)2

(
min

{
π i
T

(Bj), π i
T

(BCj )
}

∆
)3

≤
√

8

∆2T

√√√√√√n−1∑
j=1

(
π i−1

T
(j)
)2 (

π i−1
T

(j + 1)
)2 (

p
(0)
j q

(1)
j+1 − p

(1)
j q

(0)
j+1

)2

(
min

{
π i
T

(Bj), π i
T

(BCj )
})3 .

We know that π i−1
T

(j) ≤ 1 for 1 ≤ j ≤ n and |p(0)
j q

(1)
j+1 − p

(1)
j q

(0)
j+1| ≤ 1 for

1 ≤ j ≤ n− 1, so

(
π i−1

T
(j)
)2 (

π i−1
T

(j + 1)
)2 (

p
(0)
j q

(1)
j+1 − p

(1)
j q

(0)
j+1

)2

≤ 1.

for all 1 ≤ j ≤ n− 1.

This now shows that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤
√

8

∆2T

√√√√√n−1∑
j=1

1(
min

{
π i
T

(Bj), π i
T

(BCj )
})3 .
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Notice that π i
T

(j) ≤ π i
T

(Bj) and π i
T

(j + 1) ≤ π i
T

(BCj ), which implies that

min
{
π i
T

(j), π i
T

(j + 1)
}
≤ min

{
π i
T

(Bj), π i
T

(BCj )
}

. This implies that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤
√

8

∆2T

√√√√√n−1∑
j=1

1(
min

{
π i
T

(j), π i
T

(j + 1)
})3 .

Because
(∏n

l=k+1 q
(t)
l

)(∏k−1
l=1 p

(t)
l

)
≤ 1 for 1 ≤ k ≤ n, t ∈ [0, 1], we see that

n∑
k=1

(
n∏

l=k+1

q
(t)
l

)(
k−1∏
l=1

p
(t)
l

)
≤ n.

This tells us that

δn−1

n
≤

(∏n
l=j+1 q

( iT )

l

)(∏j−1
l=1 p

( iT )

l

)
n

≤ π i
T

(j)

for all 1 ≤ j ≤ n.

We now argue that

‖π i−1
T
− π i

T
‖ 1
π i
T

≤
√

8

∆2T

√√√√n−1∑
j=1

n3

δ3(n−1)

≤
√

8

∆2T

n2

√
δ3(n−1)

.
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4.7.5 Proof of Corollary 7

If we consider Equation 4.15 from Lemma 2 and apply Proposition 14 we derive

the following inequality:

‖ν k
T
− π k

T
‖TV ≤

1

2

k−1∑
j=0

 k∏
i=k−j

∣∣λ2(
i

T
)
∣∣ ‖π k−j−1

T
− π k−j

T
‖ 1
π k−j
T k−1∏

i=k−j

1 + max
1≤m≤n

 1√
π i
T

(m)

 ‖π i
T
− π i+1

T
‖ 1
π i+1
T


where ν k

T
= π0P 1

T
· · ·P k

T
for a linear adiabatic evolution between P0 and P1

and λ2(t) is the second largest eigenvalue in modulus, however, we assumed that

the second largest eigenvalue is the second largest eigenvalue in modulus

We also showed in Proposition 27

‖π i−1
T
− π i

T
‖ 1
π i
T

≤
√

8

∆2T

n2

√
δ3(n−1)

.

Because
∣∣λ2(t)

∣∣ ≤ 1 − ∆ and 1/
√
πt(m) ≤

√
n/δn−1 for all t ∈ [0, 1] and

1 ≤ m ≤ n, we see that

‖ν k
T
− π k

T
‖TV ≤

1

2

k−1∑
j=0

(1−∆)
j+1

√
8

∆2T

n2

√
δ3(n−1)

(
1 +

√
8

∆2T

n5/2

δ2(n−1)

)j

≤
√

2

∆2T

n2

√
δ3(n−1)

k−1∑
j=0

(1−∆)
j

(
1 +

√
8

∆2T

n5/2

δ2(n−1)

)j
.

4.7.6 Proof of Theorem 16

We showed in Corollary 7 that

‖ν k
T
− π k

T
‖TV ≤

√
2

∆2T

n2

√
δ3(n−1)

k−1∑
j=0

(1−∆)
j

(
1 +

√
8

∆2T

n5/2

δ2(n−1)

)j
.
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We now let

T =

√
8n5/2M

∆3δ2(n−1)

where M > 1 is constant.

We can see that

‖ν k
T
− π k

T
‖TV ≤

∆
√
δ(n−1)

2
√
nM

k−1∑
j=0

[
(1−∆)

(
1 +

∆

M

)]j

≤ ∆
√
δ(n−1)

2
√
nM

k−1∑
j=0

[
1− (M − 1)∆

M
− ∆2

M

]j
.

Noticing that this is a geometric series, we have that

‖ν k
T
− π k

T
‖TV ≤

∆
√
δ(n−1)

2v
√
nM

1−
(

1− (M−1)∆
M − ∆2

M

)k
1−

(
1− (M−1)∆

M − ∆2

M

)


≤ ∆
√
δ(n−1)

2
√
nM

(
1

(M−1)∆
M + ∆2

M

)

≤
√
δ(n−1)

2
√
n ((M − 1) + ∆)

.

We can see that for any ε > 0 we can select an integer N not depending on ε

such that M = N/ε > 1 such that

√
δn−1

2
√
n ((M − 1) + ∆)

≤ ε.

Because this is true for all 1 ≤ k ≤ T , we see that

tsad (P0,P1, ε) ≤
√

8n5/2N

ε∆3δ2(n−1)
.
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Letting M∗ =
(√

8n5/2N
)
/δ2(n−1), we see that

tsad (P0,P1, ε) ≤
M∗

ε∆3
.



Chapter 5

Background on

Continuous Markov

Processes

We now turn our attention to continuous-time Markov chains. Our research

group has written papers on two applications of the adiabatic time to continuous-

time Markov chains. We will return to these applications in Chapters 7 and 8.

Before we discuss these applications, we first must develop the necessary tools

to discuss continuous-time Markov chains. Section 5.1 will introduce all the

proper definitions of continuous-time Markov chains and will describe the suf-

ficient conditions to have a unique stationary distribution for these Markov

chains. Section 5.3 will define the mixing time for continuous-time Markov

chains.
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5.1 Continuous Markov Chains

This section considers the creation and development of continuous-time Markov

chains. We will adopt notation from earlier chapters using discrete-time. For

example, recall that discrete-time Markov chains have associated with them a

sequence of stochastic matrices. In Section 2.5 we adopted the notation Pn

to describe the space of n × n stochastic matrices. We now want to define

continuous-time Markov chains over a finite state space E = {1, · · · , n}.

Definition 26 A continuous-time Markov chain is a random process in the

space of functions X = {X : R+ → E}, where each function has a probabil-

ity associated with it uniquely determined (up to initial distribution). This

probability is governed by a multivariate function of stochastic matrices P :{
(a, b) ∈ R+ × R+

∣∣a ≤ b}→ Pn which give the conditional probability for times

s, t ∈ R+ with s ≤ t: P(X(t) = j|X(s) = i) = p(s, t)ij where the p(s, t)ij is the

ij entry of P(s, t).

The matrices P(s, t) are called the probability transition matrices from time

s to time t. As we did in discrete-time, we can classify Markov chains as time-

homogeneous or time-inhomogeneous. We will first focus on time-homogeneous

Markov chains so that we can define the stationary distribution of a continuous-

time Markov chain, similar to the process outlined for discrete-time Markov

chains.

Definition 27 A continuous-time Markov chain is said to be time-homogeneous

if p(s, t)ij = p(0, t− s)ij for all i, j ∈ E and (s, t) ∈
{

(a, b) ∈ R+ × R+
∣∣a ≤ b}.

We would simply write p(s, t)ij = p(t− s)ij and P(s, t) = P(t− s).

