
 

 

 

 

 

 

 

 

 

 

 

 



 

 

AN ABSTRACT OF THE THESIS OF 

 

Nathan A.Barnett for the degree of Master of Science in Nuclear Engineering 

Presented on July 25, 2008. 

Title: Binary Stochastic Media Transport: A Coupled Mesh Based Method 

 

 

 

Abstract approved: 

 

__________________________________________________________________ 

Todd S. Palmer 

 

Transport in a binary stochastic media has been an area of interest for many 

applications over the past three decades. Many different methods have been 

attempted, most based on the Levermore-Pomraning coupled transport model. 

However, this method has never been able to correctly solve problems where a 

large amount of scattering is present. Many modifications of the code involve 

making assumptions that simplify a term in the balance equation that involves 

material transition probabilities inside of a cell. 

 

We introduce a new method, where all transport is carried out on a mesh. Using 

the mesh, the difficult coupling term is not present in the balance equation. 

 

We explore how the new coupled equations perform in a variety of problems. 

Though not all facets of the equations are investigated (e.g. interior source 

problems), the equations perform very well. Results are achieved with relative 

errors under 1% where past methods produced errors of at least 30% and up to 

77% in similar cases. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by Nathan A. Barnett 

July 25, 2008 

All Rights Reserved



 

 

 

 

 Binary Stochastic Media Transport: A Coupled Mesh Based Method 

 

 

by 

Nathan A. Barnett 

 

 

 

A THESIS 

 

Submitted to 

 

Oregon State University 

 

 

 

in partial fulfillment of 

the requirements for the 

degree of 

 

Master of Science 

 

 

 

Presented July 25, 2008 

Commencement June 2009 



 

Master of Science thesis of Nathan A. Barnett presented on July 25, 2008. 

 

 

APPROVED: 

 

 

Major Professor, representing Nuclear Engineering 

 

 

Head of the Department of Nuclear Engineering and Radiation Health Physics 

 

 

Dean of the Graduate School 

 

 

 

I understand that my thesis will become part of the permanent collection of Oregon 

State University libraries. My signature below authorizes release of my thesis to 

any reader upon request. 

 

 

Nathan A. Barnett, Author 



 

ACKNOWLEDGEMENTS 

 

Thanks to my parents for listening when I needed it, sending me random notes and 

gifts, and putting up with my antics for longer than anyone should have to do so. 

 

Thanks to my grandparents for pushing me to finish school, providing generous 

help whenever it was needed, and for setting an example for me to follow. 

 

Special thanks go to my SOLP, Julie, for taking care of me when I was too busy to 

do so myself. 

 

Matt “England” Cleveland – I couldn’t have made it without your help: double-

checking my work, listening to hours of complaints, and toiling together in the 

darkness of the fish-bowl into the depths of the night. 

 

Wes Frey – you kept me straight and focused on the goal (not the beer goal, the 

degree one… well, maybe the beer goal, too). 

 

I would like to sincerely thank Todd Palmer for guiding me in producing quality 

work, for answering late-night emails and weekend phone calls. 



 

TABLE OF CONTENTS 

                      Page 

1   Introduction......................................................................................................... 2 
2   Literature Review................................................................................................ 7 
3   Methods............................................................................................................... 9 

3.1   Filling the Mesh ......................................................................................... 10 
3.2   Mesh Characterization ............................................................................... 11 
3.3....................................................................................................................... 14 
Benchmarking .................................................................................................... 14 
3.4   Coupled Equations ..................................................................................... 20 

4   Results ............................................................................................................... 23 
4.1   Creating the mesh....................................................................................... 23 
4.2   Brute Force Benchmarks............................................................................ 29 

5   Discussion ......................................................................................................... 50 
6   Conclusion ........................................................................................................ 53 
 

 



 

LIST OF FIGURES 

      Figure              Page 

Figure 1 – Calculating a CLD ................................................................................ 13 
 
Figure 2 – 1D Cell Labeling................................................................................... 17 
 
Figure 3 - Graph of Metric for Filling Mesh Evenly ............................................. 24 
 
Figure 4 – 3x3x50 Mesh ........................................................................................ 25 
 
Figure 5 – 15x3x50 Mesh ...................................................................................... 25 
 
Figure 6 – 15x15x50 Mesh with 50% Fill ............................................................. 26 
 
Figure 7 – 9x9x50 Mesh CLD ............................................................................... 26 
 
Figure 8 - 50x50x50 Mesh CLD ............................................................................ 27 
 
Figure 9 – 15x3x50 Mesh CLD ............................................................................. 27 
 
Figure 10 – 15x15x50 Mesh CLD with 50% Fill .................................................. 28 
 
Figure 11 – 1D Beam in a Pure Absorber .............................................................. 30 
 
Figure 12 – Relative Error for a 1D Beam in a Pure Absorber.............................. 30 
 
Figure 13 – 1D Pure Absorber with an Isotropic Source ....................................... 31 
 
Figure 14 – Relative Error for 1D Pure Absorber with an Isotropic Source.......... 31 
 
Figure 15 – Slice Averaged Pure Absorber with Reflecting Boundaries............... 34 
 
Figure 16 – Relative Error for Slice Averaged Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 34 
 
Figure 17 – Relative Error for Slice 10 of Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 35 
 
Figure 18– Relative Error for Slice 30 of Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 35 
 
Figure 19 – Relative Error for Slice 50 of Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 36 
 
 



 

LIST OF FIGURES (Continued) 
 

Figure              Page 
Figure 20 – Brute Force Method: Slice 50 of Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 36 
 
Figure 21 – Coupled Method: Slice 50 of Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 37 
 
Figure 22 – Slice Averaged Scattering Background with Reflecting Boundaries . 37 
 
Figure 23 – Relative Error for Slice Averaged Pure Absorber with Reflecting 

Boundaries ..................................................................................................... 38 
 
Figure 24 – Relative Error for Slice 10 of Scattering Background with Reflecting 

Boundaries ..................................................................................................... 38 
 
Figure 25 – Relative Error for Slice 30 of Scattering Background with Reflecting 

Boundaries ..................................................................................................... 39 
 
Figure 26 – Relative Error for Slice 50 of Scattering Background with Reflecting 

Boundaries ..................................................................................................... 39 
 
Figure 27 – Brute Force Method:  Slice 50 of Scattering Background with 

Reflecting Boundaries.................................................................................... 40 
 
