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Chapter 1: Introduction

The defining aspect a complex engineered systems is the achievement of a set of high-
level behaviors that would be impossible to complete with simpler machines. From single
complex systems that launch, land and operate robotic science laboratories on other
worlds to the large-scale power and transportation systems which fuel and carry billions
of users daily; modern technological development have made “engineered systems” a
practical and ordinary part of life all over the world. For a variety of reasons, public
dread regarding failures of these complex systems is greater than the concern over simpler
machines. Thus, the trust the public must place in the engineers who design, build, and
operate these systems is great. Validating this trust is the driving motivation of this and
all other work in assuring the design of safe and reliable complex systems.

1.1 Complex Engineered Systems

Modern technologies involving any organized combination of software, hardware, people,
facilities, and procedures are refereed to as an “engineered systems. These are distin-
guished from systems which are observed to occur naturally (e.g., ecosystems). Further,
one system can often be composed of multiple subsystems and many systems can inter-
act to form a system of systems. The challenges of defining, developing, and deploying
systems has led to the creation of the systems engineering discipline. The purpose of
designing a system is that a desired function cannot be accomplished by a single element.
For example, a pair of scissors is not a system because the act of cutting could still be
accomplished with only half the sheers (though not as well). Further, many of method-
ologies and tools developed for systems engineering provide little benefit compared to
the effort involved when applied to simple products like coffee makers or hand-held drills.
Therefore, there exists a property of a system with interacting components that justifies
using these advanced methods. This property is complexity.

Since the Industrial Revolution technologies have been growing in complexity. While
there are various subtle difference in the way complexity is evaluated [1], the most con-
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sistent definition is related to the amount of interaction between the elements which
compose the system. A system with many components can still be simple if the interac-
tions between component are very limited. However, if a function of a system can only
be achieved through the interaction of multiple components covering different technology
domains, this system is considered a “complex engineered system.” A specific form that
incorporates highly integrated software and hardware networks is referred to as cyber-
physical systems [2]. To achieve specified objectives, cyber-physical systems (as well as
all other types of systems) implement a concept of emergent behavior. That is, behavior
of elements interacting produces a system level behavior that is more complex than an
additive behavior of the elements. For comparison, consider the braking system in a
car. The pedal depression causes an increase in pressure in the brake lines which then
pushes brake to the wheel. This is an example of simple or additive behavior. However,
at a higher-level, the driver, antilock brake controller, and the sensors and hardware
form an interacting loop. The overall behavior of the system is defined by this feedback
loop. The result is a high-level stopping behavior that cannot be achieved without the
interacting component behaviors. However, undesired emergent behavior is also one of
the most significant challenges for system design.

“Systems Thinking” is a unique approach developed to design, analyze, and imple-
ment systems based on this concept of emergent behavior. Checkland [3] attributes the
foundation of systems thinking as developing from the science of biology in the early
17th century. Advancements in biology showed that organisms were complex and that
they were more than the sum of their parts. Living organisms were shown to have behav-
ior and functional capabilities based on the behavior of their basic components and the
interaction of those components. Systems thinking began to be formally applied to tech-
nologies after World War II, specifically in the development of the Atlas Inter-Continental
Ballistic Missile [4]. In 1948 the RAND corporation was set up to use systems level ap-
proaches to solve US Air Force problems [5]. The systems analysis techniques developed
at RAND spread to other research labs like Willow Run Research Center at the Univer-
sity of Michigan and AT&T’s Bell Laboratories. The work generated from Willow Run
resulted in the first text dealing with systems analysis of large systems by Goode and
Machol [6]. A few years later the seminal work by Hall presenting the first integrated
method of large scale system analysis and synthesis was published based on the research
in communication systems at Bell Laboratories [7]. These methodologies were also used
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extensively for weapons systems and led to the US Department of Defense creation of
military standards in 1974 to define and guide the systems engineering processes [8].

Throughout the systems engineering discipline, the most common description of sys-
tem deployment is as a “V”, where high level requirements are refined to the discipline
level subsystems implementation while validation and verification occur at each subse-
quent step of refinement [9, 4, 10, 3, 11, 6, 7, 12, 13, 14, 15, 16, 17]. The traditional
approach to systems engineering, described in Figure 1.1, subdivides and refines the sys-
tem into different technical domains and then integrates and validates refined subsystems
designs. The challenge posed by emergent behavior becomes the most critical element for
systems engineers at the validation stage because they must identify potential negative
interactions and eliminate these before the design hits the factory floor. As technical
systems have become more advanced the interactions, and thus the complexity, of sys-
tems has grown exponentially. However, the standard approach to systems engineering
has not substantially changed. Numerous tools have helped facilitate the process but
there has not been a significant change in the design and validation process to address
the growth in complexity of modern system.

This lack of critical change in the systems engineering process motivated a recent
program in the Defense Advanced Research Project Agency (DARPA) called Adaptive
Vehicle Make [18]. The main motivation for this program is a perception in the defense
community that while the time required to move from concept to build has maintained
constant with the growth of complexity is some areas such as automative or integrated
circuits, the same cannot be said of aerospace systems. In contrast this time has in-
creased linearly with the exponential growth of complexity. Further costs have also
increased similarly leading to Norm Augustine’s famous (and overly dramatic) “Final
Law of Economic Disarmament”, projecting the cost growth into the year 2054 to in-
dicate that the entire defense budget would purchase just one aircraft [19]. Combining
these two observations imply that the cost and design cycle time growth with the tradi-
tional approach to developing systems is not sustainable for the continued advancement
of complex technologies. Thus the goal of this Adaptive Vehicle Make program is to
identify and develop novel design, analysis, and production methods for application to
complex engineered systems to significantly reduce the design cycle and resulting high
costs. This goal also motivates this research in that considering safety and reliability
early in the design stage will be an enabler of this novel approach to complex system
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design. In essence, traditional approaches to validating systems for safety and reliability
are a significant contributor to the long design cycles. Therefore, this work sets out to
develop a novel framework to generate concepts from a safety perspective and perform
analysis of complex systems early in the design that enable risk and safety-based design
decisions.

Figure 1.1: Top-Down System Engineering approach represented as a “V” diagram (after
Buede in [11]).

1.2 Overview of the Work

The overall objective of this work is to enable a risk-based design decision tool for complex
engineered systems. Specifically, this work looks to address three areas. First, generating
concepts and designs from a safety perspective where hazard-mitigation is explicitly and
formally linked to components and software algorithms using models. The second phase
uses this design representation and develops reasoning to identify the impact of critical
events in terms of functional reliability and safety. Finally, a set of results clustering
analysis methods are used to enable designers to make design decisions.

This dissertation is divided into several parts. First, Chapter 2 provides an overview
of the traditional approach and state of the art regarding how safety and reliability are
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evaluated in complex system design. The second part of this dissertation spans Chapters
3-9 and provides the main contribution of this work. Chapter 3 summarizes the entire
safety-based design framework and the contributions and limitations of this framework.
The detailed parts of this framework are provided in Chapters 4-8. Chapter 4 details the
safety-based design method referred to as phase one above. The second phase of scenario
identification and system response to those scenarios is described in Chapter 5-7. The
third phase of the framework is described in Chapter 8 on how to understand the scenario
response results in order to enable design decision making. Chapter 9 provides some
additional insights gained from applying these analysis methods to complex systems.
Finally, Chapter 10 is the conclusion of this work.

1.3 Terminology

It is necessary to use several terms that have multiple meanings in different domains.
Therefore, the table below provides the definitions for many terms as they are understood
in this work. While all these definitions are supported by a larger body of research, this
list is not intended to be authoritative outside the contexts of this research.
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Table 1.1: Terminology Used Throughout This Work

Term Definition
Behavior The set of expected and unexpected interactions that a component

or algorithm has with it’s environment. In this work a discrete
approach is taken where behavior can be divided into modes and
transitions, though continuous behavior may exist within a mode.

Complex Engi-
neered System

A technology that incorporates multiple interacting elements to
perform a desired function through the use of emergent behavior.

Component The lowest level element (building bock) considered in this frame-
work. It has a behavior and this research will describe either
software algorithms or physical hardware as components.

Cyber-Physical
System

A special category of complex systems that utilizes a closely cou-
pled networks of computational and physical elements to achieve
a set of desired functions.

Emergent Behav-
ior

Behavior that is not generated or modeled by a single compo-
nent that exists when sets of different behaviors interact with one
another.

Event Scenario A change or set of changes in a system. This work uses a dis-
crete time analysis and thus events also have a sequence. In this
research an event scenario has a set of time steps where, dur-
ing simulation, one or more component mode changes is triggered
and/or a flow value changes.

Failure A undesired behavior at the subsystem or system level
Fault A discrete mode of a component with a specified behavior that is

different than the nominal behavior.
Flow Energy, material or signal that connects components and is acted

on by functions.
Function The intended behavior or actions of a system.
Function Health The quality of the operation of the function with respect to its

intention. Defined as Healthy, Degraded, Lost, or Inoperative (No
Flow)

Hazardous State The system state where from which an event or scenario may lead
to a mishap state.

Mishap State The system in an accident or undesired event.
Reliability The property of a system or component to be available for in-

tended operation.
Safety The property of the system to resist the transition from hazardous

state to mishap state.
Safety Function The part of the system which performs the actions which inhibt

the system state transition from hazardous to mishap.
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Chapter 2: State of the Art

Complex systems such as aerospace platforms and power generation facilities exhibit
complex forms of failure. These safety-critical systems undergo rigorous testing and val-
idation to assure safe operation. However, highly publicized, costly, and sometimes fatal
accidents still occur, usually as a result of some failure that affects more than one type
of technical subsystem. Because these systems can experience multiple and cascading
failures that propagate through the system, validation through testing can only provide
probabilistic assurances of safety. Further, even when a potential failure is detected
through testing, the redesign and revalidation process can be extremely expensive. For
this reason, a growing field of research has developed to move safety and risk analysis
into the early design stage to achieve “safe system design.” To understand these methods
we must have a core understanding of the nature of failure in systems.

A fault is an undesired behavior in a component or set of components that can lead
to losses in system functionality. When those losses occur the system, experiencing some
kind of hazard, can fail to prevent itself from being in an unsafe state. This is the simple
model of failure and safety that forms the basis of this research and is illustrated in
Figure 2.1. The simplicity of this model disguises the challenges faced by design analysis
methods in moving from one block to the next. In general, two distinct categories of
methods exist for addressing these challenges. First, reliability-based approaches focus
on the identification of faults and use a variety of means to determine the impact and
likelihood of that fault occurring throughout the system lifecycle [20]. Most of these
methods are used (and often developed) outside of the systems engineering context as
well. In the reliability perspective “expected risk” is evaluated as a single value based
on the consequence of a fault multiplied by the likelihood of it occurring at a certain
time. The probability of a fault occurring is modeled as one of a few distributions with
respect to time (typically Weibull or Poisson distributions). Traditional approaches to
reliability-based methods and their strengths and weakness are detailed in Section 2.2.

In contrast to reliability-based methods which are fault-centric, hazard-based meth-
ods are system state centric. Hazard-based approaches focus on an undesirable system
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state and attempt to identify paths of reaching that state and the likelihood of that path
[21]. In the hazard perspective the “risk” of a system moving from a hazardous state to
a mishap (or accident) state is a distribution based on the probability of paths to reach
that state and the level of severity of the accident state. For example, the Farmer curve
is a carefully created limit line comparing the amount of radioactive material released in
an nuclear reactor accident and the time frame between release incidents [22]. The risk
of the hazard is distributed over the severity and likelihood of the release and the limit
line indicates a threshold of unacceptable risk. Methods and tools for hazard analysis
are discussed in Section 2.3.

The goal of this work is to enable design analysis and decision making based on the
risk of a system experiencing a mishap state. Further, for this analysis to be useful for
making design alternative decisions, the connection between the mishap state transition
and the sequence of faults and interactions which led to the transition must be made
explicit. Therefore, this work leverages benefits from hazard -based and reliability-based
perspectives and incorporates them into a system design process. The following section
will detail the traditional approach to system design to provide the context of this work.

2.1 System Design

As mentioned in the Section 1.1, the traditional model of systems development follows
the “V” diagram (see Figure 1.1). The left side of the “V” diagram is the design de-
velopment and has been divided into stages by many authors. This research utilizes
the framework presented by Pahl and Beitz [23], which categorizes the phases of de-
sign as: 1) Requirements analysis, 2) Conceptual design, 3)Detail design, 4)Validation
and testing. This research specifically focuses on design refinement and evaluation at
the conceptual design stage. Validation at any of these stages requires an analysis and
evaluation method. Trade studies, a method of trading parameters between abstract
subsystem representations, have been shown to be an effective tool for the design of
complex systems [10, 11]. Trade studies allow for design space exploration where many
different systems designs can be evaluated for multiple metrics such as cost, reliability,
or risk [24]. One motivation for this research is to provide an evaluation metric based
on safety to guide early design trade-offs.

A key enabler of conceptual design validation and trade studies is the model-based
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approach [25, 11, 14, 26, 27, 28]. Model-based systems engineering (MBSE) allows the
focus of system design to move from textual descriptions to reusable, computable, and
verifiable models. To realize the goal of complete MBSE design and validation, domain
specific and general modeling languages have been developed to represent the require-
ments, structure, and behavior of a system [26, 29, 30]. One important aspect of a
modeling language is to provide a schema for demonstrating the relationship of how a
system’s structure exhibits behavior to satisfy requirements. The language provides a
formalism for representing the milestone in the system design refinement process.

The process of complex system design is an extension of traditional design methods
and techniques. The unique challenges presented by complex systems for design method-
ologies is scaling to large numbers of components and designing for subsystem interac-
tions. Traditional approaches focus on iterative refinement from abstract functions (that
satisfy requirements) to detailed subsystem and component embodiment. This general
approach to system design, where the concept of function is used to identify components
is called “functional design” [23, 31, 32]. This functional design process, which takes
place in the conceptual design phase, begins with a high-level function and decomposes
it into a function-flow block diagram to model how flows of material, energy, and signal
are transformed by functions or processes within a specified environment. The process of
functional decomposition continues until functions can be embodied by components. A
design at this stage is a functional model with one or more cyber-physical architectures.
In contrast to this design refinement, Suh [1] presents a cyclic approach where functional
requirements are satisfied in components that further generate subrequirements. The
Contact and Channel Approach [33, 34] also presents system functionality as tightly
linked to the system structure. In this approach a function is achieved through two or
more working surface pairs (a geometric interface) and a channel and support struc-
ture (the flow between those interfaces). Implementing this method as a software tool
provides the capability of identifying new functionality required based on the chosen
physical solution [34]. Function-Means Trees [35] demonstrate a conceptual way to show
multiple solutions to each function providing an overview of the solutions space. The
process of determining solutions to requirements is design synthesis [36, 37]. Methods
in design synthesis attempt to search through past solutions [38, 39] and solutions prin-
ciples [40, 41]. Much recent research in functional design methods has focused on novel
ways of generating functional models [42] and algorithmic means of generating system
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architectures from functional models[43, 44].

2.2 Reliability Methods and Tools

Reliability analysis is the study of component’s and processes’ tendency to fail or re-
main operational [20]. This is the time-variant reliability of behavior in contrast to the
time-invariant structural reliability dealing with uncertainties in the composition of the
system [45]. This latter form of uncertain variance will be addressed later in this method
and reliability in the remainder of this work refers to the time-variant approach. System
reliability is an aggregate property based on the reliability of all its members. Therefore,
a system will be only reliable as its least reliable part necessary for successful operation.
Reliability is quantified in terms of failures with respect to time, such as Mean Time
to Failure (MTTF), or Mean Time Between Failures (MTBF). Uncertainties in failure
mechanisms, component operation, and natural variability lead to representing the prob-
ability of a failure as a distribution with respect to time. A components “failure rate”
is based on this distribution. For example, many wear-based failures are modeled as
following an exponential distribution with respect to time with the probability density
function in Equation 2.1. The failure rate is λ and the MTTF is 1/λ.

f(t) = λe−λt (2.1)

A variety of methods have been developed to address reliability concerns. The follow-
ing sections will discuss traditional approaches to reliability assessment which occur at
the validation stage as well as novel methods in the literature for design stage reliability
analysis.

2.2.1 Validation Stage Approaches for Reliability Analysis

Most reliability analysis methods that are commonly used in industry are applied at
the validation stage to provide assurance that a design meets a set of reliability or risk
requirements. These methods require mature designs where the detailed component
failure information and likely fault propagation path can be identified from testing,
historic data, or expert knowledge. For example, computationally simple methods such
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as aggregate failure rates [46] or component property distributions [47] are data-driven
and require a well defined design to provide meaningful results. In practice there are two
main analysis tools that form the basis for other tools and methods, namely Reliability
Block Diagrams (RBD) and Failure Modes and Effects Analysis (FMEA).

Reliability Block Diagrams (RBD) are a graphical method of representing component
failure rates and the dependency of components in the system for operational success
[48]. RBDs represent component failure rates as blocks connected in either series or
parallel with one another. Blocks are in parallel if the system can reach success through
an alternate path (such as in the case of redundancy) and in series if each operation
is necessary for system success. By following simple combinational rules, the entire
RBD diagrams can be simplified to a series structure where the potential for reaching
success (the reliability of the system) is the product of the rate of failure in each block.
RBD forms the basis for more sophisticated techniques and analyses. Dynamic RBDs
where developed by Distefano and Xing to provide availability information for non-
static systems [49]. Further, RBDs can be converted into Fault Trees (to be discussed
in Section 2.3) for a system level analysis [50]. Finally, for more complex systems with
dynamic behavior it is necessary use special techniques to solve for the resulting reliability
or availability. Most common is the use of Markov analysis to identify the reliability
of complex and multi-state systems [51, 52]. These methods provide a well accepted
evaluation of reliability as long as the two foundational assumptions hold true. These
assumptions are that the failure rates for components are accurate and that the failures
are independent (allowing the probabilities to be multiplied). The first assumption
can be violated when historic data is used which might not reflect the component in
situ or within the same operating context. The second assumption is often violated in
catastrophic complex system failures when one failure leads to another.

The second well accepted method of reliability analysis, Failure Modes and Effects
Analysis, is a method that systematically examines individual system components and
their failure mode characteristics to assess risk [53]. The output of an FMEA is a table
relating low level faults and their impact to the system. FMEA starts with decomposition
of the system into subsystems and finally into individual components. Failure modes
for each component are then examined to separately identify and record the effect of
each failure at the component level and then at the system level. FMEA can be a
tedious exercise and can fail to accurately capture all the potential effects of single
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failures [21]. While a variety of tools exist to automatically generating FMEA output
tables [54, 55, 56], they either require explicit modeling of the fault propagation path
or the path is assumed to follow the nominal component architecture. An extension of
the FMEA approach is to add a Criticality Analysis, which uses expert knowledge to
quantify the failure mode effects according to system level hazards (such as loss of life,
mission failure, etc.). While a functional FMEA can provide the format for representing
the effect of the loss of functions [57], FMEA is not a useful tool in the early design
stage of complex system based on the need to know failure propagation paths and the
inability to represent multiple or cascading faults.

2.2.2 Design Stage Approaches for Reliability Analysis

In practice the role of reliability in the design stage is managed through highly reliable
design practice. That is, well formed and used methods such as the Taguchi [58] or
Design for Six Sigma [59] provide a structured design process to increase reliability by
reducing variance in the design and manufacturing of products. However, there is a
perceived need in the literature for developing tools and methods to enable design for
reliability addressing the component behavior variance.

Early work to move reliability assessment into the conceptual design stage focused on:
1) Describing the nature of faults in the conceptual design perspective [60], 2) How those
faults may affect the performance of other components in the system [61, 62, 63]. These
reliability methods took a qualitative perspective on failure. In contrast, quantitative
methods use descriptions of fault probability to provide a risk assessment at the early
design stage [64, 65, 66]. In order to provide an assessment at the concept stage failure
was viewed in terms of its effect on function.

The Function Failure Design Method (FFDM) [67, 64] was one of the first methods to
formally connect faults to functional losses with the goal describing the space of potential
system failures. In FFDM, the functional model is developed to represent the system
design, which serves as a basis for generating configuration concepts of component imple-
mentations of functions. Based on historical failure data for these types of components,
it is then possible to establish likely failure modes for a given function. Because historical
fault propagation data is configuration specific, the FFDM method is limited to single
fault impact analysis. Additionally, Grantham et al. developed the Risk in Early De-
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sign (RED) method of formulating functional-failure likelihood and consequence-based
risk assessment classified as high-risk to low-risk function-failure combinations [65, 68].
These methods have limitations similar to those seen in traditional approaches in that
historical single fault failure data may not be applicable to new designs or multiple de-
pendent faults. Further, these methods do not consider the impact of multiple failures
and failures that result from system interactions. To overcome this limitation, other
work has focused on including the propagation of failure in the analysis.

Krus and Grantham present a Failure Propagation Analysis Method [69] developed
as a direct extension of the FFDM and RED methods to capture the failure propagation
mapping based on historical data using a functional model for system representation.
This method adapted the element of ‘common interfaces’ from change prediction intro-
duced by Clarkson et al. [70] to apply to the functional level. Finally, the Function
Failure Identification and Propagation (FFIP) framework [71, 72, 62, 73, 74] was in-
troduced as a design stage method for reasoning about failures based on the mapping
between components, functions, and nominal and off-nominal behavior. The goal of the
FFIP method is to identify failure propagation paths by mapping component failure
states to function ‘health’. This approach uses simulation for determining fault propaga-
tion and fault effect, providing the designer with the possibility of analyzing functional
and component failures and reasoning about their effects downstream in a design based
on their nominal and failed state behavior. These methods are bottom-up approaches
that investigate the contribution of the component state to the system state. Therefore,
these methods can provide designers with an evaluation of the likelihood of occurrence
[65], the propagation path of faults [73, 69] and the effective functional reliability [72] of
a design.

2.3 Hazard Mitigation Methods

In contrast to the reliability-based methods discussed in the previous section, this section
details the hazard perspective. These two perspectives are not conflicting and often
overlap in the areas considered and the tools used. The distinction being made for this
research is the methodology starting point. The starting point for the reliability methods
discussed previously was on component failures. From this point the methods provide a
variety of tools for exploring the impact and significance of those failures. In contrast, the
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starting point for hazard-based approaches is the undesired system state. As described in
Figure 2.1 and found in literature [75, 21], hazard-based techniques rely on the underlying
model that a system transitions from some hazardous state to a mishap (accident) state
based on a set of initiating mechanisms. Therefore, the goal of hazard based approaches
is to first identify the potential hazards and then systematically identify the mechanisms
and sequences of events which can cause the system to transition to a mishap in the
presence of those hazards.

2.3.1 Validation Stage Approaches for Hazard Analysis

Fault Tree Analysis (FTA) [76] is performed to capture the potential paths that lead
to an undesired system state. A Fault Tree (FT) is a graphical way of representing
the logical sequence of events using logic gates (AND, OR, etc.). Using this approach,
possible event paths from failure root causes to top-level consequences can be captured.
These fault paths can incorporate probabilities to identify the likelihood for a high-level
event to occur assuming either fault independence or known fault correlation. The main
objective of performing an FTA is the identification of cut sets, or the set of events
which must occur in order for a top-level event to occur and a variety of algorithms
have been developed to find these automatically [77]. A common criticism of FTs is that
their size grows rapidly with complex systems. For example, FT may have hundreds
of gates and even more paths for a complex system yet if that system is in a different
operating use case or time that FT may no longer represent the actual system. Since the
failure domain is represented using events in FTA, low-level component interactions and
dynamics leading to failure are only considered informally, during expert identification of
event-consequence relationships. Formally capturing component interactions and system
dynamics of hardware-software systems is however crucial for supporting design decisions
during early concept development of complex systems.

Probabilistic Risk Assessment (PRA) [78] is a method used for quantification of fail-
ure risk [79]. PRA combines a number of fault/event modeling techniques such as master
logic diagrams, event sequence diagrams and fault trees, and integrates them into a prob-
abilistic framework to guide decision-making during design. Some research has attempted
to extend PRA to include event/behavior simulation into the analysis as demonstrated
[80]. As with the reliability methods mentioned previously, this extension demands a
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fully specified system model as part of the analysis. Such detailed, high-fidelity models
of hardware-software systems, however, are not available during conceptual design.

2.3.2 Design Stage Approaches for Hazard Analysis

There are a few efforts to move system hazard analysis into the design stage. These
methods rely heavily on expert review and utilize many of the same techniques as vali-
dation stage approaches but utilize the less refined design stage information. Preliminary
Hazard Analysis is a method to guide safety engineers to identify potential hazards, the
mechanisms and their impact [81]. This is done in the early design stage using func-
tional diagrams, reliability block diagrams and indentured equipment lists [21]. By using
a hazard checklist and a worksheet for each identified function or equipment, engineers
are guided to identify and record any potential hazard. Further, expert opinion can be
used to estimate the likelihood of the hazard mechanism.

Dulac and Leveson proposed a systems theory-based accident model which accounts
for mishaps as occurring through violations of safety constraints and unsafe control
actions [82]. This model forms the basis for a design stage hazard analysis and safety
guided design process, the System Theoretic hazard and Process Analysis (STPA) [83,
84]. Using this approach designers identify scenarios based on the generic ways that the
control structure safety constraints can be violated. This approach enhances the design
method by guiding designers to identify design changes that reduce the likelihood of
those constraint violations.

2.4 Summary

The traditional, ad hoc approaches to system design has been effective for the last 50
years. However, the growing complexity of modern systems and the high cost of late
design-stage validation have motivated a need for methods and tools for early evaluation
of system properties. Model-based design methods enable this by allowing designers to
communicate and evaluate properties and attributes. A functional approach to system
design has been proposed by several researchers. These approaches enable the analysis
of a system in terms of the how well the system executes the desired actions.

Two approaches to assessing failures in systems work towards different goals. Meth-
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ods to evaluate and improve system reliability focus on reducing the impact and likeli-
hood of component faults. In general, reliability methods require detailed design infor-
mation, such as fault propagation paths, to provide meaningful results. Further, methods
based on the statistical occurrence of an event often require assumptions of independence
and cannot address multiple or related fault cases. For this reason, reliability and fault
analysis typically occur in the later design validation stage.

Alternatively, research from the safety perspective starts with the undesired system
state and applies tools and methods to find the potential causes and paths to reach
that state. In general, these methods can be applied earlier in the design stage but
are limited to guiding safety engineers to consider potential scenarios and assume that
cause likelihood cannot not be determined due to the large set of potential paths to the
top-level mishap.