A continuous-time Markov chain is said to be time-inhomogeneous if there exists

(s, t) ∈
{

(a, b) ∈ R+ × R+
∣∣a ≤ b} such that p(s, t)ij 6= p(0, t − s)ij for some
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i, j ∈ E.

To better understand continuous-time, time-homogeneous Markov chains,

we reference the following proposition, which is cited from [12]. Because the

proof of this proposition is straightforward, I will include it in Section 5.2.

Proposition 28 Consider the probability transition matrix function P : R+ →

E for a continuous-time, time-homogeneous Markov chain over a finite state

space. Let {P(t)|t ≥ 0} be the codomain of this function. Then

(1) P(0) = I

(2) P(t) is stochastic for all t ≥ 0 and for s, t ≥ 0

(3) P(s+ t) = P(s)P(t).

The codomain, {P(t)|t ≥ 0}, having the properties mentioned above is called

a stochastic semigroup. The following definition outlines one property that we

insist on the stochastic semigroups having throughout our study of continuous-

time, time-homogeneous Markov chains.

Definition 28 The semigroup {P(t)|t ≥ 0} is called standard if P(t) → I as

t→ 0.

We also demand that our continuous-time, time-homogeneous Markov chains

have the following property.

Definition 29 The semigroup {P(t) : t ≥ 0} for a continuous-time, time-

homogeneous Markov chain is called irreducible if for all (i, j) ∈ E×E we have

p(s)ij > 0 for some s ≥ 0.

The goal in requiring continuous-time, time-homogeneous Markov chains to

have standard, irreducible semigroups is to guarantee the existence of a unique
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stationary distribution, however, the definition of stationary distribution must

also change in the continuous setting.

Definition 30 For a continuous-time, time-homogeneous Markov chain with

stochastic semigroup {P(t) : t ≥ 0}, any left-handed eigenvector associated with

the eigenvalue 1 is called a stationary distribution, denoted π, only if πj is a

real number and πj ≥ 0 for 1 ≤ j ≤ n. In particular, πP(t) = π for all t ≥ 0.

The following theorem explains the conditions necessary to make existence

of a stationary distribution imply uniqueness of the stationary distribution. A

sketch of the proof was given in [12].

Theorem 17 For a continuous-time, time-homogeneous Markov chain with

standard, irreducible semigroup {P(t) : t ≥ 0},

(a) if there exists a stationary distribution π then it is unique and

p(t)ij → πj as t→ 0 for all i, j ∈ E

(b) if there is no stationary distribution, then p(t)ij → 0 as t→ 0

for all i, j ∈ E.

We know that the semigroup {P(t) : t ≥ 0} being standard implies that

p(t)ij is continuous for all t ≥ 0 and i, j ∈ E. If we suppose that the Markov

chain is in state i at time t, then for a small amount of time h, we either have

that the Markov chain remains in state i with probability p(h)ii+o (h) or moves

to state j 6= i with probability p(h)ij+o (h). For h small we can assume that the

Markov chain doesn’t travel to multiple states within the time interval (t, t+h).

It has been shown that p(h)ij is approximately linear in h when h is small. This

would imply that P(t) is differentiable for all t ≥ 0 and P′(0) is a constant

matrix. The following definition gives a name to this matrix.
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Definition 31 The generator matrix, Q of a continuous-time, time homoge-

neous Markov chain with probability transition matrix P(t) for t ≥ 0 is a con-

stant matrix that satisfies the Kolmogorov Backward equations

P′(t) = QP(t).

Because E is a finite, we see that solving this matrix differential equation

gives us that P(t) =
∑∞
j=0

tj

j! Q
j , and because P(t) is stochastic for all t ≥ 0 we

see that Q1 = 0.

For a continuous time Markov chain {X(t)}t≥0 on a finite state space E

with a bounded generator matrix Q = (qij)i,j∈E and λ = maxi∈E
∑
j 6=i qij , the

upper bound on the departure rates of all states, a process called uniformization

[12] gives transition probabilities to be

P(t) =

∞∑
j=0

e−λt
(λt)

j

j!
Pj = eQt, (5.1)

where the matrix P = I + 1
λQ. The matrix P(t) denotes the transition proba-

bilities at time t.

Notice that P = I + 1
λQ is a stochastic matrix. If π is a stationary distri-

bution of P as a discrete probability transition matrix, then π is the stationary

distribution of P(t) as a continuous probability transition matrix. Theorem 17

would guarantee that this stationary distribution is unique. The existence of a

unique stationary distribution will lead to and analogue concept of the mixing

time introduced in Section 1.3. We will outline the mixing time in Section 5.3.
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5.2 Proofs

5.2.1 Proof of Proposition 28

First I show that P(0) = I. This is straightforward.

Note that p(0)ij = P (X(0) = j|X(0) = i). If i 6= j, then this probability is by

definition 0, and if i = j this probability is by definition 1.

This implies that P(0) = I.

Next I show that P(t) is stochastic.

(P(t)1)i =

n∑
j=1

p(t)ij

= P
(
∪nj=1 {X(t) = j} |X(0) = i

)
=

n∑
j=1

P (X(t) = j|X(0) = i)

= 1.

This implies that P(t)1 = 1.

Finally I show that P(s+ t) = P(s)P(t).
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p(s+ t)ij = P (X(s+ t) = j|X(0) = i)

=

n∑
k=1

P (X(s+ t) = j|X(s) = k,X(0) = i)P (X(s) = k|X(0) = i)

Using the Markov property of Markov chains and the time homogeneity of the

chain, we see that

p(s+ t)ij =

n∑
k=1

P (X(s+ t) = j|X(s) = k)P (X(s) = k|X(0) = i)

=

n∑
k=1

P (X(t) = j|X(0) = k)P (X(s) = k|X(0) = i)

=

n∑
k=1

p(t)kjp(s)ik.

We see now that P(s+ t) = P(s)P(t).

5.3 Mixing Time for Continuous Markov Chains

If you recall Definition 9 from Section 1.3, the mixing time was defined to answer

how the structure of the irreducible and aperiodic matrix affects how quickly

the Markov chain converges to its stationary distribution. In Section 5.1 we dis-

cussed analogue sufficient conditions for a continuous-time, time-homogeneous

Markov chain to converge to its unique stationary distribution. In this section we

are going to define the mixing time to describe how quickly the continuous-time

Markov chains described in Section 5.1 converges to their stationary distribu-

tions in the total variation norm.
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Definition 32 Let {P(t)|t ≥ 0} be a standard, irreducible semigroup for a

continuous-time, time-homogeneous Markov chain with stationary distribution

π. Given an ε > 0, the time tmix(P, ε) is called the mixing time if it is the

infimum over t ≥ 0 of

max
ν
‖νP(t)− π‖TV ≤ ε (5.2)

where the maximum is take over all probability distributions ν.

In Chapter 6 we will define an analogue of the adiabatic time for continuous-

time Markov chains and we will asymptotically bound the adiabatic time as

ε → 0 by an inverse power of ε multiplied by a power of the mixing time. We

could analogously try to bound the adiabatic time by the inverse spectral gap

as in Theorems 2 and 3, however, as we have discussed in Chapter 4, adiabatic

times and mixing times make a more natural comparison.



Chapter 6

The Adiabatic Time

Versus The Mixing Time

For Continuous Markov

Chains

We now turn our attention to defining the adiabatic time for continuous-time

Markov chains and we will seek to asymptotically bound the adiabatic time as

ε → 0 as an inverse power of ε multiplied by a power of the mixing time. Sec-

tion 6.1 will do this for a linear evolution between two bounded generators and

Section 6.3 will do this for a general evolution between two bounded genera-

tors. We will provide examples in both sections to claim that these asymptotic

bounds are optimal.
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6.1 Linear Evolution

We start by defining a linear evolution between the generator matrices of two

continuous-time, time-homogeneous Markov chains. This will help us define the

continuous-time, time-inhomogeneous Markov chains necessary for the study of

the adiabatic time. We introduced the following definition in [16].

Definition 33 Let Q[0] and Q[1] be two bounded generators for continuous-

time, time-homogeneous Markov chains with standard, irreducible semigroups

{P[0](s)|s ≥ 0} and {P[1](s)|s ≥ 0} associated with Q[0] and Q[1] respectively.