Figure 28 – Coupled Method:  Slice 50 of Scattering Background with Reflecting 

Boundaries ..................................................................................................... 40 
 
Figure 29 – Slice Averaged Pure Absorber with Vacuum Boundaries.................. 41 
 
Figure 30 – Relative Error for Slice Averaged Pure Absorber with Vacuum 

Boundaries ..................................................................................................... 41 
 
Figure 31 – Relative Error for Slice 10 of Pure Absorber with Vacuum Boundaries

........................................................................................................................ 42 
 
Figure 32 – Relative Error for Slice 30 of Pure Absorber with Vacuum Boundaries

........................................................................................................................ 42 
 
Figure 33 – Relative Error for Slice 50 of Pure Absorber with Vacuum Boundaries

........................................................................................................................ 43 
 
Figure 34 – Brute Force Method: Slice 50 of Pure Absorber with Vacuum 

Boundaries ..................................................................................................... 43 
 



 

LIST OF FIGURES (Continued) 
 

Figure               Page 
 
Figure 35 – Coupled Method: Slice 50 of Pure Absorber with Vacuum Boundaries

........................................................................................................................ 44 
 
Figure 36 – Slice Averaged Scattering Background with Vacuum Boundaries .... 44 
 
Figure 37 – Relative Error for Slice Averaged Scattering Background with 

Vacuum Boundaries ....................................................................................... 45 
 
Figure 38 – Relative Error for Slice 10 of Scattering Background with Vacuum 

Boundaries ..................................................................................................... 45 
 
Figure 39 – Relative Error for Slice 30 of Scattering Background with Vacuum 

Boundaries ..................................................................................................... 46 
 
Figure 40 – Relative Error for Slice 50 of Scattering Background with Vacuum 

Boundaries ..................................................................................................... 46 
 
Figure 41 – Brute Force Method: Slice 50 of Scattering Background with Vacuum 

Boundaries ..................................................................................................... 47 
 
Figure 42 – Coupled Method: Slice 50 of Scattering Background with Vacuum 

Boundaries ..................................................................................................... 47 
 
Figure 43 – Atomic Mix Limit of Pure Absorbers................................................. 48 
 
Figure 44 – Relative Error of Atomic Mix Limit of Pure Absorbers..................... 48 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

LIST OF TABLES 

 

Table               Page 

Table 1 – Exponential Fits for Different Mesh Sizes with Material 0 ................... 28 
 
Table 2 - Exponential Fits for Different Mesh Sizes with Material 1.................... 28 
 
Table 3 – Exponential Fits for Different Fill Fractions.......................................... 28 
 
Table 4 – CTP for a 10/90 Fill Fraction................................................................. 29 
 
Table 5 – Cross Sections for Absorbing Problems ................................................ 33 
 
Table 6 – Cross Sections for Scattering Background Problems ............................ 33 
 
Table 7 - Maximum Relative Error for Different Fill Percentages........................ 49 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Binary Stochastic Media Transport: A Coupled Mesh Based Method 
 



 2

 

1   Introduction 

 

The Boltzmann equation for neutral particle transport can be a very challenging 

equation to solve. It is an integro-differential equation whose solution can be a 

very complex function of any of its seven independent variables (three space, two 

angle, energy, time). While some problems can be solved analytically, most 

problems must be simplified in order to write a set of equations that can be solved 

by a computer. These simplifications directly relate to the phase space of the 

Boltzmann equation and are chosen for each application: a reactor physicist may 

assume the problem of interest is time independent, a shielding problem may 

reduce the equation to only one energy group or the treatment of a cancer patient 

may require very few discrete angles. Whether for astrophysics, thermal radiative 

transfer, electro-magnetic analysis, or plasma physics several classes of methods 

exist for solving the simplified Boltzmann equation.  

 

Monte Carlo methods use pseudorandom numbers, picking many points to 

approximate integrals. Many points must be chosen in order to calculate accurate 

mean quantities with acceptable statistical error, an often time consuming task. 

Application of this integration method to neutral particle transport can make the 

method seem very physical. Often referred to as a random walk, a particle is 

started in the problem and, based on probabilities, is moved through scattering 

events and geometric regions until it is absorbed or leaves the problem. After 

repeating many times and tallying the distance each particle travels through a 

region of interest, the solution to the problem is reached with some statistical error. 

While this is a very common way of calculating the flux, other methods do exist, 

including absorption estimators and collision estimators [1]. MCNP (Monte Carlo 

N-Particle) is a code developed at Los Alamos National Labs that uses this method 

and is thought of as the gold standard in particle transport in many fields. It has 

been used to “find water on Mars and aided doctors battling cancer on Earth”, 

design nuclear reactors and even radiation detectors [2]. 
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Deterministic methods involve no randomness and will always provide the exact 

same answer, given the same starting information. Although these methods are not 

as intuitive as the Monte Carlo method, they can be very fast and provide answers 

at every point in the problem. Like Monte Carlo methods, the precision of the 

answer improves with run-time. Unlike Monte Carlo methods, deterministic 

methods produce error through computer-based math, not statistical error [1].  

 

Hybrid methods also exist that try to capitalize on the benefits of both the Monte 

Carlo and deterministic methods. These methods have not been widely used up to 

this point, but much work is currently underway to explore their behavior in a wide 

variety of physical problems [3, 4, 5]. 

 

Deciding which method to use with which data sets and geometry to solve a given 

problem is an art. Some discretization techniques may involve a large number of 

degrees of freedom, requiring excessive computational time for the accuracy 

required.  Other methods may not capture the important portions of a solution or 

yield answers with too much numerical error. 

 

In general, the problem geometry is divided into regions with uniform material 

properties. With a Monte Carlo radiation transport program such as MCNP areas 

of interest are identified where the variance in the solution must be small, and 

larger variances are acceptable in the remaining regions.  

 

With a deterministic method, energy, space, particle direction, and time are 

discretized with resolution that will generate solutions with sufficiently small 

numerical error.  A transport equation is developed for each of the regions, with 

data specific to that region and the equations must be solved simultaneously. 

 

A special situation arises when the materials (and the associated nuclear cross 

sections) are known, but the locations of those materials are known only 
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probabilistically. Such is the case in atmospheric transport, where solar radiation is 

modeled traveling through a cloud (water and air, but randomly placed) [6].  The 

human lung, too, can be categorized in this way, as lung tissue and air randomly 

distributed in space [7]. In addition to atmospheric sciences and medical physics, 

problems of interest have also arisen in astrophysics and criticality work, as well 

as applied mathematics [8, 9, 10]. These problems can be divided up into spatial 

regions, but the data to use for each of the regions is stochastic. In this case, it 

becomes impossible to write an exact set of equations to describe the problem. 