Therefore, this research serves as bridge between component reliability perspective
and the safety-based hazard approach through the simulation of low level component
behavior and reasoning about the top level safety property of the system.
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Figure 2.1: A model of how failures lead to unsafe system states.
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Chapter 3: The Safety-Centric Design Decision Enabling Framework

Mishaps and accidents in complex engineered systems have incredibly high costs and
the public awareness of these accidents often leads to long-lasting negative opinions of
the organization or technology. Recent accidents such as the Fukushima nuclear reactor
leak, the Deep Water Horizon oil rig fire, and the loss of NASA’s Columbia Space Shuttle
underscore the significant cost and public shock that these accidents entail. Despite high
public awareness, significant accidents in complex systems are rare. What makes these
failures rare is the rigorous safety review and assurance process these system undergo
after the detailed design phase. Normal accident theory stipulates that due to the com-
plexity of modern systems, specifically unintended interactions and tight coupling lead
to an inevitability of accidents in these systems [85]. Therefore, the growing complexity
of these systems has made this validation process long and expensive. Further, in this
approach safety and reliability are requirements that the systems must meet rather than
drivers of design process.

This dissertation presents a framework to enable safety-centric design decision mak-
ing. Specifically, this dissertation presents a method of explicit inclusion of safety into
the earliest stages of design, an analysis approach where component failure modes can
be mapped to potential system hazards, and a means of enabling the designer to explore
the design space from a safety perspective.

Application of this work presents several significant advances to the fields of safety
engineering and design. First, the system property of safety is incorporated into the
model-based functional design framework. Secondly, this work presents a simulation-
based reasoning approach that allows designers to move from low-level fault causes to
system level accidents in a way not possible with traditional risk and reliability methods.
The method developed in the following chapters forms the basis for design decision
making with respect to safety and functional robustness. Extending this method into a
multi-objective decision-making framework will provide designers the ability to explore,
select, and validate designs with a lower potential for failure at a significantly reduced
design cost.
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3.1 Overview

This research is composed of three parts. The first part develops a model-based ap-
proach for evaluating safety. Specifically, the concept of a safety function which inhibits
the system state transition from hazardous to mishap is developed and connected to
the functional design method. This process is presented in Chapter 4. The second part
of this research explores the behavior simulation approach to fault analysis in complex
systems. In Chapter 5 we introduce a method of fault simulation that allows for the
quantification of the functional impact of critical scenarios. One understanding of “com-
plexity” is the unknown or unexpected interactions between components of a system.
Chapter 6 provides a method of identifying some of the unexpected connections between
components that only occur in certain failure scenarios. Chapter 7 links the new safety
function modeling approach to the fault simulation approach of the previous two chapters
completing the components of the analysis phase. As an addition, Chapter 9 presents
the use of part of this analysis approach to explore the design of a large complex system,
namely a boiling water nuclear reactor. Finally, the third part of this research aims to
convert this analysis into an assessment of safety and functional robustness of a design.
However, this cannot be reduced to a single objective and Chapter 8 presents three
methods for grouping the results of multiple simulation results to provide the designer
with the “big picture” perspective with respect to safety.

3.2 Methodology Use Case

The overall objective of this work is to move the validation of system safety requirements
to the early design stage from later prototype or physical testing stages. This dissertation
presents a set of tools to be integrated into the design of complex systems. Assuming
a novel system design, the process is as following: First, designers identify the require-
ments for their system including functional performance, and safety requirements. Next
a preliminary hazard analysis is conducted to identify potential unsafe transitions states
the system may take. Here the first component of this dissertation is integrated into
the design process. Using these identified transitions and the functional requirements,
a system concept is developed following a functional-design approach for implementing
principal functions with components and safety functions with control structures. This
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interrelated control-structure and component architecture represents a system concept.
The next stage of this dissertation is then incorporated by implementing a critical failure
analysis of the design. This is done by identifying the generic components of the design
and creating a system simulation based on qualitative behavioral models of components
that contain both nominal and failure mode behavior descriptions. Following this, a set
of critical scenarios can be tested with that system simulation and the impact to the op-
erational state of the principal and safety functions using a set of logical rules. The result
of testing a large set of scenarios provides designers with an assessment of the quality of
that design with respect to functional reliability and safety. One approach to design is
to select between many alternatives. This could be accomplished by comparing design
performance between two concepts or through defining the envelop of allowable perfor-
mance. The third aspect of this research was developed aid both of these approaches.
By clustering the results of multiple failure scenarios a risk profile for a design provides
a quantitative way to compare two different concepts. Alternatively, by exploring sce-
narios with similar functional effect and identifying the high-level failure behavior of the
system, designers can narrow-down acceptable behavior (with respect to safety) and the
components responsible for moving the system out that behavior envelop. Additionally,
this research provides a means of exploring the modeling and simulation sensitivity to
that envelop of performance. The end result of using these tools is an assurance that the
conceptual design meets safety requirements. The detailed subsystem design effort can
use this as a guide of developing their respective subsystems. If detailed design iden-
tifies behavior that differs from the abstract component behavior representation then
this schema can be updated with more precise component behavioral models. After this
proposed analysis a system performance evaluation should also be conducted to validate
as many of the performance requirements as possible.

The approach presented in this dissertation is based on simulating system nominal
and faulty behavior to identify risk. Detailed mathematical models such as finite element
analysis (FEA) can describe some aspects of a components behavior. However, large
systems with many components restrict detailed behavioral modeling with FEA based
on computation difficulties. Therefore, this work uses an approximation of behavior
based on qualitative descriptions of the component nominal and faulty behavior. Using
this abstraction approach, computational concerns begin to emerge when considering
interaction of 30 or more components that have an average of 3 discrete states. Since
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complete exploration of the potential statespace is not necessary (not every component
will fail in one scenario), a large set of scenarios can be evaluated in a short period of
time. For example, Chapter 8 presents an analysis of 600 failure scenarios that takes
approximately 30 minutes to simulate for a 30 component system. For the validation of
larger systems two different approaches are proposed. First, subsystems that likely will
not interact except through their nominal connections can be assessed separately. This
approach can be seen in the separate subsystem analyses in Chapters 5 and Chapter 6.
Alternatively, a system level analysis can be conducted using subsystem approximations.
Chapter 8 illustrates a statistical approximation approach for capturing the functional
failure behavior of a subsystem as discrete states. In this research the challenge of scaling
the analysis to large systems is addressed through these two approaches.

The aim of this work is to assist designers in the automated, model-based analysis
and validation of conceptual design of complex systems. It is the vision of this work
that the methodology presented in the following chapters would be integrated into a
multi-objective decision making framework. This methodology assumes that a team of
designers can utilize a component model database to construct one or more system archi-
tectures and an integrated platform for modeling and conducting the analyses presented
in this work. Designers attempting to make new designs using historic components as
well as designers making incremental improvements could benefit from this safety-centric
decision making framework. The method presented here follows a novel design paradigm.
To implement a “one-off” design, engineers would need to start with identify the safety
functions from the existing system rather than the preliminary hazards list.

3.2.1 Example System for Application of Methodology

To illustrate this methodology in a practical example this dissertation uses a spacecraft
subsystem called a reaction control system. Reaction Control Systems (RCS) are a set
of maneuvering thrusters that have been used on various spacecraft from satellites and
shuttles to lunar and martian landers. These RCS thrusters provide a small amount of
thrust allowing the craft to maneuver in space. As an example system for implementing
this framework, we consider the early design of an RCS on a satellite. This example
includes software control, an electrical power system for supplying the power to the
computing hardware and the actuating the valves on the thruster system. These three
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subsystems based on different technology types work together to achieve the system level
function of attitude control.

3.3 Contributions and Limitations

3.3.1 Intellectual Merit

The main objective of this research is the development of a safety-based functional
design and analysis framework. The intent of this framework is to guide the design of
complex system from the earliest stages to gravitate towards highly reliable and overall
safe designs. Risk and hazard analysis have independently worked towards this goal.
However, the novelty of this research is the integration of design and analysis methods
to incorporate both the low-level causes of failure and the high-level effect on system
safety. Specifically, by modeling the safety properties and the functional properties, a
well structured link is created between component states and system safety. This method
provides a means of mapping component fault knowledge to system hazard knowledge.
Through the identification and simulation of critical scenarios a design can be evaluated
for safety and functional robustness. This work also demonstrates how the results from
these scenarios can be clustered in different ways to provide designers with different
views of their system.

The approach presented in this research offers significant advantages compared to
traditional approaches for validating safety and reliability. First, this approach is imple-
mented at the concept stage of system design. In contrast to traditional methods that
validate a well refined design, this research allows early design selection to be guided by
safety concerns. In contrast to methods that exist to address safety in early design this
research is unique in using qualitative simulation of behavior to identify safety issues.
Instead of providing a guide for designers to think about potential hazard causes this
dissertation presents a simulation and reasoning method for exploring a concept design
and explicitly capturing the paths of potential system failure.



23

3.3.2 Limitations

The current industry practice for safety and risk involve using expert engineers in lengthy
safety design reviews. While the difficulty of this with highly complex systems and the
cost motivate this early design analysis method, it is not the goal of this work to replace
the knowledge and experience of seasoned engineers. The most obvious comparison of
this work is to the traditional ad-hoc methods. Because is cannot be known what failures
are identified or missed through an expert review process prior to analysis, it is not
possible to formally describe the increased scenario coverage provided by this method.
Instead, this framework is presented as an means to augment designer expertise.

Because this method centers around identifying the impact from simulated potential
scenarios, there exits a finite limit to the number of scenarios that can be reasonably
tested. It is possible to identify the percentage of the potential states covered using
methods from verification and validation research. However, this is outside the scope of
the current research.

Finally, this work revolves around the use of component behavioral models. Uncer-
tainties and inaccuracies in these models have a significant effect on the analysis output.
This research assumes that component failure modes can be identified a priori and that
general behavior can be specified for those components in those failure modes. This
research does not address insufficient or unpredicted component failure behavior.
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Chapter 4: Safety Guided Design

The functional approach to design provides engineers with a conceptual level abstraction
to effectively model, develop, and analyze a product or system. This is evidenced by the
use of function-based methods in reverse engineering, one-off, and novel design research.
The power and simplicity of functional modeling lays in the simplicity of purpose. A
functional model serves to show only how a design achieves a given set of functional
requirements. Only through additions to the functional representation can engineers
begin to describe how a design will meet other types of requirements such as performance
or safety. Further, most research in function-based methodologies has viewed satisfaction
of these other requirement types as part of the detailed design stage. This leads to
supporting the traditional approach of relegating safety to the design validation stage.
However, recent work in systems engineering methods has focused on supporting a safety-
centric design process [83, 84]. The perspective of these approaches is that safety should
be a driver for design. Thus the objective of this chapter is to introduce a safety-centric
method of developing a design based on the functional modeling paradigm.

Specifically, this chapter presents a method of representing the safety property of a
system explicitly in the model-based design approach. Further, the function of achieving
safety is mapped to the performance functions of the system. This chapter demonstrates
a process of concurrently developing a system concept with safety and functional per-
spective. The end result of this process is a system architecture where components of the
system are explicitly mapped to both the functions they perform and the role it plays in
ensuring safe operation. The benefit to designers of using this approach is having a sys-
tem representation that allows for analysis of critical events and off-nominal component
behavior to identify potential losses in function and safety constraint violations.
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4.1 Background

4.1.1 Models and Modeling Languages

Morgan and Morrison describe models as mediators between humans and phenomena
[86] and Hodges defines models from a historical perspective as being “an object in hand
that expresses the design of some other objects in the world” [87]. Further, models are
an abstraction and an incomplete representation of reality [11]. The main purpose of
modeling is to represent information and the relationship between pieces of information.
This is generally done with one of two different approaches. System information can be
represented in node connections or in block diagrams. The node connection approach
uses the connection between nodes to represent system information. For example, the
transformation that occurs from state 1 to state 2 is represented by the type of connection
between the nodes for state 1 and state 2. This is the approach used in Bond graphs
[88, 89], Petri Nets [90, 91], and tree structures. Alternatively, system information can
also be represented with block diagrams. Block diagrams represent system information
with blocks and these blocks can have attributes to describe other pieces of related system
information. To show a similar transformation as above, the change in state 1 and state
2 is represented by the transformation block. Block diagram approaches are used in
families of languages like IDEF [92] and SysML [26]. The basic distinction between
block and nodes diagrams is where information transitions occur, either at blocks or
between nodes. Long presents a concise overview of the relationship between different
common graphical representations in [93]. The three main categories or types of models
are data models, process models, and behavioral models [11].

4.1.1.1 Data Models

The purpose of data modeling is to represent artifacts of information about a system and
the relationships between those artifacts. Data models are used for defining causal rules
in model-based reasoning [94]. Types of data models are also used to represent organiza-
tional structure in systems management [95] and can be seen in system design to identify
the relationship between system inputs and outputs and basic system architecture [11].
The oldest form of data models are entity-relationship diagrams [96]. These simple di-
agrams connect two or more pieces of information (entities) with a marker describing
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the relationship and a directed arc indicating the order of the relationship. For exam-
ple, the entities People and Money are related by the arcs Spend and Save. These arcs
are directed so that the model accurately describes people spending and saving money
and not the other way around. For more complex systems, the data relationships are
difficult to capture without nesting the information into classes. One implementation to
this was presented by Harel in the creation of higraphs, which combined Venn diagrams
and entity-relationship models [97]. In higraphs, entities can be shown to span classes
to show shared relationships between classes and complex relationships more clearly.
An alternative solution for representation is to assign attributes to data entities and to
specify the relationship between these attributes and entities within a class. This is the
approach found in Object Oriented Modeling [27] .

4.1.1.2 Process and Functional Models

The purpose of process modeling is to represent how to a achieve a desired purpose.
The earliest from was presented by Taylor [98] as workflow models to represent the tasks
required to complete a job, with an emphasis on efficiency. Data flow diagrams devel-
oped from a need to capture the relationship between processes in a system [99]. In
data flow diagrams, activities or functions are connected together with directed arcs to
represent the “flow” between these activities. Data flow diagrams also have terminals
for representing the connection of the system to its environment. Function flow block
diagrams (FFBD) are an extension of data flow diagrams and use the same verb-object
graph syntax [23]. The significant addition of FFBDs is the inclusion of control con-
structs between connected functions to represent sequences of functions. N2 charts were
developed in the 1960s by system engineers to relate system functions, with a focus on
the inputs and outputs of those functions [100]. Because branching connections are not
used in N2 charts, representation is done at the lowest level of functional decomposition
and functions must be repeated as often as needed [11]. Thus a drawback for N2 charts
is the repetition of functions in complex systems. System engineers have also used this
distinction of N2 charts to allocate functions to components to minimize component
interactions [100].
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4.1.1.3 Behavioral Models

The purpose of behavioral modeling is to represent the dynamics of a system. The
behavior described by these models is discrete, event triggered behavior. The solvable
set of modeled behaviors caused by an event or state is a simulation. One of the first
approaches developed was behavioral diagrams [101]. In behavioral diagrams, behavior
is represented through a progressive hierarchal set of sequenced functions. Functions
are connected to each other with control arcs that are annotated to identify the order
of sequencing. Enhanced FFBDs overlay a control arc and are equivalent to behavioral
diagrams [102]. State transition diagrams originated in the software system engineering
field as a way of representing sequential finite state machines [103]. State transition
diagrams model event-based, time dependent behavior by boxes (states) and directed
arcs indicating allowable transitions. Unlike the previous representations, state transition
diagrams do not focus on the system functions but on the events that trigger transitions.
Statecharts expand state transition diagrams by allowing for hierarchal representation
by using higraphs [97]. Petri nets are mathematically based representations designed to
rapidly turn a model into a solvable simulation. Petri Nets consist of places, transitions
and tokens. Tokens move through the Petri net at intervals and transitions are allowed
to fire (move a token onward) when its proceeding places contain tokens [90]. Tokens are
values for variables in the system. Later modifications to Petri nets include using colored
tokens to allow for multiple transition timings [91] and stochastic transition firings [104].

4.1.1.4 Modeling Languages

The most generally used languages for system information representation are IDEF and
SysML. The Integrated Computer-Aided Manufacturing Definition (IDEF) language was
developed as part of a US Air Force program to increase manufacturing productivity
[92]. The IDEF family of languages has several methods for representation. IDEF0
is used to describe process or functions, IDEF1X for data modeling, and IDEF3 for
process and state transition modeling. The IDEF0 representation method represents
the functional decomposition where functions are connected to inputs, controls, outputs,
and mechanisms. IDEF0 can be seen as the combination of data-flow graphs and N2

charts [11]. In IDEF1 and IDEF1X, data is modeled as classes containing entities with
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Figure 4.1: OMG SysML diagrams used for modeling a system, from the OMG SysML
website: [105].

associated attributes. Different entities are related based on inheritance relationships,
either parent or child connections, to show shared attributes.

OMG SysMLTM is a modeling language developed and managed by the Object Man-
agement Group (OMG) [105]. SysML is an extension of the Unified Modeling Language
(UML 2), based in the software engineering field, that includes diagrams useful in the
synthesis and assessment of complex systems. As with IDEF, SysML uses a set of block
diagrams, each with a distinct purpose. In contrast to IDEF, each SysML diagram type
is limited in scope and is designed to be complimentary to other diagrams [26]. In this
way a system model in SysML is the collection of diagrams containing all the different as-
pects of system information. SysML uses nine diagrams under four headings to represent
system information. Figure 4.1 from OMG’s website succinctly describes the different
diagrams and their relationship to one another. The use of software engineering vocab-
ulary has been a hinderance to the wide-scale usage of SysML, however, the support
of the International Council on Systems Engineering (INCOSE) has been significant in
increasing the use of SysML in both academic research and industrial applications [106].

The U.S. Department of Defense Architecture Framework (DoDAF) is a standard
representation used throughout the U.S. weapons systems. DoDAF presents system
architecture information in three distinct views: Operational, System and Services, and
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Technical Standards. The three views can be constructed using UML or SysML and
thus, DoDAF does not represent a unique modeling language.

Other modeling languages have been developed within the context of systems engi-
neering but with a focus on specific areas of research or methodologies. The Function
Behavior Representation Language [107] and the Function Behavior Structure schema
[108] are examples of tools used for the research done in subfields of systems engineer-
ing; system design and agent-based information management, respectively. Information
management in the context of agent-based approaches to systems engineering led to
the development of tools under the term Agent Oriented Language for capturing the
dependencies of system information, such as AgML [109] and Brahms [110].

4.1.2 Function-Based Conceptual Design

As mentioned in Section 2.1, functional modeling is a process of concept refinement
applicable to both product and system design. However, in the literature there is a variety
of meaning and formulations in the concept of function and the role in which functional
representation is used in the concept development phase of design. The following sections
will discuss the different understandings of the concept of function in the literature and
how those understandings lead to various approaches for achieving a product or system
design.

4.1.2.1 The Concept of Function

As noted by Chandrasekaran and Jospheson [111], one of the consistent descriptive words
of function in research literature is intent. In contrast to all other aspects of the design,
function expresses the intention of the designer. The concept of function bridges the gap
between human intention and physical reality [112] and represents the goal the designer
has for the system [113]. Erden et al. provide a broad survey of functional modelings
approaches [114]. While significant difference exist the main distinction useful for the
current discussion is the view of function as object-centric or effect-centric.

In the majority of research literature, functional modeling begins with an object-
centered view of functions [113, 32, 31, 115, 116, 117, 37, 118, 119]. That is, a function
is part of the action that some component or set of components in the system performs.
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This understanding of function leads to viewing functions as verbs acting on flows as
nouns. Further, functional descriptions can be understood as input-output relationships
of black boxes, leading to function block diagrams. In the case of Bracewell and Sharpe,
their bond graph inspired approach has functions acting on both effort and flow [38].
These methods tend to follow the “no-function-in-structure” principle of De Kleer and
Brown [118], in that all the functions the system performs should be captured in the
functional model and no functionality is implied or inherited through the connectivity.
Though some argue that this principle is largely unattainable in real systems [120], the
principle as a goal serves to lead to a modular approach. This modular approach allows
functions to be linked directly to components [121] and enables design decision making
based on selecting between a variety of potential function solutions (components) [122].

In contrast to the object-centric view of function, the effect (or process) view under-
stands functions as the set of physical principles used to achieve an intended goal. In this
perspective the direct result of developing the functional model is the identification of the
intended behaviors needed to achieve the desired functions. The Function-Behavior-State
modeling scheme of Umeda et al. [123, 124, 112, 125, 126, 127], the Function-Behavior-
Structure of Gero et al. [128, 129], Qualitative Process Theory of Forbus [130], and the
functional ontology presented by Keuneke [131] are all examples of the effect or process
view of function. One of the benefits of this approach is that, because behavior is the
intermediary between functions and components, novel and redundant functionality can
be identified through finding associated behavior [132].

Chandrasekaran and Josephson provide a clear distinction between the effect view of
function and the device (object) view of function as well as a means of mapping between
the two based on an understanding of the environment and the mode of deployment
[111]. Following their example of a door buzzer, the device view of function is “to make
a sound come from box2, when the switch in box1 is closed.” Whereas the effect (on the
environment) view of the function is “to provide a means by which a person at location
1 may cause sound to be produced at another location” [111]. Rather than being at
different abstractions levels, these two perspectives describe the same system differently.
The device view of function provides “the how it works,” while the effect view provides
“what must be achieved” (thus this is also called the teleological perspective). Figure
4.2 illustrates how these two views of function result in a different sequence of design
refinement.
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Figure 4.2: Contrasting two views of function found in the literature.

For this research, both views of function are adopted in different ways. The object
or device view of function is adopted for software and hardware component architecture
representations. This view of function is chosen because the behavior is derived from the
components used. For nominal behavior, either perspective may arrive at similar system
behavioral representations. However, the goal of this research is to evaluate how a design
will behave in critical event scenarios involving one or more component failures. Func-
tions are intermediaries between intention and reality and have no physical existence and
thus cannot have failure modes. (Chapter 5 will discuss evaluating functional operating
states which will be distinguished from component failure modes.) When a failure in a
system occurs, it is the components which behave differently not the functions. From
this need to evaluate the functional impact as a result of behavior of a system in criti-
cal scenarios, the device view of function is used for developing the system component
connection architecture. However, this research proposes using an additional view of
the system defined in section 4.2 as “Safety Functions.” This terms is used to describe
the property of a system to resist moving from a hazardous state to an accident state.
The effect view of function is used for understanding how “Safety Functions” work in a
system.

The key difference between these two understandings of function is related to the
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formulation of behavior. As mentioned, the device view uses an input-process-output
formulation. This research assumes that following some functional basis such as Hirtz et
al. [133] and using a library of component behavioral models, a system simulation can
be generated early in the design stage. Similar to the Functional Basis mentioned above,
Keuneke developed a ontology based on an effect understanding of function [131]. Two
of the 4 categories of function are adopted from that work to describe the types of safety
functions. Namely, ToPrevent and ToMaintain.

4.1.3 System Theoretic Process Analysis

The Systems Theoretic Process and hazard Analysis (STPA) developed by Dulac and
Leveson [82, 84] is a method for identifying and mitigating the causal factors of an ac-
cident based on the STAMP model [134] of accident causality. As discussed in Section
2.3.2, STAMP is a model of system failure that proposes that all systems move into acci-
dent states when safety constraints of the socio-technical control structure are violated.
Using this mode the STPA method is a design process centered around representing the
control structure of a system and identifying how any of the four types of unsafe control
actions can occur. In [84], Leveson describes the four types of unsafe control actions as:

1. A control action required for safety is not provided or is not followed.

2. An unsafe control action is provided that leads to a hazard.

3. A potentially safe control action is provided too late, too early or out of sequence.

4. A safe control action is stopped too soon (for continuous or nondiscrete control
actions).

The STPA methods begins with identifying the control structure to mitigate a poten-
tial hazard. Next, the method provides a generic list of control structure failure modes
which might lead to one of the four types of unsafe control actions listed above. These
failure modes (called causal factors in [84]) are illustrated in Figure 4.3. Finally, using
the control structure model and the identified factors as a guide, designers are led to
develop and investigate scenarios that might lead to these factors occurring. Thus incor-
porating this into a design decision making process involves making changes based on
what mitigates the existence or impact of these factors.
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Figure 4.3: Generalized factors that are used to identify potential safety constraint
violation scenarios in the STPA methodology [84].
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This research adopts a similar top-down view of safety as a system property as found
in the STPA method. This research proposes a concurrent safety-based control structure
design with the device-centric functional design. Instead of expert judgment in STPA to
identify scenarios, this research proposes a model to identify triggers of the causal factors
through system simulation. Considering the successful use of expert-based methods such
as Fault Trees and HAZOP, this research is focused on automating the design decision
making process with respect to safety. It is not attempting to replace the important
role played by system safety experts but rather augmenting this process with behavioral
simulation.

4.2 The Safety Function

This research uses a hazard-failure model depicted in Figure 2.1. This model describes
the accident process as a system moving from a hazardous state to a mishap state.
Following the Systems Theoretic Accident Model [134], this transition occurs when a
system safety constrain is violated. Therefore, a measure of safety for a system is the
relative difficulty (or likelihood) for those constraints to be violated. To enable design-
stage decision making this metric of safety must be evaluated early in the design cycle
to provide the greatest benefit to designers. In a model-based design framework this
indicates a need to explicitly represent the system property of safety.

To that end, we define a new concept called a “Safety Function.” A safety function
is a subset of the emergent behavior of a system that inhibits the system state transition
from hazardous to mishap. In this way the safety function is analogous to the system’s
inertia, causing the system to resist moving to the mishap state. This means that when
a system is in a hazardous state it can only transition into the mishap state if the safety
function is lost or otherwise ineffective. It is this property of the safety function that
enables safety-based design evaluation. Thus, the first goal of this work is to develop a
method of representing the safety functions as part of the design.

The word function is used because, similar to the way that functions are the actions
of what a system does, safety functions are a type of action. Using part of the Keuneke
function ontology [131], safety functions either maintain the system state or prevent
the system transition. While the functions of the system can be decomposed into sub-
functions and function structures, this is not the case for the safety function. Where a
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component type function acts on a flow to exhibit some behavior, the safety function
reflects a behavior at the system level. Further, this behavior only exists at the system
level and cannot be decomposed into sub-safety functions. The safety function follows
an effect view of function, representing a phenomena and not an input-output relation.

The identification of safety functions should occur at the early system design stage.
After a Preliminary Hazard Analysis (PHA), system designers should have a list of
expected hazardous system states. The established approach in industry for conducting
a PHA utilizes hazard identification causation lists to guide designers in identifying
hazardous system states [21]. A hazardous system state is description of the system
and its environment that has the potential for becoming an accident. This list should
grow as the design becomes more refined, however the identification of safety functions
can begin with this list. The development of this list is left to expert knowledge of
the system and its potential operating environments. Desired safety functions can be
identified through an “if...then” type of analysis. For example, if a car is operated at
night and the driver cannot see then the car may hit something. In this example, the
car and driver is the system and its operating environment is at night. The hazardous
state is not being able to see in this operating environment. The first stage in a safety
guided design process is to attempt to eliminate hazardous states. However, this cannot
always be done with a high degree of certainty or is undesirable. One way to avoid the
example hazardous state is to make it impossible to drive vehicles as night (undesirable)
or provide headlights (the state probability is only reduced). Thus, the desired safety
function is to prevent the vehicle from hitting anything when the car-person system is in
this hazardous state. In this example, the person is the controller and this safety function
is typically implemented by the driver stopping the vehicle. This safety function would
need to be explicitly implemented in an autonomous vehicle.