We call Q[0] the initial generator matrix and Q[1] the final generator matrix.

We define a class of generator matrices based on a linear evolution between Q[0]

and Q[1] to be {Q[t]}t∈[0,1] so that

Q[t] = (1− t)Q[0] + tQ[1] (6.1)

for each t ∈ [0, 1].

For t ∈ [0, 1], if we let {P[t](s)|s ≥ 0} be the standard, irreducible semi-

group associated with the generator Q[t], then we define πt to be the stationary

distribution P[t](s) for s ≥ 0.

We use this linear evolution between Q[0] and Q[1] to define a special class

of time-inhomogeneous Markov chains. Given T > 0 and t1, t2 ≥ 0 such that

0 ≤ t1 ≤ t2 ≤ T , let PT (t1, t2) denote a matrix of transition probabilities of a

continuous-time, time-inhomogeneous Markov chain generated by Q[ tT ] over the

time interval [t1, t2]. If we select t1 = 0 and t2 = T , we would have the following

differential equation on the interval [0, T ] describing our time-inhomogeneous

Markov chain

dPT (0, t)

dt
= Q

[
t

T

]
PT (0, t). (6.2)
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With this time-dependent generator we define the adiabatic time to be the

first time that the continuous-time Markov chain generated by Q[ tT ] reaches a a

resulting distribution that is ‘close enough’ to the stationary distribution of the

continuous-time, time-homogeneous Markov chain governed by the generator

Q[1].

Definition 34 Given a linear adiabatic evolution between the bounded genera-

tors Q[0] and Q[1], we let PT (0, T ) denote a matrix of transition probabilities

of a continuous-time, time-inhomogeneous Markov chain generated by a linear

adiabatic evolution Q[ tT ] over the time interval [0, T ]. Given ε > 0, a time

tad (P[0],P[1], ε) is called the adiabatic time if it is the infimum of T > 0 such

that

max
ν
‖νPT (0, T )− π1‖TV ≤ ε (6.3)

where the maximum is taken over all probability distributions ν.

We now find a bound of the adiabatic time with respect to the mixing time

of the time-homogeneous Markov chain governed by Q[1]. We will see that this

result agrees with the asymptotic bound found in Corollary 1 as ε→ 0. We now

state the following result from [16]. We will include a proof of this theorem in

Section 6.2.

Theorem 18 Take λ such that

λ ≥ max
i∈E

∑
j:j 6=i

Q[0](i, j)

and

λ ≥ max
i∈E

∑
j:j 6=i

Q[1](i, j).
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Then the adiabatic time

tad (P[0],P[1], ε) ≤ λt2mix(P[1], ε/2)

ε
+ θ (6.4)

where θ = tmix(P[1], ε/2) + ε/(4λ).

The following example provides generators Q[0] and Q[1] that show the

result from Theorem 18 are optimal.

Example 3 (The lower bound.)

Q[0] =



0 0 0 · · · 0

1 −1 0 · · · 0

1 0 −1
. . .

...

...
...

. . .
. . . 0

1 0 · · · 0 −1


and

Q[1] =



−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

0 0 −1 1
. . .

...

...
...

. . .
. . .

. . . 0

0 0 0 · · · −1 1

0 0 0 · · · 0 0


In Section 6.3 we will expand the types of time-inhomogeneous Markov

chains we consider by defining a more general type of adiabatic evolution and

we will find a similar result.
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6.2 Proofs

6.2.1 Proof of Theorem 18

Observe that λ ≥ maxi∈E
∑
j:j 6=i Q

[
t
T

]
(i, j) for 0 ≤ t ≤ T .

Take

T = K

(
1− 1

2K

)−1

tmix(P[1], ε/2) and

N = (K − 1)

(
1− 1

2K

)−1

tmix(P[1], ε/2),

and let P[1] = etQ[1] denote the probability transtion matrix associated with

the generator Q[1].

Now, we let P0 = I + 1
λQ[0] and P1 = I + 1

λQ[1]. Note that P0 and P1 are

the probability transition matrices for time-homogeneous, discrete-time Markov

chains and

νPT (0, T ) = νNPT (N,T ) = νN

 ∞∑
j=0

(λ(T −N))j

j!
e−λ(T−N)Ij

 ,

where νN = νPT (0, N) and

Ij =
j!

(T −N)j

∫
· · ·
∫
N<s1<s2<···<sn<T

[(
1− s1

T

)
P0 +

s1

T
P1

]
· · ·
[(

1− sj
T

)
P0 +

sj
T

P1

]
ds1 · · · dsj

i.e. the order statistics of j arrivals within the [N,T ] time interval. We used

the fact that, when condition on the number of arrivals, the arrival times of a

Poisson process are distributed as an order statistic of uniform random variables.
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Hence

νPT (0, T )

= νN

 ∞∑
j=0

(λ(T −N)))j
e−λ(T−N)

(T −N)jT jj!
Pj

1

∫ T

N

· · ·
∫ T

N

s1 · · · sjds1 · · · dsj


+ E

= e−λ(1− 1
2k )
−1
tmix(P[1],ε/2)νN

 ∞∑
j=0

λjtjmix(P[1], ε/2)

j!
Pj

1

+ E

= e−
λtmix(P[1],ε/2)

2K−1 νNP[1] (tmix(P[1], ε/2)) + E

where E is the rest of the terms. Thus, the total variation distance,

max
ν
‖νPT (0, T )− π1‖TV ≤ e−

λtmix(P[1],ε/2)

2K−1 ε/2 + SN .

Taking K ≥ λtmix(P[1],ε/2)
ε + 1/2, we bound the error term

SN = ‖E − π1‖TV

≤ 1− e−λ(1− 1
2K )

−1
tmix(P[1],ε/2)

∞∑
j=0

λjtjmix(P[1], ε/2)

j!

= 1− e−
λtmix(P[1],ε/2)

2K−1

≤ ε/2

as ε < −2 log
(
1− ε

2

)
. Therefore

tad (P[0],P[1], ε) ≤
(
λtmix(P[1], ε/2)

ε
+ 1/2

)
(tmix(P[1], ε/2) + ε/(2λ)) .
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6.3 General Evolution

We now extend our results to more general adiabatic evolutions between the

generator matrices of two continuous-time, time-homogeneous Markov chains.

We introduced the following definition in [4].

Definition 35 Let Q[0] and Q[1] be two bounded generators for continuous-

time, time-homogeneous Markov chains with standard, irreducible semigroups

{P[0](s)|s ≥ 0} and {P[1](s)|s ≥ 0} associated with Q[0] and Q[1] respectively.

We call Q[0] the initial generator matrix and Q[1] the final generator matrix.

We define a class of generator matrices based on a general evolution between

Q[0] and Q[1] to be {Q[t]}t∈[0,1] so that

Q[t](i, j) = (1− φi,j(t))Q[0](i, j) + φi,j(t)Q[1](i, j) (6.5)

where φi,j : [0, 1] → [0, 1] are continuous functions such that φi,j(0) = 0 and

φi,j(1) = 1 for all 1 ≤ i, j ≤ n and
∑
j φi,j(t) (Q[1](i, j)−Q[0](i, j)) = 0 for all

t ∈ [0, 1] and each 1 ≤ i ≤ n.

We use the general evolution between Q[0] and Q[1] to define a special

class of time-inhomogeneous Markov chains. Given T > 0, let PT (0, T ) denote

a matrix of transition probabilities of a continuous-time, time-inhomogeneous

Markov chain generated by Q[ tT ] over the time interval [0, T ]. We again have

the following differential equation on the interval [0, T ] describing our time-

inhomogeneous Markov chain

dPT (0, t)

dt
= Q

[
t

T

]
PT (0, t).

