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This dissertation examines unexplored 4d/5d metal oxides and intermetallics

projected to have novel quantum states such as topologically insulating, quantum

spin liquid, superconducting, and/or thermoelectric behavior. Fundamentally, the

aim is to establish novel structure-property relationships of such candidates. Five

projects are presented in this dissertation.

A quantum spin liquid (QSL) represents a new state of matter. Unlike conven-

tional magnetic states, such as the ferromagnetic or the antiferromagnetic states,

a QSL never enters into a long-range ordered phase with a static arrangement

of spins, even at absolute zero temperature. Quantum computation is the most

attractive potential application of a QSL. The demonstration by Alexei Kitaev

of an exactly solvable QSL model incorporating S = 1/2 spins with anisotropic



interactions on a honeycomb lattice has motivated searches for its experimental

realization. Whereas magnetic honeycomb-containing compounds have been ex-

tensively investigated in 3d and 4d metal oxides, the strong interaction anisotropy

required by Kitaev’s theory has placed a focus on 5d metal oxides, for which spin-

orbit coupling (SOC) can be expected. Many A2MO3 “honeycomb” layered oxides,

where A is an alkali atom and M is a 4d or 5d element, show unique electronic

and magnetic properties, indicative of SOC. Known A2MO3, however, do not dis-

play QSL behavior. Osmium based A2MO3 “honeycomb” layered oxides has been

of current interest within the solid state community as it is considered to be a

candidate Kitaev quantum spin liquid. The first example of Os on a honeycomb

structure, Li2.15(3)Os0.85(3)O3, is presented. This compound is an off-stoichiometric

version of Li2OsO3 with the β-Li2SnO3 structure (C2/c) (a = 5.09 Å, b = 8.81 Å,

c = 9.83 Å, β = 99.3o). Neutron diffraction shows large site disorder in the honey-

comb layer and X-ray absorption spectroscopy indicates a valence state of Os (+4.7

± 0.2), consistent with the nominal concentration. A narrow transport band gap

of ∆ = 243 ± 23 meV, a large van Vleck susceptibility, and an effective moment

of 0.85 µB is observed. No evidence of long range order is found above 0.10 K but

a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat

displays an impurity spin contribution in addition to a power law ∝ T(0.63±0.06).

Density functional theory (DFT) applied to Li2OsO3 leads to a reduced moment,

suggesting incipient itineracy of the valence electrons. Constrained non-collinear

moment DFT is applied to an ordered version of Li2.25Os0.75O3, finding evidence

that Li over stoichiometry leads to Os(4+)-Os(5+) mixed valence. This local pic-



ture is discussed in light of the site disorder and a possible underlying quantum

spin liquid state.

The interest in perovskites can be attributed to their wide array of proper-

ties, which in turn derives from their compositional and structural flexibility. The

framework of the A2MM’O6 double perovskite containing 4d/5d elements with

strong spin-orbit coupling (SOC) are of interest for the exploration of quantum

magnetism. In such systems, the interplay between the electron localizing tenden-

cies of SOC and the delocalizing effects of the large spatial extent of the 4d/5d

orbitals has the potential to combine with electronic correlations to produce un-

usual states. The motivation to study Ba2−xLaxYIrO6 is twofold: (1) to investigate

a mixed 5d4/5d5 iridate perovskite with noncubic symmetry and with iridium as

the sole magnetic ion, and (2) to elucidate the influence of local environment on

the magnetism in such systems. As shown by the structural refinements presented,

a0a0a0 (Fm3̄m)→ a0b−b− (I2/m) octahedral distortion of the YO6-IrO6 rock-salt

framework occurs with increasing x to account for the incorporation of smaller

La3+ radii. From the magnetic susceptibility measurements, deviations from the

proposed mixed valence picture are observed, not only for x = 0.2, but also on

approaching x = 0.8. For x = 0.2, χV V is larger than found for x = 0.

Frustrated systems populated with large spin-orbit coupled (SOC) ions are an

ideal setting for the exploration of exotic states. Among the known frustrated

frameworks, the spinel structure has been extensively investigated. Though many

spinel systems with 3d/4d elements exist, to our knowledge, an Iridium based

spinel oxide has not been reported. Most spinel oxides are known to be insulating



and only two, LiV2O4 and LiTi2O4, are reported as conducting. A frustrated

mixed valence system that is metallic and exhibits large SOC is scarce, and if a

metallic spinel is close to a correlation driven metal-insulator transition, a novel

interplay between the charge carriers and the frustrated spin degree of freedom

is anticipated. Here we present the first Iridate spinel: Cu[Ir1.498(1)Cu0.502(1)]O4.

Synchrotron XRD refinements reveal a face-centered cubic structure with space

group Fd3̄m. Electrical properties reveal a metallic state within 50∼600 K range

with a Kondo-effect at T<50 K.

The “phonon-glass/electron-crystal” approach has been implemented through

incorporation of “rattlers” into skutterudite void sites to increase phonon scattering

and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites

are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2)

were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar.

The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray

diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered

cubic structure (space group: Im3) with ∼8% antimony site vacancy and with

indium partially occupying the 16f site. Unlike known rattler filled skutterudites,

under synthetic conditions employed, indium filling in IrSb3 significantly increases

the electrical resistivity and decreases the Seebeck coefficient (n-type) while re-

ducing the thermal conductivity by ∼30%. The resultant power factor offsets the

decrease in total thermal conductivity giving rise to a substantial decrease in ZT.

Principal thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are

compared. As iridium is a 5d transition metal, zero field cooled (ZFC) magnetiza-



tion were performed to unravel the effect of spin-orbit interaction on the electronic

properties. These results serve to advance the understanding of filled skutteru-

dites, and provide additional insight on the less explored smaller “rattlers” and

their influence on key thermoelectric properties.

The solid solution series Li2Ir1−xRhxO3 is synthesized for several values of x be-

tween 0 and 1. The compounds possess a monoclinic layered structure (space group

C2/m) throughout the solid solution range with the lattice constants following Ve-

gard’s relationship. Magnetization and resistivity data below room temperature

are presented. The effective magnetic moment (µeff ) is reduced below the value

obtained by interpolating between the end-members, presumably due to nearest

neighbor charge exchange leading to non-magnetic Ir5+/Rh3+ pairs. Surprisingly,

the degree of reduction of µeff cannot be explained by a random mixture of Ir and

Rh and is strongly asymmetric around x = 0.5. This anomalous moment reduction

possibly results from the difference in on-site Coulomb repulsion between Ir and

Rh ions.
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Chapter 1: Fundamentals of Solid State Chemistry: Synthesis,

Material Properties, and Characterization Methods

1.1 Introduction

Solid-state chemistry is the study of the synthesis, structure, and properties of

solid phase materials with a focus on the synthesis of novel materials and their

characterization. It therefore has a strong overlap with solid-state physics, crystal-

lography, mineralogy, ceramics, metallurgy, and materials science. Pertinent solid

state fundamentals will be exploited in this chapter. Here, a brief overview of

pertinent synthesis techniques, material properties, and structural and electronic

characterization methods will be introduced to provide the reader with the basic

knowledge to grasp the research presented in this dissertation.

1.2 Synthesis Methods

A variety of synthesis methods were employed in this dissertation. The standard

solid-state synthesis method, crystal growth flux method, hydrothermal method,

sealed quartz tube method, and ion exchange method were employed. A brief

overview of each method will be addressed.
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1.2.1 Standard Solid-State Synthesis

The traditional standard solid-state synthesis method, also referred to as “shake-

and-bake” method relies on elevated temperatures for atomic diffusion and reac-

tion [1]. This synthesis route begins with a stoichiometric amount of powdered

starting materials, typically metal oxides or metal carbonates. These are mechan-

ically ground together in a mortar and pestle, or ball milled, and then pressed

into a pellet before heat treatment. This treatment provides maximum contact

between particles, enabling atomic diffusion between the starting reagents. The

corresponding sample is then heated to temperatures anywhere from 300 - 1500 ◦

C. The target temperature is dictated by the elemental composition of the sam-

ple, and properties such as volatility, melting point, and reactivity must be taken

into consideration. Subsequent grinding, pressing, and heating processes may be

needed for reaction completion. The combination of kinetics and thermodynamics

can explain the success of such a method and can be thermodynamically predicted

through the consultation of phase diagrams. High-temperature synthesis is needed

to overcome diffusion barriers and lattice enthalpies, and diffusion begins at the

interfaces between particles of starting reagents, with product formation occurring

at the interface. For this reason intermediate grinding between successive heating

intervals are crucial for complete product formation, as it creates new interfaces of

unreacted starting material for product formation.
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1.2.2 Molten Salt Ion Exchange

The molten salt ion exchange method relies on the topotactic exchange of ions in

a structure [1]. In such a reaction, cations from the host phase are exchanged for

those from the surrounding phase. Molten salt ion exchange uses a water-soluble

salt with a low melting point, such as alkali halides or nitrates. For the exchange

reaction, the parent compound is combined with the alkali salt in an excess molar

ratio of the salt. Once thoroughly combined and mixed, the mixture is placed

in an appropriate reaction vessel and heated above the melting point of the salt.

Once in a liquid state, diffusion of the alkali cations into the host structure can

occur, with counter-diffusion of host structure cations into the molten liquid phase.

After cooling, any excess alkali salt or salt from the exchanged host cation can be

removed by washing with water and/or using mild acidic conditions.

1.2.3 Crystal Growth Flux Method

There are a wide variety of crystal synthesis techniques; the most common method

is the flux method. Flux method can be achieved when the components of the

desired substance are dissolved in a solvent (flux) [1]. This flux method takes place

in a crucible made of highly stable, non-reactive material such as an aluminum

oxide crucible or a sealed quartz ampule. By keeping the constituents of the desired

crystal and the flux at a temperature slightly above the saturation temperature,

an over-saturated solution can be achieved. By cooling the crucible slowly, crystal

formation can begin by spontaneous nucleation. As material precipitates out of
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the solution with slow cooling, the amount of solute in the flux decreases and the

saturation temperature lowers. This process repeats itself as the furnace continues

to cool until the solution reaches its melting point.

1.2.4 Hydrothermal Synthesis

The synthesis of single crystals can be achieved using the hydrothermal synthesis

method [1]. This method depends on the solubility of minerals in hot water under

high pressure. Crystal growth using this method can be achieved using an appara-

tus consisting of a steel pressure vessel called an autoclave, in which the reactants

are supplied along with water or nonaqueous solvents as a reaction medium. If

the non-aqueous solvents are utilized as reaction medium, this approach is defined

as a solvothermal method; whereas, in the presence of water, it is known as hy-

drothermal process. A temperature gradient is achieved between the opposite ends

of the growth chamber. At the hotter end the nutrient solute dissolves, while at

the cooler end precipitates form, growing the desired crystal.

1.2.5 Sealed Quartz Tube Ampule Method

Solid state reactions in which air sensitivity is a major concern can be achieved

using the sealed quartz tube ampule method [2]. Here, a sample is placed at the

bottom of a sealed quartz tube and a vacuum using a turbo pump system is applied

to evacuate the air. Pressures within the quartz tube generally are ∼ 10−4 Torr.
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An H2/O2 torch can be used to seal/cut the quartz tube. The corresponding quartz

tube can then be heated to desired temperature.

1.3 Structural Characterization

1.3.1 Introduction

A variety of diffraction methods were employed in this dissertation. Here, funda-

mentals of diffraction and key powder diffraction techniques will be addressed.

1.3.2 Fundamentals of Diffraction

When electromagnetic radiation passes through a crystalline lattice, the atomic

positions can act as scattering centers and coherent and incoherent scattering can

occur. For an incident X-ray beam with a fixed wavelength comparable to atomic

spacings, the electronic cloud will distort, and the movement of these charges re-

radiates waves with the same frequency. This phenomenon is known as elastic

scattering [3]. Constructive interference occurs when the distance between the

adjacent Miller planes, d , is an integral multiple of the wavelength, λ, and can

ultimately be explained by Bragg’s law (Figure 1.1) [3].

By altering the incident angle of the X-ray beam with a fixed wavelength, cer-

tain Miller planes with different d -spacing will satisfy Bragg’s law, and therefore

coherent diffraction will occur, resulting in a diffraction pattern. A diffraction

pattern is not a direct representation of the crystal lattice. It is, however, a repre-
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Bragg’s Law

Figure 1.1: Constructive interference occurs when the waves reflected from adjacent
scattering planes remain in phase. This occurs when the distance between the
adjacent planes, d , is an integral multiple of the wavelength, λ, and can ultimately
be explained by Bragg′s law.

sentation of the reciprocal lattice. For every real lattice there is a reciprocal lattice.

Therefore, the relationship between the crystal lattice and a diffraction pattern is

linked by the reciprocal lattice via a Fourier transform. The families of planes in a

crystal lattice can be represented by their normals, which are specified as vectors

and which can be used to define a pattern of points, with each point representing a

family of planes [3]. These points described by the normal vectors characterize the

reciprocal lattice. Thus, the crystal axes can be defined in terms of the normal to

crystal faces with each point in reciprocal space representing a set of planes within

the crystal lattice.
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1.3.3 Powder Diffraction Techniques

1.3.3.1 X-ray Diffraction

A popular instrument for the study of crystalline materials is powder X-ray diffrac-

tion (PXRD). For most laboratory X-ray diffraction instruments, the Bragg-Brentano

focusing geometry is the most common diffractometer layout [3]. The source of

X-ray radiation for PXRD is commonly an X-ray tube or a synchrotron particle

accelerator at a national lab.

Laboratory X-ray diffractometers utilize an X-ray tube consisting of a metal

target, which acts as the anode (typically copper), and a source of electrons (typi-

cally a tungsten filament) acts as the cathode. To generate X-rays, a large voltage

potential is applied across the anode and the cathode (∼30 kV), resulting in a flow

of high speed electrons from the filament to the metal target [3]. Upon collision

with the metal target, a continuous spectrum of X-rays is generated. This con-

tinuous spectrum of radiation is a result of the rapid changes in kinetic energy of

electrons interacting with the target, and is called white radiation. For a copper

anode, the incident electrons bombarding the anode surface have enough energy

to ionize the 1s (K shell) electrons, and an electron in the 2p or 3p orbital im-

mediately relaxes down to occupy the vacant state, resulting in a release of X-ray

radiation. The 2p→ 1s transition has a wavelength of 1.5418 Å and is called Kα.

The 3p→ 1s transition has a wavelength of 1.3922 Å and is called Kβ. For a cop-

per anode, nickel foil is a very effective filter as the energy required to ionize 1s

electrons corresponds to a wavelength of 1.488 Å, which lies in energy between Kα
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and Kβ [3].

X-rays from synchrotron sources are emitted when charged particles (typically

electrons) are traveling at near relativistic speeds and are forced to change direc-

tion on passing through a magnetic field. Such synchrotron storage rings exist at

national labs such as Argonne National Lab. Synchrotron X-rays have several ad-

vantages, such as very high intensity beams that are continuous over the complete

spectral range and the beams are accurately parallel, resulting in high resolution

in powder diffraction data [3].

1.3.3.2 Neutron Diffraction

For both neutron and X-ray diffraction, the concept of diffraction is essentially the

same, as defined by Bragg’s Law. Neutron diffraction can be used to determine

the structural and atomic parameters of materials that have both light and heavy

atoms present [4]. Neutron diffraction is ideal to characterize most metal oxide

structures as oxygen has a neutron scattering length comparable to most heavy

metals [4]. Neutron diffraction can also provide contrast between atoms with

similar atomic numbers, as well as contrast between different isotopes of the same

atom. Neutrons exhibit a dipole moment and can therefore interact with unpaired

electrons in a material. Thus, magnetic ordering will be apparent in neutron

diffraction. Ferromagnetic ordering in a material results in a change in the peak

intensity of peaks already present, whereas antiferromagnetic ordering results in

the emergence of new peaks [4]. Neutrons can be generated through either a
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spallation process or nuclear fission, and experiments can be performed at either a

spallation source or reactor, respectively. Neutrons at a reactor have the advantage

of better resolution at higher d -spacing due to singular monochromatic neutron

wavelength. Neutrons produced at a spallation source have a higher incident flux

as more neutrons with appropriate energy are released via spallation than fission.

In a spallation process, a metal target is bombarded by pulses of a proton beam,

and the neutrons are released in pulses with an array of kinetic energy. Recall, the

de Broglie equation relates the wavelength, λ, of a system with mass (neutron) to

its momentum, mv. For the spallation process, collector banks are oriented at fixed

positions relative to the incoming neutron beam and the sample. Thus, by timing

a neutron over a fixed path length, its velocity, and consequently its wavelength,

can be measured. As such, spallation radiation is called time-of-flight (TOF).

For each collector bank with a fixed position and therefore fixed angle relative

to the incoming neutron beam, only certain neutrons with a kinetic energy can

satisfy certain d -spacings associated to Miller planes. Thus, multiple banks of data

are needed to refine the crystal structure. Fixed wavelength neutron diffraction

and TOF neutron experiments were collected at National Institute of Standards

and Technology (NIST) and the Spallation Neutron Source, Oakridge National

Laboratory (SNS-ORNL), respectively.



10

1.3.4 Inductively Coupled Plasma - Optical Emission Spectrometry

Inductively coupled plasma – optical emission spectroscopy (ICP – OES) is a

analytical technique that can be used to accurately determine the concentration

of trace amounts of metals in a solution [5]. ICP – OES utilizes an argon plasma

to excite atoms or ions which emit characteristic radiation upon relaxation. The

intensity of this from the sample radiation is compared to a calibration curve of

previously measured intensities obtained from solutions with known concentrations

of the metal in question.

1.3.5 Thermogravimetric Analysis

Thermogravimetric analysis (TGA) can provide useful insight into the processes

observed in a sample, such as the mass gained during a reaction procedure, the

mass lost during a dehydration process, sample decomposition, etc. Such TGA

methods delicately measure the mass of a sample as a function of temperature or

time [1].

1.3.6 Iodometric Titration

Iodometric titration is a redox titration process that involves direct titration us-

ing sodium thiosulfate as the titrant [6]. This titration method can be used to

determine the concentration of an oxidising agent in solution and to ultimately

establish the oxidation state of a metal within a metal oxide structure (assuming
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the metal oxide sample can be dissolved in a acidic solution). To a known volume

of sample, an excess known amount of iodide (I−) is added. Based on the reduction

potentials, iodide will be oxidized by the oxidizing agent to produce triiodide ions

(I–
3), which produces a dark brown color in solution. The reduction reaction of I–

3

and thiosulfate are provided below [6].

I–
3 + 2e– ↔ 3I– (E0 = + 0.54 V)

S4O2–
6 + 2e– ↔ 2S2O2–

3 (E0 = + 0.08 V)

Based on the reduction potentials, thiosulfate acts as a reducing agent, thus re-

ducing the formation of I–
3 back to iodide I–, producing a colorless solution.

I–
3 + 2S2O2

3 ↔ S4O2–
6 + 3I– (E0 = + 0.46 V)

Thus, the color change represents the end-point of the reaction and from the known

amount of sodium thiosulfate with a known concentration required, the concen-

tration of an oxidising agent in solution can be determined; this will ultimately

establish the oxidation state of a metal within a metal oxide structure.

1.3.7 X-ray Absorption Spectroscopy

For X-ray Absorption Spectroscopy (XAS), X-rays of a narrow energy resolu-

tion are shone on the sample and the incident and transmitted X-ray intensity

is recorded as the incident X-ray energy is incremented [7]. When a beam of

monochromatic X-rays passes through matter, the beam intensity decreases due

to interaction with the atoms in the material. Thus, XAS is the measurement

of the X-ray absorption coefficient of a material. For X-rays of sufficient energy,
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an incoming photon interacts with a deep-core electron; a s electron is excited

for a K-edge spectrum or a p electron is excited for a L-edge spectrum [7]. The

deep-core electron is promoted to some unoccupied state above the Fermi energy,

and leaves behind a core-hole. A short time later (femtoseconds), the core state

is filled via one of two mechanisms: (1) a higher-energy electron decays into the

core-hole and emits a photon, or (2) the energy from the higher-lying electron can

be used to emit an Auger electron. Since each element has its own edge energy,

an element’s identity and valence can be determined within a sample using XAS

methods.

1.4 Electronic Properties of Materials

All elements contain discrete electronic energy levels which are characterized by

atomic wave functions. The electronic interaction between atoms within a crystal

lattice produces unique delocalized electronic states. The occupied delocalized

sates form an electronic energy band called the valence band (VB). The unoccupied

delocalized states form an electronic energy band called the conduction band (CB).

The band structure can be described from either the ‘chemical approach’ or the

‘physical approach’ [8]. The more basic ‘chemical approach’ is to take Molecular

Orbital (MO) theory, as it is typically applied to small, finite-sized molecules,

and extend it to infinite 3D structures. As shown in Figure 1.2, with an increase

in atomic orbitals, the MO states become close enough in energy such that the

bonding MO’s form the valence state continuum and the antibonding MO’s form
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the conduction band continuum.

𝑬

VB

CB

n1 n2 n3< <

Figure 1.2: A schematic of n atomic orbitals combining to form MO states, where
n1 < n2 < n3. For n3, the MO states are close enough in energy and occupied
(VB) and unoccupied (CB) bands exist.

The ‘physical approach’ of band theory is to consider the energy and wavelength

of electrons in a solid [8]. The analogy with the quantum mechanical problem of

a particle in a box is applied where the energy levels that the electrons occupy

are quantized and filled from the bottom of the well up with a total of two elec-

trons per level. The potential within the crystal (or potential well) is periodic, in

which the electrons pass through a minimum at the positions of the nuclei and a

maximum between the nuclei. The Schrodinger equation that describes such a pe-

riodic potential function shows only certain bands of energies are permitted for the

electrons. Such forbidden energies correspond to electron wavelengths that do not
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satisfy Bragg’s law and ultimately leads to discontinuities in the energy-momentum

diagrams with forbidden energy levels describing the band gap [8].

1.4.1 Characterization of Metals, Semiconductors, and Insulators

If the difference in energy between the lowest unoccupied and highest occupied

delocalized states (band gap, Eg) is less than ∼0.3 eV, the material is considered

metallic (Figure 1.3 (A)) [9]. If Eg is within ∼0.3 to 3 eV, the material is consid-

ered a semiconductor (Figure 1.3 (B)). Thermal energy (∼300 K) can promote a

small portion of electrons with kbT kinetic energy to lower unoccupied states for

a material. For insulating material, Eg is large enough ( > 3 eV) that a crystal

system at ∼300 K does not provide enough energy to promote electrons to the CB

(Figure 1.3 (C)).

The value of the electrical conductivity can, in part, characterize if the material

is a metal, semiconductor, or insulator. Table 1.1 below defines the approximate

electrical conductivity range for each material type [9].

Table 1.1: Typical values of electrical conductivity of metals, semiconductor, and
insulators.

Material σ (Ω−1 cm−1)

Metal 10−1 − 105

Semiconductor 10−5 − 102

Insulator <10−12

Though the conductivity values presented in Table 1.1 show a clear distinction

between a metal and an insulator, establishing if a material is a metal or semicon-
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(A) (B) (C)

Figure 1.3: Band state schematic of a metal (A), semiconductor (B), and insulator
(C).

ductor is not as straightforward. For electrical conduction in semiconductor and

insulators to occur, electrons must be promoted across the band gap. In metals,

however, there is no band gap. For all materials, electron–phonon collisions con-

tribute to the overall resistivity, meaning that with an increase in temperature,

an inherent increase in the electrostatic interactions between mobile electrons and

lattice vibrations will occur [9]. For semiconductors and insulators, increasing the

temperature means more electrons with adequate kbT kinetic energy can occupy

the conduction band, outweighing the electron–phonon collision contribution and

therefore an increase in the overall electrical conductivity is observed. In metals,

electron–phonon collisions dominate, thus showing a decrease in electrical conduc-

tivity with increasing temperature. Thus, the trend in electrical resistivity versus

temperature can, in part, characterize if the material is a semiconductor or a metal.
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1.4.2 Modeling the Electronic Properties

In a typical insulator, Eg is temperature-independent and much larger than kbT .

Therefore the Arrhenius expression (1.1) can be applied and ln(ρ) scales linearly

with T−1 in which the slope equates to Eg [10].

ρ ∝ e(Eg/kbT ) (1.1)

If the energy gap is temperature-dependent, a different behavior known as

variable-range hopping (VRH) appears (1.2) in d dimensions [10].

ρ ∝ exp

(
Eg

kbT
1/(d+1)

)
(1.2)

The dimensionality, d, describes the dimension of conductivity throughout the

material. Plotting ln(ρ) versus T−1/(d+1) provides the “pseudogap” derived from

the slope.

1.5 Thermal Transport Properties

Thermal conductivity can be described as the transport of energy in the form of

heat through a body of mass with a temperature gradient [9]. Heat always flows to-

ward the lower temperature portion of a material (second law of thermodynamics)

(Figure 1.4).

dQ

dt
= Q = λA

T2 − T1

∆x
(1.3)
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The thermal conductivity equation (1.3), describes the relationship between trans-

ported heat per unit of time (dQ/dt or heat flow Q) and the temperature gradient

(∆T/∆x) through area A representing the area through which the heat flows per-

pendicularly at a steady rate (Figure 1.4) [9].

λ = KT = αρCp (1.4)

Therefore, thermal conductivity (λ) is a material-specific property (Figure 1.5)

described by the thermal diffusifity (α), density of the sample (ρ), and specific

heat capacity (Cp) (Equation 1.4).

A

Dx

T2 T1

Figure 1.4: Illustration of the relationship between transported heat per unit of
time (dQ/dt or heat flow Q) and the temperature gradient (∆T/∆x) through area
A representing the area through which the heat flows perpendicularly at a steady
rate.

1.6 Low Temperature Specific Heat Properties

The specific heat value is not a constant, particularly at temperatures much lower

than room temperature. There are two theories to describe the behavior of the
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Figure 1.5: An overview of the thermal conductivity for various materials at room
temperature.

specific heat of materials over the entire temperature range of interest. The first

theory describes the energy contained in the lattice vibrations or phonons (Debye

theory) that exist in a solid. For insulators, only the phonon contribution char-

acterizes the specific heat. To determine the phonon specific heat, the internal

energy, U , can be described by the integration of the phonon density of states,

D(ω), which describes the fraction of phonons that occupy a particular energy

level characterized by its frequency, ω, and the statistical distribution function,

n(ω) for phonons obeying Bose-Einstein statistics (Equation 1.5) [8].

U =
h

2π

∫
D(ω)n(ω)d(ω) (1.5)

By inserting the Debye density of states and distribution function (Bose-Einstein
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statistics) into the integral for the internal energy of the phonons, the inter-

nal energy is given by Equation 1.6. Here, TD = hωD/kB, x = hω/kBT , and

xD = hωD/kBT (where TD is the Debye temperature and ωD is the maximum

phonon frequency representing TD) [8]. Thus, xD = TD/T .

U =
9NkbT

4

T 3
D

TD/T∫
0

x3

ex − 1
dx (1.6)

If T � TD, 1� xD and therefore ex− 1 ≈ x. Thus, U reduces to Equation 1.7

(Dulong and Petit law) [8].

U = 3NkbT (1.7)

In the limit TD � T , xD =∞, and the integral in Equation 1.6 equals π4/15,

and the internal energy expression reduces to Equation 1.8.

U =
3π4NkBT

4

5T 3
D

(1.8)

The specific heat is characterized by the change in the internal energy with

respect to temperature. Thus, by taking the partial deriviative of Equation 1.8,

the specific heat from phonon contribution is achieved (Equation 1.9).

Cv =
∂U

∂T
=

12π4NkB
5T 3

D

T 3 = βT 3 (1.9)

For metals and semiconductors at low temperatures (T<10 K) the energy con-

tained in the conduction electrons also contributes to the specific heat. To deter-
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mine the electronic specific heat, the internal energy, U , can be described by the

integration of the electron density of states, D(ε), which describes the fraction of

electrons that occupy a particular energy level characterized by its frequency, ε,

and the statistical distribution function, f(ε) for electrons obeying Fermi-Dirac

statistics (Equation 1.10) [8].

U =

∫
D(ε)f(ε)d(ε) (1.10)

Similar to above, by inserting the density of states and distribution function

(Fermi-Dirac statistics) into the integral, and by taking the partial derivative of

the internal energy with respect to temperature, Equation 1.11 can be achieved.

Cv =
∂U

∂T
=
π2

3
k2
BD(Ef )T = γT (1.11)

Combining the phonon contribution and the electronic contribution of the

specic heat gives the expression defined by the Einstein-Debye model (Equation

1.12) [8].

Cv =
π2

3
k2
BD(Ef )T +

12π4NkB
5T 3

D

T 3 = γT + βT 3 (1.12)

Most metals and small band gap semiconductors obey the Einstein-Debye

model and can be confirmed by measuring the heat capacity as a function of tem-

perature and plotting the results as Cv/T versus T 2 at low temperature, resulting

in a linear trend with β representing the slope and γ representing the y-intercept.
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1.7 Magnetism

The way in which unpaired valence electrons within an inorganic solid interact

describes the array of possibilities of various magnetic effects. If the unpaired

electron spins are oriented at random throughout the crystal lattice, the material is

considered paramagnetic (Figure 1.6 (a)). The interaction of such unpaired spins

could also lead to a cooperative magnetic phenomenon. The spins could align

parallel and be described as ferromagnetic (Figure 1.6 (b)), or align antiparallel

and be antiferromagnetic (Figure 1.6 (c)). Other magnetic phenomenon such as

spin glass behavior is possible (Figure 1.6 (d)). Here, long-range antiferromagnetic

ordering throughout the lattice cannot occur as certain regions of spins are paired

in a ferromagnetic fashion.

When a material is placed in a magnetic field, H, the magnetic flux density, B,

(i.e. the density of lines of force in the sample) is related to H and the magnetic

moment, M , by the permeability, µ0 (Equation 1.13) [9, 11].

B = µ0H + µ0M (1.13)

As shown in Equation 1.13, µ0 is the permeability of free space (4π × 10−7 H

m−1) with µ0H as the induction generated by the field alone and µ0M the induction

by the sample. The magnetic susceptibility, χ, is the ratio of the magnetic moment

to the applied magnetic field (Equation 1.14) [11].

χ = M/H (1.14)
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(a) (b)

(c) (d)

Figure 1.6: Schematic magnetic phenomena in a 2D crystal: (a) paramagnetism,
(b) ferromagnetism, (c) antiferromagnetism, and (d) spin-glass.

For diamagnetic materials, the magnetic susceptibility, χ, is very small and

slightly negative [11]. In the presence of a magnetic field, the small electric field

generated by the orbital motion of electrons is modified and therefore alters the

orbital motion of electrons slightly to give a magnetic moment that opposes the ap-

plied field, leading to a slight repulsion effect (Lenz’s law of electromagnetism) [9].

Materials that exhibit paramagnetic behavior reveal a magnetic susceptibility, χ,
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that is very small and positive. Type 1 superconductors expel magnetic fields

completely meaning B=0 (perfect diamagnetism) and H= –M and therefore χ=

–1 [9]. Magnetic structures can be distinguished by their magnetic susceptibility

dependence on temperature. For ordered magnetic structures such as ferromag-

nets, above their respective transition temperature, thermal fluctuations with an

energy scale kbT overwhelm the spin-spin exchange energy, J , causing the spins

to become disordered and therefore in a paramagnetic state [11]. When the over-

all temperature is lowered below the transition temperature, the spins undergo a

phase transition to minimize the total energy. Thus, for ferromagnetic structures,

for temperatures below the transition temperature, Tc (Curie temperature), an

increase in the magnetic moment, M , of the sample with respect to the applied

magnetic field, H, is observed, resulting in an increase in the magnetic susceptibil-

ity, χ (Figure 1.7). For antiferromagnetic structures, at temperatures lower than

the Nèel point, TN , the electron spins align antiparallel and the magnetic moment,

M , and therefore the magnetic susceptibility, χ, both decrease (Figure 1.7). For

paramagnetic materials with no transition temperature, spin-spin exchange energy,

J , is weak. Therefore, thermal fluctuations dominate down to low temperature.

Paramagnetic materials will obey the Curie law, which states that the magnetic

susceptibility, χ, is inversely proportional to temperature, T (Equation 1.15) [11].

χ = C/T (1.15)

For systems with some spontaneous interaction between adjacent spins at low
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Figure 1.7: Illustrations of disordered and ordered magnetic structures and their
magnetic susceptibility dependence on temperature.

temperatures such as ferromagnetic and antiferromagnetic systems, the Curie-

Weiss law is obeyed, where C is the Curie constant and θ is the Weiss constant

(Equation 1.16) [11].

χ = C/(T − θ) (1.16)

For each of the magnetic structures, plotting the inverse magnetic suscepti-

bility, (χ−1) versus temperature, T , within the paramagnetic region will reveal a

linear correlation (Figure 1.8). Thus, for paramagnetic materials, the inverse plot

extrapolates to 0 K with the Weiss constant, θ, equaling 0 K. For ferromagnetic

materials, 0 K < θ, and for antiferromagnetic materials, θ < 0 K (Figure 1.8).

Thus, by plotting the inverse magnetic susceptibility, χ−1 versus temperature, T ,

based on the Curie-Weiss law, the Curie constant, C, represents the slope and the

Weiss constant, θ, represents the y-axis.

The relationship between the Curie constant, C, and the spin quantum number,



25

𝜒−1

𝑇
𝜃 𝜃

Figure 1.8: Illustration of the reciprocal of magnetic susceptibility, χ−1, versus
temperature, T , for paramagnetic materials that may or may not show magnetic
ordering at low temperatures.

S, is represented by Equations 1.17 and 1.18, where µb is the Bohr magneton and

the g-factor is equal to 2 [11].

C = µ2
bµ

2/3kB (1.17)

µ = g[S(S + 1)]0.5 (1.18)

Equation 1.18 can be used to calculate the magnetic moment of a material,

where S is the sum of the spin quantum numbers of the individual unpaired elec-

trons [11]. Thus, by establishing the Curie constant, C, the effective magnetic
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moment, µ can be calculated and therefore the spin quantum number can be es-

tablished. Knowing these variables can corroborate with the presence of magnetic

ions within the material of investigation.

1.8 Electronic/Thermal Characterization Techniques

1.8.1 Introduction

Various electrical and thermal characterization techniques were employed in this

dissertation. Here, a brief introduction of such techniques will be addressed.