In this way, a desired safety function is identified for every hazard to mishap transi-
tion. Each safety function is implemented in the system design with a control structure.
This control structure is not the entire system control scheme (which implements many
safety functions), but rather one specific loop focused on mitigating the hazard. As seen
in Figure 4.4, a control structure has four elements. Namely, the controller which directs
the actuators to allow a desired process which is monitored with sensors. Using the pre-
vious vehicle example, the human controller actuates the braking process and observes
through sensors both the arrival of the hazardous state and the result of actuating the
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braking process. As evident from the example, the parts of the control structure are real
components (either physical or cyber) that exist in the system. In this way, we can con-
nect the function-based cyberphysical architecture design to safety functions though the
physical components which implement those safety functions. This process is detailed in
the following section.

Figure 4.4: The general control structure for implementing a safety function which in-
hibits the system transition from a hazardous state to a mishap state.

4.3 Incorporating Safety Functions into Model-Based, Functional

System Design

As discussed in section 2.1, there exists in the literature variety of tools and methods
for both model-based design and function-based system design. This section illustrates
adding the representation of safety functions into one approach to system design and
using a particular set of tools. Specifically, we follow a device-centric view of functional
system design [23, 135, 133, 122], where high-level system functions are decomposed into
functions structures of functions acting on flows. Based on this structure, generalized
components are identified to implement those functions and the architecture of those
components represents the cyberphysical design. Further, we use the systems modeling
language (SysML) [105] to express these design representations. Using other methods
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and tools may require minor modifications of the following steps, however, the main
concept is broadly applicable.

The propose safety-centric design process is as follows:

1. Identify the set of hazard-to-mishap transitions that will require implementing
safety functions. These transitions come from a preliminary hazard analysis con-
ducted at the system level.

2. Generate the generalized control structure representation for implementing each
safety function.

3. Follow the functional design process to decompose high-level functions into an
implementable function structure.

4. Generate a system cyberphysical design architecture by implementing each func-
tion with one or more general components. The mapping between function to
component is important for later analysis of the design.

5. Identify the components in the cyberphysical architecture that correspond to the
general elements for each safety function.

6. Use this mapping to generate the detailed control structure for each safety function.

To illustrate the steps of this processes we develop an early design model for a space-
craft maneuvering system.

4.4 Example Application

As an illustrative example, consider the early design of a maneuvering system for a satel-
lite. One of the key features of this system is that it is composed of multiple technology
domains. This design requires a controlled electrically driven thruster. Further, this
system needs to be capable of manual and autonomous operation. Thus this system is
composed of subsystems containing electrical, mechanical, thermal-fluids and software
control. This conceptual design demonstrates that the emergent property of safety at
the system level is often a result of multiple subsystem behaviors.

For this work, the SysML block definition diagrams (BDD) and internal block dia-
grams (IBD) are used to represent the functions and components of the system. In these
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diagrams there are blocks representing either functions or components (or component
classes) and arcs connecting these blocks expressing some type of relation. There are
multiple relations specified in the SysML specifications, however, for this example we
will only use three. The first type of relation is a directed composition. This type of
relation specifies that one block is composed of the connected blocks. Figure 4.5 is a
BDD illustrating the elements of the generic control structure depicted in Figure 4.4.
The second type of relation is used for requirements and indicates that a component
satisfies a requirement. This relation can also be seen in Figure 4.5 indicating the safety
function that is satisfied by this control structure. The BDD shows the relation of parts
to the whole but not the connection of parts to each other. The IBD is used to show
how parts of the design relate to one another. Here the third type of relation is used to
link blocks together to indicate the transfer of material, energy, or signal.

This design process assumes that the functional requirements and PHA have been
generated. The identification of the safety function from the desired hazard mitigation
follows the process identified in the previous section, assigning a generic structure like
the one in Figure 4.4. This is the explicit representation of the safety property of the
system. For this example, we assume that a potential system hazard state is defined as
the system operating under manual control. The potential mishap state is that the craft
may lose (to a point of no return) the planned orbital trajectory. Therefore, the designers
intend to implement a safety function to prevent this transition. This safety function
and the generic control structure component types which implement it are represented
in a BDD (see Figure 4.5).

The next step is the functional design of the system. A high level functional decom-
position is represented in the BDD in Figure 4.6. Further each of the functional blocks
will interact with each other. This high-level functional structure is illustrated in the
IBD of Figure 4.7. From this diagram it can be seen that the electrical power system
provides the electrical power for the controller software to operate as well as the power for
rocket controlling actuators. The rocket provides thrust to the system and the controller
will receive status and send control signals to the other blocks as wells as receive and
send signals to the operator. The individual subsystems are further decomposed into
an implementable function structure. Figure A.1 in Appendix A illustrates the BDD
showing the components that are chosen to implement the electrical power subsystem.
The system architecture is based on the function structure and represented as an IBD
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in Figure A.2 in Appendix A. Likewise the rocket subsystem functional structure and
component architecture are depicted in Figure A.3 and Figure A.4 in Appendix A. From
these figures the overall maneuvering system design is formed. The maneuvering con-
troller (which operates on hardware powered by the electrical system) uses the electrical
subsystem to control the fuel and oxidizer valves of the rocket subsystem. This repre-
sents one possible design solution for this system. One important point that can be seen
in the electrical power subsystem design (Figure A.2) is that this system provides elec-
trical power to other subsystems not considered in this example. This reflects the reality
that subsystems perform multiple functions and further that behavior of one subsystem
cannot be considered entirely apart from other subsystems. This system has a suite of
sensors in the electrical and rocket subsystems that the controller can use to determine
the current state.

The next step is identifying what components implement the specific safety function
control structure. As mentioned previously, this model does not reflect the entire con-
trol schema but just the safety function implementation. At the high-level the function
structure of Figure 4.7 can be used to define the connections in the IBD of the safety
function control structure. This is shown in Figure 4.8. This is further refined based on
the components used in the cyberphysical structure diagrams to a detailed safety con-
trol structure. In this example (see Figure 4.9), implementing the safety function that
prevents the loss of orbital trajectory requires components from all three subsystems.
These components are not physically directly connected, however, they form a structure
for performing the safety function at the system level. In this way, the safety func-
tion control structure provides a different view of the same system as the cyberphysical
structural diagrams.

4.5 Summary

In this chapter we demonstrated a method of safety-based design where the system
property of safety is explicitly modeled in the design process. This process uses the
functional design process as a model for the design using “safety functions”. Safety
functions perform one of two roles in the system. They either prevent the system state
transition from hazard to mishap or maintain the current system state. In the same way
that functions are implemented with components in the functional design process, this
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Figure 4.5: A SysML block definition diagram illustrating the composition of the con-
trol structure for implementing the safety function “Prevent permanent loss of orbital
trajectory” for the hazardous system state of manual operator control.

chapter shows how safety functions are implemented with control structures. As evident
by the example of the satellite maneuvering system, the components that form the safety
function control structure are often found in different subsystems and are not directly
connected in the physical architecture.

The main outcome of following this approach is the explicit mapping between com-
ponents in the system and the execution of safety functions. This has limited impact
by itself. What has been presented in this chapter does not answer the question of how
well the safety function is implemented in this particular design. Instead this chapter
forms the foundation for how reasoning on component behavior can be linked directly
to hazard mitigation. The following chapters will discuss how component behavioral
simulation and failure reasoning can be used to evaluate designs to answer the how well
question.

The first assumption for this process is that the safety function is lost or inoperative
when there is a failure in the control structure. This is based on the STAMP accident
model [134]. Therefore, the consequence of any behavior in the system that causes a
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Figure 4.6: A SysML block definition diagram illustrating the functional decomposition
of the spacecraft maneuvering system.

failure of the safety function control structure is the loss of mitigation for that specific
hazard. Thus the mapping presented in this chapter enables the link between component
fault analysis and system hazard analysis.

One approach to evaluating a design based on this safety function control structure
is to look at the reliability of the components implementing the control structure. While
this would provide a preliminary analysis, it does not address failures (or behaviors) that
are not part of the control structure but affect the components within it. Thus the focus
of this research is a behavior simulation approach where the impact of faults and critical
scenarios is evaluated in terms of the effect to component and safety functions. This
evaluation occurs through functional failure reasoning, where logical rules are used to
evaluate the simulated system behavior to identify the operating state of both the com-
ponent type functions and the system safety functions. The following chapters explore
how to evaluate the system design using this approach.
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Figure 4.7: A SysML internal block diagram illustrating the function structure of the
spacecraft maneuvering system.
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Figure 4.8: A SysML internal block diagram illustrating the connections of the con-
trol structure for implementing the safety function “Prevent permanent loss of orbital
trajectory” for the hazardous system state of manual operator control.
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Figure 4.9: A SysML block definition diagram illustrating the composition of the control
structure after mapping to the components derived from the functional design process.
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Chapter 5: Function Failure Reasoning for Complex System Design

This chapter begins the analysis section of this research. The goal of the work presented
in this chapter is to assess the functional impact of component faults using qualitative
simulation. This work is further focused on quantifying that impact as a means of
enabling design decisions, specifically system architecture. The application is to an
electrical power system which also forms the basis of the electrical subsystem in the
safety-guided design framework case study. The content of this chapter was published
in the Journal of Research in Engineering Design and was cowritten by David Jensen,
Tolga Kurtoglu and Irem Y. Tumer [72].

5.1 Background

The state-of-the-art on diagnostics and fault management has been on the diagnostic
reasoning to mitigate faults when they happen, based on matching data to models during
operations. A fairly recent trend has been to push the analysis of potential failures into
the design stage to better understand and design against the types of faults that can
happen when systems are in their operational environment. To help with this challenging
task, risk based design methods have emerged as a means to bridge the gap between
operations and design. The following sections summarize the relevant background and
prior work in these areas.

5.1.1 Reasoning about Faults During Operations

The operational faults in complex systems have been a central theme in diagnostic rea-
soning, which originated from the Artificial Intelligence community. Fault diagnosis is
the process of determining the cause of any abnormal or unexpected behavior in a com-
plex system [136]. De Kleer and Kurien [137] have distinguished two traditions within
fault diagnosis. The first has been primarily concerned with analyzing diagnosability
and testability of the system and what instrumentation is needed to accomplish diag-
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nostic functionality. These techniques are used to analyze the degree of observability of
a system and modify the system to meet a set of goals for observability. The inherent
testability of a system is determined during the design cycle. This analysis is usually
performed before any tests are designed and is based on the physical topology of the
system and proposed instrumentation locations. Achieved testability is a maintenance
characteristic that describes the ability to observe system behavior with the implemented
instrumentation. Industry leaders in this field are TEAMS from Qualtech Systems, Inc.
(QSI) [138], and eXpress from DSI [139]. These tools use a model, which captures the
physical connectivity of system components and maps failure modes and instrumentation
points onto a dependency graph [140].

The second fault-diagnosis tradition is model-based diagnosis (MBD), based largely
on early work in qualitative physics and qualitative reasoning [141, 130, 142, 143]. MBD
shares a common process in which a system is monitored and a comparison is performed
of observed and expected behavior of the system to detect anomalous conditions usually
with the goal of run-time repair [144]. The artificial intelligence community for MBD
employed system configuration and qualitative behavior models for diagnosis tasks [145].
Livingstone [146] and its extension L2 [147] are two of the most notable examples from
NASA that utilize algorithms adapted from qualitative model-based diagnosis. In control
engineering communities, transfer functions and state space equations are used as system
models [148]. Finally, expert systems are extensively used in diagnosis, where knowledge
acquired from human experts is formulated in different ways such as if-then rules or
decision trees [149], and statistical and probabilistic classification methods are applied
where physical behavioral is difficult to model in analytical form [150, 151].

5.1.2 Traditional Risk and Reliability Analysis

The first response in the research community to move the assessment of potential fail-
ures and risks into the early stages of design has focused on using traditional risk and
reliability analysis techniques. These efforts look at system components, critical events,
and system characteristics to assess risk and reliability during the design phase. Specific
techniques include failure modes and effects analysis (FMEA) [53], fault tree analysis
(FTA) [76], and probabilistic risk assessment (PRA) [78, 79, 152]. FMEA is a bottom-
up approach that follows forward logic to determine critical component failures and their
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consequences. FMEA analysis starts with decomposition of the system into subsystems
and finally into individual components. Failure mode(s) of components are then recorded
and assessed separately to determine what effect they have at the component level, and
then at the system level. FTA is logic-based analysis, which starts with identification
of a high-level failure event. A backward logic is then followed to drive contributing
events that could lead to the occurrence of immediate higher-level events. At the end,
the analysis presents the chain of events combined with logical gates in a tree structure.
Probabilistic Risk Assessment (PRA) typically uses event trees and fault trees to iden-
tify the possible causes of undesirable outcomes and the consequences of those initiating
events. PRA defines risk mathematically as the multiplicative result of the probability of
a specific failure occurring and the cost of that failure. Event trees are used as analysis
tools for identifying critical events and the possible effect of responsive measures. Based
on these responses the impact of various paths for failure propagation can be estimated.
Fault trees identify all the necessary steps to cause a specified failure for a system. Be-
cause of this level of component (either physical or functional) analysis, fault trees are
generally suited to design analysis while event trees are more suited to procedure analy-
sis. In addition, there are numerous approaches for combining both static and dynamic
fault trees and event trees into a single model [153, 154].

5.1.3 Research in Function-Based Failure and Risk Analysis During

Conceptual Design

The use of the functional representation for design stage failure analysis can be summa-
rized into two paradigms. The first paradigm uses the functional representation with
the goal of operations-stage failure effect mitigation. The second paradigm uses func-
tional representation with the goal to formally document system failures and effects and
inform design decision making. Because of the difference between the goals of these two
paradigms the methods found in each have a different set of outcomes and limitations.

The first paradigm focuses on mitigating failures at the operations stage. Examples
can be found in the work of [155, 132], [30], Sasajima et al., [29], [66]. Specifically, the
Functional Redundancy Designer was developed to identify functional redundancies in a
design [155]. This was accomplished by analyzing the structural architecture of a system
to identify physical features of a design that are capable of performing identical func-
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tions. Building from this work a model-based reasoner was developed for diagnosis and
reactive control [132] that can identify functional losses, a set of fault cause candidates,
and determine control actions for recovering from functional failures. FBRL was also
used as a basis for computer-aided support of FMEA type of analysis [66]. In failure
analysis, connecting failed state component behavior to intended function can be chal-
lenging because failure behavior can eliminate, or significantly alter the function that a
component performs.

In work aimed at assessing reliability at the concept stage, Smith and Clarkson
present a systematic method for designers to manually think about potential failures and
their consequences [61]. In this method, designs are represented as entity-relationship di-
agrams linked to functional requirements. These relationships are used as guides for iden-
tifying the entity generating detrimental effects, those entities and relationships which
transfer those effects and the entities that are sensitive to those effects. Derelöv [156] also
presents a concept analysis method for identifying potential failures based on identifying
physical failure phenomena with components. When there are similarities between the
system representation and the phenomena representation a potential fault may occur
and is linked to an event tree. However, fault propagation is still expected to follow the
nominal component connections.

The second paradigm focuses on assessing and documenting the effects of failures
for decision making during early design. Of these, the Function Failure Design Method
(FFDM) [67, 64] was one of the first methods to formally connect faults to functional
losses with the goal describing the space of potential system failures. In FFDM, the
functional model is developed to represent the system design, which serves as a basis
for generating configuration concepts of component implementations of functions. Based
on historical failure data for these types of components, it is then possible to establish
likely failure modes for a given function. Because historical fault propagation data
is configuration specific, the FFDM method is limited to single fault impact analysis.
Several other methods built upon the FFDM methodology. An extension of this work
was to enable the design of health monitoring systems concurrently with system design
in order to reveal, model, and eliminate associated risks and failures [157]. Another
extension introduced the Risk in Early Design (RED) method of formulating functional-
failure likelihood and consequence based risk assessment, classified as high-risk to low-risk
function-failure combinations [65, 68].
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The above methods are limited in their ability to assess the impact of multiple fail-
ures and failures that result from system interactions. To overcome this limitation, other
work has focused on including the propagation of failure in the analysis. The Failure
Propagation Analysis Method [69] was developed as a direct extension of the FFDM
and RED methods to capture the failure propagation mapping based on historical data
using a functional model for system representation. This method adapted the element
of ‘common interfaces’ from change prediction [70] to apply to the functional level. The
Change Prediction Method utilizes a Design Structure Matrix to assess the likelihood
and impact of design changes that propagate through a system [70]. Both the Failure
Propagation Analysis Method and the Change Prediction Method utilize the nominal
system representation to assess propagation through the system. Other methods have
avoided using detailed historical data on failure and instead focused on qualitatively
representing nominal and failed system behavior while focusing on the functional effect
of failures. A Bayesian network analysis tool was introduced to evaluate the properties
of function structures based on dependencies between flows and functions [60]. In this
method, the causation relationship is identified between a flow and every functional fail-
ure for each identified high-level function. Failure propagation is then analyzed using a
Function Event Network of all possible causation relationships in the function structure.
This type of approach allows for a probabilistic analysis by applying a statistical relia-
bility measure to the failure of each function in the function model. An extension of this
work is the Conceptual Stress and Conceptual Strength Interference Theory (CSCSIT)
method [63], where the conceptual strength of a function is defined as the ability of a
function to continue to operate while under normal energy, material and signal (EMS)
flows. Conceptual stresses are the EMS flows in the function structure. The application
of interference theory is used to define functional faults as when output flow from a
function is out of a specified normal range.

Another effort has looked at the cost-benefit relationships between functional design
and risk mitigation. Specifically, a risk based decision making method was developed by
Mehr and Tumer [158], namely, the Risk and Uncertainty Based Integrated and Concur-
rent (RUBIC) Design methodology, fueled by the need to assess the risk of integrating
prognostic and health management capabilities in large aerospace systems, at the system
design stage. In this work, risk was defined by a triplet of fault type, fault probability,
and fault consequential cost, and used to determine optimal resource allocation for the
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detailed design phase; however, risk mitigation attributed to the prognostic and health
management capabilities was not explicitly quantified in this formulation. An extension
to this framework was to enable a cost-benefit analysis (CBA) of integrating new tech-
nologies to large complex systems [159]. The CBA framework provided an optimization
framework for the allocation and cost justification during functional design, based on
a formulation using probabilistic reliability metrics such as system availability, cost of
detection, etc.

Finally, the Function-Failure Identification and Propagation (FFIP) analysis frame-
work introduced by Kurtoglu and Tumer [62] significantly extended the process of iden-
tifying functional failures during the system design stage by combining failure identifi-
cation with model based reasoning. The FFIP method provides a unique way of doing
failure analysis at the very early stages of design, combining decision-making and auto-
mated reasoning driven by functional failure analysis. Most fault analysis tools including
model-based and data driven diagnostic methods share an after-the-fact approach that
looks at symptoms of faults and traces them back to the causes of those effects [136].
These methods are required to constantly monitor a system during operation, estimate
the systems physical state, and often times react to faults through self-repair and recon-
figuration. For such tools it is also important to reason about the temporal progression
of fault manifestations as they gradually develop. Contrary to these approaches, FFIP is
not intended to be a tool that “reacts” to component or functional failures in real-time
during system operations. Instead, it is developed as a design tool that aims to eliminate
or reduce the likelihood of reaching certain possible futures by formal analysis of risk of
failures early in the design process and by proper guidance of decisions before the design
becomes solidified. In this regard, it can be thought of as a conceptual evaluation tool
that is used to perform relative risk comparison of competing designs and associated
design decisions. FFIP will be explained in more detail in the next section, as it is used
as the starting point for the current paper.

5.2 Design Analysis with the Function Failure Identification and

Propagation Framework

This section introduces a new methodology for reasoning about the functional failures
during early design of complex systems. The identification of risks of a potential loss of
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system functionality during the earliest stages of designing complex systems is of grow-
ing importance for risk sensitive industries. Early stage design provides the greatest
opportunities to explore design alternatives and perform trade studies before costly de-
cisions are made [160, 161]. The goal of this research is to develop a formal framework
that enables system architecture analysis of complex systems during the conceptual de-
sign phase. The analysis of potential failures and associated risks of functional losses
performed at this earliest stage of design will facilitate more informed decision making
at the system architecture level, and thus the development of more robust and reliable
system architectures [161, 159, 158].

Many methods have been introduced in recent years to move risk based analyses and
decisions into the early stages of design. The intended goal of what we generally call
risk-based design (RBD) is to use formal methods to understand and characterize risk
drivers as the design develops and incorporate this information into principles, tools,
or methodologies. The methods are then intended to assist designers in making design
decisions that reduce risk while meeting overall system goals. To achieve this goal,
we assert that the designers must identify functions, risks, and failure modes related to
design decisions and enable making design decisions and choices based on risk and failure
information. One way of doing this is by understanding the nature of the failure and
its potential impact on the functionality of the system. This kind of impact assessment
requires establishing a computable relationship between components and their failure
modes, the functionality of components, and the propagation of failure effects. In prior
work, we have introduced the Functional Failure Identification and Propagation (FFIP)
analysis framework that integrates all these aspects into a formal framework to enable
the analysis of functional failures and their impact on overall system functionality [62].
In this chapter, we develop several unique capabilities that will improve upon FFIP to
result in a Functional Failure Reasoning (FFR) framework by: 1) Integrating quantifiable
measures that define risks based on functional decomposition and the role of functionality
in accomplishing design goals, and, 2) Relating impact analysis results to system level
architecture design decisions based on a reasoning scheme using models and rules relating
functionality and failures.

In order to demonstrate the proposed methodology, this chapter analyzes the de-
sign of an electrical power system (EPS) shown in Figure 5.1 as an application. The
design problem was to develop a representative testbed facility to be used for testing,
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evaluating, and maturing of diagnostic and prognostic health management technologies
at NASA Ames Research Center, known as the Advanced Diagnostic and Prognostic
Testbed, or ADAPT. Specifically, three examples are shown illustrating how the rela-
tionship between system redundancy and criticality of functional failures can be explored
to analyze alternative system architectures.

Figure 5.1: The schematic of the basic electrical power system (EPS) design. The
system is used to provide power to various components including pumps, fans, etc. In
this chapter, three alternative conceptual system architectures of the EPS design are
studied.

5.3 Function Failure Reasoning

The functional failure reasoning (FFR) method, introduced in this chapter, uses the
FFIP analysis framework to perform a simulation-based analysis of functional failure
propagation as a first step, and then associates that analysis with the criticality of func-
tional losses to enable tradeoffs between competing conceptual system architectures. The
FFIP framework uses a simulation-based analysis of functional failure propagation. The
modeling scheme used in this framework is common for modeling conceptual dynamical
systems. For example, function-behavior-structure (FBS) paths developed by Qian and
Gero [30] constitute a method that presents a formalism to represent function, struc-
ture, and behavior of systems. In this technique, relations among function, behavior,
structure, and processes are utilized to define FBS paths, which are then used to re-
trieve design information to conduct analogy-based design. However, FBS paths only
model nominal behavior of components. FFIP models both nominal and faulty behavior
of components and failure conditions of functions so that functional failures and their
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propagation can be assessed from a system model using behavioral simulation. The sim-
ulation and reasoning approach developed has its roots in qualitative physics [141] and
qualitative reasoning [130, 142, 143] and utilizes a finite state representation of system
behavior and performs reasoning based on qualitative relationships between functional
and behavioral models of system components.

The main novelty of the FFR method introduced in this chapter is that it presents a
conceptual design tool that enables robust and reliable system design and development of
complex systems during the stages of design where only functionality and basic (generic)
configuration information is available. Note that, only redundancy decisions are targeted
in this chapter, however, the method is applicable to other design decisions governing
the configuration of a system. The FFR method offers two immediate advantages by:

1. Accounting for the individual impact of failure of basic functional elements in a
system as well as the combined system-level impact resulting from the propagation
of functional failures.

2. Helping to determine the level of risk mitigation that can be achieved by alternative
system architectures by computing the effect of architectural changes on functional
failures and the impact on the overall system safety.

The basis for these analyses is a four-step process, which is explained next, followed by
an application to the Electrical Power System (EPS) testbed.

5.3.1 Step 1: System-Level Modeling

The first step in the methodology is to apply the system-level modeling module of the
FFIP framework to represent system function, architecture, and behavior by an inter-
related array of graph-based, elemental component models [62]. The graph-based mod-
eling approach provides a coherent, consistent, and formal schema to capture function-
configuration-behavior architecture of a system at an abstract level.

Functional Representation: System function is represented using function struc-
tures [113, 31, 119], establishing a formal function-based design paradigm based on the
concept of functional modeling [119, 133]. Functions and flows are represented as verbs
and nouns respectively (e.g., transfer gas, mix liquid, open gate, display warning, record
data, etc.). The flows are broken down into three categories: energy, material, and signal.
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The Functional Basis (FB) taxonomy, with its hierarchical set of flows and functions[133],
and the functional modeling processes proposed in the literature [113, 31] are used to
develop the functional models for the systems under study.

Architectural (Configurational) Representation: The architecture, on the
other hand, is captured using configuration flow graphs (CFGs) [162]. A CFG strictly
follows the functional topology of a system and maps the desired functionality into the
component configuration domain. In a CFG, nodes of the graph represent system com-
ponents, whereas arcs represent energy, material or signal flows between them. For flow
naming, the Functional Basis terminology is adopted, while the components of the graph
are named using a taxonomy of standard components [163]. The component types in a
CFG can be thought of as generic abstractions of common component concepts.

Behavioral Representation: Finally, the behavior of the system is represented
using a component-oriented modeling approach. The approach involves the development
of high-level, qualitative behavior models of system components in various discrete nom-
inal and faulty modes. The transitions between these discrete modes are defined by
mode transitions. The component behavior in each mode is derived from input-output
relations and underlying first principles. These modular, reusable component behavior
models follow the form of configuration flow graphs. Accordingly, state variables critical
to the system behavior are incorporated into the representation by associating them with
their respective (CFG) flows [62].

5.3.2 Step 2: Computing the Function Criticality Rating (FCR)

The objective of Step 2 in the methodology is to determine how critical each system func-
tion is for the systems operations. The method accomplishes this task by estimating the
distribution of criticality over the functional elements of a system. Accordingly, the func-
tion criticality rating (FCR) for each system sub-function is determined by comparing
the criticality of individual system functions and by converting the criticality ratings into
a coefficient that is normalized based on the combined criticality of all system functions.

