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DENSITIES AND DEPENDENCE FOR POINT PROCESSES

I. INTRODUCTION

1.1 Introduction

Product densities. have been widely used in the literature to give a

concrete description of the distribution of a point process (See for example,

Moyal [23), Srinivasan [321, or Karr [171). The first attempt to rigorously

discuss the properties of product densities was made by Macchi [211. In

chapter II we expand the results given by Macchi to a more general setting

and provide more rigorous arguments for some of the claims made in her

paper. Examples are then constructed to show that these results are in some

sense the best possible. Examples of many commonly occurring point

processes are also discussed and the densities are computed for some of these

processes.

Chapters I and III deal with the concept of positive dependence.

Roughly put, a collection of random variables satisfies a positive dependence

property if knowledge that the variables are "large" (or small) in some sense

does not decrease the likelihood that they are also "large" (resp. small) in

some other sense. In the case of point processes, several notions of positive

dependence can be described in terms of the product densities and absolute

product densities.

Positive dependence notions arose independently in several fields. In

reliability theory one can give estimates on the reliability of a system based

on the assumption that the breakdown of certain components can not decrease
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the probability that other components will also fail (Barlow and Proschan [1]).

Another field in which positive dependence has played a role is statistical

physics. In an attractive statistical mechanical system the occurrence of a

large number of "plus" sites makes it more likely that there will be "plus"

sites elsewhere (see Kinderman and Snell [19]). Newman's Central Limit

Theorem [251 also depends on positive dependence properties. This theorem

was used by Newman in [241 to analyze Ising model magnetization fluctuations

and by Newman and Schulman [26] to analyze density fluctuations of infinite

clusters in percolation models.

The relationships between various positive dependence properties for

random variables have been explored by Barlow and Proschan [11 and also, for

the specific case of Bernoulli random variables, by van den Berg and Burton

[2]. These relationships are presented in chapter 1. In chapter III we extend

this exploration to the case of point processes and show by examples that

the analogous theorem does not hold.

1.2 Positive Dependence for 0 - 1 Valued Random Variables

We begin by considering positive dependence properties of Bernoulli

random variables. Let P be a probability measure on ={0,1} with the o-

algebra generated by points. 2 is a distributive lattice with the

coordinate-wise ordering given by a.A8 =(rnin(c1,$1),...,min(aj3)) and

aV$=(max(a1,31),...,max(c,$)) for Let = (X1, XN) where

XE(0,1} for each i = 1, 2, Positive dependence of such random

variables can be described in many ways. The following definitions give a

few such descriptions.
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Definition 1.1 X satisfies the strong FKG inequalities (named after

Fortuin, Kastelyn, and Ginibre) if

P(X = aAj3 ) P(X = aV/3) P(X = a) P(X = /3) for all cx,$ E(O,l}N.

Intuitively this condition means that the string (X1, ",XN) is more

likely to contain a majority of zeroes or of ones than to contain an even

mixture of each. Such a string is "positively dependent" in that knowing

one part of the string contains many ones (for example) increases the

likelihood that there are ones elsewhere in the string. The next three

definitions can be found in Barlow and Proschan (1].

Definition 1.2 (a) A random variable Y is stochastically increasing in

the random variables XL, if P( Y > y X1= XN = xr, ) is increasing

in the variables xl....,xN. We will denote this by YIst in Xj.,XN.

Note that if Y is a Bernoulli random variable the above condition is

equivalent to requiring that P( Y = 1 X1 = X = XN) be increasing in the

variables x1, ,xN. Intuitively this condition says that if some of the random

variables Xj,. .X are ones then Y is more likely to also be one.

Definition 1.2 (b) X is conditionally increasing in sequence (X is CIS)

if Xnlst in X1,-.,X1 for n =1, ,N.

Definition 1.3 X has positively correlated increasing cylinder sets (X

is PCIC) if when I, K are disjoint subsets of {1,...,N} and A, ={X=1 V i El)

then P( A, flAK) P( AI)P(AK).

Like strong FKG, definition 1.3 implies that X is more likely to contain

a lot of ones. It does not say, however, what is likely to be seen at



locations with indices outside of the designated sets.

Definition 1.4 X is positively correlated (X is PC) if

P(X=1, X=1) P(X, = 1)P(X, = 1) for all i, j E { 1, N).

Clearly if X has PCIC, then X is positively correlated.

Definition 1.5 X is associated (or, X1,...,XN is an associated collection

of random variables) if for all pairs of nondecreasing, real valued functions f

and g, Cov( f(X), g(X)) 0, as long as this covariance exists.

The intuitive interpretation of association is more clear if we first

consider the following theorem giving an equivalent definition, and a lemma

giving an alternative formula for calculating covariances.

Theorem 1 .6 If Covt f(X), g()) 0 for all pairs of nondecreasing binary

functions f and g then X is associated.

Proof omitted (see Esary, Proschan and Walkup [91).

The following lemma is due to Hoeffding [14]. The proof given here

appears in Lehmann [20].

Lemma 1.7 Cov(f(X),g()) =

JJP(f( > u,g(> v) - P(f(X) > u)P(g() > v)dudv, (1.1)

provided the covariance exists.

Proof Let U = f() and V = g(X). Let (U1,V1) and (U2,V2) be independent

and each distributed as (U,V), then



only if

P( f() > u g(X) > v '3 f() > u ) (1.4)

for all nondecreasjng binary f and g and all real numbers u and v. The

lemma implies P(f() > u, g(X)> P(f(X) > u) P(g() > v) which implies that

the integral in (1.2) is nonnegative. Conversely, if Cov(f(X), g()) for all

2 Coy (U,V)= 2 Coy

=EJ

where
1{u

is,

coo

U)

J

(U1,V1) = 2 (E (U1V1) - E(U1) E(V1)) = E ((U1 - U2) (V1 - V2))

[l U1} {u U2)'( V1) (v V2}U

is the indicator function of the event {u U).

5

(1.2)

That

( lifU>u
(1.3)OifUu

Since Cov(U,V) exists, EfUVI, EIU! and EIV are finite, so we may take the

expectation inside of the integral signs to get that (1.2) is
000

=J J E[lu U1} 1(u U)(v V1} (v v,)jdv
-00-00
0000

=J
JE{1 U1} '{v V1)1{v V1}1{u U2)1

- E{1fv V,)1{u E{1 U9)1(v V2}1dv

0000

=J J P(U1 u,V1 v)P(U2 u,V1
-00-00

P(U1 u,V +P(U2 u,V2 v)dudv

0000

=2J JP(UuVv)_P(Uu)P(Vv)dudv 0

Note that Theorem 1.6 and Lemma 1.7 imply that X is associated if and
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nondecreasing binary f and g, then Coy ( '{f(X) >u)'1(g(X) >v} where

1(f(X) > u} is the indicator function of the event {f(X) > u}. Thus,

E(l{f(x) >u} 1{g(X) > v) E(l(f(x) > u){g(X) >) which is equivalent to

(1.4).

From (1.4) the intuitive interpretation of association is that is

associated if whenever we know that one type of nondecreasing measurement

of X is large the likelihood that another type of nondecreasing measurement

is also large is increased.

It is well known that for two binary random variables definitions 1.1

1.5 are equivalent. For the case of n binary random variables, where n >2

definitions 1.1 through 1.5 are related by the following theorem, the proof of

which can be found in Barlow and Proschan [1].

Theorem 1.8. X satisfies the strong FKG inequalities X is CIS X

is associated X has PCIC X is PC.

Theorem 1.8 is actually true for more general random variables, i.e.

not only for binary random variables. That strong FKG implies association is

a consequence of the FKG paper [12). That strong FKG implies CIS is

automatic from the definition and that CIS implies associated appears in

Barlow and Proschan [ii. The other implications are automatic.

None of the reverse implications in Theorem 1.8 hold. Van den Berg

and Burton [2] have shown, however, that the above definitions can be

modified so that they become equivalent.
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Definition 1.10 X is conditionally associated if for each JC {1, .,N}

and E (0,1 }N dist( X X, = V 3 E J) is associated.

Definition 1.11 X has conditionally positively correlated increasing

cylinder sets (X has CPCIC) when if I, J, K are all subsets of {1,,N},

a E{0,1}N and if A1 is the event that X,= 1 for all I El then

P(A flAy) X = (a0) V j EJ)

A X = (a0) V j E J)P( A X = V ,j E J)

Similarly, we can define conditionally positively correlated (CPC)

Theorem 1.12 (van den Berg and Burton) If P assigns positive

probability to each outcome in (O,1} then the following are equivalent

X satisfies the strong FKG inequalities.

X is conditionally increasing in sequence (CIS) in all orderings.

That is, if c is any permutation of {l, 2, N) and Y,= X0-[,)

then Y = ( Y1, Y) is CIS.

X is conditionally associated.

X has conditionally positively correlated increasing cylinder

sets.

X is conditionally positively correlated (CPC).

Theoreml.12 was essentially proved by J. Kemperman [181 in a

different context. See also Penman and 01km (29).

That the conditions given in Theorem 1.8 are not equivalent is easily

shown by the following example:

Let X = (X1,X2,X3) where X1,X2,X3 are distributed so that the

outcomes of X have the following probabilities:

c. X has conditionally positively correlated increasing cylinder sets

(CPCJC).



association does not depend on order, but

P(Y3=1IY2=0,Y11) = P(X1=11X2=0,X3=1)
P(X1=1,X2=0,X31)

P(X2 =0, X31)
whereas,

P(Y3=lY2=1,Y1=1) =P(X1=ISX2=1,X3=4) _PX=1,X2=0,X3=1)
P( X2 =0, X3=1)

Then, P(X2=1lX1=0)=, P(X2=1jX1=1)=, P(X3=1IX2=0,X10 )=,

P(X3=ltX2=1,X1=0) =4 P(X3=1 X2=0,X1=1)= , P(X3=1 IX2=1,X1=1) =.

So X is CIS and thus also associated. Now reverse the order, that is let I
= (Y,Y,,Y3) = (XI,X2,X3). Y is also associated, since the property of

so that Y is not CIS even though it is associated. Y is also not FKG since it

is not CIS in all orderings.

Van den Berg and Burton also showed that even if all configurations

do not have positive probability we still have most of Theorem 1.12.

Theorem 1.13 Suppose that 2 = {0,1}, as above. Then the following are

equivalent:

X satisfies the strong FKG inequalities.

X is conditionally associated.

X has conditionally positively correlated increasing cylinder sets

(CPCIC).

1 1

+16

1

8 ,2
+13

8 16

1

8

outcome probability outcome probability

(1.5)

(1,1,0)

(1,1,1)

(1,0,0)

(0,1,0)

1

12
1

6
1

8
1

8
1

12

(0,1,1)

(0,0,0)

(0,0,1)

1

6
3

16
1
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IL POINT PROCESSES

2.1 Preliminaries For the Point Process Case

Let Rd be d- dimensional Euclidean space and D Rd a fixed, possibly

infinite, subrectangle. Let be the collection of Borel subsets of D.

Denote the subset of consisting of bounded sets (i.e. sets with compact

closures) by . A measure on (D,) is called Radon if L(B) < for all

sets BE . Let M denote the set of all Radon measures on (D,) and N the

subset of M consisting of counting measures. Thus, i.i E N if and only if

(B) EZ{O,1,2, ) and ,(B) < o for all B E. N is naturally identified

with the set of all finite or infinite configurations of points (including

multiplicities) in D without limit points.

Let A be the cr-algebra on M generated by sets of the form (E Mt

(A)< k } for all A and 0 <cc. Likewise .N is the cr-algebra

generated by such sets of measures in N. Note that .N' C A and so .N is the

restriction of A to N (see Kallenberg [151 for details). .N is the cr-algebra on

N which allows us to count the points in bounded regions of D.

The vague topology on M (or N) is the topology generated by the

class of all finite intersections of subsets of M (resp. N) of the

form {a EM s Jfd.i t) for all functions f EFc (where c ={f: Rd R4

[O,00} f is continuous and has compact support) ) and s, t E R.

Both M and N are metrizable as complete separable metric spaces (i.e.

M and N are Polish spaces) in the vague topology and A and N are the Borel

sets generated by these topologies [151.

9



Convergence in the vague topology is defined as follows. converges

to j.i in the vague topology, written if ff Jf d for every

f E c.

Further details on the structure of these spaces and on convergence

of random measures are given in the appendix.

Definition 2.1 A point process is a measurable mapping X from a

probability space (c2,r,P) into (N,X). The distribution of X is the induced

measure on (N,'t) given by P= PX*

Thus if AEBd we set X(A) equal to the (random) number of

occurrences in A.

Definition 2.2 Define the translation operator Tx:N-4N for x

W (6x} EN by Tw For A EN let T(A) denote the set

{Tw 1w EA). X (or its distribution is called stationary if for every

xERd, T is invariant. That is, Px(Tx(A)) =Px(A) for every x ERd and

A EJ.