1.8.2 Physical Property Measurement System (PPMS) and Super-

conducting Quantum Interference Device-Magnetic Property

Measurement System (SQUID MPMS)

1.8.2.1 Magnetism

For DC magnetic measurements, the sample is magnetized by a constant magnetic

field and the magnetic moment, M , of the sample is measured, producing a DC

magnetization curve M(H). The moment is measured most commonly by an in-

duction technique. Inductive measurements are performed by moving the sample

relative to a set of copper pickup coils, either by vibration or one-shot extrac-

tion, where one measures the voltage induced by the moving magnetic moment
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of the sample within the coils. The instrument commonly used to perform such

measurements is called a Physical Property Measurement System (PPMS) [12]. A

Magnetic Property Measurement System (MPMS) with a Superconducting Quan-

tum Interference Device (SQUID) magnetometer can also be used in which a set of

superconducting pickup coils is used to measure the current induced, yielding very

high sensitivity to any alteration in the magnetization of the sample [13]. This

process is performed over a variable temperature range. In AC magnetic measure-

ments, a small AC drive magnetic field is superimposed on the DC field, resulting

in a time-dependent magnetic moment in the sample [14]. The field of the time-

dependent moment makes a current in the pickup coils, meaning measurement

without sample motion can occur. Spin-glass behavior is usually characterized by

AC susceptibility. This process is performed over a variable temperature range.

All the magnetic measurements presented in this thesis were collected by Patrick

LaBarre and Dr. Arthur Ramirez using a PPMS and SQUID MPMS at UC Santa

Cruz.

1.8.2.2 Low Temperature Electrical Conductivity

The PPMS can be configured for four-terminal resistance measurements [12]. To

perform four-terminal resistance measurements, the sample is mounted on a puck

and four leads are attached to the sample. During the measurement the hardware

will pass a current through the sample via two leads, using the other two leads to

measure the electric potential drop across the sample. The current and the poten-
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tial drop can be known to a high degree of accuracy because the input impedance

of the voltmeter is very high. This process is performed over a variable temper-

ature range. Most of the low temperature resistivity measurements presented in

this dissertation were collected by Patrick LaBarre and Dr. Arthur Ramirez using

a PPMS at UC Santa Cruz.

1.8.2.3 Low Temperature Heat Capacity

The Heat Capacity of a material can be determined using a Quantum Design PPMS

[15]. For this setup, a platform thermometer and a platform heater are attached

to the bottom side of the sample platform. Small wires provide the electrical

connection between the platforms. The sample is mounted to the platform using

a thin layer of grease or epoxy. During a measurement, a known amount of heat

is applied at constant power for a fixed time. Once the heater is turned off, an

exponential decay of the temperature of the sample versus time is observed, of

which the decay pattern can be modeled, and the heat capacity can be extracted.

This process is performed over a variable temperature range. All the heat capacity

measurements presented in this thesis were collected by Patrick LaBarre and Dr.

Arthur Ramirez using a PPMS at UC Santa Cruz.
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1.8.3 High Temperature Thermal Transport Measurements

The ability of a material to conduct energy in the form of heat can be characterized

by determining a material’s thermal conductivity. This can be done by measuring

the thermal diffusivity of the sample using a Laser Flash instrument [16, 17]. For

this method, a Nd:YAG laser is used to provide an infrared radiation pulse normal

to the sample. In carrying out a measurement, the lower surface of a plane parallel

sample is first heated by a short IR energy pulse (Figure 1.9). The resulting

temperature change on the upper surface of the sample is then measured with an

IR detector. The higher the sample’s thermal diffusivity, the steeper the signal

increase. An illustration of the corresponding signal is presented in Figure 1.10.

Figure 1.9: Schematic of LFA 457 MicroFlash (1100◦ C).
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By using 1/2∆Tmax which represents t1/2 (Figure 1.10) and sample thickness,

d, the thermal diffusivity, α, and ultimately the thermal conductivity, λ, can be

calculated using Equations 1.4 and 1.19. This process is performed over a variable

temperature range. To improve even heating across the sample face, a layer of

graphite is applied to the sample prior to measurement.

α = 0.1388
d2

t1/2
(1.19)

Δ𝑇𝑚𝑎𝑥

1/2Δ𝑇𝑚𝑎𝑥

𝑡1/2
𝑡

Δ𝑇

Figure 1.10: Illustration of the change in temperature versus time recorded by the
IR detector due to the temperature change on the upper surface of the sample
from the applied IR energy pulse.
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1.8.4 High Temperature Seebeck Electric Resistivity Measurements

High temperature four-probe resistivity measurements were performed using a

ZEM-3 instrument [17, 18]. Four leads are attached to a bar as shown in Fig-

ure 1.11. The Platinum wire of each of the two R-type thermocouples is used to

measure the Seebeck voltage or the voltage drop between the two probes during

current flow through the sample to calculate the resistivity of the sample. The

resistance of the sample, R, is determined according to Ohm’s law, V = IR, and ρ

of the sample is determined by incorporating the dimensions l, w, and h (Equation

1.20) [17].

ρ = Rwh/l (1.20)

The current and the potential drop can be known to a high degree of accuracy

for the four-probe method because the input impedance of the voltmeter is very

high.

1.9 Electron Paramagnetic Resonance Spectroscopy

Electron paramagnetic resonance (EPR) spectroscopy is used for studying param-

agnetic compounds with unpaired electrons. The basic concept of EPR is analo-

gous to nuclear magnetic resonance (NMR), the difference being excitation of the

electron spins instead of the spins of atomic nuclei. The intrinsic angular momen-

tum of an electron generates a magnetic dipole moment, µ. For a single unparied
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Figure 1.11: Illustration of the measurement of four-probe resistivity and Seebeck
coefficient in a sintered bar sample.

electron, under the application of a magnetic field with strength B, the potential

energy developed from the interaction of the magnetic dipole moment and the ap-

plied magnetic field can be represented by Equation 1.21 where θ represents the

angle between the magnetic dipole vector and the applied field vector, ms = ±1
2
,

and ge is the Landé g-factor [19,20].

U = msgeµBB cos θ (1.21)

Thus, the potential energy is dependent on the moments vector direction rel-

ative to the applied field. If the electron’s magnetic moment aligns itself exactly



33

parallel to the field, a minimum or maximum potential energy can be achieved,

depending on the moment vector direction relative to the field. The difference

between Umin and Umax is expressed by Equation 1.22 (Zeeman energy split-

ting) [19,20].

∆E = geµBB cos θ (1.22)

Equation 1.22 therefore states that the splitting of Umin and Umax is directly

proportional to the magnetic field’s strength, B. An unpaired electron can transi-

tion between the maximum/minimum energy levels by either absorbing or emitting

a photon of energy, hν. Thus, Equation 1.23 is established [19,20].

hν = geµBB cos θ (1.23)

Equation 1.23 suggests a large variety of frequency and magnetic field value

combinations. EPR measurements, however, are typically conducted with mag-

netic fields around 0.3-0.4 Tesla and with microwaves in the 8-10 GHz region [20].

EPR measurements are usually conducted where the frequency is kept fixed with

the applied magnetic field as a variable. Various information can be obtained from

EPR spectroscopy, such as the identity of elements and what oxidation state is

present [21]. The Zeeman energy splitting due to an applied magnetic field is re-

lated to the g-factor, which for systems that have relatively insignificant spin-orbit

coupling (SOC) energies, g=2.0023 [19]. With the incorporation of large spin-

orbit coupling, however, the Zeeman energy splitting results in a g-factor value
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that deviates from 2.002, of which the difference is associated to the SOC. There

are various perturbation theory equations that relate the observed g values to a

spin-orbit coupling constant, though all are for 3d ions where the SOC can be

treated as a perturbation, compared to the ligand-field effects [19,22].

1.10 Computational Methods

Computational methods can provide useful information about the electronic prop-

erties of a material. The open-source package ABINIT was used to perform elec-

tronic calculations for Chapter 7 [23]. ABINIT utilizes density functional theory;

implementing a plane wave basis set and pseudopotentials to compute the elec-

tronic density and derived properties of a particular system. Details of the exact

model can be found in Chapter 7. All calculations were performed by Dr. Warren

Pickett’s research group at University of California, Davis.
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Chapter 2: Enigmatic States of Matter

2.1 Abstract

Transition-metal oxides with partially filled 4d and 5d shells exhibit an intricate

interplay of crystal field, spin-orbit coupling (SOC), and electronic correlations.

For 3d compounds, the atomic interactions, crystal field, and electronic correlations

can energetically compete, with the SOC remaining small. In heavy 5d transition

metal oxides, however, SOC is significant, and all energy scales are comparable.

Small changes in such effects can drastically influence the electronic properties,

resulting in a variety of novel forms of quantum matter (Figure 2.1) [24,25]. This

chapter will provide a brief introduction of such effects in addition to highly sought-

after enigmatic states of matter: the quantum spin liquid and the topological

insulator.

2.2 d-Electron Effects

For transition metal complexes, the valence d-electrons can influence the coordina-

tion environment of the metal atom which can therefore affect electronic properties.

Crystal field theory (CFT) is adequate to describe the effects that occur [26]. For

a metal-ligand environment, all five valence d-orbitals on the transition metal are

not degenerate. For example, in an octahedral environment, valence d-orbitals
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Figure 2.1: Illustration of how the electronic property of a material changes when
varying the magnitudes of spin-orbit coupling, S, and electronic correlations, U .
Figure adapted from review [25].

split into two groups; the t2g group (3 degenerate d-orbitals) are lower in energy

than the eg group (2 degenerate d-orbitals) (Figure 2.3). If the difference in energy

between the eg and t2g states, ∆Oh, is less than the pairing energy, P , of two

electrons occupying a given t2g orbital, Hund’s rule is obeyed, forming a high-spin

state. If, however, ∆Oh>P , the t2g states fill first, forming a low-spin state. The

magnitude of ∆Oh, in part, depends on the transition metal: generally ∆Oh(5d)

> ∆Oh(4d) > ∆Oh(3d) [26].
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2.3 Electron Correlation

The band model (discussed in Chapter 1) is often inadequate for describing the

properties of metal oxides as the bands of such compounds are typically too narrow

for the effects of electron-electron interaction to be ignored [26]. For the simple

band model, it is assumed that the repulsion between electrons can be represented

with an independent electron orbital wavefunction to describe the average effec-

tive potentials of the electrons. For simple intermetallic systems, this approach is

generally acceptable as the highly mobile electrons described by the wide bands

possess good screening properties. The Hubbard UH approximation is particularly

useful to circumvent this inaccurate description for metal oxides [26]. Here, the

repulsion between electrons is neglected, except when they are on the same atom.

For a given metal-oxide system, unpaired electrons within the d-orbitals can effec-

tively ”hop” between trasition metal sites. The energy input required to translate

between metal sites along with the energy of the now extra electron repulsion de-

scribes the Hubbard UH energy. If UH>Eg, a Mott insulator will exist. If UH<Eg,

a semiconductor/metallic system will exist [26].

2.4 Spin-Orbit Coupling

Spin-orbit coupling is the interaction of an electron’s intrinsic angular momentum,

or spin, with the orbital motion of the electrons through space [25]. This spin-orbit

coupling can be better understood by examining the effect in terms of the motion

of the nucleus of charge Ze (Z is the atomic number) with respect to the electron’s
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position. Thus, with respect to the electrons viewpoint, the nucleus circulates

about the electron with the same angular momentum, l, as the electron orbiting

the nucleus (Figure 2.2). This relative motion creates a current (Equation 2.1) and

such a current generates a magnetic field at its centre (Equation 2.2) [27].

𝑟 −𝑒

+𝑍𝑒

𝑙𝑁 𝐵0 ∝
𝑙

𝑟3

Figure 2.2: Illustration of the magnetic field at an electron produced by the relative
motion of the nucleus.

I =
Ze|l|

2πmer2
(2.1)

B0 =
µ0I

2r
=

Zeµ0

4πmer3
|l| (2.2)

The intrinsic angular momentum, or spin, of the electron also has an associated

magnetic moment (Equation 2.3) where ge is the spin g-factor (ge ≈2) [27]. The

electron spin interacts with the field B0 resulting in potential energy expressed in
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Equation 2.4 [27].

ms = −ge
e

2me

s (2.3)

Eso = −msB0 =
µ0Ze

2ge
8πm2

er
3
s · l = ξ(r)s · l (2.4)

Thus the spin-orbit interaction energy, Eso scales with the atomic number,

Z. Atoms with a high atomic number therefore have a strong spin–orbit force

and electrons travelling through materials composed of such atoms therefore feel

a strong spin- and momentum-dependent force that resembles a magnetic field.

Of recent interest for exotic states such as topological insulators (described

in Chapter 3.7) are 4d/5d metal oxide systems where SOC is large enough to

influence the electronic band structure. Iridates are the most widely studied with

Iridium frequently in a 4+ oxidation (5d5) state [25, 28, 29]. Certain frustrated

systems with such 5d5 ground states have been predicted to possess anisotropic

exchange interactions, a key ingredient of the Kitaev model of a quantum spin

liquid (described in Chapter 2.6) [30].

The valence d-orbital energy level scheme of such d5 ionic systems is illustrated

in Figure 2.3. With the crystal field splitting of the valence d-orbital levels, for a

5d5 ionic system, the five electrons occupy the t2g orbitals. The SOC acts within the

t2g manifold as –λL·S, where L is an effective l = 1 angular momentum [31], S, is

the spin, and λ is the magnitude of the SOC. Using the rules of addition of angular

momenta, SOC will split the t2g levels into an effective j = 3/2 quartet and an

effective j = 1/2 doublet with an energy difference of 3λ/2, as shown in Figure 2.3.
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Figure 2.3: Formation of spin-orbit entangled j = 1/2 moments for ions in a d5

electronic configuration.

Strong spin-orbit coupling then results in a system with a fully filled j = 3/2 band

and a half-filled j = 1/2 band for a d5 system (Figure 2.3) [25]. The magnitude of

the SOC varies amongst the 4d and 5d transition metals. For example, the SOC of

iridium and osmium is 540 meV and 480 meV, respectively [32]. For a small band

gap semiconductor or metal, the t2g splitting induced by SOC plays a significant

role in the gap energy and electrical properties.
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2.5 Anisotropic Nature of the Honeycomb Lattice

The framework of the honeycomb lattice enables anisotropic behavior unique to

other systems [33]. The distances and angles between the three nearest edge-

shared octahedral neighbors are not equivalent, resulting in orthogonal anisotropy

between the three nearest-neighbor bonds. In addition, large spin-orbit coupling

contributes to anistropic magnetic interactions between the three nearest neighbors

[34]. Such characteristics give rise to strong magnetic frustration and therefore an

ideal playground to study various exotic states such as quantum spin liquid (QSL)

behavior.

2.6 Quantum Spin Liquids and the Kitaev Model

2.6.1 Introduction

A quantum spin liquid (QSL) represents a new state of matter. Unlike conven-

tional magnetic states, such as the ferromagnetic or the antiferromagnetic states

(see Chapter 1), a QSL never enters into a long-range ordered phase with a static

arrangement of spins, even at absolute zero temperature [35]. For ferromagnets,

above the Curie temperature Tc, thermal fluctuations with an energy scale kbT

overwhelm the spin-spin exchange energy, J . When the overall temperature of a

ferromagnetic system is lowered below Tc, the spins undergo a phase transition

to minimize the total energy. The ground state of the ferromagnetic Heisenberg

model is an eigenstate with parallel spins. The ground state of the antiferro-
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magnetic Heisenberg model, however, is not a true eigenstate with antiparallel

spins and can only be a linearly superposed singlet state representing the ground

state [27]. This understanding is what led to the initial discussion of the existence

of a QSL state. In 1973, Anderson proposed that in an edge-sharing triangular lat-

tice, the three spins at the corners cannot be made mutually antiparallel, therefore

geometrical frustration could prevent spins from undergoing magnetic long-range

ordering [36]. Anderson postulated that the spins throughout a triangular lattice

would form local singlet pairs and the spins would constantly alter and rearrange

the pairings, resulting in a “liquid-like” state of spins [36]. Nevertheless, nearly

all known frustrated lattice systems form a magnetic ordered state at some tem-

perature above 0K [37]. The discovery of the cuprate superconductors led to the

investigation of the spin-1
2

Cu2+ ions arranged in La2CuO4 square lattice as a po-

tential QSL candidate [38]. However, La2CuO4 was later confirmed to possess a

Nèel ordered state [39,40].

2.6.2 Kitaev Model

A QSL state of matter has recently been demonstrated by an exactly solvable

model on a 2D honeycomb lattice by Alexi Kitaev [41]. By introducing Majorana

operators, Kitaev showed that the ground state of the associated Hamiltonian is

a quantum spin liquid [41]. The exploration of physical proof of this model began

with honeycomb layered A2MO3 (A = group 1 cation and M = 4d/5d transition

metal). More specifically, iridiate A2IrO3 were first proposed as a candidate hon-
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eycomb Kitaev model [34,42].

Discovering a physical realization of the Kitaev model has been proven to be

a challenge. All currently known A2MO3 honeycomb layered systems, with the

potential exception of Li2.15Os0.85O3, have been shown to not possess QSL behavior

[43]. There are currently four known systems that show prominent characteristics

of the Kitaev model: honeycomb layered Li2.15Os0.85O3, Cu2IrO3, α-RuCl3, and

Herbertsmithite ZnCu3(OH)6Cl2 [43–46].

For Li2.15Os0.85O3, a large van Vleck susceptibility, and an effective moment

of 0.85 µB (much lower than expected from 70% Os(+5)), and a narrow trans-

port band gap of ∆ = 243 ± 23 meV is observed [43]. No evidence of long range

magnetic ordering is found above 0.10 K, however, a spin glass-like peak in ac-

susceptibility is observed at 0.5 K. The specific heat displays an impurity spin

contribution in addition to a power law ∝ T (0.63±0.06). The magnetic susceptibility

and specific heat are not easily understood using a local moment picture, which

suggests that the valence electrons are close to itineracy and that spin orbit cou-

pling of osmium is playing an important role in the collective electronic behavior

of the Li2.15Os0.85O3 honeycomb system.

Unlike Na2IrO3, which shows long range magnetic ordering TN = 15 K [47],

Cu2IrO3, remains disordered until 2.7 K with zero field cooling [45]. The order,

however, disappears in a weak magnetic field, therefore suggesting short-range

magnetic ordering [45]. In addition, unlike Na2IrO3 which shows a clear peak at the

antiferromagnetic transition TN = 15 K in the heat capacity measurements, such

a peak is absent from the transition in Cu2IrO3 at 2.7 K. The effective magnetic
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moment of 1.93 µB and a Curie Weiss constant of -110 K suggests, however, that

the valence electrons are not in itinerate form.

When the magnetic spins throughout a lattice enter an ordered state, the

low-energy excited states are defined as spin waves and the quantum of excita-

tion is called a magnon [48]. For exotic systems in which the spins fractionalize,

the allowed energies form a spinon continuum, unique from magnon dispersion.

Spinons, therefore, contribute to bulk properties in ways that are distinct from

magnons [49]. One of the defining properties of QSL’s is that they possess a

high degree of quantum entanglement, and support spinons which carry fractional

quantum numbers [50]. To obtain information about such fractionalized spinon

excitations requires a momentum and energy resolved technique such as inelastic

neutron scattering. With inelastic neutron scattering, the magnetic neutron scat-

tering cross section is proportional to the dynamic structure factor S(Q, ω), where

Q and ω are the momentum and energy transferred to the sample, respectively.

Thus the scattered neutron intensity is a measure of S(Q, ω) in reciprocal space

of the spin-spin correlation function [44,46,50–52].

Plots of S(Q, ω) for α-RuCl3 and Herbertsmithite ZnCu3(OH)6Cl2 show scat-

tered intensity is diffuse and covers a large fraction of the Brillouin zone, even

at temperatures significantly below J/kB, where J is the spin-spin exchange en-

ergy [44, 46]. As a comparison, the square-lattice La2CuO4 develops antiferro-

magnetic correlations for T < 0.5 J/kB [39]. Though α-RuCl3 shows a magnetic

ordering transition at TN = 7 K, resulting inelastic neutron scattering supports

scattering from the Majorana excitations, a defining characteristic of the Kitaev
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model [44]. For Herbertsmithite ZnCu3(OH)6Cl2 no magnetic ordering occurs

down to temperatures near 0 K, a defining property of a QSL system [49,53].

2.7 Quantum Computation and QSL

Quantum computation is the most attractive potential application of a QSL. Quan-

tum computers (QC’s) are different from binary digital electronic computers based

on transistors, as quantum bits (qubits) rely on superposition and entanglement of

states [54]. A major issue of current QC’s is quantum decoherence, causing the in-

ability to store information for extended periods of time due to local perturbations

from the surrounding environment [54]. One of the defining properties of QSL’s

is that they possess a high degree of quantum entanglement and are topologically

invariant [41, 50]. If a physical system has topological degrees of freedom, then

information contained in those degrees of freedom would be automatically pro-

tected against errors caused by local interactions with the environment [55]. The

archetypal example of a topological phase with strong electron interaction is the

QSL [56]. Despite intensive experimental efforts on numerous candidate materials

for the potential realization of a QSL, only a select few are proposed to have QSL

behavior. It is therefore imperative to discover new QSL systems for fault-tolerant

quantum computation to become a reality.



46

2.8 Quantum Hall Effect and Topological Insulators

2.8.1 Introduction

The quantum hall state (QHS) is an example of a quantum state that is topo-

logically invariant [57]. Topology deals with objects that are robust against small

local perturbations and is a branch of mathematics concerned with those prop-

erties of geometric configurations that are unaltered by elastic deformation [55].

Topological insulators (TI) are analogous to the quantum Hall state in that they

exhibit topological order. Quantum information contained in such topological de-

grees of freedom would be automatically protected against errors caused by local

interactions with the environment [55]. Thus, such materials may be useful for

applications like spintronics and quantum computation [57].

2.8.2 Quantum Hall Effect

For a 2D xy insulating surface, the quantum hall effect can be achieved when a

strong magnetic field is applied in the z-direction [58]. The applied magnetic field

causes the electrons to experience a perpendicular Lorentz force, which causes their

motion to curve into xy circular orbits (Figure 2.4 (a)). The quantization of the

electrons circular orbits with orbital frequency creates quantized Landau levels.

Electrons near the xy edges, however, undergo a different kind of motion, and

lead to electronic states that propagate along the edge and do not have quantized

energies, meaning these states can conduct (Figure 2.4 (a,b)) [57, 58].
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Figure 2.4: In the quantum Hall effect, the applied magnetic field in the z-direction
causes the electrons to experience a perpendicular Lorentz force, which causes
their motion to curve into xy circular orbits (a). For electrons on the edge states,
there are two directions of propagation with opposite spins (b). Electrons on the
surface of a 3D topological insulator do resemble the edge states of a 2D topological
insulator where the spin direction is locked to the direction of propagation. The
surface bands intersect at a “Dirac point” and form a Dirac cone in reciprical space
(c).
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2.8.3 Topological Insulator

The topological insulator is closely related to the QHS except for the required large

magnetic field. The role of the magnetic field is played by spin-orbit coupling and

is commonly known as the quantum spin Hall state [57]. With the combination of

strong spin-orbit interactions and time-reversal symmetry, the observed properties

are unlike any other known electronic systems. For electrons on the edge states,

there are two directions of propagation with opposite spins (Figure 2.4). Upon

a time reversal operation, the direction of propagation is reversed and (because

of time-reversal symmetry) the spin direction is also reversed, interchanging the

two counter-propagating modes [55, 57–59]. This leads to what is known as dis-

sipationless transport: immune to any back-scattering from defects or impurities.

The surface states of a 3D topological insulator do resemble the edge states of a

2D topological insulator, in that the direction of electron motion along the surface

of a 3D topological insulator is determined by the spin direction where the spin

direction is locked to the direction of propagation (Figure 2.4 (c)) [59]. The surface

bands intersect at a Dirac point and form a Dirac cone in reciprical space (Figure

2.4 (c)).

The first experimental proof of the 2D TI was made by placing a thin layer of

mercury telluride (HgTe) between layers of mercury cadmium telluride (HgxCd1–xTe)

[59,60]. The first 3D TI was the semiconducting alloy bismuth antimonide (BixSb1–x)

[61]. Measurements of electrical transport are ideal for probing the 2D quantum

spin Hall effect are more problematic for 3D topological insulators, as even for a
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bulk insulator, small bulk conductivity still exists. It is therefore hard to separate

the bulk and surface contributions to the current. Angle-resolved photo-emission

spectroscopy (ARPES) couples only to the surface and is therefore the preferred

route when establishing the existence of a 3D quantum spin Hall state [59, 61].

By analyzing the energy, momentum and spin of the electrons emitted from the

sample (photoelectric effect), the electronic structure of the surface states can be

directly measured.

The quantum Hall Effect of a two-dimensional honeycomb net model was first

theoretically investigated by F.D.M. Haldane [62]. From the model presented, a

nonzero quantization of the Hall conductance could be achieved in the absence of

an external magnetic field. The band structure of 2D honeycomb graphene re-

veals the difference in energy of the conduction and valence band becoming zero

at two distinct points in the Brillouin zone. Near these points, the electronic dis-

persion resembles the linear dispersion of massless relativistic particles, which can

be described by the Dirac equation. From this, the quantum spin Hall Effect was

theoretically predicted for the honeycomb layered Na2IrO3 with large spin-orbit

interaction and the electron correlation playing crucial roles [63, 64]. The interest

toward fundamental investigations of heavy metal honeycomb layered metal oxide

systems for possible TI based applications has since grown.
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2.9 Conclusion

It is well established that the interplay between crystal field, spin-orbit coupling,

and electron correlation energies within various transition metal oxide and inter-

metallic systems generates a wide variety of novel forms of quantum matter. Only

a select few of such novel quantum states were discussed in this chapter. Other

notable states are Weyl and Dirac semi-metals [65]. The theorized topological

superconductor is projected to support topologically protected room temperature

superconductivity [66]. It is therefore crucial to synthesize new heavy metal oxide

and intermetallic systems where large spin-orbit coupling will play an influential

role in the electronic properties.
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Chapter 3: Introduction to Thermoelectric Materials and

Applications

3.1 Introduction

Over the past few decades, a lot of attention has been focused on alternative

energy sources to relieve our dependence on fossil fuels and to reduce greenhouse

gas emissions [67]. Approximately 70% of energy consumed is ultimately wasted

in the form of heat [67]. Thermoelectric generators (TEGs) are power-generation

devices that are designed to convert waste heat into electrical energy. They can also

be used as solid-state refrigeration devices, eliminating the need for CFC chemicals.

The advantages of using TEGs are that they can collect waste heat covering a

very wide temperature range without any vibration, noise, or gas emissions, and

with no refueling or maintenance requirements [68–70]. Unfortunately, “good” TE

materials possess 10-20% energy conversion efficiency [67, 68, 71]. Thus, there has

been considerable interest in TEGs, driven by the desire for more efficient materials

for electronic power generation and refrigeration [67,68,70,72].

There are a wide array of technological applications that use thermoelectric

(TE) materials. For example, TE applications are currently in use by the au-

tomotive industry to develop electrical power from waste engine heat from the

radiator and exhaust systems for use in next-generation vehicles [67, 68]. In addi-
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tion, TE refrigeration applications include seat coolers for comfort and electronic

component cooling [67,73]. Several deep space NASA missions have used TE ma-

terials; NASA’s Voyager, Cassini, and Mars Rover missions have used radioisotope

thermoelectric generators [74–76].

3.2 Thermoelectric Circuit

A thermoelectric circuit is composed of p-type and n-type semiconductors con-

figured in parallel as a thermoelectric generator (Figure 3.2). For thermoelectric

power generation to occur, the hot ends of the n-type and p-type material must

be electrically connected with a load connected across the cold ends. By applying

a temperature gradient across the junctions, a voltage gradent develops that is

proportional to the temperature gradient. The resulting voltage produced by the

Seebeck effect will cause current to flow through the load, generating electrical

power (Figure 3.1). Thus, the electrical power produced is the product of the

electrical current and voltage across the load. By applying an external electric

potential across the load, heat can be forced to flow from one end to the other via

heat carrying charges and enable what is known as Peltier cooling effect (Figure

3.1).
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Figure 3.1: A thermoelectric cooling/heating device is composed of a series of
connected semiconductor junctions (n- and p-type).

3.3 Quantifying Thermoelectric Performance

The thermoelectric performance of a material is characterized by the thermoelectric

figure of merit, expressed in Equation 3.1, where S is the Seebeck coefficient, σ is

the electrical conductivity, T is the effective temperature, and K is the summation

of the lattice and electronic components of the total thermal conductivity (KL +

Ke) [67, 68,70,72].

ZT =
σS2T

K
(3.1)

The efficiency of a power generation device, η, is proportional to
√

(1 + ZT̄ )
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Figure 3.2: A thermoelectric cooling/heating device composed of a series of con-
nected semiconductor junctions (n- and p-type).

and is expressed in Equation 3.2, where T̄ is the average temperature of the hot-end

temperature (Th) and the cold-end temperature (Tc) [71].

η =
Th − Tc
Th

√
(1 + ZT̄ )− 1

√
(1 + ZT̄ )− Tc

Th

(3.2)

From this, the efficiency will approach the Carnot efficiency when ZT ap-

proaches infinity. For ZT = 1, the efficiency η is approximately 10% [67].

Considered to be “good” thermoelectric materials have a ZT ≥ 1 [67,68]. Well

established low temperature (300 – 400 K) thermoelectric materials with ZT ≥

1 are Bi2Te3 and Bi2Te3−xSex alloys [77]. For operating temperatures ∼900 K,

SnSe has a recorded ZT of ∼2.7 [78]. Figure 3.3 shows the relation between T,

η, and ∆T of materials with different ZT values (inset) and ZT as a function of

temperature for typical high-efficiency thermoelectric materials [67].
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Figure 3.3: Illustration of the relation between T , η, and ∆T of materials with
different ZT values (inset) and ZT as a function of temperature for typical high-
efficiency thermoelectric materials (figure adapted from Yang et al [67]).

The Seebeck coefficient, S, is an intrinsic property representing the ratio of

the voltage developed to the temperature gradient (∆V/∆T ) across a material.

An increase in thermoelectric performance corresponds to an increase in the ZT

value. Since S=∆V/∆T , the ability to maintain a potential gradient will in general

diminish with the increase in the majority e−/h+ mobility and carrier concentration

[67]. Thus, as illustrated in Figure 3.4, the conductivity, σ, will increase with an

increase in charge carrier concentration, however, the magnitude of the Seebeck

coefficient, S will decrease. Thus, S, σ, and ke directly relate with the carrier
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Figure 3.4: Illustration of how the Seebeck coefficient, S, electrical conductivity σ,
lattice, KL, and electronic, Ke, portions of the thermal conductivity change with
charge carrier concentration.

concentration through the following relationships [67,71].

S =
8πk2

B

3eh2
m∗T

( π
3n

) 2
3

(3.3)

1

ρ
= neµ (3.4)

Ke = LσT = neµLT (3.5)
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As shown in Equations 3.3 − 3.5, m∗ is the effective mass of the carrier, ρ

is the electrical resistivity, e is the charge of an electron, kB is the Boltzmann

constant, µ is the carrier mobility, n is the carrier concentration, and L is the

Lorenz number. Because µ ∝ 1/m∗, if m∗ increases, the Seebeck, S, increases. The

conductivity, however, will inherently decrease. With an increase in n, the electrical

conductivity increases, however, S decreases. Therefore, the power factor S2σT ,

can be optimized typically in narrow-gap semiconducting materials as a function

of carrier concentration (∼1019 carriers/cm3), to give the largest ZT [67, 68, 71].

To obtain good TE performance, ideal Seebeck values on the order of ∼200 V/K

or greater and electrical conductivity close to ∼103 Ω−1 cm−1 must be achieved

[67,68,71].

The total thermal conductivity does increase with increasing carrier concentra-

tion and consequentially decreases the overall ZT . The electrical conductivity and

the thermal conductivity are interrelated, in that σ is proportional to ke through

the Wiedemann–Franz relationship represented in Equation 3.5 (Lorentz number

L = 2.45 × 10–8 WΩ/K2) [67].

The lattice thermal conductivity KL is independent of the carrier concentration

and is represented in Equation 3.6, with νs representing the effective velocity of

sound through the material, C as the heat capacity, and Lph as the mean free path

of the phonons [68].

KL ∝ νsCLph (3.6)
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At higher temperatures (T > 300 K), the sound velocity and the heat capacity

become temperature-independent. Therefore, the magnitude of KL is determined

by the mean free path of the phonons. Thus, when the phonons have a mean free

path almost equal to the interatomic spacing of the constituent atoms, a mini-

mum lattice thermal conductivity can be achieved. If KL is equal to 0 Wm–1K–1,

KT=Ke. From this and incorporating Wiedemann-Franz relationship (Equation

3.5) to Equation 3.1, ZT=S2/L0 . Thus, to obtain a ZT = 1, S= 157 V/K. The

concept ”phonon-glass/electron-crystal” is of interest in which the phonon scat-

tering properties behave as an amorphous material and the electrical properties

behave as a crystalline material [79]. A variety of approaches have been explored to

reduce the lattice part of the thermal conductivity while still maintaining desired

electrical properties.

3.4 Methods to Improve ZT

Various strategies have been applied to improve ZT . Optimizing the carrier con-

centration and various band engineering approaches have been investigated to

decouple σ and S and achieve a high power factor [71, 80–82]. Nano-structure

engineering has been shown to effectively reduce the total thermal conductivity,

KT , without sacrificing the electrical transport of TE materials [82–84]. Other

approaches to optimize ZT are alloying and transition metal/pnictogen-site dop-

ing [70, 72, 85–87]. Another method to maximize ZT is by filling the unoccupied

large empty cages within M cube skutterudite framework with an ion [88–90]. The
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size difference between the corresponding filler atom and void site enables the filler

atom to act as an independent oscillator and thus dampen the thermal phonon

conductivity.

3.4.1 Skutterudites: Strong Thermoelectric Candidates

Because of the unique structure and recognized ability to tune key transport prop-

erties, skutterudites are known to be strong thermoelectric candidates. The skut-

terudites are one well known class of Zintl compounds. As shown in Figure 3.5,

the skutterudite crystal structure can be described as a repeated corner-sharing

MX6 arrangement with two M4X12 formula units and two large empty cages per

unit cell, where M is a transition metal atom (M = Fe, Co, Rh, or Ir) and X is a

pnictogen atom (X = P, As or Sb).

The general formula is MX3 with cubic space group Im3̄. Because of the large

size difference between the corresponding filler atom and void site, the filler atom

can conceivably act as an independent oscillator and thus dampen the thermal

phonon conductivity and decrease the total thermal conductivity [88–92]. Filling

skuterudite voids can also influence the electrical conductivity, albeit the effect

is usually negligible with respect to the decrease in total thermal conductivity

[72,88,90,92].
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Figure 3.5: Skutterudite crystal structure shown as a repeated corner-sharing MX6

arrangement (left), and the resulting icosahedron cage site (right). M is a transition
metal atom (M = Fe, Co, Rh, or Ir) represented as blue spheres, and X is a
pnictogen atom (X = P, As or Sb) represented as green spheres. The red sphere
represents the ”rattler” element within the icosahedron void cage.

