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DENSITIES AND DEPENDENCE FOR POINT PROCESSES

I. INTRODUCTION

1.1 Introduction

Product densities-have been widely used in the literature to give a
concrete description of the distribution of a point process (See for example,
Moyal [23], Srinivasan [32], or Karr [17]). The first attempt to rigorously
discuss the properties of product densities was made by Macchi {21). In
chapter Il we expand the results given by Macchi to a more general setting
and provide more rigorous arguments for some of the claims made in her
paper. Examples are then constructed to show that these results are in some
sense the best possible. Examples of many commonly occurring point
processes are also discussed and the densities are computed for some of these

processes.

Chapters I and III deal with the concept of positive dependence.
Roughly put, a collection of random variables satisfies a positive dependence
property if knowledge that the variables are “large” (or small) in some sense
does not decrease the likelihood that they are also “large” (resp. small) in
some other sense. In the case of point processes, several notions of positive
dependence can be described in terms of the product densities and absolute

product densities.

Positive dependence notions arose independently in several fields. In
reliability theory one can give estimates on the reliability of a system based

on the assumption that the breakdown of certain components can not decrease
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the probability that other components will also fail (Barlow and Proschan [1]).
Another field in which positive dependence has played a role is statistical
physics. In an attractive statistical mechanical system the occurrence of a
large number of “plus” sites makes it more likely that there will be “plus”
sites elsewhere (see Kinderman and Snell [19]). Newman's Central Limit
Theorem [25] also depends on positive dependence properties. This theorem
was used by Newman in [24] to analyze Ising model magnetization fluctuations
and by Newman and Schulman [26] to analyze density fluctuations of infinite

clusters in percolation models.

The relationships between various positive dependence properties for
random variables have been explored by Barlow and Proschan (1] and also, for
the specific case of Bernoulli random variables, by van den Berg and Burton
(2). These relationships are presented in chapter I. In chapter IIl we extend
this exploration to the case of point processes and show by examples that

the analogous theorem does not hold.

1.2 Positive Dependence for 0 - 1 Valued Random Variables

We begin by considering positive dependence properties of Bernoulli
random variables. Let P be a probability measure on Q={0,1}" with the o-
algebrg generated by points. Q is a distributive lattice with the
coordinate-wise ordering given by A8 =(min{a,B,),... ,min(e.,B,)) and
a VB =(max(aB), . ,max(cn,B,)) for a,BEQR. Let X = (X, - X.) where
X,€{0,1} for each i = 1, 2, --- N. Positive dependence of such random
variables can be described in many ways. The following definitions give a

few such descriptions.
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Definition 1.1 X satisfies the strong FKG inequalities (named after

Fortuin, Kastelyn, and Ginibre) if

PX = aAB)P(X = aVB) > PX = o) P(X = B) for all a,8 €{0,1}N .

Intuitively this condition means that the string (X,,---,X,,) is more
likely to contain a majority of zeroes or of ones than to contain an even
mixture of each. Such a string is “positively dependent” in that knowing
one part of the string contains many ones (for example) increases the
likelihood that there are ones elsewhere in the string. The next three

definitions can be found in Barlow and Proschan [1].

Definition 1.2 (a) A random variable Y is stochastically increasing in

the random variables X,.---X,, if PCY > y | X,=x,---X,, = x,,) is increasing

in the variables x,.--x,, We will denote this by Y'st in X,.--- X,,.

Note that if Y is a Bernoulli random variable the above condition is
equivalent to requiring that P(Y =1|X,= X, Xy = xn) be increasing in the
variables x,--x,. Intuitively this condition says that if some of the random

variables X,.--- X, are ones then Y is more likely to also be one.

Definition 1.2 (b) X is conditionally increasing in sequence (X is CIS)

if Xn?st in X,,---,X,,., for n =1,---N,

Definition 1.3 X has positively correlated increasing cylinder sets (X

is PCIC) if when I, K are disjoint subsets of {1,---,N} and A={X=1 Vi€l}

then P(A, MA,) > P(A)P(A). )

Like strong FKG, definition 1.3 implies that X is more likely to contain

a lot of ones. It does not say, however, what is likely to be seen at



locations with indices outside of the designated sets.

Definition 1.4 X is positively correlated (X is PC) if

P(Xi=1, X,=1) > P(X, = 1)P(X, = 1) for all i, j € {1, --- N }.
Clearly if X has PCIC, then X is positively correlated.

Definition 1.5 X is associated (or, X,,---,Xy is an associated collection
of random variables) if for all pairs of nondecreasing, real valued functions f

and g, Cov(f(X),g(X)) >0, as long as this covariance exists.

The intuitive interpretation of association is more clear if we first
consider the following theorem giving an equivalent definition, and a lemma

giving an alternative formula for calculating covariances.

Theorem 1.6 If Covif(X),g(X)) > O for all pairs of nondecreasing binary

functions f and g then X is associated.
Proof omitted (see Esary, Proschan and Walkup []).

The following lemma is due to Hoeffding [14]. The proof given here
appears in Lehmann (20).

Lemma 1.7 Cov(f(X),g(X)) =

R0 X0

J _[ P(f(X) > u,g(X)> v} —P(f(X) > u)P(g(X) > v)dudv, (1.1)

=00 -0

provided the covariance exists.

Proof Let U =f(X) and V=g(X). Let (U,V,) and (U,V,) be independent

and each distributed as (U,V), then



2Cov(U,V)=2Cov(U,,V,) =2(E(U,V,) — E(U))E(V))) =E((U, — U,)(V, — V,))

oo OO

—EJ J B cup T cuptlly gvyp — Ly g vpldudv (1-2)

-0
where l{ugU} is the indicator function of the event {u<gU}. That
is,

1if U >u

1 = (1.3)
tu< U} { 0if U<u

Since Cov(U,V) exists, E|UV|, E|U| and E|VI are finite, so we may take the

expectation inside of the integral signs to get that (1.2) is

Elly cup —Yu cupliv <vy — Ly < vyldudv

3«-—-—18 8'-——5

11
g

—_ E[l{ + Ef1 dudv

v<Vattu <UPTEL G cuptv < v

P(UxZusvléV)—P(Uz2usV12V)

o

g——28

—P(U;>u,V,>v)+P(U,>u,V, >vidudv

R X

=2] JP(UZu,Vzv)—P(Uzu)P(VZV)dudv a

-0 -0

Note that Theorem 1.6 and Lemma 1.7 imply that X is associated if and

only if
P(f(X)>u | gX)>v ) > P(fX)>u) (1.4)
for all nondecreasing binary f and g and all real numbers u and v. The
lemma implies P(f(X) >u, g(X)>v) > P{(X)>u)P(g(X) >v) which implies that

the integral in (1.2) is nonnegative. Conversely, if Cov(f(X), g(X}) > 0 for all
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nondecreasing binary f and g, then Cov ( l{f(X) >u}’1{g(X)>v} ) > 0 where
1{f(_)§)>u} is the indicator function of the event {f(X)>u}. Thus,

E(l{f(x) > u) l{g(x) > v)) P E(l{f(x_) > u}) E(l{g(x_) > V}) which is equivalent to
(1.4).

From (1.4) the intuitive interpretation of association is that X is
associated if whenever we know that one type of nondecreasing measurement
of X is large the likelihood that another type of nondecreasing measurement

is also large is increased.

It is well known that for two binary random variables definitions 1.1
—1.5 are equivalent. For the case of n binary random variables, where n >?2
definitions 1.1 through 1.5 are related by the following theorem, the proof of

which can be found in Barlow and Proschan {1].

Theorem 1.8. X satisfies the strong FKG inequalities = X is CIS = X

is associated = X has PCIC = X is PC.

Theorem 1.8 is actually true for more general random variables, i.e.
not only for binary random variables. That strong FKG implies association is
a consequence of the FKG paper {12]. That strong FKG implies CIS is
automatic from the definition and that CIS implies associated appears in

Barlow and Proschan [1]. The other implications are automatic.

None of the reverse implications in Theorem 1.8 hold. Van den Berg
and Burton [2] have shown, however, that the above definitions can be

modified so that they become equivalent.
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Definition 1.10 X is conditionally associated if for each JC {1,---,N}

and ag € {0,1}" dist( X | X, = (ag); V j€1I) is associated.

Definition 1.11 X has conditionally positively correlated increasing

cylinder sets (X has CPCIC) when if I, J, K are all subsets of {1,---,N},

o €{0,1}" and if A, is the event that X,= 1 for all i €] then
PIAI X, = (ay), V JENPAL X, = (&), V JED

Similarly, we can define conditionally positively correlated (CPC)

Theorem 1.12 (van den Berg and Burton) If P assigns positive

probability to each outcome in {0,1}" then the following are equivalent

a. X satisfies the strong FKG inequalities.

b. X is conditionally increasing in sequence (CIS) in all orderings.
That is, if o is any permutation of {1, 2, --- N} and Y,= Xgy,
then Y =(Y,, -~ Yy is CIS.

¢. X is conditionally associated.

d. X has conditionally positively correlated increasing cylinder
sets.

e. X is conditionally positively correlated (CPC).

Theoreml.12 was essentially proved by J. Kemperman [18] in a

different context. See also Perlman and Olkin {29]).

That the conditions given in Theorem 1.8 are not equivalent is easily

shown by the following example:

Let X = (X,X,X;) where X,,X,,X; are distributed so that the

outcomes of X have the following probabilities:




outcome probability
(1,1,0) 1-15
(1,1,1) :
(1,0,0) 21-3
(1,0,1) %
(0,1,0) Il‘é

outcome prébabilﬂ
( 1
O,L.1) :

3
(0,0,0) 3

1
{0,0,1) i€

(1.5)

Then, P(X,=11X,=0) =% P(X,=1]X,=1) =1 P(X,=1]X,=0,X,=0 )=

B —

3

1
2’
P(X;=1]X,=1,X,~0) =§, P(X;=1]X,=0,X,=1)= %

P(X;=1|X;=1,X,=1) =%

1
So X is CIS and thus also associated. Now reverse the order, that is let Y

= (Y,Y,Y,) =(X,,X25,X5). Y is also associated, since the property of

association does not depend on order, but

1
) P(X,=1,X,=0,X;=1 8
2 =, L i —
g 16
whereas, :
P(X,=1,X,=0,X;=1) 8 1
P(Y;=11Y,=1,Y,=1) =P(X,=1|X, =1,X;3=1) = =L 222 - = -
P(X, =0,X;=1) é_*_fl_é 2

so that Y is not CIS even though it is associated. Y is also not FKG since it

is not CIS in all orderings.