This is accomplished by means of functional decomposition [113], where the overall
function of a system (i.e., the black-box representation) is decomposed into smaller
lower level functions in a hierarchical manner. For example, for the EPS design (Figure
5.1), the overall functionality of the system is to provide power, which then can be
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decomposed into three top-level functions, namely supply power, distribute power, and
operate loads. The top-level functions are those that are implemented by all alternative
conceptual system architectures. Each of these functions are then further decomposed
into lower level, elemental sub-functions depending on the specific implementation of the
architectural design of the system. This process is schematically illustrated in Figure
5.2 where two system architectures derived from the same overall function are shown.
In Figure 5.2(a), top-level functions 1 and 3 are implemented by three elemental sub-
functions, whereas top-level function 2 is an elemental sub-function itself, and in Figure
5.2(b) functions 1 and 2 are implemented by two elemental sub-functions and function
3 is implemented using three sub-functions.

The function criticality rating (FCR) of each elemental sub-function is then estimated
by following the functional decomposition scheme introduced. Accordingly, the overall
or the black-box function of the system is assigned an FCR value of 1, which is then
distributed over the lower level functional elements in the system. In order to accomplish
this, the functional criticality of the top-level functions is assigned first, followed by
further projection of FCR values to lower level functions as shown in Figure 5.2. The FCR
ratings for lower-level functions can be assigned by soliciting expert opinion on functional
importance, or alternatively by progressively projecting higher-level FCR values on to
lower-level functions based on a distribution scheme. In Figure 5.2(a), an equal criticality
distribution is assumed for the projection of FCR values, whereas in Figure FCR(b), a
skewed distribution is used which assigns a higher criticality to the top-level Function 1.

At the end, the individual functional criticality ratings constitute the relative weight
of each system function based on overall system functionality and provide an expected
distribution of risk over functional elements. In other words, the higher the FCR of a
function, the more valuable is maintaining that functionality during system operations.

5.3.3 Step 3: Computing the Functional Failure Impact (FFI)

The objective of Step 3 in the methodology is to quantify the overall impact of func-
tional failures and their propagation on system functionality. The consequential cost of
functional failures is calculated in this step by following 4 different sub-steps, described
next.
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Figure 5.2: Illustration of functional decomposition and the estimation of functional
criticality ratings: (a) FCR values for system architecture A estimated using equal crit-
icality distribution, (b) FCR values for system architecture B estimated using skewed
criticality distribution.

Step 3.1: Selecting a set of scenarios of interest. Critical scenarios are deter-
mined based on the concept of operations of a particular system. The FFIP framework
is then used to analyze the consequences of these what-if scenarios in a system governed
by the occurrence of specific component failures [62].

Step 3.2: Running the FFIP behavioral simulation on the set of scenar-

ios. The FFIP behavioral simulator then determines the system behavior under certain
specified conditions for the critical scenarios. These conditions are represented by the
occurrence of events that cause specific component mode transitions. During the simu-
lation, both the discrete component modes and the system state variables are tracked.
During conceptual design, the system state variables are not known quantitatively. To
deal with this constraint, these continuous variables are discretized into a set of qualita-
tive values. For example, an electrical current variable may take on values from the set
of [zero, low, nominal, high]. Similarly, a status signal variable indicating the position
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of a circuit breaker may have values of [open, closed]. The state of the system is then
simulated by solving the continuous-time system in the intervals between discrete events.
When an event occurs, the continuous-time simulation is stopped, and the corresponding
component mode transition is executed. Using this scheme, critical events, consequences
of which are investigated, can be inserted into the simulation at any time step [62]. Ex-
amples are answers to questions such as: “How does the system behave if a relay fails
to open?” or, “What is the impact of an AC/DC inverter breakdown on overall system
behavior?”

Step 3.3: Running the FFIP function failure logic on the set of scenarios.

Next, the function-failure logic (FFL) module of the FFIP framework uses its reasoner
to determine the state of each system function (i.e., whether it is operational, degraded,
or lost.) The simulation feeds the state of the system to the FFL reasoner at the end
of each time step and the state of each system function gets evaluated at these discrete
points. The FFL reasoner translates the dynamics of the system into functional failure
identifiers and facilitates the assessment of potential functional failures and resulting
fault propagation paths.

Note that, FFL allows the assessment of the operability of a function to be made
based on the values of the input and output state variables of the CFG that corresponds
to the component by which the function is realized. Therefore, capturing the mapping
between the functional model (function) and the configuration flow graph (behavior)
is fundamental to the employment of the function failure logic. The reasoner uses a
set of form-independent system function models that describe conditions under which
functions deviate from their intended operation [62]. Accordingly, system functions are
classified as ‘operating, ‘degraded, ‘lost recoverably or ‘lost, defined as follows:

1. Operating: Function operates on a flow as designed

2. Degraded: Function operates on a flow not as designed

3. Lost Recoverably: Function has no flow to operate on because of a different func-
tional failure

4. Lost: Function does not operate on flow

Using the simulation scheme of FFIP, functions that can potentially be degraded, lost,
or lost recoverably can be computed for particular scenarios of interest.
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Step 3.4: Calculating the Functional Failure Impact (FFI) for the selected

set of scenarios. Finally, after the FFIP analysis is run, the Functional Failure Impact
of a selected scenario can be calculated by summing over the Functional Criticality
Ratings (FCR) of all functions that are classified as degraded, lost, or lost recoverably
during the simulation using:

FFI =
∑

(Ci × FCRi) (5.1)

Where Ci is the consequential cost factor determined by the functional state of func-
tion i (Table 5.1), and FCRi is the functional criticality rating of function i as determined
by Step 3.2.

Table 5.1: Function States and Consequential Cost Factors

Function State Consequential Cost Factor Ci

Operating 0
Lost Recoverably 1

Degraded 2
Lost 4

The consequential cost factors shown in Table 5.1 can be defined based on the re-
quirements of a particular application. As defined by (1), the consequential cost factor
multiplied by the FCR provides a function failure impact (FFI) for an elemental sub-
function in the system. The sum of all sub-function impacts is the system level FFI.

Naturally, the estimated loss of functions with higher criticality ratings will result in
higher functional failure impact for the system. As stated earlier, this process allows the
system designers and risk analysts to quantify the overall impact of functional failures
and their propagation on the functional operability of the system. This quantification of
the functional failure impact is crucial for exploring alternative system architectures, as
it constitutes a formal basis for making design decisions relevant to risk management in
general and for risk mitigation in particular. The way in which these alternative system
architectures are explored is summarized in the next step.
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5.3.4 Step 4: Computing the Reduction in Risk (RIR)

The proposed design methodology is based on the assumption that one can reduce the
severity of consequences of failures by making architectural changes to mitigate risks
associated with certain functional elements in the system. This can be done, for example,
by placing more sensors in a sub-system, designing in more redundancy, changing the
configuration of the sub-system by the addition or removal of certain components, or by
introducing new technologies.

The objective of Step 4 is to quantify the level of mitigation a designer can achieve
by making such architectural changes. The FFR method accomplishes this by first
calculating the consequential cost of functional failures for a modified design under the
same set of critical scenarios used in Step 3. The “Functional Failure Impact of the
modified design (FFIm)” is then computed by making the necessary modeling changes,
and by running the FFIP analysis under the same set of scenarios for the modified design.
Finally, the Reduction in Risk (RIR) is calculated, expressed in percentage by using:

RIR% = (FFIm − FFI)/FFI ∗ 100 (5.2)

The RIR value formally quantifies the amount in risk reduction based on a specific
architectural change. The RIR value can be used to determine the decisions that most
efficiently mitigate risks associated with functional elements in a design. Moreover, it
allows system designers to assess system safety beginning from the very early stages
of design, and to explore various conceptual design alternatives guided by safety and
reliability requirements. The next section demonstrates this by applying the proposed
approach to the design of the previously introduced electrical power system. In this
analysis, three alternative conceptual system architectures are compared and evaluated
to the baseline design introduced in Figure 5.1.

5.4 Electrical Power System Testbed Design Example

Motivated by the critical role electrical power systems (EPS) play in most complex
systems, the Advanced Diagnostic and Prognostic Testbed (ADAPT) at NASA Ames
Research Center provides a representative aerospace vehicle electrical power system that
enables automated diagnosis of faults in a physical software-hardware testbed. The EPS
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testbed (Figure 5.1) is designed to deliver power to select loads, which in an aerospace
vehicle would include subsystems such as the avionics, propulsion, life support, and ther-
mal management systems. The EPS is required to provide basic functionality common
to many aerospace applications: power storage, power distribution, and operation of
loads [164].

5.4.1 EPS Testbed Baseline System Architecture and its Modeling

using the FFIP Framework

The EPS testbed was originally designed using the Function-Failure Based Design (FFDM)
methodology described in Section 5.1.3 at the early concept design phase [165]. Using
the function-based design approach, several critical elements were identified and incor-
porated into the final design and realization of the testbed. In the current realization
of the testbed, the power storage can consist of one or multiple battery modules, which
are used to store energy for the operation of the loads. Any of the battery modules can
be used to power any number of loads in the system. This requires the EPS testbed to
have basic redundancy and reconfiguration capability. Electromechanical relays or other
electrical actuators can be used to route the power from the batteries to the loads. In
addition, circuit breakers are needed at various points in the distribution network to
prevent overcurrents from causing unintended damage to the system components. More-
over, a sensor suite is required to allow monitoring of voltages, currents, temperatures,
switch positions, etc. and to provide an integrated health management functionality.
(More information on the existing ADAPT testbed can be found in [164].)

Figure 5.3 shows a functional and a configurational model of the electrical power
system (EPS), which is used as the baseline architecture in this chapter. The construc-
tion of a functional model (FM) and the corresponding configuration flow graph (CFG)
captures a direct mapping between the functional and the structural architecture of a
system. Each mapping represents a transformation that shows how a functional require-
ment was addressed in the actual design by the use of a specific component concept. In
the electrical power system example of Figure 5.3, the component battery 1 addresses
functions store electrical energy, and supply electrical energy. Similarly, the component
inverter 1 provides condition electrical energy function in the system. Capturing this
mapping between functionality and component configuration of a system is crucial for
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accurately reasoning about failures at a functional level. For the system configuration
flow graph shown in Figure 5.3, there are 42 state variables (attached to the arcs of
the CFG). Also the 29 components of the system have a total of 42 distinct behavioral
modes. These component mode and state variables are identified in Tables 5.2 and 5.3.

To illustrate the component-oriented behavioral modeling approach of FFIP, Figure
5.4 shows behavioral models for two generic components (“relay” and “inverter”) from
the baseline EPS system of Figure 5.3. A relay can transition from a “nominal open” (or
“nominal closed”) mode to “stuck open” or “stuck closed” modes as a result of a fault
event. Similarly, an inverter can operate nominally, or fail to operate. (“failed off”).
The dynamic behavior of the component in each of these discrete modes is governed
by a different set of physical laws and mathematical relations, and is therefore defined
separately.

Finally, Figure 5.5 presents three rules for the electrical power system example. The
first rule defines the failure logic for the “actuate electrical energy function that is ad-
dressed by a generic “relay component. The state of this function is classified depending
on the values of the input control signal (Usersig), and the output current (EE2) of the
relay. This rule basically states that, the function “actuate electrical energy will be lost
if there is no outflow from the relay when it is commanded closed, (2) there is an outflow
from the relay when it is commanded open. In all other cases, the function is consid-
ered to be operating normally. Similar models are shown for condition electrical energy
inverter and sense electrical energy voltage sensor function-to-component mappings.

5.4.2 EPS Testbed Alternative System Architectures

The baseline design, shown in Figure 5.3, represents an early stage design implementation
of the three top-level functions that the EPS testbed is required to perform. In the
baseline system, the normal operating condition assumes that all three loads receive
and operate a nominal voltage and current. Any change in load or power supply and
distribution will have some effect on the system; in other words, the initial design is not
designed to be fault tolerant. However, the same set of functional design requirements can
be met by designing different system architectures representing fault tolerant behavior by
employing different levels of redundancy and reconfigurability. In addition, the sensor
allocation related to the integrated health management functionality can be made a
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Table 5.3: Flow State Variables for the Baseline Design

Flows States
V# Electrical Energy, Voltage Zero Low Nominal High
C# Electrical Energy, Current Zero Low Nominal High
F# Electrical Energy, Frequency Zero Low Nominal High
P# Translational Energy Zero Low Nominal High

UR# Control Signal, Relay Position Open Closed
BP# Control Signal, Breaker Switch Open Closed
IP# Control Signal, Inverter Power Open Closed
VS# Status Signal, Voltage Zero Low Nominal High

CS1# Status Signal, Current Zero Low Nominal High
FS# Status Signal, Frequency Zero Low Nominal High
RS# Status Signal, Relay Position Open Closed

Figure 5.4: Behavioral models for generic “relay” and “inverter” components.
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Figure 5.5: Function Failure Logic relates the behavioral model to specific functional
health.
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number of different ways.
In this case study, we analyze the basic baseline design and compare that to three al-

ternative conceptual system architectures. These alternative designs are developed from
the same black-box representation (“provide power”) and top-level functions (“supply
power”, “distribute power”, and “operate loads”) and demonstrate different levels of
risk mitigation in different functional areas of the system. The functional models and
configuration flow graphs for each design alternative can be found in Appendix B. The
first modification of the baseline design includes a redundant power supply such that,
if no electrical power is coming from the primary power source, a secondary source can
supply the required power. The power to operate the loads comes from one power source
or the other, that is, the system is not designed to take partial power from both. The
second modification of the baseline design is an identical system with redundant loads
configuration. This system would operate from a single power source and is designed
to operate all six attached loads concurrently in a nominal state. Finally, the third
modification of the baseline design incorporates the redundancies of the previous two
modifications. This system is designed to operate six loads concurrently from either the
primary or secondary power source.

5.5 FFR Method Applied to the Electrical Power System Design

Three alternative system design architectures (shown in Appendix B) and the baseline
design of Figure 5.3 will be used in the remainder of this chapter to demonstrate the
application of the FFR methodology to the design of electrical power system architectures
by following the four-step process described in Section 5.3.

5.5.1 Step 1: System Models for the EPS

This step is summarized in Section 5.4.1 for the baseline design. The modeling approach
is built upon a modeling environment, which uses modular, reusable function-component-
behavior models so that each alternative design can also be modeled with minimal effort.
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5.5.2 Step 2: Determination of Functional Criticality Ratings for

the EPS

The function criticality ratings (FCR) for the sub-functions of the baseline design (see
Figure 5.3) and the alternative designs (see Appendix B) are estimated using the process
summarized in Section 5.3.2. Accordingly, the overall functional criticality is projected
onto the three highest-level functions (i.e., supply power, distribute power, and oper-
ate loads) by assuming an equal critically distribution for all designs. (This translates
into an FCR value of 0.333 for each of the three top-level functions). Since different
design alternatives implement these top-level functions using a different level of func-
tional decomposition, the FCR values vary from this level on when projected onto the
elemental sub-functions. For example, the baseline design of Figure 5.3 implements
the “supply power” top-level function by decomposing it into six sub-functions (shown
with the module box labeled “power supply” in Figure 3), whereas the alternative de-
signs implement the same functionality by using twelve, six, and twelve sub-functions
respectively. Therefore, assuming equal criticality again, the elemental sub-functions
decomposed from “supply power” function are assigned an equal FCR value of 0.0556
(1/6th of 0.333) for the baseline design and alternative design #2, and an FCR value
of 0.0278 (1/12th of 0.333) for alternative designs #1 and #3. Similarly, each lower
level sub-function is assigned an FCR value based on the decomposition of higher-level
functions. The higher the FCR value of a function, the more valuable is maintaining
that functionality during system operations. For example, for the baseline design, losing
the “actuate electrical energy” sub-function decomposed from the “distribute power”
top-level function carries a higher risk (0.0333) compared to the same sub-function in
the operate loads function (0.0238). The final function criticality ratings for the baseline
electrical power system and the three alternative designs are summarized as in Table 5.4.

Table 5.4: Distribution of FCR values for the Baseline EPS Design and the Three Al-
ternative Designs.

Function FCR Baseline
FCRs

Design 1
FCRs

Design 2
FCRs

Design 3
FCRs

Supply Power 0.3333 0.0555 0.0277 0.0555 0.0277
Distribute Power 0.3333 0.0333 0.0238 0.0185 0.0138

Operate Loads 0.3333 0.0238 0.0238 0.0118 0.0118
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5.5.3 Step 3: Computing the Functional Failure Impact for the EPS

Scenarios

Step 3.1: Selecting a Set of Scenarios of Interest. To evaluate and compare the
alternative conceptual system architectures, 30 critical fault scenarios are identified and
summarized in Table 5.5. These scenarios are chosen based on the operating character-
istics of the system and discussions with its operators as well as the researchers testing
diagnostic algorithms using this system. All thirty scenarios are run for each design
through the FFIP behavioral simulator and reasoner. All component failures that are
simulated are applicable to the baseline design as well as each of the three alternative
designs. That is, if a relay is simulated as failed for the baseline design, the corresponding
failure can be initiated in the alternative designs as well. (The only exception to this is
scenario #25, which involves the interaction between two batteries, which cannot be sim-
ulated for the baseline design and modified design #2. In this scenario modified design
1 is taken as the baseline.) In Table 5, the fault type that is analyzed is indicated in the
second column, whereas the third and the fourth columns list the component type and
the functional location of the injected faults respectively. Collectively, the 30 scenarios
capture all distinct faulty behaviors of components compromising the electrical power
system. Moreover, it includes critical multiple fault scenarios (Scenario #24 - #30), as
the simulation and the framework supports the analysis of multiple failures that affects
the system in parallel.

Step 3.2: Running the FFIP Behavioral Simulation on the Set of Scenar-

ios. To start the simulation, the modes of individual components (nodes) in the CFG
are initialized along with the values of system state variables associated with input flows
(arcs). All 30 scenarios are run for each design by injecting “fault events” as summarized
by Table 5.5. Each time step propagates the values of certain state variables depending
on the mode of components, the behavioral models in that particular mode, and the
defined component constraint relations. Following this approach, the simulation may be
run over a certain number of time steps, or until the system reaches a prescribed end
state.
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Table 5.5: Summary of Scenarios Selected as a Basis of Comparison
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Step 3.3: Running the FFIP Function Failure Logic on the Set of Scenar-

ios. As described earlier, during the simulation, the functional state of each function
is assessed through the FFL reasoner. This is illustrated in Figure 5.6 where the state
of each function is shown at the end of a critical scenario for the baseline design. For
this particular scenario, two functions are classified as “degraded”, whereas all remaining
functions are determined to be “operating”. This step is also repeated for the baseline
design and all alternative designs.

Figure 5.6: The GUI for functional failure reasoning.

Step 3.4: Calculating the Functional Failure Impact for the Set of Scenar-

ios. Finally, the Functional Failure Impact of the selected scenarios is calculated using
the functional failure reasoning employed by the FFIP FFL reasoner. In this step, first
the functional failure impact of the eight critical scenarios is computed on the baseline
design using Eqn. 5.1. This is followed by the calculation of the functional failure impact
values for the alternative designs for the same set of scenarios. To illustrate this process,
the impact of the two previously identified scenarios (Scenarios #21, and #28 in Table
5.5) on the baseline design are detailed next:

Scenario #21: In this scenario, the objective is to power all the loads in the system.
To achieve that, the system needs to be configured by closing all associated relays and
circuit breakers on the path from the battery to the loads. However, a relay failure is
injected to the simulation at component “relay 2” in the form of “stuck-open”, meaning
that the relay cannot be commanded closed. This results in no power supply to the rest
of the system components that are located downstream of “relay 2”. Functionally, this
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means that the “actuate EE” function provided by “relay 2” is lost and all functions
(except sensing functions) realized by the components downstream of “relay 2” are lost
recoverable.

Scenario #28: This critical fault scenario begins with an initial state of all loads
operating in a nominal state. Then, the “circuit breaker 2” fails in “no trip” mode
meaning that it will not trip as designed if its current level exceeds the threshold that
triggers a trip. When this failure first happens, there is no observable functional level
effect because the breaker is designed to be operating in a closed position at the time
(in other words it is still performing its function). Later, another failure, in the form
of “blocked flow” is injected into the component “pump”. This failure causes a high
current draw to the pump, which requires the breaker to trip. However, due to the “no
trip” failure the breaker fails to trip, which causes less-than-nominal power to the light
and fan loads. Functionally, this means that the “actuate electrical energy” function of
the circuit breaker is lost and the “convert electrical energy” functions of all the three
loads are degraded.

Using these results, the functional failure impact of these two scenarios are calculated
to be:

• FFI Baseline Scenario #21: 0.3571

• FFI Baseline Scenario #28: 0.2380

5.6 Step 4: Computing RIR for the EPS Alternative System Archi-

tectures

After the functional failure impact of the selected scenarios is established on the baseline
and alternative designs, the reduction in risk (RIR) is computed for each alternative
design (and each scenario) using Eqn. 5.2. This is shown in Table 5.6 for the two
scenarios detailed in the previous section.

For Scenario #21, the RIR values for the three alternative designs 1-3 are 13.33%,
47.41%, and 84.44% respectively. For the first alternative design, the redundant power
supply configuration has marginal effect on the RIR value. This is expected because the
faulty relay is downstream of the power supply units and having redundant batteries
does not mitigate the effects of the relay failure. For the second alternative design, the
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RIR value improves. In this redundant load configuration, only one redundant path
(from the faulty relay to the loads downstream) is functionally affected by the fault, and
the system can be reconfigured to provide power to the second load bank. Finally, the
RIR value is the best for the third alternative design, which employs an architecture
including both a redundant power supply and a redundant load configuration. In this
case, only a single function (the function provided by the faulty relay) is affected by the
fault with no impact on the remaining functions. This is because the faulty relay can
be bypassed by reconfiguring the system such that the redundant battery can provide
power to either load bank.

For Scenario #28, the RIR values for the three alternative designs 1-3 are 0.00%,
50.00%, and 50.00% respectively. For the first alternative design, the redundant power
supply configuration has no effect on the RIR value. This is expected because the
faulty components are both located at the “operate loads” module downstream of the
batteries. For the second alternative design, the impact is similar to the baseline design
where the “actuate electrical energy” function provided by the faulty circuit breaker
and the “convert electrical energy” functions provided by the three loads are affected.
However, due to the redundant load configuration, the redundant path from the power
supply units to the second load bank remains intact and is functionally affected resulting
in an overall RIR value of 50.00%. Finally, for the third alternative design, the RIR value
is the same as the second alternative design. Here, the increased redundancy provided
by the redundant power supply has no impact on mitigating the effects of the pump and
circuit breaker faults.

Before presenting a detailed discussion of the results, we would like to emphasize
that one should be careful in interpreting the physical meaning of the metrics defined
in this study. The metrics introduced in our paper are not defined for traditional risk
assessment analysis (such as PRA), which aims at quantitatively assigning risk in a
system, but rather for relative, or qualitative evaluation of risk in the system during
conceptual design. As a result, the functional failure impact (FFI) and the reduction
in risk (RIR) metrics should not be treated as absolute values for quantifying the risk
(or risk mitigation) in the system, but as the basis for conducting relative comparisons
between competing design alternatives. Similar qualitative interpretation of risk and
failure impact is common for other early design analyses. For example, the “risk priority
numbers (RPNs)” in failure mode and effects analysis are assigned based on qualitative
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assignment of the probability of failure, the probability of detection, and the estimated
consequence of a failure all assessed using a linear ordinal scale similar to how we defined
the consequential cost factor) Ci.

5.7 Discussion of Results

As described earlier, the FFR methodology is implemented using thirty fault scenarios
on three alternative designs. The reduction in risk (RIR) values for the three alternative
designs are tabulated in Table 5.7 for these scenarios. Notable observations from the
results are as follows:

1. The FFI values can be used as a quantitative measure of risk for each scenario. For
example, the FFI results for the baseline design indicate Scenarios #20 (terminal
short for battery), #21 (stuck open for relay), and #29 (relay sensor and a relay)
to have the highest negative impact on the overall functionality of the system. This
type of analysis helps designers formalize the information traditionally captured
by an FMEA. These results can be used to identify risk-sensitive areas of the
design and incorporated into design decision-making in order to develop necessary
safeguards (such as redundancy, monitoring points, etc.) for the system.

2. Although the reduction in risk (RIR) values generally improve with increased re-
dundancy, this is not the case for all fault types and locations. As was shown in
Scenario #28, the increased redundancy provided by the redundant power supply
in the third alternative design has no mitigation effect for the faults in the operate
loads module of the system. Moreover, in certain cases increased redundancy may
reversely impact risk mitigation. This can be seen in Scenarios #15, #16, and #25
which all have negative RIR values for some of the alternative designs analyzed.
Such results can be used for gaining insight regarding component arrangement de-
cisions. Consider Scenario #15 as an example. In this scenario, a fan failure causes
a circuit breaker to trip in the system (at one location for the baseline design and
at two separate locations for the first alternative design.) For this particular case,
the FFR analysis provides insight that if the redundant circuit breaker in the al-
ternative design were to be located after the power splitting, the RIR value of the
alternative design would not have been negative.
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3. Although the previous two points illustrate how individual scenario results can
be utilized to make certain design decisions, the foremost benefit of the FFR
methodology becomes evident when the combined effect of all critical scenarios
are considered. This can be visualized by comparing the average RIR values
(16.89%, 42.59%, and %53.53 averaged over 30 scenarios) to the level of redun-
dancy (21.62%, 39.58%, and 53.22% - computed based on the number of compo-
nents) for the three alternative designs. The percentages show that assuming
equal likelihood of occurrence for all scenarios - the second design is the best al-
ternative to the baseline design. This determination can be made by comparing
the RIR(%)/Redundancy(%) values of the three alternative designs. This measure
is analogous to the price/performance ratio, in that it indicates the level of risk
mitigation that can be achieved by investing into a certain level of architectural
changes (redundancy in this particular case) in a design. Using such combined
results, designers can determine the level of risk mitigation that can be achieved
by different system architectures and choose among competing design alternatives.

5.8 Summary

In this chapter, we introduced a new methodology that can be used during early design
of complex systems. The proposed functional failure reasoning (FFR) approach is based
on the notion that a failure happens when a functional element in the system does not
perform its intended task. Risk is defined depending on the role of functionality in
accomplishing designed tasks.