3.5 Conclusion

Thermoelectric generators (TEGs) are power-generation devices that are designed

to convert waste heat into electrical energy. They can also be used as solid-state

refrigeration devices, eliminating the need for CFC chemicals. There are several

advantages to use TEGs; TEGs can collect waste heat covering a very wide tem-

perature range without any vibration, noise, or gas emissions, and with very little

maintenance requirements. Unfortunately, “good” TE materials possess 10-20%

energy conversion efficiency. Various strategies have been applied to improve TE

efficiency. Such methods have been by optimizing the carrier concentration and
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band engineering approaches. Nano-structure engineering has also been shown to

effectively reduce the total thermal conductivity, KT , without sacrificing the elec-

trical transport of TE materials. Other approaches to optimize ZT are alloying

and transition metal/pnictogen-site doping. The concept ”phonon-glass/electron-

crystal” is of interest in which the phonon scattering properties behave as an

amorphous material and the electrical properties behave as a crystalline mate-

rial. A variety of approaches have been explored to reduce the lattice part of the

thermal conductivity while still maintaining desired electrical properties. Filling

the unoccupied large empty cages within M cube skutterudite framework with an

ion to enhance phonon scattering and to increase the overall efficiency of the TE

material is discussed.
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Chapter 4: Introduction to Pertinent Structure Types: Geometric

and Structural Principles

4.1 Introduction

A variety of metal oxide and intermetallic structures were investigated. In this

chapter, the geometric and structural principles of honeycomb layered A2MO3,

spinel, perovskite, and the skutterudite structure will be discussed. Frustrated

systems such as the honeycomb and spinel lattices have the potential to harbor

exotic states such as quantum spin liquid behavior. Of recent interest for topologi-

cal materials are perovskites where spin-orbit coupling is large enough to influence

the electronic band structure. Because of the unique structure and recognized

ability to tune key transport properties, skutterudites are known to be strong

thermoelectric candidates. Understanding the structure is critical to establish a

better understanding of the observed and/or predicted properties.

4.2 Honeycomb Layered Metal Oxide

The demonstration by Kitaev of an exactly solvable quantum spin liquid (QSL)

model incorporating S = 1/2 spins with anisotropic interactions on a honeycomb

lattice [41] has motivated searches for its experimental realization. Honeycomb
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layered A2MO3 can be described as a rock salt ordered arrangement with 2/3 of the

octahedral sites filled with A-cations and the remaining 1/3 filled with M-cations.

All octahedral sites are edge shared. Figure 4.1 reveals the A2MO3 (A = Na+ or

Li+ and M = 3d, 4d or 5d element) structure as alternating A and AM2 layers along

the c-axis (left) and a single AM2 layer, where MO6 edge-sharing octahedra form

the honeycomb framework (right). The A-AM2 close packed stacking arrangement

can vary, resulting in a variety of possible space groups.

Figure 4.1: Left: A2MO3 (A = Na+ or Li+ and M = 3d, 4d or 5d element) structure
as alternating A and AM2 layers. Right: Viewed along the c-axis the AM2 layer,
where MO6 edge-sharing octahedra form the honeycomb lattice. White, black, and
red spheres represent A, M, and oxygen atoms, respectively.
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4.2.1 Stacking Sequences of the AM2 Parallel Layers

The particular stacking arrangement between the AM2 parallel layers will only

be taken into consideration as the close packing arrangement between a single A

and AM2 layer remains unchanged. For representative AM2 layers defined as A,

B, and C, there are multiple ABC stacking sequences of the equidistant, parallel

layers. Starting with the A layer, the second B layer may be placed above the A

layer with the A1 cation residing in the B1 void site to produce the A1B1 stacking

sequence (Figure 4.2). Though A1B2 and A1B3 are possible, they are related to

A1B1 by a 1200 rotation and so are not unique. There are then two possibilities for

the addition of a third layer, generating either A1B1C1 or A1B1C2 stacking, where

repeating A1B1C1 blocks represent C2/m or C2/c and repeating A1B1C2 blocks

represents P3112 (Figure 4.2) [93].

More complicated stacking arrangements are possible if the 3-layer blocks are

combined in different manners. For example, repeating A1B1C2-A2B3C1 blocks

are possible (Figure 4.2). Clearly there are many stacking schemes for A2MO3

based structures. Because the AM2 layers are separated by oxygen and lithium

layers, the relative differences in energies between such possible 3-layer blocks are

not significantly different, as long as close packing arrangement is achieved, there-

fore enabling a reasonable percentage of stacking fault imperfections (discussed in

Chapter 5).
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Figure 4.2: Illustrations generated by stacking AM2 (A = Na+ or Li+ and M = 3d,
4d or 5d element) “honeycomb” layers with Bx and Cx (x= 1, 2, or 3) representing
the locations in the ab-planes of the B and C holes in a close-packed array. The
M and A ions are denoted by white and black (smaller) circles, respectively.

4.2.2 Honeycomb Framework: Edge Shared Frustration

The A2MO3 honeycomb structure is unique in that the slight variations in the

M-M distances and angles of the three nearest MO6 edge sharing sites enables

anisotropic behaviour unique to other systems (Figure 4.3) [33]. The magnetic

superexchange between two adjacent M sites can occur via two exchange pathways

as these octahedra are edge-sharing. Thus, destructive interference between the

two Ir-O-Ir exchange pathways occurs, amplifying the electron correlation energy
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and enhances spin frustration [33]. A honeycomb layer populated with heavy

metals with large SOC enhances the electron correlation energy and the magnetic

frustration [33]. It is therefore a balance between the degree of variation between

the M-M distances and respective angles, orbital overlap, and the magnitude of

SOC which tunes the electrical properties.

d1

d2d3

Figure 4.3: Illustration of the three MO6 edge shared octahedra describing the
honeycomb framework. The M-M distances (d1, d2, d3) are not equivalent and
respective angles are not equal to 1200. Here, black and purple spheres represent
M cations and oxygen, respectively.

4.3 Spinel Structure

4.3.1 Introduction

The frustrated spinel structure populated with large spin-orbit coupled (SOC) ions

are an ideal setting for the exploration of exotic states. The general formula for a

normal spinel is AB2O4, where the A-cation occupies tetrahedral sites and the B-
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cation occupies octahedral sites (Figure 4.4) [94]. The B2O4 network forms a rock

salt structure with cubic close packed O2− ions where only alternate octahedral

sites are occupied by the B-cations (1/2 of the octahedral sites are occupied).

The A-cation occupies 1/8 of the tetrahedral sites. Only tetrahedral sites with all

four neighboring empty octahedral sites are filled (Figure 4.5). If all tetrahedral

and/or all octahedral sites were filled, polyhedral face sharing would occur. Thus,

cation-cation repulsion’s do not allow adjacent octahedral and tetrahedral sites to

be occupied simultaneously.

Octahedral 
M sites (16d)

Tetrahedral 
A sites (8a)

AM2O4 Spinel

Figure 4.4: Illustration of the AB2O4 spinel structure: isolated A-cation tetrahe-
dral sites and the B2O4 rock salt network where 1/2 of the octahedral sites are
occupied.

One of the unique features of the spinel structure is that the B ions form a

sublattice of corner-shared tetrahedra (Figure 4.6). This tetrahedral sub-lattice

gives rise to strong magnetic frustration, if the B cations are magnetic and the

magnetic coupling is antiferromagnetic. The A-ions also form a diamond sub-
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lattice (Figure 4.6) and can also lead to strong magnetic frustration, if the A

cations are magnetic and the magnetic coupling is antiferromagnetic.

Figure 4.5: Illustration of an A-cation tetrahedral site with all four neighboring
octahedral sites empty.

4.3.2 Cation Distribution in Spinels

The cation distribution between the A and B site may vary. In inverse spinels, half

of the B ions occupy the tetrahedral sites, leaving all of the A ions and the remain-

ing B ions occupying the octahedral sites, typically in a disordered arrangement.

A complete range between normal and inverse spinels are possible. The cation

distribution between the A and B sites can be quantified using the parameter γ,

[BγA1−γ]
tet[AγB2−γ]

octO4 which represents the fraction of A ions on the octahedral

sites [94]. Table 4.1 represents the stoichiometric identity of normal, inverse and

random spinel systems.
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B-ion corner-shared 
tetrahedra sublattice

A-ion diamond sublattice

Figure 4.6: The A-ions form a diamond sublattice and the B-ions form a sublattice
of corner-shared tetrahedra within the spinel structure.

Table 4.1: Classification of cation distribution in spinels

normal [A]tet[B2]octO4 γ = 0

random [BγA1−γ]
tet[AγB2−γ]

octO4 0<γ<1

inverse [B]tet[A,B]octO4 γ = 1

Several factors influence γ, such as covalent bonding effects, crystal field sta-

bilization energy (CFSE), and cation size [10, 94]. For example, Fe3O4 forms an

inverse spinel. Here, Fe3+ is d5 and therefore has no preference for an octahe-

dral site or tetrahedral site. Fe2+, however, is d6 and from CFSE would prefer an
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octahedral environment, thus forming [Fe3+]tet[Fe2+, Fe3+]octO4 [10].

4.4 Single and Double Perovskite Structures

4.4.1 Introduction

The perovskite structure class covers an enormous variety of compounds. Most

of the ions in the periodic table can be incorporated into the perovskite structure

with many different combinations of cations and anions. Because of this inher-

ent flexibility, an array of properties are reported, with numerous examples where

substitution of one or more of the cations can considerably impact structure and

properties [95–101]. Of recent interest for topological materials are perovskites

where SOC is large enough to influence the electronic band structure [102–104].

This review will encompass an introduction to the perovskite structure types, dis-

cussions on A- and B-site cation ordering within the AA’BB’X6 double perovskite

framework, geometric and structural principles, and on ideal diffraction techniques

for correct crystal structure determination of distorted perovskites.

4.4.2 Introduction to Perovskite Structure Types

The ideal cubic perovskite structure has an ABX3 stoichiometry and belongs to

the space group Pm3̄m [97]. The A-cation is surrounded by 12 X-anions forming

a dodecahedral environment, the B-cation is octahedrally coordinated by six X-

anions, and the X-anions are coordinated by two B-cations and four A-cations
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(Figure 4.7 (a)). There are two ways to visualize the structure. The perovskite

structure is more commonly described as a three-dimensional cubic network of

corner-sharing BX6 octahedra, with the A-cation residing in the center of a cube

defined by eight corner-sharing octahedral units (Figure 4.7 (b)). An alternative

description is in terms of a cubic close-packed array of X-anions where one fourth

of the X-anions are replaced with an A-cation in an ordered way to obtain a cubic

close-packed AX3 arrangement. One fourth of the octahedral holes in the AX3

lattice are filled with B-cations, explicitly octahedral holes that do not border an

A-cation (Figure 4.7 (c)).

The number of possible compounds is significantly expanded when multiple

ions are replaced for one or more of the original ions in ABX3. Substitution

typically occurs on the cation sites, resulting in a large class of compounds known

as double perovskites, AA’BB’X6 (Figure 4.7 (d)). When such substitutions are

made, the cations can occupy the corresponding original site in either a random

or an ordered fashion, resulting in a wide variety of lower symmetry systems. The

electronegativity, charge, and size difference of the substituted cations can cause

structural modifications such as cation ordering, octahedral distortion, and Jahn-

Teller distortion [97,98].

Replacing one or more of the original ions in ABX3 can result in stoichiometric

identities other than A2BB’X6. For example, 1:2 ordering of the B-cations can

occur along [111] for an ideal 1:2 double perovskite, identified as A3BB’2X9 (Fig-

ure 4.8). There are many examples of perovskite-like systems. Perovskite-rock

salt intergrowth structures such as the Ruddlesden-Popper phases are well estab-
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(a) (b)

(c) (d)

Figure 4.7: Illustrations of (a) the ideal cubic ABX3 perovskite framework with
B-cations (black spheres) residing in octahedral sites and A-cations (white spheres)
residing in a 12-coordinated dodecahedral environment, (b) three-dimensional cu-
bic network of corner-sharing BX6 octahedra, with the A-cation residing in the
center of a cube defined by eight corner-sharing octahedral units, (c) cubic close-
packed AX3 arrangement with 1/4 of the octahedral holes filled with B-cations,
and (d) double perovskite 1:1 rock salt ordered A2BB’X6

lished [97]. Layered cuprates and related materials, such as La2CuO4 are known

superconductors [105–107], and Sr2IrO4 is considered an ideal platform for explor-

ing the quantum effects of magnetism in low-dimensional systems as the singular

spin-1
2

Ir4+ ions are arranged neatly in a square lattice [108]. For the context of

this thesis, attention will be focused on the AA’BB’X6 structural framework for

this chapter.
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1:1 Order 1:2 Order

Figure 4.8: Illustration of 1:1 and 1:2 B-site cation ordering sequence in AA’BB’X6

(A-cations and X-anions are removed for clarity).

4.4.3 A and B Site Cation Ordering in AA’BB’X6

There are three types of ordering for both A and B-site cations within the double

perovskite framework (Figure 4.9). For a double perovskite AA’BB’X6, both A-

and B-sites can order in rocksalt, layered, or columnar fashion with B-site order-

ing more common than A-site cation ordering [97, 98]. For the B-site rock-salt

arrangement, all B’X6 octahedra are isolated from BX6 sites (Figure 4.9). For B-

site layered arrangement, connectivity of B(B’)X6 exists in two dimensional corner

shared layers. For B-site columnar arrangement, connectivity of B(B’)X6 exists in

1-dimensional corner shared chains (Figure 4.9). Rock-salt ordering is the most

common. This can be explained in terms of electrostatic differences between the

corresponding cations [97, 98]. Because all B’X6 octahedra are isolated from BX6

sites for the rock-salt arrangement, the more highly charged B’ cations are separate
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with six B cations as its nearest neighbor. Columnar ordering is the second most

favorable with each B’ cation having two B’ cation and four B cation neighbors.

Layered ordering is the least energetically favorable as each B’ cation has four

B’ cation and two B cation neighbors. Relative to rock-salt ordering, only a few

examples of layered and columnar ordering exist for A2BB’X6, systems [97]. For

example, B-site layered ordering exists for La2CuSnO6, even though each Sn6+ has

four Sn6+ neighbors [109]. It has been proposed Jahn-Teller distortion of Cu2+

plays an important role with stabilizing the system [97].

Most B-site columnar ordering exists with B/B’ as the same element, but with

mixed valency. For example, B-site columnar ordering exists in LaCaMn3+Mn4+O6

where Jahn-Teller distortion of Mn3+ also plays an important role with stabil-

ity [110]. There are very few examples of A-site ordering in the double perovskite

AA’BB’X6. This, in part, can be explained by the restricted oxidation differences

between A and A’ cations. Unlike B/B’ cations which can have an oxidation dif-

ference of up to seven [111], A/A’ cations, in all known cases, have a maximum

oxidation difference of only two. Most A-site cation ordering prefers layered order-

ing. To understand the preference of layered ordering, the anion nearest neighbor

environment must be considered [98]. For a perovskite system, each anion has six

nearest neighbor cations: two B-site cations and four A-site cations (Figure 4.10).

For B-site rock salt ordering, each anion environment is equivalent. Each anion

is surrounded by one B-cation and B’-cation. Layered B-site ordering, however,

creates three distinct anion environments, violating Pauling’s fifth rule [112]. One

of the distinct anion sites resides between two higher valent B’ cations, causing
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Figure 4.9: Cation ordering schemes in perovskites. From top to bottom rock salt,
layered ordering, and columnar ordering are shown for B-site ordering in A2BB’X6

perovskites (left) and for A-site ordering in AA’B2X6 (right) perovskites.

over-bonding of the anion site (Pauling bond valence sum analysis [112]). The

second anion site is between two lower valent B-cations, causing under-bonding

of the anion site. The third anion site resides between B and B’ cations, like

the B-site rock salt ordering. Though A-site rock salt ordering does result in a

single environment for all anions, the A-cations reside in a trans configuration

(Figure 4.10), forcing A-X and A’-X bonds to be of equal length, even if A and
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Figure 4.10: The anion environment in a primitive ABX3 perovskite and in a rock
salt ordered AA’B2X6 perovskite, where AA’, B, and X are green/blue, grey, and
red, respectively.

A’ cations are of different size [98]. Just like with layered B-site ordering, layered

A- site ordering creates three distinct anion environments. However, because two

thirds of the anions are surrounded by two A and two A’ cations in a cis fashion,

the anions can displace if there is a significant size difference between the A/A’

cations. Regardless, the remaining one sixth of the anions are surrounded by four

A-cations and the other one sixth are surrounded by four A’-cations, resulting in

slight over- and under-bonding. To relieve such bonding instability, octahedral

tilting and/or Jahn-Teller distortion of the B-site is needed in order for A-site

ordering to occur [97,98].
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4.4.4 Distorted Perovskites: Geometric and Structural Principles

For the perovskite ABX3, structural distortions can occur depending on the size

distribution between the A- and B-cations. For a cubic perovskite structure, the

atomic radii are related to the unit cell dimension, a, by Equation 4.1.

a =
√

2(rB + rX) = rA + rX (4.1)

The degree to which the cation sizes depart from Equation 4.1 is provided by

the tolerance factor, τ (Equation 4.2) [97].

τ =
rA + rX√
2(rB + rX)

(4.2)

The tolerance factor (τ) for a 1:1 ordered A2BB’X6 perovskite [97] is represented

in Equation 4.3.

τ =
rA + rX√

2(0.5rB + 0.5rB′) + rX
(4.3)

For a cubic double perovskite system, if the tolerance factor (τ) is equal to

1.0, the A-X and B-X bonds can adopt their ideal lengths in the cubic structure.

For τ less than 1, the A-cation is too small for the 12-coordinated site and the

perovskite structure can compensate for the cation size mismatch by tilting the

BX6 octahedra and/or by distorting the ideal bond lengths [95–97].

If octahedral distortions occur to account for the cation size mismatch, the

exact mechanism of octahedral distortion throughout the corner sharing B/B’X6
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Figure 4.11: Mechanisms of octahedral distortion throughout the corner sharing
B/B’X6 framework.

framework can vary (Figure 4.11). If we consider a single octahedral B/B’X6

site within the A2BB’X6 framework, distortion can occur along the ab-plane in a

clockwise or counterclockwise manner (Figure 4.11 – mechanism 1), can tilt along

the c-axis (Figure 4.11 – mechanism 2), or via both mechanisms (Figure 4.11 –

mechanisms 1 and 2) [97]. Throughout the corner sharing B/B’X6 framework, the

rotation/tilting can be the same between adjacent plains of octahedra, therefore
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in-phase, or the rotation/tilting between adjacent plains of octahedra is opposite,

and therefore out of phase. A classification scheme has been developed and is

known as the Galzer tilt method [113].

For this method, possible rotation about the three axes of the octahedron is

indicated by three letters a, b, and c. If the degree of rotation about all three axes

is the same, each letter will be the same, i.e. aaa, and if the degree of rotation

is different for one of the axis, i.e. aac. To characterize if there is no rotation

about an axis, the superscript “0” is provided for the letter. If rotation will be

in-phase, the superscript “+” is provided, and for out of phase, the superscript “-”

is provided. For the examples shown in Figure 4.12, rotation of octahedra about

only one axis is shown. The difference between aoaoc− and aoaoc+ is out of phase

and in-phase between adjacent plains of octahedra, respectively. A list of Glazer

tilt systems for ABX3 and A2BB’X6 with no order, 1:1 order, and 1:2 order can be

found elsewhere [97,113–115].

4.4.5 Ideal Diffraction Techniques for Correct Crystal Structure De-

termination

Knowing the correct crystal structure for a given compound is essential for under-

standing its properties. It is very common in literature where incorrect structures

are determined mostly due to the limitations of the diffraction method used. Most

A2BB’X6 perovskites exhibit a high degree of pseudosymmetry, meaning slight de-

viations that characterize a non-ideal perovskite are subtle in these compounds.
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𝑎𝑜𝑎𝑜𝑐− 𝑎𝑜𝑎𝑜𝑐+

Figure 4.12: View looking down the c-axis of aoaoc−- and aoaoc+ with the B-site
cations located at the center of the grey octahedral sites and A-site cations shown
as white spheres.

Comparing compounds with the A-cation as Ba2+ or Ca2+ for A2BB’X6, the pres-

ence or lack of reflection splitting due to octahedral tilting distortions is often easily

evident [95–97]. Most double perovskites containing Ba2+ do not distort from cubic

symmetry and are therefore assigned to the aoaoao tilt system. For Ca2+ double

perovskites, well-defined peak splitting with XRPD is observed and is commonly

assigned to one of the 3-tilt Glazer systems [95–97]. For Sr2+ double perovskites,

though octahedral distortion does occur to accommodate the smaller A-cation,

XRPD peak splitting is not observed due to their high degree of pseudosymmetry.

Therefore, space group assignment is challenging with XRPD methods. Because of

its relatively small atomic number, oxygen has a poor X-ray scattering coefficient.

Oxygen, however, has a coherent neutron scattering length comparable to heavier
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atoms [116]. Therefore, neutron diffraction techniques are ideal to establish the

right space group due to slight octahedral distortions.

4.5 Skutterudite

The skutterudites are one well known class of Zintl compounds. The Zintl con-

cept is important in solid-state chemistry to explain how compounds that combine

main group and electropositive elements can be stable for formulas that essentially

do not make any sense [117]. For example, the stability of most ionic systems

such as NaCl can easily be explained by fundamental concepts through which an

electropositive ion donates electrons to an electronegative ion to achieve closed

shell electron configurations. For Zintil phases, fundamental concepts of electron-

counting and stability rules are not as straightforward. For such compounds, to

obey fundamental electron counting, the electronegative elements form a poly-

atomic electron-accepting molecule inside the solid called a polyanion that fills its

available energy states with electrons from the electropositive elements. For BX3

skutterudites with B a group 6 metal such as Co, Rh or Ir and X a pnictogen

atom such as P, As or Sb, Zintl electron count of 24 valence electrons per formula

unit must be followed [91]. Group 6 metals with 3+ oxidation state have the elec-

tron configuration nd6. In octahedral coordination and low spin, they thus have

a filled t2g band and an empty eg band. Square X4 Zintl polyanions form with a

formal charge of 4-. Thus, M3+
4 (X4)4−

3 is achieved [91]. As shown in Figure 4.13,

the skutterudite crystal structure can be described in two ways: (left) a repeated
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corner-sharing MX6 arrangement with two M4X12 formula units and two large

empty cages per unit cell, or (right) an open cage like structure of cube-connecting

M atoms with three fourths of the void sites filled with X4 Zintl polyanions, where

M is a transition metal atom (M = Fe, Co, Rh, or Ir) and X is a pnictogen atom

(X = P, As or Sb). The general formula is MX3 with cubic space group Im3̄. The

M cations occupy the 8c (1/4, 1/4, 1/4) site and the X anions occupy the 24g (0,

y, z) site with y∼0.15 and z∼0.34.

Figure 4.13: Skutterudite crystal structure shown as (a) a repeated corner-sharing
MX6 arrangement and (b) cube-forming M atoms with three fourths of the void
sites filled with X4 Zintl polyanions.

The empty cages can be filled by an ion A, leading to the formula AyM4X12

with y ≤ 1. A filled AB4X12 skutterudite is expected to be with an electron precise

valence electron count of 96 (4 x 24) per formula unit [91], because M3+
4 (X4)4−

3

with group-6 B metal and a p6 X atom configuration without any filler atom
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has an electron count of 96. Therefore, only small amounts of the filler ion, A,

can be incorporated, with the solubility limit of y in AyM4X12 typically close to

0.15 [88,89,91].

4.6 Conclusion

This review provides an introduction to the geometric and structural principles

of honeycomb layered, spinel, perovskite, and skutterudite structures. Frustrated

lattice systems such as the honeycomb or spinel structures have the potential

to harbor novel enigmatic quantum states. For example, the demonstration by

Kitaev of an exactly solvable quantum spin liquid (QSL) model incorporating S

= 1/2 spins with anisotropic interactions on a honeycomb lattice has motivated

searches for its experimental realization as a potential quantum spin liquid system.

Understanding the structure is critical to establish a better understanding of the

observed and/or predicted properties.



84

Chapter 5: Modeling Stacking Faults of Honeycomb Layered

A2MO3 Metal Oxide Systems

5.1 Introduction

It is well known the presence of imperfections in the crystal lattice can influence

the electrical properties of polycrystalline systems. A stacking fault is one such

imperfection, which occurs within systems that consist of parallel layers that allow

for translations parallel to the layers and rotations about the layer normal [93].

Honeycomb layered A2MO3 metal oxide systems are known to possess such stacking

faults [43, 93, 118, 119]. A review of the honeycomb layered A2MO3 structure is

provided in Chapter 4.

5.2 Stacking Sequences of the AM2 Parallel Layers

As discussed in Chapter 4, for AM2 layers defined as A, B, and C, there are two

ABC stacking sequences of the equidistant, parallel layers. Starting with the A1

layer, a second layer may be placed above this to produce A1B1. Though A1B2

and A1B3 are possible, they are related to A1B1 by a 1200 rotation and so are not

unique. There are then two possibilities for the addition of a third layer, generating

either A1B1C1 or A1B1C2 stacking, where repeating A1B1C1 blocks represent C2/m
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and repeating A1B1C2 blocks represents P3112 [93]. More complicated stacking

arrangements are possible if the 3-layer blocks are combined in different manners.

Therefore, there are many stacking schemes for A2MO3 based structures. Because

the AM2 layers are separated by oxygen and lithium layers, the relative differences

in coulomb repulsion energy between these possible 3-layer blocks are not signif-

icantly different, therefore enabling the possibility of a reasonable percentage of

stacking fault imperfections.

5.3 Modeling Stacking Faults

Current refinement software, such as GSAS, cannot refine stacking fault contribu-

tion, as shifting AM2 layers will not equate to the corresponding assigned space

group. To model stacking fault contribution, the DIFFaX software or FAULTS

software must be used. Both DIFFaX and FAULTS software require a text file

of which instrumental parameters, unit cell and atomic information, and transi-

tion vectors describing interlayer connections are provided. Example input files for

both software’s are provided in Appendix C and D.

5.3.1 DIFFaX Program

The DIFFaX software requires the cell axes to be defined such that the c-axis

is perpendicular to the fault direction, resulting with a new idealized unit cell.

As an example, for a monoclinic system with space group C2/m, a hexagonal
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unit cell with a=a(C2/m) and chex=c(C2/m)×cos(β(C2/m)-90) can be implemented

(Figure 5.1). For this example, only AM2 layers are taken into consideration, with

oxygen and A-cation interlayers omitted for simplicity. By repeating the hexagonal

unit cell along the a-b plane, the atomic positions for the three atoms within the

hexagonal unit cell (Figure 5.1) can replicate the honeycomb framework. For this

example, two equidistant and parallel AM2 layers characterize ideal monoclinic

C2/m system with one layer perpendicular to the c-axis origin and the second

layer equating to the c-axis. For the defined DIFFaX unit cell, only a single AM2

layer will be demarcated and perpendicular to the c-axis origin (Figure 5.1). Table

5.1 provides an example of atomic coordinates within the DIFFaX hexagonal unit

cell representing A2MO3.

120⸰

𝑎ℎ𝑒𝑥 = 𝑎𝐶2/𝑚

𝑐ℎ𝑒𝑥 = 𝑐𝐶2/𝑚 × cos 𝛽𝐶2/𝑚 − 90

Figure 5.1: Schematic of a AM2 “honeycomb” layer along the a− b plain (C2/m
unit cell) and the new idealized DIFFaX hexagonal unit cell (red dash) with black
and blue representing the M transition metal and the A-cation, respectively.
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Table 5.1: Atomic coordinates of A2MO3 of the DIFFaX hexagonal unit cell.a

Atom x y z occupancy
M 1/9 5/9 0 0.9
A 1/9 5/9 0 0.1
M 4/9 2/9 0 0.9
A 4/9 2/9 0 0.1
A 7/9 8/9 0 0.9
M 7/9 8/9 0 0.1
O 1/9 8/9 1/4 1.0
O 4/9 5/9 1/4 1.0
O 7/9 2/9 1/4 1.0
A 1/9 2/9 1/2 1.0
A 4/9 8/9 1/2 1.0
A 7/9 5/9 1/2 1.0
O 1/9 5/9 3/4 1.0
O 4/9 2/9 3/4 1.0
O 7/9 8/9 3/4 1.0

a) unit cell dimensions: a=b=5.18 Å, c=4.80 Å, α = β = 90.0o, and γ = 120.0o.

To determine the vectors associated with the interlayer stacking sequence, the

close packing arrangement must be taken into consideration. As illustrated in

Figure 5.2, the stacking sequence begins with a single AM2 layer, and based on

the close packing arrangement of oxygen, the A-cation layer and subsequently

the next AM2 layer are placed accordingly. Thus, to replicate the ideal A1B1C1

stacking sequence of A2MO3 (C2/m), for the given DIFFaX unit cell, the layer

sequencing must be characterized by the [1
3
,0,1] transition vector (R1) (Figure

5.3). To replicate stacking fault contribution, transition vectors [1
3
,1
3
,1] and [0,1

3
,1]

(R2 and R3) can be used (Figure 5.3).

Illustrations representing the influence of varying the vector assignment be-

tween three AM2 layers are shown in Figure 5.3. Figure 5.3 (b) illustrates the
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Figure 5.2: Illustration of the close packing stacking arrangement of oxygen (red),
A-cations (blue), and M-cations (black) for a honeycomb A2MO3 down the c-
axis. Top illustrations represent all atoms in space-filling form with the bottom
illustrations representing only the A- and M-cations for a single honeycomb ring.

ideal A1B1C1 stacking sequence of monoclinic A2MO3 (C2/m). For each transi-

tion vector (Rx) that describes the transition from one DIFFaX unit cell to another,

a probability (αx) must be assigned. For the example provided, probabilities must

be assigned to each of the three transition vectors, with α1+α2+α3=1 for each

layer.

Figure 5.4 shows a comparison of XRPD of Li2IrO3 (C2/m) and the cal-

culated XRPD of Li2IrO3 DIFFaX model with α1= 0.98 and α2=α3. For the

model presented, Li-Ir site disorder within the LiIr2 layers was implemented with

Ir(4g)/Li(2a) occupancies set to 0.85. Calculated XRPD of Li2IrO3 DIFFaX model
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[1/3,0,1] → [1/3,0,1]

[1/3,0,1] → [0,1/3,1][1/3,0,1] → [1/3,1/3,1]

(a) (b)

(c) (d)

Figure 5.3: Possible stacking sequences between AM2 layers, based on the given
DIFFaX unit cell described in the text, with [1

3
,0,1] transition vector (R1) rep-

resenting the ideal A1B1C1 stacking sequence of A2MO3 (C2/m), and transition
vectors [1

3
,1
3
,1] and [0,1

3
,1] (R2 and R3) describing stacking fault contribution (a).

Illustrations representing the influence of varying the vector assignment between
three DIFFaX unit cells are shown (b-d), with (b) representing the ideal A1B1C1

stacking sequence of monoclinic A2MO3 (C2/m).

with α1 ranging from 1 to 0.5 are shown in Figure 5.5. For the model pre-

sented, α2=α3 and Li-Ir site disorder within the LiIr2 layers was implemented

with Ir(4g)/Li(2a) occupancies set to 0.85.

With incorporation of stacking faults, only (002) and (020) peaks within 17 –

35 2θ range do not broaden (Figure 5.5). Similar observations for other DIFFaX

modeled Li2MO3 systems exist [43, 93, 118, 119]. The absence of the (020) peak is

therefore attributed to Li-Ir site disorder within the LiIr2 layers.
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Figure 5.4: A comparison of XRPD of Li2IrO3 (C2/m) and the calculated XRPD
of Li2IrO3 DIFFaX model with α1= 0.98 and α2=α3. For the model presented,
Li-Ir site disorder within the LiIr2 layers was implemented with Ir(4g)/Li(2a) oc-
cupancies set to 0.85.

5.3.2 FAULTS Program

The FAULTS program also requires the cell axes to be defined with the c-axis

perpendicular to the fault direction. A new unit cell for each individual layer

must therefore be established. As an example, for a monoclinic system A2MO3

with space group C2/c, the new hexagonal unit cell can be defined as ahex=a(C2/c)

and chex=[c(C2/c)×cos(β(C2/c)-90)/2](z), with z as the number of hexagonal layers

used for the model. Division of 2 is based on the number of repeating Li-LiM2

layers within C2/c unit cell. The single layer used and A-AM2 C2/c layer are
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Figure 5.5: Calculated XRPD of Li2IrO3 DIFFaX model with α1 from 1 to 0.5 and
α2=α3. For the model presented, Li-Ir site disorder within the LiIr2 layers was
implemented with Ir(4g)/Li(2a) occupancies set to 0.85.

illustrated in Figure 5.6. Table 5.2 provides the atomic coordinates within the

FAULTS hexagonal unit cell represented in Figure 5.6. To replicate the ideal
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stacking sequence of A2MO3 (C2/c), layer sequencing can be characterized by

[1
3
,0,1

z
] transition vector (R1). To replicate stacking fault contribution, transition

vectors [0,1
3
,1
z
] and [2

3
,0,1

z
] (R2 and R3) must be incorporated. Probabilities must

be assigned to each of the three transition vectors, with α1+α2+α3=1 for each

layer.

Figure 5.6: Illustration of the FAULTS single layer down the c-axis. The M-cation
and oxygen are represented as black and red spheres, respectively. Lithium residing
within the honeycomb rings are represented as green spheres and lithium beneath
the honeycomb layers as blue spheres.
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Table 5.2: Atomic coordinates of A2MO3 of the FAULTS hexagonal unit cell.a

Atom x y z occupancy
A 0.85 0.85 0 1
A 0.176 0.176 0 1
O 0.177 0.85 0.083 1
O 0.50 0.177 0.083 1
O 0.85 0.50 0.083 1
M 0.518 0.85 0.154 0.9
A 0.518 0.85 0.154 0.1
M 0.843 0.176 0.154 0.9
A 0.843 0.176 0.154 0.1
A 0.167 0.500 0.154 0.9
M 0.167 0.500 0.154 0.1
O 0.50 0.50 0.249 1
O 0.177 0.177 0.249 1
O 0.85 0.85 0.249 1

a) unit cell dimensions: a=5.14 Å, b=5.07 Å, c=14.35 Å, α = β = 90.0o, and γ = 60.0o.
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Chapter 6: Local Moment Instability of Os in Honeycomb

Li2.15Os0.85O3

6.1 Abstract

Compounds with honeycomb structures occupied by strong spin orbit coupled

(SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here

we present the first example of Os on a honeycomb structure, Li2.15(3)Os0.85(3)O3

(C 2/c, a = 5.09 Å , b = 8.81 Å , c = 9.83 Å , β = 99.3o). Neutron diffraction shows

large site disorder in the honeycomb layer and X-ray absorption spectroscopy indi-

cates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration.