 

One approach to generate numerical solutions to the Boltzmann equation in this 

situation is to sample a realization from the statistical material distribution 

functions, and solve the transport equation for this realization. The process is 

repeated many times and the results are averaged. The ensemble average flux and 

the associated variance allow solution confidence intervals to be computed.  Many 

realizations may be necessary to obtain small variances.  This method is often 

referred to as the “brute force” method [7]. 

 

Another approach involves ensemble averaging the analytic transport equations 

“up front” and developing numerical techniques for the solution of these material 

averaged equations. The material averaged equations can be manipulated to 

produce approximate ensemble average fluxes. This method was initially 

developed by Levermore and Pomraning [11]. Their method involves coupled 

equations for the conditional average flux in each material.  

 

One limitation of this approach is the necessity to use an approximate closure 

relationship. This involves relating the material interface averaged fluxes to the 

material averaged fluxes [12]. The original closure approximation is only exact for 

a Markovian transport process [13]. 

 

For this reason, the majority of the research on stochastic mixture transport has 

dealt exclusively with an exponential distribution of material “chunk” sizes, 
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measured using a chord length distribution [12, 11, 14]. These exponential chord 

length distributions are consistent with Markovian mixing statistics, which 

improve the validity of the LP equations.   

 

 However, as soon as scattering is added, there is no longer a Markovian transport 

process and the method can produce solutions with very large errors when 

compared to benchmark solutions generated using the brute force method [15]. 

This has left these equations with a very limited scope of usability. 

 

While attempts have been made to develop improved closures or to adjust material 

cross-section data to provide better answers, approximate models for coupled 

stochastic mixture transport still suffer from unacceptably large errors, particularly 

for problems with highly scattering regions. [16]. 

 

By applying several simplifications in the discretization of the transport equation, 

it is possible to derive coupled ensemble averaged transport equations without the 

difficult closure term and without a loss of physicality. The resulting equations 

require only that the distribution of materials within the problem are known.  

 

If the problem of interest is always solved on a mesh, where the mesh lies in 

exactly the same place for each realization, then the material interface locations are 

always known. Then, if the mesh can be filled with two materials in a controlled 

yet random manner, the average distribution of materials can accurately be 

characterized.  

 

With a known statistical distribution of materials, the coupled equations can be 

solved without the difficulties of former closures, yielding accurate solutions in 

both the Markovian case and otherwise. 

 

In this thesis we address the following research questions: 
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1) Can exponential chord length distributions be modeled using realizations 

with the same orthogonal spatial mesh? This may show that we may use 

this in place of 3D attempts with spheres in the past and achieve similar 

results. Furthermore, we would be able to achieve exact results when in a 

purely absorbing medium. 

2) Can we derive coupled stochastic mixture transport equations that do not 

require a closure term relating interface-average and material-average 

quantities?     

3) Can we calculate the coupling probabilities for the equations and achieve 

the correct results? This could be easy and cheap data to calculate as a pre-

processing step in solving the coupled equations. 

4) How do the results from the new mesh-based coupled binary stochastic 

mixture transport equations compare to the results from other models and 

to benchmark results from the brute force method?  

 

Our goal is to develop a new coupled transport methodology that will provide fast 

and accurate solutions to problems involving stochastic media.  
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2   Literature Review 

 

In the 1980s Levermore and Pomraning investigated the scenario of solving a 

problem with stochastically placed material [11]. By simplifying the problem to 

one with only two materials and assuming a Markovian distribution of the 

materials, they were able to formulate coupled transport equations that described 

the average flux in each material. However, the equations proved too difficult to 

derive in 2D and 3D when scattering was involved. 

 

Vanderhaegen showed that, in the case of non-scattering, Markovian distributions, 

the transport process is Markovian. He then explained that, in fact, the LP 

equations are exact with any Markovian process, as Levermore and Pomraning had 

seen. He then introduced the idea of using the Liouville master equation instead 

(which is exact in the Markovian case, as well) in hopes that it could better handle 

scattering [13]. 

 

Later, Adams, Larsen and Pomraning expanded upon these equations, showing 

that they could be used with any distribution of materials, as long as the 

distribution was known. More importantly, the closure term was modified to help 

with scattering. The interface average term from the master equations was replaced 

by a problem interior average, approximated using an upwind scheme. They 

benchmarked the equations in 1D rod and slab geometries, looking only at the 

transmitted and reflected angular fluxes at each end of the problem [12]. 

 

In hopes of increased computational speed, Graziani compared several other 

transport codes using problems where the LP equations would accel. The paper 

used the results of numerical test problems to empirically modify the cross 

sections in order to achieve good results. In addition, the material allocation 

algorithm used was designed to simulate cracks and approach a Cauchy or Poisson 

distribution [17]. 
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Olson, in 2006, showed that the LP equations produce poor answers in 2D and 3D 

when scattering is introduced because of problems with the closure term which 

requires a Markovian transport process. He showed that in 2D and 3D, with a 

distribution of impenetrable spheres, an exponential distribution of materials could 

not be achieved and therefore a Markovian transport process could not be achieved 

either. Like Graziani, he modified the cross sections to improve how the equations 

handle scattering [18, 14]. 

 

Research has also expanded into renewal theory [19, 20, 21, 22, 23, 24], 

asymptotic limits [25, 26, 8], eigenvalue problems [27, 28], anisotropic scattering 

treatments [29, 30, 31], and multiple attempts at different closures with limited 

success [32, 33, 34]. 
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3   Methods 

 

In choosing to discretize the coupled transport equations on a mesh, it is hoped that 

the difficult closure term seen in past research will not be required. The resulting 

coupled binary stochastic mixture transport equations should yield accurate 

solutions in purely absorbing problems, as before, and in problems with 

significantly scattering materials. 

 

In order to test the validity of the new coupled equations, the “brute force” method 

of averaging the standard transport solution over many realizations will be taken as 

the benchmark results. The benchmark solution, calculated through a post-

transport average can be compared to the new coupled method, where ensemble 

averaged solutions are averaged up-front. 

 

With the brute force method, many realizations of the stochastically filled mesh 

must be produced and the transport solutions to these realizations averaged. The 

coupled BSM transport methods do not require the generation of realizations 

because they involve quantities which are averaged over the mixing statistics. 