A simulation-based failure analysis tool is used to analyze functional failures and
their impact on overall system functionality. The analysis results are then integrated
into a functional failure impact analysis framework that relates the impact of functional
failures and their propagation to decision making in order to guide system level archi-
tectural design decisions. With the help of the proposed methodology, a multitude of
failure scenarios can be quickly analyzed to determine the effects of decisions on overall
system risk. Using this methodology, design teams can systematically explore risks and
vulnerabilities during early, functional stage of system development prior to the selection
of specific components. Thus, the proposed method offers opportunities for significant
reduction in cost, and increase in system safety and reliability by enabling early devel-
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Table 5.7: Function Failure Impact (FFI) and the Subsequent Reduction In Risk (RIR)
Results
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opment of preventive measures that can effectively and efficiently guard against system
failures.

The thirty scenario cases for the design of the electrical power system show how
the proposed functional failure reasoning (FFR) methodology can be used to evaluate
different conceptual system architectures based on functional failure impact. Several
unique characteristics of the develop framework are:

1. First, the framework provides an analytical approach to quantify individual risk of
basic functional elements in a system as well as the combined risk resulting from the
propagation of functional failures. More importantly, this quantification is derived
from system specific function-to-configuration relations integrating the knowledge
of which components are used in the system for addressing functional requirements.
This is a significant extension to the previously published function-based failure
assessment research.

2. Second, the framework provides the designers with a means to determine the level
of risk mitigation based on specific architectural design decisions. This is accom-
plished by computing the direct effect of functional failures and the impact on the
overall system safety for different architectures. This paves the way for system
level trade-off analysis between architecture, risk mitigation, and cost.

3. Third, the framework provides a means to tackle multiple failures, since it is not
built upon the unrealistic single fault assumption. Accordingly, any number of
failures can be introduced into the simulation and the framework supports the
analysis of multiple failures that affect the system in parallel.

4. Finally, the framework is built upon modular, reusable function-component-behavior
models that can be integrated using an industry standard modeling environment.
As a result, it allows designers to quickly analyze what components to use in the
system, how to configure them, the types and locations of necessary safeguards, and
the proper level of system redundancy, all guided by potential functional failures
and their impact on overall system performance.

There are several assumptions that the presented method is based upon. These
assumptions pose certain limitations that are left to be addressed in future research. For
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example, only design decisions targeting system redundancy are tackled in this initial
implementation. Such decisions allow the same failure scenarios to be run on the original
and modified designs. If, however, more complex design decisions are made governing
the addition or removal of a huge number of system components, or the introduction of
new technologies, the resulting configuration changes may force a failure scenario to be
obsolete for the alternative designs.

Second, the current implementation does not account for the likelihood of different
failure scenarios. Certainly, some failures are orders of magnitude less likely than others.
In the future, we plan to incorporate failure probabilities of individual components and
their failure modes. These can be assessed based on information extracted from past
incident and accident logs, or documented component reliability data. This will also en-
able better representation of scenario probabilities (for example multiple faults are order
of magnitude less likely than single-point failures), and the employment of simulation
techniques (such as Monte Carlo, discrete event simulations, etc.) that support statis-
tical analysis of probabilistic distributions. Such an approach will improve the current
analysis capability, which is limited to a set of critical scenarios (in the presented EPS
design, a set of 30 scenarios) that are determined a priori.

Third, the sequence of events to simulate is chosen by the designer. Unavoidably,
a designer may miss certain sequence of events that could lead to failures. Exploring
the event sequence space automatically for comprehensive coverage of potential failure
scenarios is an open area of research left for future studies.

Fourth, this chapter has focused on a design example in which competing design
alternatives are differentiated by level of redundancy only. However, the FFR method
is not limited to redundancy analysis. In principle, using FFR one may analyze archi-
tectures with different component types and connectivity, or architectures that employ
different technologies. For example, one may study functional failure impact of different
critical scenarios on a typical parallel hybrid and series hybrid car architectures and
make architectural considerations accordingly. The challenge in such examples is the
fact that the set of critical scenarios may the different between the two designs and
therefore the calculation of the reduction of risk (RIR) measure may not be feasible.
Nevertheless, designers can still study the functional failure impact (FFI) results of the
competing designs and make decisions between different design choices. In the future, we
plan on working on examples that show how the FFR technique can be used to analyze
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significantly different system architectures.
Finally, the methodology is biased towards achieving optimum risk mitigation. A

natural question that follows is: at what cost? Thus, we are interested in expanding
the approach to investigate broader costs and benefits of making risk-informed design
decisions [158]. That way knowledge from other domains in addition to reliability and risk
can be reconciled by including information about the operational consequences of system
level failures such as repair, downtime, maintenance cost, etc. In addition, we plan to
study the trade-offs between the cost of building the models necessary for the method
and the potential benefits for more complex products. Such an integrated approach
has the potential to provide significant lifecycle cost savings while designing complex
systems.
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Chapter 6: Expanding FFIP Analysis with Fault Mode Dependency

and Flow State Reasoning

This chapter expands the function-based failure analysis to include new failure scenarios.
Specifically, by finding fault modes which may link components in a failure that are not
connected in the nominal design. This chapter presents a reasoning approach to find
and simulate scenarios where faults propagate outside the nominal system connections
allowing for a more comprehensive analysis of potential system failures. The example
system in this chapter is the thruster portion of the Reaction Control System (RCS). The
content of this chapter was submitted and is in review with the Journal of Engineering
Design and is cowritten by David Jensen, Irem Y. Tumer, and Tolga Kurtoglu [166].

6.1 Introduction

Failure analysis in the design stage is a key enabler for generating a robust design. In
complex systems, failures often occur as a result of the interaction between subsystems,
such as electromechanical and software. Further, a fault can propagate across subsystem
boundaries leading to different system level effects based on the specific propagation
path. It is the system level effect that determines the significance of a fault. Therefore,
identifying the dependencies of a system-level loss to a fault and its propagation path
provides a complete failure analysis. When failure analysis also accounts for the proba-
bility of that fault occurring it is considered a risk analysis. This type analysis is often
done in the validation and late design stage through tools like failure modes and effects
analysis (FMEA) and probabilistic risk assessment (PRA) when detailed design infor-
mation and expert knowledge can be used to determine the interconnectedness of the
system. However, as noted by many authors, including Suh [167] and Ullman [115], de-
cisions at the conceptual design stage have a more significant effect on the final outcome
of the design. Early methods for dealing with potential failures during design focused
on “robust design”, where the core concept was to design the system to be insensitive
to noise [168]. Other research efforts have focused on moving risk analysis into the con-
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ceptual design phase [169, 170, 132, 171, 70, 63, 65, 72]. A common element to each of
these different methods for risk analysis is the use of a conceptual system representation
for identifying the system-level impact of faults.

A significant challenge for conceptual design-stage risk analysis is using early design
representations to determine the expected fault propagation through the system. For
most conceptual failure analysis methods, faults are assumed to propagate according to
the component connections specified in the conceptual design model. A shortcoming of
using these design models for failure analysis was identified in the literature, namely, that
the ‘as designed’ system representation is insufficient for failure propagation analysis for
numerous types of failure scenarios [71]. Indeed, the system representation used in the
conceptual design stage is based on the expected or nominal behavior. In many possible
failure scenarios there can be component interactions that are not part of the intended
system behavior. Explosions, impacts, and back flow all represent possible failures that
connect system elements that would not be represented in the nominal system models.
The motivation of this research is to address how a failure analysis method might analyze
failures that propagate along pathways that are not accounted for in the nominal system
representation.

The contribution of this chapter is the introduction of a novel approach to determin-
ing such failure dependencies. The framework presented here can be applied to develop
an automated means of assessing the impact of interacting component failures, provid-
ing a means to identifying the consequence of multiple and cascading faults. Using this
approach, the analysis is not limited to component interactions that are specified in the
nominal-state system representation typically used in design failure analysis. Instead, the
analysis searches the space of potential component interactions to determine additional
system failures. This expansion of the design failure analysis serves to more fully inform
designers for risk-based decision making. The presented framework is integrated with a
function-based failure propagation analysis tool for early design-stage decision making
previously introduced by the authors, namely, the Function Failure Identification and
Propagation (FFIP) framework [71, 72, 62, 73, 74].

This chapter specifically presents a method of analyzing interactions and depen-
dencies during the functional design stage that have the potential to result in failures.
Section 6.2 presents the foundation of failure analysis within the scope of risk and relia-
bility and the evolution of function-based methods for determining the impact of faults.
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Then the details of the Flow State Reasoning framework are presented in Section 6.3. In
Section 6.4, this framework is used to modify a function-based failure analysis method
and used to analyze a conceptual design for a liquid fueled rocket engine. This is followed
in Section 6.5 by a discussion of the results of integrating the proposed framework with
a failure analysis method and concluding remarks regarding the application and future
direction of this work.

6.2 Background

A common metric for defining system complexity is through the interconnectedness of
system elements [172]. For this reason, system design methodologies focus on capturing
the dependencies between design elements and across abstraction levels. The main ob-
jective in the design stage is turning requirements, customer needs and preferences, and
technical constraints into a testable cyber-physical architecture. The functional design
approach was developed as a means to enhance the concept generation stage of product
design [113]. This method identifies specific functions that a product must accomplish
and connects these functions in a block diagram with the energy, material and signal
(EMS) flows that are then transformed by the functions. Function flow block diagrams
are composed of functions and flows as verb-noun pairs and can be dissected to a fidelity
level where components can be identified to embody functions [173, 174]. The Functional
Basis [133, 39] was developed in order to avoid the use of designer-specific function and
flow descriptions, providing a standard taxonomy for concept design.

The connections in complex system designs between component structures, functions,
behavior and the requirements satisfied by each structure have led to the development
of formal representation methods to capture this design information. The model-based
systems engineering community has used the Systems Modeling Language (SysML) for
system design which represents structure, function, and behavior on separate yet con-
nected diagrams [26]. Other approaches have focused on integrating these design features
in a single model. The function-behavior-structure (FBS) paths [30] are a formalism for
representing function, structure, and behavior of systems. In this method, relations
among function, behavior, structure, and processes are utilized to define FBS paths,
which are then used to retrieve design information to conduct analogy-based design.
FBS could provide designers with analogous nominal operation but was not capable of
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presenting failed state system representation. In a similar way, the Function Behav-
ior Representation Language (FBRL) [29] was developed for representing function and
behavior with predefined tasks. In this work, functions are defined as conceptual ab-
stractions of a behavior under intended goals, whereas behavior descriptions are specified
as relations between input-output parameters of system components.

The Contact and Channel Approach [33, 34] also presents system functionality as
tightly linked to the system structure. In this approach a function is achieved through
two or more working surfaces pairs (a geometric interface) and a channel and support
structure (the volume containing the flow between those interfaces). Implementing this
method as a software tool provided the capability of identifying new functionality re-
quired based on the chosen physical solution [34]. For example, if a component is used
that happens to generate heat, the tool identified a new functionality associated with
dissipating that heat. The identification of new energy and material flows is the basis of
this chapter as well.

6.3 Flow State Reasoning Framework

The methods reviewed in Section 6.2 all determine component and functional interac-
tions based on a system representation. However, because these methods are applied in
the early design stage, the system representations used only captures the nominal state
of a system. The nominal state representation reflects the designed intent of the func-
tional realizations and component interactions. A significant issue arises, however, when
failure analysis methods use this representation to define component and functional loss
dependencies, in that the interactions that occur in the nominal state are not necessarily
the interactions that occur in a failed state.

this chapter introduces the Flow State Reasoning (FSR) framework as a way to per-
form failure propagation analysis to include the effect and propagation paths of failures
that cannot be represented in the nominal system representation. The aim of this work is
to improve early design-stage failure analysis methods by expanding the scope of failures
capable of being analyzed in the early design stage. Several of the methods developed
for early design stage failure analysis provide useful information on the effect of system
failures that can be used for design decision making. This type of information can be
very effective in reducing the cost of redesign and can serve as a valuable metric for
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design evaluation.
Figure 6.1 is a graphical overview of how the parts of the proposed framework in-

tegrate into an early design-stage failure analysis. The top of Figure 6.1 describes the
failure analysis process using the FFIP approach [62]. Starting with a system compo-
nent and functional representation, a library of generic component behavioral models
is used to construct a system behavioral model. Using this system model, a variety of
critical scenarios are tested, including single and multiple faults as well as parameter
variations. Failure analysis results are reported in terms of impact to system functions
as specified in the functional representation. That is, a loss or degradation of function.
In the larger context of design, these results are used for identifying more robust designs
and identifying weak links within the design. The role of the proposed FSR framework
is illustrated on the bottom portion of Figure 6.1. Using expert knowledge, component
behavioral models are modified to include fault symptom and fault cause information.
This information is added to annotate the failure modes of components. Next, using a
domain specific fault relational matrix an algorithm looks for potential connections in
the system model that could occur as a result of failure events. These new fault scenarios
expand the scope of the failure analysis. The benefit of modifying the failure analysis
process with the FSR framework is the consideration of fault propagation that does not
necessarily follow the nominal connections.

In order to implement the FSR modifications of the failure analysis a flow-based
perspective of fault propagation is used. The following sections detail the basis for this
view of fault propagation and how this can be used to reasonably evaluate potential
connections within the context of early design failure analysis.

6.3.1 Establishing a Labeling Scheme for Potential EMS Flows

The first assumption of the FSR framework is that system elements, such as functions or
components, interact with each other and the environment only through energy, material,
or signal (EMS) flows. That is, in order for one element’s state or behavior to affect
another, there must be a real connection and that connection will be through an EMS
flow. The concept of functional modeling is typically used to represent the process
of changes to EMS flows and so each function will be connected to the previous and
following functions by one or more EMS flows [119, 67]. In component representations
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Figure 6.1: Overview of the Flow State Reasoning (FSR) Framework and its role in early
design failure analysis.

connectivity is expressed with EMS flows. What follows from this assumption is that for
failures that occur in an element and propagate through the system, the fault propagation
path will always follow an EMS flow. Explosions, leaks, collisions, and electromagnetic
interference are all examples of failures where the actual fault propagation path is along
EMS connections that are not represented in the nominal state representation.

Failure events can often lead to unanticipated EMS flows in a system. If failure
propagation is assumed to follow EMS flow paths then a complete failure analysis of a
design must include potential flows. A conservative approach is to consider that any
flow between components and from a component is possible. Also any flow from the
environment to the component is possible. It is therefore necessary to distinguish between
designed flows and non-designed, or potential flows. Figure 6.2 illustrates the difference
between designed flows and potential flows for a simple system. Potential flows are the
cause and/or effect of certain failure events. In Figure 6.2 the arcs representing potential
flows in the system are simplified to represent multiple EMS flow types.

One solution to the limitation of using the nominal state representation is to simply
add all of the potential flows between system elements into the analysis. This faces two
challenges. First, for functional representations, it is nonsensical for a function to have
input flows that it does not act upon. This implies that potential flows must be repre-
sented on real, physical component representations. Secondly, representing all potential
flows is confusing and conveys almost no meaningful information to the designers using
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Figure 6.2: Top: Nominal-state design system representation. Bottom: EMS flows that
potentially exist for a system.

the models. We propose using ‘Flow State’ as a guide for representation. That is, for a
particular system state (nominal or failure) a potential flow or nominal EMS flow should
be represented on the system model if it is in one of the following states:

• Normal Flow: Flow is consistent with the original design;

• New Flow: Flow exists but was not designed to exist;

• No Flow: Flow does not exist but was designed to exist;

• Reversed Flow: All aspects except direction of flow are as designed.

This establishes a naming convention to categorizing the types of nominal and potential
flows.

6.3.2 Identifying Potential Flows by Mapping Failure Modes

One clear limitation in considering any potential flow between components is the large
number of propagation paths that a failure analysis method must investigate. For exam-
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ple, consider the abstract system from Figure 6.2. There are seven EMS flows between
components and inputs and outputs from the environment in the nominal system rep-
resentation. However, potentially there can be EMS flows between each component in
both directions and from and to the environment and each component. This increases the
total number of nominal and potential flow paths from seven to twenty. This indicates
that for more complicated systems the number of potential flows to consider must be
reduced in order for a failure propagation analysis method to provide meaningful results.
We limit the scope of analysis by restricting the investigation of the potential flows to
those components that have matching fault causes and fault symptoms. This requires a
comprehensive description of a failure with at least one cause and one symptom for each
failure mode [175].

Fault causes are defined as events which can trigger a particular failure mechanism
in a component. When a failure mechanism is applied to a component, a failure occurs
and will result in some evidence. The evidence that a failure has occurred is defined
as the symptom of a fault. For example, if the fault cause for a short-type failure in
an electronic component is liquid material entering the component and a symptom of a
leak-type failure in a valve component is liquid material, then the FSR framework would
identify a potential EMS flow between these two components. This potential flow can
then be used by a failure propagation analysis method when the valve leak failure is
investigated, resulting in an expanded failure analysis. In a similar line of research [176]
presented a method of identifying common cause failures. The main difference is that
the approach presented in this chapter identifies dependencies between failures.

As a starting point, the FSR framework uses the fault cause-symptom association
table found in Figure 6.3 to identify when a potential EMS flow might exist from a failed
state. An X in this table indicates that the fault symptom has been known to precipitate
the associated fault cause. This table was developed based on a generic approach to
systems and therefore, for a particular domain, expert judgment should be used to both
expand the types of fault causes and symptoms and identify potential dependencies. This
approach identifies what potential connections exist in the failed state of a component
and limits the scope of potential path analysis to those components with identified fault
cause-symptom mappings.
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Figure 6.3: An initial fault cause-symptom mapping for identify potential fault propa-
gation between components.

6.3.3 Extending a Design Stage Failure Analysis

Finally, the naming convention and mappings from the previous two sections must be
interpreted with a failure analysis method to evaluate the impact of faults following new
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potential fault propagation paths. Specifically, this is accomplished by directing a failure
analysis method to evaluate the dependent fault propagation. During a fault scenario,
when the failure analysis method triggers the failure mode of a mapped failure, first the
single fault propagation is determined. Then the method reevaluates and triggers any
related faults as identified in Figure 6.3. There are several factors that allow for tuning
of the analysis: 1) The number of cascading failures the analysis tool will consider (one
failure leading to another leading to another, etc.); and 2) The number of concurrent
failures (one fault symptom relates to multiple fault causes). These tuning factors can
be determined based on the fidelity of the model information.

In the following section the application of the FSR framework is demonstrated on a
specific failure propagation analysis method. Namely, the Function Failure Identification
and Propagation (FFIP) framework [71, 72, 62, 73, 74].

6.4 Application to a Failure Analysis Tool for Concept Evaluation

To illustrate the fundamentals and benefits of the Failure State Reasoning (FSR) frame-
work for failure analysis, the Function Failure Identification and Propagation (FFIP)
framework is used in this chapter as the basis for system representation and fault impact
simulation. FFIP is a good candidate for applying the framework presented in this chap-
ter because it focuses on capturing failure propagation and relating that propagation to
the functional ‘health’ of a system.

As an illustrative application, we consider the conceptual design of a liquid-fueled
rocket engine (LFRE). The goal of LFRE system is to combine fuel and oxidizer in a
controlled fashion and provide thrust for a higher-level system. Liquid fueled rockets are
used extensively for spacecraft applications. Physically this system stores a set amount
of fuel and oxidizer in a liquid state. By controlling the combustion of these two fluids
in a reaction chamber, thrust is provided for the larger system. To control and monitor
the continuous chemical reaction, a series of sensors and a software controller component
must be used. However, for this analysis the software controller is considered outside
the boundaries of the system.
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6.4.1 Early Design Failure Analysis Using FFIP

The objective of the FFIP framework is to relate critical failure events to the health state
of functional elements in order to provide risk information to designers. This mapping is
done by applying the critical event in the form of component mode changes at discrete
time steps. Figure 6.4 illustrates the different parts of the FFIP framework. Figure 6.4
provides the detail of the failure analysis approach described in Figure 6.1. The FFIP
framework uses a set of system representations, and simulations that provide designers
with the functional impact of failures. The system is represented with two static models,
namely, a functional model and a component configuration model. The functional model
contains the sequence of EMS flow transformations that occur in the system to meet the
desired system requirements. High level functions are decomposed into subfunctions to
a point where they can be implemented with components. Figure 6.5 illustrates the
functional model developed to meet the system requirements.

Figure 6.4: Graphical overview of the FFIP framework prior to the integration of the
proposed Flow State Reasoning.

The component configuration model contains nodes and arcs, where the nodes repre-
sent generalized components and the arcs represent EMS flows. Generalized components
are determined based on the possible implementations of functions from the functional
model. In this way the functional model and the configuration model can be related by
mapping functions to components. The system configuration and components used in
this analysis are shown in Figure 6.6.

A simulation is created from these two static system representations. Each general-
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Figure 6.5: Functional model for a conceptual design of a liquid-fueled rocket engine.

Figure 6.6: Component configuration model for a conceptual design of a liquid-fueled
rocket engine.



92

ized component is represented as a behavioral model (a set of rules) that relates input
and output EMS flows based on component mode. In the FFIP analysis framework, the
component behavior is represented as the relationship between input and output flows
based on component mode. EMS flows are discretized (High, Nominal, Low, ... etc.) and
component mode changes affect the output EMS flow levels. Component modes include
nominal operating and failure modes. A system simulation is created by combining gen-
eralized component behaviors and initiating some input EMS flows. The key part of the
simulation is the Function Failure Logic (FFL). For each generalized component a set of
logical rules is created to relate the input and output of the component behavioral model
to the state of the function (or functions) being realized by that component. Function
states are defined as operating, lost, or degraded and reflect the system’s ability to carry
out that function in the given state. Analysis using this method involves inputting into
the simulation a set of critical event scenarios which results in finding the state of all
functions in the system as determined by the FFL rules. For example, one critical fault
scenario that may interest the designers is the impact of a fuel tank leak. To identify
the impact with the FFIP-based simulation the mode of the component “Fuel Tank”
is changed to that failure mode. The system behavioral simulation occurs over many
time steps. The effect of this change is that first the fuel flow level supplied by the tank
is incrementally reduced according to the failure behavior associated with that failure
mode. The FFL identifies the functional impact as: the supply fuel function is degraded
and the combust fluid function as degraded. The latter occurs because the behavioral
model for the reaction chamber component outputs a nominal flow only when the two
input flows are equal.

This analysis provides a designer with the impact of a failure when it propagates
through a system in terms of functional losses. As with the other methods mentioned in
Section 6.2, FFIP is limited in scope. Specifically, the number of potential failure paths
that the method can investigate is limited to the EMS flows in the system’s functional
and configuration models. The following sections demonstrate how to exapnd the scope
of analysis based on the FSR framework.
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6.4.2 Reasoning About the State of Flows in a System

As mentioned, the FFIP analysis approach provides the functional impact of faults in
terms of the state of each low-level function over the simulation time steps. Fault propa-
gation can be inferred from this based on function effected and how they are connected.
Using the previous fuel tank leak example, the propagation path begins at the leak and
terminates at the reaction chamber and is assumed to follow the nominal component
connections. However, to consider alternative (off-nominal) paths the propagation path
needs to be explicit. This is achieved by including a reasoning module to evaluate the
state of flows in the system, based on the FSR assumption that all propagation occurs
through EMS flows. This reasoning module is termed Flow State Logic (FSL) because
it serves a similar to purpose the Function Failure Logic (FFL). Figure 6.7 illustrates
an example of the logic rules that the FFL uses to identify function state and the logic
that the FSL reasoner uses to identify the state of designed and potential EMS flows in
a system.

One difference between FFL and FSL modules is that while FFL is specific for each
component implementation of a function there are only two types of FSL. One set of
rules is used to evaluate the flows that exist in the nominal connections. This is the “as-
designed” FSL which can be added to the simulation reasoning directly. While the other
set of rules captures potential flow states and is triggered when the reasoner described
below generates a scenario based on a cause-symptom mapping.

6.4.3 Expanded Behavioral Models

To conduct an FFIP analysis no information regarding fault causes or symptoms is
necessary, only a knowledge of potential fault modes and their impact on behavior. To
conduct the FSR modified analysis, these behavioral models must include this additional
failure information. Specifically, the causes and resulting symptoms of faults must also be
added as annotations the failure modes. The potential flow connection reasoning requires
this information to trigger fault propagations during fault simulations. This information
reflects a higher level of necessary system knowledge than is necessary for representation
and simulation in the original framework. Figure 6.8 shows an example of this added
information to the component behavioral models of the original FFIP models. In this
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Figure 6.7: Top: The FFL reasoner inputs as compared to FSL reasoner inputs. Bottom:
The logic used in the FFL reasoner as compared to the logic used in the FSL reasoners.

figure, the fault causes and symptoms are only shown for one fault mode. This process is
similar to what is done when conducting an FMEA analysis. However, the advantage of
this approach is that only immediate causes and symptoms of faults must be identified
rather than the system or subsystem level effects. The system and subsystem level effects
are determined from simulation. This information is not difficult for a designer who is
familiar with the components and the environment it is operating in. For example, it is
expected that a designer would know that wear is a cause of certain bearing failure modes
and that a number of symptoms such a vibration may occur for that failure mode. With
annotations, this information can be added to a component model library and stored for
reuse.
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Figure 6.8: An example behavioral model from the original FFIP and the necessary
addition of fault causes and symptoms.

6.4.4 Fault Simulation and New Propagation Paths

For this analysis the modeling and analysis tool ModelCenter by Phoenix Integration
Inc. [177] was used to simulate the system. ModelCenter provides a means of wrapping
component behavior models that may be constructed using different tools (such as Excel,
Matlab, or many others) so that they can be compiled together for a system model.
Additionally, subsystem models can be combined into an assembly with other subsystem
models for more complex systems. For comparison purposes the same set of critical
events were given to an unmodified FFIP simulation and an FFIP simulation that was
modified based on the FSR framework. The process of fault simulation and functional
impact determination using the FFIP framework has been presented in previous research
[71, 72, 62]. For clarity, one example fault simulation is demonstrated.

One known failure mode of the fuel line component in the LFRE example is a leak.
In this mode the behavioral simulation of the fuel line causes the output fuel to be less
than the input fuel. Using the non-modified simulation the whole system is simulated
for nominal operation except for the seeded fuel line fault. The system level effect is
an unbalanced mixture of fuel and oxidizer in the reaction chamber. The FFL reasoner
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identifies the functional impact as a high-level loss of the Provide Thrust system function
because of the degraded Transport Fuel and the lost Combust Mixture subfunctions. A
similar analysis is executed with the modified simulation. However, the FSR framework
provides additional analysis capabilities. The fuel line leak fault is a result of a potential
solid material flow to that component from the environment. In the modified simulation,
the solid material flow is injected as a fault which causes the fuel line leak. This leak
causes the same fuel/oxidizer imbalance in the reaction chamber. Additionally, the fuel
that is leaked from the fuel line is now a potential flow in the system. The potential
propagation reasoner identifies this fault symptom as matching the fault cause of failure
modes in the sensor components. Therefore, the propagation reasoner executes the failure
analysis for each sensor fault triggered by the fuel line leak symptom of an extraneous
flow. One of these analyses identifies the fuel line temperature sensor component failure.
The FFL reasoner for this modified simulation identifies that the same system level
functional loss occurs as before, however, the subfunction of Measure Temperature is
also lost (and similar results the other potentially affected sensor components). Fault
propagation paths are created based on the end scenario to component states and the
potential flows identified by the Flow State Logic. For example, the FFIP results of
the above failure would show that the fuel valve leak failure propagates to the reaction
chamber, whereas the FSR modified analysis would show four sets of failure propagations
(one for each triggered sensor fault). Each would be similar in that the fuel valve leak
fault propagates to the reaction chamber as well as to a sensor, which is the fault path
that is identified by the Flow State Logic output.