Van den Berg and Burton also showed that even if all configurations

do not have positive probability we still have most of Theorem 1.12.

Theorem 1.13 Suppose that 2 = {0,1}", as above. Then the following are
equivalent:
a. X satisfies the strong FKG inequalities.
b. X is conditionally associated.

c. X has conditionally positively correlated increasing cylinder sets

(CPCIC).




II. POINT PROCESSES

2.1 Preliminaries For the Point Process Case

Let R? be d- dimensional Euclidean space and D C R a fixed, possibly
infinite, subrectangle. Let ®B° be the collection of Borel subsets of D.
Denote the subset of B9 consisting of bounded sets (i.e. sets with compact

closures) by B9, A measure £ on (D,B% is called Radon if u(B) < = for sall

sets BE B9, Let M denote the set of all Radon measures on (D,B¢) and N the
subset of M consisting of counting measures. Thus, 4« €N if and only if
u(B)EZ+={0,1,2,--- } and u(B) < =c for all BE®B4. N is naturally identified
with the set of all finite or infinite configurations of points (including

multiplicities) in D without limit points.

Let A be the o-algebra on M generated by sets of the form {u&€ M|
w(A)< k } for all A€%Y and 0<k <o. Likewise N is the o-algebra
generated by such sets of measures in N. Note that N T M and so N is the
restriction of M to N (see Kallenberg [15] for details). N is the o-algebra on

N which allows us to count the points in bounded regions of D.

The vague topology on M (or N) is the topology generated by the
class of all finite intersections of subsets of M (resp. N) of the
form {LEM] s Ifd,a <t} for all functions f € F¢ (where Fo ={f: R* - R'=

[0,¢] | f is continuous and has compact support} ) and s, t € R.

Both M and N are metrizable as complete separable metric spaces (i.e.
M and N are Polish spaces) in the vague topology and A and N are the Borel

sets generated by these topologies [15].
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Convergence in the vague topology is defined as follows. Un converges
to 4 in the vague topology, written 1» u o if If’ dun —» If du for every

f € 9.

Further details on the structure of these spaces and on convergence

of random measures are given in the appendix.

Definition 2.1 A point process is a measurable mapping X from a

probability space (Q,%,P) into (N,N). The distribution of X is the induced

measure on (N,N) given by Py= PX'I.

Thus if A€B? we set X(A) equal to the (random) number of

occurrences in A.

Definition 2.2 Define the translation operator Tx:N—N for x €RY,
w={d¢}EN by wa=(6x,+x}‘ For AEN let Ty(A) denote the set
{Tgw|w€A}. X (or its distribution PX) is called stationary if for gvery
x€ERY Ty is Py invariant. That is, PX(TX(A)) =PX(A) for every x €R? and

AEN.

Example 2.3 The most fundamental point process is the Poisson point

process. Given a Radon measure A on RY a Poisson point process X with

intensity A is a point process such that

kl kn
P(X(By) =k,,...,X(Bo) = ko) = AP —ABD  — (ABI"  —AB)

k! .. P (2.1)

for all k,,... kn €Z% and B,,..,Bn disjoint elements of B?. That is, a Poisson

process is defined for the measure A on R? by the following two conditions
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(see, for example, Daley and Vere-Jones [8])
(1) For every B €8 X(B) has a Poisson distribution with mean
A(B).
(2) For any finite family of mutually disjoint bounded sets B, B°

the random variables X(B) are mutually independent.

When the measure A is taken to be a multiple of Lebesgue measure,

i.e. A(A) =M\IAl for some 0< \ < oo, we obtain a Stationary Poisson Process.

An equivalent characterization of the stationary Poisson process is

the Law of Rare Events (See Billingsley [4]):

Theorem 2.4 Suppose that X is a point process satisfying the following
conditions:
(1) (completely random) X(B,),...,X(B:) are independent for disjoint
Borel sets B,,...,Bn.
(2) (without multiple occurrences) P(X(A) >2) = o(IAl) as IAI—0.
(3) (homogeneous) P(X(A) =1) = NIAl + o(lAl) as IAI—-0, where

0 <AN<oo and Al is the Lebesgue measure of A.

Then X is the stationary Poisson point process with intensity

A(A) =\IAL

2.2 Product Densities

We now wish to define densities for point processes. That is, for each
n, n=12,.. we want functions p(x,..xn) such that p(x,...Xn)lAX, ). J1AXAI
approximates the probability of points occurring in the intervals Ax,,...,Axn

about X,,...,Xn when the Lebesgue measure IAx| is sufficiently small.
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The description of such densities will depend on certain regularity
conditions. Such conditions rule out the possibility of multiple occurrences

in X. Much of what follows is based on ideas presented in Macchi [21] and

Fisher [11].

Let Ny = {ue N :uad) =% 6x(A) } for each set in D where | is a

i<l
subset of Z¥ (I may be either finite or countable) , x,€ R? and
_Jlifx € A "
Ox,= { 0if x, € A 2-2)

Thus N, consists of all outcomes g which have no multiple occurrences.

Definition 2.5 X is called almost surely orderly (a.s. orderly) if

PXEN,) = 1.

Definition 2.6 X is called analytically orderly if for each x £ D

P(X(Ax)>1) = o(lAx!) as the d-dimensional rectangles Ax, members of a fixed

substantial family, decrease in Lebesgue measure to x.

Note that it is not necessary for the rectangles Ax in our definition
to be centered at x. By “substantial family” we are following the
terminology of Rudin {31]. That is, a collection § of open sets in RY is called
a substantial family if

(1) there is a constant co >4 >0 such that each E €8 lies in an
open ball B with IB| <8 |Ei and
(2) for each x €R® and 6§ >0 there is an E €8 with x€E and

diameter of E =sup{lx —yl:x€E,y €E} less than §.

Example 2.7 An exemple of a substantial family is 84 = {rectangular

boxes with side lengths Si»-- 2SS4 Such that there exists 0<a <1 with S§;>a
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d
for each i j}. The Lebesgue measure of a set E €8 is given by |[E| = Is.
i=1

S5

d d
Let s,= max s. Then |[E|= []s = (s)* I 5
o . J

> a(s ) =a’ ¢ By
i=1,.., i=1 i=1

where ¢ is a constant (depending only on d) and By is the ball circumscribed
about the cube with side lengths s,. If B is the smallest ball enclosing E
then BCB,, so ad~c|Bof2ad~clBl. Thus 8, satisfies condition (1) with
B =a’c. Since we are considering rectangles of arbitrarily small size it is

clear that 84 satisfies condition (2).

It is easy to see that analytically orderly implies a.s. orderly,

although the converse is not true.

Example 2.8 Let A be a random variable on (0,o) with density function
given by f‘()\)=-—)\i2 for A\>1 and f(\) =0 for 0<A < 1. Given that A =)\, let X
be a Poisson process with intensity A. X is an example of a mixed Poisson

process. Such processes are considered again in Example 2.32.

Since X is Poisson, it is clearly a.s. orderly however,

o0\ 2
PX(AX)>1) 2 P(X(Ax)=2) = [ MUAXD, —M1AxD )
0

[ o]
— (|A2x|)2 i o —NIAXD 4
1

___(_Ié_le)f rE_Le—x(lel) |°°] _ lAxl —lAx]
x| 1 2

Thus as IAx! approaches 0, '—Al—)dP(X(Ax)>l)2 e""AX', which approaches 1.

That is, P(X(Ax)>1) is not o(lAxl) as Ax approaches 0, and so X is not

analytically orderly. This example is not so nice in the sense that

E(A) =E(X(Ax)) =o. A similar example, for which X turns out to be

stationary, follows.
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Example 2.9 This example was presented by E. Waymire in seminar
notes. Let X, be distributed on (0,1) with distribution function given by
F(x) ={x. Given X, =x,, let X, be uniformly distributed on (0,x,). Then let
X be the point process given by X =_§°6X2 +nX, where & is the dirac delta
function, dy(A)=1 if xE€A, 0 if x¢ZA. X is then a periodic point process with
phase X, and random period X,. In fact X is a mixture of stationary periodic

point processes and so is itself stationary (although we still have that

E({X(Ax)) = c0).

X is a.s. orderly but P(X(0,x] >2) > P(X, is in the interval (0,%x]} since

if XIE(O,%X] then X-ZE(O,%] and X, +X, <ix+lx=x so X, +x16(o,%1 but

P(XIE(O,%X])=P(Xlglle=F(%x)=i;g\]T<. If we let (0,x] =Ax then as IAxi

2

1 p R EN SR ER——
approaches 0, ‘Ale\X(O,x] >2) Zle‘ 3 Jx =N: which approaches oo

as x approaches 0. Thus P(X(Ax)>1) is not o(lAx!) as Ax approaches 0, and

so, again, X is not analytically orderly.

Given a compact subset A of D and disjoint Borel subsets Ay, . An of
A let Ri(A,, .,A.) be nl' times the probability of exactly one point occurring

in each of the sets A,,...,An and no other points occurring in A.

Definition 2.10 A point process is called semi-regular if all Rl are

absolutely continuous with respect to Lebesgue measure on A"= A X...XA

Thus, by the Radon-Nikodym Theorem, for a semi-regular point
process we can write
n! RL( X5 9%q ) =I . I r( Xy 0%p )X . . dX,. 2.3

So that rl( Xy 9Xn VAKX .. JAXA] Hﬂh‘s th%"interpretation as an approximation to
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the probability that X has exactly n occurrences in A, exactly one in each of
the regions Ax;. That is, the probability that there are n occurrences in A,
one in each region Ax, is ro( Xy, 0%, )lell...lenl—}—o(miax lIAx]). Note that

the functions r: are unique up to a.e. equivalence classes.