Example 2.3 The most fundamental point process is the Poisson point

process. Given a Radon measure A on Rd, a Poisson point process X with

intensity A is a point process such that

P(X(B1) = k1, . ,X(B) k)
(A(B1))k1

e

10

(A(B)) e1ffh1 (2.1)k!

for all kr,. ..,k EZ+ and Ba,. ..,B disjoint elements of d That is, a Poisson

process is defined for the measure A on Rd by the following two conditions



(see, for example, Daley and Vere-Jones [81)

For every B EBd, X(B) has a Poisson distribution with mean

A(B).

For any finite family of mutually disjoint bounded sets BE

the random variables X(B,) are mutually independent.

When the measure A is taken to be a multiple of Lebesgue measure,

i.e. A(A) =XIAI for some 0< X <oo, we obtain a Stationary Poisson Process.

An equivalent characterization of the stationary Poisson process is

the Law of Rare Events (See Billingsley [41):

Theorem 2.4 Suppose that X is a point process satisfying the following

conditions:

(completely random) X(B),. ,X(Br,) are independent for disjoint

Borel sets Bk,..

(without multiple occurrences) P(X(A) 2) = o(IAI) as IAJ-.0.

(homogeneous) P( X(A) = 1) = X RI ± o( RI) as IAI -.0, where

0<No and IAI is the Lebesgue measure of A.

Then X is the stationary Poisson point process with intensity

A(A)=IAI.

2.2 Product Densities

We now wish to define densities for point processes. That is, for each

n, n = 1,2,... we want functions p(x1. .x) such that p(x1,. .x)Ix1I. . ,IAxI

approximates the probability of points occurring in the intervals x1,. .4X

about .,Xn when the Lebesgue measure Ix,I is sufficiently small.

11
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The description of such densities will depend on certain regularity

conditions. Such conditions rule out the possibility of multiple occurrences

in X. Much of what follows is based on ideas presented in Macchi [21] and

Fisher [11].

Let .N = ( E a(A) = 6,(A) } for each set in D where I is a
i EL

subset of Z (I may be either finite or countable) , x,E and

J 1 if x, E A
0 if x, A

Thus N3 consists of all outcomes which have no multiple occurrences.

Definition 2.5 X is called almost surely orderly (a.s. orderly) if

P(XE.W0) = 1.

Definition 2.6 X is called analytically orderly if for each x E D
P(X(Ax)>1) = o(Ax) as the d-dimensional rectangles Ax, members of a fixed

substantial family, decrease in Lebesgue measure to x.

Note that it is not necessary for the rectangles Ax in our definition

to be centered at x. By "substantial family" we are following the

terminology of Rudin [31]. That is, a collection of open sets in d is called

a substantial family if

there is a constant o >$ >0 such that each E E lies in an

open ball B with B <$ El and

for each x EF and 5>0 there is an E E with x EE and

diameter of E =sup(IxyI:xEE,yEE} less than 5.

Example 2.7 An example of a substantial family is ={rectangular

boxes with side lengths s1,. . .,Sd such that there exists 0< a <1 with > a

5x1 = (2.2)



Let s, = max
1=4,..

13

dfor each ij}. The Lebesgue measure of a set E E is given by IE = fl s.
i=I

d d
s,. Then JE! = fl s = (s) fl ! > ad(s)d =oc IBQ

i=1 i=1
where c is a constant (depending only on d) and B0 is the ball circumscribed

about the cube with side lengths s0. If B is the smallest ball enclosing E

then BCB0, so oc BO! odc BI. Thus satisfies condition (1) with

0 =cc. Since we are considering rectangles of arbitrarily small size it is

clear that S satisfies condition (2).

It is easy to see that analytically orderly implies a.s. orderly,

although the converse is not true.

Example 2.8 Let A be a random variable on (O,c) with density function

given by f(X) = - for and f(X) =0 for 0 X <1. Given that A = X, let X

be a Poisson process with intensity X. X is an example of a mixed Poisson

process. Such processes are considered again in Example 2.32.

Since X is Poisson, it is clearly a.s. orderly however,

2(Ix()2 X(txl)P(X(x)>1) P(X(x)=2) 1 2
e f(X)dX

0

(IxD2 7 X(Ixl)
2

e

_(Ixt)2 1 1 >(AxI) =- , 1J 2

Thus as IxI approaches 0, 1--P(X(x)>1)
taxI

That is, P(X(x)>1) is not o(JxI) as x approaches 0, and so X is not

analytically orderly. This example is not so nice in the sense that

E(A) =E(X(x)) =o. A similar example, for which X turns out to be

stationary, follows.

lxI which approaches 1.
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Example 2.9 This example was presented by E. Waymire in seminar

notes. Let X1 be distributed on (0,1) with distribution function given by

F(x) = i. Given X1 = x1, let X2 be uniformly distributed on (0,x1). Then let

X be the point process given by X =6 +nX1 where 6 is the dirac delta

function, 5(A)=l if xEA, 0 if xA. X is then a periodic point process with

phase X2 and random period X1. In fact X is a mixture of stationary periodic

point processes and so is itself stationary (although we still have that

E( X(x)) = oo).

X is a.s. orderly but P(X(0,x] 2) P(X1 is in the interval (OJ,xl) since

if X1 E (0,x] then X2 E(0,1 and X2 + X1 x +x = x so X2 +X1 E(0,1 but

P(X1E(0,x])= P(X1 x) =F(x)={. If we let (0,x}=x then as LxI

approaches 0, P(X(O,x] 2) = which approachestx 2 00

as x approaches 0. Thus P(X(x)>1) is not o(LAxD as x approaches 0, and

so, again, X is not analytically orderly.

Given a compact subset A of D and disjoint Borel subsets A1,.. .,A of

A let R(A1,. . .,A) be - times the probability of exactly one point occurring

in each of the sets A1,.. .,A and no other points occurring in A.

Definition 2.10 A point process is called semi-regular if all R are

absolutely continuous with respect to Lebesgue measure on A= AX...XA

Thus, by the Radon-Nikodym Theorem, for a semi-regular point

process we can write

n! R( x1,.. .,x0 ) ==J.
.

.J r( x1,.. .,x )dx1. . . dx. (2.3)

So that r( x1,...,x )Ix1t..1xJ ls tH'interpretation as an approximation to
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the probability that X has exactly n occurrences in A, exactly one in each of

the regions x. That is, the probability that there are n occurrences in A,

one in each region x, is r( x1,...,x )x1I..jixI +o(maxJx1I). Note that

the functions r are unique up to a.e. equivalence classes.

Definition 2.11 We will refer to the Radon-Nikodym derivatives r as

the absolute product densities of X.

Definition 2.12 Assuming that the expectations given below are finite

for bounded A1,

The order moment measure is the measure on the product

space A X... ><A (n-fold product) given by

M(A1X...><A) =E(X(A1)...X(A,))

The order factorial moment measure is given by

M(A1' X. .. XAk¼) = E(X(A1)tt . .X(At) where t1 +. . . +tk = fl

and stti=s(s1)...(s_t+1).

That M arid M( really are measures follows from the fact that X is

non-negative and o-additive, thus M1 is a measure. Extending this to

measures on product spaces gives that M is a measure.

Note that M(A1x...xA) =M[J(A1Y ...XA) for disjoint A1,...,A. We

will drop the subscript n or [ni whenever it is clear which measure is meant.

The following theorem was stated by Macchi in [211 without proof.

Theorem 2.13 If X is a semi-regular, almost surely orderly point

process with absolute product densities r( x,,. . .,x ) then for A1,.. .,A disjoint

M(A1 X.. X A)
= J. .

.J p( x1,. . .,x )dx1. . .dx (2.4)

where A1 A



16

pn( x1,.. .,x )=E -3 J r( x1,. . .,x,91,. , )d01. . .d6 (2.5)

Proof: Let A1,... ,A be disjoint d-dimensjonal rectangles. By

definition, M(A1 x .,. x A) E(X(A1) ... X(An)) =

k1.. k,, P(A0,k0;. . where P(A0,k0;. . . ;A,k) represents thek0,k1,. .

probability that there are k0 points in A0, k1 in A1,.. .,k in A and
n

A0=A\U A,.
i==l

Fix > 0 and much smaller than P(A1,k0;. . .;A,,,k). Given XE X, let

S(X) be the minimum distance between the point occurrences of X. Since X is

a.s. orderly S(X) > 0 a.s. Set E,={XE.f: S(X)> }. Then E1C E2C.

and E, =X almost surely, so lim P(E) = 1. Thus, there exists a u0L'l
so that for u1.'., P(E) > 1. That is, all points (with the exception of

an event of probability less than ) are farther apart than units.

For each 'L.'o partition each set A by a partition P(u)consisting of

T(ii) subsets '1(ii) i=1,. ..,T(ii) where each subset has diameter less than

and belongs to a fixed substantial family . (In fact we may take the
partition elements to be elements of a substantial family of the form as

described in Example 2.7, so that each '() is actually a rectangle). Then
n

(i)(v) =U ?(v), the collection of all subrectangles A (LI), forms aj-.0
n

partition of the set U A,,. For the remainder of the proof will omit the (1')
j=0

in order to simplify the notation. It is to be understood however that each

partition and partition element depends on ii.

For uu0 let B be the event that there are k0 points in A0, k1 in

partition in A'', i.e. elements of the partition which contain points of the



(,01 ) rflj (i"
Where Pk* = Pk(A10'

with respect to Lebesgue measure, (2.7) becomes

EE'k0!" I
(0)

01

I
A°\A0

By absolute continuity of Pk

J
rk(xl dx

A
(fl

)
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A1,.. .,k in A and C the event that there are k3 points in A0, k1 in A1,.. .,k in

A and each point occurs in a different subrectangle Then CCB and

B\C is the event that there are k0 points in A0, k1 in A1,.. .,k in A and at

least one subrectangle contains more than one point. B\C C E, the
complement of E, and so P(B\C) < . So

P(Arb,k0;. . .;A,k) =

k0) 1k1) (ku)
A10 . ) + P(B\C)

where the sum is taken over the fl () possible ways of choosing k0 of the
Jo

(i) () (11 1k0)rectangles i 1,...,T0, k1 of the i=1,...,T1, etc. and

where k=k0+... +k denotes the probability that exactly k points

occur, one in each of the listed sets.

By symmetry (2.6) becomes

T0 T0

Ei ... P + P(B\C) (2.7)

1 k0
= 1 i,. . .,i1 = 1

i0i0

(2.6)

+ P(B\C) (2.8)

A\AO

r(x) dx + P(B\C) (2.9)

Where x = (x,. . .,x ,x,. . .,x ,.. .,x",. . .,x ) and A = diagonal elements of the

partition in Ak, i.e. elements of the partition which contain points of the



diagonal of Ak.

By Lebesgue's Dominated Convergence Theorem, as we let -.0 (thus

causing the diameters of the elements of 5' to approach 0, Aê\AI -. Aki, and

P(B\C),0), (2.9) becomes

Thus, M(A x

On the other hand,

r( x1,. .,x.01,.. .,O )dx. . . dXdO1. . . dO

J... J r( x1,. .,xO1,.. .,Q )dx1. . . dx401. . . d (2.12)

1: 1

in

1

k0!" S
A0

XA) k1.

k00,k1,..

0O

_L 1 1

k0! (k1-1)! (k0-1)!
k00,k1,..

Jr(x) dx
A

S
AO

A0

Jr(x) dx

r(x) dx

18

(2.10)

(2.11)

Let j = k0-4-k1-4--...-4-kn. Partition A into disjoint pieces A1,...,A
n

and let A0 = A \ U A,. Then rewriting the integrals over A in (2.12) as
i= 1

integrals over the subsets A we get

j!
00 00 00

J JE E k0!(k1-1)!...(k-1)' 00 ddÔ (2.13)
(Ek,) - nk00 k11 k=1 A0 A°

1, , _, k0!(k1-1)!...(k0-1)! J J r( ) dd (2.14)

A0
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where = (x1,. .,x081,. .,O). Since (2.14) matches (2.11) the theorem is

proved in the case where A0,A1,. . .,A are rectangles. Since rectangles form a

generating class for the o-algebra of Borel sets on Rd the theorem holds for

all Borel sets. o

Corollary 2.14 If X is a semi-regular, almost surely orderly point

process with absolute product densities r( x1,. .,x ) then

M(fl](A)
= J. .

.J p( x1,.. .,x0 )dx1. . .dx (2.15)

A A

Proof This proof follows the above quite closely, so many details will

be omitted. By definition

Mrri(A") = E[ X(A)(X(A) 1).. .(X(A) n +1)1

= Z k(k-1)...(kn-r-1)P(X(A)=k) = k! ,P(X(A)=k) (2.16)
k==n k=n1

As in the above proof, partition A by a partition P(v) consisting of T(v)

subsets t)Cti), i=1,.. .,T(i,) where each subset has diameter less than and

belongs to a fixed substantial family . For fixed ii let B be the event that

there are k points in A and C the event that there are k points in A, each in

a different subset t(u). Then, as before P(B\C) <. Now,

P(X(A)=k) = .4)+ P(B\C) (2.17)

where the sum is taken over the (T(v)) possible ways to choose k of the

subsets from '3'(1.') and Pk(',. ,k) is the probability that k points occur, one

in each of the listed sets. By symmetry (2.17) is the same as
T(e.')