6.4.5 Discussion of Results

Using only the FFIP analysis framework the functional impact for critical scenarios in
the LFRE example can be assessed for 35 unique single faults. These faults represent
the total set of known failure modes of the components. The FFIP analysis framework
is also capable of evaluating the impact of multiple faults. To demonstrate the impact of
the FSR modification of the analysis framework only single faults were considered in the
analysis. While the results could be used to make design comparisons or other decisions
[72], this analysis does not provide a complete view of potential functional state changes.
The benefit of the FSR framework is seen by comparing the unmodified and modified
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simulations. Implicit with this result is the propagation path that a fault followed in the
behavioral simulation. Table 6.1 shows the functional impact in terms of functions lost
or degraded and the fault propagation path for each single fault.

Applying the FSR framework identifies several potential failure propagations based
on matching fault causes and symptoms between component failure modes. For example,
in the designed system the fuel and oxidizer valves, the fuel and oxidizer lines and the
reaction chamber all have leak-like failure modes that output extraneous material flows
as a symptom of that failure. Additionally, a fault cause for the sensors to fail is the
presence of these types of materials. These potential failure paths as well as others can
be identified by the modified analysis and the functional effect of these propagations
can be determined using the FSR framework. Table 6.2 shows some of the impacts and
propagation paths for these new failures. By limiting the analysis of potential EMS flows
to those which can cause a failure in the system components the modified simulation was
able to investigate the effect of 27 additional potential flows. 11 potential EMS flows
were identified as coming from the environment to components and 16 potential EMS
flows were identified from components with leak type failure modes to components that
can be affected by the material that was leaked. The potential flows from components
to the environment were not considered.

As illustrated in Section 6.4.4, a significant benefit of modifying FFIP with the FSR
framework is seen in the ability to more fully analyze cascading failures. The ability
to simulate multiple faults and determine functional impact is one of the main benefits
of the FFIP method. With the modifications from the FSR framework multiple fault
simulation occurs when failures in one component cause a fault in another component.
This cascading fault approach is a logical means of assessing multiple fault scenarios.
Previous methods have used a random selection of components and expert knowledge to
determine which components to use in a multiple fault failure simulation [72]. The result
of multiple fault simulations are affected by both the component fault choice and the
relative timing of those faults. Therefore, the FSR framework provides the sequencing
and identifies the components affected in a cascading failure that causes multiple faults.

The LFRE conceptual design is a fairly simple system and it helps to illustrate the
benefits of the FSR framework. However, it also imposes three limitations. First, the
functional effect of a leak type failure is simply the combination of the leak failure and the
effect of the sensor failure. This result occurs because the valve control is not considered
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Table 6.1: Functional losses found by the original FFIP simulation.

Component Failure Functions Affected Effect

Fuel Tank Empty

Store Liquid Fuel lost
Actuate Liquid Fuel lost recoverable

Transport Liquid Fuel lost recoverable
Combust Mixture lost

Fuel Tank Leak
Store Liquid Fuel degraded
Combust Mixture lost

Fuel Tank Over Pressurized
Store Liquid Fuel degraded
Combust Mixture lost

Oxidizer Tank Empty

Store Oxidizer lost
Actuate Oxidizer lost recoverable

Transport Oxidizer lost recoverable
Combust Mixture lost

Oxidizer Tank Leak
Store Oxidizer degraded

Combust Mixture lost

Oxidizer Tank Over Pressurized
Store Oxidizer degraded

Combust Mixture lost

Fuel Valve Stuck Closed
Actuate Liquid Fuel lost

Transport Liquid Fuel lost recoverable
Combust Mixture lost

Fuel Valve Stuck Low
Actuate Liquid Fuel degraded
Combust Mixture lost

Stuck High
Actuate Liquid Fuel degraded
Combust Mixture lost

Fuel Valve Leak
Actuate Liquid Fuel degraded
Combust Mixture lost

Oxidizer Valve Stuck Closed
Actuate Oxidizer lost

Transport Oxidizer lost recoverable
Combust Mixture lost

Oxidizer Valve Stuck Low
Actuate Oxidizer degraded
Combust Mixture lost

Oxidizer Valve Stuck High
Actuate Oxidizer degraded
Combust Mixture lost

Oxidizer Valve Leak
Actuate Oxidizer degraded
Combust Mixture lost

Fuel Line Blocked
Transport Liquid Fuel lost

Combust Mixture lost

Fuel Line Leak
Transport Liquid Fuel degraded

Combust Mixture lost

Oxidizer Line Blocked
Transport Oxidizer lost
Combust Mixture lost

Oxidizer Line Leak
Transport Oxidizer degraded
Combust Mixture lost

All Temperature Sensor Failures Sense Temperature lost

All Pressure Sensor Failures Sense Pressure lost

Reaction Chamber Leak Combust Mixture degraded
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Table 6.2: Example set of new failures investigated by adding the FSR logic to the FFIP
simulation.

Failure Functions Affected Effect

New EMS Flow from Environment to Components

Solid Material to Fuel Valve
Actuate Liquid Fuel degraded
Combust Mixture lost

Solid Material to Oxidizer Line
Transport Oxidizer lost
Combust Mixture lost

Electrical Energy to Pressure Sensor Sense Pressure lost

Component Failures Caused by Component Leak Failure Modes

Fuel Line Leak to Pressure Sensor
Transport Liquid Fuel degraded

Combust Mixture lost
Sense Pressure lost

Reaction Chamber Leak to Temperature Sensor
Combust Mixture degraded

Sense Temperature lost

Fuel Valve Leak to Oxidizer Temperature Sensor
Actuate Liquid Fuel degraded
Combust Mixture lost

Sense Temperature lost

in this analysis. The control subsystem actuates the valves according to sensor inputs.
This means that if a failure affects the sensors, such as in the leak cases shown, then
that fault may also propagate through the control subsystem and back to the initiating
component like a leaking valve. The control subsystem was not included in this analysis
for two reasons. First, without a control system to mitigate the effect of a failure,
fault propagation through the hardware is more readily apparent. Secondly, preliminary
research of including the control subsystem in the analysis has shown that the results
are most useful for optimizing the control system [71]. Using these results to develop
better prognostics and health management strategies is an area of future work for this
research [71]. The second limitation from using this simple conceptual design is that
all potential flow induced faults that were investigated occur as initiating faults. The
consequence is that the functional impact found for a new solid material flow causing a
blocked flow in the fuel line is identical to simply investigating the blocked flow failure
mode of the fuel line. However, this is not generally the case for more complex systems.
The advantage of using the FSR framework to enhance the analysis is seen when failure
induced EMS flows occur as part of the fault propagation. For example the functional
impact of some component failure leading to the generation of a new solid material
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flow that then causes the fuel line blockage is likely to be different than the addition
of the functional impact of the two failures investigated individually. Finally, the third
limitation imposed on this analysis was that components were specified such that the
failure induced EMS flows did not propagate to nominally connected components. For
many types of potential EMS flows the propagation to nominally connected components
is likely. For example, vibrations rarely affect a single component without propagating
to other physically coupled components.

Despite these limitations, the example system demonstrates the benefits of using the
FSR framework to enhance an early design-stage failure propagation analysis. The lim-
itation imposed by using the designed system representation to model fault propagation
is overcome with the addition of potential EMS flows to the nominal state representation.
Further, the mapping of fault causes and fault symptoms using behavioral models that
include nominal, failed state and potential flow environment behavior provides insight
into additional system failures that might have been missed if this were part of a more
complex system.

6.5 Summary

This chapter addresses the limitation of using nominal system state representation based
design models in the analysis of failure propagation. This chapter introduced a frame-
work that can be used to enhance failure analysis methods to include the effect of poten-
tial energy, material, and signal (EMS) flows that may occur in a failed state. Identifying
the dependencies between component faults and functional states is critical for design
stage failure analysis. The Flow State Reasoning (FSR) framework was introduced to
address this challenge. First a labeling scheme was created to describe potential and
nominal EMS flows in a system representation. Second, the FSR framework was shown
to map component fault causes to failure symptoms to facilitate identifying which of all
the potential flows that were identified might actually exist as a result of a failure. When
the fault cause of a component failure is also the symptom of a different component fail-
ure, then a failure analysis method that is enhanced by integrating with this framework
will investigate the impact of potential EMS flows between these components during a
failure.

Further investigation is necessary to find the best approach to optimizing the po-
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tential connection reasoning. One limitation to this approach is the inability to specify
the timing of fault propagation. Fault propagation is shown sequentially without an
assessment of delay between fault causes and effects both along potential and designed
propagation paths. Further, it may be advantageous to investigate failure from a top
down perspective, to find all potential faults and fault propagation paths that lead to a
specified end functional state.

The FSR framework is designed to be used to guide the modification of design stage
failure analysis methods by including faults and failure propagation along potential EMS
flows the can occur in a failed state. However, the philosophy behind the FSR framework
is also applicable to other reliability methods. The two-fold philosophy behind the FSR
framework is, first, that all components are connected with potential EMS flows, and
second, that some failures may propagate through a system along these flows which
are not generally represented in system models. For example, FMEA is a standard
reliability analysis for several domains. When an FMEA is generated with software that
is automatically or manually created with expert input, the assessment of the effect of
failures can also be limited by the system representation that is being used. Because
many real failures do not propagate through a system according to designed component
connections, failure analysis should take into account the potential dependencies that
can result from a failure. Risk analysis methods that begin with this type of thorough
failure analysis have the potential to provide designers and other decision-makers with
the information necessary for designing and operating safety-critical, complex systems.
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Chapter 7: A Safety Function Failure Reasoning Method

The previous two chapters presented a quantified evaluation of the effect fault scenarios
on system functions and demonstrated a method for identify fault dependent scenarios.
Together these two form an analysis of the fault behavior under a large set of potential
scenarios. This analysis is capable of identifying the state of component-level functions
during a failure simulation by using the function-to-component mappings and function
failure logic. Thus, this approach provides a design evaluation of functional robustness
or functional reliability (if failure mode probabilities are considered). However, this
approach cannot provide designers an evaluation of how “safe” a design is. As discussed
in Section 2.3, safe designs and reliable designs are not the same goal. Therefore, this
chapter presents the reasoning method for evaluating the state of safety functions as
defined in Chapter 4. This approach uses a system simulation built following the design
process developed in Chapter 4 and uses a set of logical rules to identify if a safety
function is lost or inoperative. The result of implementing this approach is an analysis
of the ability of a design to remain in a safe state during critical faults scenarios, thus
enabling safety-based design decision making.

7.1 Background

The approach presented in this chapter is based on the design methodology presented
in Chapter 4. This approach follows the Systems-Theoretic Accident Model and Pro-
cesses (STAMP) [134] which describes the occurrence of an accident as possible through
the violation of a safety constraint. Further, Leveson et al. developed a design stage
methodology based on the STAMP model called the Systems-Theoretic hazard and Pro-
cess Analysis (STPA) guide and evaluate designs for safety [84]. As detailed in Section
4.1.3, the STPA method guides the designer to generate control structures to identify
safety constraints. 14 types of general ways the control structure can fail serve to guide
the system designers in identifying potential failure scenarios. Leveson offers a metric of
safety evaluation for a design based on how difficult a scenario is to mitigate, however,
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the probability of that scenario occurring is said to be impossible to determine [84]. In
contrast to the STPA approach of guiding the designer to identify scenarios this chapter
presents a method of simulating scenarios and using reasoners to identify the control
structure violations.

7.2 Safety Function State Reasoning

As mentioned in section 4.1.3, the STAMP approach presents four ways that a safety
constraint can be violated. To repeat these are [134]:

1. A control action required for safety is not provided or is not followed.

2. An unsafe control action is provided that leads to a hazard.

3. A potentially safe control action is provided too late, too early or out of sequence.

4. A safe control action is stopped too soon (for continuous or non-discrete control
actions).

As part of the STPA methodology for identify scenarios where one of these unsafe
control actions may occur, Leveson presents 14 types of control structure failure [84].
These 14 factors are illustrated in Figure 7.1. We propose that by mapping the imple-
mentation of the safety function to the system architecture that a reasoning approach
can be applied to the system simulation to identify the state of the safety function. The
state of the safety function is either “operating” or “lost”. The safety function is “lost”
when any of the 14 factors exists. Therefore, we have interpreted a set of the 14 factors
into rules that can be applied to the system simulation to reason on the state of the
safety function. A safety function being lost does not mean that the associated mishap
will occur. Rather it indicates that the barrier against the transition to the mishap state
is lost. Ultimately this will serve as a means of evaluating design safety by identifying
designs where the barriers to mishap states are more difficult or more unlikely to be lost.

In the FFIP approach, the state of functions is reasoned about using Function Failure
Logic (FFL) on the parameter values in the behavioral simulation (see Chapter 5). In
the same way, the state of the safety function state can be reasoned on by evaluating the
behavior of components and the value of parameters in the system simulation. In Table
7.1 the rules for identifying when a safety function is lost are presented for the general
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Figure 7.1: Generalized factors that are used to identify potential safety constraint
violation scenarios in the STPA methodology [84].Repeated for clarity.

case (matching Figure 7.1). These rules are separated into two classes, flow based rules
and component based rules. A flow based rule is reasoned on based on the flow between
components where a component rule is based on the state of a component.

As can be seen in Table 7.1, the rules for identifying safety function state depend on
a variety of variables. For example the first and second rules look at the value of the
control signals in and out of the controller. Using the behavioral modeling in the FFIP
approach, the state of flows are defined in qualitative intervals. In the case where there
is no value, as might happen with a controller failure, the output flow of the behavioral
model is NaN (or not a number). Alternatively, the Flow State Reasoning (FSR) logic
would identify this flow as No Flow (see Chapter ChatperFSR). Rules 3, 6, and 8 utilize
part of the simulation parameter, namely the simulation time to evaluate safety function
state. These rules identify an X that is greater than the expected simulation change
time. This value is dependent on the modeling tool chosen. For example, some tools can
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simultaneously change each state in the component at the same time step (simulation
time models real time) while other tools complete one state change for each time step
(simulation time represents processing time). For the latter type of tool, the X would
depend on the number of components in the system while X with the other type of tool
would be a very small number. Finally, the component type rules look at the FFL for
the functions implemented by the control structure components to identify the state of
the safety function.

7.3 Example Application

To demonstrate the application of the safety function state rules in a system we utilize
the safety-guided design presented in Chapter 4. Chapters 5 and 6 provide the details
of the electrical power and thruster subsystems as well as the simulation and failure
scenario identification process. As depicted in Figure 4.9, the safety function for this
example prevents the system state change where the orbital trajectory is permanently
lost. While there is a large set of system failure scenarios that will not result in the loss
of this safety function, we present two example scenarios where the safety function is
found to be lost by applying these rules to the system simulation.

7.3.1 Case 1: Safety Function Control Structure Component Failure

In this critical scenario we consider a component failure mode in one of the components
used for implementing the safety function control structure. Considering broad failure
rates can be identified for early component failures [178], this type of scenario can provide
a first-pass reliability estimate of the safety function control structure. For example, hy-
draulically driven valves exhibit a failure mode where a pressure leak causes slower valve
movement. One design decision that might be made is whether to use hydraulic valves
or electromechanical actuators for controlling fuel and oxidizer valves in the thruster
subsystem. Electromechanical actuators do not exhibit this leak-caused slow behavior
failure mode. As illustrated in Figure 4.9, the valves are mapped to the actuator part of
the specified safety function control structure.

In the system simulation a scenario is tested by initializing the system in a nominal
state and triggering one or more mode changes. For this example, the fuel valve mode
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Table 7.1: Safety Function State Reasoning Rules

# Safety Function Control
Structure Fault Type

Simulation Rule Interpretation
(safety function lost if:)

Flow Based Rules
1 Control inputs wrong or missing Control signal in == NaN (not a

number)
2 Inappropriate, ineffective or

wrong control action
Control signal out == NaN

3 Delayed actuator operation ∆T is greater than X between
change in Signal and change in Ac-
tuator state

4 Process Input missing or wrong Process in Flow==Zero
5 Unidentified or out of range dis-

turbance
FSR recongizes New Flow (see
Chapter 6)

6 Actuator Feedback delay ∆T is greater than X between
change in Process state and change
in Signal

7 Incorrect or no information pro-
vided

Sensor signal in==NaN

8 Sensor Feedback delay ∆T is greater than X between
change in Sensor state and change in
Signal

9 Inadequate or missing feedback Signal==NaN
Component Based Rules

10 Proccess model inconsistent, in-
complete or incorrect

Computation FFL==Degraded or
Lost

11 Inadequate Actuator operation Actuator FFL==Degraded or Lost
12 Component Failures and changes

over time
Process FFL==Degraded or Lost

13 Inadequate sensor operation Sensor FFL==Degraded or Lost
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changes from nominal to the slow behavior failure mode. The thruster controller actively
opens the fuel and oxidizer valve to result in equal flow states. When the controller directs
the fuel valve to open to the same state as the oxidizer valve (a change from half open to
full open), the component behavior specified for the fuel valve in that failure mode results
in a delay action. Because this is an actively controlled system, the controller response is
to reduce the oxidizer valve opening to match since it appears to the controller that the
fuel valve cannot be changed (the response is too slow). The result is that oxidizer valve
responds but now the fuel vale has changed and the result is an unequal mixture. The
FFL reasoning in this simulation reports that the function of the thruster to combust
the mixture is degraded due to the incorrect mixture. While the FFL provides the
functional impact of the scenario, the safety function state rules identify the impact to
system safety.

When the safety function state rules described in Table 7.1 are applied to this scenario
simulation it is clear that rule 3 will identify the safety function as being lost. This
means, that the property of the system which would inhibit the loss of orbital trajectory
is jeopardized by this component failure mode. In a design decision process, a comparison
of electromechanical actuator failure mode scenarios and hydraulically driven valves can
be conducted and the result using the safety function rules can provide designers with
an estimate of the safer design.

7.3.2 Case 2: Fault-Dependent Failure Scenario

Following the component annotation process described in Chapter 6, the failure mode
causes and symptoms are included in this analysis. The result of applying the FSR
algorithm is an identification that there is a potential fault-based connection between
the fuel lines in the thruster subsystem and inverter in the electrical power system. This
is found because one failure mode of the fuel lines is a leak, which exhibits the symptom of
a material leak. Additionally, one of the potential causes identified for the electrical short
failure mode for the inverter in the electrical power subsystem is liquid contamination.
Using the cause-symptom mapping found in Figure 6.3, a failure scenario is identified
where the fuel line failure mode is triggered and subsequently the inverter failure mode
is triggered.

The result of this scenario is that inverter failure causes a loss of electrical power
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to the controller and the thruster system. This represents a complete loss of operation
and the FFL reasoner identifies the functional impact as Lost, No Flow for most of the
functions in this system. Multiple safety function state rules indicate the loss of the
safety function. For example, the component based rules all indicate a loss of the safety
function based on the component FFLs.

This scenario demonstrates that components in different subsystems may interact in
certain failure scenarios and that the result of this interaction may result in a lose of the
safety function. Further, neither of these components that interacted where part of the
identified safety function control structure. In the first scenario it would be possible to
identify a loss to the safety control structure by a loss of one of its components, the loss
from this scenario required propagating failed behavior through the system.

7.4 Summary

In this chapter we have developed the rules for identifying the state of the safety function
when the safety-guided functional design process of Chapter 4 is used. Further, using
these rules we have identified the impact in terms of safety of component failure scenarios
and fault propagation through system behavioral simulation. Specifically, we present 13
rules that evaluate the flow values, the simulation time, and the component FFL to
identify is a safety function is lost. In this work, when a safety function is lost it implies
that the barrier to a mishap state transition is lost and does not necessitate a resulting
accident state.

The presented approach uses simulation to arrive at the factors which may lead
to an accident. In contrast, the STPA approach presented factors as a guide for safety
engineers to identify potential scenarios. While the same factors are used, some aspect of
those factors cannot be evaluated through the current early design behavioral simulation.
Specifically, a set of the identified factors include “inappropriate” or “inaccurate” signals.
At the abstraction level implemented for the system behavioral model, these evaluations
are not possible. Thus the safety function rules presented in this chapter will not identify
these issues. Therefore, this approach is not intended to replace the expert identification
and review of potential scenarios but rather augments and expands the capability of the
expert-based approach with behavioral simulation.

This chapter is the conclusion of the analysis aspect of the safety-centric design
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decision enabling framework. This chapter and the two previous chapters have presented
a means of quantifying the impact of failures in terms of their functional effect at a high
abstraction level. This enables fault simulation and analysis of cyberphsycial systems
early in the design process and indicates that design decisions can be made based on the
quantified effect of that simulation. Secondly, it has been shown that fault dependent
scenarios can be identified and simulated and that the analysis of the cyberphsycial
system is not limited to the nominal connected fault propagation assumptions. Finally,
this chapter completes the analysis by showing how the simulation behavior can be
evaluated to reason on the state of the operation of safety functions in the system. The
presented analysis approach bridges the gap between hazard analysis and component
fault analysis to provide designers with an early assessment of design safety. What has
yet to be addressed is how this analysis can be used for design decision making.

The design decision making process is not as simple as choosing one design over
another based on a single evaluation. Rather, it is a multi-objective satisfaction process
where designs have multiple competing attributes, even within the scope of failure and
safety evaluations. Therefore, the next chapter presents several means of understanding
the analysis results. It is through these views of the system that safety-centric design
decision making is enabled.
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Chapter 8: Clustering Failure Analysis Results to Enable Design

Decision Making

This chapter demonstrates three techniques for comparing and clustering the results of
a function based failure analysis. This work provides alternative methods for using the
results of fault simulations which have been performed based on the approach of the
last three chapters. Specifically, this chapter illustrates how to group scenario results
to address highest risk, a probabilistic classification scheme to abstract system failure
behavior, and cluster results in terms of similar functional effect. These three methods
are demonstrated on the analysis of an electrical power systems which represents the
electrical subsystem of the safety guided framework. The content for the chapter was
accepted to the conference of the American Society of Mechanical Engineering Com-
puters and Information in Engineering Conference and was cowritten by David Jensen,
Christopher Hoyle, and Irem Y. Tumer [179].

8.1 Introduction

Risk analysis has the greatest impact on system design when it can be incorporated
into the early design-stage and be used as a decision making tool. In this capacity
risk can become an attribute of the design and be used in architecture and component
selection. The challenge of risk assessment at the design stage is the lack of refined
system information. Traditional methods of failure and risk analysis rely on statistical
failure data and apply methods where expert knowledge of the system is needed to know
the impact and path of fault propagation. For this reason, risk assessment traditionally
occurs at the validation stage of a well refined design, where specific component failure
probabilities and likely fault propagation paths can be defined. However, to achieve the
benefits of early risk-based decision making several methods of failure analysis using the
abstract functional approach have been developed. While some of these design-stage
methods use historic failure rates associated with the component types or functions to
identify risk [64, 65], others have used a behavioral approach to determine the potential
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impact of failures [72, 63, 69]. The benefit of using a behavioral approach is the ability
to simulate fault propagation and identify the effect of a fault within the context of the
designed system.

Early design-stage failure analysis is a powerful decision making tool allowing de-
signers to make changes to decrease the risk of single, multiple or cascading faults [72].
However, the functional approach also enables a high degree of failure characterization.
Understanding the ways in which a system design can fail provides designers with the
information to develop more robust alternatives. Further, design iteration driven by
risk must address the overall response to failures and not focus on only single fault risk
improvement.

The Function Failure Identification and Propagation (FFIP) framework is one of the
methods for assessing the functional impact of faults in the early design stage [62]. The
results of using an FFIP-based analysis of a design is an evaluation of the state of each
function in the system in response to a simulated failure scenario. In previous work
these results have been used to evaluate the consequence of different fault scenarios for a
system design [71, 180, 181] and for making design decisions based on fault consequence
[72]. In contrast, this chapter focuses on different methods of evaluating a large set of
failure scenarios to explore a design and develop design decisions that reduce overall
system risk.

Specifically, this chapter demonstrates three different methods of evaluating and
grouping the results of simulated failure scenarios and identifies how each method pro-
vides insight into the failure characteristics of a design. The first method evaluates the
cost of failures and generates groups such that the designer can prioritize failures and
make design changes to reduce the risk of those failures. The second method uses a sta-
tistical analysis method, Latent Class Analysis, to identify the emergent failure behavior
categories that a design exhibits. Groupings from this approach are used to characterize
a designs based on high-level failure behavior. Finally, an evaluation of functional-impact
similarity generates groups of failure results based on the similarity to a particular func-
tional state of interest. These groupings can be used to identify identical and similar
faults to ensure that designers address all the faults that might lead to that state or a
very similar one. Overall, the goal of this work is to provide a framework to understand
and explore potential failures in the early design stage, providing designers with the
ability to make risk-informed design changes to improve system reliability.
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8.2 Background

In the previous chapter, the failure analysis process was detailed. In this section a
short summary of the failure analysis method is provided as well as a background on the
statistical bases for one of the clustering methods employed in this approach. The focus of
this current chapter is the development of the clustering approach applied to the results of
analysis using the Safety-Centric Function Failure Identification and Propagation (FFIP)
framework.

The Function Failure Identification and Propagation (FFIP) framework [62, 73, 71,
72, 74, 182, 180, 183, 181] was introduced as a design-stage method for reasoning about
failures based on the mapping between components, functions, and nominal and off-
nominal behavior. The goal of the FFIP method is to identify failure propagation paths
by mapping component failure states to function ‘health’. This approach uses simulation
to determine fault propagation and fault effect, thus providing the designer with the
possibility of analyzing component and interaction failures and reasoning about their
effects on the rest of the system. The two main advantages of the FFIP method are:
1) a functional abstraction which allows it to be used in complex systems employing
both software and physical components; and, 2) a simulation-based approach allowing
analysis of multiple and cascading faults.