We observe a transport band gap of ∆ = 243 ± 23 meV, a large van Vleck sus-

ceptibility, and an effective moment of 0.85 µB, much lower than expected from

70% Os(+5). No evidence of long range order is found above 0.10 K but a spin

glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays

an impurity spin contribution in addition to a power law ∝T(0.63±0.06). Applied

density functional theory (DFT) leads to a reduced moment, suggesting incipient

itineracy of the valence electrons, and finding evidence that Li over stoichiometry

leads to Os(4+)-Os(5+) mixed valence. This local picture is discussed in light of

the site disorder and a possible underlying quantum spin liquid state.
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6.2 Introduction

The demonstration by Kitaev of an exactly solvable quantum spin liquid (QSL)

model incorporating S = 1
2

spins with anisotropic interactions on a honeycomb

lattice [120,121] has motivated searches for its experimental realization. Whereas

magnetic honeycomb-containing compounds have been extensively investigated in

3d and 4d metal oxides [122–130], the strong interaction anisotropy required by

Kitaev’s theory has placed a focus on 5d metal oxides, for which strong spin-orbit

coupling (SOC), the origin of spatial anisotropy, can be expected [131–137]. In

the A2MO3 honeycomb structure, where A is an alkali element and M a 4d or 5d

element, the AM2 layers form a hexagonal network of edge sharing MO6 octahedra

with a single A+ ion at the centers of the hexagons (Figure 1).

Examples such as α-Na2IrO3 and α-Li2IrO3 with effective spin J eff = 1
2
, have

recently emerged as possible examples of Kitaev physics. These compounds possess

antiferromagnetic (AF) Weiss temperatures of 125(6) K and 33(3) K and undergo

AF order at 15.5 K and 14.5 K for Na2IrO3 and Li2IrO3 respectively [138, 139].

The 3D hyper-honeycomb lattice compound β-Li2IrO3, however, demonstrates a

ferromagnetic (FM) Weiss temperature of 40 K and weak ordering signatures at

38 K among J eff = 1
2

moments [140]. Among non-oxide materials, the layered

compound α-RuCl3 has also been discussed as a possible Kitaev system, though

it too undergoes long range order at 7.5 K [141]. Since the suppression of clas-

sical order via geometrical frustration is a requirement for creating a QSL state,

the above systems, while possessing important attributes, fall short of the Kitaev



97

Figure 6.1: Left: Li2MO3 (M= 4d or 5d element) structure as alternating Li
and LiM2 layers. Right: Viewed along the c axis the LiM2 layer, where MO6

edge-sharing octahedra form the honeycomb lattice. Blue, green, and red spheres
represent lithium, metal, and oxygen atoms respectively.

criteria [142]. Due to the ordering seen in other honeycomb compounds and be-

cause the specific materials conditions required to produce a QSL are ill-defined

at present, it is important to study other honeycomb-containing compounds with

sizable SOC.

Here, we ask what would be the result of reducing the SOC from that of 540

meV in Ir to 480 meV in Os [143]. In the present work we report on the synthesis,

structure, and properties of Li2.15(3)Os0.85(3)O3 which is isostructural to the Ir hon-

eycomb compounds mentioned above. For the stoichiometric compound, Li2OsO3,

the Os ion is expected to be in the 4+ = d4, J eff = 0 state to maintain charge-

neutrality. In our work, we find, in contrast to other honeycomb systems, a lack of
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long range order above 0.1K. While this might be due to a frustrated lattice, it also

might be due to site disorder among the Os ions. For each crystallographic site

representing the LiOs2 layer, an average of 43% of the sites (compared to the ex-

pected 33% of these sites) are occupied by lithium and thus the average valence of

Os is +4.5 ± 0.1 (d3.5), a value consistent with our X-ray absorption spectroscopy

(XAS) measurements, which yield +4.7 ± 0.2. From a local moment perspective

and using the XAS-determined valence state, our system might be comprised of

30% d4 (J eff = 0) and 70% d3 (J eff = 3
2
) but its physical properties are not easily

understood. We find a transport gap of 243 meV, an effective magnetic moment of

0.85 µB, which is much less than the effective moment of 3.24 µB expected if 70%

of the ions possessed J eff = 3
2
. No magnetic order is observed above 0.10 K, and

the specific heat obeys a fractional power law in temperature and is only weakly

magnetic field-dependent. We discuss the constraints on the local physics of Os

from a band structure perspective and their implications for collective behavior en

route to a possible QSL in SOC honeycomb systems.

6.3 Results and Discussion

6.3.1 Structure

Common space groups assigned to honeycomb-structure compounds Li2MO3 (M

= Mo, Mn, Rh, Ir, Ru, Pt, and Sn) are C 2/m, C 2/c, and R3̄m [123, 126–128,

130, 136, 144–151]. Figure 6.2 represents Li2MO3 C 2/m, C 2/c, and R3̄m unit
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cells illustrated down the b-axis (top) and corresponding portion of the Li-M layer

representing a single hexagon configuration (bottom) with lithium and metal occu-

pying their ideal Wyckoff positions [123,130,136,147,148,151]. For all three space

groups, edge sharing octahedral LiM2 layers alternate with edge sharing octahedral

Li layers. The difference in space groups and their associated symmetries can in

part be ascribed to stacking of the LiM2 layers, with R3̄m as the highest in symme-

try. The space group assignments of some Li2MO3 systems has been controversial.

For example, Li2MnO3 was first refined to be C 2/c, but later found to be C 2/m

on the basis of electron diffraction and transmission electron microscopy [145,146].

Rഥ𝟑m C2/m C2/c

Figure 6.2: Li2MO3 R3̄m, C 2/m, and C 2/c unit cells illustrated down the b-axis
(top) and corresponding portion of the Li-M layer representing a single hexagonal
configuration (bottom) with lithium and metal occupying their ideal Wyckoff posi-
tions (lithium and metal labeled blue and green respectively). For C 2/c there are
two unique atomic positions to describe M sites within the LiM2 layer, represented
as the two different shades of green.
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C2/m

Wyckoff x y z

Li 2a 0 0 0

Os 4g 0 y (~0.33) 0

Li 2d 0 0.5 0.5

Li 4h 0 y (~0.88) 0.5

O 8j x (~0.24) y z

O 4i x (~0.26) 0 z (~0.78)

C2/c

Rഥ𝟑m

Wyckoff x y z

Li 3b 0 0 0.5

Os 3b 0 0 0.5

Li 3a 0 y (~0.88) 0.5

O 6c 0 0 z (~0.24)

Wyckoff x y z

Li 8f x (~0.24)
y 

(~0.089) z (~0.01)

Li 4d 0.25 0.25 0.5

Li 4e 0 y (~0.76) 0.25

Os 4e 0 y (~0.08) 0.25

Os 4e 0 y (~0.41) 0.25

O 8f x (~0.13) y (~0.24) z (~0.13)

O 8f x (~0.13) y (~0.56) z (~0.14)

O 8f x (~0.14) y (~0.91) z (~0.13)

Figure 6.3: A2MO3 R3̄m, C 2/m, and C 2/c space groups and corresponding Wyck-
off positions.

Another example is Li2MoO3, which was reported as both C 2/c and R3̄m

[123,147]. When comparing literature on polycrystalline Li2IrO3 synthesized under

standard solid state conditions, discrepancies in C 2/c and C 2/m space groups

exist. Recent work supports the higher symmetry C 2/m as the appropriate space

group for polycrystalline Li2IrO3 [136, 148, 151]. The powder X-ray diffraction

pattern of Li2OsO3 is shown in Figure 6.4 (top black line).

At first glance, the X-ray pattern pointed to a more symmetric space group,

R3̄m, however, close examination of the pattern showed weak and broad diffraction
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Figure 6.4: A comparison of the measured XRD pattern (top black line) (λ= 1.514
Angstroms), along with 43% site disorder (Table 1) | 0% stacking fault and 43%
site disorder (Table 1) | 10% stacking fault simulated DIFFaX patterns (blue lines).

peaks in the 2θ region of 19o to 33o. It is known that for both C 2/m and C 2/c

systems, with no Li-M site exchange within the LiM2 layers, sharp peaks exist

within the 19o to 33o range. However, introducing Li-M site exchange within the

LiM2 layers decreases the relative intensities of these peaks, leading to virtually no

peak presence at approximately 30% Li-M site exchange [149]. Such a reduction in

diffraction peak intensity is also found for (hk0) reflections past 38o [149]. Disorder

among Li-M sites is commonly reported for honeycomb layered metal oxides since

all corresponding crystallographic sites are octahedral and similar in size [123,128,
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Figure 6.5: Rietveld refinement of TOF Neutron (Oak Ridge NOMAD BL-1B)
diffraction data. The collected data (black cross), Rietveld refinement (red line),
and difference (blue line) are presented for all four collected banks. Resulting
cumulative wRp = 6.4%.

130, 136, 137, 145–147]. The presence of stacking faults associated with a shift

between successive LiM2 layers will cause the peaks in the region from 19o to 33o

to further broaden asymmetrically [126–128, 137, 149]. Thus, with the existence

of Li-M site disorder and stacking faults, it is difficult to distinguish between the

corresponding space groups using powder X-ray diffraction. The x-ray scattering

length for lithium and oxygen are also small due to their low Z. Because of the
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Wyckoff x y z occ Uiso

Li1 8f 0.2543(2) 0.0840(1) 0.0044(9) 1 0.25(8)
Li2 4d 0.25 0.25 0.5 1 0.037(4)
Li3 4e 0 0.7531(8) 0.25 0.32(4) 0.20(7)
Os3 4e 0 0.7531(8) 0.25 0.68(4) 0.20(7)
Os4 4e 0 0.0777(7) 0.25 0.46(2) 0.0043(2)
Li4 4e 0 0.0777(7) 0.25 0.54(2) 0.0043(2)
Os5 4e 0 0.4026(6) 0.25 0.56(2) 0.0082(2)
Li5 4e 0 0.4026(6) 0.25 0.44(2) 0.0082(2)
O1 8f 0.1335(7) 0.2414(5) 0.1344(4) 1 0.029(3)
O2 8f 0.1269(8) 0.5770(5) 0.1414(4) 1 0.0085(3)
O3 8f 0.1387(8) 0.9181(5) 0.1332(5) 1 0.0082(8)

Table 6.1: Atomic coordinates, occupancies and isotropic displacement parameters
obtained from Rietveld refinement (C 2/c) of TOF Neutron (Oak Ridge NOMAD
BL-1B) diffraction data.

neutron scattering lengths of lithium, osmium, and oxygen, neutron diffraction is

ideal to characterize the Li2OsO3 structure.

To determine the crystal structure, Rietveld refinements were performed on

room temperature neutron diffraction data using the GSAS program (Figure 6.5)

[152, 153]. The current synthesis procedure restricted diffraction measurements

to the Oak Ridge NOMAD TOF Neutron beamline, which is well-suited for small

sample sizes. A pseudo-Voigt peak shape profile was chosen and parameters refined

to obtain the best fit to the collected data. The space group was refined to be

C 2/c, with lattice dimensions a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, and β =

99.3o. Rietveld refinements for all collected banks show cumulative wRp = 6.40%.

The atomic coordinates, occupancies, and isotropic displacement parameters are

represented in Table 6.1.
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Table 6.2: Bond lengths (Å) and angles (deg)

Li1 - O1 2.106(9) Os4(Li4) - O1 x 2 2.020(4)
Li1 - O1’ 2.136(9) Os4(Li4) - O2 x 2 2.023(4)
Li1 - O2 2.187(9) Os4(Li4) - O3 x 2 2.014(4)
Li1 - O2’ 2.110(9) Os5(Li5) - O1 x 2 2.005(4)
Li1 - O3 2.138(9) Os5(Li5) - O2 x 2 2.035(4)
Li1 - O3’ 2.188(9) Os5(Li5) - O3 x 2 2.010(4)
Li2 - O1 x 2 2.175(4) O1 - Os3(Li3) - O2 90.50(2)
Li2 - O2 x 2 2.220(4) O2 - Os3(Li3) - O3 175.92(3)
Li2 - O3 x 2 2.113(4) O1 - Os4(Li4) - O2 94.46(2)
Os3(Li3) - Os4(Li4) x 2 2.978(5) O2 - Os4(Li4) - O3 178.67(3)
Os3(Li3) - Os5(Li5) x 2 2.866(4) O1 - Os5(Li5) - O2 94.15(2)
Os3(Li3) - Os5(Li5) 3.088(9) O2 - Os5(Li5) - O3 176.06(3)
Os3(Li3) - O1 x 2 2.025(4)
Os3(Li3) - O2 x 2 2.046(4)
Os3(Li3) - O3 x 2 2.047(4)

Interatomic distances and angles are given in Table 6.2. No osmium is detected

in the lithium-only layers. For C 2/c there are three unique atomic positions to

describe the Li and Os sites within the LiOs2 layer. Shown in Table 6.1, correspond-

ing sites are labeled as Li/Os 3, 4, and 5. If no Li-Os site disorder existed within

the LiOs2 layer, only Li3, Os4, and Os5 would exist (each with an occupancy of

1), with Os4 and Os5 sites describing the honeycomb rings. As shown from Table

6.1 occupancies, a large percentage of Li-Os site disorder exists within the LiOs2

layer. For each of the three respective crystallographic sites, an average of 43%

is occupied by lithium. The stoichiometry derived from occupancy refinements of

Li, Os, and O is Li2.15(3)Os0.85(3)O3 suggesting an average osmium oxidation state

of 4.5 ± 0.1. It is important to note that oxygen occupancy refinements indicate
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that the oxygen sites are fully occupied and no detectable vacancies are observed.

Though 2:1 stoichiometric amounts of Li:Os were used in the synthesis, the refined

stoichiometric ratio is considered reasonable as the presence of a small amount of

osmium impurity is formed during the synthesis and was removed by heating the

sample in air at 300 oC as OsO4 through sublimation.

Figure 6.6: Illustration of the C2/c honeycomb ring with lithium and osmium sites
labeled according to Table 6.1 with Os3/Li3, Os4/Li4, and Os5/Li5 octahedral
sites as grey, purple, and orange (osmium and lithium labeled green and blue
respectively).

Stacking faults were modeled using the FAULTS program [154] and the descrip-

tion of the model and analogous XRD patterns are discussed in Chapter 6. The

FAULTS program requires the cell axes to be defined with the c-axis perpendicu-

lar to the fault direction. For a monoclinic space group a new idealized unit cell

for each individual layer must therefore be established. The new hexagonal unit

cell was defined as ahex=a(C2/c) and chex=[(c(C2/c)cos(β(C2/c)-90))/2](z), with z as
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the number of hexagonal layers used for the model. Division of 2 is based on the

number of repeating Li-LiM2 layers within C2/c unit cell. Layer extension in a-

and b- direction was set to infinite. The single layer used in DIFFaX and Li-LiOs2

C2/c layer are illustrated in Figure 6.7.

Figure 6.7: Illustration of the FAULTS single layer down the c-axis for Li2OsO3

with no Li-Os site disorder. Here, Osmium and oxygen are represented as green
and red spheres, respectively. Lithium residing within the honeycomb rings are
represented as dark blue spheres and lithium beneath the honeycomb layers as
lighter blue spheres.

To replicate the ideal stacking sequence of Li2OsO3 (C2/c), layer sequencing

was characterized by [1/3,0,1/z] transition vector (R1). To replicate stacking fault

contribution, transition vectors [0,1/3,1/z] and [2/3,0,1/z] (R2 and R3) were incor-

porated. Probabilities were assigned to each of the three transition vectors, with

α1+α2+α3=1 for each layer. For the latter two transition vectors, there was no
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tangible difference in the model when varying the contribution for a given total

stacking fault probability. Thus for the models presented, the assumption α2=α3

was implemented. Figure 6.8 shows a comparison of the measured XRD pattern

(top black line), along with 0% site disorder — 0% stacking fault, 0% site disorder

— 30% stacking fault, and 50% site disorder — 0% stacking fault simulated pat-

terns (blue lines) within 17-35 2θ region. With incorporation of stacking faults,

only (002) and (020) peaks within 17 – 35 2θ range do not broaden (Figure 6.9).

18 20 22 24 26 28 30 32 34

  

 

 

50% site disorder | 0% stacking faults

0% site disorder | 30% stacking faults

0% site disorder | 0% stacking faults

measured XRD pattern

002

  

 

020

002

020  

 

  

 2

002

020

Figure 6.8: Measured XRD-pattern (black) and simulated FAULTS patterns of
stacking faulted without site disorder and 50% site disorder of Li2OsO3 within 17
– 35 2θ range.
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Similar observations for other DIFFaX modeled Li2MO3 systems exist [126,128,

137,155–157]. Calculated XRD patterns with site disorder equivalent to Table 6.1

without and with 10% stacking faults are shown in Figure 6.4. The absence of the

(020) peak is therefore attributed to Li-Os site disorder within the LiOs2 layers.

From the discussion presented, the absence of the (020) peak can only be attributed

to Li-Os site disorder within the LiOs2 layers and not from stacking faults, con-

sistent with the neutron refinement. As shown in Figure 6.4, the measured XRD

pattern is compared to simulated DIFFaX patterns with site disorder representing

Table 6.1 refined Wyckoff site occupancies with and without 10% stacking faults

(blue lines).

XAS measurements at the Os L2,3 absorption edges (2p 1
2

, 3
2
→ 5d resonant ex-

citation) were used to provide an additional estimate of Os valence (Figure 6.10).

The enhanced X-ray absorption above the leading edge (“white line”) is a result

of large density of empty 5d states near the Fermi level. This peak grows in

intensity and shifts to higher energy with increasing Os oxidation state. Interpo-

lating the XAS peak position in the honeycomb sample onto those of the reference

compounds yields an oxidation state of +4.7 ± 0.2, within errors of results from

structure refinements.

The ratio of L3 to L2 white line intensity, also known as the isotropic branching

ratio (BR), provides a measure of the relevance of SOC interactions in the 5d

band [158,159]. In the absence of sizable SOC interactions, the isotropic branching

ratio equals 2 reflecting the different occupancies of the core levels at L3 and L2

edges. We measured BR=2.9(1) which significantly differs from the statistical
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Figure 6.9: Simulated FAULTS XRD patterns with 0% - 30% staking faults and
no site disorder within 15 – 35 2θ range .

value of 2 and indicates that SOC interactions need to be included in order to

describe the 5d electronic structure of this compound.

6.3.2 Thermodynamic and Transport Properties

Temperature dependent resistivity and Seebeck measurements from 300 – 600

Kelvin are shown in Figure 6.11. The gap energy (Eg) for the sample was ex-

tracted using ρ = ρoexp(Eg/2kBT ) with Eg = 220 meV and 266 meV obtained

from low- and high-temperature transport measurements respectively, thus indi-

cating a small band gap insulator (Figure 6.11 - bottom).

The magnetic susceptibility, χdc, for H = 0.5 T (Figure 6.12) suggests the
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Figure 6.10: XAS measurements at the Os L2,3 absorption edges on Li2.15Os0.85O3

and three reference compounds with known oxidation state.

combined effects of Curie-Weiss as well as van Vleck temperature independent

paramagnetism over the entire measurement range above 2 K. Within this as-

sumption, we varied the magnitude of the van Vleck term, χVV, to produce a pure

Curie-Weiss contribution. We found that subtracting χVV = 0.00135 emu/mole

from the measured χ(T ) produces the straightest 1/χ(T ), resulting in a good fit

to the Curie-Weiss form, χ = C /(T-θ), where C is the Curie constant and, θ is
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Figure 6.11: Top: High temperature resistivity and Seebeck coefficient data of
Li2.15Os0.85O3 sample from 350 to 600 K. Bottom: Resistivity versus temperature
for Li2.15Os0.85O3 in the range 200 – 600 K versus inverse temperature. The low
and high temperature measurements were performed in different apparatuses on
samples from the same growth run. To assure continuity at T = 300 K, the
data have been rescaled for the low temperature measurement due to its greater
uncertainty in the geometric factor.
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the Weiss constant.

Fitting the data between 50 and 200 K yields a Weiss constant of θ = -11.5 K

and a finite effective moment µeff = 0.85 µB, significantly greater than expected

for the Jeff = 0 state of Os(+4). Given the above XAS and neutron scattering

refinement results showing that the average Os valence is 4.7, however, an alternate

ionic scenario is for 70% of the Os ions to be in the +5 state (Jeff = 3
2
) and 30%

in the +4 state (Jeff = 0). This analysis yields µeff = 1.01µB (θ = -11.8 K) for the

magnetic (+5) ions, which is now significantly less than the expected moment.

We discuss possible sources of this discrepancy below. These χdc data were

augmented with ac-susceptibility (χac) data down to 0.1 K, which were calibrated

to the χdc data in the overlapping temperature range 2.0 – 2.5 K. A peak in χac

is observed at 0.5 K, but is rapidly suppressed by magnetic fields far less than

0.1T. Given the usual relationship between H and T for a g-factor of two, one

expects suppression of an antiferromagnetic ordering feature at 0.5 K for H values

an order of magnitude larger than observed. Alternatively, such a cusp in χac can

be attributed to spin glass freezing, a scenario consistent with the high degree of

disorder in this spin system. The spins involved in such freezing may not represent

the bulk of the Os(+5) spin population, as we argue below.

The existence of a small subset of spins that are interacting at a mean field

energy scale of kBT for T = 0.5 K, as suggested by the χac peak, is also supported

by C (T,H ), shown in Figure 6.13.

For semiconductors, the Einstein - Debye theory of specific heat can be applied

to model the change in specific heat at low temperatures. The Einstein - Debye
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Figure 6.12: Top: DC-Susceptibility Li2.15Os0.85O3 versus temperature. Also
shown is the inverse susceptibility after subtracting a van Vleck term as described
in the text. Bottom: ac-susceptibility versus temperature at different values of
applied magnetic field. The curves have been offset vertically by 0.0020, 0.0032,
0.0044, and 0.0056 emu for H = 88, 126, 500, and 1000 G respectively, for clarity.
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Figure 6.13: The specific heat C(T) of Li2.15Os0.85O3 in various applied fields,
measured using a Physical Property Measurement System. Bottom: Plotting C/T
vs. T2 from the Einstein-Debye model should result in a linear correlation if no
phase/electronic transition occurs.
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theory is calculated theoretically by taking the partial derivative of the internal

energy with respect to temperature (discussed in Chapter 2). From the Einstein -

Debye equation, the electronic contribution to the specific heat is proportional to

T and the vibrational contribution to the specific heat is proportional to T3. For

any sort of physical state transition-phase, magnetic ordering, and/or transition

to a superconducting state, an increase in the specific heat will be observed at the

corresponding transition temperature. Thus, by plotting C /T versus T2, from the

Einstein - Debye expression, a linear trend will be observed as long as a physi-

cal/electronic transition does not occur within the temperature region. As shown

in Figure 6.13, C /T exhibits an upturn below its minimum at T = 6 K. This

upturn is only moderately affected by fields up to 8 T, so we model this as C =

C1(T ) + C2(T,H ). Here C1 is a combination of the lattice specific heat and an H-

independent electronic contribution and C2 is a combination of the lattice specific

heat and an H- dependent electronic contribution. Taking the difference between

C (H = 8T) and C (H = 0), the H-dependent electronic contribution (“spin impu-

rities”) can be shown in terms of a Schottky trend, where C2(T,H =8T) resembles

a broadened Schottky anomaly (Figure 6.14). Recall, the existence of a small sub-

set of spins suggested by the χac peak. This observation is also supported by the

specific heat. We can fit this contribution to either a single Jeff = 3
2

(g = 1.3)

Schottky anomaly or a pair of Jeff = 1
2

(g = 2.6 and 7.4) Schottky anomalies with

molar concentrations of 4.1% and 9.6% (total for the pair) respectively (Assum-

ing 70% of the spins are magnetic, these fractions become 5.9% and 13.7%). By

subtracting C (H=8T) from Cschottky trends (i.e. subtracting out the contribution
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of the “spin impurities”), the resulting lattice specific heat and an H-independent

electronic contribution can be plotted as a power plot (Figure 6.14). A resulting

power law T0.63 is therefore obtained. Thus, it is not unlikely that the spins un-

dergoing spin-glass-like freezing are the same spins responsible for the Curie-tail

susceptibility. We now turn to the C1(T ) term, which is calculated using the two

different Schottky approximations mentioned above and plotted Figure 6.14. We

note that, below 8 K, C1(T ) ∝Tα, where α = 0.69 and 0.57 for the Jeff = 3
2

and 1
2

Schottky analyses respectively. Such a sublinear form cannot persist down to the

lowest temperatures, and importantly is clearly distinct from the phonon contri-

bution visible above 8 K. At the same time, it appears that, among the 70% of Os

ions that are in a +5 state (within an ionic picture) and thus possibly magnetic,

less than 15% are accounted for in either susceptibility or field-dependent specific

heat. All known spin frustrated systems possess a resulting power law with α=

2. The only known systems that possess α < 1 are quantum spin liquid candi-

dates [160]. If the sublinear low-T contribution is due to these unaccounted for, but

nevertheless magnetic, Os(+5) ions, then they must be in a type of singlet state

due to exchange interactions with a strength greater than the Zeeman energy of

an 8 Tesla field, but of a type that invalidates the effective moment approximation

below room temperature.
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6.3.3 Electronic Structure

Early model treatments of 5d oxides on honeycomb lattices built on the ionic de-

scription of crystal field splitting, additionally with strong SOC among orbitals,

focused attention on the t2g subshell Jeff = 1
2

and 3
2

subspaces. The relevant energy

scales of individual bandwidth W, Hubbard U, Hund’s JH, and SOC strength ξ,

all lie in the 0.5-1.5 eV range, and studies of the electronic structure and especially

the exchange coupling have concluded that the ionic picture provides a challenging

starting point at best. The electronic structure of octahedral osmates is compli-

cated by several features. First, the active t2g orbitals are strongly hybridized with

the oxygen 2p orbitals, resulting in strongly coupled Os 5d – O 2p states as the

fundamental chemical unit. Osmates in the Ba2NaOsO6 family, for example, have

half of the spin density residing on the O octahedron [161, 162]. Iridates behave

similarly, leading to their characterization as molecular orbital compounds, which

can lead to longer range exchange coupling parameters compared to more localized

moments [163]. Second, SOC also affects the electronic structure, creating both

single-ion as well as exchange anisotropy, the relative effects of which are difficult

to disentangle. Third, the distortion from ideal rhombohedral symmetry intro-

duces new lower symmetry Fourier components of the potential that causes band

anti-crossings. These in turn result in very narrow, 0.3 eV, individual bandwidths

and the likelihood of small gaps, as shown below.

Several theoretical studies of honeycomb iridates have concluded that magnetic

interactions beyond the Heisenberg-Kitaev model are important, suggesting a more
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itinerant picture of the electronic structure [164–170]. Many of the general findings

for iridates carry over to osmates. Our compound presents the additional compli-

cation of Os possessing a nominal valence of +4.7, so one must consider a mixture

of d3 with d4 ions. The ionic picture of d4 begins with a non-magnetic Jeff = 0

ion and for d3 the ionic value is Jeff = 3
2
, and the insulating nature suggests these

different ionic states reside on distinct lattice sites, as opposed to the intermediate

valence picture. In this ionic picture, the measured µeff = 0.85µB is challenging to

account for, as mentioned above, which leads us to consider the general question

of moment formation in nearly itinerant systems.

In an effort to reconcile the valence state measurements with the magneto-

thermal measurements, we have applied density functional theory (DFT) methods

including SOC, correlation effects, and a fixed atomic spin moment method in

our study of Li2OsO3 (see Methods for the description) [171–176]. Without mag-

netism, SOC is strong enough to provide a pseudogap but no gap, within the Os

t2g bands. This SOC-driven separation is compromised by crystal subfield split-

tings, bandwidth effects, and anti-crossings arising from structural distortion away

from rhombohedral symmetry leaving two inequivalent Os sites. The resulting

band structure (not shown) is that of a very narrow, essentially zero (indirect) gap

semiconductor. Due to the molecular orbital nature of the t2g band complex, intra-

atomic repulsion effects as treated by the Hubbard U repulsion are ineffective in

opening a gap, for reasonable values of U (2 eV or less). Antiferromagnetic order

tends to encourage gap opening, producing Os moments of 0.3 µB.

To include in the modeling the effect of the observed Os moment, we have
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adopted the constrained atomic moment method as implemented in the abinit

code [171]. This method proceeds not by specifying a value for U for the Os

5d orbitals, but by fixing the spin moment by applying an intra-atomic Zeeman

field determined self-consistently; both magnitude and direction can be specified

separately for any atom. Magnitudes of 0.8 µB and 0.5 µB have been studied; the

latter value represents the ordered component expected of a 0.8 µB local (C-W)

moment. Bandgaps of 0.25 eV and larger were obtained, depending weakly on the

imposed moment but strongly on the magnetic alignment (the larger ones were

for AFM order). The resulting orbital moments are minor, only a few hundredths

of 1 µB, independent of the chosen direction of spin. These results do not fit

that of a Mott insulator: there is no robust local moment, and Hubbard U is

not needed to open a gap and has little effect on the size of the gap. Thus our

model rationalizes the observations of a narrow transport gap and small magnetic

moment in Li2.15Os0.85O3.

Due to intermixing of Li on the Os honeycomb lattice, we have made an initial

study of the effect of intermixing, by replacing 25% of the Os sublattice by Li

while keeping the Li sublattice intact. The Os moments are fixed with magnitude

0.8 µB and oriented along separate (111) axes to mimic disordered moments. The

resulting band structure, shown in Figure 6.15, illustrates the flat individual bands

that arise, and that a very small gap exists or is imminent, depending on details

of the calculations. The bands are not significantly different in appearance from

those of Li2OsO3.

We now focus on the effect of Li substitution on the remaining Os ions. This
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Figure 6.15: Plot of bands in the Os t2g region of 25% Li-substituted Li2OsO3

on the Os honeycomb sublattice, with energy zero (horizontal red dashed line)
denoting the gap region. The fatbands plots emphasize the Os 5d character on (a)
the Os[0] site with no Li neighbor, (b) the Os[1] site with one Li neighbor, and (c)
the Os[2] site with two Li neighbors. While Os[0] and Os[1] show some differences,
Os[2] is qualitatively different.

25% replacement results in three Os sites, denoted by Os[j] which has j Li neighbors,

j = 0, 1, or 2. The formal valences of Os in this Li2(Li1/4Os3/4)O3 structure should

average to 5+. The periodicity leaves Os[0]-Os[1] chains and comparatively isolated

Os[2] ions, which in addition to two Li neighbors the Os neighbor is at a long Os-

Os separation. The spectral distribution of Os[2] in Figure 6.15 is substantially

different from the other two, more representative of a lower oxidation state. While

simple electron count indicates that Li substitution must oxidize some Os ions,

having two Li neighbors strongly affects the formal valence of the Os ion.

This modeling illustrates that the Os valence is sensitive not only to the total

charge available, but also to the local environment. Different valence states carry

different moments, and sensitivity to the local environment suggests that variation

of exchange constants promotes a frustration of magnetic order. Note in Figure

6.15 that the spectral distributions of 5d weight are significantly different for Os[0]
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and Os[1], while that of Os[2] is less weight in the occupied bands. This implication

then is that of one Os(4+) ions and two Os(5+) ion, with an average valence of 4.67

consistent with spectroscopic evidence on our samples. More of a specific nature

cannot be concluded because the Os moments were constrained (to be equal),

whereas those of different valence states would not be equal.

6.4 Summary

We have presented the first example of Os on a honeycomb structure, Li2.15(3)Os0.85(3)O3,

and have characterized it with atomic, structural, and magneto-thermal probes.

The Os ions have an average valence state of +4.7 and large site disorder exists in

the honeycomb layers. This compound is a narrow band gap semiconductor. The

magnetic susceptibility and specific heat present a picture in which the effective

Os moment is reduced to a value well below that expected from the valence-state

measurements, which suggests that the valence electrons are on the verge of itin-

eracy, a conclusion supported by our density functional theory calculations. These

results strongly suggest that spin orbit coupling of Os is playing an important role

in the collective electronic behavior of this honeycomb system, and that further

studies of osmates on frustrating lattices are warranted.
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6.5 Methods

6.5.1 Synthesis and Structure Characterization

Stoichiometric amounts of Li2CO3 and OsO2 (synthesized from osmium metal - see

below) were intimately ground, pressed into a pellet, loaded into an alumina cru-

cible, and fired in a tube furnace at 700 C under Argon flow. Firing was repeated

to 850 C with 50 C increments, grinding the sample before each firing. Each firing

was performed under argon flow. The OsO2 sample was synthesized by first placing

a known amount thin layer of osmium metal in an alumina crucible. The crucible

was then placed in an atmosphere controlled quartz tube furnace setup. Argon gas

flow was introduced for approximately 20 minutes. The quartz tube setup was then

sealed and vacuum out the argon atmosphere to ∼0.05 MPa below atmospheric

pressure. A stoichiometric amount of O2 gas was introduced based on the relative

pressure change. The resulting tube furnace setup was then slowly fired to ∼600

C for ∼3 hours. Phase analysis of the powder samples was performed by X-ray

diffraction using a Rigaku MiniFlex II diffractometer with Cu Kα radiation and a

graphite monochromator for the diffracted beam. Time of Flight (TOF) neutron

diffraction measurements were collected at ORNL NOMAD BL-1B SNS beamline.

X-ray absorption spectroscopy measurements were carried out at beamline 4-ID-D

of the Advanced Photon Source at Argonne National Laboratory using a trans-

mission geometry. Reference samples for valence determination included Os metal,

Os4+O2 and Sr2FeOs5+O6 [177].



124

6.5.2 Electronic and Thermal Properties

The Seebeck coefficient and electrical conductivity data (350 K – 600 K) were

collected on an ULVAC ZEM-3 under a helium atmosphere. Magnetization mea-

surements (2 K - 300 K) were obtained with a Quantum Design MPMS. Resistivity,

ρ(T), (200 K - 350 K) and specific heat, C(T), data (2 K - 30 K) were obtained

using a Quantum Design PPMS. Magnetic ac-susceptibility data down to 0.1 K

were obtained in a 3He-4He dilution refrigerator with thermal contact to the mixing

chamber made via a copper wire bundle bonded to the sample with Stycast 1266

epoxy. Data were obtained at 143 Hz and with an excitation current low enough

to eliminate heating from the coils.