Pk(1',. 41k) +P(B\C)
1iJi

By absolute continuity of Pk with respect to Lebesgue measure this is



Piecing together the above theorem and corollary we get

Corollary 2.16 If X is a semi-regular, almost surely orderly point

process with absolute product densities r( x,,. .,x ) then

M(3(A11X... XAkk) = [ . . .[ pn( x1,.. .,x )dx,.. .dx0

where tl+.+t¼=fl A,' A,k

By the above corollary, in the case when X is a.s. orderly and semi-
ti tk

regular the factorial moment measures MJ(A, X... XAk ) are also absolutely

continuous with respect to Lebesgue measure. Conversely if we know that

the moment measures are absolutely continuous and that the process X is a.s.

orderly then a similar argument shows that X is semi-regular.

20

E ii J ...
J r) dx + Jr) dx+ P(B\C) (2.20)

A A°\A

Where x = (x,,. .,xk) and A = diagonal elements of the partition in A, i.e.

elements of the partition which contain points of the diagonal of A.

Definition 2.17 The functions p(x,,. . .,x) will be referred to as the

product densities of X.

By Lebesgue's Dominated Convergence Theorem, as we let -.0,

becomes

(2.20)

= ih J r) dx (2.21)

Thus M[1(A) =
k

k!

dx

,P(X(A)=k)(k n).

k J r) k0 J
dx 0

N' A
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The following theorem (Fisher [11]) shows that the product densities

are well defined in the sense that the definition does not depend on the

initial set A. That is, if we define p starting with a different set, say B,

which also contains the points x1,. .,x and let p be the product density

based on the set A, p the product density defined based on the set B, then

PA(Xl,.. .,x) = p8(x1,.. .,x) almost surely.

Theorem 2.18 If X is a semi-regular, a.s. orderly point process then its

product densities p(x1,. .,x) are independent of the set A.

Proof Let S be a set disjoint from A. If x1 ,...,x are points in A then

r(x1,. Jr( x,.. .,x,O1,. .,O )d01. dOk (2.22)

and

AUS" Jr( x1,.. .,x,O,,. .,0 )d01. .dO

(A US)k

(k)J
k=O j=O

A
I

S'

1 r° (k! A'jS

Using Fubini's theorem to rearrange the sums we get

jO kj=O Sj
1 (j+k-j

(kj)! rAJ5 (c)dUJdOfJ3

00

xi,.. Ok )d01. .dOk (2.23)

(2.24)

where x = (x1,.. .,x), 0 = (Ok,. ,Ø), 0(k-j) = (Ox,. and O = (O,. .,,). By

(2.22) this is

: 4,
J

r( x1,.. .,e)d01.
j=O

PA(Xl,.. .,x1) 0

Lemma 2.19 If p(x,y) for all (x,y) and ffp(x,y)dxdy <o then if we
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define T(x) by T(x) =J
J p(u,v)dudv, T(x) =o(lxl) for almost all x,

where Ax ==[x ,x + I} for 0< (1 x).

Proof Case (1): Assume p(x,y) >0 for all (x,y). Let g(x) =Jp(x,u)du. g

is integrable for almost all x and fg(u)du_.g(x) for almost all x. i.e.

S(x) = f g(u)du =O(lxI) for almost all x. Thus

T(x) T(x)
TA(x) - SA(x) = O(lxI) for almost all x. (2.25)S(x) " S(x)

T,(x)
It suffices then to show that +0 for almost all x as lxl-0. Assume

SA(x)

not, then there exists a measurable set FC[0,1] with (Fl >0 and an >0 so

T(x)that for every x E F, urn sup >0. Let be the class of setsIxI,0 S(x)

={{x =
T(x) >}. is a Vitali cover of F. That is,S(x)

for each )0 and x EF there is a x E so that x Ex and tAxI (see

Royden (301).

Now, let E fg(u)du and Jg(u)du. Recall that for g
F F

nonnegative and integrable with respect to a measure over a set F, given

>0 there is a 5 >0 so that for every set E F with lEt <6 we have

J gd <c ([30]). We now choose 6>0 so that (El <5 =f p(u,v)dudv < and
E E

6/>0 so that (El< f g(u) du <'.
E

Let , <6 and by the Vitali covering lemma find disjoint intervals
N

xE =[x + i= 1,...,N so that IF\Uxj <5'. Note that
1. 1=1



ILl [x A,x, + !AJ2I <6A <5 since x,, i=1,...,N are disjoint

subsets of [0,11. Thus

T(x) N N

S(x) >
2 ETA(x) > S(x) so that

>
J

p(u,v)dudv>
J

g(u)du

UCAx,)

=
II

Juciu
J

(u)du) ( fg(u)du

F \(J(Ax,)

= Jg(u)du==
F

which is a contradiction.

Case (2): If there exist (x,y) such that p(x,y) =0 we may apply case I

to the function h(x,y) = p(x,y)± 1, since h(x,y) >0. By case 1 for almost all

x, J J h(u,v)dudv,0 as iAxtO. Thus, f f 1 ±p(u,v)dudv

= xI f J.
p(u,v)dudv,0 for almost all x as IxIO. Thusxx

thi I I p(u,v)dudv,0 for almost all x. 0xx
Lemma 2.20 If p(x,,., .,x) for all (x1,. . .,x) and

f...J p(x1,...,x)dx1...dx<,c for d-dimensional rectangles A then if we define
AA

by =f I J .. .f
x1 x1 x2

=o(maxlixI) for almost all (x1,...,x) as maxJxI*0, where ix is

23



the d-dimensional cube centered at x,, having volume x,I >0.

Proof As above we first assume that p(x1,.. ,x) > 0 for all (x1,.,

Let h(x1,...,x) =f p(x1,u,x2,.,,x)du. h is integrable for almost all (x1,...,x)

and
A1

S h(u1,.. .,u) *h(x1,. ..,x) for almost all (x1,. ..,x), i.e.
x1

S(x1,. . .,x) = 5 h(u1,.. ,u) = O(max Lxf) for almost all x. Thus, as in,
X1 AX,,

T (x1,.
Lemma 2.19 we need only show that +0 for almost all (x1,.. .,x) asS(x1,.

maxIx,0. Assume not, then there exists a measurable set FA with

FI >0 and an >0 so that for every (x1,. .,x) E F,

T(x1,. -

urn sup >0. To complete the proof, proceed now as in the

proof of Lemma 2.19 applying the multidimensional version of the Vitali

covering lemma (see Cohn [71). 0

Note that the above lemma continues to hold if each is, instead of

a cube, a member of some fixed substantial family .

For X semi-regular and almost surely orderly let H(A.,... ,A) be the

probability that exactly one point occurs in each of the sets A1,.. .,A and

other points may or may not occur in A. Then

H(A1,. ..,A) j! R(A1..

n j=0
Where A0 = A \ U A,. By semi- regularity this becomes

24

(2.26)

i=1

H(A1,. ..,A)=
J J

JrA ( x1, -. ) dx1 . - - dx4 (2.27)

A1 A



25

The following theorem shows that p(x1,. .,x1) can be interpreted as
being the functions for which p(x1,. .,x)iAx1I . . .LxJ approximates

H(x1,. . .4x) for x1,. .4x sufficiently small. That is, the probability that

there is an occurrence in each x is p(x1,...,x)Ix1f +o(maxIxD.

Theorem 2.21 11 X is semi-regular and a.s. orderly with product

densities p(x,,. . .,x), then H is absolutely continuous with respect to Lebesgue

measure and has density

P( x1,...,x )= 4 f r( x1,. ..,x,O,,. .,O, )de1.. de (2.28)J!

Proof The proof begins by following Macchi's work [21] and concludes

by applying Lemma 2.20. Let A1,...,A be disjoint subsets of A and members of

a fixed substantial family. We know that p is the density for the factorial

moment measure M(A1X. XA). i.e.,

M(A1X... ;xA)
= J J J r( xi,.. .,O )dO..dOdx1...dx

A1 A A

We compare this with (2.27) to get

M(A1x.. XA) H(A1,...,A) =

J.
J E

-
J r( x1 ,...,x,O1,. .,O )d01. .dOdx1.. dx (2.29)

A1 A A\A

If we let each A decrease in size IxI towards the set consisting of

the single point x0, with each x° distinct, then A0 increases to A.

Define Q by

M(AX.. XA) - H(A1,. ..,A)
(2.30)



So that QIx1I . .

Thus Q

= J...J1
A1.. .A,(A\A0) A

1

M(+1)(A1 X. . . XA X(A\A0))
= Ix1I . . .IxnI

26

(2.31)

n+ji1
rA ( x1,.. .,x1,O1,. . .,O, )d01.. .dOdx1.. dx1 (2.32)

(2.33)

Note that A\A = U X1 (A\A0) Then due to symmetry of the absolute

product densities we may consider only the set where i=O to obtain

Jr( x1,.. . )d01. .

I
r( x1,.. .,x,O1,. .,O )d01. .dO

J(j-1)! Jr( x,,. . .,x,O:,. )d01. . .dGdx1. .

A1 A (A\A0) A'

but by Lemma 2.20

M+1J(A1 X. . . XA X(A\A0)) = M(1]( UA1 X. .. XA1 XA2 XA1 X. . . XA)

EM+1(AI X... XA1 XA2 XA1 X. . . XA)

J.i
U X' (A\A0 XJ1-'

=3.
J

rA ( x1,. . .,x,O1,. O )d01. .n+J

(A\A0) A1

Jr( x1,.. ,x,O1,.. .,D )d01.. .dOdx1.

(A\AO)A'



J... J ...
J p(x1,. .,x1)dx1.

A1 A2 A

= o(maxIxI) (2.34)

for a.a. (x1,...,x) so that i.e.,

M(A1X...XA) -
urn

LAx1$,. . .,tAx-0 .. .1Xnt

M(A1X...XA)
urn urn =0 (2.35)Ix1I,.. .,Ix,,l+0 Ix1I,. IAxl,..

So that

H(A1,...,A) M(A1X...'xA)urn urn.,iAx0.0 . .,xI+0 IAx1,.

p(x1 ,...,x) (2.36)

H(A,. .Thus, as each x approaches 0, approaches p(x1,. .,x), that is,Ix1I,.

H(A1,. .,A) has density p(x1,. . .,x). 0

The first part of the following theorem was proved by Macchi in [211.

The extension of the theorem follows from Lemma 2.20.

Theorem 2.23 If X is a.s orderly and p(x,y) is bounded on compact sets

then X is analytically orderly. If X is a.s. orderly and the functions p(x,y)

exist then X is analytically orderly almost everywhere.
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Proof Let x be a neighborhood of x and assume that p(x,y) < N for



P(X(x) 2)So that <N,

P(X(x) 2) = i.e. P(X(x) 2) = o(xD.turn implies urntx-+0 LAXI

Now assume that p(x,y) exists for every pair x, y, but is not

necessarily bounded. As above we have

P(X(Ax) 2) E[X(Ax)(X(Ax) 1)} =J
J

p(x,y) dxdy (2.39)

AxAx

but by Lemma 2.20
J J

p(x,y) dxdy = o(IAxD for almost all x as

tAxl-+0 0

Note that a.s. orderly is a necessary condition in the above theorem.

For example, if we take X1 to be uniform on [0,11 and let X be the point

process X =26. Then p(x) =2, and p(x1,...,xn) =0 for each n >1, so that

the product densities exist and are even bounded, but X is clearly not

analytically orderly.

Corollary 2.24 11 X is a stationary, a.s. orderly point process for

which p(x,y) exists almost everywhere, then X is analytically orderly.

P(X(x) 2) < N lAx I, which inwhich implies
LAxI

each x, y E Ax. Then

28

E[X(x)(X(x) - 1)]
=

Jp(x,y) dxdy < N LAx2
J

(2.37)

4XX
which implies that

IxI2 E[X(x)(X(Ax) 1)}= IxJ2
J

J p(x,y) dxdy < N (2.38)

AxAx
But, since P(X(x) 2) = P(X(Ax) = k) and E[X(x)(XCAx) - 1)]

k =2
00= k(k-1)P(X(x) =k) we have that E[X(x)(X(x) 1)) 2P(X(x)

k=1
2)
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Proof The set S of points where X is not analytically orderly has

measure 0 by the above theorem. By stationarity of X, S is translation

invariant, thus S must be empty. 0

Example 2.25 It is possible, as this example will show, to have a point

process X with product densities which are finite almost everywhere but X is

not analytically orderly. The process X is determined as follows. Let X1 be

a random variable distributed on [0,11 with density f1(x) = x Then,

choose X2 distributed uniformly on [0,x11. X2 thus has density given by

Thus, P(X(04t) 2) =P(X1 E[04t]) =J x2dx =x2
0

= (t)2, which is

clearly not o(iAtl) as its0.