Definition 2.11 We will refer to the Radon-Nikodym derivatives r as

the absolute product densities of X.

Definition 2.12 Assuming that the expectations given below are finite

for bounded A,

(a) The gtﬂ order moment measure is the measure on the product

space A X ...XA (n-fold product) given by
Mn(A, X ... XA, =E(X(A))...X(A.)

{(b) The r_lm order factorial moment measure is given by

t t
Mi(A, X... XA ) =EX(AD"M . X(A)'") where t,+...+t, =n

and st =s(s—1)...(s—t+1).

That M. and M|, really are measures follows from the fact that X is
non-negative and o-additive, thus M, is a measure. Extending this to

measures on product spaces gives that M, is a measure.

Note that Mn(AlXXAn)=M[n](A1><XAq) for dlSJOlnt Al!---rAn- We
will drop the subscript n or [n] whenever it is clear which measure is meant.

The following theorem was stated by Macchi in [21] without proof.

Theorem 2.13 If X is a semi-regular, almost surely orderly point

process with absolute product densities r:( Xy..Xn ) then for Ay,..,A, disjoint

M(Al xX... X An) = J‘- . .J‘ pn( Xyy . 9 Xp )dxl...dxn (2.4)

where A An
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3 1 " do,...de (2.5)
Pn( X5.. X0 )=‘E0 5 r Xy -2 XnyByy. .50, )d0,...d6, .
J= A
Proof: Let A,...,A. be disjoint d-dimensional rectangles. By

definition, M(A,x... x An) = E(X(A)) ... X(An) =

O
ky...kn P(Agko;. . ;Ankn) where P(Ag,kg;. . . ;Ank,) represents the
ko,k 19¢ - .,kngo .

probability that there are k, points in A, k; in Ay, k., in A, and

n
Ayj=A\J A,

i=1

Fix € > 0 and much smaller than P(A ko . sAnka). Given X€E N, let
S(X) be the minimum distance between the point occurrences of X. Since X is

a.s. orderly S(X) > 0 a.s. Set E ={XeN: S(X)>% }. Then E,C E,C...

xR0
and UL=)1EU =N almost surely, so Ulgn’oo P(E)) = 1. Thus, there exists a v,
so that for v>v, P(Ey) > 1—e. That is, all points (with the exception of

an event of probability less than ¢) are farther apart than tl/ units.

For each v >y, partition each set A, by a partition ? () consisting of

N

@
T (v) subsets A (v} i=1,.,T(v) where each subset has diameter less than
and belongs to a fixed substantial family 8. (In fact we may take the
partition elements to be elements of a substantial family of the form 84 as

described in Example 2.7, so that each A:n(u) is actually a rectangle). Then

n i
P(v) =l P(v), the collection of all subrectangles A:)(U), forms a
J=0
n
partition of the set |J A;. For the remainder of the proof will omit the (v)
j=0

in order to simplify the notation. It is to be understood however that each

partition and partition element depends on v.

For v>uv, let B be the event that there are k, points in A, k, in
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Ay, ..k in A, and C the event that there are ko points in A, k; in Ay,.. .k, in
A, and each point occurs in a different subrectangle A:i). Then CCB and
B\C is the event that there are ko, points in A, k, in A,..,k, in A, and at
least one subrectangle contains more than one point. B\C C(C EUC, the
complement of E,, and so P(B\C) < ¢. So
P(Agkes. . ;Ankn) =

m kol (1) tky) (1)

(kn
TP, A, A A Al AL 4 PB\C) (2.6)

1 n

n
where the sum is taken over the HO[ EJ] possible ways of choosing k, of the
J= J

rectangles Ag) i =1,..,T, k, of the A

0] (1) {knl,

. i=1,..,T,, etc. and Pk(Ao R S

where k=k,+...+kn denotes the probability that exactly k points

occur, one in each of the listed sets.

By symmetry (2.6) becomes

Tn Tn
Z . 2 R N I -1 Ve) 2.7)
N - o - ko! kn!
ool = 1 i, "i"o = 1
1,71 lo?éi:)
* % ('E ) M (|: ) . i
Where P, = P(A! .., AyC. .. Al...A' ). By absolute continuity of P,

with respect to Lebesgue measure, (2.7) becomes

ZZ 1?171?1“' [ J r'(x) dx 4 P(B\C) (2.8)
o kol

(1?) (12 )]
n
A0 An

- El—,kl, I J r*(x) dx + P(B\C) (2.9)
0 nt
kg = kny X
AOO\AO An \An
Where x = (x?,...,xso,xi,...,x: ,...,x'l‘,...,x:) and A, = diagonal elements of the
1 n

partition in A:“, i.e. elements of the partition which contain points of the
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diagonal of A:“.

By Lebesgue’s Dominated Convergence Theorem, as we let €—0 (thus
causing the diameters of the elements of % to approach 0, A:“\A, - A:“, and

P(B\C)—0), (2.9) becomes

- B [ [ ri(x) dx (2.10)
o n
k Kn
AL AL
Z°° 11
k .
k0=0,kl,. . .,kn=1 Ako Akn
o} [}

[+ *]
11 1
= Z ko! (k,—1)t """ (ka—1)! J I nwdx @1

k0=0,k1,. . .,kn=1 k

On the other hand,

[«
I. .. I z I u% £ Xy X0 8,40, )dX,. . . dx,d6,. . . dO,

A1 An J= AJ
(o]
I I > I I L 00 Xy 0 Xa 0,008, )X, - . dx.dO,. . . dO,  (2.12)
A, j=o

Let j = ko+k;+...4+kn—n. Partition A into disjoint pieces Ay, LA

n
and let A, = A\ |JA. Then rewriting the integrals over A in (2.12) as
i=1
integrals over the subsets A, we get

(&9

k0’=0 kl=1 kn=1 Ako Ak" (Eku) — n

0 n

1 Nt % 8) ASAD
ik, —DF (=D I I ro( %,0) dgde (2.14)
Ako Akn

0 n
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where (%,8) = (%) 4Xn8y,..48).  Since (2.14) matches (2.11) the theorem is
proved in the case where AgA,,..,A, are rectangles. Since rectangles form a
generating class for the o-algebra of Borel sets on R? the theorem holds for

all Borel sets. (u}

Corollary 2.14 If X is a semi-regular, almost surely orderly point

process with absolute product densities r';( Xy -Xq ) then

M (A") = J . I prl Xy, Xn MX,. . dXn (2.15)
A A

Proof This proof follows the above quite closely, so many details will
be omitted. By definition

M (A" =E[{X(ANX(A)—1)..(X(A)—n+1)]

o~
=3 k(k—1)...;k—n+1)P(x(A)=k) = K —m)

k! .

> P(X(A) =k) (2.16)
k=l’l =
As in the above proof, partition A by a partition P(v) consisting of T(v)

subsets A"(y), i=1,..,T(v) where each subset has diameter less than % and

belongs to a fixed substantial family 8. For fixed v let B be the event that
there are k points in A and C the event that there are k points in A, each in
a different subset A”(v). Then, as before P(B\C) < ¢. Now,

P(X(A)=k) = 3 P,(A',..,A)+P(B\C) (2.17)
where the sum is taken over the [T(l’:)] possible ways to choose k of the
subsets from P(v) and P(A',..,A") is the probability that k points occur, one
in each of the listed sets. By symmetry (2.17) is the same as

T() i ;

kl, P(A",..,A™) +P(B\C) (2.19)
il!“'!ik == 1 )

14#1:

By absolute continuity of P, with respect to Lebesgue measure this is
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>k J J ri(© dx + PB\O) = L J ryx) dx + P(B\C)  (2.20)
Al Aik A™A
Where x = (x,,..,x,) and A = diagonal elements of the partition in A", i.e.

elements of the partition which contain points of the diagonal of A".

By Lebesgue’s Dominated Convergence Theorem, as we let ¢—0, (2.20)

becomes
- ) ' (2.21)
= K r (x) dx )
An
n x k
Thus M (A") = > . )‘P(X(A)——k)
k=n
= ! { = 1 k+n N
=z (kin)!'kl! J’;@ dx = X K J r, (xdx n]
k=n k=0
A" AN

Piecing together the above theorem and corollary we get

Corollary 2.16 If X is a semi-regular, almost surely orderly point

process with absolute product densities r:( X,.. X, ) then

t |1
M[n](All X...XAkk) = I P -I pn( Xl,...,xn )dxlan

where t, 4... 4+t =n. Al Al

By the above corollary, in the case when X is a.s. orderly and semi-
regular the factorial moment measures M[nJ(AIlX...xA:k) are also absolutely
continuous with respect to Lebesgue measure. Conversely if we know that
the moment measures are absolutely continuous and that the process X is a.s.

orderly then a similar argument shows that X is semi-regular.

Definition 2.17 The functions p(x,,..,x,) will be referred to as the

product densities of X.
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The following theorem (Fisher [11]) shows that the product densities
are well defined in the sense that the definition does not depend on the
initial set A. That is, if we define p starting with a different set, say B,
which also contains the points Xp-9Xe and let p, be the product density

based on the set A, p; the product density defined based on the set B, then

PalXy. . 4Xn) = pg(X,,.. ,Xs) almost surely.

Theorem 2.18 If X is a semi-regular, a.s. orderly point process then its

product densities p(x,,...,X,) are independent of the set A.

Proof Let S be a set disjoint from A. If Xy .4Xn are points in A then

o
rA(X1’~..’Xn) =E l| J‘ 2:.‘)(8( }‘lp ,Xn’ 1 9 )d@ (2'22)
k=0 K'J
and S
1 o
pAUS(XI’.“’Xn) = E . ( ‘(1’ "(n’ 1 9 )de
k=0 X'
(AUUS)

I
™8
™8

=
ey
ey
’SI'-‘

7 Xy Xy 0, 00,40, (2.23)

Using Fubini’s theorem to rearrange the sums we get

-3 LS L e, 0)dghes Lag .29
=R I e R B Ol
AJ Sk‘J

where x =(x,,..,x.),0=(6,,.,8,), 6% =(6,.,6,.), and @Y =(,. ,.,0,). By

(2.22) this is

<_.|._.