6.5.3 Theoretical Methods

We use the open-source package ABINIT [53] to perform electronic calculations,

with the generalized gradient approximation (GGA) [54] for the semilocal exchange-

correlation functional and the projector augmented wave method (PAW) [174] for

core electrons. A Hubbard U repulsive interaction was applied with magnitude

as indicated, Hund’s JH = 0.4 eV was applied, on the Os 5d orbitals [175]. A

mesh of 9x5x9 was used for k-sampling and 500 eV for energy cutoff. The con-

strained atomic spin moment on Os method [176] was used in some calculations to

fix moments at or near the observed value. Constraints are managed by the use of

Lagrangian multipliers, imposed with constraint parameters; the input parameter

λ = 1.0 was used [172].
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Chapter 7: Unraveling the Mixed Valence Picture of the Double

Perovskites Ba2−xLaxYIrO6

7.1 Abstract

The interest in perovskites can be attributed to their wide array of properties,

which in turn derives from their compositional and structural flexibility. The

framework of the A2MM’O6 double perovskite containing 4d/5d elements with

strong spin-orbit coupling (SOC) are of interest for the exploration of quantum

magnetism. In such systems, the interplay between the electron localizing tenden-

cies of SOC and the delocalizing effects of the large spatial extent of the 4d/5d

orbitals has the potential to combine with electronic correlations to produce un-

usual states. The motivation to study Ba2−xLaxYIrO6 is twofold: (1) to investigate

a mixed 5d4/5d5 iridate perovskite with noncubic symmetry and with iridium as

the sole magnetic ion, and (2) to elucidate the influence of local environment on

the magnetism in such systems. As shown by the structural refinements presented,

a0a0a0 (Fm3̄m)→ a0b−b− (I2/m) octahedral distortion of the YO6-IrO6 rock-salt

framework occurs with increasing x to account for the incorporation of smaller

La3+ radii. From the magnetic susceptibility measurements, deviations from the

proposed mixed valence picture are observed, not only for x = 0.2, but also on

approaching x = 0.8. For x = 0.2, χV V is larger than found for x = 0.
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7.2 Introduction

The prevalence of perovskites can be elucidated by the compositional and struc-

tural flexibility of the corresponding structure. Because of this inherent flexibility,

an array of properties have been reported, with numerous examples where sub-

stitution of one or more of the cations can considerably impact structure and

properties [178–184]. The double perovskite A2MM’O6 structure can be described

as a close packed AO3 arrangement with 1
4

of the octahedral sites filled with M/M’

metals, forming a network of corner shared MO6-M’O6 octahedra with A cations

residing in 12-coordinated sites (Figure 7.1).

Figure 7.1: The ideal cubic A2MM’O6 double perovskite with blue, green/purple,
and red representing A-site, M/M’- site, and oxygen, respectively.

Depending on the relative charge, size, and electronegativity differences, the M-

site arrangement can be disordered or ordered with possible octahedral distortions
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throughout the MO6-M’O6 octahedral lattice [178–181,185]. The framework of the

A2MM’O6 double perovskite containing 4d/5d elements with strong spin-orbit cou-

pling (SOC) are of interest for the exploration of exotic states [182, 183, 186–189].

Effects due to crystal field, SOC, and electronic correlations can have a strong

influence on the electronic states. Of recent interest for topological materials are

perovskites where SOC is large enough to influence the electronic band structure.

Iridates are the most widely studied perovskites with Iridium frequently in a 4+

oxidation (5d5) state [187,190,191], resulting in a s = 1
2

Kramers doublet. Systems

with such 5d5 ground states have been predicted to possess anisotropic exchange

interactions, a key ingredient of the Kitaev model of quantum spin liquid [192]. In

contrast, 5d4 iridates should yield a nonmagnetic ground state with total angular

momentum J = 0 and a higher energy triplet which gives rise to van Vleck para-

magnetism [193]. Thus, Ba2YIrO6 is expected to be nonmagnetic. The observed

small magnetic moment of Ba2YIrO6 advocates a non-magnetic state with impu-

rity spins [194–196]. Recent work by Kataev et al, has verified that the magnetism

of Ba2YIrO6 is solely due to a few percent of Ir4+ and Ir6+ magnetic defects while

the regular Ir5+ sites remain nonmagnetic, thus confirming the existence of a non-

magnetic 5d4 ground state [186]. There are a few reports that endorse the influence

of noncubic symmetry on the magnetism of 5d4 iridate perovskites [197,198]. The

argument of local environment influencing the SOC, however, is unclear as the

spin-orbit Hamiltonian is defined by the fixed term (1/r)(δV/δr), with V as the

nuclear Coulombic potential and r representing the radial position of the electron.

Recent work by Khaliullin speculate Jeff 6= 0 in 5d4 iridates can be achieved if the
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superexchange (SE) interaction energy is on the order of the SOC [193]. The SOC

for Ir5+ is 540 meV [199]. To our knowledge, 5d4 iridates with SE large enough

to overpower such a large SOC has not been observed. The motivation to study

Ba2−xLaxYIrO6 is twofold: (1) to investigate a mixed 5d4/5d5 iridate perovskite

with noncubic symmetry and with iridium as the only magnetic ion, and (2) to

elucidate the influence of local environment on the magnetism in such systems. As

shown by the structural refinements presented, a0a0a0 (Fm3̄m)→ a0b−b− (I2/m)

octahedral distortion of the YO6-IrO6 rock-salt framework occurs with increasing

x to account for the incorporation of smaller La3+ radii. From the magnetic sus-

ceptibility measurements, deviations from the proposed mixed valence picture are

observed, not only for x = 0.2, but also on approaching x = 0.8. For x = 0.2, χV V

is larger than found for x = 0.

7.3 Experimental

Stoichiometric amounts of BaCO3, IrO2, La2O3, and Y2O3 were intimately ground,

pressed into a pellet, loaded onto an alumina crucible, and fired in air at 900

C for 6 hours and then at 1200-1250 C, 12 hour firings each with intermediate

grindings. Both La2O3 and Y2O3 were preheated at 800 C for 12 hrs. X-ray

diffraction (XRD) were collected using a Rigaku MiniFlex II diffractometer with Cu

Kα radiation and a graphite monochromator for the diffracted beam. The samples

were loaded onto an oriented Si single-crystal sample holder (MTI Corporation).

Diffraction patterns were collected with a fixed-time scan rate of 0.020 step−1
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and 4.0 s step−1 from 10 to 1100 2θ. Time of Flight (TOF) neutron diffraction

measurements were collected at Oak Ridge National Laboratory POWGEN BL-

11A SNS beamline. The Seebeck coefficient and electrical conductivity data (350

K – 600 K) were collected on an ULVAC ZEM-3 under a helium atmosphere.

Magnetization measurements (2K - 300 K) were obtained with a Quantum Design

MPMS. Resistivity, ρ(T), (200K - 350 K) were obtained using a Quantum Design

PPMS.

7.4 Results

7.4.1 Structure

A combination of powder XRD and TOF neutron diffraction were used estab-

lish the most appropriate space group for each Ba2−xLaxYIrO6 and to refine

atomic structures for x=0 and x=0.6 samples. Figure 7.2 shows XRD patterns

of Ba2−xLaxYIrO6 (0 ≤ x ≤ 0.6) samples. A small presence of La2O3 impurity

phase exists for x ≤ 0.6. Trace Y2O3 impurity phase was detected in the diffrac-

tion pattern upon magnification for all samples. With increasing La3+ content x

from 0 to 0.6, Fm3̄m → I4/m → I2/m space group transformations occur with

La3+ solubility limit close to x=0.6 (Figure 7.3). The A2MM’O6 rock salt M-site

ordered double perovskite of a0a0a0 (Fm3̄m), a0a0c− (I4/m), and a0b−b− (I2/m)

Glazer tilt systems are illustrated in Figure 7.4.

As shown in Figure 3, cell edges decrease with increasing La3+, concurrent to
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Figure 7.2: XRD patterns of Ba2−xLaxYIrO6 (0 ≤ x ≤ 0.6) samples shown from
15-1100 2θ. A small presence of La2O3 impurity exists for x ≤0.6 samples (as-
terisks). Trace Y2O3 impurity phase was detected in the diffraction pattern upon
magnification for all samples (diamonds).

the ionic radii difference between Ba2+ and La3+ (1.61 Å versus 1.36 Å, respec-

tively [200,201]. Deviation from the linear decrease of the a and b axis from x=0.4

to x=0.6 nominal samples can be attributed to the transformation to a Glaser

2-tilt distorted monoclinic structure. For Ba2YIrO6, both powder XRD and TOF

neutron refinements reveal an ideal cubic perovskite with rock salt 1:1 B-site or-

dering (Fm3̄m), consistent with other work, tolerance factor (τ=0.98), and the
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Figure 7.3: Cell edges a, b, and c vs La3+ content x in Ba2−xLaxYIrO6. Lab
XRD cell parameters are plotted by nominal La3+ content x. TOF neutron cell
parameters are plotted by refined La3+ content x=0.56.
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Fmത3m (a0a0a0) I4/m (a0a0c-) I2/m (a0b-b-)

Figure 7.4: Illustration of A2MM’O6 rock salt M-site ordered double perovskite
structure looking down the c-axis of a0a0a0 (Fm3̄m), a0a0c− (I4/m), and a-b
plane of a0b−b− (I2/m) tilt systems. Here, A-site cations are represented as blue
spheres and M/M’ cations reside separately within the green and purple polyhedral
sites.

common knowledge of M-site ordering influenced by corresponding size and charge

difference [178–181,184,202,203]. Metal 1:1 rock salt M-site ordering is shown by

the presence of the (111), (311), and (331) peaks at 18.50, 35.50, and 47.50 2θ

respectively (Figure 7.2). With increasing La3+ content, XRD peak shapes and

positions within 70 - 1100 2θ prove difficult to refine with Fm3̄m and suggest lower-

symmetry structures. By substituting Ba2+ with the smaller radii of La3+ (1.61

Å versus 1.36 Å, respectively) [200, 201], octahedral tilting to accommodate the

smaller A-site cation is conceivable, hence lower-symmetry structures will result.

Several previous analyses report the space-group symmetries that result from the

combination of octahedral tilting and octahedral-site cation ordering [204–206].

Neutron diffraction is ideal to establish this condition as oxygen has a coherent
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neutron scattering length comparable to heavier atoms [207]. In addition, the

neutron scattering lengths of Ba, La, Y, and Ir are each distinctive [207].

Additional reflections representing monoclinic doublets such as (110) and (002)

are not present, eliminating 3-tilt distorted space-group symmetries [180,205,206].

Space-group symmetries associated to Glaser 1- and 2-tilt systems for 1:1 rock

salt ordered double perovskites were therefore investigated [204–206]. For nominal

composition Ba1.4La0.6YIrO6, space-group symmetry was refined to be I2/m. Re-

sulting TOF Neutron refinements are shown in Figure 7.5. Refined cell parameters

and atomic information are presented in Tables 7.1 and 7.2.

The resulting refined compositions are Ba2Y0.955(8)IrO5.964(2) and Ba1.442(4)La0.558(4)

Y0.953(2)IrO5.952(8). Occupancy refinements indicate that the iridium sites are fully

occupied. For Ba2YIrO6, barium site occupancy was refined to be 1. The lan-

thanum content was refined to be slightly less than the expected x=0.6. This is

consistent with the small presence of La2O3 impurity. A small presence of yttrium

and oxygen vacancies exist for both systems. Attempts of refining iridium in the

yttrium site proved unsuccessful as iridium occupancy was refined to 0. Though

1:1 stoichiometric amounts of Y:Ir were used in the synthesis, the refined yttrium

occupancy is considered reasonable as a small presence of Y2O3 impurity is formed

during the synthesis. Small presence of oxygen vacancies are common with per-

ovskite systems. The A-site, Y, and Ir thermal parameters, U , are considered

reasonable and consistent between both samples. A-site U are larger than Y/Ir

U , consistent with similar systems [178–180, 184]. A larger cation residing in a

12-coordinated environment is expected to possess a larger U . For Fm3̄m sam-
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Figure 7.5: TOF Neutron refinement of nominal compositions Ba2YIrO6 (top) and
Ba1.4La0.6YIrO6 (bottom). Observed (black crosses) and calculated (solid red line)
profiles, background (green), and difference curve (Iobs-Icalc) (blue) are shown for
each refinement. The vertical bars indicate the expected reflection positions with
black, pink, and teal representing Ba2−xLaxYIrO6, Y2O3 (Ia3̄), and La2O3 (P3m̄1)
phases respectively. Resulting stoichiometric identities and wRp are represented.
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Table 7.1: Rietveld refinement results of TOF Neutron diffraction data for nominal
compositions Ba2YIrO6 and Ba1.4La0.6YIrOa−c

6 .

Composition Ba2Y0.955(8)IrO5.964(2) Ba1.442(4)La0.558(4)Y0.953(2)IrO5.952(8)

space group Fm3̄m I2/m
Rwp (%) 4.67 4.31
a (Å) 8.35293(2) 5.88434(2)
b (Å) - 5.89065(2)
c (Å) - 8.32105(3)
β (deg) - 90.1738(2)
V (Å3) 582.795(2) 288.426(3)
A x - 0.4966(9)
A z - 0.2578(6)
Ba occ. 1 0.721(2)
La occ. - 0.279(2)
A Uiso (Å2) 0.00422(2) 0.00638(3)
Y Uiso (Å2) 0.00117(2) 0.0014(5)
Ir Uiso (Å2) 0.00118(2) 0.00175(3)
Y occ. 0.955(8) 0.953(2)
O1 x 0.26164(5) -0.0264(2)
O1 y - 0
O1 z - 0.2606(6)
O1 occ. 0.994(4) 1
U11 (O1) (Å2) 0.00229(2) 0.0287(3)
U22 (O1) (Å2) 0.00802(1) 0.0193(2)
U33 (O1) (Å2) 0.00802(1) 0.00654(2)
O2 x - 0.2544(8)
O2 y - 0.2676(6)
O2 z - 0.0243(4)
O2 occ. - 0.988(2)
U11 (O2) (Å2) - 0.0221(2)
U22 (O2) (Å2) - 0.0127(1)
U33 (O2) (Å2) - 0.00283(2)

a) TOF Neutron diffraction data collected at POWGEN BL-11A (room temperature).

b) For Fm3̄m, crystal structure refined in space group with A(Ba) at 8c
(1/4,1/4,1/4),Y at 4a (0,0,0),Ir at 4b (1/2,1/2,1/2), and O1 at 24e (x,0,0) sites,

respectively.

c) For I2/m, crystal structure refined in space group with A(Ba/La) at 4i (x,0,z), Y at

2a (0,0,0), Ir at 2d (0,0,1/2), O1 at 4i (x,0,z), and O2 at 8j (x,y,z) sites, respectively.
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Table 7.2: Resulting BVS, bond distances and respective angles from re-
fined TOF Neutron diffraction data for nominal compositions Ba2YIrO6 and
Ba1.4La0.6YIrOa−c

6 .

Composition Ba2Y0.955(8)IrO5.964(2) Ba1.442(4)La0.558(4)Y0.953(2)IrO5.952(8)

A BVS 1.95 2.01
Y BVS 3.39 3.69
Ir BVS 5.18 4.53
O1 BVS 2.01 1.86
O2 BVS - 2.00
Y-O1 (Å) 2.2102(4) 2.174(6)
Y-O2 (Å) - 2.183(4)
Ir-O1 (Å) 1.9662(4) 1.998(5)
Ir-O2 (Å) - 2.001(4)
Aavg. (Å) 2.9557(2) 2.947(5)
Y-O1-Ir (deg) 180 171.4(4)
Y-O2-Ir (deg) 180 168.48(4)

a) TOF Neutron diffraction data collected at POWGEN BL-11A (room temperature).

b) For Fm3̄m, crystal structure refined in space group with A(Ba) at 8c
(1/4,1/4,1/4),Y at 4a (0,0,0),Ir at 4b (1/2,1/2,1/2), and O1 at 24e (x,0,0) sites,

respectively.

c) For I2/m, crystal structure refined in space group with A(Ba/La) at 4i (x,0,z), Y at

2a (0,0,0), Ir at 2d (0,0,1/2), O1 at 4i (x,0,z), and O2 at 8j (x,y,z) sites, respectively.
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ple, oxygen thermal parameters show disk-like ellipsoids, analogous to other corner

shared octahedral systems. Oxygen U are slightly larger and more oval for I2/m

sample, congruent with Glaser 2-tilt systems to accommodate the smaller A-site

cation. For I2/m sample, the [001] octahedral tilt angles for yttrium and iridium

are approximately 4.30, consistent with other reported I2/m double perovskite

systems [178–180,184]. When comparing the average A-O bond distance, a slight

reduction is observed with the incorporation of La3+ (Table 7.2). A portion of

the Ba2Y0.955(8)IrO5.964(2) (Fm3̄m) and Ba1.442(4)La0.558(4)Y0.953(2)IrO5.952(8) (I2/m)

unit cells from TOF neutron refinements are illustrated in Figure 7.6. Bond va-

lence sums (BVS) were calculated and are reported in Table 7.2. Oxygen BVS are

all close to 2. For the mixed A-(Ba2+/La3+) and mixed iridium charge (Ir5+/Ir4+)

sites, BVS were calculated using the weighted average of the corresponding bond

valance parameters. Such BVS values are analogous to what would be expected

for iridium and A-site oxidation states based on refined composition. The yt-

trium cation, however, is observed to be over-bonded with BVS=3.39 for x=0 and

BVS=3.69 for x=0.56 (Table 7.2). Attempts of fixing the yttrium occupancy to 1

makes an insignificant difference to the Y-O bond distances, and an overall increase

in wRp of the refinement is observed. Other known work on Ba2YIrO6 also reveal

yttrium being over-bonded with similar reported BVS [184]. For a cubic dou-

ble perovskite system, if the tolerance factor (τ) is equal to 1.0, the A-O and B-O

bonds can adopt their ideal lengths in the cubic structure [178,208,209]. When τ <

1, the perovskite structure can compensate for the cation size mismatch by tilting

the MO6 octahedra and/or by distorting the ideal bond lengths [178,208,210,211].
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Both tilting and bond length alteration can take place simultaneously to alleviate

strain induced by cation size mismatch [178,208]. If τ is only marginally less than

1 (τ=0.98 for Ba2YIrO6), small structural strain tends to be relieved by a change

of bond lengths, instead of octahedral tilting [178, 208]. Comparable observations

have been reported in other similar perovskite systems [184,208,210–215].

7.4.2 Transport and Magnetic Properties

Temperature dependent resistivity and Seebeck measurements from 300–600 Kelvin

for 0 ≤ x ≤ 0.6 samples are shown in Figure 7.7. Low temperature ρ(T) data from

75-300 Kelvin are shown in Figure 7.8. All samples are semiconducting. The

reported electrical properties are consistent with previous reports [194].

With increasing La3+ content, the conductivity of the material increases and

becomes n-type. The development of Ir4+/5+ sites with increasing La3+ content

is projected to decrease the Hubbard U energy, thus empowering electron hop-

ping. Low temperature transport measurements were analyzed using the general

formula for variable range hopping (VRH) ρ=ρ0exp((T0/T)(1/(d+1))) where d is the

dimensionality, and ρ0 and T0 are fitting parameters. The χ2 of the fits for all

compounds were minimized at d = 3. The differential activation energy was deter-

mined by differentiating ln(ρ) with respect to (kBT)−1 (Figure 7.8). An increase

in the activation energy is observed with increasing temperature due to decreased

hopping distance and increased energy difference between sites. With increasing

La3+ content, the activation energy does decrease overall with the largest reduc-
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Figure 7.6: A portion of the Ba2Y0.955(8)IrO5.964(2) (Fm3̄m) and
Ba1.442(4)La0.558(4)Y0.953(2)IrO5.952(8) (I2/m) unit cells from TOF neutron re-
finements with barium-lanthanum, yttrium, iridium, and oxygen thermal
ellipsoids represented as blue, green, purple, and red respectively.
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tion going from x=0.2 to x=0.4. The magnetic susceptibility χ (H = 0.5 T) was

measured for 0 ≤ x ≤ 0.8 samples and shows the combined effects of a Curie-Weiss

effective moment (µeff ) presumably originating from Ir4+ and a van Vleck tem-

perature independent paramagnetism (χV V ), which is known for Ir5+. In Figure

7.9 are shown the data with χV V subtracted, and then multiplied by T, along with

fits to a Curie-Weiss form. For x=0 and 0.6 nominal samples, a small bump exists

in the magnetic susceptibility at 55 K. A small presence of a second phase, unde-

tectable with XRD, is likely the cause. The 5M BaIrO3 phase is known to have a

ferromagnetic transition at ∼55 K [216].

The value of χV V used for each x is that which, after subtraction from χ(T),

produces the best fit to a Curie-Weiss form, yielding µeff values of 0.304, 0.577,

0.883, 1.001, and 1.071 µB for x = 0, 0.2, 0.4, 0.6, and 0.8 respectively. We test the

assumption that x tunes between 100% d4 for x = 0 to 80% d5 for x = 0.8 in Figure

7.10. Here we plot the fraction of Ir4+ moments that would give rise to the µeff

values, assuming a moment of 1.73 µB for each Ir4+. Also plotted is the obtained

χV V (x) divided by the x = 0 value which, for a simple mixed valence situation,

would range from 1.0 for x = 0 to 0.2 for x = 0.8. Clearly, we see deviations

from this mixed valence picture, not only for x = 0.2, but also on approaching

x = 0.8. The x = 0 sum is 1 by construction. For x = 0.2, χV V is larger than

found for x = 0. For x = 0, χV V is expected to be the largest as this compound

is nominally all Ir5+. The presence of oxygen vacancies might account for the

deviations in the mixed valence picture. Because the neutron scattering length

for oxygen is comparable to most metals [207], oxygen occupancy refinement is
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Figure 7.9: Magnetic susceptibility χ (H = 0.5 T) measured for 0 ≤ x ≤ 0.8
samples are shown with χV V subtracted, and then multiplied by T, along with fits
to a Curie-Weiss form.

accurate with neutron refinements. Our reported neutron refinements reveal an

oxygen occupancy of 0.994(4) and 0.988(2) for x=0 and x=0.6 nominal samples,

respectively (Table 7.1). Such a small presence of vacancies clearly cannot explain

such deviations in the mixed valence picture. Because all samples were synthesized

under the same condition, it is unlikely x=0.2 and 0.4 nominal samples possess
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a greater presence of oxygen vacancies and therefore likely does not elucidate the

mixed valence picture. Work by Kataev et al reveal a few percent of Ir6+ magnetic

defects in Ba2YIrO6, determined by ESR spectroscopy [186]. Deviation from the

expected simple Ir4+/5+ mixed valence state might exist for x >0 samples due to

the presence of Ir6+ magnetic defects. Thus, studies with ESR spectroscopy might

be able to clarify the observed mixed valence picture.

7.5 Summary

The motivation to study Ba2−xLaxYIrO6 was to elucidate the influence of noncubic

symmetry on the electronic and magnetic properties of such iridate perovskites.

With increasing La3+ content, the conductivity of the material increases and be-

comes n-type. The development of Ir4+/5+ sites with increasing La3+ content is pro-

jected to decrease the Hubbard U energy, thus empowering electron hopping. As

shown by the structural refinements presented, a0a0a0 (Fm3̄m)→ a0b−b− (I2/m)

octahedral distortion of the YO6-IrO6 rock-salt framework occurs with increasing

x to account for the incorporation of smaller La3+ radii. From the magnetic sus-

ceptibility measurements, deviations from the proposed mixed valence picture are

observed, not only for x = 0.2, but also on approaching x = 0.8. For x = 0.2, χV V

is larger than found for x = 0.
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Figure 7.10: Blue symbols – Variation of the inferred density of s = 1
2

spins ex-
pressed as a fraction of the total Ir concentration versus x in Ba2−xLaxYIrO6.
Green symbols – Variation of Van Vleck temperature independent susceptibility
expressed as a fraction of the value obtained at x = 0 versus x. Red symbols – the
sum of the s = 1

2
fraction and van Vleck spin fraction versus x.
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Chapter 8: Structural and Electronic Properties of Cu[Ir1.5Cu0.5]O4

Spinel

8.1 Abstract

Frustrated systems populated with large spin-orbit coupled (SOC) ions are an

ideal setting for the exploration of exotic states. Among the known frustrated

frameworks, the spinel structure has been extensively investigated. Though many

spinel systems with 3d/4d elements exist, to our knowledge, an Iridium based

spinel oxide has not been reported. Most spinel oxides are known to be insulating

and only two, LiV2O4 and LiTi2O4, are reported as conducting. A frustrated

mixed valence system that is metallic and exhibits large SOC is scarce, and if a

metallic spinel is close to a correlation driven metal-insulator transition, a novel

interplay between the charge carriers and the frustrated spin degree of freedom

is anticipated. Here we present the first Iridate spinel: Cu[Ir1.498(1)Cu0.502(1)]O4.

Synchrotron XRD refinements reveal a face-centered cubic structure with space

group Fd3̄m. Electrical properties reveal a metallic state within 50∼600 K range

with a Kondo-effect at T<50 K.
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1. M.K. Wallace, P.G. LaBarre, J. Telser, A.P. Ramirez, M.A. Subramanian,

Structural and Electronic Properties of Cu[Ir1.5Cu0.5]O4 Spinel, in progress,

(2019).
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8.2 Introduction

Frustrated systems populated with large spin-orbit coupled (SOC) ions are an

ideal setting for the exploration of exotic states. Among the known frustrated

frameworks, the spinel structure has been extensively investigated. The general

formula for a spinel is [A1−γMγ]
tet[M2−γAγ]

octO4, where γ represents the fraction

of M and A cations on the tetrahedral and octahedral sites, respectively. The

M2O4 octahedral network forms a rock salt structure with alternate octahedral

sites occupied by the M-cations. The A-cation occupies 1/8 of the tetrahedral

sites with all four neighboring octahedral sites empty. One of the unique features

of the spinel structure is that the M-cations form a sub-lattice of corner-shared

tetrahedra and the A-cations form a diamond sublattice (Figure 8.1).

If the sublattice framework is populated with magnetic ions, strong magnetic

frustration can occur. Though many spinel systems exist with 3d/4d elements, to

our knowledge, an Iridium based spinel oxide has not been reported. The SOC

for iridium is 540 meV [217]. A spinel framework populated by M-ions with SOC

comparable to iridium is not known. The SOC of iridium is large enough to in-

fluence the electronic states. Iridates are the most widely studied with Iridium

frequently in a 4+ oxidation (5d5) state [218–220], resulting in a s = 1
2

Kramers

doublet. Various systems with such 5d5 ground states have been predicted to pos-

sess anisotropic exchange interactions, a key ingredient of the Kitaev model of

quantum spin liquid [221]. Most spinel oxides are known to be insulating and only

two spinel oxides, LiV2O4 and LiTi2O4, are reported as conducting [222]. A frus-
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B-ion corner-shared 
tetrahedra sublattice

A-ion diamond sublattice

Figure 8.1: The A-ions form a diamond sublattice and the B-ions form a sublattice
of corner-shared tetrahedra within the spinel structure.

trated mixed valence system that is metallic and exhibits large SOC is scarce, and

if a metallic spinel is close to a correlation driven metal-insulator transition, a novel

interplay between the charge carriers and the frustrated spin degree of freedom is

anticipated. Here we present the first Iridate spinel: Cu[Ir1.498(1)Cu0.502(1)]O4. Syn-

chrotron XRD refinements reveal a face-centered cubic structure with space group

Fd3̄m. Electrical properties reveal a metallic state within 50∼600 K range with a

Kondo-effect at T<50 K.
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8.3 Experimental

Polycrystalline Cu[Ir1.498(1)Cu0.502(1)]O4 was prepared via the synthesis of the hyper-

kagome structure Na4Ir3O8 and then an ion-flux exchange approach using CuCl.

The compounds Na2CO3 and IrO2 with the correct stoichiometric ratio (Na4Ir3O8)

were ground and pressed into 10 mm diameter pellets. The resulting pellet was

fired at 750 C for 16 hrs, ground, and then reheated to 1000 C for 18 hrs before

being quenched using a water bath. The resulting hyper-kagome Na4Ir3O8 sample

was mixed with molar excess of CuCl and then fired at 450 C under an argon flow.

The sample was then washed with a dilute nitric acid solution to remove remain-

ing NaCl and excess CuCl and Cu metal. Phase analysis of powder samples was

performed by X-ray diffraction using a Rigaku MiniFlex II diffractometer with Cu

Kα radiation and a graphite monochromator for the diffracted beam. Synchrotron

X-ray Diffraction (Advanced Photon Source 11-BM) was collected at room temper-

ature (λ=0.412833 Å, 2θ < 50). The principal thermoelectric properties; the See-

beck coefficient (S), electrical conductivity (σ), and thermal conductivity (k) were

measured from 300∼600K. The Seebeck coefficient and electrical conductivity data

was collected on an ULVAC ZEM-3 under a helium atmosphere. Low-temperature

(5-300 K) magnetization measurements were obtained with a Quantum Design

MPMS and resistivity (50-300 K) measurements were obtained using a Quantum

Design PPMS.
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8.4 Results

Powder X-ray diffraction pattern of Cu[Ir1.498(1)Cu0.502(1)]O4 reveals face-centered

cubic structure with space group Fd3̄m (Figure 8.2). Trace IrO2 impurity phase

was detected in the diffraction pattern upon magnification (Figure 8.2, asterisk

symbol).

10 20 30 40 50 60 70 80

 

 

2

*

Figure 8.2: Powder XRD pattern of Cu[Ir1.5Cu0.5]O4 sample. Blue asterisk symbol
indicates a small presence of IrO2 impurity phase.

To determine the crystal structure, Rietveld refinements were performed on
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synchrotron XRD data collected at APS 11bm beamline (λ=0.412833 Å) using

the GSAS program. Room temperature synchrotron XRD was collected up to 50

2θ. A pseudo-Voigt peak shape profile was chosen, and parameters refined to ob-

tain the best fit to the collected data. The space group was refined to be Fd3̄m.

Trace IrO2 impurity phase was detected in the diffraction pattern upon magnifica-

tion. Resulting synchrotron XRD Rietveld refinement for Cu[Ir1.498(1)Cu0.502(1)]O4

is shown in Figure 8.3.
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Figure 8.3: Synchrotron Rietveld refinement of Cu[Ir1.5Cu0.5]O4 sample at room
temperature (λ=0.412833 Å). Observed (black crosses) and calculated (solid red
line) profiles, background (green), and difference curve (Iobs - Icalc) (blue) are
shown. The vertical bars indicate the expected reflection positions for spinel
(Fd3̄m) phase (black) and IrO2 impurity phase (purple). Resulting stoichiometric
identity and wRp are represented.

The detailed results are given in Table 8.1. Refined lattice parameters are in
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accordance of CuRh2O4 normal spinel (Fd3̄m) [223].

From the refined parameters provided in Table 8.1, the tetrahedral 8a site was

refined to be occupied by copper with an occupancy of 1. Iridium is too large for

a tetrahedral site and any addition of Iridium in the 8a site proved not stable in

the refinement. Refinement of sodium in the tetrahedral 8a site or neighboring

empty 16c octahedral sites also were not stable with the occupancy refining to

zero. Incorporation of copper on the octahedral 16d site did result in an overall

more stable refinement. The resulting 16d refined occupancies reveal 75% of the

respective site occupied by iridium with the remaining 25% occupied by copper.

The A4M3O8 hyper-kagome edge shared octahedral framework is analogous to the

spinel framework, except 1/4 of the edge shared octahedral sites are occupied by

the A-cation (compared to all 1/2 of the octahedral sites occupied by M in the

normal AM2O4 spinel structure). In addition, molar excess CuCl was used in

the ion-exchange process. Thus, Na-Cu exchange resulting in 25% of the 16d site

occupied by copper is considered logical. Refinements were performed with Na+

occupying the 16d site, however, such refinements were proven to not be stable.

If we assume Cu residing on the tetrahedral 8a site has an oxidation state of 1+

(d10) and Cu occupying the octahedral 16d site has an oxidation state of 2+ (d9),

the overall charge of the refined stoichiometric identity (assuming Ir4+) equates to

zero. Any alternate combinations of Cu1+/2+ in the tetrahedral/octahedral sites

results in the overall charge of the refined stoichiometric identity not equating to

zero (assuming Ir4+). In addition, calculated BVS match best with the expected

oxidation states if Cu+ is assumed for the tetrahedral 8a site and Cu2+ for the
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Table 8.1: Rietveld refinement results of synchrotron XRD diffraction data for
Cu[Ir1.498(1)Cu0.502(1)]O

a,b
4 .

Composition Cu[Ir1.498(1)Cu0.502(1)]O4

Space group Fd3̄m
wRp (%) 6.65
a=b=c (Å) 8.57619(1)
vol (Å3) 630.788(1)
O x, y, z 0.26068(9)
Cu(8a) occ. 1.003(2)
Ir(16d) occ. 0.7490(2)
Cu(16d) occ. 0.2510(2)
Cu(8a) Uiso 0.01636(2)
Cu/Ir(16d) Uiso 0.009581(3)
O Uiso 0.02051(2)
Cu+(8a) BVS 1.04
Ir4+/Cu2+(16d) BVS 3.40
O BVS 1.95
Cu(tet.)-O (Å) 2.0155(1)
Cu/Ir(oct.)-O (Å) 2.0565(7)
O-Cu(tet.)-O (o) 109.47120(1)
O-Cu/Ir(oct.)-O (o) 95.22(4) / 84.78(4)

a) Synchrotron XRD diffraction data collected at APS 11-BM (room temperature).

b) For Fd3̄m , AM2O4 crystal structure refined in space group with A(Cu) at 8a

(1/8,1/8,1/8), M(Cu/Ir) at 16d (1/2,1/2,1/2), and O at 32e (x,x,x) sites.
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octahedral 16d site (Table 8.1 and Table 8.2).

Based on the crystal field stabilization energy (CFSE), Cu+ (d10) has no pref-

erence for tetrahedral or octahedral sites and because of the relatively small ionic

size, tetrahedral site would be preferred. From CFSE, the Jahn-teller active Cu2+

(d9) would prefer an octahedral site and would also suggest a non-cubic system.

Lower symmetry space groups, such as I41/amd were investigated to account for

the possible Jahn-teller distortion of Cu2+ on the octahedral 16d site. Such lower

symmetry space groups require additional hkl peaks which were not present in the

synchrotron XRD data, suggesting the higher symmetry Fd3̄m which account for

all peaks. Because 75% of the octahedral 16d site is occupied by Ir4+, which is not

considered Jahn-teller active, cubic Fd3̄m is considered reasonable.