We now make the analogous definition of the adiabatic time of the time-

inhomogeneous, continuous time Markov chain.
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Definition 36 Given a general adiabatic evolution between the bounded gener-

ators Q[0] and Q[1], we let PT (0, T ) denote a matrix of transition probabilities

of a continuous-time, time-inhomogeneous Markov chain generated by a general

adiabatic evolution Q[ tT ] over the time interval [0, T ]. Given ε > 0, a time

tad (P[0],P[1], ε) is called the adiabatic time if it is the infimum of T > 0 such

that

max
ν
‖νPT (0, T )− π1‖TV ≤ ε

where the maximum is taken over all probability distributions ν.

As we did before, we find a bound of the adiabatic time with respect to the

mixing time of the time-homogeneous Markov chain governed by Q[1]. We will

see that this result agrees with the asymptotic bound found in Theorem 7 as

ε → 0. We state the following result from [4]. We will include a proof of this

theorem in Section 6.4.

Theorem 19 Suppose Q[0] and Q[1] are bounded generators for continuous-

time, time-homogeneous Markov chains with standard, irreducible semigroups

{P[0](s)|s ≥ 0} and {P[1](s)|s ≥ 0} associated with Q[0] and Q[1] respectively.

Consider a general adiabatic evolution between Q[0] and Q[1]. Let ε > 0. Let φ

be the piecewise minimum function of the φi,j functions, if m is the first positive

integer such that φ(m)(1) 6= 0. If we take λ such that

λ ≥ max
i∈E

∑
j:j 6=i

Q[0](i, j) and λ ≥ max
i∈E

∑
j:j 6=i

Q[1](i, j)

then

tad (P[0],P[1], ε) = O

([
λ

ε

] 1
m

t
m+1
m

mix (P[1], ε/2)

)
(6.6)

To show that this bound is optimal, you can reference the generators in-

troduced in Example 3. We can also check that the result in Theorem 19 is
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scale invariant as we did in [4]. For a positive value M , we scale the initial and

final generators to 1
MQ[0] and 1

MQ[1] respectively. Then the adiabatic evolu-

tion is slowed down M times, and the new adiabatic time should be of order

M
[
λ
ε

] 1
m t

m+1
m

mix (P[1], ε/2) with the mixing time and λ taken before the scaling.

On the other hand, the new mixing time will be Mtmix (P[1], ε/2) and the new

λ is λ
M as the rates are M times lower. Plugging the new parameters into the

theorem, we obtain

[
λ

Mε

] 1
m

(Mtmix (P[1], ε/2))
m+1
m = M

[
λ

ε

] 1
m

t
m+1
m

mix (P[1], ε/2)

confirming that the theorem is invariant under time scaling.

6.4 Proofs

6.4.1 Proof of Theorem 19

Define Q̂ to be a Markov generator with off-diagonal entries

Q̂(i, j) =
1− φi,j(t)
1− φ(t)

Q[0](i, j) +
φi,j(t)− φ(t)

1− φ(t)
Q[1](i, j).

Then writing

Q[t](i, j) = (1− φi,j(t))Q[0](i, j) + (φi,j(t)− φ(t))Q[1](i, j) + φ(t)Q[1](i, j)

would imply that

Q[t] = (1− φ(t))Q̂ + φ(t)Q[1].
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Observe that

λ ≥ max
i∈E

∑
j:j 6=i

Q̂(i, j) and λ ≥ max
i∈E

∑
j:j 6=i

Q

[
t

T

]
(i, j)

as

λ ≥ max
i∈E

∑
j:j 6=i

Q[0](i, j) and λ ≥ max
i∈E

∑
j:j 6=i

Q[1](i, j).

Let P[1](t) = etQ[1] denote the continuous-time, probability transition matrix

associated with the generator Q[1] and let P0 = I + 1
λQ̂ and P1 = I + 1

λQ[1].

The probability transition matrices P0 and P1 are for time-homogeneous, discrete-

time, Markov chains. Conditioning on the number of arrivals within the [N,T ]

time interval

νPT (0, T ) = νNPT (N,T ) = νN

 ∞∑
j=0

(λ(T −N))j

j!
e−λ(T−N)Ij


where νN = νPT (0, N) and

Ij =
j!

(T −N)j

∫
· · ·
∫
N<s1<···<sj<T

[
(1− φ(

s1

T
))P0 + φ(

s1

T
)P1

]
· · ·
[
(1− φ(

sj
T

))P0 + φ(
sj
T

)P1

]
ds1 · · · dsj

i.e. the order statistics of j arrivals within the [N,T ] time interval.
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Therefore, combining the terms with P[1], we obtain

νPT (0, T )

= νN

 ∞∑
j=0

λjP[1]
j

j!
e−λ(T−N)

∫ T

N

· · ·
∫ T

N

φ(
s1

T
) · · ·φ(

sj
T

)ds1 · · · dsj

+ E

= e−λ(T−N)νN

 ∞∑
j=0

λjT j

j!
P[1]

j

(∫ 1

N
T

φ(x)dx

)j+ E

where E is the rest of the terms.

Take K > 0 and define

T =

(∫ 1

K−1
K

φ(x)dx

)−1

tmix(P[1], ε/2)

and

N =
K − 1

K

(∫ 1

K−1
K

φ(x)dx

)−1

tmix(P[1], ε/2).

Recall the approximation of the minimum function φ around x = 1

φ(x) = 1 +
φ(m)(1)(x− 1)m

m!
+O

(∣∣x− 1
∣∣m+1

)

and therefore ∫ 1

K−1
K

φ(x)dx =
1

K

(
1 +

γ(K)

Km

)
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where γ(K) = (−1)mφ(m)(1)
(m+1)! +O

(
K−1

)
. Thus we can write

νPT (0, T )

= e−λ(T−N)νN

 ∞∑
j=0

λj(T −N)j

j!
P[1]

j

[
1 + γ(K)

(
T −N
T

)m]j+ E .

We see, using a standard uniformization argument, that

νPT (0, T )

= e−λ(1+
γ(K)
Km )

−1
tmix(P[1],ε/2)νN

 ∞∑
j=0

λjtmix(P[1], ε/2)j

j!
P[1]

j

+ E

= e−λ(
γ(K)

Km+γ(K) )
−1
tmix(P[1],ε/2)νN exp{Q[1]tmix(P[1], ε/2)}+ E .

Now, since (−1)mφ(m)(1) ≤ 0, we have that, for any probability distribution ν,

‖νPT (0, T )− π1‖TV

= e−λ(
γ(K)

Km+γ(K) )
−1
tmix(P[1],ε/2)‖ν exp{Q[1]tmix(P[1], ε/2)} − π1‖TV + SN

where, by the triangle inequality

0 ≤ SN ≤ 1− e−λ(
γ(K)

Km+γ(K) )
−1
tmix(P[1],ε/2)

 ∞∑
j=0

λj(tmix(P[1], ε/2))j

j!


and, by definition of tmix(P[1], ε/2),

e−λ(
γ(K)

Km+γ(K) )
−1
tmix(P[1],ε/2)‖ν exp{Q[1]tmix(P[1], ε/2)} − π1‖TV ≤ ε/2.

Taking K = c(λ/ε)
1
m t

1
m
mix(P[1], ε/2) with constant c >> (−1)mφ(m)(1)

(m+1)! , we ob-
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tain

ε > − log(1− ε/2) ≥ λ
(
−γ(K)

Km + γ(K)

)
tmix(P[1], ε/2)

and therefore

0 ≤ SN ≤ 1− eλ(
γ(K)

Km+γ(K) )tmix(P[1],ε/2) < ε/2.

Thus

tad (P[0],P[1], ε) =
Ktmix(P[1], ε/2)

1 + γ(K)
Km

= O

([
λ

ε

] 1
m

t
m+1
m

mix (P[1], ε/2)

)
.



Chapter 7

Applications to Queueing

In this chapter, we summarize the results from [27]. In Section 7.1 we develop

some interesting facts about continuous-time Markov chains. You can think

of this as a combination of the work on continuous-time Markov chains out-

lined in Chapters 5 and 6 with the work on reversible and birth-death processes

from Chapter 4; however, this chapter does not consider an adiabatic evolu-

tion through a continuous function, rather, this chapter considers an adiabatic

evolution through a step-function. This being the case we modify some of our

definitions and objectives. In Section 7.2 we find an application of this kind of

adiabatic evolution to a queue and a special queueing policy.