On the other hand we can easily calculate the product densities of X.

If we let 0 <y we find p(x,y) = y 2 = y 2 = r(x,y). Note that

r(x) and r(x1,...,x) are 0 for n>2 since we always have exactly two points.
:

Thus, p(x) = 4,
J

r( x,O1,...,O )dO1...dO ==Jr(x,y)dy
J0 E0,1J 0

X 1 X 1

=fr(x,y)dy ±Jr(x,y)dy ==Jx2 dy +f 2 dy
0 X 0 X

_L 1 1 -=x 2+(2y2)ix 1+x 2x 2_i, so that the

product densities are finite except at 0.

Corollary 2.23 indicates that Examples 2.8, 2.9, and 2.24 are in some

sense the best possible.

I
f2(x)

for 0x2x1
= otherwise (2.40)
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Theorem 2.26 Let R be a bounded d-dimensional rectangle. X has

absolute product densities r(x1,. .,x) if and only if it is absolutely

continuous with respect to a Poisson point process.

Proof Let P be the distribution of X and p the distribution of a

Poisson point process with parameter 1. Assume that P <<p. By the

Radon-Nikodym Theorem there exists a measurable function ' on (N,J() such

that P(da) =Ø()p(da).

Recall that a measure E.W corresponds to an unordered set of points

{x1,...,x) in Rd. Let N ={4tJ(R) ==n}. N corresponds to all n point

configurations in Rd and N =UN0. For any subset A of N define A by

A ={(x1,...,x)Ithere exists EA with corresponding to the measure

5x1± ±ä}. Then
P(XE A) = Px(A) =1 Ø(Lt)p(d) = f Ø(x1,. .,x)e IRIdX .dx (2.41)

A

Given disjoint subsets B,,...,B of R let A =(EN0Ii(B,) =1, i=1,...,n}

then

I(xi,...,xn)e dx1...dx =- I (x1,...,x)e_dx1...dx (2.42)
B1 B

but P(XEA) = R(x1,...,x0), so we have found that n!R has density

absolute product density r(x11...,x) =(x1, ,x)e1 a.e.

Conversely, jf X has absolute product density r(xL,,. .,x) we let

=r(x1,...,x)e11k Then following the above argument in reverse

Ø() is the density of P< with respect to p. i.e. P <<p with Radon-Nikodym

derivative 0(u). 0

By uniqueness of the absolute product density, X then has



p(x1,. . .,xnl yj,. . .,ym)
p(x1,. . .,x,yj,. .,Ym)

p(y,. .
(2.45)

31

From here on we will take X to be semi-regular and a.s. orderly.

Definition 2.27 A point process X is called completely regular if its

absolute product densities exist and can be computed from its product

densities using the following inversion formula

jO J
p(x1,. ..,x,e1,.. .,e4)d91. . .e4

A

Note that if the sum in (2.43) is absolutely convergent we can

rearrange the sums and integrals in the expression(J
J kO

x1,. )dx1. (2.44)

and by the binomial theorem obtain r(x15. .,x). i.e. if (2.43) is absolutely

convergent, the inversion formula is valid, so X is completely regular. For

example, as long as the product densities p are bounded by an exponential

function, the process is completely regular.

2.3 Conditional Densities and Cumulant Densities

In order to consider conditional distributions, that is the probability of

events occurring given that we already have some information about which

points have occurred, we need conditional densities. The conditional product

densities are defined in a natural way.

Definition 2.28 A point process X with product densities p(x1,.. .,x) has

conditional product densities given by



and conditional absolute product densities given by

rA(xl,. . .,X,,y1,.. .,ym)
rA(xI,...,xnlyl,...,ym) (2.46)

for x1,.. .,Xn,1,. ..,Ym E A.

If X has product densities one can also define cumulant densities

q(x1,.. .,x.J (also called the correlation functions) corresponding to X

inductively by the following relationship with p(x1,. .

p(x1) = q(x1)

p(x1,x2) q(x1,x2) + q(x1)q(x2)

p( x,x2,x3) = q(x1,x9,x) + q(x1,x9)q(x3) + q(x2,x3)q(x1)

±q(x1,x)q(x2) + q(x1)q(x2)q(x3) (2.47)

and so on, so that p(x1,. . .,x) is written in terms of q by subdividing (x1,. .,Xn)

into all possible configurations of disjoint subsets and adding the

corresponding product of q's.

2.4 Generating Functionals

We seek here to extend the notion of multivariate probability

generating functions and characteristic functions to the more general setting

of point processes. This development follows that given by Gupta and

Waymire [13] or Fisher [11]. More on the theory of probability generating

functionals for point processes can be found in Westcott [33].

We begin by considering the finite dimensional structure of the

process X in order to discover what the natural extension ought to be. Let

A1,.. .,A be subsets of R. The joint distribution of the random vector

32



Jf(x) dX(x) =

If we define the function on Rd by

(x) - {

t for xEA,, 1 in- 0

1 for x UA

n I
1og(t)X(A) = J logE(x) dX(x)

i=1 J
Rd
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(X(A1),. . .,X(A0)) is uniquely determined by the probability generating functional
XA1) XA0)

g(t1,. . ,,t) = t1 ... t, ), 0 t, 1 (2.48)

We can rewrite (2.48) as
X(A1) X(A0) ''

g(t1,. . .,t0) = E{exp(log( t1 ... t0

= E{exp( log(t)X(A))} (2.49)

Since X can be thought of as corresponding directly to a sequence of points

W={x1) in Rd, it induces a counting measure N(A)(w) = *{i: x,E A,} on Rd.

Thus, given a real-valued measurable function f on IRd we may define for

each w the integral of I with respect to the process X as follows

(2.50)

(2.51)

(2.52)

g(t1,. .,t0) E{exP(J logE(x) dX(x))} (2.53)

The above discussion leads quite naturally to the following definition:

Definition 2.29 Let S be the set of all real valued, measurable

Then

So that,
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functions on Rd satisfying

0 (x) for all x E Rd

E(x) = 1 on the complement of a bounded subset of Rd (2.54)

then the Probability Generating Functional corresponding to X is defined by

G(E)= E(exp(J logE(x) dX(x)fl, f ES (2.55)

Note that the finite dimensional distributions of X can be recovered by

taking to be of the form (2.51).

Theorem 2.30 The probability generating functional G of a point

process X can be expressed as

G(E) = E{ fl (x) }
xE

where w is the point configuration {x,} corresponding to X.

Proof G()=E{ex(J log(x) dX(x))} = E{exp[ log(t))} (by (2.49))

{ fl exp(Iog E(x)) } = E{ fl E(x) }. 0
xEw xEW

Definition 2.31 The Characteristic functional of a point process X is

defined by

= E{exp(
J

dX(x))} (2.56)

for 0 bounded, measurable, and having compact support.

The characteristic functional is actually .just a special case of the

probability generating functional. If we allow complex valued functions E and

take E to be of the form E(x) =e10, then G() =c1(Ø).
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The factorial moment measures (and thus the product densities) can be

computed using the probability generating functional according to the

following formula due to Moyal [231:

M1,.. = M([O,x11,.. .,[O,x0]) =

G[ (2.57)

Where 1[Ox] denotes the indicator function of the interval EO,x], that is

1[O,xl
if x E [O,x,]

0 if x E0,x,]
(2.58)

To calculate the product densities from this formula we differentiate

M1 That is,

P(Xj,..,Xn) = (Mx1,..,1) (2.59)

2.5 Examples of Point Processes

Example 2.32 The absolute product densities of a stationary Poisson

point process (defined in Example 2.3) are easily calculated:

r(x1,. . .x)IxI. . .LxI + o(IAx1L. .LxI) =P(X(x1) =1,.. ,,XCx) = 1,X(A) =n)
Mx1l XhIx l'e Xlx11l

n
e _M lx1I.. where A' = A\IJ

i=1

o(iAx1LJxl) xreM. Taking the limit as the sets Ax,Thus r(x1,. . .x) + Ix1I.. .Ixl
decrease to the single points x, we obtain

r(x1,...x) =XneAt (2.60)
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The probability generating functional of a Poisson point process X
with intensity A has the form:

G(E) = exp{f [E(x) l]dA(x) } (2.61)

and its characteristic functional is:

i(x)1'(Ø) = exp{J {e l]dA(x) )

For a Poisson point process with intensity A which is absolutely

continuous with respect to Lebesgue measure with density f(x), Moyal's

formula (2.57) can be used to calculate the product densities as follows:

Using the probability generating functional given above (2.61),

M1,.
0 fl=Iim1 a G(+N1ii [81.. .a i1 [0,x])}

_ a exp(
J

X1101f(x)dx)}
i=1

ml In
= if(x)11dx) exp(

J
X 110i1 i1 = =0

.XriO

n
flJf(x1[oxJdx
i=1

So that p(x1,.. .,x) a
ax1...ax

a0
ax1... ax0 j f(x)l1oxjdx = f(x1).. . f(x)

i=1

Using the inversion formula (2.43) we can now easily calculate the

absolute product densities:

= f p( x1,...,x,O1,. O )dO1...dO
j=0

A

¶. .UL

(2.63)

(2.64)



=
J

f(x1).
jO '

= f(x1)... f(x) J 1(9).. .f(9)d91. . .d8
j=0

A

(i)
[ J f(0)d9)= f(x1)... f(x)

A

=f(xt).....f(xn)ex(_J f(o)do). (2.65)

Example 2.33 To obtain a Mixed Poisson Process we start with a

random variable I. We then take X to be a stationary Poisson process with

(random) intensity I. That is, one first observes the outcome of I and then

forms a Poisson process with that outcome for its intensity. A mixed Poisson

process X has probability generating functional given by

G(E) = Ej[exp(f [E(x) 1] dI(x))] (2.66)

By our calculations for the stationary Poisson process (2.60) the mixed

Poisson process has absolute product densities

rA(xl,,..,xfl) =E[J°e A!1

The corresponding product densities become

p(x1,. .

== Jj-O
J'

r(x11. . .,x,O1,.. .,O)dO1. . .dO

= A : J E[Ie A!1
dO1.. .dO

n+j A!e dO,.. .dO]

= E [ jfl E IAI Ie1 A!] = E[I]j0 ''

37

(2.67)

(2.68)

A"

=E[E
j=o

A"
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Example 2.34 To define a Mixed Sample Process we first take Y to be

a random variable with values in {O,1,. .}. Conditioned on Y=k let Zj,...,Zk be

uniformly and independently distributed on EO,bJ as occurrences of the mixed

sample process X. Such processes are characterized by the fact that their
distributions are invariant under measure preserving transformations. The

absolute product densities are thus independent of the location of the points

x1,.. .,x. That is they are of the form rA(xI,. .,x) fA(n). These models are

analyzed in Kallenberg [16].

Example 2.35 Cluster Processes A major class of point processes is

the cluster point processes. Such processes have been used to model a wide

variety of things from populations (Moyal [23]) to clustering of galaxies

(Neyman and Scott [27]). A nice overview of examples of cluster process

models is given in Neyman and Scott [28].

In general, a cluster process can be thought of as being generated in

two steps as follows. First a point process X1 is observed. This process

generates the cluster centers. Next, for each cluster center x, a new process

X2( Ix,) is observed, giving the cluster members. The cluster process X is

then the process X(A) = X2(A x).
xEX1

The probability generating functional corresponding to X is (by

Theorem 2.29)

G(E) = E{ fl (y,) } (2.69)
y1
EX

but y E X implies y E X2(A x) for some j, so

1I(
xEX1

Fl (y,) } = G1( G2( x)). (2.70)
E X2(A x)



Next we will consider some specific examples of cluster processes.

Example 2.36 a Let U be a stationary Poisson process on Rd with

intensity . and V be a point process satisfying E[V(Rd)} <. As above let u,

denote the random occurrences of U and take these as the cluster centers.

Let V1,V2,... representing the cluster members, be point processes which are

independent and identically distributed as V. The resulting cluster process X

is then a Poisson Center Cluster Process with centers U and clusters V. X

can be written as X= E V(A u,) and the probability generating
u, EU

functional (2.70) takes the form

G() exp(f [Gy(TE) _1J Xdx) (2.71)

where T represents the translation operator (TE)(y) = E(x + y).

Example 2.37 b This special case of the Poisson center cluster process

was used by Neyman and Scott [271 to model clustering of galaxies. Here we

consider a Poisson center cluster process where about each of the cluster

centers a random number of cluster members are independently distributed

according to a common distance distribution F. The resulting point process X

is referred to as a Neyman Scott Cluster Process.