However, both the LP method and the new coupled method proposed in this thesis 

require a characterization of the mesh: for the LP equations, a parameter from a 

chord length distribution is needed and for the new coupled method a cell 

transition probability will be needed. Both of these can be considered as pre-

processing steps and can be calculated from problem realizations. Therefore, the 

algorithm used to generate realizations is an important aspect of all three 

approaches to the BSM problem. 

 

In this section of the thesis, how the mesh is filled and verified will first be 

discussed. Next, the characterization of the material distribution within a mesh will 

be discussed. A chord length distribution will be explained, followed by a cell 

transition probability. Then, the transport equation will be discretized using a 

diamond differencing scheme and the solution of the “brute force” method will be 
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discussed. Finally, the same diamond differencing scheme will be used in the 

development of the new coupled method. 

 

3.1   Filling the Mesh 

As discussed earlier, previous successful work in the area of stochastic transport 

has dealt almost entirely with an absorbing material in a Markovian, or 

exponential, distribution.  

 

Adams et. al have shown that, although distributions other than Markovian have 

been considered, the best results from the LP equations have been obtained from a 

Markovian distribution of material [12, 17, 24]. 

 

Olson et. al attempted to extend the 1D Markovian distributions used in previous 

work and to 2D and 3D; spheres of absorbing material were randomly placed in a 

background medium. It was shown that randomly sized spheres of absorbing 

material, mixed as 10% of the total problem volume, and placed randomly in an 

infinite medium would produce a Markovian distribution in the background 

material [14].  

 

Using an orthogonal mesh, the randomly placed spheres can be mimicked by 

filling random cells until the mesh reaches the correct volume fill percentage (10% 

in this case, although any amount could be used). Then, using a large number of 

chords, a CLD can be calculated and compared to the desired Markovian 

distribution. Once again, this problem configuration is not necessary, but it is a 

good starting point from which to continue, based on previous work. 

 

In order to properly fill the mesh the following steps are followed: 

1. Fill each cell in the mesh with the background material (material 1). 

2. Determine the number of cells to fill with material 0 based on the desired 

fill percentage:  

3. Randomly choose three integers: an x, y and z cell location. 
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4. Repeat step 3 until the appropriate number of cells are filled.  

 

This unbiased random process ensures that, in the limit of a large number of 

realizations, each cell will contain the two materials in their respective fill 

percentages. Verifying that the mesh is being filled in this manner ensures that the 

random number generator is working properly and it can also provide an idea of 

how many realizations are needed to achieve a satisfactory statistical sampling of 

meshes. To verify that the mesh is being filled evenly over a large number of 

realizations the following calculation can be performed: 

1. Fill the mesh for a given realization. 

2. Walk through the mesh once, and tally in each cell if it is filled by material 

0. 

3. Repeat the above steps many times without resetting the tally in each cell. 

 

If the mesh is being filled uniformly and randomly over the number of realizations, 

then the tally in each cell should approach the same number. 

3.2   Mesh Characterization 

Many different types of distributions can occur in a statistical mixture. One way of 

describing how the materials are dispersed, is by a chord length distribution 

(CLD). A CLD, pn(x) dx, is the probability that the chord length in material n lies 

between x and x+dx. 

 

As mentioned earlier, a Markovian CLD is often used in stochastic transport 

problems and takes the form 

 p x
` a

=
1
λ
ffffe@ λx

whereλ = mean chord length
       Eq. 1 

For this distribution of materials, the analytical transport solution is known when 

the problem is time independent and purely absorbing. It therefore provides a basis 

for comparison to the numerical answers. The LP equations utilize the chord 

length distribution, employing λ as a coupling parameter. 
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A CLD can be calculated by taking a given realization on a mesh, starting at a 

random location on a random side, and tracing a straight line in a random direction 

until the other side of the problem is reached. The chord lengths in each of the 

materials can then be binned. After an appropriately large number of chord lengths 

have been calculated, the resulting tally bins can be plotted and a curve can be fit. 

An example of a set of chords within a mesh is shown in figure 1.  

 

The algorithm for calculating a single chord in a mesh filled with two materials is 

as follows: 

1. Each of the six sides of the mesh is given an integer identifier, 

numbered one through six. Randomly select a side of the mesh. 

2. Randomly select a location on this plane within and including the 

problem boundaries. 

3. Steps 1 and 2 produce a starting point for the chord. Repeat these steps 

to find an end point on any other side of the problem. 

4. Based on the direction of travel and beginning with the starting point, 

calculate the distance to the next three (3) planes that the chord will 

intersect by fixing the x, y, or z coordinate and solving for the other 

two. 

5. Use the shortest distance to select the next point on the chord and move 

the current position of the chord to that location. 

6. If the material in the next cell is different than the one that was just 

passed though, add one to a tally for distance just traveled by the chord. 

Each tally is referred to as a bin – a chosen range of chord lengths 

where the first bin counts lengths of 0 to dS and the last bin counts 

lengths of S-dS to S and S is the maximum length that a chord can 

achieve. 

7. If the material in the next cell is the same, continue calculating the 

length of the current chord by adding the next calculated distance to the 

one just calculated. 

8. Repeat, cell by cell, until the boundary of the mesh is reached. 
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In order to produce a distribution, many chords are calculated and binned. These 

binned results are graphed and a trend line can be fit. 

 

Figure 1 – Calculating a CLD 

 

Another method of characterizing the distribution of materials in a mesh is with a 

cell transition probability (CTP). There exists on each interior face of the 

orthogonal mesh a set of probabilities of material transition on that surface. With a 

distribution of two materials, as is explored in this thesis, four probabilities exist 

for each surface of a given interior cell: the given cell contains material 0 and 

material 1 lies on the other side, the given cell contains material 0 and material 0 

lies on the other side, the given cell contains material 1 and material 1 lies on the 

other side, and the given cell contains material 1 and material 0 lies on the other 

side. 

 

Given that the mesh is being filled homogeneously in space, each cell should have 

the same probability of being filled with material 0 (or material 1). It follows that 

every surface, then, should have the same set of probabilities given a very large 

number of realizations. 

 

Many other types of material distributions may have differing CTPs from cell to 

cell. The data from these CTPs can still be used in the same manner to solve the 

coupled equations developed later. 
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Calculating the CTP can be accomplished using the following algorithm: 

1. Create a realization of the mesh. 

2. March through the interior cells of the mesh, tallying which transitions 

occur on each of the cell faces. 