Temperature dependent resistivity and Seebeck measurements from 300–600

Kelvin for the Cu[Ir1.498(1)Cu0.502(1)]O4 sample are shown in Figure 8.4. Low tem-

perature ρ(T) data from 5-300 Kelvin are shown in Figure 8.5. Electrical properties

reveal a metallic state within 50∼600 K range with a Kondo-effect at T<50 K.

8.5 Summary

If a metallic spinel is close to a correlation driven metal-insulator transition, a novel

interplay between the charge carriers and the frustrated spin degree of freedom is

anticipated. Synchrotron XRD refinements reveal a face-centered cubic structure

with space group Fd3̄m. Electrical properties reveal a metallic state within 50∼600

K range with a Kondo-effect at T<50 K.
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Table 8.2: A list of calculated bond valence sums (BVS) for each element in
Cu[Ir1.498(1)Cu0.502(1)]O4 based on the assigned oxidation state of copper. The over-
all charge of the refined stoichiometric identity is calculated based on the assigned
oxidation states of Cu and Ir. The Resulting BVS are compared to the expected
oxidation state (Exp. ox.) and the difference between BVS and Exp. ox. is
calculated (∆)

BVS Exp. ox. ∆
Cu1+ (tet.) 1.04 1 0.04

Ir4+/Cu2+ (oct.) 3.396 3.498 0.102
O (tet.) 1.95 2 0.05

overall charge = + 0.004

BVS Exp. ox. ∆
Cu1+ (tet.) 1.12 1 0.12

Ir4+/Cu1+ (oct.) 3.066 3.247 0.181
O (tet.) 1.784 2 0.216

overall charge = +0.506

BVS Exp. ox. ∆
Cu2+ (tet.) 1.51 2 0.49

Ir4+/Cu2+ (oct.) 3.396 3.498 0.102
O (tet.) 2.08 2 0.08

overall charge = - 0.996

BVS Exp. ox. ∆
Cu2+ (tet.) 1.51 2 0.49

Ir4+/Cu1+ (oct.) 3.066 3.247 0.181
O (tet.) 1.911 2 0.089

overall charge = 0.494
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Figure 8.4: Temperature dependent resistivity (top) and Seebeck coefficient data
(bottom) of Cu[Ir1.498(1)Cu0.502(1)]O4 from 300 to 600 K.
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Figure 8.5: Temperature dependent low-temperature resistivity of
Cu[Ir1.498(1)Cu0.502(1)]O4 from 5 to 300 K.
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Chapter 9: Structural, Electronic, and Thermal Properties of

Indium-Filled InxIr4Sb12 Skutterudites

9.1 Abstract

The “phonon-glass/electron-crystal” approach has been implemented through in-

corporation of “rattlers” into skutterudite void sites to increase phonon scattering

and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites

are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2)

were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar.

The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray

diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered cu-

bic structure (space group: Im3̄) with 8% antimony site vacancy and with indium

partially occupying the 16f site. Unlike known rattler filled skutterudites, under

synthetic conditions employed, indium filling in IrSb3 significantly increases the

electrical resistivity and decreases the Seebeck coefficient (n-type) while reducing

the thermal conductivity by 30%. The resultant power factor offsets the decrease

in total thermal conductivity giving rise to a substantial decrease in ZT. Principal

thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are compared. As

iridium is a 5d transition metal, zero field cooled (ZFC) magnetization were per-

formed to unravel the effect of spin-orbit interaction on the electronic properties.
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These results serve to advance the understanding of filled skutterudites, and pro-

vide additional insight on the less explored smaller “rattlers” and their influence

on key thermoelectric properties.
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Publication based on this chapter:

1. M.K. Wallace, J. Li, and M.A. Subramanian, Structural, electronic, and ther-

mal properties of indium-filled InxIr4Sb12 skutterudites, Solid State Sciences,
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9.2 Introduction

Because of the unique structure and recognized ability to tune key transport prop-

erties, skutterudites are known to be strong thermoelectric candidates. The skut-

terudites are one well known class of Zintl compounds. As shown in Figure 9.1,

the skutterudite crystal structure can be described in two ways: (a) a repeated

corner-sharing MX6 arrangement with two M4X12 formula units and two large

empty cages per unit cell, or (b) an open cage like structure of cube-connecting M

atoms with three fourths of the void sites filled with X4 Zintl polyanions, where M

is a transition metal atom (M = Fe, Co, Rh, or Ir) and X is a pnictogen atom (X

= P, As or Sb). The general formula is MX3 with cubic space group Im3̄. The M

cations occupy the 8c (1/4, 1/4, 1/4) site and the X anions occupy the 24g (0, y,

z) site with y ∼0.15 and z ∼0.34.

The thermoelectric performance of a material is characterized by the thermo-

electric figure of merit, ZT= σS2T
K

, where S is the Seebeck coefficient, σ is the

electrical conductivity, T is the effective temperature, and K is the summation of

the lattice and electronic components of the total thermal conductivity (KL + Ke)

(Chapter 3.3) [224–226]. An increase in thermoelectric performance corresponds

to an increase in the ZT value. There are several approaches to optimize ZT such

as nanostructuring techniques, alloying, and transition metal/pnictogen-site dop-

ing (Chapter 3.4) [225–229]. Another method to maximize ZT is by filling the

unoccupied empty cages within M cube framework (Figure 9.1) with an ion. The

empty cages can be filled by an ion A, leading to the formula AyM4X12 with y ≤
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Figure 9.1: Skutterudite crystal structure shown as (a) a repeated corner-sharing
MX6 arrangement and (b) cube-forming M atoms with three fourths of the void
sites filled with X4 Zintl polyanions.

1. Because of the large size difference between the corresponding filler atom and

void site, the filler atom can conceivably act as an independent oscillator and thus

dampen the thermal phonon conductivity and decrease the total thermal conduc-

tivity (Chapter 3.4.1) [230–232]. Filling skuterudite voids can also influence the

electrical conductivity, albeit the effect is usually negligible with respect to the

decrease in total thermal conductivity [225,230–232]. Though there is much work

regarding the use of rare earth, alkali earth, or IVA group elements to fill the voids

of various skuterudite structures, little work on indium filled skutterudites have

been achieved [224–233]. The IrSb3-based skutterudite compounds have shown po-

tential for thermoelectric applications due to high Hall mobility [234–236]. Though

many rare earth and alkali earth filled IrSb3 have been reported, to our knowledge,
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investigation of indium filled InxIr4Sb12 has not been addressed. It is suggested

a smaller filler atom can possess greater rattler displacement, and thus enhance

dampening of the lattice thermal conductivity [237, 238]. This corresponding en-

hancement is observed for indium filled InxCo4Sb12 showing an overall increase in

ZT [232]. Yet for InxIr4Sb12, with increasing indium content, the observed increase

in electrical resistivity outweighs the decrease in total thermal conductivity, reveal-

ing a significant reduction in ZT. With the prospect of new science and technology

of topological insulators (TI), systems with strong spin-orbit coupling (SOC) are

of great interest within the solid state science community [239]. Strong SOC sys-

tems have shown to exhibit many unconventional properties that challenge existing

theory. Heavy metal alloys are of interest to better understand TI behavior. Irid-

ium has one of the strongest SOC among magnetic d-electron elements [240]. In

addition, certain indium based metal alloys reveal promising SOC behavior, sup-

porting TI behavior [241–243]. There has been much theoretical work on potential

TI heavy metal based skutterudite candidates [244–246]. Yet, key physical prop-

erties that address the prospect of topologically insulating behavior for metal alloy

systems are lacking. Principal thermoelectric properties, zero field cooled (ZFC)

magnetization, and structure properties are presented for indium filled InxIr4Sb12.
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9.3 Results and Discussion

9.3.1 Structural Properties

Powder X-ray diffraction patterns reveal all InxIr4Sb12 (x ≤ 0.2) in a body-centered

cubic structure with space group Im3̄ (Figure 9.2). For InxIr4Sb12 samples where

x > 0.1, trace InSb, IrSb2 and Sb impurity phases were detected in the diffrac-

tion pattern upon magnification (Figure 9.2, asterisk symbol). As shown in Fig-

ure 9.3, lattice variation with indium filling fraction indicates a minor increase

in the cell edge and an indium solubility limit of approximately x = 0.18, which

was also observed for InxRh4Sb12 and InxCo4Sb12 [232, 237]. The obtained lat-

tice parameters are in accordance with previous work on IrSb3, InxRh4Sb12 and

InxCo4Sb12 [232,234,235,237].

To determine the crystal structure, Rietveld refinements were performed on

synchrotron XRD data collected at APS 11bm beamline (λ = 0.412731 Å) using

the GSAS program. Room temperature synchrotron XRD was collected up to 50o

2θ for x = 0, 0.1, and 0.15 and 70o 2θ for x = 0.1 nominal samples. Synchrotron

XRD scans for x = 0 and 0.1 nominal samples show no presence of impurities (small

existence of IrSb2 and Sb phases in x = 0.15). A pseudo-Voigt peak shape profile

was chosen and parameters refined to obtain the best fit to the collected data. For

all systems, the space group was refined to be Im3̄. Resulting synchrotron XRD

Rietveld refinements for nominal compositions IrSb3 and In0.1Ir4Sb12 collected at

room temperature and 100 K are shown in Figure 9.4. The detailed results are

given in Table 9.1.
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Figure 9.2: XRD patterns of InxIr4Sb12 (x = 0.05, 0.1 and 0.2) samples. Asterisk
symbols indicate small presence of IrSb2, InSb, and Sb impurity phases.

To successfully refine the indium in the structure, room temperature and low

temperature (T = 100 K) synchrotron XRD data were collected up to 70o 2θ for

nominal In0.1Ir4Sb12 sample, and the refined crystal structure is shown in Figure

9.5. At both room temperature and 100 K, indium was refined to partially occupy

the 16f position with stoichiometric identity In0.088Ir4Sb11.04.

All known skutterudite systems report filler ions in the 2a position, center of the
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Figure 9.3: Cubic cell edge a vs nominal indium content x in InxIr4Sb12.

void site [225, 226, 230, 232, 233, 237, 247, 248]. Our refinement of indium in the 2a

position was unsuccessful as the occupancy refined to zero with unrealistic thermal

parameters. Nonetheless moving indium along the [111] direction to the adjacent

16f site resulted in reasonable values for the refined occupancy and isotropic Uiso.

The displacement of indium from the ideal 2a site is ≤1.15 Å. Indium occupation of

the void site was confirmed by its extremely large thermal displacement parameter

as compared to Ir and Sb. The magnitude of Uiso for indium at room temperature
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Table 9.1: Rietveld refinement results of Synchrotron data for nominal composi-
tions IrSb3 and In0.1Ir4Sb12 collected at room temperature and 100 K.a,b

Composition IrSb3 In0.1Ir4Sb12 (RT) In0.1Ir4Sb12 (100 K)
Rwp (%) 7.31 6.79 6.93
a = b = c (Å) 9.25159(2) 9.25237(2) 9.24287(2)
V (Å3) 791.862(3) 792.063(3) 789.625(3)
Sb, y 0.34030(2) 0.34024(2) 0.34035(2)
Sb, z 0.15315(2) 0.15331(2) 0.15323(2)
In, x - 0.0707(2) 0.0722(1)
Sb Occ. 0.9321(5) 0.9193(5) 0.9183(5)
In Occ. - 0.011(1) 0.011(1)
Ir Uiso (Å2) 0.00297(2) 0.00342(1) 0.00150(1)
Sb Uiso (Å2) 0.00517(8) 0.00578(7) 0.00376(6)
In Uiso (Å2) - 0.17(2) 0.018(3)
Refined FOR. IrSb2.793 In0.088Ir4Sb11.04 In0.088Ir4Sb11.04

Ir–Sb × 6 (Å) 2.61731(7) 2.61684(7) 2.61473(7)
Ir–In × 8 (Å) - 2.87(4) 2.847(2)
In–In × 12 (Å) - 1.31(4) 1.334(2)
Sb–Ir–Sb × 3 (o) 95.098(7) 95.102(7) 95.116(7)
Sb–Ir–Sb × 3 (o) 84.902(7) 84.898(7) 84.884(7)

a) Synchrotron data collected at APS 11bm beamline, λ = 0.412731 Å.

b) Crystal structure refined in space group Im3̄ with Ir at 8c (1
4 ,

1
4 ,

1
4), In at 16f

(x, x, x) and Sb at 24g (0,y,z) sites, respectively.

is about ten times larger than that at 100 K due to exaggerated thermal motion at

higher temperatures. The isotropic thermal parameter of Ir was found to be smaller

as compared to Sb, consistent with other skutterudite systems. Iridium site (8c)

is fully occupied with no detectable vacancies observed for IrSb3 and In0.1Ir4Sb12

nominal samples. Antimony occupancy refinements, however, always show ∼8%

vacancy at 24g site (Table 9.1). Attempts of refining the structure by including

antimony in other available crystallographic positions were not successful, and no
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indium was found at Ir site.

Figure 9.5: The In0.088Ir4Sb11.04 unit cell illustrated down the c-axis from room
temperature (top) and 100 K (bottom) synchrotron XRD refinements with iridium,
antimony, and indium thermal ellipsoids as green, blue, and red respectively.
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There are few reported systems with antimony vacancies [249,250] and we ac-

knowledge that ∼8% vacancy is greater than such reported systems. This in part

could be explained on the synthesis as antimony vapor was used to account for

antimony loss in the sample and/or the covalency of iridium-antimony to allow

chemical stability despite the slight reduction in the Zintl electron count. The un-

common movement of indium away from the center of the void site is likely associ-

ated with the resulting asymmetric bonding environment induced by Sb vacancies

as well as the larger void size due to Ir. The influence of indium incorporation on

cell dimensions, bond distances and angles are not significant.

9.3.2 Electrical Properties

Temperature dependent Resistivity measurements and Seebeck measurements of

InxIr4Sb12 (0 ≤ x ≤ 0.2) from 300-600 Kelvin are shown in Figure 9.6 and Figure

9.7. Unfilled IrSb3 is metallic [234, 235, 251], and indium filled InxIr4Sb12 samples

are semiconductors (Figure 9.6). The activation energies (Ea) for each sample were

extracted using σ = σ0exp(Ea/kBT) and are listed in Table 9.2.

Table 9.2: Activation energy for InxIr4Sb12.

x Ea (meV)
0.05 218.6
0.1 216.6
0.15 106.8
0.18 105.8
0.2 91.8
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Figure 9.6: Temperature dependent resistivity (top/middle) and Seebeck coeffi-
cient data (bottom) of InxIr4Sb12 samples (0 ≤ x ≤ 0.2) from 300 to 600 K.
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As indicated by the Resistivity measurements (Figures 9.6 and 9.7), from x

= 0.05 to 0.2, a decrease in Ea is observed. With increasing indium content,

InxIr4Sb12 samples undergo a transition from primarily p-type to n-type semicon-

ductors (Figure 9.6). These trends are in parallel with published work on unfilled

IrSb3 and lanthanum filled LaxIr4Sb12 [234–236]. Because of the smaller void-site

radius of InxCo4Sb12 relative to InxIr4Sb12, the indium contribution to the charge

carrier in InxIr4Sb12 should be insignificant compared to InxCo4Sb12 [232]. Con-

trary to InxRh4Sb12 [237] an increase in indium content reveals a distinct trend in

the Seebeck measurements for InxIr4Sb12.

Temperature dependent thermal conductivity data of InxIr4Sb12 (0 ≤ x ≤ 0.2)

from 300-600 K are shown in Figure 9.8. The lattice thermal conductivity was

calculated from Kl = Kt - Ke, where Kt is the total thermal conductivity and

Ke is the electronic thermal conductivity. The electronic thermal conductivities

were determined using the Wiedemann-Franz law, Ke = LσT, where the Lorentz

number, L, of 2.00 × 108 V2 K2 was used [232, 237]. For all InxIr4Sb12 samples,

both the total and the lattice component of the thermal conductivity decrease with

increasing temperature. With increasing indium content, the thermal conductiv-

ity decreases (Figure 9.8), consistent with indium filled InxRh4Sb12 [237] and with

the recognized presumption of the “rattling effect”. From x = 0 to x = 0.2, Kt

decreases approximately 30% across temperature range, similar to LaxIr4Sb12 and

InxRh4Sb12 [235,237]. For InxRh4Sb12, at higher temperatures, thermal conductiv-

ity becomes independent of indium content. This is attributed to the contribution

of bipolar thermal diffusion (kBP ) [237].
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Conversely, effect of kBP is not obvious for indium filled InxIr4Sb12 (0 ≤ x ≤

0.2) within 300-600 K temperature range. Bipolar thermal diffusion typically oc-

curs in lightly doped small band-gap semiconductors and when there is reasonable
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(bottom) of InxIr4Sb12 samples (0 ≤ x ≤ 0.2) from 300 to 600 K.

contribution to the total electrical conductivity by both charge carriers [252,253].

Though the Seebeck properties (Figure 9.6) would perhaps indicate the possibil-

ity of slight kBP contribution at higher temperatures, higher resistivity relative

to InxRh4Sb12 would suggest otherwise. For InxRh4Sb12, contribution of kBP was



177

in part attributed to the disparity between hole and electron mobility [237]. It

is known that large spin-orbit interaction influences electron and hole transport

properties [254]. Zero-Field cooled magnetic susceptibility χ(T) was measured for

InxIr4Sb12(x = 0 and 0.2 shown) (Figure 9.9). For all samples, χ(T) is small and

nearly temperature independent above 50 K. Unfilled IrSb3 exhibits diamagnetic

behavior (consistent with Larmor diamagnetism), with the exception of a weak

“Curie tail” at low temperatures due to the common presence of impurity spins

(Figure 9.9) [255, 256]. A group 9 metal for an unfilled BX3 skutterudite has a

+3 charge, and therefore an electronic configuration of nd6 [255]. Thus, for un-

filled IrSb3 (Ir3+ - filled t2g band and an empty eg band), diamagnetic behavior is

undisputed.

With the increase of indium, below 50 K, the magnetic susceptibility appears

temperature dependent (Figure 9.9). It could be argued that small inclusions of

defect free spin 1/2 Ir ions could explain the magnetic susceptibility below ∼50 K

for In0.2Ir4Sb12. This was suggested for InxRh4Sb12 [256]. It is possible that the

observed increase in χ(T) (compared to InxRh4Sb12 [256]) cannot be attributed

alone to the small presence of defect spin 1/2 Ir ions. In addition, because of the

on-site coulomb repulsion energy for 5d transition metals compared to 4d transition

metals [257], iridium charge modification is conceivable. Temperature dependent

thermoelectric figure of merit, ZT, values of InxIr4Sb12 samples (0 ≤ x ≤ 0.2) are

revealed in Figure 9.10. Though there is a decrease in total thermal conductiv-

ity with increasing indium content, the corresponding large increase in resistivity

outweighs the prior and thus dictates the thermoelectric figure of merit, ZT. For
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InxRh4Sb12, increase in electrical resistivity also outweighs the corresponding de-

crease in total thermal conductivity, revealing an overall decrease in ZT [237]. The

observed decrease in ZT for InxRh4Sb12, however, is not as severe (∼10 fold de-

crease). This is not the case for InxCo4Sb12 and other light-element filling skuteru-

dite systems have been proven to enhance TE performance by improving electrical

transport properties and decreasing the total thermal conductivity [232,258–261].

As thermoelectric properties of semiconductors are closely related to their elec-

tronic band structure, it is likely the large increase in resistivity can be explained

by the electronic structure in relation to the contiguity of the 16f indium occu-

pying the relatively large icosahedron. Electronic band structure studies of such

indium filled IrSb3 are therefore warranted.

Table 9.3 reveals electrical and thermal values of InxM4Sb12, (M = Ir, Rh,

and Co) at approximately 575 K for the x > 0 sample possessing the highest ZT.

The samples presented in Table 9.3 all had the same synthesis with similar pellet

densities [232,237].

Table 9.3: InxM4Sb12, (M = Ir, Rh, or Co) at approximately 575 K for x > 0
sample possessing the highest ZT [158,163].

InxIr4Sb12 InxRh4Sb12 InxCo4Sb12

x 0.18 0.05 0.3
R (Ohm cm) 0.341 1.25x10−3 2.4x10−3

S (V/K) -44 55 -267
KT (W/mK) 1.31 2.5 2.08
ZT 2.42x10−4 0.11 1.19
Reference 232 237

For In0.3Co4Sb12, the ZT value is primarily attributed to the large negative
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Figure 9.10: Resulting thermoelectric figure of merit, ZT, values of InxIr4Sb12

samples (0 ≤ x ≤ 0.2) shown from 300-600 K.

Seebeck coefficient. For InxRh4Sb12, though measured resistivity is desirable, large

total thermal conductivity and small Seebeck coefficient characterize the insignif-

icant ZT value. Of the three compared skutterudites, InxIr4Sb12 samples reveal

the smallest total thermal conductivity. For InxCo4Sb12, Kt increases with in-
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creasing x, and as discussed previously, Kt for InxRh4Sb12 becomes independent

of indium content at higher temperature due to the contribution of bipolar ther-

mal diffusion (kBP ) [232,237]. From the ZT values alone (Figure 9.10), InxIr4Sb12

skutterudite clearly is not a thermoelectric candidate. However, the effect of in-

dium on decreasing the total thermal conductivity as well as possible spin-orbit

coupling effects of iridium on electronic and thermal parameters suggest indium

filled iridium-rhodium-cobalt antimony alloy-based skutterudite system as a fun-

damentally intriguing research avenue.

9.4 Investigation of Indium Filled Rhodium-Iridium-Antimonide Skut-

terudites

Indium filled InxRh4−yCoySb12 for x = 0 and 0.1 has been investigated [262]. For

In0.1Rh4−yCoySb12, the increased thermal conductivity combined with diminish-

ing Seebeck coefficients at elevated temperatures results in ZT values much lower

than indium-filled In0.1Co4Sb12 sample. However, for unfilled Co4−yRhySb12, ZT

increases with increasing rhodium content. While rhodium substitution reduces

the thermal conductivity of unfilled compositions, indium-filled samples exhibit

bipolar thermal conductivity with increasing rhodium content [262]. Thermal and

electrical properties of In0.15Ir4−yRhySb12 (y = 0, 1, 2, 3, and 4) are compared in

Figure 9.11 and 9.12.

As discussed, for InxRh4Sb12, although measured resistivity is desirable, large

total thermal conductivity and small Seebeck coefficient characterize the insignif-
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Figure 9.11: Temperature dependent resistivity (top) and Seebeck coefficient data
(bottom) of In0.15Ir4−yRhySb12 samples (0 ≤ y ≤ 1) from 300 to 600 K.

icant ZT value and InxIr4Sb12 samples reveal the smallest total thermal con-

ductivity relative to Co and Rh versions (Table 9.3). With increasing y for
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In0.15Ir4−yRhySb12, resistivity dramatically decreases. The total thermal conduc-

tivity remains small for nearly all In0.15Ir4−yRhySb12 (with the exception of In0.15Rh4Sb12)

(Figure 9.12). For In0.15Ir2Rh2Sb12, the Seebeck coefficient and resistivity are both

similar to In0.15Rh4Sb12, and the total thermal conductivity equates to In0.15Ir4Sb12,

resulting in ZT approximately three times greater than In0.15Rh4Sb12 at higher

temperatures (Figure 9.12). Yet, because the magnitude of the Seebeck remains

small compared to InxCo4Sb12 [9], a high ZT is not obtained.

Because IrSb3 cell parameter is larger than RhSb3 [237], it is conceivable a

larger void site for the same filler atom would enhance dampening of the lat-

tice thermal conductivity. This prediction is observed when comparing the total

thermal conductivities of In0.1Ir4Sb12 and In0.1Rh4Sb12 (Figure 9.12). The trends

shown in Figures 9.11 and 9.12 reveal that the electrical and thermal properties

can be tuned for In0.15Ir4−yRhySb12 mirroring the behavior of In0.15Rh4Sb12 (y <

0.5) or In0.15Ir4Sb12 (y < 0.5). A solid solution of iridium, rhodium, and cobalt

was investigated, however, synthesizing samples under similar conditions resulted

in separate Ir/Rh and Co skutterudite phases.

9.5 Summary

The work presented on indium filled InxIr4Sb12 skutterudites highlights trends

in key thermoelectric properties that are atypical to the “phonon-glass/electron-

crystal” approach. Unlike known “rattler” filled skutterudites which show an in-

crease in ZT with increasing “rattler” concentration, a substantial decrease in ZT
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thermoelectric figure of merit, ZT, values of In0.15Ir4−yRhySb12 samples (0 ≤ y ≤
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with addition of indium is observed. This is credited to the substantial increase

in electrical resistivity and decrease in the Seebeck coefficient with indium con-
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tent. Synchrotron X-ray diffraction refinements reveal ∼8% antimony vacancy

and indium partially occupying the 16f site. As thermoelectric properties of semi-

conductors are closely related to their electronic band structure, it is likely the

large increase in resistivity can be explained by the electronic structure in relation

to indium occupying the 16f position in the large icosahedron void site and/or

antimony vacancies. Electronic band structure studies and further structure and

thermoelectric property analysis of indium filled IrSb3 under high pressure synthe-

sis conditions are therefore warranted.

9.6 Methods

9.6.1 Synthesis

Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2) were prepared by standard

solid-state reaction. The elements 99.999% In powder (Aldrich), 99.5% Ir powder

(Aldrich), and 99.9% Sb powder (Strem) were thoroughly mixed in air in an agate

mortar. The powders were loaded into alumina crucibles and reacted in a tube

furnace at 610 oC for 4 h under a constant flow of antimony vapor and 95/5 N2/H2

gas. The samples were then ground and light-pressed into 10 mm diameter pellets

and conventionally sintered at 610 oC for 4 h, followed by 675 oC for 4 h under a

constant flow of 95/5 N2/H2 gas. The resultant sintered pellets were approximately

65% of the theoretical density.
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9.6.2 Structure Determination

Phase analysis of powder samples was performed by X-ray diffraction using a

Rigaku MiniFlex II diffractometer with Cu Kα radiation and a graphite monochro-

mator for the diffracted beam. Lattice parameters were calculated by LeBail fit

using KCl (Fm3̄m) as an internal standard. Synchrotron X-ray Diffraction (Ad-

vanced Photon Source 11-BM) was collected for InxIr4Sb12 (x = 0, 0.1, and 0.15)

samples at room temperature (λ=0.412731 Å, 2θ ≤ 50) along with T = 100 K for

x = 0.1 sample (2θ ≤70).

9.6.3 Electrical Properties

The principal thermoelectric properties; the Seebeck coefficient (S) electrical con-

ductivity (σ) and thermal conductivity (K) were measured from 300-600 K. The

Seebeck coefficient and electrical conductivity data was collected on an ULVAC

ZEM-3 under a helium atmosphere. Thermal diffusivity (α) was measured on a

Netzsch LFA 457 Micro Flash under flowing N2. Low-temperature (2-300 K) mag-

netization measurements were obtained with a Quantum Design MPMS and resis-

tivity (50-300 K) measurements were obtained using a Quantum Design PPMS.
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Appendix A: Charge Transfer Instability in a Mixed Ir/Rh

Honeycomb Lattice in Li2Ir1−xRhxO3 Solid Solution

A.1 Abstract

The solid solution series Li2Ir1−xRhxO3 is synthesized for several values of x be-

tween 0 and 1. The compounds possess a monoclinic layered structure (space group

C2/m) throughout the solid solution range with the lattice constants following Ve-

gard’s relationship. Magnetization and resistivity data below room temperature

are presented. The effective magnetic moment (µeff ) is reduced below the value

obtained by interpolating between the end-members, presumably due to nearest

neighbor charge exchange leading to non-magnetic Ir5+/Rh3+ pairs. Surprisingly,

the degree of reduction of eff cannot be explained by a random mixture of Ir and

Rh and, in particular, is strongly asymmetric around x = 0.5. This anomalous mo-

ment reduction possibly results from the difference in on-site Coulomb repulsion

between Ir and Rh ions.
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A.2 Introduction

With the prospect of new science and technology in topological insulators, systems

with strong spin-orbit coupling (SOC) are of great interest within the solid state

science community. Through numerous studies, strong SOC systems have been

shown to exhibit many unconventional properties that challenge existing theory.

In particular, many A2MO3 “honeycomb” layered oxides where A is an alkali atom

and M is a 4d or 5d element, show unique electronic and magnetic properties

indicative of SOC [1-10]. These properties also reflect the lamellar structure, com-

posed of alternating layers of pure Li and mixed LiM2 units in a cubic-close-packed

oxide array [11]. The LiM2 layers are composed of a hexagonal network of edge

sharing MO6 octahedra where a single Li+ ion occupies the centers of the resulting

hexagons (Figure A.1).

The honeycomb lattice iridates A2IrO3 (A = Li, Na) are especially important

since Ir has the strongest SOC among magnetic d-electron elements and these

materials have been proposed alternatively as candidates for either topologically

insulating or Kitaev quantum spin liquid states [12,13]. For Li2IrO3, three different

polytypes are known. In α-Li2IrO3, edge-sharing IrO6 octahedra form a simple two-

dimensional (2D) honeycomb layered structure [11]. For β-and γ-Li2IrO3, however,

the edge shared IrO6 octahedra form three dimensional (3D) connected arrange-

ment [14,15]. Specifically, these Li2MO3 polytypes are Li2MnO3-type (C2/m) and

Li2SnO3-type (C2/c) with the difference being the stacking of the LiM2 layers

along the c-axis (Figure A.2) [16]. There has been some controversy in the lit-
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Figure A.1: (a) Li2MO3 (M = Ir, Rh) structure as alternating layers of Li+ and
LiM2 and (b) LiM2 layer where MO6 octahedra form the honeycomb like lattice.
Green, pink and red spheres represent lithium, metal, and oxygen atoms respec-
tively.

erature regarding the space group of Li2IrO3, particularly between C2/c (Z =

8) symmetry or C2/m (Z = 4) symmetry [8,11]. Recent work, confirmed in the

present study, shows that higher symmetry C2/m is the appropriate space group

for Li2IrO3 [11,17]. It is known that Li2IrO3 is electrically insulating with an effec-

tive magnetic moment µeff = 1.83 µB and an antiferromagnetically ordered state

below 15 K [17,18]. This behavior has been described as that of a Mott insulator

with magnetism of a Heisenberg-Kitaev interaction arising from SOC [18]. The

isoelectronic 4d5 honeycomb compound Li2RhO3 which crystallizes in the C2/m

structure has been explored, and is also found to be an insulator [19,20]. Long

range magnetic order was not observed in this system but the susceptibility dis-

plays a frequency-dependent feature consistent with a spin glass state below a
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freezing temperature, Tf = 5 K [21]. Since the Weiss temperature, θW , is 50K,

the ratio θW/Tf of roughly 10 suggests strong geometrical frustration, although

the presence of stacking faults, discussed below introduces a random component to

the mean field. While the isoelectronic and isostructural honeycomb iridates and

rhodates are both insulators, the analogous comparison of the square-lattice sys-

tems Sr2IrO4 and Sr2RhO4, shows a transition from insulating to metallic ground

state [22,23]. The absence of such a transition in the honeycomb systems has been

suggested to result from the combined effect of (i) quasi-molecular orbitals, which

effect a band insulator, and (ii) the interplay between SOC and Coulomb correla-

tions [20]. An important difference between the Ir and Rh honeycomb systems is

a change of µeff , from 1.83 µB in the large-SOC Li2IrO3 [18] to 2.2 µB in Li2RhO3

[20]. In the present work, we study the solid solution series Li2Ir1−xRhxO3, in

particular to examine the change in both µeff as well as charge transport across

the series. We find a strong moment reduction on the Rh-rich side of the series,

which supports the notion that on-site Coulomb energy in the Rh-rich compounds

plays an important role in charge localization.

A.3 Experimental

Polycrystalline samples of Li2Ir1−xRhxO3 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) were

prepared by intimately mixing and grinding stoichiometric amounts of Li2CO3

(Sigma, 99.8%), IrO2 and Rh2O3 (Matthey, 99.99%) in an agate mortar. The

Li2CO3 was dried at 120 C overnight, and the IrO2 was obtained by decomposing
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Figure A.2: Stacking of LiM2 layers in (a) Li2MnO3- type (C2/m) and (b)
Li2SnO3-type (C2/c) structure when viewed along the c-axis. Green, purple and
orange spheres represent lithium, manganese and tin atoms respectively. Oxygen
atoms are omitted for clarity.

IrCl3 (Alfa Aesar, 99.9%) at 750 C for 10 h under air flow. For all synthesis pro-

cesses, 5% excess Li2CO3 was added to compensate for high temperature lithium

volatility. The samples were then pelletized and sintered in oxygen flow at 950 C

for 24 h for all samples except Li2RhO3 which was sintered at 850 C for 24 h with

intermittent grinding. All samples were black in color. X-ray diffraction (XRD)

characterization was done on a Rigaku Miniflex II diffractometer using Cu Kα radi-

ation and a graphite monochromator. Seebeck and resistivity measurements were

performed at high temperatures (300–800 K) on an ULVACRIKO ZEM 3 under

a static helium atmosphere. Low-temperature (5–300 K) magnetization measure-

ments were obtained with a Quantum Design MPMS and resistivity (50–300 K)

measurements were obtained using a Quantum Design PPMS.
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A.4 Results and Discussion

A.4.1 Structural Properties

Polycrystalline samples of complete solid solution between Li2IrO3 and Li2RhO3

were successfully synthesized. Figure A.3(a) shows the XRD patterns of the sam-

ples crystallizing in monoclinic layered structure with space group C2/m. The a-,

b- and c-lattice parameters decrease marginally with increasing x in Li2Ir1−xRhxO3

as shown in Figure A.3(b). This trend is expected given the small difference in ionic

radii between Ir4+ (0.625) and Rh4+ (0.60) [24]. Figure A.4(a,b) shows changes

in the β angle and the unit cell volume as a function of x. It is noticed that the

reflections in the XRD patterns are very weak between 2θ of 190 and 330, a region

where stacking faults affect the intensity of the hkl reflections and create an asym-

metric broadening of the affected reflections. With the exception of Li2IrO3, the

Le-Bail refinement clearly does not fit the broad asymmetrical peaks within the 2θ

region 19–330 (Figure A.3).

Refining the Ir(4g)–Li(2a) site occupancies did not improve the fit to these

asymmetric broad peaks [11]. The broadness of these peaks in this region for other

honeycomb layered structures has been attributed also to the existence of stacking

faults [16,25,26]. A structure with less peak broadening in the specific stacking

fault 2θ region with an increase in temperature is observed for Li2IrO3, while the

best structurally ordered sample was obtained at 850 C in oxygen atmosphere for

Li2RhO3.