An FFIP analysis begins with a functional representation of a system and utilizes
the mapping of functions to components in a component structural representation. A
system simulation is built following the structural representation. The nominal and
faulty behavior of generic components are stored as state machines in a component
library. Each state represents a behavioral mode of the component where the qualitative
intervals (high, low, etc.) of the input flow attributes are converted to output flow
attributes. For example, in the nominal mode of a fuel line the input flow level of
fuel is the same as the output. However, in the blockage fault mode the output flow
level is reduced to zero. Finally, the main contribution of the FFIP approach is the
Function Failure Logic (FFL) reasoner which relates the input and output attributes
of the component simulation to the expected change for the function mapped to those
components. The result of an FFIP analysis is an evaluation of the health status of each
function in the system. There are four potential health states for a function defined as:
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1. Healthy: The function affects the flow as intended

2. Degraded: The function affects the flow differently than intended

3. Lost: The function does not affect the flow

4. No Flow: There is no flow for the function to act on (usually due to an upstream
failure)

A failure event, which is the triggering of one or more component transitions, is sim-
ulated and the functional impact as identified by the FFL reasoner is recorded. Each
event scenario simulated produces one record. These records will be used by the cluster-
ing approaches proposed in this chapter.

8.2.1 Latent Class Analysis

The social sciences have used the concept of latent classes since the 1950s [184]. Manifest
(or observed) variables are the data of empirical studies. A latent variable is one not
directly tested but is nevertheless correlated to observations of the manifest variables.
Structural equation modeling is a set of methods for identifying these latent variables in
the underlying structure of data [185]. If the latent variable is continuous then methods
such as factor analysis and multivariate mixture estimation can be used to find this
structure. However, if the latent variables have discrete categories then the structure
fits a latent class model [186]. As an example, survey questions on personal views of
several political topics can form the parameters of a statistical model. Latent class
analysis (LCA) on the survey data could be used to identify subgroups into which the
respondents are classified. Groups identified within the data would likely correspond to
labels like “conservative”,“liberal”, etc. There are three main results from performing
an LCA. First, each data point has a probabilistic membership to each class of the
latent variable (e.g., the respondent’s likely political leaning). Secondly, each discrete
variable state is correlated to a latent class (e.g., liberals have a high probability of
answering affirmatively to question three.) The final component of the LCA output is
class membership percentages for the entire data set (e.g., 40% conservative, etc.)

Formally, the latent class model is based on the concept that the probability of
observing a specific pattern (Y) of manifest variable states y, denoted P (Y = y), is a
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weighted average of the C class-specific probabilities P (Y = y|X = x), where X is a
latent variable with C number of classes. Weighting with the proportion of that class to
the latent variable P (X = x) results in Equation 8.1.

P (Y = y) =
C∑
x=1

P (X = x)P (Y = y|X = x) (8.1)

Further, the manifest variables within a class, Yl are assumed to be locally independent.
Therefore, Equation 8.2 defines the probability of observing a pattern in the L manifest
variables within a class.

P (Y = y|X = x) =
L∏

l=1

P (Yl = yl|X = x) (8.2)

As with K-Means (or C-Means) data clustering, algorithms for implementing LCA use
expectation maximization for a predefined number of groups. Therefore, LCA must be
executed iteratively in order to identify the correct number of classes for the latent vari-
ables. Identifying the goodness of fit of the latent class model is typically accomplished
by examining the Akaike Information Criterion (AIC). This metric is an estimate of
the information entropy (information lost) when a statistical model is used to describe
reality. The AIC formulation modifies the log-likelihood estimation by the number of
parameters, punishing over-fitting models. The objective in checking goodness of fit with
AIC is to find the minimum of Equation 8.3, where K is the number of parameters and
L the likelihood function for the statistical model.

AIC = 2K− ln(L) (8.3)

LCA was chosen as a clustering method over other clustering methods because the man-
ifest variables in the results are the discrete states of each function in the system. Ad-
ditionally, the hypothesis of this work is that the failure behavior of a system is also
categorical. This categorical system-level failure is the latent variable in our analysis.
The discrete (and ordinal) nature of the variables rules out other multivariate mixture
models.
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8.3 Overview and Comparison of Methods

While the analysis of individual failure scenarios of interest was shown to be useful in de-
sign alternative selection [72] and scenario exploration [180], the following three methods
focus on evaluating overall system failure characteristics for a large set of scenarios. The
first method uses an evaluation of the consequence of a fault scenario and identifies other
scenarios with similar consequence. The second method use Latent Class Analysis to
identify the high-level failure behavior of the system. Finally, the third method identifies
functionally identical and similar fault scenarios using a similarity relation metric. The
following sections discuss each method in detail and Table 8.1 provides a comparison
and summary of results for each method.

Table 8.1: Comparison of the Three Methods for Fault Simulation Clustering

Consequence
Method

LCA Method Similarity Method

How to find
the groups:

Cost metric is used
to evaluate the conse-
quence of a failure

LC regression is ap-
plied to the data

Similarity metric and the
distance between fault sce-
narios is calculated

What the
groupings
mean:

Levels of impact Discrete, emergent
patterns of failure
behavior

Faults that effect the system
in identical and similar ways

How to use
the groupings:

Prioritize faults to
address

Characterize system
failure behavior

Identify similar faults to
states of interest

8.4 Example Application

To demonstrate the clustering approaches applied to function failure analysis results,
we perform an FFIP analysis on a design concept of an electrical power system (EPS).
This EPS example is an early design-stage model that uses a battery to provide power
for a set of AC and DC loads. This example is based on the design of the Advanced
Diagnostic and Prognostic testbed located at the NASA Ames Research Center [164]. In
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previous work various potential design architectures were compared using a quantified
interpretation of the FFIP results [72]. This work focused on evaluating the benefit
of different potential redundancies through comparing the reduction in cost of failure
events, where the cost is the sum for all the function’s values (as identified by the
designer) multiplied by the cost of that function being in the identified state. While
this example system is complicated enough to identify the effects of fault propagation,
the FFIP analysis has been demonstrated on a more complicated system (nuclear power
generation [180, 181]). Figures 8.1 and 8.2 illustrates a functional and component view
of the system.

The effect of different component fault modes is identified for the EPS using a sim-
ulation of the system built by connecting component models created with the Stateflow
toolbox in Matlab Simulink. A scenario is simulated where one or more faults is triggered
and the resulting changes in system dynamics are allowed to propagate. The output of
each simulation is a health status of each function identified in Figure 8.1. Using a Mat-
lab script, a large set of scenario results is generated; first simulating each component
fault mode as a single fault scenario and then two fault combinations. Three or more
fault scenarios can also be generated in the same manner. For this system, simulating
every possible combination of two faults is not computationally expensive. However,
for more complex systems there are three possible ways for guiding the scenario se-
lection and simulation process. First, expert knowledge can provide direction on the
components that are likely to negatively interact and have known fault causation. An
alternative to this approach is simulating fault modes based on the relationship between
causes and symptoms of faults as shown in [71]. Finally, the clusters generated using the
approach demonstrated in this chapter may provide direction in fault modes that should
be simulated together in an iterative approach.

Figure 8.3 illustrates a snippet of the function failure analysis results for the scenarios.
In this figure each row is a separate scenario and the columns correspond to the resulting
identified state of the system functions. For the clustering analysis three sets of scenarios
were generated. The first set of results tested each failure mode of each component
resulting in 97 simulations. The second and third set of scenarios tested two fault
scenarios. The difference between these last two sets was a reversal of the order in which
the faults where tested (e.g., battery fault then relay fault, and reversed order in the
third set). For the three sets this generated 677 fault simulation records.
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Figure 8.3: An example of the functional state output from simulating several failure
scenarios. Each row represents the final functional impact of the component-level func-
tions.

8.5 Consequence and Risk Metric

In previous research the functional “cost” of a failure event was determined by multiply-
ing the cost of the state by that function’s importance to the designer [72]. This concept
of cost or consequence was applied to the failure scenario results. Through previous
analysis of the example system certain failure behavior has been observed. For exam-
ple, this system is not currently modeled with a controller. Therefore, failure events
with only sensor failures have very little functional impact on the system. While the
function of that sensor may be lost or degraded, no other functionality in the system
is lost. Further, some failures result in power loss or open circuits, causing many of
the functions to be at a state of “No Flow.” The consequence of the system being in a
specific functional state is dependent on the value of a particular function. Therefore,
failure scenario consequence is considered requirement specific. That is, if a requirement
for the EPS is to maintain operation of the loads, then the value of those load functions
and the consequence of failures that effect them are high. For this analysis, all losses
were considered equally undesirable. Therefore each function has identical worth and
the functional consequence is reduced to the sum of the functional states. Since “Lost”
was accounted as 3 and “No Flow” as 4, this implies that failures that result is a loss
of power to components so that they cannot operate are worse than component failures.
This perspective is based on the relative ease of replacing faulty components for this
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system and the value in robust designs that allow continuous operation.
The results of the 677 scenarios is provided in Figure 8.4. A clear pattern can be

seen in this data indicating at least three typical costs of failure for this system. The
sum of a scenario could theoretically be anything within the range of 29 (every function
“Healthy”) to 116 (every function “No Flow”). However, it is clear that the emergent
behavior of the combined component behaviors leads to a typical range of cost values.
These three ranges observed are:

1. 29 through 45

2. 46 through 60

3. 61 and higher

Figure 8.4: Representing the cost of each of the 677 failures simulated results in three
clear groupings for this system.

The top level groups found through this consequence method are those with the
highest negative effect on system functionality. These results could be multiplied by
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either a qualitative or estimated probability to identify high risk failures. Designs that
reduce the impact of these specific faults and reduce fault impact overall are preferred.

8.6 Latent Class Analysis

The second method of evaluating the failure results is focused on identifying patterns
of failure behavior. For this method a Latent Class Analysis (LCA) was performed on
the 677 fault simulation results using the package poLCA [187, 188] for the statistical
software tool R [189]. The poLCA package treats the manifest variables as nominal.
Although the function’s state is ordinal (that is, state 2 “degraded” is more like state 1
“healthy” than either state 3 or 4) the same multinomial distribution is assumed for the
expectation maximization algorithm [190]. In order to avoid local maxima, the poLCA
classification algorithm is executed 10 times for each specified number of classes. The 10
iterations are performed assuming a predefined number of classes of the latent variable
(system failure type). The correct number of classes is identified as the LC model with
the lowest Akaike Information Criterion (AIC). Figure 8.5 shows the change in AIC as
the number of classes ranges from two through seven. In this analysis, the AIC flattens
out after four classes. AIC is a minimum at five classes after which the AIC begins to
increase due to over-fitting in the model.

Once the correct latent class model is identified, there are three desired outputs from
the LCA. The first output is a set of conditional probability tables for each manifest
variable. These tables identify the probability of finding a manifest variable at a specific
state for each category of the latent variable. In the context of this analysis, this indicates
that if a failure event is of a particular class of system failure then the function is
likely to be in a specific state (healthy, degraded, etc.) The second output uses these
probability tables to identify the posterior probability of a scenario belonging to each
class of the latent variable. This is the output used for the probabilistic classification
of the failure events. Finally, the proportion of each classification is reported. This
leads to the identification of the class with the largest membership of failure events. A
Matlab script was also created to sort and label the failure scenarios according to each
class. A subset of the first seven failure scenario results for each class are provided in
Figure 8.6. For comparison, each failure event was also categorized according to the
consequence groupings found using the previous method and those results are under the
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Figure 8.5: The Akaike Information Criterion (AIC) as a function of the number of classes
for the latent class model applied to the function failure simulation data. Minimum is
at 5 classes of the latent variable of “System Failure.”

columns called “S-Group” in Figure 8.6. What can be seen from Figure 8.6 is that that
S-groupings and the clustering resulting from the LCA method do not identify the same
groupings. This can be explained in that the LCA method is identifying patterns of
failure.

The meaning of the different classes found using an LCA are not directly found but
must be inferred from the resulting groups. For example, all of the single fault sensor
failures where grouped together in class 5. These faults all have minimal functional effect
on the system. The faults in class 2 also have only a few negative functional effects,
however these faults led to failures in 2 of the load branches. Many of the faults in class
4 led to functional losses in all of the AC loads and class 3 had failures that affected the
main power supply and resulted in a loss of power for the entire system. In this way
the classes can take on meaning for the designer based on the failures that are grouped
together. While the simple summing approach provides a sense of the consequence of a
fault, the LCA clusters highlight the higher-level patterns of failure behavior.
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Figure 8.6: A selection of some of the failure simulations classified in each of the five
classes of the latent variable “System Failure.”
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8.7 Functional Similarity Metric

The third method of grouping uses a metric of functional similarity to compare all of
the scenarios to a specific functional state of interest. The objective of this method is to
guide designers when they know of a particular fault or undesired system functional state
to identify other scenarios with exact and similar effects. To determine the similarity
between two scenarios, a distance is determined between the states of each function.
This is analogous to the hamming distance except that the ordinal nature of the function
states is taken into account. Classical clustering algorithms such as k-means also use a
similar concept of distance to group objects. The differences between this approach and
hierarchal clustering are: 1, the distance scale is adjusted to recognize the functional
meaning of the states and weighted by the importance of the function; 2, clustering
algorithms aim to find the clusters that all data can be fit into, whereas this approach
bases the cluster on the distance from a point. In this approach, ordinal classifications
are used to determine the distance as specified in the relation matrix in Table 8.2. In
this relational matrix we specify that there is no functional difference in a function being
“Lost” and that function being inoperative in a state of “No Flow.”

Table 8.2: Relational Matric for identifying the distance between function states.

State Healthy Degraded Lost No Flow
Healthy 0 1 2 2

Degraded 1 0 1 1
Lost 2 1 0 0

No Flow 2 1 0 0

A functional similarity algorithm was generated for analysis of these results using
the relational matrix in Table 8.2. The total distance was calculated by summing over
each function state evaluation. Here again, a weighting for functional importance could
be incorporated. However, for this analysis each function was given equal importance.
System states that are functionally identical are collected in an ‘Exact List’. All other
states are mapped using polar coordinates where the point’s radial position is the cal-
culated distance and the angular position is indexed to the fault identification number.
Figure 8.7 illustrates three maps comparing all of the tested faults to scenarios with spe-
cific component faults. These maps help identify distinct groups of functional similarity.
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Based on the nearest cluster, the ‘Similar List’ is generated from those failure scenarios
within the central grouping. Figure 8.8 illustrates a selection of the Similar and Exact
list for the scenario where the fault of “Inverter Failed Off” was simulated. For any
functional similarity map generated there can be different groupings (based on radial
distance), for example there are 2 groups in Figure 8.7b and 3 in both Figures 8.7a and
8.7c.

Generally it is the close proximity faults that are of interest to the designer. This
group, along with the identical matches, can assist designers in identify the risk of certain
faulty states. When using Fault Trees, expert knowledge is needed to identifying all the
possible low-levels faults and combinations of faults that might lead to a top-level event.
In contrast, the functional similarity method identifies all of the scenarios that have the
same impact as well as all the scenarios that are similar enough that designers should be
aware of them. Thus this method is most useful when designers are aware of a particular
faulty system state and want to explore the design to identify multiple ways of reaching
that or a similar state. For example, Figure 8.8 provides some of the similar and exact
matching scenarios as the inverter failure. In this case the designer knows that one
hazard leading to the undesired state of all the AC loads being lost is caused by the
inverter failure. What is identified through this analysis is that (along with several other
faults) a fault in the breaker next to the inverter will also lead to this or fault in the
breaker before the inverter is similar in effect to be of concern. In this way, functional
similarity groupings help designers explore failure behavior and evaluate multiple causes
for losses.

8.8 Summary

This chapter proposed three different approaches for evaluating the results of a function-
based failure analysis method in the early design stage. These different approaches each
offer different perspectives on a system design’s potential failure behavior and can be
used to provide insight to designers for design decision making. In contrast to other
methods which focus on single faults or single failure scenarios, the goal of this work
is to characterize a design’s overall failure behavior. Specifically, three methods were
proposed in this chapter for analyzing and grouping failure analysis results to provide
this design insight. Table 8.1 compared the three approaches and the findings when
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(a) Similarity map for fault “Battery Dis-
connected.”

(b) Similarity map for fault “Inverter
Failed Off.”

(c) Similarity map for fault “Pump
Seized.”

Figure 8.7: Similarity maps created by comparing a state to all other listed states for
functional similarity.
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Figure 8.8: Part of the similarity and exact lists of scenarios with respect to the inverter
fault.

applied to an electrical power system design.
Grouping based on consequence provides designers with clusters of high to low con-

sequence. This evaluation of consequence is based on the designer’s value of functions
and is requirement specific. This leads to the identification of critical scenarios based
on their effect. Although not demonstrated here, generic component failure rates have
been collected [191] and this information can be used to identify a failure probability
over a certain operating time. With this information designers can identify critical fail-
ures based on their risk (consequence x probability). This approach would require using
either statistical independence assumptions or a priori knowledge of the fault correlation
for multiple fault scenarios. However, this approach is still advantageous over traditional
risk analysis methods such as PRA because the fault propagation is identified through
simulation instead of a specified path.

The second approach to grouping proposed in this chapter used Latent Class Anal-
ysis (LCA) to reason about the high-level failure behavior of the system. The LCA
method identifies patterns in the failure analysis results and correlates those patterns
to an underlaying latent variable of “system failure.” The result of using this method
is a characterization of the system-level failure behavior into discrete categories. Addi-
tionally, this method generates probability tables for observing a function state within
a category of system failure. While the categories are complex and can be difficult to
apply labels to (as is typically done when conducting an LCA), the overall system can
be characterized as having distinct failure behavior. For large complex systems where
complete multiple fault simulation across multiple subsystems would be computationally
prohibitive, this method allows for a probabilistic approximation of a subsystem. That
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is, the subsystem could be replaced with a model containing the failure modes (classes)
identified with LCA and the output would be a probabilistic evaluation of the state of
each function in that subsystem based on the subsystem failure category. Further, since
the LCA method produces probabilistic tables of function state for a class, the classi-
fication of new failure scenarios can be predicted without rerunning the LC regression
algorithm.

Finally, the functional similarity grouping method proposed in this chapter compares
the set of function failure scenario analysis results to a particular system functional state
of interest. A relational matrix is used to define the distance between the ordinal function
states of “Healthy”, “Degraded”, “Lost”, and “No Flow”. Based on the distance for each
function a total distance is determined between each failure scenario and the state of
interest and this distance can further be represented on a scalar plot. This approach
allows for the identification of scenarios that result in similar and identical functional
effects. This method can be used when the designer knows of an undesired system state
and wants to assure that design changes address all the potential scenarios for reach
that or a similar state. The three methods of grouping the scenario data presented in
this chapter address different design concerns as mentioned above. Alternative methods
of grouping the results may be necessary to address additional concerns as they are
identified.

The focus of this chapter has been on different methods of exploring design-stage
function failure analysis results. The objective of this has been to aid designers in
making risk-informed design decisions. The vision of this work is that design information
gained by identifying what failure scenarios to address, the overall failure behavior of
the system, and similar or identical failures effects will guide designers to make better
design decisions.
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Chapter 9: Special Issues: Large Complex Systems and the Analysis

Sandbox

The content of this chapter has been accepted to the Journal of Computing and Infor-
mation Science in Engineering and is based on published conference paper co-written by
David Jensen, Nikolaos Papakonstantinou, Seppo Sierla, and Irem Y. Tumer [180].

9.1 Introduction

9.1.1 Challenges for Complex System Design

The design of large complex systems faces numerous challenges due to the complexity
of the design information content, unknown interactions between subsystems, and the
need to integrate expertise of designers or teams of designers from different domains.
Specifically, we recognize three challenging tasks that arise in the design stage for these
systems: 1) Codesign of the multiple domains of technology; 2) Determining the effects of
emergent behavior; and, 3) Determining risks across the system from fault propagation.
The method presented in this chapter is aimed at addressing the challenges in these
tasks.

The term codesign is most often used to refer to technologies that require close in-
tegration of electrical hardware and software systems as found in mechatronics and con-
sumer electronics [192, 193]. However, the technical challenges and the general solution
approach are also applicable to the integration of electromechanical and human control
systems. Specifically, it is challenging to represent necessary system design information
across technical domains at a similar and relatable abstraction level. This representa-
tion is necessary for the development of interfaces and interaction behavior. While it is
advantageous to develop different subsystems concurrently, often in the design stage dif-
ferent subsystems are at various levels of design refinement. Formal model representation
languages, such a s SysML [105], serve to implement a model-based design approach to
address this challenge. That is, high-level system models may be composed of multiple
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representations to capture design information across domains even when subsystems are
at different levels of design refinement.

Emergent behavior is a unique aspect of systems where they exhibit behavior that is
more complex than the sum of the behavior of their constituent parts. Along with the
emergent behavior, which is intended and is used to implement the desired functionality
of the system, unforeseen behavior may also occur. In this work, the focus in on emergent
behavior that may compromise the reliability or safety of the system. Emergent behavior
is defined as degradation or loss of functionality of a subsystem that is caused by poorly
chosen design parameters in other subsystems. Our goal is to provide methods and tools
for studying how changing several such parameters impacts the occurrence of emergent
behavior.

Finally, the third challenging task is concerned with evaluating systems designs for
risk and safety. Traditional approaches focus on identifying faults and their probabili-
ties of occurrence and consequence. For large systems this can create certain statistical
limitations for risk analysis. For example, in complex systems faults are rarely indepen-
dent. Further, the consequence of a component fault depends on the connection that the
component has with the rest of the system. This is evidenced by the increase in failures
that affect systems that deploy both computational and physical elements. Therefore a
risk assessment of complex systems should be based on a failure analysis that accounts
for fault propagation across domains and subsystems.

9.1.2 Prior Work

A function failure analysis approach was developed and presented in prior work to iden-
tify the functional losses and determine their effects through downstream propagation.
This method was developed to help address the three challenging designs tasks presented
in the previous section. Specifically, the Function Failure Identification and Propagation
(FFIP) framework was developed to capture the effects of complex system interactions
early in the design stage and presenting the effects and propagation of faults in terms
of functional losses [62, 72, 182, 71]. The FFIP design-stage analysis framework was
developed to identify the system-wide functional effect of component failures, even when
the fault propagation paths cross the boundaries of electronic, mechanical and software
subsystems [182, 180].
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To facilitate the codesign challenge, the FFIP method uses a functional model to
represent multiple domain subsystems at the same abstraction level. Further, these
functions are linked to generalized components configuration representation. The FFIP
method is a model-based simulation approach and behavior associated to these com-
ponents can be at differing levels of design refinement. The state-based simulation of
nominal and faulty behavior also assists in identifying emergent behavior early in the
design stage. Finally, the FFIP analysis method consists of triggering a fault and record-
ing the fault propagation and system impact. These results can then be used to evaluate
the risk of potential system designs without independence assumptions and across the
different technical domains of the system.

Thus, FFIP is applied at the early concept design phase using an abstract system rep-
resentation to eliminate unreliable designs before costly design commitments are made.
High fidelity system models are not available at this phase, therefore the results of an
FFIP analysis are strongly affected by specific modeling choices in the component model
and the sequence and timing of critical event scenarios.

9.1.3 Objectives and Contributions

In this chapter, the FFIP framework and supporting tools are extended significantly to
better address the challenges of emerging behavior. While high fidelity simulation at an
early phase is not possible, the results should not be totally dependent on specific model
parameter values. The simulation approach presented in this chapter permits varying
the values of key design parameters and the timing of critical events; simulation results
reveal the impact of the variations on the emergent behavior. Previous research has
expressed values for energy, material and signal (EMS) flows with an enumeration such
as [zero, low, nominal, high], so that component behavioral models determine output
flow values according to input flow values and the current nominal or faulty state of
the component. This approach is not sufficiently fine-grained for capturing how several
parameter changes might either reinforce or weaken each other in causing emergent
behavior, so the framework needs to be modified to support continuous flow values
in order to describe feedback loops. This extension of the FFIP approach to system
representation addresses the first challenge identified earlier by allowing for more detailed
subsystem behavior, while maintaining the equal abstraction system level representation
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necessary for codesign.
In order to systematically investigate the effects of different parameter values and

different timing of critical events, it will be necessary to run the FFIP simulation for each
combination of parameter values, so the number of simulation runs grows exponentially
as more parameters are brought into the scope of the study. In order for this to be
feasible, a user interface is needed for specifying the parameters and the ranges in which
they are varied. The second goal of this chapter is then to propose a generic and scalable
algorithm for automatically running the complete set of simulation runs implied by the
user’s choices. The algorithm and user interface are implemented and interfaced to the
Matlab/Simulink based FFIP framework, producing Excel output for each run, which
can be further sorted or filtered according to the health status of a function of interest
specified by the user. The paper demonstrates the use of these tools for identifying the
most relevant parameters for hazards and for focusing their values to the interesting
range in subsequent series of automatic simulation runs. With these changes, the failure
analysis can provide better results for risk assessment early in the design stage.

9.2 Background

The method presented in this chapter uses an early-design stage system representation
and behavioral simulation to evaluate risk in functional terms. A variety of methods and
techniques have been developed for risk assessment, system information sharing, and
simulating expected system performance, discussed next.

9.2.1 Risk Assessment in Complex System Design

This research fundamentally aims to reduce or eliminate the risks of malfunctions and
failures. Many methods exist in practice and in research literature to enable risk mitiga-
tion. Failure Modes and Effects Analysis (FMEA) is used in safety critical industries for
safety analysis. It is based on past experience and defines the effects of a single failure at
a time for a number of component failure modes. These effects can be identified by using
the Fault Tree Analysis (FTA) method [76]. Some research has used FMEA for multiple
failures but if detailed design documents are used the combinations of failures grow be-
yond a manageable size in complex systems [194]. Functional models can be used with
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FMEA to describe more clearly the effects upon the functions of complex systems [195].
The Functional Failure Analysis (FFA) is a method similar to FMEA but at a functional
level of the system design [196]. Although attempts at partially automating this process
have been made, FMEA still remains a manual and laborious process [197]. HAZard and
OPerability (HAZOP) is a qualitative method that can be performed on the functional
model of a complex system. System functions are combined with a set of keywords with
the aim to identify all possible failure modes [198]. This method also requires significant
manual effort, although there are attempts to automate parts of it by using knowledge
databases [199]. Probabilistic Risk Assessment (PRA) [79] is a quantitative method that
can identify weaknesses and vulnerabilities in complex systems. It requires a detailed
design and the failure rate information of the components used. Therefore, it can only
be applied in the latter phase of the system design process [200].

In general, a high level of system behavioral and interaction knowledge is required
to perform these assessment methods. Therefore these methods are most advantageous
for verifying the safety of a well-refined design. The goal of this work is to utilize risk
assessment early in the design-stage to help designers make design decisions, before a
refined design has to be completed.