3. Repeat this process until an acceptably low statistical variance is achieved. 

4. Normalize the results. 

Given that the problem is being filled correctly and enough mesh realizations 

tallied, the set of probabilities in each cell should be statistically identical. 

 

3.3   Benchmarking 

Both the “brute force” method and the new coupled method solve the transport 

equation in a very similar manner. The 3D codes that will be used are based on a 

diamond differencing scheme and uses a standard transport sweep.  

 

In a standard transport sweep, an incident angular flux is assumed known on one 

side of a cell. By assuming the corresponding cell-averaged angular flux is the 

average of the two cell sides, the transport equation can be rearranged to solve for 

the cell-averaged quantity and the angular flux on the opposite side of the cell. 

This flux is then used as the known incident flux on the next cell. In this manner, 

the spatial mesh is swept from one corner to another, in the direction of particle 

flow. After a full sweep, the cell-averaged scalar flux in each cell is calculated as a 

weighted sum of the cell-averaged angular fluxes. The scattering term on the right 

hand side of the equation, which contains the cell-averaged scalar flux, is updated. 

Because the equations have changed, due to the update in the scattering term, this 

process is repeated, until the scalar flux reaches convergence. 

 
ε> Φ i

l + 1
@Φ i

lL

L

L

M

M

M

where l denotes the number of the sweep
andε is a predetermined value

 .     Eq. 2 
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Diamond differencing is a simple scheme that must be used with care to avoid 

destabilizing the transport answer. When cells become optically thick, diamond 

difference method can generate negative angular fluxes and unphysical oscillating 

solutions. Care must be taken in choosing cell widths to avoid this problem. 

Optical thickness is calculated using equation (3). 

 

 
τ =

σa A dx
μ
ffffffffffffffffffff

where dx is the width of the cell
and μ is the angle of particle travel

       Eq. 3 

 

We begin with the transport equation, which is simply a balance equation stating 

that the change in flux is due to the influx and outflux. 

 

1
ν
ffff∂ψ rjjjjjjk, E,Ω^ , t

b c

∂t
fffffffffffffffffffffffffffffffffffffffffffff+ Ω^ A5ψ rjjjjjjk, E,Ω^ , t

b c

+ σ t ψ rjjjjjjk, E,Ω^ , t
b c

=

Z
4π

dΩ^ . Z
0

1

dE . σ s E . Q E,Ω^ . QΩ^
b c

ψ rjjjjjjk, E . ,Ω^ . , t
b c

+ S rjjjjjjk, E,Ω^ , t
b c

 

          Eq. 4 

Now we assume that the equation is time independent (steady state).  

 

Ω^ A5ψ rjjjjjjk, E,Ω^
b c

+ σ t ψ rjjjjjjk, E,Ω^
b c

=

Z
4π

dΩ^ . Z
0

1

dE . σ s E . Q E,Ω^ . QΩ
b c

ψ rjjjjjjk, E . ,Ω^ .
b c

+ S rjjjjjjk, E,Ω^
b c  

          Eq. 5 

Next, we consider isotropic scattering, which simplifies the right hand side of 

equation (5). We also normalize the scattering term to 4π. 

 

Ω^ A5ψ rjjjjjjk, E,Ω^
b c

+ σ t ψ rjjjjjjk, E,Ω^
b c

= Z
4π

dΩ^ . Z
0

1

dE .
σ s E . Q E
` a

4π
ffffffffffffffffffffffffffffffffffffffψ rjjjjjjk, E . ,Ω^ .

b c

+ S rjjjjjjk
b c

          Eq. 6 

If we integrate this equation over all energy  
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 Ω^ A5ψ rjjjjjjk,Ω^
b c

+ σ t ψ rjjjjjjk,Ω^
b c

=
σ s

4π
fffffffffZ

4π

dΩ^ . ψ rjjjjjjk,Ω^ .
b c

+ S rjjjjjjk
b c

   Eq. 7 

Performing the integral over angle on the right hand side of equation (7) yields 

 Ω^ A5ψ rjjjjjjk,Ω^
b c

+ σ t ψ rjjjjjjk,Ω^
b c

=
σ s

4π
fffffffffΦ rjjjjjjk

b c

+ S rjjjjjjk
b c

     Eq. 8 

We will now develop the discretized version of this equation by introducing ideas 

in one dimension and, later, extending these ideas into three dimensions. 

  

The direction variable is discretized by dividing angular space into a set number of 

angles. A discretized angular variable is denoted with the m subscript. Note that in 

1D, integration of the scattering term only cancels out part of the normalization 

factor. 

μm

∂ψ m

∂x
ffffffffffffff+ σ t ψ m x,μ

` a

=
σ s

2
fffffffΦ x

` a

+ S x
` a

     Eq. 9 

Each spatial cell as a homogeneous region with two edges over which our 

simplified balance equation holds true. Diamond differencing assumes that the 

cell-average angular flux is the simple mean of the fluxes on either edge of the 

cell. Cell-averaged quantities are denoted with the subscript i, i+1, etc. and cell-

edge quantities have subscripts of i+1/2 or i-1/2. 

 μm

∂ψ m,i

∂x
ffffffffffffffff+ σ t i

ψ m,i =
σ si

2
ffffffffΦi + S i        Eq. 10 

where 

 ψ m,i =
1
2
fffψ

m,i@
1
2
fffff+ ψ

m,i +
1
2
fffff

d e

        Eq. 11 

We integrate equation (10) over a cell. 

 

μm

Δx
fffffffffψ

m,i +
1
2
fffff@ψ

m,i@ 1
2
fffff

d e

+ σ t i
ψ m,i =

σ si

2
ffffffffΦi + S i

and

Φi =X
m = 0

N

wm ψ m,i

b c

           Eq. 12, 13  

To solve this equation, the angular flux on the incident edge is known from 

boundary conditions or from a previous cell calculation and the cell-averaged 

scalar flux is known from an initial guess or a previous iteration. 



 17

 

μm

Δxi

fffffffffff2ψ m,i@ψ
m,i@ 1

2
fffff@ψ

m,i@ 1
2
fffff

d e

+ σ t i
ψ m,i =

σ si

2
ffffffffΦi + S i

#ψ m,i = ψ
m,i@

1
2
fffff+

Δxi

2μm

ffffffffffff
h

j

i

k

σsi

2
fffffffffΦ i + S i

1 + σ t i

Δxi

2μm

ffffffffffffff
fffffffffffffffffffffffffffffffff , μm > 0

and
ψ

m,i +
1
2
fffff= 2ψ m,i@ψ

m,i@
1
2
fffff

          Eq. 14, 15 

In this manner, if the incident angular flux on one side is known, the 

corresponding flux at the other side and the cell-average can be computed. 