If we let G1 be the probability generating function of the cluster size

then the probability generating functional of X is

G() ex(J[Gi[f (Tx)(r)dF(r)} - i) dx) (2.72)

39



III POSITIVE DEPENDENCE FOR POINT PROCESSES

3.1 Definitions of Positive Dependence

The definitions of positive dependence for Bernoulli random variables

are easily extended to the point process case. The first definition we give

was first stated by Burton and Waymire [6].

Definition 3.1 X satisfies the strong FKG inequalities if for all sets

A EBd there exists a version of the absolute product densities such that

r(x1, . ,x)r''(x,, . ,x) r(x1, ,x)r''(x, ,x) (3.1)

for all x1, ... ,xEA, 1 J n.
Knowing that X satisfies the strong FKG inequalities gives us some

information about the structure of the point process X. For example the

following two theorems tell us something about types of configurations we

can expect for point processes satisfying the strong FKG inequalities along

with other conditions. From now on, whenever it is clear what is intended,

we will omit the superscript indicating the number of arguments for the

absolute product densities.

Theorem 3.2 If X satisfies the strong FKG inequalities then rB(ø) > 0.

Proof: The proof is by induction. Let x=x1, =y1, x1 y1 and let

be a version of the absolute product densities for which the strong FKG

inequalities hold and r°(ø) = 0. Then

0 = r(x,y) r°(ø) r°(x1) r"(y1) (3.2)

which implies that either r(x1) = 0 or r(y1) = 0. Thus, there is at most

40
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one point x' for which r"(x) > 0. It then follows that

P(X(B)=1)=f r(x)dx=0. (3.3)
B

Before proceeding, we choose a slightly different version of the
absolute product densities, differing from r on a set of measure 0.

is the product density that agrees with r except that r' is 0 whenever it is

evaluated at any configuration which includes the point x. That is,

r(x) =0 for any x of the form x=(x1,...,x) where x =x for some i. Note

that r(x) still satisfies the strong FKG inequalities and that r(x) =0 for
any singleton x = x.

Now suppose that we have x=(x1,x2) and y=(y1,y2)where x1,x2,y1 and

'2 are all distinct. Then by the strong FKG inequalities

0 =r (,y)r(Ø) r()r3() (3.4)

which implies that either r(x)=0 or r()=0. That is, no two disjoint
pairs can both have positive absolute product densities If x1,x2,y1,y2 are

not all distinct, say x2 = y1, then

0 = r'(x1,x2,y2)r(x2) r'(x1,x2)r(y1,y2) (3.5)

so that either r(x1,x2)=O or r(y1,y2)=O. Thus no two pairs with one

component in common can both have positive absolute product densities

Putting together (3.4) and (3.5) we find that there is at most one pair (x,x)

for which r(x,x) 0. Thus

P(X(B) =2) = f f r(x,y)dxdy=0. (3.6)
BB

We again choose a new version of the absolute product densities,

where r2 agrees with r1 except for on configurations containing (x,x). We

will now have r2( x) = 0 for any x = (x1,. .,x) where x = x and x = x for
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some i,j. Thus r2(x) =0 for any configuration x containing one component

or two components and r21 still satisfies the strong FKG inequalities.

Inductively assume that we have chosen r' as above so that it agrees

with r' except for on configurations containing (xv',. Thus

satisfies the strong FKG inequalities and r1(x) =0 for all configurations

x=(x1,...,x) where jk.

Now let x(xj,...,xk.l) and let Y=(Yl,'..,Ykl), x not identically equal to

Then, since x A y has k or fewer components,

0 = r(x A y)r( x V y) r( x)r( ) (3.7)

Thus, as before there is at most one

k) k.I k+1r8 (x1 ,.. .,x )=0 and we have

so that

P(X(B) =k+1) =J J r(xl,...,xk)dxl...dxk0. (3.8)
B B

As above, we choose a new version of the product densities, r'
agreeing with except on the set of measure zero consisting of the

configurations containing .,x) Thus r' satisfies the strong FKG

inequalities and r'(x) =0 for all configurations x containing k+1 or fewer

components.

We have found by induction that P(X(B) = n) = 0 for any n. This

implies rB(ø) = 1, which is a contradiction. Thus r(ø) > 0. 0

The following theorem guarantees that for a point process X on

which satisfies the strong FKG inequalities, if any individual points have

positive probability of occurring (positive absolute product densities) then

any configuration of those points has positive absolute product densities.



i.e. all configurations are possible.

Theorem 3.3 Suppose that X satisfies the strong FKG inequalities then

there is a subset A C D so that P[X(A) 0] 1 and all configurations are

possible on D\A , in the sense that if B C D\A is a bounded Bore! set, then

there is a version of r5(x1, ,X) that is strictly positive for all distinct

X1, ,Xn in B.

Proof We may assume that all the product densities and absolute

product densities are Borel measurable. The relation

p(x) =
cO r

J

ii
J

r(x,) d

n=O B
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(3.9)

of course holds only a.e. on B, since ra is unique up to a.e. equivalence

classes. If (3.9) does not hold for x, redefine r(x,) = 0 for all E B and

all n. The strong FKG inequalities still hold and we may redefine p(x) 0 so

that (3.9) holds everywhere. Furthermore this will change p only on a set of

measure 0 (even as we vary B). This is because the expression (3.9) is

independent of B by Theorem 2.18.

Now let A = ( xE D p(x) = 0 } and let B be a bounded Borel subset of

D\A. We show that if (x1, . E Btm has distinct coordinates then

r8(x1,. ,xm) > 0. Suppose otherwise. Repeated applications of the strong

FKG inequalities gives

0 = r8(x11. .,xm)rs(ø)m1 r8(x1)r8(x2). ra(xm) (3.10)

This means that there is an x, so that r5(x) = 0. We rename x, x.

If y , z E B have distinct coordinates and if for each i = 1,

x,y5.zx then
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0 = r(x, , z)rB(x) r(x, y,)r5(x, z). (3.11)

Thus at most one of ra(x, y,) and r5(x, z) can be strictly positive. This

implies r8(x, y,) 0 for - a.e. on B. But in view of (3.9) this means that

p(x) 0 so x E A, a contradiction. 0

Definition 3.4 X has Positively Correlated Increasing Cylinder Sets (X

has PCIC) if

p(x1, . . . ,x0) p(x1,. . . ,x,) p(x1,. . (3.12)

Definition 3.5 X has Conditionally Positively Correlated Increasing

Cylinder Sets (X has CPCIC) if

p(x1, . . ,,c) p(x,, . . . ,x) > p(x,. . ,x) p(x,,.. ,x1) (3.13)

for 1 <n.

Definition 3.6 X is Associated if Cov(F(X),G(X)) >0 for all pairs of

functions F,G:N+F that are increasing, measurable and bounded (where

increasing means increasing with respect to the ordering on N given by /2 < ii

if (B) <u(B) for all BEBd)

Burton and Wayniire [51 showed that Definition 3.6 is equivalent to the

family of random variables {X(B) I B Ed) being associated. That is, all

finite subsets of (X(B) I B E) are associated in the sense of Definition 1.5.

To see how these definitions are a natural extension of the definitions

of positive dependence for Bernoulli random variables consider the following

method of approximating a point process X with well defined densities on the

interval [0,1]. For each n and k = 1,. ..,n define klk1 if there is an occurrence of X in [
11 'i

0 if there is no occurrence of X k - 1 k
n

(3.14)
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That is, X =nün(1,X[ k i, }) and each X is a Bernoulli random variable.

x X) approximates X and X converges to X in distribution.

Thus, for example, FKG for a point process X can be thought of as a limiting

condition of FKG for the random vectors X" . In the limit we indicate just

where the ones are, ones indicating the occurrence of points. Burton and

Waymjre used a similar approximation technique for point processes on lRd to

prove the following theorem [5].

Theorem 3.7 If a point process X is completely regular and satisfies

the strong FKG inequalities for all cubes A E d then X is associated.

Remark In their original version of the above theorem Burton and

Waymire required that the absolute product densities be piecewise

continuous. This condition was used to create an appropriate partition in

order to approximate the integral of the absolute product density by a
Riemann sum. The following lemma, however, shows that the piecewise

continuous condition is not necessary.

Lemma 3.8 If A C WT' is a bounded rectangular box and f is a non-

negative real valued function on A for which the Lebesgue integral f f(x)dx
Ais finite then there exists a sequence Nk+cc so that if P, is the even

partition of A into (Nk) rectangles of equal measure, Pk
{1k)} i=l,..,(Nk)m

and an so that urn Ef(x)4I = ff(x)dx<x.k.o
A

Proof Given >0 choose k so that <. Let BM =-{xjf(x)>M)

where M is chosen large enough so that IBM! <1i and f f(x)dx<.k. Let
BM

= mm (f(x),M) and note that J f(x) dx = (f() - M)) dx. Choose a
BM A



< öik + + E (1 + inf f(x))Il2k
1EB
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continuous function g:A[0,00) such that Ig(x)I M, I g() fM()ld <
A

and if U ={xBMI Ig(.) f()I >6,AIk) thenlUl <l2Mk. Choose Nk so that

all Riemann sums based on k = { } are closer to J g(x) dx than

Let G be the set of all kJ E P, such that there exists an

xE\(BNjUU). Let this x be the choice for Let L be the set of all

E k such that ,. G but there is an x in BM. Let this x be the

choice for x. Let B be the set of all which are not in G or L. i.e.

B = (k)
C BM}. In this case choose x so that f(x) < inf f( + 1.

x E

For the remainder of the proof we will omit the superscript k. Now

we have

f(x)dx - Ef(x)LA,l f f(x)dx - I f()d
A A A

+ I - fg(x)dx 1+ I fg(x)dx - g(x)II I

A A A

+ I g(x) - f(x) IA,I

< + + + E g(x) - fM(xI) t + g(x) - fM(xI) I II
EG

+ E g(x) f.AI + E f(x) I

<3(J( + 3k + E 6lAIk + 2MII ± MIBMI
EL

+ E (1 + inf f(x))IAI
EB xEA

<30k + 1 IAI + 2M(lU+lBMI) + MIBMI + E (1+ inf f(x))II6lAIk
EB

<30k + + 2M(l2k +) + M + E (1 + inf f(x))Il
XE

(3.15)



Note: (1) .M =3M < 3 J f(x)dx < = and2k
BM

(2) E (1 + inf f(x))I( A,l + E ( mi f(x))I)
EB xE1 AB AB xEA

<IBMI+ff()d<+
BM

So that (3.15) is

30k - k 0

Example 3.9 The Poisson point process is easily seen to satisfy the

strong FKG inequalities. We earlier calculated the absolute product densities

(2.65) and found that rA(xP...,xfl) =f(xi).....f(xn)ex(J f(0)dOJ so that

r(x1, ... ,x)r(x, ... ,x)

= [f(xi).. . . .f(x) exp( -J f(0) dU))[f(x).. f(x) exP[ -J f(0) dO))

=(f(x1).... .f(x))(f(x .f(x))[f(x).. .f(x))(exP[_J f(0)dO))

f(xi).....f(x))[f(xi).....f(xn))[exP(_J f(0)dO)}

,xn).

In fact, we have found that for the Poisson Process, equality holds.

Example 3.10 An application of Schwarz's inequality (see Feller 1101)

shows that the mixed Poisson process also satisfies the strong FKG

inequalities. Recall that we found rA(xl,.. ,x) = E[ I e J where I is a

IJAJnonnegative random variable. Let \k =Ie , f(k) =E[Yk] and

a+b
g(k) =log(f(k)). Let b >a. By Schwarz's inequality E[Y 2 J (E{Y8])2(E[Yt])2.

A
2
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a+b a+bi.e. f(--) (f(a)f(b))2. Thus, g(
2 (g(a) +g(b)). i.e. the moments of

Y are log convex.

An alternative expression for convexity says that (for c>O)

g(b+c) g(a+c) g(b) g(a) so that g(b) +g(a+c) g(b+c) -4-g(a).

Equivalently, in terms of f we have f(b)f(a4-c) f(b+c)f(a). Now let

a jj, b = ni, and c=i to get the strong FKG inequalities.

Example 3.11 Burton and Waymire [5] showed that Poisson center

cluster processes are associated. As we will see later, these need not satisfy

the strong FKG inequalities.

3.2 The Relationships Between Positive Dependence Definitions

We must be careful with approximations such as the one suggested in

(3.14). Based on the comparisons of the definitions one might expect a

theorem for point processes analogous to Theorem 1.12. In particular it

seems reasonable to expect that strong FKG and CPCIC are equivalent. They

are not however, and the relationship between the positive dependence

definitions is a bit more complicated.

Theorem 3.12 If X is completely regular then the following

implications, and no others, hold

X satisfies the strong FKG inequalities

48

X is CPCIC

X has PCIC

X is associated
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Note that if the product densities are strictly positive for all

configurations, CPCIC and conditionally positively correlated (CPC) are

equivalent since we could write CPC as p(x, zi y) p(xI y)p(zf y) where

Thus PAY) or equivalently,

p(x,yz)p() >p(x,)p(y,z). If and z=z,...,zn a
simple induction argument extends this to p(., y z)p() p(, i)p(, y)
which is CPCIC. Thus adding this further restriction on PCIC in the point

process case still does not give a definition equivalent to strong FKG.