7.1 Background

We begin this section with a review of some facts about the ‖ · ‖ 1
π

-norm in-

troduced in Chapter 4. For a reversible, irreducible (K + 1) × (K + 1) matrix

P, we will now use the notation u1, · · · ,uK+1 as the orthonormal basis with

respect to < ·, · > 1
π

, where ui was associated with the real eigenvalue λi(P) of

P and we ordered them such that 1 = |λ1(P)| > |λ2(P)| ≥ · · · ≥ |λK+1(P)|.

165
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The following result is used to bound the distance of the continuous chain in

terms of a discrete one. It was given in [27].

Proposition 29 For a continuous time Markov chain on a finite state space

E with generator matrix Q = q(P − I) with reversible, irreducible P, q the

largest entry in modulus of Q and stationary distribution π, for any probability

distribution ν on E,

‖νeQt − π‖ 1
π
≤ ‖ν − π‖ 1

π
e−q(1−|λ2(P)|)t, (7.1)

where |λ2(P)| is the second largest eigenvalue modulus of P.

We will return to this proposition later in the section. Now we will look at

the new type of time-inhomogeneous Markov chains that we are going to apply

in this chapter. First, suppose that time is divided into slots of size ∆t and

the generator matrix changes at these intervals. Furthermore, suppose that the

bounded generator matrix Qi determines the transition probabilities in the time

interval (i∆t, (i+ 1)∆t]. The method of uniformization gives the corresponding

transition probability matrix P(i∆t, (i + 1)∆t) as it was described for time-

homogeneous Markov chains in Section 5.1. The upper bound on departure

rates over all states will be denoted qi for each Qi. Therefore,

P(i∆t, (i+ 1)∆t) = eQi∆t = eqi(Pi−I)∆t, (7.2)

where the matrix Pi = I + 1
qi

Qi is irreducible and reversible with stationary

distribution πi.

Note that this evolution is not time-homogeneous for all t ≥ 0. This is

not time-inhomogeneous in the way we described in Chapter 6. Rather than

having a continuous function determine our adiabatic evolution, we have a right-

continuous, step function function determine out adiabatic evolution. This will
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result in time-inhomogeneity in the system resulting in a changing Qi which is

updated at fixed intervals of time. In practice, the time-inhomogeneity can be

due to the nature of the underlying process, as we had in Chapter 6 or due to

uncertainties in measurements of parameters.

Let νn be the distribution of the chain at time n∆t. When introducing an

adiabatic time in the Section 7.2, we will be interested in the distance between

νn and the stationary distribution πn corresponding to matrix Pn at time n∆t.

The following Theorem gives an upper bound on the distance at time n∆t

in terms of the distance at n0∆t for integer n0 < n. The proof of this theorem

is given [27].

Theorem 20 For the time-inhomogeneous Markov chain generated by the ma-

trices {Qi}ni=0 = {q(Pi − I)}ni=0 from time 0 to time n∆t,

‖νn − πn‖TV

≤ 1

2
‖νn0 − πn0‖ 1

πn0

n−1∏
i=n0

e−qi(1−|λ2(Pi)|∆t

√
max
k∈E

πi(k)

πi+1(k)

+
1

2

n−1∑
i=n0

‖πi − πi+1‖ 1
πi+1

n−1∏
j=i+1

e−qi(1−|λ2(Pi)|∆t

√
max
k∈E

πj(k)

πj+1(k)

 ,
(7.3)

where νn is the distribution at time n∆t, νn0
is the distribution at time n0∆t for

n0 < n and {Pi}i are irreducible and reversible with respect to the stationary

distribution πi.

Now that we have this result, we apply our knowledge of continuous-time

Markov chains to a queueing process in the next section.
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7.2 Queueing Processes

A queue is typically defined by its arrival rate, service or departure rate, number

of servers and buffer size. In a finite buffer size queue, we are often interested in

maintaining a distribution which is more biased towards smaller queue lengths,

since otherwise we will have what is called high blocking probabilities. Such a

stable queue is achieved by keeping the departure rate strictly above the arrival

rate. However, it is physically impossible to have the departure rate arbitrarily

higher than the arrival rate due to physical limitations such as the speed of the

underlying router circuitry or the amount of power consumption. Furthermore,

there might be other constraints on the departure rate due to considerations of

the network as a whole. For example, it might not be best to always have a large

departure rate that results in traffic bursts, and potentially causes congestion

somewhere else in the network. Or in the case of using multiple queues of

different kinds of traffic, each of which has to satisfy some pre-specified quality

of service (QoS), sending packets from one queue will affect the other queues. As

a result, controlling the packet sending rates depending on the types of traffic

is desirable to allow for different flows to meet their QoS’s requirements. In

wireless networks, it is often preferable to maintain a certain departure rate and

nothing more, due to power restrictions. Last but not least, in a network of

multiple wireless nodes, the number of collisions is an increasing function of the

traffic density. If every node sends its packets as fast as it can, then collisions

will happen all the time. Hence it becomes necessary to monitor the departure

rate and keep it at such a level to maintain a stable queue, and at the same

time achieve the desired network objectives.

That said, we consider a queue in which packets arrive at a fixed but un-

known rate and we use an estimate of this arrival rate to decide a queueing

policy designed to ensure stable queues. In particular, we let the departure rate
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be always higher than the estimated arrival rate by some fixed multiplicative

constant, anticipating that the estimate will be correct in the long-run. Since

the estimated arrival rate is changed and is more accurate with time, the depar-

ture rate is also changed. As a result, the packets in the queue evolve according

to a time inhomogeneous Markov chain dictated by this adaptive departure

policy. We study the time required for the queue to reach this stationary distri-

bution using the above outlined adiabatic approach, under suitable estimation

and departure policies for the unknown arrival rate.

We begin with a basic definition of a M/M/1/K queue for readers that are

unaware.

Definition 37 A M/M/1/K queue is a stochastic process on the set

{0, 1, · · · ,K} where each element of this set corresponds to the number of mem-

bers of the queue with the following properties:

• Arrivals occur at rate λ according to a Poisson process, moving the process

from state i to state i+ 1

• Departures occur at rate µ, according to a Poisson process moving the

process from state i to state i− 1

• The buffer is of size K, so when in state 0 or state K you cannot move

to a state that is outside of the set {0, 1, · · · ,K}.

The M/M/1/K model can be described as a finite-state, continuous-time

Markov chain.
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The generator matrix of a continuous-time M/M/1/K queue is:

Q =



−λ λ 0 0 · · ·

µ −(µ+ λ) λ 0 · · ·
. . .

. . .
. . .

. . .
. . .

· · · 0 µ −(µ+ λ) λ

· · · 0 0 µ −µ


.

In this section we apply the adiabatic evolution model defined in Section 7.1

to a queueing process. In particular, we consider time inhomogeneity due to

uncertainty in a parameter. Consider an M/M/1/K queue with unknown packet

arrival rate λ per unit time. We estimate λ at time i∆t denoted by λ̂i and decide

packet departure rate, µi = f(λ̂i) based on this estimate.

Definition 38 A queueing policy is defined as the sequence {λ̂i, µi = f(λ̂i)}i≥1

where f : R+ → R+ and µi is applied for time from (i∆t, (i+ 1)∆t].

The queueing policy decides the following generator matrix from (i∆t, (i +

1)∆t]:

Qi =



−λ λ 0 0 · · ·

µi −(µi + λ) λ 0 · · ·
. . .

. . .
. . .

. . .
. . .

· · · 0 µi −(µi + λ) λ

· · · 0 0 µi −µi


In this scenario, the upper bound on the departure rates over all states is

λ+ µi. Therefore the corresponding probability transition matrix

P (i∆t, (i+ 1)∆t) = eQi∆t = e(λ+µi)(Pi−I)∆t, (7.4)
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where the matrix, Pi is

Pi =



1− βi βi 0 0 · · ·

1− βi 0 βi 0 · · ·
. . .