 

Equations (14) and (15) hold in each spatial cell of the mesh, for each direction in 

the quadrature set. After solving for both edge fluxes and the cell averaged flux in 

the first cell, the fluxes in the next cell can be solved by setting the corresponding 

angular fluxes that lie on the surface between the cells equal. 

 ψ
m,i +

1
2
fffff= ψ

m, i + 1
` a

@
1
2
fffff         Eq. 16 

 

 

Figure 2 – 1D Cell Labeling 

 

When the cells have been swept in the positive directions and the boundary has 

been reached, the mesh is swept in the negative directions. Notice that the equation 

used in the forward sweep must be changed slightly for the backward sweep. 

 

ψ m,i = ψ
m,i +

1
2
fffff@

Δxi

2μm

ffffffffffff
h

j

i

k

σsi

2
fffffffffΦi + S i

1@σ t i

Δxi

2μm

ffffffffffffff
fffffffffffffffffffffffffffffffff , μm < 0

and
ψ

m,i@
1
2
fffff= 2ψ m,i@ψ

m,i +
1
2
fffff

         Eq. 17, 18 

Common boundary conditions include vacuum and reflecting boundaries. On a 

reflecting boundary, the incident angular flux is set equal to the outgoing flux. 

 



 18

Once all sweeps have been completed, then the new scalar flux can be calculated 

as a weighted sum of the cell averaged angular fluxes. 

 

However, the flux term on the right side really has an angular flux in it and up 

until now we assumed we knew it. Since we know all the angular fluxes now, we 

can calculate Φ in each cell by summing the weighted angular fluxes in that cell. 

 

After each sweep of the mesh, we must recalculate Φ. We can determine if the 

solution has been reached by testing convergence. This is done by looking at the 

difference between successive flux iterates (Equation 2). This is often called 

source iteration and provides a very physical method for estimating the speed of 

convergence. If particles, on average, make few collisions before being removed 

by, absorption, leakage, or scattering out of the energy group convergence will be 

rapid [1]. 

 

There are times when simply sweeping the mesh repeatedly will not work. If the 

cell width is very large and the total cross section is large, then the cell is said to be 

optically thick. If too many neutrons are attenuated in a given cell, then negative, 

unphysical fluxes can be generated. For diamond difference, the optical thickness 

(τ) must remain less than two (τ<2) and can be calculated using equation (3). This 

limit can be derived by examining the error incurred by the diamond difference 

method. 

 

In the purely absorbing case the exact solution in known across a cell 

 ψ
i +

1
2
fffff, m

= ψ
i@

1
2
fffff,m

e@ 2 A h         Eq. 19 

The solution to the diamond difference method is also known  

 ψ
i +

1
2
fffff, m

= ψ
i@

1
2
fffff,m

1@ h
1 + h
fffffffffffffffff g

        Eq. 20 

where, in equation () and in equation () 

 h =
σ t AΔx
2 A |μ|
ffffffffffffffffffff          Eq. 21 
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By subtracting equation (20) from equation (19), the error incurred in each cell by 

diamond difference can be calculated. In a mesh with equal cell sizes, the error is 

compounded by each cell and grows linearly throughout the problem. 

 

Now that we have the 1D case, it is very easy to expand to 3D. The only things 

that change are the integration of the scattering term and the streaming term. We 

will label the cell surface angular fluxes with a superscript denoting the coordinate 

to which the surface is parallel. 

 

5ψ m,i + σ t i
ψ m,i =

σ si

4π
fffffffffΦ i + S i

[ψ m,i =

2μm

Δxi

ffffffffffffffψ
m, i@ 1

2
fff

x +
2ηm

Δ yi

fffffffffffffψ
m, i@ 1

2
fff

y +
2ξm

Δzi

ffffffffffffψ
m, i@ 1

2
fff

z + σs

4π
fffffffffΦ i + S i

2μm

Δxi

ffffffffffffff+
2ηm

Δ yi

fffffffffffff+
2ξm

Δzi

ffffffffffff
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

   Eq. 22 

The angular fluxes are calculated across the cell just as they were in the 1D case. 

 

ψ
m,i +

1
2
fffff

x = 2ψ m,i@ψ
m,i@

1
2
fffff

x

ψ
m,i +

1
2
fffff

y = 2ψ m,i@ψ
m,i@

1
2
fffff

y

ψ
m,i +

1
2
fffff

z = 2ψ m,i@ψ
m,i@

1
2
fffff

z

        Eq. 23 

It is important now to describe the order in which the 3D problem is swept and the 

angles that we must use. 

 

In order to integrate angular flux, we must choose how the angles are discretized. 

In 1D a scheme such as Simpson’s rule can be used. However, when working in 

higher dimensions these schemes become impossible to use. One method of 

integration that is similar, but can be used in higher dimensions is a Gauss 

quadrature. 

 

In a Gauss-Legendre quadrature, angles and weights are chosen such that the 

Legendre polynomials of order 2N-1 are integrated exactly. Many other similar 

methods exist, each with a specific advantage. However, the scattering term is 

typically described using Gauss-Legendre polynomials and greater efficiency can 
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be achieved in the solution of the problem if both the scattering term and fluxes are 

defined in the same manner. 

 

This method of angular discretization is often called the SN or discrete ordinates 

method, where N is the number of angles being used. The GL quadrature sets are 

usually symmetric and N is usually an even number. The S4 quadrature set in 1D, 

for example, discretizes the direction variable (μ) into four angles: two positive 

and two negative. In 3D, S4 quadrature results in 24 (N(N+2)) total angles or 

ordinates. The extra accuracy gained through the use of higher order quadratures 

introduces more angles and computational cost quite rapidly (S6=48, S10=120, 

etc.). 

 

Each octant of ordinates is “swept” separately in the direction of particle flow. For 

example, in the first octant, angles in all three directions are positive. A sweep can 

therefore begin at the origin and those angular fluxes for that octant of ordinates be 

solved through to the opposite corner of the mesh. In the second octant, ξ and η 

are positive, but μ is negative. A sweep of the mesh can begin where y and z are at 

their minimum and x is at its maximum. The sweep can be solved in the positive y 

and z directions and in the negative x direction. 