-5

J

L[ et 000,
A

=p(Xy5. . 4X5) 8]

11
Lemma 2.19 If p(x,y) >0 for all (x,y) and pr(x,y) dxdy <o then if we
00
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define TA(x) by TA(x) =AI AI p(u,v)dudv, TA(x)=o(!Axl) for almost all x,
x Ax

where Ax =|[x -1

1 lg _
2A,x +2A] for 0<A2(1 X).

1
Proof Case (1): Assume p(x,y) >0 for all (x,y). Let g(x) =Ip(x,u)du. g
[+]

is integrable for almost all x and !_l_x—l I g(u)du —g(x) for almost all x. i.e.
Ax
SA(X) = I g(u)du = O(lAx]) for almost all x. Thus
Ax
( ) TA( X)
TA(X) = —S.(x)= O(lAxl) for almost all x. 2.25)
SA( S,(x)°A SA( X)

(x
It suffices then to show that §~A—(—X—) —0 for almost all x as IAxI—0. Assume
A

not, then there exists a measurable set F(C[0,1] with IFI>0 and an a >0 so

TA(X)
that for every x€F, lim sup

>a >0. Let § be the class of sets
lAxi—0 SA()

(x)
g= { 1A x+1A] AxlSA( ) %} G is a Vitali cover of F. That is,

for each ¢>0 and x€F there is a Ax€(§ so that x €Ax and IAx| < e (see

Royden [30]).

Now, let e==—— Ig(u)du and e’==% Ig(u)du. Recall that for g

F
nonnegative and integrable with respect to a measure u over a set F, given

€ >0 there is a § >0 so that for every set ECF with IEl<é we have

Igdu <e ([30)). We now choose § >0 so that IEI <6 =°I p(u,v)dudv <e and
E E

6’ >0 so that [El<e= I g(u) du < ¢€’.
E

Let A, <d and by the Vitali covering lemma find disjoint intervals

N
Ax, =[x, —%A., X, + %Ai], i=1,.,N so that |[F\|JAx,| <6’. Note that
& i=1



IU [xi —

=1
subsets of [0,1]. Thus

TA(X) o
SA(x)> =_2TA(x)> »ZSA(X) so that

€ > I p(u,v)dudv > % I
N

g(u)du

J(Aax)? O(Ax,)

=1 =]
=g [ Ig(u)du — [ g(u)du] > & [ Ig(u)du ——e’]

2 2

F N F
FALitAx)
=1
= % Ig(u)du =€
F

which is a contradiction

Case (2): If there exist (x,y) such that p(x,y) =0 we may apply case 1
to the function h(x,y) =p(x,y)+1, since h(x,y) >0. By case 1 for almost all
1 1
% ag | bvdudv—o0 as 1Asi=0. Thus, Jo [ [ 14 puvidudv
Ax Ax Ax Ax
IAxI—{—-—I I plu,v)dudv —0 for almost all x as lAx|I—0. Thus
Ax Ax
f}{—' I j p(u,vidudv —0 for almost all x a
Ax Ax
Lemma 2.20 If p(Xy,...%,) >0 for all (X,5. . 4%n)
A A

and
I Ip(xl, »Xn)dX,...dx <o for d-dimensional rectangles A then if we define

TA(Xv- . 9Xn) by

TA(XI""’X")=I I j

jp(ul,...,um)du1 du,,,,
Ax, Ax, Ax,

Ax,
T A} 0%,) = o(max 1Ax/) for almost all (x,,..,%,) as max|Ax/|-—0, where Ax, is

N
A,,x + 1A] = 3 A7 <6> A <6 since Ax, i=l1,.,N are disjoint
y =1

23
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the d-dimensional cube centered at x, having volume IAx,| > 0.

Proof As above we first assume that p(x,,..,x,) >0 for all (x4y. . Xn).

Let h(x,,...,xn)=Ip(x1,u,x2,...,xn)du. h is integrable for almost all (x,,..X,)

A
and A%T. A% I I hu,,...,u)) —=hix,,..,x,) for almost all (x,,..,X,), i.e.
Ax, Ax,
SA(XI,...,X,-,)= I I h(u,,..,us) =0(max1Ax|) for almost all x. Thus, as in,
AX, AX, '
TA(xl,...,xn)
Lemma 2.19 we need only show that =2 — 30 for almost all (Xy,..5Xa) as
SA(XI,...,Xn)

max lAxl—0. Assume not, then there exists a measurable set FC A" with

IFI >0 and an a>0 so that for every (Xyy...,%Xn) €F,

T Ay 0%0)

lim sup >a >0. To complete the proof, proceed now as in the
SA(xl,...,x,,)

proof of Lemma 2.19 applying the multidimensional version of the Vitali
covering lemma (see Cohn (7]). o

Note that the above lemma continues to hold if each Ax. is, instead of

a cube, a member of some fixed substantial family 8.

For X semi-regular and almost surely orderly let H(A,..,A:) be the
probability that exactly one point occurs in each of the sets A,,..,An and

other points may or may not occur in A. Then

o .
HA, A = 5 9D s ALAD (2.26)
. J! A
n =
Where A, = A \ |JA. By semi- regularity this becomes
i=1

Szl

X
H(A,,. .. An)= Z L I I I PRy X ) dxg L dxg, (2.27)
A

=0
! L AL A
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The following theorem shows that p(X,,..,X,) can be interpreted as

being the functions for which p(xy,...,X)IAX,l ...1AX,]  approximates
H(Ax,,...,Axn) for Ax,,...,Axn sufficiently small. That is, the probability that

there is an occurrence in each Ax, is p(x,,...,x.)IAX,| ...IAX. + o(maxlAx ).
i

Theorem 2.21 If X is semi-regular and a.s. orderly with product

densities p.(x,,...,X,), then H is absolutely continuous with respect to Lebesgue
measure and has density

Pnl Xppe- X )= 2 I rNJ( Xy Xy, 40, )d8,. (2.28)
3—0

AJ
Proof The proof begins by following Macchi’s work [21] and concludes
by applying Lemma 2.20. Let A,,..,An be disjoint subsets of A and members of
a fixed substantial family. We know that p is the density for the factorial

moment measure M(A,X.. XAd). i.e

O
M(A, X. .. XAn) = I . J >3 lj 7 Xy Xy 0, )d0,...d6 dx .. .dx,

We compare this with (2.27) to get

M(Alx .- XAn)-— H(A“...,An) =

1

o0
I. . I EoJl' J 2 Xy X0y 0, )d0,...d0 dx,.. dx, (2.29)
A A ! ANAY

If we let each A, decrease in size IAx,| towards the set consisting of

the single point xio, with each x? distinct, then A, increases to A.

Define Q by

M(A, X . XAn) — H(A,, .. ,An)

Q= AX,] . A% (2.30)
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j-1
Note that A’\ Aé = U xi (A\A,) X'"! Then due to symmetry of the absolute
product densities we _may consider only the set where i=0 to obtain
[ 1070 XXy, 00, )d6,
AJ\A;
= J 7 Xy Xy 48, )d0,...d6

J-1 )
Lg X' (A\Ay XI7t

- - I 7 Ry X8y 0, )60 (2.31)
(A\A,) AV

So that QIAx,| ...I1AX.l

w .
= I . J E :‘J_' I “J( Xppe 0¥y 460, )d0,...d0 dx,.. dx,
A, A "° (A\AAY!

0
- J : I I > (T—l—l)' I 7 Xy aXeBye 0, )d0,...d6 dxy...dx,

A An (AVAY) AV
m N
- Z %Q‘“( X 9%, 010, )d0,...d0 dx,...dx,,, (2.32)
A AANA) O A
M. (A X .. XA X(A\Aq
Thus Q = b 1 X X AnX( ')). (2.33)

A, .. 1A%

but by Lemma 2.20

M (A X OXARK(ANAY) =M, (UA X XA XAZ KA X .. X An)
i=1

hand ZM[er](AI >< . )\’A,_IXAFXAMX... XAn)
=1



= Ip(xl,...,xn”) dx,...dx,,,
i=1
=3 o(maxlAx) (2.34)
i=1 !
for a.a. (x,,...,Xn) so that QIAxll,...,IAxn!=o(m;axleil). i.e.,
) M(A, X...XAn) — H(A,,...,An)
lim =
1AX,l,.. ., JAX, =0 S SURPRV:S 51
4 M(A, X... XAn) H(A,,...,An)
lim e lim T =0 (2.35)
1A l,..,|Axl—0 1A% ]. . ,IAx] 1A L. ., |Ax =0 18X, |Ax%,]
So that
) H(A,,. . ,An) i M(A, X... X An)
lim _—_— = lim
1A% ),.. ,|Ax, =0 1A%, JAX,] 1A%, . 4lAx,1—0 14X ], lAX,]
= p(X,y. . 4Xn) (2.36)
H(A;,.--,An) .
Thus, as each Ax, approaches 0, m approaches p(x,,..,Xn), that is,
H(A,..,As) has density p(x,,...,xn). (n]

The first part of the following theorem was proved by Macchi in [21].

The extension of the theorem follows from Lemma 2.20.

Theorem 2.23 If X is a.s orderly and p(x,y) is bounded on compact sets

then X is analytically orderly. If X is a.s. orderly and the functions p(x,y)

exist then X is analytically orderly almost everywhere.

Proof Let Ax be a neighborhood of x and assume that p(x,y) < N for



each x, y €Ax. Then

E[X(Ax)(X(Ax) —1)] = I I p(x,y) dxdy < N 1Axi? (2.37)

Ax AxXx
which implies that

1AxI™ E[X(AX)(X(AX) —1)]= lAxI J J px,y) dxdy < N (2.38)
Ax Ax
X
But, since P(X(Ax) > 2)= Y P(X(Ax)=k) and E[X(Ax)XX(Ax) — 1)]
k=2
: [« 2]
= > k(k—1)P(X(Ax) =k} we have that E[X(Ax)X(Ax) —1)] > P(X(Ax) > 2)
k=1

P(X(Ax) > 2)
Ax/I?