. . .
. . .

. . .
. . .

· · · 0 1− βi 0 βi

· · · 0 0 1− βi βi


,

where βi = λ
µi+λ

. The Pi are reversible and irreducible with stationary distri-

bution given as in Proposition 23:

πi =
1∑K
r=0 ρ

r
i

[1, ρi, ρ
2
i , · · · , ρKi ], (7.5)

where ρi = βi
1−βi = λ

µi
.

The following proposition was proved in [8] and it gives us a strict measure-

ment of |λ2(Pi)| for the queueing policy.

Proposition 30 Letting ρi = λ
µi

and now considering π to be the irrational

number,

|λ2(Pi)| = 2

√
ρi

(1 + ρi)
cos

(
π

K + 1

)
(7.6)

Now we look at a specific queueing policy determined by the time average

of number of packets arrived. Let Xk ∼ Poisson(λ∆t) be the number of packets

in the kth slot of duration ∆t and let δ > 0 be constant. Suppose

λ̂i =
1

i∆t

i∑
k=1

Xk, (7.7)

µi = f(λ̂i) = (1 + δ)λ̂i. (7.8)



172

This particular queueing policy ensures that the departure rate is always

higher than the estimated arrival rate and since the estimated arrival rate itself

must approach the actual one, we are ensured a stable queue.

With this specific queueing policy, we have the adiabatic evolution by the

matrices Qi. The corresponding ρi = λ
µi

= λ
(1+δ)λ̂i

. With full knowledge

of the arrival rate, the above ratio becomes ρ = 1
1+δ and we will say that

the corresponding matrix P has stationary distribution π. We now make an

analogue of the adiabatic time in this setting.

Definition 39 Given the above transitions generating a continuous-time Markov

chain P(0, n∆t), ε > 0 and γ < 1, the expanded adiabatic time, tad(P, ε, γ) is

defined as

∆t inf{n|P (‖νP(0, n∆t)− π‖TV < ε) > 1− γ} (7.9)

where the infimum is taken over all probability distributions ν

The following theorem gives a sufficient condition on the time we must wait

before the distribution of the queue length converges to the desired stationary

distribution π. Note that π is decided by δ and can be designed to give a stable

stationary distribution.

To understand the proof of the theorem, we first state the following lemma

from [26]. This lemma will bound the terms in Theorem 20. The proof of the

lemma can be found in [26].

Lemma 3 For 0 < ε0 < 1 and 0 < γ1 < 1, there exists

n0 =
2 log

(
2
γ1

)
λ∆t (ε20 − ε30)

such that
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• For i ≥ n0, with probability at least 1− γ1,

∣∣λ̂i − λ∣∣ ≤ λε0,
e−(λ+µi)(1−|λ2(Pi)|)∆t < A,

‖πi − π‖TV <
ε0(1 + δ)

2 (δ − ε0(1 + δ))

where A = e
−λ∆t

(√
(1+δ)(1−ε0)−1

)2

.

• For ε1 = 1
n0

(
1√

λ∆tγ2
+ ε0

)
and 0 < γ2 < 1 and for i ≥ n0, with probability

at least 1− γ = 1− γ1 − γ2

∣∣λ̂i+1 − λ̂i
∣∣ < λε1,√

max
k∈{0,1,··· ,K}

πi(k)

πi+1(k)
< B,

‖πi − πi+1‖ 1
πi+1

< C,

where

B =

√
[(1 + δ)(1− ε0 + ε1)]K+1 − 1

[(1 + δ)(1− ε0)]K+1 − 1

and

C =

√
(1 + δ)(1− ε0)ε1

|(1− ε0)2(1 + δ)− (1− ε0 + ε1)|
.

• With probability at least 1− γ1,

‖νn0 − πn0‖ 1
πn0

<
[(1 + δ)(1 + ε0)]

K
2 +1

δ
.

Now that we have this important lemma, we use it in the proof of the

following theorem.
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Theorem 21 Given 0 < ε1, 0 < γ < 1 and λ, the unknown arrival rate, the

queueing policy described above with δ > 0 for a M/M/1/K queue has

tad(P, ε, γ)

≤
2 log

(
2
γ1

)
λ (ε20 − ε30)

+
log
(

2[(1 + ε0)(1 + δ)]
k
2 +1
)
− log (εδ)

1
2∆t log

(
[(1+δ)(1−ε0)]K+1−1

[(1+δ)(1−ε0+ε1)]K+1−1

)
+ λ

(√
(1 + δ)(1− ε0)− 1

)2

(7.10)

where ε0 satisfies

e
−λ∆t

(√
(1+δ)(1−ε0)−1

)2

√
[(1 + δ)(1− ε0 + ε1)]K+1 − 1

[(1 + δ)(1− ε0)]K+1 − 1
< 1,

√
(1+δ)(1−ε0)ε1

|(1−ε0)2(1+δ)−(1−ε0+ε1)|

1− e−λ∆t
(√

(1+δ)(1−ε0)−1
)2√

[(1+δ)(1−ε0+ε1)]K+1−1
[(1+δ)(1−ε0)]K+1−1

≤ ε

2
,

ε0 ≤
εδ

(1 + δ)(1 + ε)

and ε1 =
λ∆t(ε20−ε

3
0)

2 log
(

2
γ1

) ( 1√
λ∆tγ2

+ ε0

)
, 0 < γ1 < γ, γ2 = γ − γ1.

Hence, for given small ε and γ, the theorem gives the sufficient amount of

time to converge to a stable distribution within ε with high probability of 1−γ.

The choice of ε0 to be the largest which satisfies all three conditions will give the

lowest lower bound in the theorem. At large enough time, the estimated arrival

rate must approach the actual arrival rate and the difference can be bounded by

ε0 with a high probability. Furthermore, two consecutive estimates, can differ

only by a maximum of ε1.



Chapter 8

Applications to an Ising

Model with Glauber

Dynamics

The second application of the asymptotic bound of the adiabatic time for

continuous-time Markov chains is to a statistical mechanical model called the

Ising model. We will define the Ising model and Glauber dynamics in Sec-

tion 8.1 and then we will apply Theorem 19 to an Ising Model with Glauber

dynamics on three different graph structures. In Section 8.2 we will consider a

one-dimensional torus, in Section 8.3 we will consider a two-dimensional torus,

and in Section 8.4 we will look at a general d-dimensional torus.

8.1 The Ising Model with Glauber Dynamics

In this section we will introduce the concept of a nearest-neighbor Ising model.

Before we do this we first consider a graph Gn = (Vn, En) with a finite number

175
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of vertices, Vn = {1, · · · , n}, and a collection of edges that connect pairs of

vertices, En. We will create a matrix to describe how the edges connect the

vertices of the graph.

Definition 40 A nearest-neighbor communication matrix of the graph Gn is a

symmetric matrix M so that

Mij =


1 if there is an edge connecting vertex i to vertex j

0 if there is not an edge connecting vertex i to vertex j.

The nearest-neighbor Ising model is a probability distribution defined on

{−1, 1}Vn = {−1, 1}n. We will use the following definition to introduce the

nomenclature for the vector elements of this set and the entries of the vectors.

Definition 41 For x ∈ {−1, 1}Vn and 1 ≤ i ≤ n we call x(i) a spin. We call

x a configuration of spins on Vn.

Neighboring spins ‘interact’ multiplicatively and for each location j, one can

measure the energy contribution of these interactions for all the spins neighbor-

ing j. This energy depends on a parameter β, which is an interaction strength

coefficient having a physical interpretation as the inverse temperature. I sum-

marize this in the following definition.