 

Eight sets of sweeps, one for each octant, must be completed during the transport 

calculation. As in the 1D case, the scalar flux can then be updated. 

 

3.4   Coupled Equations 

The derivation of coupled equations is an easy extension of the derivation of the 

standard SN code. We follow the derivation of the LP equations and show where 

the mesh based BSM method differs. We derive these equations in 1D, but using 

the analogous derivation from above it is easy to extend to 3D. 
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This derivation assumes there are two materials in the stochastic mixture. We also 

assume that material cross sections and mixing statistics are known. We define the 

characteristic function χ, such that 

 χ i
n =

1, if cell i is filled by material n
0, otherwise

V

      Eq. 24 

We now multiply the standard balance equation by χ. However, to obtain true 

balance for the volume, a term must be added to the end that accounts for particle 

loss and addition due to flow across internal surfaces Γ. The dependence on r and t 

are still applicable, but removed for readability. 

 

1
ν
ffff1

∂t
ffffffZ

V

χ i ψ Ω
` a

dr =

Z
V

χ i S i Ω
` a

dr@Z
V

χ i σ i ψ Ω
` a

dr +
1

4π
fffffffffZ

V

χ i σ si
dr Z

4π

ψ Ω .
` a

dΩ .

@Z
B

χ i n AΩ
` a

ψ Ω
` a

ds@Z
Γ

n AΩ
` a

ψ Ω
` a

ds

  Eq. 25 

In order to ensemble average this equation over all realizations, we define 

 

pi r, t
` a

= χ i r, t
` a

* +

,

ψ i r,Ω, t
b c

=
χ i r, t
` a

ψ r,Ω, t
b c

, -

χ i r, t
` a

* +

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

where the A
()

notation means ensemble average.

           Eq. 26, 27 

By taking this into account, an ensemble average of equation () 

 

1
ν
ffff1

∂t
ffffffZ

V

pi ψ i Ω
` a

dr +Z
ν

n AΩ
` a

pi ψ i Ω
` a

ds +Z
V

σ i pi ψ i Ω
` a

dr =

1
4π
fffffffffZ

V

pi σ si
dr Z

4π

ψ Ω .
` a

dΩ . +Z
V

pi S i Ω
` a

@ Z
Γ

ni AΩ
b c

ψ Ω
` a

ds
. /

       Eq. 28 

By applying the divergence theorem and taking the limit of the equation as V 

approaches zero 
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1
ν
ffff∂ pi ψ i Ω

` a

B C

∂t
fffffffffffffffffffffffffffffffffffffff+ Ω A5 pi ψ i Ω

` a

B C

+ σ i pi ψ i Ω
` a

=

σ si

4π
fffffffffpi Z

4π

dΩ . ψ i Ω .
` a

+ pi S i Ω
` a

@ lim
VQ 0

1
V
fffff ψ Ω

` aZ
Γ

n AΩ
` a

ds
. /

H

L

J

I

M

K

       Eq. 29 

This is the point where the derivation for the new coupled equations diverges from 

previous LP equation attempts. The last term is the difficult closure term that has 

been approximated in the past to attempt a satisfactory closure. By using a mesh 

with boundaries that do not change between realizations, there are no transitions 

between materials within any given cell over which the equation governs. This 

causes the last term to go to zero. 

 

To further simplify the coupled equations we define 

 ψci

n
= pi

n Aψ i
n = χ i

n ψ i

* +

            Eq. 30 

By using this definition in equation (30), the result looks almost exactly like 

equation (4) and the diamond difference derivation can be completed just as it was 

previously. 

 

We will, therefore, go ahead and write an equation for the average flux in each 

material. Following the derivation from the DD SN code: 

ψcm,i

0
= ψcm,i@

1
2
fffff

0
+

Δx
2μ
ffffffffff g

σs
0

2
ffffffffΦc

0
+ S i

1 + σ t
0 Δx

2μ
ffffffffff

fffffffffffffffffffffffffffffffff

ψcm,i

1
= ψcm,i@

1
2
fffff

1
+

Δx
2μ
ffffffffff g

σs
1

2
ffffffffΦc

1
+ S i

1 + σ t
1 Δx

2μ
ffffffffff

ffffffffffffffffffffffffffffffff
              Eq. 31, 32 

The corresponding angular flux on the opposite side is then updated for each 

material.  

 
ψcm,i +

1
2
fffff

0
= 2ψcm,i

0
@ψcm,i@

1
2
fffff

0

ψcm,i +
1
2
fffff

1
= 2ψcm,i

1
@ψcm,i@

1
2
fffff

1
               Eq. 33, 34 
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We define the angular flux entering the next cell as a percentage of the flux 

leaving the current cell. 

 
ψcm, i + 1

` a

@
1
2
fffff

0
= p0 ψcm,i +

1
2
fffff

0
+ ψcm,i +

1
2
fffff

1
d e

ψcm, i + 1
` a

@
1
2
fffff

1
= p1 ψcm,i +

1
2
fffff

0
+ ψcm,i +

1
2
fffff

1
d e

             Eq. 35, 36 

We can say this because we began with 

 ψci,m =ψci,m

0
+ ψci,m

1          Eq. 37 

This step simply couples the two equations by redistributing the particles between 

the two materials based on the material distribution probabilities. 

 

Once, again we sweep through the mesh, calculate the scalar fluxes, and test for 

convergence where 

 Φci =X
m = 1

N

wm A ψci,m

0
+ ψci,m

1
d ef g

       Eq. 38 

 

4   Results 

 

In this chapter, we present the results of various test problems that demonstrate the 

effectiveness of the mesh based BSM model in comparison with the brute force 

benchmarks. 

 

Results from filling the mesh will be covered showing that the cells were filled 

randomly and evenly. Next the results of the distribution tools, the CLD and the 

CTP will be shown. These will focus on achieving a Markovian distribution. Next, 

the SN code will be compared against analytical solutions to verify that correct 

answers are achieved through use of the code. Finally, the coupled code will be 

matched against the “brute force” method in several cases. 

 

4.1   Creating the mesh 

The first set of test problems is designed to determine whether the realizations of 

the statistics are being created properly. 
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A 5x5x50 mesh was used to generate realizations based on the algorithm described 

in chapter (3.1). The results were then normalized using the largest tally, so that if 

every cell were filled the same number of times, each cell would have a value of 

unity. 