P(X(Ax) > 2)

So that Al

< N, which implies < N lAxl, which in

turn implies lim MAX)—_M

e : r 3 — A
1Ax|—0 Axl = 0. ie. P(X(Ax) > 2) = o(lAxl).

Now assume that p(x,y) exists for every pair x, y, but is not
necessarily bounded. As above we have

P(X(Ax) > 2) < E[X{Ax)X(Ax) —1)]

f

J J p(x,y) dxdy (2.39)
Ax Ax

but by Lemma 2.20 I I p(x,y) dxdy = o(lAxl) for almost all x as

Ax Ax
IAx|—0 a

Note that a.s. orderly is a necessary condition in the above theorem.
For example, if we take X, to be uniform on [0,1] and let X be the point
process X=26X1' Then p(x) =2, and p(x,,...,%n) =0 for each n >1, so that
the product densities exist and are even bounded, but X is clearly not

analytically orderly.

Corollary 2.24 If X is a stationary, a.s. orderly point process for

which p(x,y) exists almost everywhere, then X is analytically orderly.
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Proof The set S of points where X is not analytically orderly has
measure 0 by the above theorem. By stationarity of X, S is translation

invariant, thus S must be empty. 0

Example 2.25 It is possible, as this example will show, to have a point
process X with product densities which are finite almost everywhere but X is
not analytically orderly. The process X is determined as follows. Let X, be

1
a random variable distributed on [0,1] with density fl(x)=%x 2, Then,

choose X, distributed uniformly on [0,x,]. X, thus has density given by

1
o for 0<%, <X
(%) {x‘ “= (2.40)

~ 10 otherwise

At L At
Thus, P(X(0,A) 22) = P(X, €[0,at]) = [ Lx T2dx =« o = (A% which is
0

D1

clearly not o(lAtl) as At —0.

On the other hand we can easily calculate the product densities of X.

1
If we let 0<x<y<1 we find p(x,y)=%y 2.1 _

3
v y 2=r(x,y). Note that

roI—

r(x) and r(x,,.,x,) are 0 for n>2 since we always have exactly two points.

R 1 1+ ;
Thus, p(x) = z 3 ol X048, )d0,...d6, =Ir(x,y)dy
= (0,17 0
X 1 X 3 1 3
=[rtey)dy + [rey)dy = [1xT2ay 4 [1y T2 ay
2° 2
0 X 0 X
1 I | 1 i 1
1,7 3,1, . 2 =172 _ 23,72 _
53X +2( 2y ){X 3% 1 4+x 5% 1, so that the

product densities are finite except at 0.

Corollary 2.23 indicates that Examples 2.8, 2.9, and 2.24 are in some

sense the best possible.
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Theorem 2.26 Let R be a bounded d-dimensional rectangle. X has

absolute product densities r:(xl,...,xn) if and only if it is absolutely

continuous with respect to a Poisson point process.

Proof Let PX be the distribution of X and p the distribution of a
Poisson point process with parameter A=1. Assume that PX << p. By the
Radon-Nikodym Theorem there exists a measurable function ¢ on (N,N) such

that Px(du) = ¢(u) o(du).

Recall that a measure u € N corresponds to an unordered set of points
{xy..,%.} in R%. Let N,={ulu(R)=n). N, corresponds to all n point
configurations in R? and N=EJ°ON,,. For any subset A of N, define A by

n=
A=((x1,...,xn)lthere exists 4 €A with u corresponding to the measure

6X1+"'+6Xn}' Then

P(XEA) =Py(A) = [ ¢(w) oldu) = L [3(x, . xe " Rlax, ax,  (2.41)
A "1

Given disjoint subsets B,,...,B, of R let A ={u&N.IuB) =1, i=1,...,n}
then

a(xp- .sXp)e —IRI Xm. ~dx, = h];' I . I a(xlr ~a¥Xn)e —RI dXI- ..dxXq (2.42)

i
B, B.

3 l.—-
TS

but P(X€A) =R2(x1,...,x,,), so we have found that n!RZ has density
a(xl,...,xn)e“lm. By uniqueness of the absolute product density, X then has

absolute product density rl(xl,...,xn) =$(x1,...,xn)e_m| a.e.

Conversely, if X has absolute product density r:(xl,...,xn) we let
a(xl,...,xn)=r1(x1,...,xn)e'R'. Then following the above argument in reverse
#¢(u) is the density of Py with respect to p. i.e. Py <<p with Radon-Nikodym

derivative ¢(u). 0
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From here on we will take X to be semi-regular and a.s. orderly.

Definition 2.27 A point process X is called completely regular if its

absolute product densities exist and can be computed from its product
densities using the following inversion formula
n L (—1)
rA(xl,...,x,,)=Z 5 j‘ p(xy,. . 4Xn0y,..,0,)d0,. . .de, (2.43)
j=0 e
Note that if the sum in (2.43) is absolutely convergent we can

rearrange the sums and integrals in the expression

= (—l)J & 1 (n+y)e¥ -
j§0 = kzo i | Ta CXpeXo, o 0dx,, oodx, (2.44)
A’ A*

and by the binomial theorem obtain r:(xl,...,xn). i.e. if (2.43) is absolutely
convergent, the inversion formula is valid, so X is completely regular. For

example, as long as the product densities p are bounded by an exponential

function, the process is completely regular.

2.3 Conditional Densities and Cumulant Densities

In order to consider conditional distributions, that is the probability of
events occurring given that we already have some information about which
points have occurred, we need conditional densities. The conditional product

densities are defined in a natural way.

Definition 2.28 A point process X with product densities p(x,,...,x,) has

conditional product densities given by

p(xlr . ~,meu~ . ~,Ym) (2.45)

(X4 Xl Vi oY) =
p 1 WXl Vi 9¥m p(yl,...,ym)
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and conditional absolute product densities given by

T, (X5 Xns¥ 1505 Ym)

P(Vis -y ¥Ym) (2.46)

rA(Xl" . '9Xn| Y- ~sym) =

for Xy..4Xn ¥y ...¥m € A,

If X has product densities one can also define cumulant densities

a(xy,...,X,) (also called the correlation functions) corresponding to X
inductively by the following relationship with p(xi,...,X.)

p(x,) = q(x,)

p(x;,x.) = qlx,x,) + q(x,)alx,)

Pl X,X20X,) = a(x,X5X%,) + alX,Xs)alxs) + q(x,,x5)a(x))

+q(x,x)a(x,) + alx)alx,)a(xs;) (2.47)

and so on, so that p(x,,.,xn) is written in terms of q by subdividing (X,,...,Xn)
into all possible configurations of disjoint subsets and adding the

corresponding product of g’s,

2.4 Generating Functionals

We seek here to extend the notion of multivariate probability
generating functions and characteristic functions to the more general setting
of point processes. This development follows that given by Gupta and
Waymire [13] or Fisher [11]. More on the theory of probability generating

functionals for point processes can be found in Westcott [33].

We begin by considering the finite dimensional structure of the
process X in order to discover what the natural extension ought to be. Let

Ay .,An be subsets of R°. The joint distribution of the random vector




33
(X(A)),..,X(An)) is uniquely determined by the probability generating functional

X(A ) X(An)]
’

gty .t = E[t, .t o<t <1 (2.48)

We can rewrite (2.48) as

st = Efonofion 7. )

= E{exp| _,\r"_‘l log(t) X(A))} (2.49)
-

Since X can be thought of as corresponding directly to a sequence of points
w={x} in RY it induces a counting measure N(A)w) = #{i: x,€ A} on RS
Thus, given a real-valued measurable function f on R® we may define for

each w the integral of f with respect to the process X as follows

J f(x) dX(x) = Z f(x). (2.50)
R¢ l

If we define the function ¢ on R? by

¢x) = { t, for xEA,n, 1<i<n 2.51)
1 for x ¢ J4A,
=1
n

Then Z log{t)X(A) = I log £{x) dX(x) (2.52)

i=1 R
So that, gty ..,tn) = E{exp[ J log £(x) dX(x)]} (2.53)

Rd

The above discussion leads quite naturally to the following definition:

Definition 2.29 Let S be the set of all real valued, measurable
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(i) 0 <$(x) <1 for all x €R?
(ii) €(x) = 1 on the complement of a bounded subset of RY (2.54)

then the Probability Generating Functional corresponding to X is defined by

G(£)= Efexp| I log€(x) dX(x)J}, €€S (2.55)
Rd

Note that the finite dimensional distributions of X can be recovered by

taking £ to be of the form (2.51).

Theorem 2.30 The probability generating functional G of a point

process X can be expressed as

G(g) = E{ 3! €x) }
X EW

where w is the point configuration {x} corresponding to X.

‘ Proof G(§)=E{exp| I log €(x) dX(x)]} = E{exp] ;\:1 log(t) ]} (by (2.49))
: 1=
Rd

- E{ X‘Igwexp(log ¢(x,)) } = E{ x,gw £(x,) } a

Definition 2.31 The Characteristic functional ¢ of a point process X is

defined by
®(¢) = E{exp| iJ #(x) dX(x))} (2.56)
Rd

for ¢ bounded, measurable, and having compact support.