Definition 42 For a given configuration of spins x, a real-valued energy func-

tion, called a local Hamiltonian, sends a location j ∈ Vn to

Hloc(x(j)) = −β
∑
i 6=j

Mi,jx(i)x(j). (8.1)

From this we define a real-valued energy function on {−1, 1}Vn . This func-

tion will prescribe to each configuration of spins a total energy.
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Definition 43 A real-valued energy function, called a Hamiltonian, sends a

configuration of spins x to

H(x) =
1

2

n∑
j=1

Hloc(x(j)). (8.2)

This Hamiltonian measurement will be crucial in the creation of a probability

distribution on the configuration of spins. We now define the nearest-neighbor

Ising model on Gn

Definition 44 Letting

Z(β) =
∑

x∈{−1,1}Vn
eH(x)

we define the nearest-neighbor Ising model as a probability distribution µ on

{−1, 1}Vn dependent on the parameter β given by

µ(x;β) = Z(β)−1eH(x). (8.3)

We now define Glauber dynamics for this probability distribution µ as a

continuous-time, time-homogeneous Markov chain X(t) on {−1, 1}Vn . We num-

ber the configurations x1, · · · ,x2|Vn| and define the entries of P(t) as p(t)kl =

P
(
X(t) = xl

∣∣X(0) = xk
)
.

One can describe how Glauber dynamics work in the case where each vertex

of a connected graph is of the same degree. In this case, for each location j, we

have an independent exponential clock with parameter one associated with it.

Suppose we initially have configuration of spins x on the graph. When the clock

at location j rings, the spin x(j) is reselected with the following probability:

P (x(j) = 1) =
e−H

loc(x+(j))

e−Hloc(x−(j)) + e−Hloc(x+(j))
(8.4)
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where x+(i) = x−(i) = x(i) for i 6= j and x+(j) = 1 and x−(j) = −1. Notice

that Hloc (x−(j)) = −Hloc (x+(j)). This would imply that

P (x(j) = 1) =
1

2

(
1− tanh

(
Hloc (x+(j))

))
P (x(j) = −1) =

1

2

(
1 + tanh

(
Hloc (x+(j))

))
.

In the case of Gn being a connected graph with each vertex having the same

degree, this process describes a continuous-time, time-homogeneous Markov

chain on the space of spin configurations. The stationary distribution of this

Markov chain is µ.

Now consider a linear adiabatic evolution of Hamiltonians. Let H0 be the

initial Hamiltonian with thermodynamic parameter β0 and let H1 be the final

Hamiltonian with thermodynamic parameter β1. We have for t ∈ [0, 1]

H[t] = (1− t)H0 + tH1. (8.5)

We can also define the linear adiabatic evolution of local Hamiltonians ac-

cordingly

H[t]loc = (1− t)Hloc0 + tHloc1 . (8.6)

We can use local Hamiltonians to define linear adiabatic Glauber dynamics.

This process is similar to regular Glauber dynamics when Gn is a connected

graph with each vertex having the same degree: for each location j, we have an

independent exponential clock with parameter one associated with it. Suppose

we initially have configuration of spins x on the graph. When the clock at

location j rings, say for example at time t ∈ [0, 1], the spin x(j) is reselected
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with the following probability:

Pt (x(j) = 1) =
1

2

(
1− tanh

(
H[t]loc (x+(j))

))
Pt (x(j) = −1) =

1

2

(
1 + tanh

(
H[t]loc (x+(j))

))
.

Recall that neighboring configurations x and y have the same spins at all

locations except for one location, for example location j. Here y(j) = −x(j).

The transition rates of our continuous-time, time-inhomogeneous Markov chain

evolve according to linear adiabatic Glauber dynamics rules and the transition

rates can be represented as

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy (8.7)

where the functions φxy(t) for neighbors x and y depend entirely on the spins

around the discrepancy site j.

In the following sections of this chapter, we will find these functions on differ-

ent dimensional tori and apply Theorem 19 to the linear adiabatic Glauber dy-

namics to find an appropriate bound on the adiabatic time for these continuous-

time, time-inhomogeneous Markov chains.

8.2 One Dimensional Torus

We first consider adiabatic Glauber dynamics of an Ising model on Z/nZ. In

this scenario every location j will have two neighbors. Suppose we begin with

a configuration of spins x. Given that we remove the spin x(j) at location j

and replace it with a positive spin, we will have three possible scenarios for our

local Hamiltonians at location j.

We first consider the scenario when the two neighbors of location j have
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opposite spins. If we calculate both the initial and final local Hamiltonians of the

configuration x at location j, we find that Hloc0 (x+(j)) = Hloc1 (x+(j)) = 0. This

will imply that the linear adiabatic evolution of local Hamiltonians H[t]loc = 0

for t ∈ [0, 1]. This will imply that Pt (x(j) = 1) = 1
2 and Pt (x(j) = −1) = 1

2 for

all t ∈ [0, 1]. We now have a nonlinear adiabatic evolution of continuous-time,

Markov chains. For neighboring configurations x and y, recall that we seek

function φxy such that

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

In this scenario for any time t ∈ [0, 1]

qxy[t] = Pt (x(j) = 1) =
1

2

q(0)
xy = P0 (x(j) = 1) =

1

2

q(1)
xy = P1 (x(j) = 1) =

1

2

so we see that any function φxy satisfies the above equation.

Next we consider the scenario when the two neighbors of location j have

positive spins. If we again calculate both the initial and final local Hamiltonians

of the configuration x at location j, we now find that Hloc0 (x+(j)) = −2β0 and

Hloc1 (x+(j)) = −2β1. This will imply that the linear adiabatic evolution of local

Hamiltonians H[t]loc = (1 − t)(−2β0) + t(−2β1) for t ∈ [0, 1]. This will imply

that

Pt (x(j) = 1) =
1

2
(1− tanh (−2β0(1− t)− 2β1t))

Pt (x(j) = −1) =
1

2
(1 + tanh (−2β0(1− t)− 2β1t))

for t ∈ [0, 1].
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We again have a nonlinear adiabatic evolution of continuous-time, Markov

chains. For neighboring configurations x and y, recall that we seek function

φxy such that

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

In this scenario for any time t ∈ [0, 1]

qxy[t] = Pt (x(j) = 1) =
1

2
(1− tanh (−2β0(1− t)− 2β1t))

q(0)
xy = P0 (x(j) = 1) =

1

2
(1− tanh (−2β0))

q(1)
xy = P1 (x(j) = 1) =

1

2
(1− tanh (−2β1)) .

It takes a bit of algebra, but one can solve this problem for φxy. We see that

φxy(t) =
cosh(−2β1) sinh(t(2β0 − 2β1))

sinh(2β0 − 2β1) cosh(−2β0 + t(2β0 − 2β1))
.

Finally we consider the scenario when the two neighbors of location j have

negative spins. If we again calculate both the initial and final local Hamiltonians

of the configuration x at location j, we now find that Hloc0 (x+(j)) = 2β0 and

Hloc1 (x+(j)) = 2β1. This will imply that the linear adiabatic evolution of local

Hamiltonians H[t]loc = (1− t)(2β0) + t(2β1) for t ∈ [0, 1]. This will imply that

Pt (x(j) = 1) =
1

2
(1− tanh (2β0(1− t) + 2β1t))

Pt (x(j) = −1) =
1

2
(1 + tanh (2β0(1− t) + 2β1t))

for t ∈ [0, 1].

We again have a nonlinear adiabatic evolution of continuous-time, Markov

chains. For neighboring configurations x and y, recall that we seek function
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φxy such that

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

In this scenario for any time t ∈ [0, 1]

qxy[t] = Pt (x(j) = 1) =
1

2
(1− tanh (2β0(1− t) + 2β1t))

q(0)
xy = P0 (x(j) = 1) =

1

2
(1− tanh (2β0))

q(1)
xy = P1 (x(j) = 1) =

1

2
(1− tanh (2β1)) .

Performing some algebra again, we solve this problem for φxy. We see that

φxy(t) =
cosh(2β1) sinh(t(2β1 − 2β0))

sinh(2β1 − 2β0) cosh(2β1 + t(2β1 − 2β0))
.

Because hyperbolic cosines are even functions and hyperbolic sines are odd

functions, we have then that the functions φxy are the same if the neighboring

spins are both positive or both negative. We have that

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy

has solution

φ(t) =
cosh(−2β1) sinh(t(2β0 − 2β1))

sinh(2β0 − 2β1) cosh(−2β0 + s(2β0 − 2β1))
(8.8)

regardless of the configuration of spins. We would therefore have that

Q[t] = (1− φ(t))Q0 + φ(t)Q1.