Note also that if X satisfies the strong FKG inequalities, then the

conditional absolute product densities will also satisfy (3.1). Thus all

conditional distributions of X will also be associated by Theorem 3.12.

By the following theorem, the cumulant densities defined in section 2.3

also play a role in describing positive dependence properties.

Theorem 3.13 If a point process X has cumulant densities which are

always non-negative then X has PCIC, but not conversely.

3.3 Proofs and Examples

In this section we give the proofs of Theorems 3.12 and 3.13 and

examples which show the negative implications.

Proof of Theorem 3.12 (1) X satisfies the strong FKG inequalities

implies X is associated by Theorem 3.7. Furthermore, by the above note, if

X satisfies the strong FKG inequalities then all conditional distributions of X

are also associated.



X has CPCIC implies X has PCIC is immediate.

We show that X satisfies the strong FKG inequalities implies X has

CPCIC. Let x = (x1,. . .,x) and suppose (with no loss of generality) that each

x is in D\A (as defined in Theorem 3.3). That is, p(x) > 0. In fact all of the

points discussed in this part of the proof are assumed to be in D\A. Let

r(xI) be the conditional absolute product density, conditioned on the fact

that there are known to be point occurrences at = (y1,.

Define D2 by b2 () _r(Ii) where z = (z1,. .,z) (so that- r(xt)
(,z) ). Note that is an increasing function of x for

fixed y since X satisfies the strong FKG inequalities implies r(,y,z)r()
r()r(y,z) r(zI)r(j) r(I)r(j) r(I)

Then,

J

Jr(,zI)dx = p(zI) (3.16)

...Jz(xIY)w(xI)r(x)dx

f r(,zI)r(wk)dr(x) -
1 J r(,,wIy)dx (by the strong FKG inequalities)

n=0

E['I]
00

n=0
00

=E
n-0

00

n=0
00

n=0

n! $
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= p(,wIy) (3.17)

Since X satisfies the strong FKG inequalities its conditional

distributions are associated, so Cov(ct,) 0. i.e. E['t} E[P]E[]
or p(,wIy) p(zt)p(wIy) which implies p(y)2p(,wty) p()2p(zI )p(wty), so

that p()p(,z) pp(y). Thus X has CPCIC.
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(4) Lastly we show that if X is associated then X has PCIC. Let A

represent the event that the interval of length x about x, is occupied for

i=j,...,k. Let f(X) = lAk(X) and g(X) = lA.k(X). Since f and g are
I

increasing functions oI X and X is associated, 0 E[f(X) g(X)} - E[f(X)] E{g(X)]

= p(x1,. .,xfl+k)(x)n*k - p(x1,. . .,xk)(x) p(xk,1,. ,,xk+fl)(xY + o( xI").

Thus, p(x1,, . .,x,fk) p(x1,. . .,xk)p(xk+1,. .,x), that is, X has PCIC. To

complete the proof we will find examples of to point processes, one of which

has CPCIC but is not associated and one which is associated but does not

have CPCIC. 0

Example 3.14 In this first example, we will show that X having CPCIC

does not imply X is associated. The idea is that we know the Poisson point

process satisfies the strong FKG inequalities and so is associated, CPCIC, has

PCIC, etc. It's product densities satisfy a nice convexity condition which

implies CPCIC. Thus, we adjust our densities in such a way as to preserve

this convexity condition while at the same time the adjustment changes the

process enough so that it is not associated. The process we end up with

turns out to be a mixed sample process X on a bounded interval B = EO,bl.

For the actual construction of the densities, first note that if X is a
point process with product densities p and absolute product densities

r(x1,. . .,x¼) = f8(k), that is the absolute product density depends only on the

number of occurrences and not on their locations (e.g. Poisson), then

-ij J ...
J f(k+n) dy1...dy= f5(k+n) (3.18)flOBB nO

Conversely, if p(x1,. . .,x,.,) = g(k) we find that



fB(k) =r(xl,...,xk) = (-1) -jg(k+n)
n=O

1f8(n)=1.n.

g(k) =
n=0
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(3.19)

We will use these formulas to determine from a given choice of

function g representing product densities, the corresponding absolute product

densities. In order for given functions g(k) to be product densities with

corresponding absolute product densities given by (3.19) the following three

conditions must be satisfied:

(1) f8(k) 0 for all k.

(3.20)

Condition 2 says that the total probability of all configurations on

[0,b] must be one, i.e. P[there are exactly n points in E0,bl] = 1. Condition
n=0

3 is the condition that allows us to use the inversion formula to get g(k)

back from the functions f(k). Condition 1 guarantees that any number of

points has a non-negative probability of occurring in [0,b].

Lemma 3.15 If g satisfies

00
E (-1Y g(k+n) for k =0,1,2,...

n=0

g(0)=1

g(k) for k =0,1,2,...
(2b)Lg()

< oo for k =0,1,2,...
L=0

then g determines product densities with corresponding absolute product

densities given by (3.19).

Proof (a) gives us condition 1 of (3.20), and given condition 3, (b)



gives condition 2. Thus we must only show that condition 3 is satisfied.

-jf8(k+n) = E(i)' g(j+k+n)
n=0 1L

n=O n. j=0

E E(-1Y g(j±kn). (3.21)
n=0 j=O

The sum (3.21) can be rearranged as long as we have absolute

convergence of the corresponding double sum i.e. as long as

E g(j+k+n) <. (3.22)
n,J

Since each term of (3.22) is non-negative, it converges if and only if

(summing over diagonals)

g(L+k) L! bL

L=0 n=O n!(Ln)! < °°'

or, equivalently,

E ( L) b- <
LO

g(L+k) L

n)= n=0

By the binomial theorem
( ) bL = (b+b)L, so (3.24) becomes

n =0

(t\L
'' g(k+L) < :2 (3.25)

L=0 L.

which is given by (d). Thus we may rearrange (3.21), again summing

over the diagonals

E E(-1) 1g(i+k+n) = (i) L!

n=0 j=O L=0 n=0

=EbL g(L±k)
(3.26)
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(3.23)

(3.24)



L LBy the binomial theorem, E () (_1)L = [') (-1)(l) (1_j)L, so we
n==O n=O

get 0 here except for when L=0. Thus, (3.26) becomes

g(k+O).1 = g(k) 0

Any function g which is nonnegative and bounded by an exponential

will satisfy condition 3 by Lemma 3.15. For this example we must also choose

g so that product densities satisfy the inequalities giving that X has CPCIC.

That is, we need p(x,.. .,x)p(x,.. .,x) > p(x1,. .,x)p(x,. .,x) or, in terms of g,

g(n)g(ji) g(j)g(ni).

Lemma 3.16 g(n)g(j--i) g(j)g(ni) if and only if g(n+1)g(n-1) >

[g(n)]2.

Proof That g(n)g(jj) g(j)g(ni) implies g(n+1)g(n-1) [g(n)]2 is

obvious, Assume that g(n±1)g(n-1) [g(n)12. If we assume also that

g(k) > 0 for all k our assumption is equivalent to

g(n+1) g(n)
g(n) g(n-1)

Note that in each of the above fractions the argument in the numerator and

the denominator differ by exactly one. Applying our original assumption and

dividing again we also know that

g(n+2) g(n+1)
g(n+1) g(n)

Thus from (3.27) and (3.28) it follows that

g(n±2) g(n)
g(n+1) g(n-1)

or, equivalently,
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(3.27)

(3.28)

(3.29)



g(n+2) g(n+1)
g n) g(n-1)

so that the desired inequality holds for i = k 2.

Inductively assume that the inequality holds for any difference
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(3.30)

which is the desired result.

Now, suppose that there is an n0 so that g(n) =0. Then we can not

divide as in the above argument. In this case, by our initial assumption, we

will have

g(n0--1)2 g(n0)g(n0+2) (3.35)

which implies that g(n4-1) =0. Inductively, this implies that g(n) =0 for all

n n0. We know that g(0)=1. Now if no >1 then g(n0-1)2 g(n0)g(n0-2), by

assumption, implies that g(n0-1) =0. Inductively, this implies that for every

n with 0 <n no we have g(n) = 0. Thus if there is an no with g(n0) = 0 then

the densities correspond to a process with no points. Such a process clearly

has CPCIC. In fact, it satisfies the FKG inequalities. 0

k ii. Then, since i + j n + 1, n - J - 1 so that

g(n) g(ni±1)
(3.31)g(j) g(ji+1)

and

g(ni±1) g(ni)
(3.32)g(ji+1) g(ji)

so that

g(n) g(ni)
g(ji) (3.33)

or, equivalently,

g(n) g(j)
g(ni) g(ji)' (3.34)
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We also want a condition which will guarantee that the process is not

associated. Note that sets A and B are positively correlated (i.e.

Cov(lA,1B) 0) if and only if Cov(lAC,lC) 0. In fact these covariances are

equal since E{lAc.1cJ E[lAc}E[lecj =P((AUB)c) _P(Ac)P(Bc) =

1 P(A UB) (1 P(A))(1 P(B))=1 - P(A UB) 1 + P(A) + P(B) - P(A)P(B) =P(A) +

P(B) P(AUB) P(A)P(B) =P(AflB) P(A)P(B) =Cov1A,1B). Let A be the

event that X([0,]) =0 and B the event that X([,b1) =0. Then AflB is the

event that X((0,bJ) =0 and lACe l are binary increasing functions of the

random variables X([0,J) and X([,b}) respectively. Thus, if Cov(lAc,lBc) < 0 or

equivalently Cov(lA,1B) <0 then X is not associated. That is, we will need to

show

P(X([0,bJ) =o) <P(x'[o,]) =o)P[x([,b]) =o) (3.36)

Theorem 3.17 Let g(0) =1, g(1) =x, and g(k) =2/32 for k3, where
ct<$. Then, there is a choice of a,/3, and b (depending on x and /3) so that

the point process X with corresponding product densities p(x1,,, .,xk) = g(k) has

CPCIC but is not associated.

Proof We check that X has CPCIC by using Lemma 3.16 and checking

each case.

If k=1 g(2)g(0)=x2.1=.cx2 and g(1)2=x2.

If k=2 g(3)g(1) =o2f3.a =a3$ and g(2)2 =a4, but since f3>o, we

have a3i3>x4.

If k >2 g(k +1)g(k 1) = a2j3k*12 .a213k1.2 4j32k4

whereas g(k)2 = (a232)2 a4/324

Thus, by Lemma 3.16 X has CPCIC.

To see that X is not associated we check that (3.36) holds. We also
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must check that a and $ may be chosen so that X is well defined. In order

to do this we first calculate the absolute product densities.
in 2

fB(0) (-1Y g(O+n) = 1 ba+[e 1 +8b] (3.37)
n=0 8

00 a2r 8bf8(1)== E(-1Y -jg(1-+-n)=a+--1e
n=0

00 fibf(k) (-1) -g(k+n) ._a2$2e I, for k2
n=0

Let a=1 and 8=2 to get

f8(0) = b + e_2b, fB(1) = 1 ± [e_2b_1]

and for k2, f8(k) = 2ke_2b (3.40)

Note that f9(k)O for all values of b if k1. In order to be certain

that these functions determine absolute product densities (with corresponding

product densities g(k) ) it remains to choose b so that f3(0)O. In fact for

the example we choose b so that B(°)=°. That such a b exists is guaranteed

by the intermediate value theorem. We now have a, $, and b determining a

well defined X. Finally, we show this X is not associated. Note that

P(X([0,b]) = 0) = f9(0) =0, but P[X([0,]) = o) = P[X([,b]) = 0) I (Jk f5(k) >0

since f(0)=0 and fB(k)O for all k1. So the process satisfies (3.36) and is

therefore not associated. 0

This theorem, together with Theorem 3.7, also shows that X having

CPCIC does not in general imply that X satisfies the strong FKG inequalities.

.Example 3.18 This example shows that X being associated does not

imply X has CPCIC. Consider a Neyman Scott cluster process on R where

1'"'k 77fl L1.Xk

(3.38)

(3.39)
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the Poisson process of cluster centers is stationary with intensity X=1.

Assume also that there are exactly two points independently distributed at

each cluster center according to a distance distribution F which has density

f, continuous with the exception of a finite number of jump discontinuities.

A sample realization might look like the diagram below.

IR

denotes a point occurrence (3.41)

* denotes locations of centers

This process was shown to be associated by Burton and Waymire [5J

but can be adjusted (by choosing an appropriate distance distribution) so that

if points x1,x,, and x3 are chosen far enough apart the inequality

p(x11x2,x3)p(x2) <p(x1,x2)p(x2,x3) holds, i.e. the process does not have CPCIC.