The characteristic functional is actually just a special case of the

probability generating functional. If we allow complex valued functions ¢ and

ip(x)

take £ to be of the form €(x) =e , then G(§) = ®(¢).
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The factorial moment measures (and thus the product densities) can be

computed using the probability generating functional according to the
following formula due to Moyal [23):

MXI,. .aXn = M([Orxllr . -1[01Xn]) =

n
i {2, o 1+ h1g0,0) o7
Tnl a>\18>\n [ i=1 [O’X']] )\l ==>\n =0

Where 1[0 %] denotes the indicator function of the interval [0,x]}, that is

1if x

S, 3
o) = {o if x € ( 259

To calculate the product densities from this formula we differentiate

My, .x.- That is,

1
aﬂ

PXyy- 0} = =

(Mg, x-) 2.59)

2.5 Examples of Point Processes

Example 2.32 The absolute product densities of a stationary Poisson

point process (defined in Example 2.3) are easily calculated:

10 (X5 - X)IAX 1 JAX) + 0(JAX,I. . .IAX) =P(X(AX,) =1,.. ,X(Ax,) =1,X(A) =n)

- —NAxXy \IAY
—(MIAx e TNARI Ay 1 TMAXR! )0 a0 o —NIAYI
n
=Ne " MAlAx 1. IA%,|, where A= A\[J Ax..
i=1

o(IAxlI...IAx,,I)_N, —\AI
Ax,JAxg " ¢ '

decrease to the single points x, we obtain

Thus r"A(xl,...xn) + Taking the limit as the sets Ax,

£1(xy...x,) =g TMA! (2.60)
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The probability generating functional of a Poisson point process X

with intensity A has the form:
G(€) = exp{ [ {£(x) —1]dA(x) } (2.61)

and its characteristic functional is:

i ¢(x)

®(¢) = exp{[ {e'® — 1)dAx) } (2.62)

For a Poisson point process with intensity A which is absolutely
continuous with respect to Lebesgue measure with density f(x), Moyal’s

formula (2.57) can be used to calculate the product densities as follows:

Using the probability generating functional given above (2.61),

. " :
My, . x = lim {5 GL7+2 M }
‘(1, X 771'1 {a)\la)\n [ lgl [O’XI]] )\12 =)\n=0
{ 5 [J AL fGod ]}
={——— exp i XJax
d\,... 9N =1 ol AN=...=N=0

n n
{ I;[ f(X)I[O,x,]dX] exp[ J E )\'I[O,X ]f(X)dX]}x o

n
iI;IlJ-f(X)l[O,XJdX (2.63)

an
So that p(Xl,---;Xn) =m (MX“...,Xn)

n

= an wm= . .
~ 3%,...0%n iI;IJf(X)l[o,xl]dX =f(x)-... 1(xn) (2.64)

Using the inversion formula (2.43) we can now easily calculate the

absolute product densities:

0 (__l)J
ra(X,,..,X,) = Z -—J- P( Xy5 . 4XeyB)y. 40, )0,



Example 2.33

random variable I.

(random) intensity I.

o] )J
E ————I f(xl)...f(xn)f(Bl)...f(OJ)dOI...dO
AJ
=f(x,)-...-f(x,) Z J f(BI)...f(OJ)dOI...dO
=0 '

AJ

J
— ) £ 3 (—:J——,”J ( [ £(6) de)
=0

=f(x)-... f(x,) exp[ — J £(6)de).
A
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(2.65)

To obtain a Mixed Poisson Process we start with a

We then take X to be a stationary Poisson process with

That is, one first observes the outcome of I and then

forms a Poisson process with that outcome for its intensity. A mixed Poisson

process X has probability generating functional given by

G(¢) = Ejlexp( [ [£(x) —1] dI(x))]

(2.66)

By our calculations for the stationary Poisson process (2.60) the mixed

Poisson process has

absolute product densities

—IIAI].

ralXy..Xa) =E[I"e

The corresponding product densities become

R 1
p(xp---)xn) = 2 1
=0 I

~

7 | Ta(Xp0Xn,8,,..,0)d0,

AJ

o [ —
=3 Ll Erme™ A 4o, a0,

J=

o
[

x0 [
5> l,I i™ie VAl 4o, )
=0 * 11

AJ

E[I go Jl, iad e " TIAl _ g

(2.67)

(2.68)
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Example 2.34 To define a Mixed Sample Process we first take Y to be

a random variable with values in {0,1,...}). Conditioned on Y =k let Z,,...,Z, be
uniformly and independently distributed on {0,b] as occurrences of the mixed
sample process X. Such processes are characterized by the fact that their
distributions are invariant under measure preserving transformations. The

absolute product densities are thus independent of the location of the points
Xy---sXn.  That is they are of the form ralX,,...sXn) =fa(n). These models are

analyzed in Kallenberg [16].

Example 2.35 Cluster Processes A major class of point processes is

the cluster point processes. Such processes have been used to model a wide
variety of things from populations (Moyal [23)) to clustering of galaxies
(Neyman and Scott [27]). A nice overview of examples of cluster process

models is given in Neyman and Scott [28].

In general, a cluster process can be thought of as being generated in
two steps as follows. First a point process X, is observed. This process
generates the cluster centers. Next, for each cluster center x, a new process
Xo(-|x;) is observed, giving the cluster members. The cluster process X is

then the process X(A) = 3 X, (A|x).
X‘E X1

The probability generating functional corresponding to X is (by
Theorem 2.29)
Ge) =E{ I1 ¢} (2.69)
y.€X
but y, €X implies y, € X;(A |x,) for some j, so

ce) =E{ II | [T &y) } =Gy(Gyelx). (2.70)
XJEX] yiEXQ(A[XJ)
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Next we will consider some specific examples of cluster processes.

Example 2.36 a Let U be a stationary Poisson process on R with

intensity A and V be a point process satisfying E[V(R%] <. As above let u;
denote the random occurrences of U and take these as the cluster centers.
Let V,,V,, .. representing the cluster members, be point processes which are
independent and identically distributed as V. The resulting cluster process X

is then a Poisson Center Cluster Process with centers U and clusters V. X

can be written as X= Y V(A —u) and the probability generating
uevu

functional (2.70) takes the form
G(g) = exp( [ Gy (Txt) —1] hdx] (2.71)

where Ty represents the translation operator (Ty£)(y) = £(x -+ y).

Example 2.37 b This special case of the Poisson center cluster process
was used by Neyman and Scott [27] to model clustering of galaxies. Here we
consider a Poisson center cluster process where about each of the cluster
centers a random number of cluster members are independently distributed
according to a common distance distribution F. The resulting point process X

is referred to as a Neyman Scott Cluster Process.

If we let G, be the probability generating function of the cluster size
then the probability generating functional of X is

G(e) - exp[J[Gl[I (Tx€Xr)dF(r)] — 1) A dx]) (2.72)
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I POSITIVE DEPENDENCE FOR POINT PROCESSES

3.1 Definitions of Positive Dependence

The definitions of positive dependence for Bernoulli random variables
are easily extended to the point process case. The first definition we give

was first stated by Burton and Waymire [6].

Definition 3.1 X satisfies the strong FKG inequalities if for all sets

A SB? there exists a version of the absolute product densities such that

J-i+l

n
ri(xy, ... ,:::n)rA

(% o 5X) 2 r(y, XK, L x0) 3.1)

for all x;, ... ,xn€A, 1 <i<j<n.

Knowing that X satisfies the strong FKG inequalities gives us some
information about the structure of the point process X. For example the
following two theorems tell us something about types of configurations we
can expect for point processes satisfying the strong FKG inequalities along
with other conditions. From now on, whenever it is clear what is intended,
we will omit the superscript indicating the number of arguments for the

absolute product densities.
Theorem 3.2 If X satisfies the strong FKG inequalities then rg(J) > 0.

Proof: The proof is by induction. Let X=X, Y=Y, X, Yy, and let
r‘em be a version of the absolute product densities for which the strong FKG
inequalities hold and r‘em(QS) =0. Then

=g (<Y ) D) > rPx,) 1y ) (3.2)

which implies that either r(8°)(x1) =0 or rg”(yl) =0. Thus, there is at most
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one point xi for which r(BOJ(x:) >0. It then follows that

P(X(B) =1)=[ rP(x)dx =0. (3.3)
B

Before proceeding, we choose a slightly different version of the

(1
© on a set of measure 0. r

“), differing from ry 5

absolute product densities, ry

is the product density that agrees with r(Bo’ except that r;” is 0 whenever it is

evaluated at any configuration which includes the point xi. That is,
r(B“(;(_) =0 for any x of the form x =(x,,...,X,) where x.=x: for some i. Note

that rg)(z) still satisfies the strong FKG inequalities and that r;“(}_(_) =0 for

any singleton x =x,.

Now suppose that we have x=(x,X,) and y =(y,,y,) where X,X5,Y; and

Y are all distinct. Then by the strong FKG inequalities
0=ry(x, y) (@) > ro(x)ry(y) (3.4)
which implies that either r(B“(g)=0 or r;“(z)=0. That is, no two disjoint
pairs can both have positive absolute product densities r(B“. If x,x,y,y, are

not all distinct, say x, =y,, then

0 = r (%, %2, ¥2) 1 (%) > 10, %) r yy, ) (3.5)
so that either r;”(xl,xz)=0 or r;”(yl,yz)=0. Thus no two pairs with one
component in common can both have positive absolute product densities rs).
Putting together (3.4) and (3.5) we find that there is at most one pair (xf,xi)

for which r(“(xf,xg) #<0. Thus

B

PXB) =2) = 1 [ [ rx,y)dxdy =0. (3.6)
BB

(2)

We again choose a new version of the absolute product densities, i

(2

where ry

) agrees with r(B” except for on configurations containing (xf,xi). We

. 2
will now have r;)(}_g)=0 for any x =(x,,..,x,) where xi=xf and xJ=x§ for
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- (2 . . .
some i,j. Thus Ty (x) =0 for any configuration X containing one component

(2)

or two components and g

still satisfies the strong FKG inequalities.

Inductively assume that we have chosen rg‘) as above so that it agrees

. (k-1) . . . ] ) .
with r”° except for on configurations containing (x} ’,‘..,x:_i). Thus rg‘“

satisfies the strong FKG inequalities and rg"ll(}g):O for all configurations

% =(x,,...,x) where j<k.

Now let x=(x,,..,x,,,) and let Y ={yy,..4¥..1), X not identically equal to

Y. Then, since x Ay has k or fewer components,

(k}
8

“y) (3.7)

(2)rg

0 =rg‘}(§/\x)rg‘](§\/x) >T

Thus, as before there is at most one 2<_=(x§",...,x::i so that

“()( k+1

k+l
rg (x] ,...,xm)—-O and we have

PIXB)=k+1) =] ... | t¥x,, .,x,)dx, . dx,=0. (3.8)
B B

. Co K+l
As above, we choose a new version of the product densities, r;‘)

. , (k
agreeing with rBJ

except on the set of measure zero consisting of the
configurations containing (x:‘l,...,x::i). Thus rg‘m satisfies the strong FKG
inequalities and rg"“(:i)=0 for all configurations x containing k+1 or fewer

components.