We see that φ′(1) 6= 0 when β0 6= β1, so we can apply Theorem 19 to get an

asymptotic bound for the adiabatic time with respect to the mixing time and
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we can apply Theorem 15.1 from [18] to find a bound for the mixing time for

Glauber dynamics of an Ising Model on a one dimensional torus. We have the

following asymptotic for our adiabatic time

tad (P(0),P(1), ε)

= O

(
n

ε
(2β0 − 2β1) [coth(2β0 − 2β1)− tanh(−2β1)]

[
log(n) + log( 2

ε )

1− tanh(2β1)

]2
)
.

(8.9)

8.3 Two Dimensional Torus

We now consider adiabatic Glauber dynamics of an Ising model on (Z/nZ)
2
. In

this scenario every location (i, j) will have four neighbors. Again suppose that

we begin with a configuration of spins x. Given that we remove spin x(i, j)

at location (i, j) and replace it with a positive spin, we will have five possible

scenarios for our local Hamiltonians at location (i, j).

We first consider the scenario when two neighbors of location (i, j) have

positive spins and two neighbors of location (i, j) have negative spins. One can

visualize this with the following example diagram:

−1

|

+1 −− (i, j) −− +1

|

−1

If we calculate both the initial and final local Hamiltonians of the configu-

ration x at location (i, j), we find that Hloc0 (x+(i, j)) = Hloc1 (x+(i, j)) = 0. If

we recall the scenario from the one dimensional torus where both local Hamil-

tonians are 0, we see that any function φxy satisfies the equation
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qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

Next we consider the scenario when three neighbors of location (i, j) have

positive spins and one neighbor of location (i, j) has a negative spin. One can

visualize this with the following example diagram:

−1

|

+1 −− (i, j) −− +1

|

+1

If we again calculate both the initial and final local Hamiltonians of the

configuration x at location (i, j), we now find that Hloc0 (x+(i, j)) = −2β0 and

Hloc1 (x+(i, j)) = −2β1. If we recall the scenario from the one dimensional torus

where we had these local Hamiltonians, we see that

φxy(t) =
cosh(−2β1) sinh(t(2β0 − 2β1))

sinh(2β0 − 2β1) cosh(−2β0 + t(2β0 − 2β1))

satisfies the equation

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

Finall we consider the scenario when all neighbors of location (i, j) have

positive spins. If we calculate both the initial and final local Hamiltonians of

the configuration x at location (i, j), we now find that Hloc0 (x+(i, j)) = −4β0

and Hloc1 (x+(i, j)) = −4β1. This will imply that the linear adiabatic evolution

of local Hamiltonians H[t]loc = (1− t)(−4β0) + t(−4β1) for t ∈ [0, 1]. This will
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imply that

Pt (x(i, j) = 1) =
1

2
(1− tanh (−4β0(1− t)− 4β1t))

Pt (x(i, j) = −1) =
1

2
(1 + tanh (−4β0(1− t)− 4β1t))

for t ∈ [0, 1].

We again have a nonlinear adiabatic evolution of continuous-time, Markov

chains. For neighboring configurations x and y, recall that we seek function

φxy such that

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

In this scenario for any time t ∈ [0, 1]

qxy[t] = Pt (x(i, j) = 1) =
1

2
(1− tanh (−4β0(1− t)− 4β1t))

q(0)
xy = P0 (x(i, j) = 1) =

1

2
(1− tanh (−4β0))

q(1)
xy = P1 (x(i, j) = 1) =

1

2
(1− tanh (−4β1)) .

After some algebra, one can solve this problem for φxy. We see that

φxy(t) =
cosh(−4β1) sinh(t(4β0 − 4β1))

sinh(4β0 − 4β1) cosh(−4β0 + t(4β0 − 4β1))
.

Due to the symmetry of the local Hamiltonians and the functions φxy, the

other two scenarios will result in similar solutions to the equation

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

If all neighbors of location (i, j) have negative spins, the function would be

φxy(t) =
cosh(−4β1) sinh(t(4β0 − 4β1))

sinh(4β0 − 4β1) cosh(−4β0 + t(4β0 − 4β1))



186

and if three of the neighbors of location (i, j) have negative spins while one of

the neighbors of location (i, j) has a positive spin, we see that

φxy(t) =
cosh(−2β1) sinh(t(2β0 − 2β1))

sinh(2β0 − 2β1) cosh(−2β0 + t(2β0 − 2β1))
.

Depending on which neighbors we have locally at (i, j), we have one of two

functions as a possibility to to the solution of

qxy[t] = (1− φxy(t)) q(0)
xy + φxy(t)q(1)

xy .

These two functions are

φ1(t) =
cosh(−2β1) sinh(t(2β0 − 2β1))

sinh(2β0 − 2β1) cosh(−2β0 + t(2β0 − 2β1))

φ2(t) =
cosh(−4β1) sinh(t(4β0 − 4β1))

sinh(4β0 − 4β1) cosh(−4β0 + t(4β0 − 4β1))
.

Assuming that tanh(2β1) ≤ 1
2 , we see that φ1(t) ≤ φ2(t) for all t ∈ [0, 1]. We

see that φ′1(1) 6= 0 when β0 6= β1, so we can again apply Theorem 19 to find an

asymptotic bound for the adiabatic time with respect to the mixing time and

we can agian apply Theorem 15.1 from [18] to find a bound for the mixing time

for Glauber dynamics of an Ising Model on a two dimensional torus. We have

the following asymptotic for our adiabatic time

tad (P(0),P(1), ε)

= O

(
n2

ε
(2β0 − 2β1) [coth(2β0 − 2β1)− tanh(−2β1)]

[
log(n) + log( 2

ε )

1− tanh(2β1)

]2
)
.

(8.10)
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8.4 General Dimensional Torus

The adiabatic Glauber dynamics of an Ising model on a d-dimensional torus

(Z/nZ)d solves similarly. In this setting the minimum function φ(t) that we use

in Theorem 19 is the same as that of the two dimensional torus

φ(t) =
cosh(−2β1) sinh(t(2β0 − 2β1))

sinh(2β0 − 2β1) cosh(−2β0 + t(2β0 − 2β1))
.

Here if we assume that tanh(2β1) ≤ 1
d we can similarly asymptotically bound

the adiabatic time by

tad(P(0),P(1), ε)

= O

(
nd

ε
(2β0 − 2β1) [coth(2β0 − 2β1)− tanh(−2β1)]

[
log(n) + log( 2

ε )

1− tanh(2β1)

]2
)
.

(8.11)



Chapter 9

Final Remarks

This summarizes my graduate body of work related to adiabatic and stable

adiabatic times. Throughout this manuscript, we have considered many different

types of adiabatic evolutions and we have derived many adiabatic theorems. You

may argue that some of the results are redundant, but progress in this area of

research was made incrementally and I value the mathematical process involved

with each case. We have seen the usefulness in applying an adiabatic evolution

to problems in networking and statistical mechanics. Our ultimate goal is to

find a stable adiabatic result for a general adiabatic transition, however, we

would be content with finding this result for Lipschitz continuous matrix-valued

functions.

We were able to show that the bounds on the adiabatic time were the best

in each setting (linear, nonlinear, general), but we were not able to show that

the bounds on the stable adiabatic time were the best in each setting(linear,

piecewise bi-Lipschitz nonlinear). Our second goal is finding the lowest bound

of the stable adiabatic time. My final goal is to find a strict bound, rather than

an asymptotic bound of the stable adiabatic time with respect to the largest
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mixing time.

We emphasize throughout this paper that the use of the mixing time, rather

than the spectral gap, in this research was crucial. The results from Chapter 4

can be used beyond the content of this dissertation.

With the generalizations that we made to matrix-valued functions, I am

positive that many more applications await. I look forward to exploring the

possibilities of adiabatic transition in the future.
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