This may be expected due to the fact that in this process one is more likely

to observe points occurring in pairs than in triples or singles. Thus we

would expect that both p(x1,x2) and p(x2,x3) are likely to be larger than either

p(x,x2,x3) or p(x2).

In order to show that a process does not have CPCIC we must first

calculate some of the product densities. This is done by making use of

Moyal's formula (2.57). In this case, from Example 2.36 of the previous

section, the probability generating functional is given by

G(E) = exp J[(JE(x+r)f(r)dr)2 lldx. (3.42)

By (2.57) we can use this to calculate the product densities.

M a
Iaxl...axk



Let

and

0000 k
exp f (1 [17 + E X lEO +r) ] f(r) dr) 1 dx

-00 -00 i=l '

0000 k
hkOl,...,Xk) = I (I {l+E)l[OX](x_l_r)1f(r)dr) ldx (3.44)

-00 -00 i=l

= exp(hk(Xl,. (3.45)

Then, first taking the limit as 77 increases to one,

Mxl,...,xk 3Xl...Xk { Ox1,. k)}

We use this to calculate p(x1):

M1 äi(Xi)1x1 =0 = exp(h1(X1)) =0 (3.47)

but ah,
x1

00 00 00

2 (1 [1+l1[OXl](x+r)If(r)dr)( J f(r)dr-00 -00 -00
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(3.43)

(3.46)

(3.48)

To calculate p(x1) we differentiate Mx with respect to x1. First we change

the order of integration.

Let = I f(r)dr (3.49)
-00

00 00
so, - o1 = (exp(hi))I 2 LL1 + X,

1[O,x1]
+r) I f(r) dr) dx. (3.50)

We evaluate this at =O to get

Mx1J 2 l dx
= EI0 71[ox (x +r)f(r)drdx. (3.51)



M1 2J I lEO,X11(x+r)f(r)drdx =-00-00

a2 G2(X1,X2)

Evaluating (3.57) at =X2=0 we obtain

2J I 1EO,Xll(x+r)f(r)dxdr-00-00

a2h2 ah ah= exp(h2(1,>2))
a1ax2 + -exp(h2(X1,X2))

2h 3h ah2+x

00

Butaax 1 211 ( f [1 +)1[O,Xl(x+r)]f(r)dr) dx)
-00 -00

00 00 00

= J 2I ( l[O,X2](x+r) f(r)dr) dx = J 21112 dx.
-00 -00 -00

Using (3.50) and (3.56) to substitute into (3.55) we find that

G2(X1,?.2) = exp(h2(X1,X2))
" 1' "2

00 00 00 2

1 21112 dx +( f 2I ( f [1 + +r) ] f(r) dr) dx)
-00 -00 -00 i1

00 00

( J 2I ( [1+EI1[OX](x+r)1f(r)dr) dx))
-00 -00 '=1
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(3.55)

(3.56)

(3.57)

00 x1r
_L 1r

f(r)dxdr ==2f f(r)x1dr (3.52)

We differentiate this to get

p(x1)==2. (3.53)

This is the intensity of the point process. Similarly, we calculate p(x1,x2):

= a1ax2 GX1,X2)k =2 ==o and (3.54)



a3Mx1,x2,3 = a> ax ax G3 i,x2,x3)Ix
>'2 X3 =0

i:- 1[O,x2J
+r) f(r) dx dr)

(3.61)
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M1,2 =J21112dx +[7211dx)(7212dx
00 00 00 00

' LL J 1[o,X1](x +r) f(r) dr dx) LL L 1EO,x2] +r) f(r) dr dx)

00 00 00
+ 2 i( J 1io,1i(x +r) f(r) dr))( J li0i(x +r) f(r) dr ) dx. (3.58)

Again we will differentiate, this time with respect to both x1 and x2, to

obtain p(x1,x2). First we change the order of integration in the integrals of

the first term of (3.58).

M1,2 =4 Lt, J1[O,X1]x+rfrdxdr)(I
00

00 00 00
+ 2 f 1[O,x1J +r) f(r) dr)) I

L 1[O,x2]
+r) f(r) dr ) dx

x1r 00 x2r
= LL 1r f(r)dxdr)[J 'r f(r)dxdr)

00 x2x
+211 f)(

-X
f(r)dr]dx

00 x2x
=4xx2 +2J( J, f(r)dr))(

-X
f(r)dr)dx. (3.59)

Differentiating (3.59) with respect to x1 and x2 we get
00

p(x1,x2) = 4 + 2Jf(xi x) f(x2 x)dx (3.60)

Lastly we calculate p(x1,x2,x):



a3 G3(X1,X2)3)

=exp(h3)I_a_( 32h3
)

Eh3 h3 1h3 8h3 ')
(?\3 a2ax, +Iç) I)j

h3 I 2h3 2h+ exp(h3) 1'21 +
'2 J

=exp(h,)E

33h3 32h3 h3 2h3
ax3ax2a, + ax3ax2 +

+ 2h3 h3 + h3 h3 h3
ax,ax, X3 '2 BX,

I23 h3 h3 2h3 3h3+
+ 21 3

h3 3h3 h3} h3+ , since 32a1

62

(3.62)

Note that from the previous two calculations it follows that evaluated at

\1=X2=\3=O is 2x, for each i and that evaluated at X1=>2=X3=O is

4xx+ J 2II dx for each ij. Thus,-
a3

12'3 G3(X1,X2,3)
'2 =>\3 =0

= (4x2x3 + 21213 dx)(2x1) + [4x1x3 +J 2ll3 dx)(2x2)

+ (4x1x2 +f 2II2 dx) (2x3) + (2x1)(2x2)(2x3)

= 32x1x2x3 + 4x11 1213 dx + 4x2J l'3 dx + 4x4 1112 dx. (3.63)



Differentiating with respect to x1,x2 and x3 as before we get

p(x11x9,x3) =32 + 4J f(x2 x)f(x3x) dx + I f(x1 x) f(x2x)dx
00

+4J f(xjx)f(x3x)dx. (3.64)-00

Having calculated p(x1), p(x1,x2), P(X1,X2,X3) we are now able to show

that X does not have CPCIC by making an appropriate choice of f so that

p(x1,x21x3) p(x2) <p(x1,x2) p(x2,x3). (3.65)

The left hand side of (3.65) is (from (3.53) and (3.54))

p(x1,x2,x3)p(x2) =64 + s( J f(x2x)f(x x) dx
-00

+Jfx1x f(x2x) dx +f f(x1 x) f(x3 x) dx) (3.66)

while on the right hand side (from (3.60)) we have

p(x1,x2)p(x2,x3) = 16 + s(7 f(x2 x)f(x x)dx +J f(x1 x) fx, x) dx)

+ 4 [ff(x2 x) f(x dx)(ff(x1 x) f(x, x) dx). (3.67)

Cancelling like terms in (3.66) and (3.67) we are reduced to showing that

64 +8f f(x1x)f(x--x)dx
-00

<16 + 4 [7fx2x) f(x3 x) dx) [Ttxi x) f(x2 x) dx) (3.68)

or,

00

12 + 2f f(x1 x)f(x x) dx

-x) f(x3 -x) dx) (Jf(x1 x) f(x2 x) dx). (3.69)
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let f(x) - n if- 0 otherwise

0 x

0 1 in

0 x
For f = f (3.69) becomes

12 < Ltf2 -x)f(x x)dx)[ff(xj -x)f(x9 _x)dx)

= I J nndx)[ .f n.ndx)

n2 21_fl2
2n 2n 4
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We now determine an appropriate choice of f. For a fixed value of n

(3.70)

(3.72)

Which holds as long as n2 48. So, for example, as long as n 7 we get the

desired result. That is, we have shown

Theorem 3.19 If X is a Neyman Scott cluster process on R where the

cluster center process is a stationary Poisson process with intensity X=1 and

there are exactly two points distributed about each center according to a

common distance distribution having density f(x) given by (3.70) for any

given n7, then X is associated but not CPC.

Let x1=0, and x3=. Then fn(Xj)fr(3) =0 because if

then which implies o that _x>A, thus
fn(x3x) =0. Similarly, if f(x3-x)0 then f(x1x) =0. (see diagram

below)

xl x2 x3 (3.71)
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Proof of Theorem 3.13 First, to see the general idea, notice that

p(x1,x2,x3)=q(x1,x2,x3) q(x1,x2)q(x3)+ q(x1,x3)q(x2) + q(x2,x3)q(x1) + q(x1)q(x2)q(x3)

Whereas, p(x1,x2)p(x3) = {q(x1,x2)± q(x1)q(x2)}q(x3) ==q(x1,x2)q(x3) + q(x1)q(x2)q(x3)

so that p(x1,x2,x3) p(x1,x2)p(x3) since p(x1,x9,x3) contains all of the terms of

p(x1,x2)p(x) as well as additional, non-negative, terms.

In general p(x1,. .,Xk,Xk,i,. . .,X(,fl) consists of the sum of products of q(.)

terms where each such product is taken over a subdivision of (xi,.. .,x,) and

all such subdivisions are represented once in the sum. (e.g. one such product

is q(x,.. .,x)q(xfr,1,. .,x0) another is q(x1,x2)q(x3,x)q(x4,x,. .,x.), etc.). On the

other hand, p(x1,. . .,xk)p(xk+I,.. .,xk,) is a product of similar sums for p(x1,..

and p(xk,,. .,x). Clearly every term in the resulting sum for

p(x,,.. )p(xk Xa) is a term in the sum for p(x1,. .,x). There

are, however, in p(x1,. .,Xk,Xkfl,.. additional terms in which the

subdivisions allow for a combination of x1's with and x1's with

k+1 ik+n, e.g. ..,xk+fl) is a term of the sum

corresponding to p(x1,.. but is not a term of the sum

corresponding to p(x1,. . .,xk)p(xk,j,. Since all of the cumulant densities

are non-negative, adding in these additional terms makes p(x1,. XkXk,1. .

at least as large as p(x1,.
. .,xk)p(xk,1,. . 0

Example 3.20 This example shows that X can have PCIC and still have

cumulant densities that are negative. We consider a process on [0,11 where

the product densities again depend only on the number of point occurrences

and not on their locations. In this case we take p(x,,. .,x) = g(n) where

g(n)=={ c

C2

if n is even

if n is odd
(3.73)
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There are three things we must check:

The product densities p given above determine a completely regular point

process, that is g(n) satisfies the conditions of Lemma 3.15.

The process has positively correlated increasing cylinder sets. That is,

P(X1,...,Xk+fl) p(xi,...,xk)p(xk.i,...,xk+fl) or, g(n+k) g(n)g(k).

The process has at least one negative cumulant density function.

We begin by checking (2) and (3). For (2) we list the possible cases and

note that in each case the desired inequality holds.

In cases (a) and (b) it is clear that g(n+k) g(n)g(k), no matter what value c

takes. In fact in these two cases equality holds. In case (c),
n+k n*k-2

g(n+k) g(n)g(k) if and only if c2 c 2 2 =c2. That is, if and only
if 1 c2. Thus, as long as we take c 1, the process will have PCIC.

To guarantee that at least one cumulant density is negative we will

calculate q(x1,x2,x3).

q(x1,x2,x3) = p(x1,x2,x3) - q(x1,x9)q(x3) - q(x1,x)q(x2)

- q(x2,x)q(x1) - q(x1)q(x2)q(x3)

=p(x1,x2,x3) [p(x1,x2) p(x)p(x2)1 p(x3)

- [p(x1,x3) - p(x1)p(x3)J p(x2)

- [p(x2,x3) - p(x2)p(x3)J p(x1) - p(x1)p(x2)p(x3)

g(n+k) g(n) g(k)

2 k

(a) n even, k even c 2 c2 c

n.k-1 2 k-i
(b) n even, k odd c 2 C2 C___

n.k n-i k-i
(c) n odd, k odd c2 C2



is odd.

CO

f(2n) (_1)Jljg(jj_fl) = oq-(j+2n)

j=0 j=0

j+2n
logg(j2n)= 1 2

if j is even

2

But

Thus, f(2n)

if j is odd

if j is even

if i is odd

= n + 1ogg(j) (3.76)

= (___1)J + Iog.g(j)

j=0

CO

= cfl (_1)J 4. = c f(0)
j=0

(3.77)

67

=g(3) 3g(2)g(1) +2(g(1))3

3 c1c° + 2(c°)3 = c 3c +2 2 - 2c (3.74)

Thus, q(x1,x2,x3) <0 as long as c > 1.

It remains to determine at least one value of c for which the
conditions of Lemma 3.15 hold. That g(0) = 1 and g(k) for k = 0,1,2,... are

CO -Lgiven by the definition. That jg(k+L) < for k =0,1,2,... is due to
L=0

the fact that g is bounded by an exponential function. It remains to show

that (-1Yg(k+n) 0 for k =0,1,2,..., that is, f(k) for each value
n=0

of k.