In order to evaluate the degree of stacking faults of Li2Ir1−xRhxO3 in a quan-



217

10 20 30 40 50 60 70

x = 1.0 

x = 0.8 

x = 0.6 

x = 0.5 

x = 0.4

x = 0.2 

2 (degrees)

x = 0

Li
2
Ir

1-x
Rh

x
O

3

0.0 0.2 0.4 0.6 0.8 1.0

5.06

5.08

5.10

5.12

5.14

5.16

5.18

5.208.80

8.82

8.84

8.86

8.88

8.90

8.92

8.94

 

 

 a

 b

 c

L
a

tt
ic

e
 P

a
ra

m
e

te
r 

(Å
)

x in Li2Ir1-xRhxO3

Figure A.3: (a) Powder XRD patterns and (b) lattice parameters for x=0–1 in
Li2Ir1−xRhxO3.

titative manner, the DIFFaX software was employed [27] and a model similar to

that used by Breger et al. was applied [16]. The DIFFaX software requires the cell

axes to be defined such that the c-axis is perpendicular to the fault direction, re-

sulting with a new idealized unit cell. Thus, a hexagonal unit cell with ahex=aC2/m

and chex=cC2/mcos(βC2/m−90) was implemented and individual honeycomb metal

oxide layers were defined. As discussed by Breger et. al., in order to replicate
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Figure A.4: (a) The β angle and (b) Cell volume as a function of x in
Li2Ir1−xRhxO3.

the A1B1C1 stacking sequence of Li2IrO3 (C2/m), the honeycomb metal oxide

layers were characterized by the [1/3,0,1] transition vector (α1). The rotation of

the stacking direction by 1200 and 2400 was described by the transition vectors
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[2/3,2/3,1] and [0,1/3,1] (α2 and α3). Probabilities were assigned to each of the

three transition vectors, with α1+α2+α3=1. For the latter two transition vectors,

there was no tangible difference in the model when varying the contribution for a

given total stacking fault probability. Thus for the models presented, the assump-

tion α2=α3 was implemented. Figure A.5 reveals a comparison of XRD patterns

in the 2θ region 19–330 among the different compounds Li2Ir1−xRhxO3 (x = 0, 0.5

and 1) (blue line), along with simulated DIFFaX best fit XRD patterns with cor-

responding stacking fault percentages (red line). These simulated XRD patterns

supports the conjecture that the asymmetrical broadness of the peaks is due to

the presence of stacking faults. As expected, a higher density of stacking faults is

estimated for the honeycomb Li2RhO3 (30%) compared to Li2IrO3 (5%).

A.4.2 Electrical Properties

The magnetic susceptibility χ(T), was measured for in a magnetic field of H = 0.5T.

Both Li2IrO3 and Li2RhO3 display paramagnetic behavior above 50 K [8,21]. Fig-

ure A.6 shows the magnetic susceptibility for the series as function of temperature.

The behavior of the end members is consistent with previous results that show de-

viations in Curie-Weiss behavior indicative of antiferromagnetic interaction at 15

K for Li2IrO3 and spin freezing 6 K for Li2RhO3 [18,21]. The inverse susceptibil-

ity, 1/χ(T) is fit by the Curie-Weiss form, χ=C/(T-θ)-χvv, where C is the Curie

constant, θ is the Weiss constant and χvv a van Vleck temperature independent

term. The µeff , values reported here were obtained by selecting, for each x, a
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Figure A.5: DIFFaX simulated (red line) and experimental powder XRD patterns
(blue line) for Li2Ir1−xRhxO3 (x = 0, 0.5 and 1.0) in the region 2θ = 19–330.

χvv that provides the smallest sum of the variances (χ2) for a linear fit to 1/χ(T).

Resulting fits between 100 and 300 K yields µeff values of 1.87µB for Li2IrO3 and

2.03 µB for Li2RhO3 (Figure A.6b). These values of µeff are close to the expected

spin only µeff value for Ir (IV) and Rh (IV) in octahedral coordination (1.73 µB),

with the differences being attributable to SOC through the g-factor. We see that

µeff decreases with increasing Rh concentration until the region 0.5 < x < 0.8 and

then increases to 2.03 µB for x = 1 (Figure A.7(a)). The θ values are 35.0 K and

57.7 K for Li2IrO3 and Li2RhO3 respectively which indicate antiferromagnetic in-

teractions, consistent with a Curie-Weiss analysis for T > 100 K. Thus, the Ir-Rh
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solid solutions show systematic paramagnetic behavior and the AFM transition

in Li2IrO3 is suppressed quickly by Rh substitution over the entire measurement

region.
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Figure A.6: Temperature dependence of magnetic susceptibility (χ) plot (top) and
inverse magnetic susceptibility (1/χ) plot (bottom) for Li2Ir1−xRhxO3 (x = 0, 0.2,
0.5, 0.8 and 1.0).

A reduced moment is difficult to explain if one assumes a random spatial config-
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uration of only Ir4+ and Rh4+ ions, since i) the local environment does not change

over the series, and ii) the spin-spin interaction, as derived from the Weiss con-

stants is too small to cause an effective moment reduction above 100 K. As noted

in Rh-dilution studies of the square lattice system Sr2IrO4, however [28,29], Ir can

be readily stabilized in the pentavalent configuration (Ir5+) and Rh in the trivalent

configuration (Rh3+), both of which are non-magnetic. Thus it is possible for the

Li2Ir1−xRhxO3 solid solution members to have a lower effective moment and still

maintain ionic charge balance if a fraction of Ir4+ ions transfers an electron to a

neighboring Rh4+ ion, resulting in a Ir5+/Rh3+ pair. The driving force for such a

charge transfer (CT) mechanism might be the different on-site Coulomb repulsion

energy U , which is 3–4 eV for 4d metals, about twice that found for 5d metals

[20]. Since the honeycomb lattice is bipartite, full magnetic compensation at x

= 0.5 is possible if the site occupancy is perfectly ordered. Away from x = 0.5,

and for maximum magnetic compensation, a lower limit for the effective moment

is µeff=
√

1− 2yµm, where y is the fraction of the total that are minority spins

(y = x or (1-x) for x < or >0.5 respectively and µm is the effective moment of

the majority ion. For x< 0.5, µm = µeff (Ir
4+) = 1.86 µB and for x> 0.5, µm

= µeff (Rh4+) = 2.03 µB. This lower limit is plotted in Figure A.7(a). Clearly,

the observed µeff show only partial compensation, indicating that randomness is

important for determining the number of uncompensated magnetic ions. In order

to estimate µeff (x) we construct a simple model in which the sites of a 13 x 13

honeycomb lattice are randomly occupied by (1-x) Ir4+ and x Rh4+ ions. We then

step through the lattice and identify Ir4+/Rh4+ nearest neighbor pairs, which are
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assumed to undergo CT and become non-magnetic. If more than one pair can

be formed, we randomly select one of them. The value of µeff is obtained by

first counting the resulting unpaired atoms and assigning them the appropriate

moment, either Ir4+ or Rh4+. The effective moment in this “unscreened” model

is then given by µus=[zIrµ
2
Ir4++zRhµ

2
Rh4+ ]1/2, where zIr and zRh is the fraction

of free Ir and Rh moments respectively. Simulations are performed for different

starting configurations, and different ratios of Ir and Rh, and the uncertainty in

µeff derived from the resulting spread of µus values. As shown in Figure A.7, µus

obtained by this method is greater than the maximum pairing assumption at all x,

as expected. In addition, µus is approximately symmetric about x = 0.5, with the

small asymmetry arising from the slightly different µeff values for Ir4+ and Rh4+.

A much larger asymmetry is displayed by the observed µeff values, discussed next.

As seen in Figure A.7(a), the measured µeff is larger than µus for x < 0.5, and

smaller than µus for x > 0.5. Thus, in the Ir-rich phase the CT mechanism leading

to Ir4+/Rh3+ pairs seems to be screened, fewer CT pairs thus formed, and the

density of residual magnetic moments is larger than expected in the unscreened

scenario.

The source of such screening is not obvious, but may lie in the spin-orbit

splitting of the Ir4+ six-fold t2g multiplet, which is larger than in Rh, thus providing

a barrier for charge transfer. As x increases towards 0.5, µeff approaches µus.

As mentioned above, however, the number of stacking faults becomes substantial

for x > 0.5. It is also likely that concurrently, the density of anti-site defects,

in which Rh ions exchange places with Li, also becomes substantial. While the
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Figure A.7: (a) Variation of effective moment, µeff , with x in Li2Ir1−xRhxO3

(solid blue circles). Models of µeff variation discussed in the text are simple
interpolation (dashed black line), charge-transfer between Ir4+/Rh4+ pairs in an
ordered lattice (dashed-dot red line) and unscreened random charge-transfer, µus
(solid green line). (b) The variation of the characteristic temperature, T0, in a 2D
variable range hopping model with x. Lines are drawn to guide the eye.
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Li environment is octahedral, similar to the Ir or Rh environment, and as such

the moment would be preserved, such an effect would work in opposition to the

CT mechanism since it would reduce the number of nearest neighbor Ir4+/Rh4+

pairs. For x > 0.5, µeff is smaller than µus, which cannot be explained solely

with local moments. We know, however, that µeff of Li2RhO3 is well-explained

by local moments, which has been interpreted to result from the combination of

quasi-molecular orbitals and large onsite U , as discussed by Mazin et al. [20]. A

possible explanation for the reduction in µeff for x > 0.5 might lie in an enhanced

charge mobility since delocalization correlates with reduced local moment. Such

an “over-screened” CT process is reflected in resistivity, ρ(T),which is reduced for

0.5 < x < 1.0, as discussed next.

Low temperature ρ(T), data for the compounds x = 0, 0.2, 0.5, 0.8 and 1.0 are

shown in Figure A.8(a). The room temperature values for the two end members are

in reasonable agreement with previous experimental results [17,19,21] and ρ(T),

is semiconductor-like over the entire range of measurement. The ρ(T), data for

Li2RhO3 is consistent with results of Luo et al. but is, not surprisingly, an order

of magnitude greater than the high-frequency (>1 MHz) results of Todorova et

al. [19,21]. Previous transport studies on related honeycomb systems explained

ρ(T), in terms of 3D variable range hopping (VRH) for Na2IrO3 [1] and Li2RhO3

[21], and 2D VRH for the Li2Ir1−xRuxO3 [17]. We analyzed our data using the

general formula for VRH (ρ=ρ0exp[(T0/T)(1/(d+1))]) where d is the dimensionality,

and ρ0 and T0 are fitting parameters. We found that the reduced χ2 of the fits for

all compounds except x = 0.8 were minimized at d = 2, supporting the notion of
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transport mainly within the honeycomb lattice.
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Figure A.8: Temperature-dependent, low-temperature resistivity plot (top) and
2D VRH plot for Li2Ir1−xRhxO3 (x = 0, 0.2, 0.5, 0.8 and 1.0) (bottom).

The T0 and ρ0, values obtained from these fits for each sample are listed in

Table A.1. In Figure A.8(b) we show the resistivity data for all samples collapsed

onto a d = 2 VRH model. While the agreement is generally very good, the x =
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0.8 compound deviates significantly from VRH behavior in a manner that suggests

a temperature-independent conduction channel in parallel with the 2D channel.

Given the large number of stacking faults on the Rh-rich side of the series, it is

possible that the related anti-site disorder [30] along with the lower U of Ir combine

to create such a channel. High temperature resistivity and Seebeck coefficients for

x = 0, 0.2, 0.5, 0.8 and 1.0 are shown in Figure A.9. All samples are observed to

be p-type semiconductors. However a transition from n-type to p-type is expected

for Li2RhO3 as observed by the negative S for it at room temperature suggesting

carriers of both signs which is temperature dependent [31]. We note the large value

of S found for x = 1, which suggests that the on-site Coulomb energy, suspected

as a contributor to the small moments in the intermediate-x range, is playing a

substantial role in charge transport.

Table A.1: The fitting parameters T0 and ρ0 for Li2Ir1−xRhxO3 (x = 0, 0.2, 0.5,
0.8 and 1.0).

Composition T0(K) ρ0 (Ohm-cm)
x = 0 7.80x107 3.75x10−11

x = 0.2 3.51x107 1.79x10−9

x = 0.5 1.84x107 1.23x10−7

x = 0.8 9.16x105 5.35x10−7

x = 1.0 1.50x107 7.31x10−8
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Figure A.9: (a) Temperature dependent, high temperature resistivity and (b)
Seebeck coefficient plot for Li2Ir1−xRhxO3 (x = 0, 0.2, 0.5, 0.8 and 1.0).

A.5 Summary

We have synthesized the solid solution series Li2Ir1−xRhxO3 and studied it using

magnetic and transport probes. We find a marked reduction of the effective mo-

ment over the entire range of dilution. This moment reduction is understood to

arise from several factors: a charge transfer process between Ir4+/Rh4+ pairs lead-

ing to nonmagnetic Ir5+/Rh3+ pairs; large spin orbit splitting of the t2g multiplet
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on the Ir-rich side of the series; and large onsite U on the Rh-rich side of the series.

Anti-site mixing may play a role in reducing the number of charge transfer pro-

cesses. Apart from the complication introduced by anti-site mixing, the present

study illuminates some of the issues associated with controlling the valence state

in heavy d-element compounds. First, related to the high oxidation states of these

j = 1/2 species, stable neighboring oxidation states are often found, and can be

induced by the doping process itself. Second, the tendency towards itineracy is

balanced not only by the onsite U , but also by SOC. Finally, the combined effects

of small-U Ir and large-U Rh can have dramatic consequences for transport in

these systems.

A.6 TOF Neutron Diffraction Refinements (not in manuscript)

Time of Flight (TOF) neutron diffraction measurements for Li2−xIr1−xRhxO3 sam-

ples were collected at Oak Ridge National Laboratory POWGEN BL-11A SNS

beamline. Rietveld refinement of Li2Ir0.2Rh0.8O3 nominal composition sample is

shown in Figure A.10. A pseudo-Voigt peak shape profile was chosen and param-

eters refined to obtain the best fitt to the collected data. The space group was

refined to be C2/m, with lattice dimensions a = 5.135 Å, b = 8.871 Å, c = 5.112

Å, and β = 109.920. Rietveld refinement shows a wRp = 3.19%. The atomic

coordinates, occupancies, and isotropic displacement parameters are represented

in Table A.2. For C2/m there are two unique atomic positions to describe de-

scribe the Li and Ir/Rh sites within the Li(Ir/Rh)2 layer. Shown in Table A.2,
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corresponding sites are labeled as 4g and 2a wyckoff sites. If no Li-M site disorder

existed within the LiM2 layer, only Ir/Rh(4g) and Li(2a) would exist, with the

Ir/Rh(4g) site describing the honeycomb ring. As shown from Table A.2 occupan-

cies, a small percentage (≈13%) of Li-M site disorder exists within the Li(Ir/Rh)2

layer. As shown by the 2d and 4h refined occupancies, no Ir/Rh was detected

within the Li-layers. The stoichiometry derived from occupancy refinements is

Li2Ir0.203Rh0.797O3.
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Wyckoff x y z occ Uiso

Rh+4 4g 0 0.3321(4) 0 0.73(5) 0.0014(2)
Li+1 4g 0 0.3321(4) 0 0.13(5) 0.0014(2)
Ir+4 4g 0 0.3321(4) 0 0.13(5) 0.0014(2)
Li+1 2a 0 0 0 0.73(5) 0.0020(2)
Ir+4 2a 0 0 0 0.13(5) 0.0020(2)
Rh+4 2a 0 0 0 0.13(5) 0.0020(2)
Li+1 2d 0 0.5 0.5 1 0.0021(2)
Li+1 4h 0 0.8112(1) 0.5 1 0.0042(2)
O2− 8j 0.2501(6) 0.3292(8) 0.7663(5) 1 0.0066(9)
O2− 8j 0.2674(8) 0 0.7665(2) 1 0.0082(3)

Table A.2: Atomic coordinates, occupancies and isotropic displacement param-
eters obtained from Rietveld refinement (C 2/m) of TOF Neutron (Oak Ridge
POWGEN BL-11A SNS) diffraction data.



233

References

1. Y. Singh, P. Gegenwart, Phys. Rev. B 82 (2010) 1-7.

2. S. Manni, S. Choi, I.I. Mazin, R. Coldea, H.O. Jeschke, R. Valenti, et al.,

Phys. Rev. B 89 (1-7) (2014) 245113.

3. E. Mccalla, A.M. Abakumov, D. Foix, E.J. Berg, G. Rousse, M. Doublet, et

al., Science 350 (2015) 1516-1521.

4. S. Okada, J. Yamaki, K. Asakura, H. Ohtsuka, H. Arai, S. Tobishima, et al.,

Electrochim. Acta 45 (1999) 329-334.

5. I. Felner, I.M. Bradaric, Phys. B Condens. Mater. 311 (2002) 195-199.

6. A.C.W.P. James, J.B. Goodenough, J. Solid State Chem. 76 (1988) 87-96.

7. Y.V. Baklanova, .V. Ishchenko, .. Denisova, L.G. Maksimova, B.V. Shulgin,

V.. Pustovarov, et al., Opt. Mater. 34 (2012) 1037-1041.

8. H. Kobayashi, M. Tabuchi, M. Shikano, H. Kageyama, R. Kanno, J. Mater.

Chem. 13 (2003) 957-962.

9. A. Sinha, S.R. Nair, P.K. Sinha, J. Nucl. Mater. 399 (2010) 162-166.

10. M.I. Pantyukhina, V.P. Obrosov, A.P. Stepanov, Crystallogr. Rep. 49 (2004)

676-679.

11. M.J. O’Malley, H. Verweij, P.M. Woodward, J. Solid State Chem. 181 (2008)

1803-1809.



234

12. A. Biffin, R.D. Johnson, S. Choi, F. Freund, S. Manni, A. Bombardi, et al.,

Phys. Rev. B 90 (1-14) (2014) 205116.

13. S.C. Williams, R.D. Johnson, F. Freund, S. Choi, A. Jesche, I. Kimchi, et

al., Phys. Chem. 93 (1-13) (2016) 195158.

14. K.A. Modic, T.E. Smidt, I. Kimchi, N.P. Breznay, A. Biffin, S. Choi, et al.,

Nat. Commun. 5 (2014) 1-6.

15. T. Takayama, A. Kato, R. Dinnebier, J. Nuss, H. Kono, L.S.I. Veiga, et al.,

Phys. Rev. Lett. 114 (1-5) (2015) 077202.

16. J. Breger, M. Jiang, N. Dupre, Y.S. Meng, Y. Shao-Horn, Gerbrand Ceder,

et al., J. Solid State Chem. 178 (2005) 2575-2585.

17. H. Lei, W. Yin, Z. Zhong, H. Hosono, Phys. Rev. B 89 (1-5) (2014) 020409.

18. Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, et al., Phys.

Rev. Lett. 108 (1-5) (2012) 127203.

19. V. Todorova, M. Jansen, Z. Anorg, Allg. Chem. 637 (2011) 37-40.

20. I.I. Mazin, S. Manni, K. Foyevtsova, H.O. Jeschke, P. Gegenwart, Phys. Rev.

B 88 (1-7) (2013) 035115.

21. Y. Luo, C. Cao, B. Si, Y. Li, J. Bao, H. Guo, Phys. Rev. B 87 (1-6) (2013)

161121.



235

22. N.S. Kini, A.M. Strydom, H.S. Jeevan, C. Geibel, S. Ramakrishnan, J. Phys.

Condens. Mater. 18 (2006) 8205-8216.

23. R.S. Perry, F. Baumberger, L. Balicas, N. Kikugawa, N.J.C. Ingle, A. Rost,

et al., New J. Phys. 8 (2006) 1-14.

24. R.D. Shannon, Acta Cryst. A32 (1976) 751-767.

25. W. Schmidt, R. Berthelot, L. Etienne, A. Wattiaux, M.A. Subramanian,

Matter. Res. Bull. 50 (2014) 292-296.

26. Z. Lu, J.R. Dahn, Chem. 13 (2001) 2078-2083.

27. M.M.J. Treacy, J.M. Newsam, M.W. Deem, in: A443, Proc. Roy.Soc., Lon-

don, 1991.

28. Y. Klein, I. Terasaki, J. Phys. Condens. Mater 20 (2008) 295201-295205.

29. Y. Klein, I. Terasaki, J. Electron. Mater. 38 (2009) 1331-1336.

30. V.M. Katukuri, S. Nishimoto, I. Rousochatzakis, H. Stoll, J. van den Brink,

L. Hozoi, Sci. Rep. 5 (1-7) (2015) 14718.

31. J. Flynn, J. Li, A.W. Sleight, A.P. Ramirez, M.A. Subramanian, Inorg.

Chem. 55 (2016) 2748-2754.



236

Appendix B: DIFFaX input file

1 INSTRUMENTAL

2 X−Ray

3 1 .541

4 PSEUDO−VOIGT 0.1 −0.036 0 .009 0 .6 TRIM

5 STRUCTURAL

6 5 .1839 5 .1839 4 .8037 120 .0

7 UNKNOWN

8 9

9 i n f i n i t e

10

11 LAYER 1

12 None

13 I r 4+ 2 1/9 5/9 0 2 .0 1 .0

14 I r 4+ 2 4/9 2/9 0 2 .0 1 .0

15 Li1+ 1 7/9 8/9 0 2 .0 1 .0

16 O 2− 3 1/9 8/9 1/4 2 .0 1 .0

17 O 2− 3 4/9 5/9 1/4 2 .0 1 .0

18 O 2− 3 7/9 2/9 1/4 2 .0 1 .0

19 Li1+ 1 1/9 2/9 1/2 2 .0 1 .0

20 Li1+ 1 4/9 8/9 1/2 2 .0 1 .0

21 Li1+ 1 7/9 5/9 1/2 2 .0 1 .0

22 O 2− 3 1/9 5/9 3/4 2 .0 1 .0

23 O 2− 3 4/9 2/9 3/4 2 .0 1 .0
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24 O 2− 3 7/9 8/9 3/4 2 .0 1 .0

25 LAYER 2 = 1

26 LAYER 3 = 1

27 LAYER 4 = 1

28 LAYER 5 = 1

29 LAYER 6 = 1

30 LAYER 7 = 1

31 LAYER 8 = 1

32 LAYER 9 = 1

33

34 STACKING

35 r e c u r s i v e { S t a t i s t i c a l ensemble}

36 i n f i n i t e { I n f i n i t e number o f l a y e r s }

37

38 TRANSITIONS

39

40 {Trans i t i on s − l a y e r 1}

41 0 .0000 0/3 0/3 1 .0 { l a y e r 1 to l a y e r 1}

42 0 .0000 1/3 2/3 1 .0 { l a y e r 1 to l a y e r 2}

43 0 .0000 2/3 1/3 1 .0 { l a y e r 1 to l a y e r 3}

44 0 .7000 1/3 0/3 1 .0 { l a y e r 1 to l a y e r 4}

45 0 .1500 2/3 2/3 1 .0 { l a y e r 1 to l a y e r 5}

46 0 .1500 0/3 1/3 1 .0 { l a y e r 1 to l a y e r 6}

47 0 .0000 1/3 1/3 1 .0 { l a y e r 1 to l a y e r 7}

48 0 .0000 2/3 0/3 1 .0 { l a y e r 1 to l a y e r 8}

49 0 .0000 0/3 2/3 1 .0 { l a y e r 1 to l a y e r 9}

50
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51 {Trans i t i on s − l a y e r 2}

52 0 .0000 2/3 1/3 1 .0 { l a y e r 2 to l a y e r 1}

53 0 .0000 0/3 0/3 1 .0 { l a y e r 2 to l a y e r 2}

54 0 .0000 1/3 2/3 1 .0 { l a y e r 2 to l a y e r 3}

55 0 .1500 0/3 1/3 1 .0 { l a y e r 2 to l a y e r 4}

56 0 .7000 1/3 0/3 1 .0 { l a y e r 2 to l a y e r 5}

57 0 .1500 2/3 2/3 1 .0 { l a y e r 2 to l a y e r 6}

58 0 .0000 0/3 2/3 1 .0 { l a y e r 2 to l a y e r 7}

59 0 .0000 1/3 1/3 1 .0 { l a y e r 2 to l a y e r 8}

60 0 .0000 2/3 0/3 1 .0 { l a y e r 2 to l a y e r 9}

61

62 {Trans i t i on s − l a y e r 3}

63 0 .0000 1/3 2/3 1 .0 { l a y e r 3 to l a y e r 1}

64 0 .0000 2/3 1/3 1 .0 { l a y e r 3 to l a y e r 2}

65 0 .0000 0/3 0/3 1 .0 { l a y e r 3 to l a y e r 3}

66 0 .1500 2/3 2/3 1 .0 { l a y e r 3 to l a y e r 4}

67 0 .1500 0/3 1/3 1 .0 { l a y e r 3 to l a y e r 5}

68 0 .7000 1/3 0/3 1 .0 { l a y e r 3 to l a y e r 6}

69 0 .0000 2/3 0/3 1 .0 { l a y e r 3 to l a y e r 7}

70 0 .0000 0/3 2/3 1 .0 { l a y e r 3 to l a y e r 8}

71 0 .0000 1/3 1/3 1 .0 { l a y e r 3 to l a y e r 9}

72

73 {Trans i t i on s − l a y e r 4}

74 0 .0000 2/3 0/3 1 .0 { l a y e r 4 to l a y e r 1}

75 0 .0000 0/3 2/3 1 .0 { l a y e r 4 to l a y e r 2}

76 0 .0000 1/3 1/3 1 .0 { l a y e r 4 to l a y e r 3}

77 0 .0000 0/3 0/3 1 .0 { l a y e r 4 to l a y e r 4}
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78 0 .0000 1/3 2/3 1 .0 { l a y e r 4 to l a y e r 5}

79 0 .0000 2/3 1/3 1 .0 { l a y e r 4 to l a y e r 6}

80 0 .1500 0/3 1/3 1 .0 { l a y e r 4 to l a y e r 7}

81 0 .7000 1/3 0/3 1 .0 { l a y e r 4 to l a y e r 8}

82 0 .1500 2/3 2/3 1 .0 { l a y e r 4 to l a y e r 9}

83

84 {Trans i t i on s − l a y e r 5}

85 0 .0000 1/3 1/3 1 .0 { l a y e r 5 to l a y e r 1}

86 0 .0000 2/3 0/3 1 .0 { l a y e r 5 to l a y e r 2}

87 0 .0000 0/3 2/3 1 .0 { l a y e r 5 to l a y e r 3}

88 0 .0000 2/3 1/3 1 .0 { l a y e r 5 to l a y e r 4}

89 0 .0000 0/3 0/3 1 .0 { l a y e r 5 to l a y e r 5}

90 0 .0000 1/3 2/3 1 .0 { l a y e r 5 to l a y e r 6}

91 0 .1500 2/3 2/3 1 .0 { l a y e r 5 to l a y e r 7}

92 0 .1500 0/3 1/3 1 .0 { l a y e r 5 to l a y e r 8}

93 0 .7000 1/3 0/3 1 .0 { l a y e r 5 to l a y e r 9}

94

95 {Trans i t i on s − l a y e r 6}

96 0 .0000 0/3 2/3 1 .0 { l a y e r 6 to l a y e r 1}

97 0 .0000 1/3 1/3 1 .0 { l a y e r 6 to l a y e r 2}

98 0 .0000 2/3 0/3 1 .0 { l a y e r 6 to l a y e r 3}

99 0 .0000 1/3 2/3 1 .0 { l a y e r 6 to l a y e r 4}

100 0 .0000 2/3 1/3 1 .0 { l a y e r 6 to l a y e r 5}

101 0 .0000 0/3 0/3 1 .0 { l a y e r 6 to l a y e r 6}

102 0 .7000 1/3 0/3 1 .0 { l a y e r 6 to l a y e r 7}

103 0 .1500 2/3 2/3 1 .0 { l a y e r 6 to l a y e r 8}

104 0 .1500 0/3 1/3 1 .0 { l a y e r 6 to l a y e r 9}
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105

106 {Trans i t i on s − l a y e r 7}

107 0 .1500 2/3 2/3 1 .0 { l a y e r 7 to l a y e r 1}

108 0 .1500 0/3 1/3 1 .0 { l a y e r 7 to l a y e r 2}

109 0 .7000 1/3 0/3 1 .0 { l a y e r 7 to l a y e r 3}

110 0 .0000 0/3 2/3 1 .0 { l a y e r 7 to l a y e r 4}

111 0 .0000 1/3 1/3 1 .0 { l a y e r 7 to l a y e r 5}

112 0 .0000 2/3 0/3 1 .0 { l a y e r 7 to l a y e r 6}

113 0 .0000 0/3 0/3 1 .0 { l a y e r 7 to l a y e r 7}

114 0 .0000 1/3 2/3 1 .0 { l a y e r 7 to l a y e r 8}

115 0 .0000 2/3 1/3 1 .0 { l a y e r 7 to l a y e r 9}

116

117 {Trans i t i on s − l a y e r 8}

118 0 .7000 1/3 0/3 1 .0 { l a y e r 8 to l a y e r 1}

119 0 .1500 2/3 2/3 1 .0 { l a y e r 8 to l a y e r 2}

120 0 .1500 0/3 1/3 1 .0 { l a y e r 8 to l a y e r 3}

121 0 .0000 2/3 0/3 1 .0 { l a y e r 8 to l a y e r 4}

122 0 .0000 0/3 2/3 1 .0 { l a y e r 8 to l a y e r 5}

123 0 .0000 1/3 1/3 1 .0 { l a y e r 8 to l a y e r 6}

124 0 .0000 2/3 1/3 1 .0 { l a y e r 8 to l a y e r 7}

125 0 .0000 0/3 0/3 1 .0 { l a y e r 8 to l a y e r 8}

126 0 .0000 1/3 2/3 1 .0 { l a y e r 8 to l a y e r 9}

127

128 {Trans i t i on s − l a y e r 9}

129 0 .1500 0/3 1/3 1 .0 { l a y e r 9 to l a y e r 1}

130 0 .7000 1/3 0/3 1 .0 { l a y e r 9 to l a y e r 2}

131 0 .1500 2/3 2/3 1 .0 { l a y e r 9 to l a y e r 3}



241

132 0 .0000 1/3 1/3 1 .0 { l a y e r 9 to l a y e r 4}

133 0 .0000 2/3 0/3 1 .0 { l a y e r 9 to l a y e r 5}

134 0 .0000 0/3 2/3 1 .0 { l a y e r 9 to l a y e r 6}

135 0 .0000 1/3 2/3 1 .0 { l a y e r 9 to l a y e r 7}

136 0 .0000 2/3 1/3 1 .0 { l a y e r 9 to l a y e r 8}

137 0 .0000 0/3 0/3 1 .0 { l a y e r 9 to l a y e r 9}
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Appendix C: FAULTS input file

1 TITLE

2 FAULTS TEST

3

4 INSTRUMENTAL AND SIZE BROADENING

5 ! Type Of Radiat ion

6 Radiat ion X−Ray

7 ! lambda1 lambda2 r a t i o

8 Wavelength 1 .5418 0 .0 0 .0

9 ! i n s t rumenta l a b e r r a t i o n s zero sycos s y s i n

10 Aberrat ions 0 .0000 0 .0000 0 .0000

11 0 .00 0 .00 0 .00

12 ! i n s t r . broadening u v w x Dg Dl

13 Pseudo−Voigt 0 .106138 −0.039704 0.086296 0.063275 579 .26

459 .87 TRIM

14 0 .0 0 .0 0 . 0 0 . 0 0 .0 0 .0 ( 0 . 0 1 0 .01 0 .01 0 .01 100 .0 100 .0 )

15 STRUCTURAL

16 ! a b c gamma

17 Ce l l 5 .123851 5.061555 23.928276 60 .00

18 0 .0 0 .0 0 . 0 0 . 0 ( 0 .01 0 .01 0 .1 0 .1 )

19

20 ! Fu l lPro f Studio commands

21 FST CMD SEQ 3 1 2 3

22
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23 ! Laue symmetry

24 Symm none

25 ! number o f l a y e r types

26 n l a ye r s 5

27 ! l a y e r width

28 Lwidth i n f i n i t e

29

30

31 LAYER 1

32 NONE

33 ! Atom name number x y z Biso Occ

34 Atom Li1+ 1 0.85163 0.85163 0 .0 1 .125 1 .0

35 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

36 Atom Li1+ 2 0.17643 0.17643 0 .0 1 .125 1 .0

37 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

38 Atom Li1+ 2 0 .5 0 .5 0 .0 5 .125 1 .0

39 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

40 Atom O2− 3 0.17724 0.85246 0.04989 1 .125 1 .0

41 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

42 Atom O2− 4 0.50000 0.17724 0.04989 1 .125 1 .0

43 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

44 Atom O2− 5 0.85164 0.50246 0.04989 1 .125 1 .0

45 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

46 Atom Os4+ 6 0.51833 0.85163 0.0952496 5 .125 1 .0

47 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

48 Atom Os4+ 7 0.84313 0.17643 0.0952496 5 .125 1 .0

49 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )
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50 Atom Li1+ 8 0.16749 0.50083 0.0952496 1 .125 1 .0

51 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

52 Atom O2− 9 0.50000 0.50000 0.14936 1 .125 1 .0

53 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

54 Atom O2− 10 0.17724 0.17724 0.14936 1 .125 1 .0

55 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

56 Atom O2− 11 0.85244 0.85244 0.14936 1 .125 1 .0

57 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

58

59

60

61 LAYER 2 = 1

62 LSYM none

63

64 LAYER 3 = 1

65 LSYM none

66

67 LAYER 4 = 1

68 LSYM none

69

70 LAYER 5 = 1

71 LSYM none

72

73

74 STACKING

75 ! s t a ck ing typ

76 Recurs ive
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77 ! number o f l a y e r s

78 i n f i n i t e

79

80 TRANSITIONS

81

82 ! l a y e r 1 to l a y e r 1

83 LT 0 .0 0 .0 0 .0 0 .0

84 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

85 ! l a y e r 1 to l a y e r 2

86 LT 1 .0 −0.6666 0 .0 1/5

87 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

88 ! l a y e r 1 to l a y e r 3

89 LT 0 .0 −0.333 0 .0 0 .333

90 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

91 ! l a y e r 1 to l a y e r 4

92 LT 0 .0 0 .0 0 .0 0 .0

93 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

94 ! l a y e r 1 to l a y e r 5

95 LT 0 .0 0 .0 0 .0 0 .0

96 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

97

98 ! l a y e r 2 to l a y e r 1

99 LT 0 .0 0 .0 0 .3333 0.33333

100 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

101 ! l a y e r 2 to l a y e r 2

102 LT 0 .0 0 .0 0 .0 0 .0

103 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )
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104 ! l a y e r 2 to l a y e r 3

105 LT 1 .0 −0.6666 0 .0 1/5

106 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

107 ! l a y e r 2 to l a y e r 4

108 LT 0 .0 0 .0 0 .0 0 .0

109 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

110 ! l a y e r 2 to l a y e r 5

111 LT 0 .0 0 .0 0 .0 0 .0

112 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

113

114 ! l a y e r 3 to l a y e r 1

115 LT 0 .0 −0.3333 0 .0 0 .3333

116 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

117 ! l a y e r 3 to l a y e r 2

118 LT 0 .0 0 .0 0 .3333 0.33333

119 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

120 ! l a y e r 3 to l a y e r 3

121 LT 0 .0 −0.333 0 .0 0 .333

122 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

123 ! l a y e r 3 to l a y e r 4

124 LT 1 .0 −0.6666 0 .0 1/5

125 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

126 ! l a y e r 3 to l a y e r 5

127 LT 0 .0 −0.333 0 .0 0 .333

128 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

129

130 ! l a y e r 4 to l a y e r 1
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131 LT 0 .0 −0.3333 0 .0 0 .3333

132 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

133 ! l a y e r 4 to l a y e r 2

134 LT 0 .0 0 .0 0 .3333 0.33333

135 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

136 ! l a y e r 4 to l a y e r 3

137 LT 0 .0 −0.333 0 .0 0 .333

138 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

139 ! l a y e r 4 to l a y e r 4

140 LT 0 .0 −0.333 0 .0 0 .333

141 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

142 ! l a y e r 4 to l a y e r 5

143 LT 1 .0 −0.6666 0 .0 1/5

144 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

145

146 ! l a y e r 5 to l a y e r 1

147 LT 1 .0 −0.6666 0 .0 1 .0

148 0 .0 0 .0 0 . 0 0 . 0 ( 0 .1 0 .1 0 . 1 0 . 1 )

149 ! l a y e r 5 to l a y e r 2

150 LT 0 .0 0 .0 0 .3333 0.33333

151 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

152 ! l a y e r 5 to l a y e r 3

153 LT 0 .0 −0.333 0 .0 0 .333

154 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

155 ! l a y e r 5 to l a y e r 4

156 LT 0 .0 −0.6666 0 .0 1/5

157 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )
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158 ! l a y e r 5 to l a y e r 5

159 LT 0 .0 −0.333 0 .0 0 .333

160 0 .0 0 .0 0 . 0 0 . 0 ( 0 .3 0 .1 0 . 1 0 . 1 )

161 CALCULATION

162 LMA

163 Corrmax 30

164 Maxfun 2400

165 Tol 0 .100000E−04

166 Nprint 0

167 ! R e p l a c e F i l e s

168

169 Experimental

170 ! Filename Sca l e f a c t o r code

171 FILE Li2OsO32 . dat 0 .001 0 .00

172 Excluded Regions 0

173 FFORMAT f r e e

174 ! L inear i n t e r p o l a t i o n

175 Bgr inte r background3 . bgr
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Appendix D: Programs

Programs to mitigate certain tasks have been sought after in the Functional Ma-

terials Research Group. Four programs were written in Python and converted to

windows executable programs (author: Max Wallace). The ”MAS TOOLBAR”

was created to host the four programs (Figure D.1) (author: Max Wallace).