9.2.2 Complex System Design Representation

The primary method for conveying the relationship between elements in the design-stage
of complex systems is through abstract engineering design models of functionality and
interface requirements. These models range from detailed function and behavior infor-
mation to loose hierarchical artifact relationships. These approaches aim at capturing
the complexity of the system through a single (or set) of static representations. Examples
include: block diagrams based on function logic [201], a historical design repository ap-
proach proposed as a framework to store component information and relate the elements
of information to each other [202], and other function-based representations that support
search and modeling processes of conceptual design [203]. These approaches utilize the
concept of function to connect multiple domain system elements at the same abstraction
level. Other research has explored languages for describing product functionality and
relating it to product behavior [29] and using these languages to reason about designs
[30]. Systems Modeling Language (SysML) is a formalism for representing many differ-



134

ent aspects of system design including function, behavior and structure. Several recent
works have focused on extending the static system representation of SysML for dynamic
system simulation in other tools [204]. Finally, several researchers have introduced repre-
sentation as part of methods of tackling design time failure analysis. Examples include:
a function-failure design method [64] which uses functional models and historical failure
data to map the functionality of a system, a Bayesian network analysis tool for evaluating
properties of function structures using dependencies between flows and functions [60],
and a risk based decision-making and cost-benefit analysis method [159] to assess the risk
of integrating health management capabilities in aerospace systems at the system-level
design stage.

This research builds on the functional modeling approach to design representation.
These functional representations are also mapped to generic component and behavioral
representations. The presented approach leverages the above modular approach to de-
sign, where system functions, structure and behavior are created from combining lower-
level models.

9.2.3 Simulation-Based Design

This research utilizes behavioral simulation of models at multiple abstraction levels with
increasingly higher fidelity, including models that do not require component geometry
details to be implemented at the architecture level. Simulation-based design methods
require the capability of specifying detailed input design parameters and using them
to obtain a model response. This simulation process is called a forward model, which
system designers use to account for the effects of variability in the input and design
parameters on the model response, thereby incorporating uncertainty into the design
process. Common techniques for forward model analysis include sampling techniques to
propagate uncertainty (e.g., Monte Carlo simulation), and model approximation methods
such as response surface models and meta-modeling [205, 206]. These methods support
reliability-based and robust design optimization techniques. Reliability-based methods
[207] estimate the probability of system response based upon specified probability distri-
butions but no effort is made to minimize variation, whereas robust design [208] strives
to minimize the effects of variation.

Simulation based techniques have also been used to assess risk factors in a design
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and analyzing the effects of faults in a system. For example, directed graphs and Multi-
Signal Flow Graphs [140] are used in many domains to analyze dependencies and fault
propagation and model cause-effect dependencies.

At the early design stage, the detailed specifications of component geometry and
system topology required by some methods are usually not available. To address this
problem, we expand our prior work to address simulation and reasoning in early design
[182, 72, 209, 130].

9.3 Methodology

The Function Failure Identification and Propagation (FFIP) framework was developed to
capture the effect of complex system interactions early in the design stage and presenting
the effect and propagation of faults in terms of functional losses [62, 72, 182, 71]. The
simulation and reasoning approach in FFIP has its roots in qualitative physics [141] and
qualitative reasoning [130, 143, 142]. FFIP utilizes a finite state representation of system
behavior, and performs reasoning based on qualitative relationships between functional
and behavioral models of system components. Prior to this research, FFIP has been
demonstrated on relatively simple example systems to demonstrate different aspects of
the methodology. This chapter presents how the FFIP simulation and analysis can be
improved to better meet some of the challenges found in the design of large complex
systems [182, 180].

This section introduces the FFIP methodology by a simple example, so that the
reader may understand how the results in the later sections were obtained. The example
is a simplified subprocess from the pulp and paper industry (see Figure 9.1). White liquor
is heated and supplied to a digester in order to enable a chemical reaction necessary to
pulp production. The white liquor tank has a continuous flow of incoming and outgoing
liquor, and the tank serves the purpose of intermediate storage and heating of the liquor.
The desired functionality is expressed as a functional model, according to the functional
basis defined in [133, 119] (see Figure 9.2). Failure propagation analyses with FFIP use
the functional model to identify loss of functions that are not necessarily associated with
failed components.

The functional model is not simulated, since simulation requires information about
components, their connections and internal behavior. This information is captured in
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Figure 9.1: Piping and Instrumentation Diagram of the example process.

Figure 9.2: Functional model of the example process.
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a configuration flow graph (CFG), which has been implemented in the Simulink tool
(see Figure 9.3). The CFG and functional model have the same flows between functions
and components, following the taxonomy defined in [133]. This makes it possible for a
Function Failure Logic (FFL) to passively observe how abnormal flow levels propagate
in the simulated CFG, and to use this information to determine if a function defined in
the functional model (Figure 9.2) has been degraded or lost. The FFL for the Supply
liquid material (white liquor) function is shown in Figure 9.4; it compares the input and
output flows of the white liquor tank shown in Figure 9.3.

Figure 9.3: Configuration flow graph of the example process.

The relationship between input and output flows of a component in a CFG is defined
by a behavioral model (BM). The BM for the white liquor tank is shown in Figure 9.5.
Statecharts are used in behavioral modeling, and a state is defined for each nominal and
failed mode of the component. In this case there is one failed mode: the tank is leaking.
Critical events may be injected to the simulation at any time, and these cause mode
changes (e.g. the leakFailure event triggers a transition to the TankLeaking state.)

In earlier versions of the FFIP framework, flow levels were described with an enu-
meration [zero, low, nominal, high], but this approach is insufficient for our boiling water
reactor case study, in which several positive and negative feedback loops affect a single
flow. Would two feedback loops simply cancel each other out, if one of them increases
a flow and the other decreases it? How can the effect of varying design parameters be
captured in the simulation? In order to describe feedback loops in early phase designs,
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Figure 9.4: Function Failure Logic for the Supply liquid material (white liquor) function.

flow levels may be any value in the range [0..10] in this simulation. First order linear
difference equations are used to relate input and output flows to each other. Consider
the state Nominal in Figure 9.5. Since the behavioral model is executed by a fixed-step
solver, the tank level is a sequence, with one value for each simulation step. The first
line of code in the nominal state is a linear difference equation that relates the current
and previous elements in the sequence. The behavioral model is thus a system of first
order linear difference equations relating the input flows, output flow and components
internal variables (such as the tank level). The coefficients may either be fixed numbers
or parameters that may be changed between successive simulation runs; an example of
the latter is leakSize in the Leaking state.

Since during early phase design detailed component dimensions are not known and
the range [0..10] is used for flow levels, the results obviously depend on how the model is
parameterized. One objective in this article is to observe how parameter changes in the
behavioral models affect the emergent behavior. These parameters may either be design
parameters, timing of critical event scenarios or parameters of faults. Changes in values
of two parameters are studied in this example. RefInputLiquidFlow in Figure 9.3 is the



139

Figure 9.5: Behavioral model of the white liquor tank component.
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reference liquid flow that should go through the white liquor tank and the digester in
normal operation of the process; it is a design parameter. In Figure 9.5 Leaking state,
leakSize is a parameter of a fault.

The methodology used in this chapter is to define a number of values of interest for
the parameters to be varied and to systematically perform FFIP simulation to identify
those combinations of parameter values that result in degradation or loss of functions.
The choice of values is done by an analyst who understands the application domain. The
flowchart in Figure 9.6 illustrates the methodology in the case of two parameters, and
additional parameters can be handled by adding a nested loop for each new parameter.
Figure 9.7 displays the graph that is obtained in the flowchart when parameter 1 is
RefInputLiquidFlow, Sp1 is [5.0, 10.0, 20.0], parameter 2 is leakSize and Sp2 is [0.5, 2.0,
3.5]; each curve in the graph is the trend for the tank level in one simulation run. The
output of Function Failure Logic for the simulation in Figure 9.7 is shown in Table 9.1.
The Transmit Thermal Energy function is lost when the tank level drops below the level
of the heating element. The status is lost recoverable, since the function can return to
healthy when the level rises above the heating element. The Convert Thermal Energy
to Chemical function, which is associated with the digester component, may fail due to
fault propagation from another component, in this case a leak in the white liquor tank.

9.4 Case Study: Analysis of a Boiling Water Reactor Design

The proposed approach is applied to a Boiling Water Reactor (BWR), focusing on its
steam outlets. The BWR uses the thermal energy from nuclear fission inside the reactor
core to produce high-pressure steam. The steam is guided via pipes and valves to steam
turbines to provide motion to electrical generators. The steam flow to the turbine is
controlled by a pressure control valve, such that the pressure inside the reactor vessel is
kept steady. Fuel rods are arranged into assemblies, which are submerged under water.
The space between the fuel rods forms flow channels through which the coolant pumps
circulate water, which acts as both coolant and moderator. As a coolant, it removes
thermal energy from the core, and a greater flow rate reduces the void fraction, which is
the proportion of steam in the coolant. As a moderator, water slows neutrons, and the
number of thermal neutrons is increased when the void fraction is decreased.

Several feedback loops affect the energy production at the core. An increase of
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Figure 9.6: A flowchart describing how every combination of parameter values is simu-
lated systematically to determine those combinations of parameter values that result in
degradation or loss of functions.
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Figure 9.7: The result of performing the procedure in Figure 9.6 when parameter 1 is
RefInputLiquidFlow and parameter 2 is leakSize.
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Table 9.1: The Output of Function Failure Logic for the Simulation in Figure 9.7

pressure in the reactor vessel decreases the void fraction and increases power output. A
decrease of coolant flow rate has the opposite effect, but insufficient flow can cause a
heat transfer crisis from fuel rods to coolant due to steam buildup; this can lead to fuel
damage due to overheating of the rods. The Doppler Effect can also reduce the neutron
flux. This is a physical phenomenon in which neutron absorption (without fission) by
the 238U and 240Pu isotopes increases when the fuel temperature increases [210].

A reactor protection system is present which can initiate an emergency shutdown
of the reactor, referred to as a scram. Some conditions that can trigger a scram are
related to the neutron flux exceeding a threshold value, the coolant flow rate being
below a threshold value or the external electrical power coming from the power grid
being lost. Maintaining coolant flow at all times is necessary to prevent steam buildup
at the core, since this may cause a heat transfer crisis and damage to the fuel rods due to
overheating. However, a BWR has positive feedback between reactor power and coolant
flow, so a controlled decrease of flow in emergency situations is necessary. During scram,
a common design in a BWR is to drive coolant pumps down to minimum rotations per
minute gradually by a ramp. The slope of this ramp and the need for emergency power
for the pumps are design parameters of interest in this case study.
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There are some known hazards to maintaining acceptable pressure and flow in the
reactor vessel that a BWR design must mitigate. The pressure control valve in the steam
outlet pipe is driven by a sophisticated controller that must react rapidly to changes.
If the pressure control subsystem closes the valve, it notifies the turbine protection
subsystem, which relieves the pressure by opening the dumper valve. However, due to
the sophisticated nature of the pressure control subsystem, unintentional closure of the
valve due to software malfunction is possible, resulting in no notification and a pressure
shockwave back to the reactor vessel.

9.4.1 Abstractions: Functional Model and Configuration Flow Graph

The first step in analyzing the early design of the BWR is identification of desired
functionality. The processes inside a BWR are expressed through functions. These
functions are aggregated and connected to create a structure based on the flows of
energy, material and signals (EMS) affected by each function. This function structure
is known as a functional model (FM). The Functional Basis [133] is used as a taxonomy
for naming the functions and the flows. The scope of the case study is restricted to
acute situations that might require emergency shutdown of the reactor. The model is
not intended for studying residual heat removal, which is a process that can take months,
involving additional physical phenomena and technical systems that are not included in
this model.

A configuration flow graph (CFG) is produced by selecting components to implement
the functions, and connecting them with the same EMS flows as in the functional model.
Table 9.2 contains the direct mapping between some of the functions and components
for a BWR design used in the FFIP analysis. The components include mechanical,
electrical and software parts and can contain components hierarchically to obtain the
level of granularity needed to support mapping between the CFG and FM. In Figure 9.8,
the top level CFG is provided, and the internals of the reactor component are shown in
Figure 9.9.

The reason for having separate a FM and CFG is that, due to fault propagation, a
component failure may result in degradation or loss of functionality mapped to another
component. For example, a leak in a pipe (a faulty component state) can cause a
degraded functional state for a store liquid function, even though the tank component
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Table 9.2: Mapping of System Functions to Components

Function Component
Transmit thermal energy Flow channels and Fuel Rods

Condition radioactive energy Flow channels
Supply electrical energy Power supply rail

Transport liquid material Coolant pumps
Process status signals Reactor protection

Inhibit radioactive energy Control rods
Regulate and guide gas material Pressure control valve

Process status signals Pressure control

Figure 9.8: Top level CFG model for boiling water reactor core and its steam outlets.
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Figure 9.9: Internals of the Reactor component in Figure 9.8.

mapped to this function is in a nominal state. In the analysis, the CFG is simulated,
critical events are inserted as faulty component states, and a logic relating function
to failures, namely, the Functional Failure Logic (FFL), is used to observe component
input and output flows and determine the health of the related function. This is possible
because the FM and CFG use the same EMS flows.

9.4.2 Behavior and Function-Failure Logic Reasoning

The behavior of the components is implemented using the Simulink environment and
the Stateflow package, which are part of the Matlab tool. Stateflow models are used
to represent hybrid behavior. There is a state for each nominal and faulty component
mode, and within these states there can be continuous behavior. An example of behavior
logic for the pressure control valve component is demonstrated in Figure 9.10. State
transitions are triggered by critical events that are inserted into the simulation. The
behavioral models should be constructed by experts familiar with the application domain,
the physical phenomena and the impact of various parameter value changes on these
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phenomena and design alternatives.

Figure 9.10: Behavioral logic for the PressureControlValve component in Figure 9.8.

The FFL reasoner code for the “transmit thermal energy” function, which is partly
implemented by the fuel rods, is presented in Figure 9.11. The FFL reasoner deter-
mines the health of this function by the value of the temperature parameter during
the simulation. The values of 5.5, 6 and 7 for entering the health status “degraded”,
“lost recoverable” and “lost” respectively are based on qualitative descriptions for the
Temperature levels. The value of 5 is defined as nominal.

9.5 Automation framework and user interface

Figure 9.12 shows a screenshot the user interface for specifying a set of FFIP simulation
scenarios to be generated and run automatically. After specifying the Simulink.m file
containing the parameter, the user can select any of these parameters and then specify
the limits of its range and the interval between samples. From the selections in the
“choices made” box, the heat transfer coefficient (HTC) will be given values [1, 3, 5]
in separate simulations. Similarly, the time delay between the injected pressure control
valve closure malfunction and the injected power rail failure (Delay) will be one of the
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Figure 9.11: Stateflow chart of the FFL reasoner for the “Transmit thermal energy”
function in Table 9.1

following [0, 40, 80]. The slope of the ramp for driving the coolant pumps to minimum
rotations per minute (Slope) is one of: [-0.01, -0.015, -0.02]. The simulation will be
run with each combination of parameter values, resulting in 27 simulation runs. For
each of these runs, the value of one signal is logged for each step of the discrete time
simulation; in Fig. 12 the function health of “Transmit thermal energy” from fuel rods
to coolant is selected. The process is repeated so that the Temperature of the fuel rods
is logged, resulting in 27 temperature curves and information of the worst case health
status of each curve; in the next section, the health status is used to group the curves
onto separate charts for readability.

The algorithm for generating the set of parameterized FFIP simulations is shown in
Figure 9.13. The information entered through the user interface is stored into a list, with
one element for each parameter; in this case the parameters are HTC, Delay and Slope.
A CreateLoop function is called, which iterates through the list in such a way that every
combination of parameters is covered. This is accomplished by a recursive function call
shown with a bold dashed arrow. This design ensures that the No-branch of decision
1 is taken exactly once for each combination of parameter values, resulting in an entry
in the Matlab script for running the FFIP simulation with those values. Recursion was
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used to improve readability and compactness of code [211, 212].

Figure 9.12: User interface for specifying a set of FFIP simulation scenarios.

9.6 Simulation Results

In the initial critical event scenario, emergency power for coolant pumps was cut off before
the pressure shockwave occurred. In the user interface, three different values are selected
for HTC, the slope for driving coolant pumps to minimum rotations per minute (Slope)
and the time delay between the unintentional pressure control valve closure and power
rail failure (Delay). The medium value is the designer’s best estimation of a realistic
design parameter, while the low and high limits are given the most extreme values that
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Figure 9.13: Algorithm for generating the set of parameterized FFIP simulations.

are estimated to be feasible. This first phase of the simulation will result in 27 fuel rod
temperature curves, one for running the simulation with each combination of parameter
values. The selected function of interest is thermal energy transfer from fuel rods, so
the Excel output for each simulation run includes the lowest functional health status of
this function during the simulation. Accordingly, the curves for fuel rod temperature are
grouped in three graphs: the simulation runs during which this function’s health was
always healthy (Figure 9.14), the runs during which the health was never worse than
degraded (Figure 9.15) and the runs during which this function was lost (Figure 9.16).
When several curves were overlapping and visually indistinguishable on the graph, the
parameter values corresponding to them are shown in square brackets in the legend; for
example, in Figure 9.16, the temperature curves for HTC=2 and Delay=0 were identical
for all values of Slope.

It is clear that better performance was obtained when the power rail failure occurred
later, since coolant flow was maintained for a longer time. This indicates that from the
perspective of fuel rod health, steam removal from the core is more important than an
acute drop in reactor power, which could be achieved by stopping the pumps. A very low
value for the HTC indicated stability problems regardless of the other values, and this is
a physical design constraint for this reactor type. A very high value for HTC provided
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Figure 9.14: Temperature of fuel rods in first phase FFIP simulation scenarios with
parameter values resulting in healthy FFL verdicts.
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Figure 9.15: Temperature of fuel rods in first phase FFIP simulation scenarios with
parameter values resulting in degraded FFL verdicts.

consistently stable behavior, although a temporary overheating of fuel rods is possible;
however, it might be physically impossible to realize this design. With medium values
of HTC, fuel rod cooling depends primarily on the availability of power for the coolant
pumps and secondarily on having a smaller slope for the ramp that drives down the
rotations per minute of the coolant pumps. Based on this analysis, it is concluded that
the availability of power for coolant pumps must be ensured with emergency power, so a
different critical event scenario, in which the emergency power is not cut off, is selected
as the basis for the next set of simulation runs. In this case, the time delay between
the shockwave and power rail failure does not significantly influence the results, so this
parameter is excluded from further study.

The second phase of FFIP simulation focuses on the combinations of HTC and ramp
slope, resulting in 9 automatically executed simulations. From Figure 9.17 it is clear that
when emergency power is present, stable performance can be achieved even with lower
HTC values when a gentler slope is used for the ramp. However, a longer ramp implies a
slower decrease of reactor power during emergency shutdown, so a third simulation run is
performed by narrowing the parameter values to the range in which these two parameters
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Figure 9.16: Temperature of fuel rods in first phase FFIP simulation scenarios with
parameter values resulting in lost FFL verdicts.
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are likely to be optimized. The results in Figure 9.18 are given as a starting point for
detailed design, which will refine the conceptual design through specific decisions on
component types, subsystem design and control algorithm design. One decision that
emerges already from the simulation of the BWR system design is that availability of
electric power for coolant pumps must be ensured by emergency power supplies even
when the power rail is lost.

In every scenario on Figure 9.18, the fuel rod cooling is performed satisfactorily
during the acute situation requiring emergency shutdown of the reactor. The simulation
time is set to a value that is of interest for the emergency shutdown safety function. It
is unclear if the temperature would remain below nominal if the simulation time were
to be increased. In the case study, it was stated that the model covers only emergency
shutdown functionality and is not aimed at studying residual heat removal, which has
a much longer time constant; this would require additional detail to the system model
and a different set of simulation runs. The emergency shutdown of the reactor is used
in this chapter to demonstrate the application of FFIP automation framework.

Figure 9.17: Temperature of fuel rods in second phase FFIP simulation: emergency
power present.



155

Figure 9.18: Temperature of fuel rods in third phase FFIP simulation scenarios with
narrowed ranges for parameter values.

9.7 Conclusions and Future Work

The design and failure analysis of large complex systems presents numerous challenges.
While the FFIP framework developed previously was intended to meet some of these
challenges, the extensions presented in this chapter greatly increase the ability of this
analysis approach to be used as a tool in the early concurrent design and risk assessment
processes. The extensions to the FFIP framework presented here enable the study of
the reliability of a range of design alternatives for achieving the specified functionality.
For alternatives that can be expressed in terms of parameters of component behavior or
timing of critical events, the scalability of the approach and supporting tools to a larger
number of simulation runs is only limited by computing power and human capability
of understanding large data sets. The latter problem is mitigated by the possibility
of filtering and sorting the simulation runs in terms of the health status of a specific
function, but further research on user interface design will improve the feasibility of
the approach for complex industrial-scale systems. The behavior of electromechanical
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components is described with first-order linear approximations in this case study, but
they are implemented as Simulink blocks, so the approach permits more sophisticated
modeling if it is deemed appropriate in the early concept design phase

The investigation of a range of designs under a range of critical event scenarios is
restricted to alternatives that can be expressed by varying values of parameters. The
availability of emergency power could be controlled manually by selecting different sim-
ulation scenarios, but currently it is not possible to cover more fundamental differences
such as different types or placement of sensors or entirely different software algorithms.
This can be achieved with further work on integrating a feature modeling capacity to
the configuration flow graph, so that every valid configuration of the feature model will
undergo FFIP simulation in order to filter out unreliable alternatives. The automated
FFIP simulation presented in this chapter solves many algorithmic and technical chal-
lenges related to the generation and simulation of every valid configuration.
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Chapter 10: Conclusions

This research presented a design, simulation and analysis method for enabling safety-
centric design decision making. In this research, a novel method representing the safety
property of system as safety functions was introduced and incorporated into the func-
tional system design process. The goal of explicitly including safety functions is to allow
behavioral simulation and model-based reasoning to be used to relate component faults
to system level hazards and potential mishaps. A major focus of this work was the pro-
cess of identifying and simulating these fault scenarios. Finally, while simulating each
scenario provided an evaluation of impact in terms of component and safety function
states, effective design decision making requires analysis over many scenarios. Addition-
ally, we present three methods of grouping the scenario results to provide different views
of the system to the designer.

To demonstrate the methodology of this research we considered the design of a space-
craft maneuvering system. Chapter 4 described how the functional system design method
is augmented to include the safety property of the system. Specifically, when a desired
hazard-to-mishap transition mitigation property was identified a safety function is imple-
mented. Using the presented process, the safety function was mapped to the components
architecture that followed a functional decomposition approach. This explicit mapping
using models allows for a system simulation of component behavior to be used to reason
about the effect on safety as well as functional impact. To demonstrate the detail of this
early design analysis of the complex system we considered the subsystems of the ma-
neuvering system. Chapter 5 used the electrical power subsystem to demonstrate that
through component fault simulation the functional effect could be quantified for mak-
ing design selection decisions. Recognizing that complex systems often fail in complex
ways, Chapter 6 illustrated using the thruster subsystem an approach for identifying
novel fault scenarios. That is, in addition to modeling single failure modes, this chapter
showed how mapping between known fault symptoms and fault causes can be used to
find potential cascading failure scenarios. Finally, the analysis part of this research is
wrapped up in Chapter 7. In this chapter we presented the reasoning approach that
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can use the entire system behavior simulation to identify any potential loss in the safety
function specified from Chapter 4. The final phase of this research is presented in Chap-
ters 8 and 9. First, it is clear that designers of complex systems would like to evaluate
system performance over a large set of scenarios. However, the function-based analysis
of this work can provide designers with more than simple ratings for a design. Instead,
a shopping or design exploration approach is adopted. To that end, Chapter 8 presented
three methods of exploring the analysis of the electrical power subsystem by clustering
the scenarios simulation results. The first method identified and ranked scenarios for
risk. The second method abstracted the system-level failure behavior into probabilistic
functional effects for new scenarios or large system modeling. The third method grouped
scenario results based on weighted similar functional effect to a specified system func-
tional state. Finally, to demonstrate that design can benefit from analysis exploration,
Chapter 9 presents an analysis sandbox approach that was used for understanding the
effect of a critical scenario on a boiling water nuclear reactor.

Figure 10.1: Distinguishing synthesis from analysis in the context of design decision
making.

Throughout this research the design process has been identified as a decision making
process where this research aims to aid that decision making process. However, decision
theory supports the idea that decision making (and thus design) is a synthesis activity
[213]. A major focus of this work was on analysis. In contrast to synthesis, analysis is
a process of identifying all the constituent parts of the problem. The difference between
synthesis and analysis are illustrated in Figure 10.1. From the decision theory perspective
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detailed failure analysis serves to rate a design for selection among competing options (as
synthesis activity). While this research does serve that purpose and provides a means of
evaluating designs for safety in a way not previously possible, this work also presented a
different role for analysis in general. That is, the process of failure analysis was used as a
sandbox for exploring a design, providing engineers with a deeper understanding of the
problem and the design solution. Further, this activity is useful in the design context
for identifying novel solutions. Therefore, this research indicates that analysis might
have a greater role in driving the design process if there is flexibility in following the
traditional V-diagram approach to system design. In the broader context of engineering
design, this research highlights the role of analysis in supporting the synthesis process.
That is, the process of narrowing down options from a potential design space is can be
guided not just by the functional goals but the safety concerns as well. Further, iterative
loops of concept analysis exploration can identify unexplored dimensions of the design
space. This indicates that a model of design where instead of a linear process of design
definition, concept analysis is integrated to regularly provide concept assessment and a
tool for knowledge expansion.

In many areas, such as energy and transportation, complex systems have a growing
presence in modern life. The risk in capital investment and human life when these
systems become unsafe can be catastrophic. Further, the nature of these systems leads
to complex and emergent failure behavior. This work begins to address how safety and
risk can direct design from the earliest stages towards safe system operation. While no
system can be free from all potential failure, a focus on safety can change how unexpected
failures affect the system. Many products are designed to fail into a safe mode. A design
process focused on increasing reliability but not on the system property of safety may
miss design solutions that lead to fail-safe concepts. Additionally, a design process
focused on hazard avoidance may not properly prioritize those hazards and may miss
potential triggers for those hazards without an assessment of the cause and propagation
of failures. The framework developed in this research captures both perspectives and
can lead to improved system design.
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Appendix A: Subsystem and Component Models
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Figure A.3: A SysML internal block diagram illustrating the functional structure of the
rocket subsystem.
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Appendix B: EPS Design Alternatives
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Figure B.1: Configuration Flow Graph for Electrical Powers System Alternative Design #1.
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Figure B.2: Low-level Functional Model for Electrical Powers System Alternative Design #1.
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Figure B.3: Configuration Flow Graph for Electrical Powers System Alternative Design #2.
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Figure B.4: Low-level Functional Model for Electrical Powers System Alternative Design #2.
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Figure B.5: Configuration Flow Graph for Electrical Powers System Alternative Design #3.
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Figure B.6: Low-level Functional Model for Electrical Powers System Alternative Design #3.
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