We consider separately the case where k is even and the case where k

(3.75)



Thus we need only check that f(0) 0 and f(1) O.

f(0) = (1)J4jg(j)
j=O

=,E -j even j odd

1n =0) is c , whereas the

=.z
jeven E jc

jodd

In this case we compare the th term of the sum over evens with the

n+lS term of the sum over odds. Note that this leaves the 0th term of the
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(3.79)

We will compare the sum for j even with the sum for j odd by comparing

them term by term. The th term of the first sum in (3.79) (starting with

with n =0) is (2+1)! c. Since c( 1 1 for all values of n and2n! (2n+1)'
c, f(0)0.

Unfortunately, showing that f(1) 0 is a little more complicated and

requires some restrictions on c.

f(1) (_l)J1jg(j+1)
j=0

(3.80)

We again compare the last two sums term by term. Starting with n=0, the

term of the first sum is again c, however now the th term of the

second sum is (21)' c1. 1(0) is clearly positive for c 1 but this will not

give us the desired result for comparing the property of PCIC with that of

having non-negative cumulant densities. Thus we must look for values of c

that are greater than one and still make the above sum non-negative.

Likewise, f(2n +1) =cf(1) (3.78)

th term of the second sum is (again starting
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sum over odds unpaired with a term from the evens. That is, there will be a

quantity of -c "left over". Thus we must not only check that the pairings

give non-negative quantities, but also that when they are summed they sum

at least to c, making the entire sum non-negative.

1

(2n)! (2(n+1)+1)!

___j.___ n
1

(2n+3)'

(1C

(2n+3)(2n+2)(2n+1)

(3.81) is non-negative as long as 1 (7+3)(2C±,))(2+l) O. That is, as long

as c2 (2n±3)(2n+2)(2n+1). The smallest value n can take is 0, so we need

c26 i.e. c 46.

We have now found that as long as c the pairings we have chosen

provide non-negative sums. It remains to check that we can also make these

non-negative terms add up to a quantity at least as large as c in order to

insure that f(1) 0. To do this we will choose a particular value of c > 1 (to

guarantee PCIC and at least one negative cumulant density) and as

required above.

Let c=1.1. For n=0, from (3.81) we get the term

1(1 _1) .7983 (3.83)

For n=1 we get 1.1(1 1.21
-2' 69.88

(3.81)

(3.84)

Summing (3.83) and (3.84) we get 1.3388 > c = 1.1 so that summing the positive

terms does outweigh the c, guaranteeing that f(1)O. We have now shown
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Theorem 3.21 If X is a point process with product densities given by

p(x1,. . .,x,) = g(n) where
V1

if n is even
C2 if n is odd

with c > 1 chosen so that the conditions of Lemma 3.15 hold (such values of

c do exist) then X has PCIC but also has at least one negative cumulant

density.

This example also gives further evidence that a process which has

PCIC need not have CPCIC. We can easily check that the given product

densities do not satisfy Lemma 3.16. We have g(0) =g(1) =1 and

g(2) =g(3)=c. Thus g(1)g(3)=c, whereas (g(2))2 =c2. Since c>1, this shows

that X does not have CPCIC.
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These appendices summarize some basic material on weak convergence
of random elements. For more complete details and proofs see Billingsley [41
(in the case of random elements of a metric space) and Kallenberg [151 (in the
case of random measures) or Karr [17].

A.1 Weak Convergence (Convergence in Distribution) of Random Elements
in a Metric Space

Let S be a metric space and J' be the Borel a-field on S (i.e. .f is the
oP-field generated by the open sets in S). Let P, rt=1,2,... and P be
probability measures on (S,!).

Definition A.1.1 If ff dP - ff dP for every bounded, continuous,
real valued function f on S then we say P converges weakly to P and write
Pn P.

Let (EF,P) be any probability space.

Definition A.1.2 A random element on S is a measurable mapping
X:cl.S. The distribution of X is the probability measure P =PX' on (5,!).
That is, P(A) = PX'(A) = P(w: X(w) E A).

Weak convergence can also be understood in terms of the convergence
of the distributions of random elements.

Definition A.1.3 A sequence {X} of random elements converges in
distribution to the random element X, written X-+X, if the corresponding
distributions P0 converge weakly to P.

In many situations it may be difficult to check the requirement given
for convergence in distribution. The next theorem states that it is enough to
check that the integrals given in definition A.l.1 converge for bounded
uniformly continuous functions f. It also gives several other equivalent
definitions for convergence in distribution.

Theorem A.1.4 The following are equivalent

a. X0-.X.



urn E{f(X)) = E{f(X)} for all bounded, uniformlyr400
continuous, real f.

urn sup P{X0EF} P(XEF} for all closed sets F in S.

urn inf (XEG) P{XEG} for all open sets G in S.n+
urn P{XEA) =P{XEA} for all X continuity sets A (thatn+o

is all sets A for which P{XEaA) =0).

In the special case where S W for some d, the random element

X:(c2,F,)_,(Rd, d) (where denotes the Borel o-field on IRd) is called a

random variable (in the case where d=1) or a random vector (in the cases

where d>1). The distributions of random variables and random vectors are

usually understood in terms of their distribution functions.

Definition A.1.5 The distribution function of a random vector X is the

function F(x) given by F(x) =P{y:y x} for x EIRd where y means that

for i=1,2,...d.

F has the properties that it is (1) nondecreasing in each variable and

(2) continuous from above. F is continuous at x if and only if {y:y x} is

an X- continuity set.

Another function which is often used to understand information about

the distribution of X is the characteristic function of X

Definition A.1 .6 The characteristic function x(t) for t E Rd

corresponding to a random vector X on Rd is defined by

= J1

<tX>(dx)
J

i <t,x>e = e dP(x)

d
where <t,x> = t, x1.

i=1
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In the special case where s d Theorem A.1.4 becomes

Theorem A.1.7 The following are equivalent

X,.d.,X.

urn E(f(X)) = E(f(X)} for all bounded, uniformly

continuous, real f.

urn sup P{XEF) P{XEF} for all closed sets F in IR.

urn inf {XEG} P{XEG) for all open sets G in Rd.
00

urn F(x) = F(x) for all points x E IRd at which F is
00

continuous.

If clX, I are the characteristic function corresponding to

X, X then x(t)_) x(t) for all t Ed

A.2 Weak Convergence and Convergence in Distribution For Random Measures

Let Rd be d- dimensional Euclidean space and D C ]Rd a fixed, possibly

infinite, subrectangle. Let Bd be the collection of Borel subsets of D.

Denote the subset of Bd consisting of bounded sets (i.e. sets with compact

closures) by . A measure on (D,) is called Radon if (B) < for all

sets BE Bd. Let M denote the set of all Radon measures on (D,Bd) and N the

subset of M consisting of counting measures. Thus, j N if and only if

Z=(O,1,2,... } and (B) < oo for all B ¶Bd. N is naturally identified

with the set of all finite or infinite configurations of points (including

multiplicities) in D without limit points.
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Let A be the a-algebra on M generated by sets of the form {E MJ
i(A)< k } for all A E and 0 k < . Likewise X is the c--algebra
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generated by such sets of measures in N. Note that .N C 4 and so .W is the

restriction of A to N. N' is the oP-algebra on N which allows us to count the

points in bounded regions of D. We will use the notation if to denote the

integral f f d.

Definition A.2.1 The vague topology on M (or N) is the topology for
which 0f -. f for all functions I E where Fc

{ f: F -. R= [O,00l f is continuous and has compact support)

Consequently the vague topology on M (or N) is the topology

generated by the class of all finite intersections of subsets of M (resp. N) of

the form (REM s < f f da < t} for all f E EFC and s, t

M is metrizable as a complete separable metric space (i.e. M is a

Polish space) in the vague topology. Since N is a closed subset of M in the

vague topology, N is also a Polish space. tt and .N are the Borel sets
generated by these topologies.

Definition A.2.2 A random measure is a measurable mapping X from a

probability space (cl,F,P) into (M,A).

Definition A.2.3 The characteristic functional I corresponding to a

random measure X is defined by

= E{exp( iJ 0(x) dX(x)}}

for real valued functions which are bounded, measurable and have compact

support.
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Definition A.2.4 the Laplace functional Lx corresponding to X is
defined by Lx(f) =E{e} for all measurable functions f:Rd_,[O,o).

Definition A.2.5 X converges in distribution to X (written X, X) if

lim E[E(X)J=E[E(X)J for all bounded continuous functions E:A+R.n-900

Note that (X) and E(X) are functions from 2 to 1, that is they are
random variables. Convergence in distribution in this setting is thus exactly

convergence in distribution as described for random elements in definition

A.1.3. In this case the random elements are the elements X and X of the

space A equipped with a metric making it a complete separable metric space.

This definition depends on considering the class of all bounded continuous

functions from A to IR, which is certainly awkward in practice. The

following theorem gives equivalent definitions of convergence in distribution,

including one in which the class of functions to be considered is a more

natural class of functions to deal with, continuous functions with compact

support from IRd to ]R.

Theorem A.2.6 The following are equivalent

d
X.

For each function f:iP , continuous with compact

support, Xf+Xf in distribution as random variables.

The characteristic functionals corresponding to X,

converge to that corresponding to X.

The Laplace functionals corresponding to X converge to

that corresponding to X.
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For each Bj,...,Bk E with a(B,) =0 a.s. for each i,
(a(B1),. . .,/.,.(Bk)) +(,(B1),. .

For each B1,.. .,B, E d with a(B,) = 0 a.s. for each i, and

for every choice of a,,

If X and Y have the same distribution we will write X Y. The

following theorem is a special case of Theorem A.2.6 since if Xr ==Y for all n

then Xn+Y if and only if X rY.

Theorem A.2.7 The following are equivalent

XrY.

Xf =Yf for each function f: , continuous with

compact support.

C. .Lx(f) Ly(f)for each function f:IRd_.s[O,00J, continuous

with compact support.

d. For each Bj,...,Bk Ed, (X(Bl),...,X(Bk)) r(Y(Bl),...,Y(Bk)).

We will now consider the special class of random measures called point

processes.

Definition A.2.8 A point process is a measurable mapping X from a

probability space (2,Ef,P) into (N,.M). The distribution of X is the induced

measure on (N,)f) given by P = PX'.

Since (N,.N) is a restriction of (M,.,lt) a point process may be considered

a random measure. Thus if A E ¶d we set X(A) = the (random) number of

occurrences in A. If f is a function with compact support we set Xf =ft dX.
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Definition A.22.9 Define the translation operator Tx:N,N for x ERd,
W {6x} EN by Tw =5X+X For A E.W let Tx(A) denote the set

(Txw 1w EA}. X (or its distribution is called stationary if for very
xERd, T is invariant. That is, Px(Tx(A)) Px(A) for every x ERd and

A EJ(.

Alternative representations for stationarity, representations in which

we need only consider the random measure X itself instead of dealing with its

distribution, are given by the next theorem, which follows immediately from

Theorem A.2.7.

Theorem A.2.1O The following are equivalent

X is stationary.

For any Borel subsets B1,.. .,B of IRd dist(X(B1),. . .,X(B)) =

dist(X(B1 +x),.. .,X(B +x)).

dist X(Tf) = dist (XI) where Txf(y) f(Ty).

Definition A.2.11 the probability generating functional corresponding to

X is defined by

G(E)= E{exp(
J

log(x) dX(x)J},

Rd

for all real valued, measurable functions E on Rd satisfying (i) 0 E(x) 1 for
all x E Rd and (ii) E(x) = 1 on the complement of a bounded subset of Rd.

In the case of point processes, theorem A.2.7 becomes the following.

Theorem A.2.12 The following are equivalent



dX -, X.

For each function f:1Rd_.+ , continuous with compact

support, Xf+Xf.

The characteristic functionals corresponding to X,

converge to that corresponding to X.

The probability generating functionals corresponding to Xn

converge to that corresponding to X.

For each B1,.. ,Bk E with X(aB,) =0 a.s. for each i,

(X0(B1),. . .,X(B)) (X(B1),. .

For each B1,.. .,Bk EBd with X(B) =0 a.s. for each i, and

for every choice of a,

Note that if X is a stationary point process E[X(B)i =>JB , where lB

denotes the Lebesgue measure of B. Thus X(B) =0 with probability 1 when

lB =0. Since bounded rectangular boxes generate the Borel sets on R and

0 for rectangles B it is enough in e and f of the above theorem to

consider B1,.. .,Bk bounded rectangles. This gives the following corollary.

Corollary A.2.13 If X is a stationary point process then X -4 X if and

only if for each collection of bounded rectangular boxes B1,., in J

(X(B1),.. .,Xn(Bk)) +(X(B1),. .

The above corollary remains true even if X is infinite since 1 can be

written as an uncountable union of translations of any affine d-1
dimensional hyperplane. If any translate of such a hyperplane were allowed

to have positive measure, then all of its translates would have that same

measure by stationarity, thus contradicting the fact that we must have a
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Radon measure. Consequently, boundaries of d dimensional rectangles must

still have measure zero, even if is infinite.