We have found by induction that P(X(B) =n)=0 for any n. This

implies rg(@) =1, which is a contradiction. Thus rg(J) >0. 0

The following theorem guarantees that for a point process X on R°
which satisfies the strong FKG inequalities, if any individual points have
positive probability of occurring (positive absolute product densities) then

any configuration of those points has positive absolute product densities.
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i.e. all configurations are possible.

Theorem 3.3 Suppose that X satisfies the strong FKG inequalities then
there is a subset A C D so that P[X(A) = 0] = 1 and all configurations are
possible on D\A , in the sense that if B < D\A is a bounded Borel set, then
there is a version of rg(x;,-,Xn) that is strictly positive for all distinct

Xl,- ° ‘,Xn ln B.

Proof We may assume that all the product densities and absolute

product densities are Borel measurable. The relation

p(x) = iﬁl_' I re(x,y) dy (3.9)

n=0 B"
of course holds only a.e. on B, since rg is unique up to a.e. equivalence
classes. If (3.9) does not hold for x, redefine re(X,y) = 0 for all y € B" and
all n. The strong FKG inequalities still hold and we may redefine p(x) = 0 so
that (3.9) holds everywhere. Furthermore this will change p only on a set of
measure 0 (even as we vary B). This is because the expression (3.9) is

independent of B by Theorem 2.18.

Now let A = { x€ D | p(x) = 0 } and let B be a bounded Borel subset of
D\A. We show that if (x,,-,xm) € B™ has distinct coordinates then
rg(xy, -,Xm) > 0. Suppose otherwise. Repeated applications of the strong
FKG inequalities gives

0 = ra(X, Xm)e(@)™ > ralx)rg(xs) - relXm) (3.10)

This means that there is an x; so that rg(x) = 0. We rename X = X.
If v , z€ B" have distinct coordinates and if for each i = 1,--n

X7y, 72,%x% then
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0 = rglx, y, Drex) > relx, yrelx, 2). (3.11)

Thus at most one of rg(x, y,) and rg(x, z) can be strictly positive. This
implies rg(x, y,) = 0 for y - a.e. on B". But in view of (3.9) this means that

p(x) = 0 so x € A, a contradiction. &}

Definition 3.4 X has Positively Correlated Increasing Cylinder Sets (X

has PCIC) if

P(Xy5...,Xn) 2> P(Xyy. . X) P(Xpys. .. 4Xn)e (3.12)

Definition 3.5 X has Conditionally Positively Correlated Increasing

Cylinder Sets (X has CPCIQ) if
P(Xp .. X)) DX, .. .,X,) > P(Xyy...,X ) P(X,. .. Xn) (3.13)

for 1 <i<j<n.

Definition 3.6 X is Associated if Cov(F(X),G(X))>0 for all pairs of
functions F,G:N—R that are increasing, measurable and bounded (where
increasing means increasing with respect to the ordering on N given by u < v

if u(B) < v(B) for all BEBY)

Burton and Waymire (5] showed that Definition 3.6 is equivalent to the
family of random variables {X(B) | B €%’} being associated. That is, all

finite subsets of {X(B) | BE€®B°} are associated in the sense of Definition 1.5.

To see how these definitions are a natural extension of the definitions
of positive dependence for Bernoulli random variables consider the following
method of approximating a point process X with well defined densities on the

interval [0,1]. For each n and k =1,...,n define

. . rk—1k
X ={ 1 if there is an occurrence of X in | ) - 1,,11 ] (3.14)
0 if there is no occurrence of X in [ *5—, & ]
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That is, X" = min(1,X] k ‘n‘l,§ ]) and each X{" is a Bernoulli random variable.
X" =(x{"...X") approximates X and X converges to X in distribution.
Thus, for example, FKG for a point process X can be thought of as a limiting
condition of FKG for the random vectors X'™ . In the limit we indicate just
where the ones are, ones indicating the occurrence of points. Burton and

Waymire used a similar approximation technique for point processes on R" to

prove the following theorem [5].

Theorem 3.7 If a point process X is completely regular and satisfies

the strong FKG inequalities for all cubes A € R® then X is associated.

Remark In their original version of the above theorem Burton and
Waymire required that the absolute product densities be piecewise
continuous. This condition was used to create an appropriate partition in
order to approximate the integral of the absolute product density by a
Riemann sum. The following lemma, however, shows that the piecewise

continuous condition is not necessary.

Lemma 3.8 If ACR" is a bounded rectangular box and f is a non-

negative real valued function on A for which the Lebesgue integral If(&)dg

A
is finite then there exists a sequence N,—o> so that if P, is the even

partition of A into (N,)" rectangles of equal measure, P, ={A¥} i=1, . ,(NJ"

and an xi“‘) €A™ so that lim Zf(x,“‘)) IAY] = If(&)d§<oo.
k= ' A

Proof Given € >0 choose k so that %<e. Let B, ={x|f(x) >M}

where M is chosen large enough so that IBMI<§1§ and I f(g)d§<3(1)—k. Let

™M
fu(X) = min(f(x),M) and note that If(g)dg - I(f(g)——fM(g))dg. Choose a
B,, A
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continuous function g:A -+[0,00) such that Ig(x)l <M, Ilg(§)~fM(§)ldx <6lk
A

} thenlUl < S Choose N, so that

and if U={x¢By| Ig(x) —f(x)| > —— <2Mk

6IAIk

1

all Riemann sums based on P, ={A™} are closer to Ig(&)dg_ than &K

A
Let G be the set of all A¥€P, such that there exists an
x €AM\(ByUU). Let this x be the choice for x*. Let L be the set of all
Af”EPk such that A G but there is an x in A¥\B,,. Let this x be the

(k)

choice for X, Let B be the set of all A™ which are not in G or L. i.e.

B={a"14¥CB,.). In this case choose x so that f(x) < inf f(x)+1.
x €A

For the remainder of the proof we will omit the superscript k. Now

we have

| ffwdx — Treoiar | < | [ rdx — [r0dx |
A A A

+ | IFM(i)dz - Ig(z)dz [+ | Ig(z)dz — Sex)lAl |
A A A
+ 1 Tex)al — S f(x)1Al |

<gr A+ &+ T 1) — Al + T fex) — %) 14

30k T 6k N R
+ 2 lgxnal + 3 [fx)A)l
AEB AEB
1 1 1
<z F+a=+ 3 Al + 3 2MIAl + M B
0k T3k T A% GIATK NG M
+ (14 inf f(x))IA|l
A,ZEB X €4,
11 1 :
< 35 + grap Al + ZM(IUL 4 Bul) + MIBy +A%B(1 + Xlngi £(x))1A|l
1l 1 -
<3k tept 2M(12Mk ) + M +A%‘B(1 + Xlngl £(x)) 14l
21 , M .
<&+ 4 1 f f(x)1Al (3.15)
30k T 2k A,EEB( SN
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) M _3mu Ll Ao 3
Note: (1) 3% =3Mgr <3 [ twdx < 3350 = 3op ond
™M
(20 > (14 inf fNIAL = 3 1AL + 3 ( inf £(x))IA}
A€B X €A, AEB AEB X€4,
1 1
< Bl + I f(x)dx < 6k + 30k
By,
So that (3.15) is
21 3 1 A1
<30k T30k Texk Tk -k <€ o ‘

Example 3.9 The Poisson point process is easily seen to satisfy the
strong FKG inequalities. We earlier calculated the absolute product densities

(2.65) and found that r,(x,,...,Xn) =f(x1)-...-f(xn)exp[—j f(9)d9] so that

A
n g
!'A(Xl, ,xn)rA (X‘, ,XJ)

= [£x)-... Fxa) exp| — J f(9)d9]][f(x,)-...-f(x_,)exp[—J £(6)do)]
A A
= (£0x) G0k, ). 1)) (£Cx) .. -£x ) exp[ — [ £(6) de]]2
A
= [f(xl)-...-f(xJ)][f(x,)-...-f(xn)][eXp[—I f(9)d9]]2
A

J n-
=r,(x), ... X (%, LX),

In fact, we have found that for the Poisson Process, equality holds.

Example 3.10 An application of Schwarz’s inequality (see Feller [10])

shows that the mixed Poisson process also satisfies the strong FKG

inequalities. Recall that we found ralxy,...,Xn) = E[ I"e_”A,] where | is a
nonnegative random variable. Let Yk=Ike —1 IA’, f(k) =E[Y¥] and
' a +b

g(k) =log(f(k)). Let b >a. By Schwarz’s inequality ElY 2 ] <(E[Y*)AE[Y®?))>.
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1
i.e. f(a—';—b) <(f@)f(»)2. Thus, g(a—;——b)g%(g(a)cf-g(b)). i.e. the moments of

Y are log convex.

An alternative expression for convexity says that (for ¢>0)

g(b+c) —gla+c)>g(b) —gla) so that g(b) +-gla+c) <glb+c) +gla).

Equivalently, in terms of f we have f(b)f(a+c) <f(b+c)f(a). Now let

a=j—i, b=n—i, and c=i to get the strong FKG inequalities.

Example 3.11 Burton and Waymire [5] showed that Poisson center

cluster processes are associated. As we will see later, these need not satisfy

the strong FKG inequalities.

3.2 The Relationships Between Positive Dependence Definitions

We must be careful with approximations such as the one suggested in
(3.14). Based on the comparisons of the definitions one might expect a
theorem for point processes analogous to Theorem 1.12. In particular it
seems reasonable to expect that strong FKG and CPCIC are equivalent. They
are not however, and the relationship between the positive dependence

definitions is a bit more complicated.

Theorem 3.12 If X is completely regular then the following

implications, and no others, hold

X satisfies the strong FKG inequalities

/ \

X is CPCIC X is associated

S e

X has PCIC
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Note that if the product densities are strictly positive for all
configurations, CPCIC and conditionally positively correlated (CPC) are

equivalent since we could write CPC as p(x, zl y) >p(x! y)p(zl y) where

Thus p(x, 2, ¥) _ p(x, y)p(z, y)
p(y) p(y) p(y)’

p(x,y,2)p(y) > p(x,y)p(y,z). If x =xy..,%., Y=V, .Y, and z=2,,.,2, @

or equivalently,

Y=V 5¥Yn

simple induction argument extends this to p(x, y, 2)p(y) >p(x, ¥)p(z, ¥)
which is CPCIC. Thus adding this further restriction on PCIC in the point

process case still does not give a definition equivalent to strong FKG.