ZT CALC
MULTI

Figure D.1: The ”MAS TOOLBAR” with the following programs: Bond Valence
Calculator, K-Calc, ZT Calc, ZT Calc MULTI, and Tetris.

A brief definition of each of the four programs is provided in Table D.1. Python

code for ”ZT Calc MULTI” and ”K-Calc” are provided below.
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Table D.1: Brief description of programs written by Max Wallace
Bond Valence Calculator: Used to calculate the bond

valence sum (BVS) around each metal atom in a compound.
The BVS can be compared to the expected oxidation state of that atom.
The bond valence is used to validate newly determined crystal structures.

K-Calc: Calculates the dielectric constant of a compound using the
Clausius-Mossotti relation. The Clausius-Mossotti relation

connects polarizability to dielectric permittivity.
ZT Calc: Calculates the Figure of Merit (ZT)

of a thermoelectric material. The electrical conductivity, Seebeck value,
and total thermal conductivity values must be known.

ZT Calc MULTI: compiles the raw data collected from the laser flash
instrument (thermal diffusion) and ZEM instrument (electrical conductivity
and Seebeck) into a single excel spreadsheet with raw data, corrected data

and calculated ZT for each temperature for a given sample.

D.1 ZT CALC MULTI

1 import re

2 import math

3 import wx . l i b . p la tebtn as p latebutton

4 import wx

5 import os

6 import sys

7 import csv

8

9

10 c l a s s Example (wx . Frame) :

11

12 de f i n i t ( s e l f , ∗ args , ∗∗kw) :

13 super ( Example , s e l f ) . i n i t (∗ args , ∗∗kw)
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14

15 s e l f . In i tUI ( )

16

17

18 de f In i tUI ( s e l f ) :

19

20 pnl = wx . Panel ( s e l f )

21 #font = s e l f . GetFont ( )

22 #font . Se tPo intS i z e (12)

23 #s e l f . SetFont ( f ont )

24 f ont = wx . Font (12 , wx .DECORATIVE, wx .NORMAL, wx .BOLD)

25 s e l f . SetFont ( f ont )

26 #l o c = wx . IconLocat ion ( r ’ bv icon . i c o ’ , 0)

27 #s e l f . Set Icon (wx . IconFromLocation ( l o c ) )

28

29

30 wx . Stat i cText ( s e l f , l a b e l=’ ’ ,

31 pos =(20 ,20) )

32 #wx . Stat i cText ( s e l f , l a b e l =’Name o f Text F i l e = ’ , pos =(34 ,

40) )

33 #wx . Stat i cText ( s e l f , l a b e l =’BVS = ’ , pos =(157 , 130) )

34

35

36 s e l f . f = wx . Stat i cText ( s e l f , l a b e l=’ ’ , pos =(200 , 150) )

37 s e l f . y = wx . Stat i cText ( s e l f , l a b e l=’ ’ , pos =(270 , 129) )

38 #s e l f . sc1 = wx . TextCtrl ( s e l f , va lue = ’ ’ , pos =(180 , 34) , s i z e

=(130 , −1) )
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39

40

41 # Set t ing up the menu

42 f i l e menu = wx . Menu( )

43

44 # A Statusbar in the bottom o f the window

45 s e l f . CreateStatusBar ( )

46

47 # wx .ID ABOUT and wx . ID EXIT are standard IDs provided

48 # by wxWidgets .

49 #f i l e menu . Append(wx . ID ABOUT, ’&About ’ ,

50 #’ Informat ion about t h i s a p p l i c a t i o n ’ )

51 # Creat ing the menubar

52 menu bar = wx . MenuBar ( )

53

54 m about = f i l e menu . Append(wx . ID ABOUT, ”&About” , ”

In format ion about t h i s program” )

55 s e l f . Bind (wx .EVT MENU, s e l f . OnAbout , m about )

56

57 # Adding the ’ f i l e menu ’ to the menu bar

58 menu bar . Append( f i l e menu , ’&F i l e ’ )

59

60 # Adding the menu bar to the frame content

61 s e l f . SetMenuBar ( menu bar )

62 s e l f . Show ( )

63

64 btn = wx . Button ( s e l f , l a b e l=’CALCULATE’ , pos =(120 , 90) )
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65 btn1 = wx . Button ( s e l f , l a b e l=’ Load TXT F i l e ’ , pos =(120 , 30) )

66 #btn2 = wx . Button ( s e l f , l a b e l =’Export as CSV f i l e ? ’ , pos =(70 ,

150) )

67 btn . SetBackgroundColour ( ’ l ime green ’ )

68

69 btn . SetFocus ( )

70 btn1 . SetFocus ( )

71 #cbtn = wx . Button ( s e l f , l a b e l =’CLOSE ’ , pos =(90 , 210) )

72 #cbtn . SetBackgroundColour ( ’ pink ’ )

73

74

75 btn . Bind (wx .EVT BUTTON, s e l f . OnCompute)

76 btn1 . Bind (wx .EVT BUTTON, s e l f . OnLoad)

77 #cbtn . Bind (wx .EVT BUTTON, s e l f . OnClose )

78 #btn2 . Bind (wx .EVT BUTTON, s e l f . OnExport )

79

80 s e l f . S e tS i z e ( (400 , 400) )

81 s e l f . S e t T i t l e ( ’ZT CALCULATOR MULTI ’ )

82 s e l f . Centre ( )

83 s e l f . Show( True )

84

85 s e l f . panel = wx . Panel ( s e l f )

86 s e l f . SetBackgroundColour ( ’ l i g h t blue ’ )

87

88 imageFi le = ’ t e s t . png ’

89 png = wx . Image ( imageFi le , wx .BITMAP TYPE ANY) . ConvertToBitmap

( )
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90 wx . StaticBitmap ( s e l f , −1, png , (10 , 155) , ( png . GetWidth ( ) ,

png . GetHeight ( ) ) )

91

92

93 de f OnAbout( s e l f , event ) :

94

95

96 d e s c r i p t i o n = ”””

97 Just load d e s i r e d txt f i l e ( t ry ’ Example . txt ’ f i l e )

98 and c l i c k CALCULATE

99

100 −> Can be used . . .

101

102 −> txt f i l e example {

103

104

105

106

107 }

108

109 [ De s c r ip t i on o f txt f i l e ]

110

111 ”””

112

113 i n f o = wx . AboutDialogInfo ( )

114 i n f o . SetName ( ’ZT CALCULATOR MULTI ’ )

115 i n f o . SetVers ion ( ’ ”” a l l out o f bubble gum” e d i t i o n ’ )
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116 i n f o . Se tDesc r ip t i on ( d e s c r i p t i o n )

117 i n f o . SetCopyright ( ’ (C) 2016 Max W’ )

118

119 wx . AboutBox ( i n f o )

120

121

122 de f OnLoad( s e l f , e ) :

123

124 wi ldcard = ” txt source ( ∗ . tx t ) | ∗ . tx t | ” \

125 ” Al l f i l e s ( ∗ . ∗ ) | ∗ . ∗ ”

126 dlg = wx . F i l e D i a l o g ( s e l f , ”Choose a f i l e ” , os . getcwd ( ) , ”” ,

wi ldcard , wx .OPEN)

127 i f d lg . ShowModal ( ) == wx . ID OK :

128 s e l f . f i l ename=dlg . GetFilename ( )

129 s e l f . dirname=dlg . GetDirectory ( )

130

131 dlg . Destroy ( )

132

133

134 #def OnClose ( s e l f , e ) :

135

136 # s e l f . Close ( True )

137

138

139 de f OnCompute( s e l f , e ) :

140

141 answer = s e l f . f i l ename
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142 f i n=open ( answer , ’ r ’ )

143 L 1 l i s t = f i n . r e a d l i n e ( )

144 L 2 l i s t = f i n . r e a d l i n e ( )

145 L 3 l i s t = f i n . r e a d l i n e ( )

146 L 4 l i s t = f i n . r e a d l i n e ( )

147 L 5 l i s t = f i n . r e a d l i n e ( )

148 L 6 l i s t = f i n . r e a d l i n e ( )

149 L 7 l i s t = f i n . r e a d l i n e ( )

150 L 8 l i s t = f i n . r e a d l i n e ( )

151 L 9 l i s t = f i n . r e a d l i n e ( )

152 x = s t r ( L 1 l i s t . s p l i t ( ) )

153 num = i n t ( L 2 l i s t )

154 D = f l o a t ( L 3 l i s t )

155 SHC = f l o a t ( L 4 l i s t )

156 L = f l o a t ( L 5 l i s t )

157

158 i f num == 6 :

159

160 T1 , T2 , T3 , T4 , T5 , T6 = L 6 l i s t . s p l i t ( )

161 T1 , T2 , T3 , T4 , T5 , T6 = [ f l o a t (T1) , f l o a t (T2) ,

f l o a t (T3) , f l o a t (T4) , f l o a t (T5) , f l o a t (T6) ]

162

163 SC1 , SC2 , SC3 , SC4 , SC5 , SC6 = L 7 l i s t . s p l i t ( )

164 SC1 , SC2 , SC3 , SC4 , SC5 , SC6 = [ f l o a t (SC1) , f l o a t

(SC2) , f l o a t (SC3) , f l o a t (SC4) , f l o a t (SC5) ,

f l o a t (SC6) ]

165
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166 TD1, TD2, TD3, TD4, TD5, TD6 = L 8 l i s t . s p l i t ( )

167 TD1, TD2, TD3, TD4, TD5, TD6 = [ f l o a t (TD1) , f l o a t

(TD2) , f l o a t (TD3) , f l o a t (TD4) , f l o a t (TD5) ,

f l o a t (TD6) ]

168

169 R1 , R2 , R3 , R4 , R5 , R6 = L 9 l i s t . s p l i t ( )

170 R1 , R2 , R3 , R4 , R5 , R6 = [ f l o a t (R1) , f l o a t (R2) ,

f l o a t (R3) , f l o a t (R4) , f l o a t (R5) , f l o a t (R6) ]

171

172 Kt1 = f l o a t ( (TD1) ∗D∗ ( 1 . 0 / ( 1 0 0 0 . 0∗∗2 . 0 ) )

∗ ( 1 . 0 / 1 0 0 0 . 0 ) ∗ ( 1 0 0 . 0∗∗3 . 0 ) ∗SHC)

173 Ke1 = f l o a t ( (1/R1) ∗L∗T1)

174 Kl1 = f l o a t (Kt1−Ke1)

175 ZT1 = f l o a t ( (T1∗(SC1∗∗2) ∗(1/Kt1 ) ∗(1/R1) ) )

176

177 Kt2 = f l o a t (TD2∗D∗ ( 1 . 0 / ( 1 0 0 0 . 0∗∗2 . 0 ) )

∗ ( 1 . 0 / 1 0 0 0 . 0 ) ∗ ( 1 0 0 . 0∗∗3 . 0 ) ∗SHC)

178 Ke2 = f l o a t ( (1/R2) ∗L∗T2)

179 Kl2 = f l o a t (Kt2−Ke2)

180 ZT2 = f l o a t (T2∗(SC2∗∗2) ∗(1/Kt2 ) ∗(1/R2) )

181

182 Kt3 = f l o a t (TD3∗D∗ ( 1 . 0 / ( 1 0 0 0 . 0∗∗2 . 0 ) )

∗ ( 1 . 0 / 1 0 0 0 . 0 ) ∗ ( 1 0 0 . 0∗∗3 . 0 ) ∗SHC)

183 Ke3 = f l o a t ( (1/R3) ∗L∗T3)

184 Kl3 = f l o a t (Kt3−Ke3)

185 ZT3 = f l o a t (T3∗(SC3∗∗2) ∗(1/Kt3 ) ∗(1/R3) )

186
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187 Kt4 = f l o a t (TD4∗D∗ ( 1 . 0 / ( 1 0 0 0 . 0∗∗2 . 0 ) )

∗ ( 1 . 0 / 1 0 0 0 . 0 ) ∗ ( 1 0 0 . 0∗∗3 . 0 ) ∗SHC)

188 Ke4 = f l o a t ( (1/R4) ∗L∗T4)

189 Kl4 = f l o a t (Kt4−Ke4)

190 ZT4 = f l o a t (T4∗(SC2∗∗2) ∗(1/Kt4 ) ∗(1/R4) )

191

192 Kt5 = f l o a t (TD5∗D∗ ( 1 . 0 / ( 1 0 0 0 . 0∗∗2 . 0 ) )

∗ ( 1 . 0 / 1 0 0 0 . 0 ) ∗ ( 1 0 0 . 0∗∗3 . 0 ) ∗SHC)

193 Ke5 = f l o a t ( (1/R5) ∗L∗T5)

194 Kl5 = f l o a t (Kt5−Ke5)

195 ZT5 = f l o a t (T5∗(SC5∗∗2) ∗(1/Kt5 ) ∗(1/R5) )

196

197 Kt6 = f l o a t (TD6∗D∗ ( 1 . 0 / ( 1 0 0 0 . 0∗∗2 . 0 ) )

∗ ( 1 . 0 / 1 0 0 0 . 0 ) ∗ ( 1 0 0 . 0∗∗3 . 0 ) ∗SHC)

198 Ke6 = f l o a t ( (1/R6) ∗L∗T6)

199 Kl6 = f l o a t (Kt6−Ke6)

200 ZT6 = f l o a t (T6∗(SC6∗∗2) ∗(1/Kt6 ) ∗(1/R6) )

201

202 pr in t ( ” Resu l t ing Kt va lues (W/mK) : ” )

203 pr in t (Kt1 )

204 pr in t (Kt2 )

205 pr in t (Kt3 )

206 pr in t (Kt4 )

207 pr in t (Kt5 )

208 pr in t (Kt6 )

209 pr in t ( ”” )

210 pr in t ( ” Resu l t ing Ke va lue s (W) : ” )
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211 pr in t (Ke1)

212 pr in t (Ke2)

213 pr in t (Ke3)

214 pr in t (Ke4)

215 pr in t (Ke5)

216 pr in t (Ke6)

217 pr in t ( ”” )

218 pr in t ( ” Resu l t ing Kl va lue s (W/mK)−W : ” )

219 pr in t ( Kl1 )

220 pr in t ( Kl2 )

221 pr in t ( Kl3 )

222 pr in t ( Kl4 )

223 pr in t ( Kl5 )

224 pr in t ( Kl6 )

225 pr in t ( ”” )

226 pr in t ( ” Resu l t ing ZT va lue s : ” )

227 pr in t (ZT1)

228 pr in t (ZT2)

229 pr in t (ZT3)

230 pr in t (ZT4)

231 pr in t (ZT5)

232 pr in t (ZT6)

233 pr in t ( ”” )

234 pr in t ( ”” )

235 pr in t ( ”Export as CSV f i l e ? ( y/n) ” )

236 answer = raw input ( )

237 i f answer == ”y” :
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238

239 with open ( s t r ( x ) +’ . csv ’ , ’w ’ ) as c s v f i l e :

240 f i e ldnames = [ ’ Density ( g/cmˆ3) ’ , ’

s p e c i f i c heat capac i ty ( J/kg∗K) ’ , ’

Lorentz number (Vˆ2/K) ’ , ’ Temperature (

K) ’ , ’ Seebeck C o e f f i c i e n t s (V/K) ’ , ’

Thermal D i f f u s i v i t y (mmˆ2/ sec ) ’ , ’

R e s i s t i v i t y (Ohm ∗ m) ’ , ’ Total Thermal

Conduct iv i ty (W/mK) ’ , ’ E l e c t r o n i c

Thermal Conduct iv i ty (W) ’ , ’ L a t t i c e

Thermal Conduct iv i ty (W/mK) ’ , ’ZT ’ ]

241 w r i t e r = csv . DictWriter ( c s v f i l e ,

f i e ldnames=f i e ldnames )

242 w r i t e r . wr i teheader ( )

243 w r i t e r . writerow ({ ’ Density ( g/cmˆ3) ’ : s t r (

D) , ’ s p e c i f i c heat capac i ty ( J/kg∗K) ’ :

s t r (SHC) , ’ Lorentz number (Vˆ2/K) ’ :

s t r (L) })

244 w r i t e r . writerow ({ ’ Temperature (K) ’ : s t r (

T1) , ’ Seebeck C o e f f i c i e n t s (V/K) ’ : s t r

(SC1) , ’ Thermal D i f f u s i v i t y (mmˆ2/ sec )

’ : s t r (TD1) , ’ Total Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kt1 ) , ’

R e s i s t i v i t y (Ohm ∗ m) ’ : s t r (R1) , ’

E l e c t r o n i c Thermal Conduct iv i ty (W) ’ :

s t r (Ke1) , ’ L a t t i c e Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kl1 ) , ’ZT ’ :
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s t r (ZT1) })

245 w r i t e r . writerow ({ ’ Temperature (K) ’ : s t r (

T2) , ’ Seebeck C o e f f i c i e n t s (V/K) ’ : s t r (

SC2) , ’ Thermal D i f f u s i v i t y (mmˆ2/ sec ) ’

: s t r (TD2) , ’ Total Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kt2 ) , ’

R e s i s t i v i t y (Ohm ∗ m) ’ : s t r (R2) , ’

E l e c t r o n i c Thermal Conduct iv i ty (W) ’ :

s t r (Ke2) , ’ L a t t i c e Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kl2 ) , ’ZT ’ :

s t r (ZT2) })

246 w r i t e r . writerow ({ ’ Temperature (K) ’ : s t r (

T3) , ’ Seebeck C o e f f i c i e n t s (V/K) ’ : s t r (

SC3) , ’ Thermal D i f f u s i v i t y (mmˆ2/ sec ) ’ :

s t r (TD3) , ’ Total Thermal Conduct iv i ty

(W/mK) ’ : s t r ( Kt3 ) , ’ R e s i s t i v i t y (Ohm ∗

m) ’ : s t r (R3) , ’ E l e c t r o n i c Thermal

Conduct iv i ty (W) ’ : s t r (Ke3) , ’ L a t t i c e

Thermal Conduct iv i ty (W/mK) ’ : s t r ( Kl3 )

, ’ZT ’ : s t r (ZT3) })

247 w r i t e r . writerow ({ ’ Temperature (K) ’ : s t r (

T4) , ’ Seebeck C o e f f i c i e n t s (V/K) ’ : s t r

(SC4) , ’ Thermal D i f f u s i v i t y (mmˆ2/ sec ) ’

: s t r (TD4) , ’ Total Thermal Conduct iv i ty

(W/mK) ’ : s t r ( Kt4 ) , ’ R e s i s t i v i t y (Ohm ∗

m) ’ : s t r (R4) , ’ E l e c t r o n i c Thermal

Conduct iv i ty (W) ’ : s t r (Ke4) , ’ L a t t i c e
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Thermal Conduct iv i ty (W/mK) ’ : s t r ( Kl4 ) ,

’ZT ’ : s t r (ZT4) })

248 w r i t e r . writerow ({ ’ Temperature (K) ’ : s t r (

T5) , ’ Seebeck C o e f f i c i e n t s (V/K) ’ : s t r

(SC5) , ’ Thermal D i f f u s i v i t y (mmˆ2/ sec ) ’

: s t r (TD5) , ’ Total Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kt5 ) , ’

R e s i s t i v i t y (Ohm ∗ m) ’ : s t r (R5) , ’

E l e c t r o n i c Thermal Conduct iv i ty (W) ’ :

s t r (Ke5) , ’ L a t t i c e Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kl5 ) , ’ZT ’ :

s t r (ZT5) })

249 w r i t e r . writerow ({ ’ Temperature (K) ’ : s t r (

T6) , ’ Seebeck C o e f f i c i e n t s (V/K) ’ : s t r

(SC6) , ’ Thermal D i f f u s i v i t y (mmˆ2/ sec ) ’

: s t r (TD6) , ’ Total Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kt6 ) , ’

R e s i s t i v i t y (Ohm ∗ m) ’ : s t r (R6) , ’

E l e c t r o n i c Thermal Conduct iv i ty (W) ’ :

s t r (Ke6) , ’ L a t t i c e Thermal

Conduct iv i ty (W/mK) ’ : s t r ( Kl6 ) , ’ZT ’ :

s t r (ZT6) })

250

251 imageFi le = ’ l a s e r 5 . g i f ’

252 png = wx . Image ( imageFi le , wx .

BITMAP TYPE ANY) . ConvertToBitmap ( )
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253 wx . StaticBitmap ( s e l f , −1, png , (125 , 205)

, ( png . GetWidth ( ) , png . GetHeight ( ) ) )

254

255 imageFi le = ’ f o l d e r . g i f ’

256 png = wx . Image ( imageFi le , wx .

BITMAP TYPE ANY) . ConvertToBitmap ( )

257 wx . StaticBitmap ( s e l f , −1, png , (240 , 180)

, ( png . GetWidth ( ) , png . GetHeight ( ) ) )

258

259

260

261 s e l f . f . SetLabel ( ”ZT CALC MULTI f i l e ” )

262 de f main ( ) :

263

264 ex = wx . App( )

265 Example (None )

266 ex . MainLoop ( )

267

268

269 i f name == ’ ma in ’ :

270 main ( )

D.2 K CALC

1
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2 import wx

3 import re

4 import sys

5 import wx . l i b . p la tebtn as p latebutton

6

7 c l a s s Example (wx . Frame) :

8

9 de f i n i t ( s e l f , ∗ args , ∗∗kw) :

10 super ( Example , s e l f ) . i n i t (∗ args , ∗∗kw)

11

12 s e l f . In i tUI ( )

13

14

15 de f In i tUI ( s e l f ) :

16

17 pnl = wx . Panel ( s e l f )

18 f ont = s e l f . GetFont ( )

19 f ont . Se tPo intS i z e (12)

20 s e l f . SetFont ( f ont )

21 l o c = wx . IconLocat ion ( r ’ animal hamster csW icon . i c o ’ , 0)

22 s e l f . Set Icon (wx . IconFromLocation ( l o c ) )

23

24 wx . Stat i cText ( s e l f , l a b e l=’ ’ ,

25 pos =(20 ,20) )

26 wx . Stat i cText ( s e l f , l a b e l=’ Molecular Formula = ’ , pos =(25 ,

40) )
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27 wx . Stat i cText ( s e l f , l a b e l=’ Unit Ce l l Volume / Z = ’ , pos =(20 ,

80) )

28 wx . Stat i cText ( s e l f , l a b e l=’K = ’ , pos =(80 , 150) )

29

30

31 s e l f . f = wx . Stat i cText ( s e l f , l a b e l=’ ’ , pos =(150 , 150) )

32 s e l f . sc1 = wx . TextCtrl ( s e l f , va lue=’ ’ , pos =(180 , 35) , s i z e

=(110 , −1) )

33

34 s e l f . volume = wx . Stat i cText ( s e l f , l a b e l=’ ’ , pos =(150 , 150) )

35 s e l f . sc2 = wx . TextCtrl ( s e l f , va lue=’ ’ , pos =(180 , 75) , s i z e

=(60 , −1) )

36

37 # Set t ing up the menu

38 f i l e menu = wx . Menu( )

39

40 # A Statusbar in the bottom o f the window

41 s e l f . CreateStatusBar ( )

42

43 # wx .ID ABOUT and wx . ID EXIT are standard IDs provided

44 # by wxWidgets .

45 #f i l e menu . Append(wx . ID ABOUT, ’&About ’ ,

46 #’ Informat ion about t h i s a p p l i c a t i o n ’ )

47 # Creat ing the menubar

48 menu bar = wx . MenuBar ( )

49
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50 m about = f i l e menu . Append(wx . ID ABOUT, ”&About” , ”

In format ion about t h i s program” )

51 s e l f . Bind (wx .EVT MENU, s e l f . OnAbout , m about )

52

53 # Adding the ’ f i l e menu ’ to the menu bar

54 menu bar . Append( f i l e menu , ’&F i l e ’ )

55

56 # Adding the menu bar to the frame content

57 s e l f . SetMenuBar ( menu bar )

58 s e l f . Show ( )

59

60 btn = wx . Button ( s e l f , l a b e l=’Compute ’ , pos =(45 , 210) )

61 btn . SetFocus ( )

62 cbtn = wx . Button ( s e l f , l a b e l=’ Close ’ , pos =(165 , 210) )

63

64 btn . Bind (wx .EVT BUTTON, s e l f . OnCompute)

65 cbtn . Bind (wx .EVT BUTTON, s e l f . OnClose )

66

67 s e l f . S e tS i z e ( (340 , 340) )

68 s e l f . S e t T i t l e ( ’K CALCULATOR’ )

69 s e l f . Centre ( )

70 s e l f . Show( True )

71

72 s e l f . panel = wx . Panel ( s e l f )

73 s e l f . SetBackgroundColour ( ’ l i g h t blue ’ )

74

75 de f OnAbout( s e l f , event ) :
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76

77 d e s c r i p t i o n = ””” ’K CALC ’ . . . blah blah . . .

78 ”””

79 i n f o = wx . AboutDialogInfo ( )

80 i n f o . SetName ( ’K CALC’ )

81 i n f o . SetVers ion ( ’ 1 . 0 ’ )

82 i n f o . Se tDesc r ip t i on ( d e s c r i p t i o n )

83 i n f o . SetCopyright ( ’ (C) 2016 Max W. ’ )

84

85 wx . AboutBox ( i n f o )

86

87 de f OnClose ( s e l f , e ) :

88

89 s e l f . Close ( True )

90

91 de f OnCompute( s e l f , e ) :

92 f = s e l f . sc1 . GetValue ( )

93 #volume = s e l f . s c . GetValue ( )

94 #c e l s = round ( ( volume − 32) ∗ 5 / 9 . 0 , 2)

95 #s e l f . volume . SetLabel ( s t r ( c e l s ) )

96 pol = {

97

98 # WARNING: VALUES LISTED BELOW ARE ATOMIC WEIGHTS #

99 ”H” : 1 .0079 , ”He” : 4 .0026 , ” Li ” : 1 . 20 , ”Be” : 0 . 19 ,

100 ”B” : 0 . 05 , ”O” : 2 . 01 , ”F” : 18 .998 ,

101 ”Ne” : 20 .180 , ”Na” : 2 . 990 , ”Mg” : 24 .305 , ”Al” : 26 .982 ,

102 ” S i ” : 28 .086 , ”P” : 30 .974 , ”S” : 32 .065 , ”Cl” : 35 .453 ,
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103 ”Ar” : 39 .948 , ”K” : 39 .098 , ”Ca” : 40 .078 , ”Sc” : 44 .956 ,

104 ”Ti” : 47 .867 , ”V” : 50 .942 , ”Cr” : 51 .996 , ”Mn” : 54 .938 ,

105 ”Fe” : 55 .845 , ”Co” : 58 .933 , ”Ni” : 58 .693 , ”Cu” : 63 .546 ,

106 ”Zn” : 65 .39 , ”Ga” : 69 .723 , ”Ge” : 72 .61 , ”As” : 74 .922 ,

107 ”Se” : 7 8 . 9 6 , ”Br” : 79 .904 , ”Kr” : 83 .80 , ”Rb” : 85 .468 , ”Sr” :

87 . 62 ,

108 ”Y” : 88 .906 , ”Zr” : 91 .224 , ”Nb” : 92 .906 , ”Mo” : 95 .94 ,

109 ”Tc” : 97 .61 , ”Ru” : 101 .07 , ”Rh” : 102 .91 , ”Pd” : 106 .42 ,

110 ”Ag” : 107 .87 , ”Cd” : 112 .41 , ” In ” : 114 .82 , ”Sn” : 118 .71 ,

111 ”Sb” : 121 .76 , ”Te” : 127 .60 , ” I ” : 126 .90 , ”Xe” : 131 .29 ,

112 ”Cs” : 132 .91 , ”Ba” : 137 .33 , ”La” : 138 .91 , ”Ce” : 140 .12 ,

113 ”Pr” : 140 .91 , ”Nd” : 144 .24 , ”Pm” : 145 .0 , ”Sm” : 150 .36 , ”Eu” :

151 .96 ,

114 ”Gd” : 157 .25 , ”Tb” : 158 .93 , ”Dy” : 162 .50 , ”Ho” : 164 .93 , ”Er” :

167 .26 ,

115 ”Tm” : 168 .93 , ”Yb” : 173 .04 , ”Lu” : 174 .97 , ”Hf” : 178 .49 , ”Ta” :

180 .95 ,

116 ”W” : 183 .84 , ”Re” : 186 .21 , ”Os” : 190 .23 , ” I r ” : 192 .22 , ”Pt” :

196 .08 ,

117 ”Au” : 196 .08 , ”Hg” : 200 .59 , ”Tl” : 204 .38 , ”Pb” : 207 .2 , ”Bi” :

208 .98 ,

118 ”Po” : 209 .0 , ”At” : 210 .0 , ”Rn” : 222 .0 , ”Fr” : 223 .0 , ”Ra” :

226 .0 ,

119 ”Ac” : 227 .0 , ”Th” : 232 .04 , ”Pa” : 231 .04 , ”U” : 238 .03 , ”Np” :

237 .0 ,

120 ”Pu” : 244 .0 , ”Am” : 243 .0 , ”Cm” : 247 .0 , ”Bk” : 247 .0 , ”Cf” :

251 .0 , ”Es” : 252 .0 ,
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121 ”Fm” : 257 .0 , ”Md” : 258 .0 , ”No” : 259 .0 , ”Lr” : 262 .0 , ”Rf” :

261 .0 , ”Db” : 262 .0 ,

122 ”Sg” : 266 .0 , ”Bh” : 264 .0 , ”Hs” : 269 .0 , ”Mt” : 268 .0 }

123

124 de f f i n d c l o s i n g p a r e n ( tokens ) :

125

126 count = 0

127 f o r index , tok in enumerate ( tokens ) :

128 i f tok == ’ ) ’ :

129 count −= 1

130 i f count == 0 :

131 re turn index

132 e l i f tok == ’ ( ’ :

133 count += 1

134 r a i s e ValueError ( ’ unmatched parenthese s ’ )

135

136 de f parse ( tokens , s tack ) :

137 i f l en ( tokens ) == 0 :

138 re turn sum( stack )

139 tok = tokens [ 0 ]

140 i f tok == ’ ( ’ :

141 end = f i n d c l o s i n g p a r e n ( tokens )

142 s tack . append ( parse ( tokens [ 1 : end ] , [ ] ) )

143 re turn parse ( tokens [ end + 1 : ] , s tack )

144 e l i f tok . i s d i g i t ( ) :

145 s tack [−1] ∗= i n t ( tok )

146 e l s e :
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147 s tack . append ( pol [ tok ] )

148 re turn parse ( tokens [ 1 : ] , s tack )

149

150 i f True :

151

152 tokens2 = re . f i n d a l l ( r ’ [A−Z ] [ a−z ] ∗ | \ d + | \ ( | \ ) ’ , f )

153

154 tokens2 = re . f i n d a l l ( r ’ [A−Z ] [ a−z ] ∗ | \ d + | \ ( | \ ) ’ , f )

155 volume = s e l f . sc2 . GetValue ( )

156 answer = round (3∗ f l o a t ( volume ) +8∗3.1415∗ f l o a t ( parse ( tokens2 ,

[ ] ) ) ) /(3∗ f l o a t ( volume ) −4∗3.1415∗ f l o a t ( parse ( tokens2 , [ ] ) ) )

157 s e l f . volume . SetLabel ( s t r ( answer ) )

158

159 de f main ( ) :

160

161 ex = wx . App( )

162 Example (None )

163 ex . MainLoop ( )

164

165

166 i f name == ’ ma in ’ :

167 main ( )
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