Note also that if X satisfies the strong FKG inequalities, then the
conditional absolute product densities will also satisfy (3.1). Thus all

conditional distributions of X will also be associated by Theorem 3.12.

By the following theorem, the cumulant densities defined in section 2.3

also play a role in describing positive dependence properties.

Theorem 3.13 If a point process X has cumulant densities which are

always non-negative then X has PCIC, but not conversely.

3.3 Proofs and Examples

In this section we give the proofs of Theorems 3.12 and 3.13 and

examples which show the negative implications.

Proof of Theorem 3.12 (1) X satisfies the strong FKG inequalities

implies X is associated by Theorem 3.7. Furthermore, by the above note, if
X satisfies the strong FKG inequalities then all conditional distributions of X

are also associated.
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(2) X has CPCIC implies X has PCIC is immediate.

(3) We show that X satisfies the strong FKG inequalities implies X has
CPCIC. Let x = (Xy,...4%5) and suppose (with no loss of generality) that each
X, is in D\A (as defined in Theorem 3.3). That is, p(x;) >0. In fact all of the
points discussed in this part of the proof are assumed to be in D\A. Let
r(xly) be the conditional absolute product density, conditioned on the fact

that there are known to be point occurrences at Y=y, .y)

. r(x,zly)
Define ¢z by Pz (xly) =r(—,TQI_}Z)£ where z =(z,,.,z) (so that

(x_,_z_)——-(xl,...xn,zl,...,zJ) ). Note that ®; is an increasing function of x for

fixed y since X satisfies the strong FKG inequalities implies r(x,y,z)r(y) >

x,zly) _ r(zl
r(x,Y)r(y,z) = r(x,zly)r(yly) >r(xly)r(zly) = ri&‘z"x%) Z:((ilﬁ Then,

X [
E{d,] = =i ...Jd)z(g_lx)r(glx)dg
- n=0 7 J -
oo [
=3 nl' . J r(x,zly)dx = p(zly) (3.16)
n=0 J
0 1 [ [
E[ ®,0y] =3 al P, (xly)Py (xly)r(xiy)dx
- n=0 " J J -
® [ [
1 r(x,zly)r(x,wly)
= il I = r(xlx—), dx
n=0 J J =
o r r
<X r%' . | r(x,z,wly)dx (by the strong FKG inequalities)
n=0 7. J
= plz,wly) 3.17)

Since X satisfies the strong FKG inequalities its conditional
distributions are associated, so Cov( ¢Z,d>‘_,,_) > 0. i.e. E[(bg(bl] > E[(DZJE[(Dl]
or p(z,wly)>p(zly)p(wly) which implies p(y)’p(z,wly) > p(y)*p(z!y)p(wiy), so

that p(y)p(w,z) > p(z,y)p(w,y). Thus X has CPCIC.
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(4) Lastly we show that if X is associated then X has PCIC. Let A'j

represent the event that the interval of length Ax about X; is occupied for

An’k

K+l

increasing functions of X and X is associated, 0< E[f(X)g(X)] — E[f(X)]E[g(X)]

i=j..,k. Let f(X) = lAk(X) and g(X) = 1 (X). Since f and g are
' 1

=p(Xyy X, AR — p(x,, . XAX) DX, 1y X JAX) + o IAXIY),

Thus, p(x,,...x,,J) > p(x,..,%x)pX,,, . X..), that is, X has PCIC. To
complete the proof we will find examples of to point processes, one of which

has CPCIC but is not associated and one which is associated but does not

have CPCIC. a

Example 3.14 In this first example, we will show that X having CPCIC
does not imply X is associated. The idea is that we know the Poisson point
process satisfies the strong FKG inequalities and so is associated, CPCIC, has
PCIC, etc. It’s product densities satisfy a nice convexity condition which
implies CPCIC. Thus, we adjust our densities in such a way as to preserve
this convexity condition while at the same time the ad justment changes the
process enough so that it is not associated. The process we end up with

turns out to be a mixed sample process X on a bounded interval B =[0,b].

For the actual construction of the densities, first note that if X is a
point process with product densities p and absolute product densities
r;(xl,...,xk)=f8(k), that is the absolute product density depends only on the

number of occurrences and not on their locations (e.g. Poisson), then

n=0 ™ n=0

. x 1 0 B"
gk) =p(x,,..,x) = X = I J fo(k+n) dy,...dyn =3 H—,fe(k+n) (3.18)

Conversely, if p(x,,..,x,) = g(k) we find that
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f(k) = r¥( ) = S (=1 ¥
alk) =r (x,..,x) = > (=1) 8k +n) (3.19)
n=0 '
We will use these formulas to determine from a given choice of
function g representing product densities, the corresponding absolute product

densities. In order for given functions g(k) to be product densities with
corresponding absolute product densities given by (3.19) the following three

conditions must be satisfied:

(1) fg(k) > 0 for all k.

(o] n
@ ¥ Srym—1. (3.20)
n=0

(o] bn
(3 g = 3 Zire(k+n).

n=0

Condition 2 says that the total probability of all configurations on
(o)

{0,b] must be one, i.e. 2 Plthere are exactly n points in [0,b]] =1. Condition
n=0

3 is the condition that allows us to use the inversion formula to get g(k)

back from the functions f(k). Condition 1 guarantees that any number of

points has a non-negative probability of occurring in [0,b].

w

.15 If g satisfies

Lemma

QO bn
(a) 2 (=1 ;l-,g(k—}—n) > 0 for k=0,1,2,...
n=0 ‘

(b) g(0) =1

(c) gk) >0 for k =0,1,2,...

(d) 2 —D—g(k +L) < o for k =0,1,2,...
L=0 ’
then g determines product densities with corresponding absolute product

densities given by (3.19).

Proof (a) gives us condition 1 of (3.20), and given condition 3, (b)
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gives condition 2. Thus we must only show that condition 3 is satisfied.

xR0 b o bn x b
2 Sifelk+n) = z ni 2 (1’ Je(+k+n)
0 X0
= 2 Z )J 2 ‘“‘g(J’Tk +n). (3.21)
n=0 =

The sum (3.21) can be rearranged as long as we have absolute

convergence of the corresponding double sum i.e. as long as

S 2 etk <o (3.22)
n,J e

Since each term of (3.22) is non-negative, it converges if and only if

(summing over diagonals)

R glL+k & Lt .. ,
EO [r &, AL —mi o <% (3.23)

or, equivalently,

( ,E] bt < oo. (3.24)

L
By the binomial theorem Z[ ,E‘] bt = (b+b), so (3.24) becomes

n=0
® (2p
@ gk +1) < o (3.25)
L=0
which is given by (d). Thus we may rearrange (3.21), again summing

over the diagonals

o0 0 j bn bJ . (o] L (_I)L-n L'
= Eo(‘“ mogreUTkEn = 3 3 S oy e R

L
LZObL grk) RAEINCE (3.26)
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L oL Lo
By the binomial theorem, Y [n](—l)'-'“= > [n](—l)'-'”(l)”=(1—1)L, So we

n=0 n=0

get 0 here except for when L=0. Thus, (3.26) becomes

PO—‘!’g(k +0)1 = gk) o

Any function g which is nonnegative and bounded by an exponential
will satisfy condition 3 by Lemma 3.15. For this example we must also choose
g so that product densities satisfy the inequalities giving that X has CPCIC.
That is, we need p(xl,...,xn)p(x‘,...,xJ) > p(Xy,. %X )p(X,.. ,X,) or, in terms of g,

g(n)g(j—i) > g(i)gln—i).

Lemma 3.1 g(n)g(j—i) > g(jlg(n—i) if and only if g(n+1)gtn—1)>

[g(n)P?.

Proof That g(n)g(j—i) > g(i)g(n—i) implies gn+gn—1)> [gn]? is
obvious. Assume that g(n+1)g(n—1)> [gn))’. If we assume also that
g(k) >0 for all k our assumption is equivalent to

g(n+1) g(n)

g(n) g{n—1) (3.27)

Note that in each of the above fractions the argument in the numerator and
the denominator differ by exactly one. Applying our original assumption and

dividing again we also know that

g(n+2) g{n+41)
cnti) o) (3.28)

Thus from (3.27) and (3.28) it follows that

g(n+2) g(n)

etntl) 2 gn_1) (3.29)

or, equivalently,
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g{n+42)
g(n)

gln+1)

ey (3.30)

2

so that the desired inequality holds for i =k < 2.

Inductively assume that the inequality holds for any difference
k<i—1. Then, sincei+j>n+1,n—j<i—1 so that

g(n) gln—i+1)

3.31
g(j) glj—i+1) (3.31)
and
g(n—i+1) g(n—i) 3.32
g(j—i+1) < g(j—i) (332
so that
g(n) g(n—i) 3.33
g(i) < g(j—i) 3:33)
or, equivalently,
g(n) g(J) (3.34)

gln—i) = g(j—i)

which is the desired result.

Now, suppose that there is an n, so that g(n)) =0. Then we can not
divide as in the above argument. In this case, by our initial assumption, we
will have

g(no+1)? < gny)glng +2) (3.35)
which implies that g(n,+1) =0. Inductively, this implies that g(n) =0 for all
n2>ny,. We know that g(0) =1. Now if n,>1 then g(n,—1)? < g(ny)g(n, —2), by
assumption, implies that g(n;—1) =0. Inductively, this implies that for every
n with 0 <n <n, we have g(n) =0. Thus if there is an n, with g(ny) =0 then
the densities correspond to a process with no points. Such a process clearly

has CPCIC. In fact, it satisfies the FKG inequalities. a
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We also want a condition which will guarantee that the process is not
associated. Note that sets A and B are positively correlated (i.e.
Cov(la,lg) >0) if and only if C