 

Filling the Mesh Evenly Over a Large Number of Realizations
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Figure 3 - Graph of Metric for Filling Mesh Evenly 

 
Figure 3 clearly shows that the distribution of material is homogeneous; increasing 

the number of realizations in the calculation causes the metric to converge to a 

value of unity. 

 

The second set of test problems is designed to investigate the chord length 

distributions obtained in a variety of realization generation approaches. 

 

The process starts with a long thin mesh of 3x3x50 cells, as seen in figure (4). 

Each cell is a cube with a side length of 0.1 cm. The mesh is filled with 10% of 

material 0 and 90% of material 1 and the CLD is calculated. The mesh is then 

expanded to 9x9x 50 cells, maintaining cell dimensions and fill percentages and 

the CLD is calculated. 15x15x50, 25x25x50, and 50x50x50 meshes are also 

considered.   
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Figure 4 – 3x3x50 Mesh 

 
Next, the aspect ratio of the problem was changed by flattening the previous mesh 

arrangement. The same cell sizes and fill fractions were used, but the mesh 

dimensions used were 15x9x50 and 15x3x50. Figure (5) shows a flattened mesh 

produced by varying the aspect ratio of the problems. 

 

Figure 5 – 15x3x50 Mesh 

 

Finally, using the 15x15x50 mesh, the CLD was calculated using material 0 fill 

percentages of 10%, 25% and 50%. Figure 6 shows the mesh used for calculating a 

CLD with a 50% fill. 
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Figure 6 – 15x15x50 Mesh with 50% Fill 

 
Each of the CLD calculations used 1E6 chords in determining the distribution. 
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Figure 7 – 9x9x50 Mesh CLD 

 

 



 27

50x50x50 Mesh CLD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7

Chord Length (cm)

Fr
eq

ue
nc

y 
of

 O
cc

ur
re

nc
e

10% Fill
90% Fill

 

Figure 8 - 50x50x50 Mesh CLD 
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Figure 9 – 15x3x50 Mesh CLD 
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15x15x50 Mesh - 50% Fill - CLD
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Figure 10 – 15x15x50 Mesh CLD with 50% Fill 

 
Table 1 – Exponential Fits for Different Mesh Sizes with Material 0 

Material 0 (10% Fill) 
  λ (cm) R2 
50x50x50 2.1430 0.9906
25x25x50 2.3250 0.9729
15x15x50 2.0680 0.9829
9x9x50 2.0864 0.9164
3x3x50 2.4572 0.9395

 
Table 2 - Exponential Fits for Different Mesh Sizes with Material 1 

Material 1 (90% Fill) 
  λ (cm) R2 
50x50x50 1.7343 0.9889
25x25x50 1.9363 0.9638
15x15x50 1.7564 0.9571
9x9x50 1.5900 0.9745
3x3x50 1.7342 0.9457

 
Table 3 – Exponential Fits for Different Fill Fractions 

Curve Parameters 
Fill % λ1 (cm) λ2 (cm) 

10 2.0800 1.7564 
25 4.2056 4.3097 
50 8.6982 8.3832 

 
Tables (1), (2,), and(3) show that all of the tested mesh configurations have chord 

length distributions that can be fit to exponential curve with R2>0.9 (nearly all 
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with R2 >0.95). The curve fit parameter is the mean chord length, found in the 

definition of an exponential distribution, equation (1). These results indicate that 

exponential chord length distributions are applicable to these problems. The 

change in the CLDs due to the shape of the mesh are small (maximum relative 

error of less than 18%); larger problems tend to have distributions that are closer to 

an exponential curve. The fill percentage has a significant impact, however, 

approximately doubling λ as the fill percentage doubled.   

 

We have also investigated the homogeneity of the process of generating 

realizations by calculating CTPs. This data is also used in the mesh based coupled 

BSM model. A sampling of 1E8 3x3x3 meshes shows the probabilities where 

material 0 represented 10% of the volume and material 1 represents 90%. The 

probabilities from the 6 surfaces were averaged (since there is only one interior 

cell, there are only six surfaces on which material transitions occur) and can be 

seen in table (4). 

Table 4 – CTP for a 10/90 Fill Fraction 

Material 
Transition Probability
10 to 10 0.00855
10 to 90 0.10219
90 to 10 0.10219
90 to 90 0.78707

 

4.2   Brute Force Benchmarks 

Before generating brute force solutions, it is important to verify the code is 

working by comparing a single solution generated with the code to an answer that 

is known to be correct. Analytic solutions are known to several 1D problems and 

by simulating a 1D problem with the 3D code, verification can be performed.  

 

One well known analytical problem is the 1D pure absorber. In order to use the 3D 

code to solve this problem, a mesh of 50 cubes lined up down the z-axis is defined. 

Each cube is 0.1 cm along the edge. The problem is driven on the z=0 side of the 

problem with an incident source strength of 3.0 and all other problem boundaries 
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are vacuum. All angles used are normal to the face so that the only leakage that 

will occur at the far end of the problem. The problem is filled with a single 

material that is purely absorbing where σa=σt=2.0. 

 

1x1x50 Mesh: Beam in Purely Absorbing Material
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Figure 11 – 1D Beam in a Pure Absorber 
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Figure 12 – Relative Error for a 1D Beam in a Pure Absorber 

 

With an R2 value of unity, the exponential regression of the data gives 

 Φ z
` a

= e@ 2.0 A z  ,        Eq. 39 

the expected analytical solution. 

 

Note that the relative error increases linearly with distance as the error caused by 

the diamond differencing compounds. This error is expected and can be reduced 

by shrinking the cell size; figure 12 shows the relative error from the same 
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problem, but with cell sizes reduced by an order of magnitude. This concept was 

introduced and derived earlier, using equations (19), (20), and (21). 

 

Next, we use multiple angles with a standard S4 angular set. The remaining 

problem specifications are the same as those in the previous problem. The analytic 

result can be found as 

 Φ z
` a

=X
μ

e
@

σc z
μ
ffffffffffffffff

         Eq. 40 

 

1x1x50 Mesh: Isotropic Purely Absorbing
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Figure 13 – 1D Pure Absorber with an Isotropic Source 
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Figure 14 – Relative Error for 1D Pure Absorber with an Isotropic Source 
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Once again, we see that the answers agree. The change in the shape of the relative 

error curve is caused by the effects of the angular quadrature and is discussed in 

more detail later in the thesis. Once again, though not shown, the magnitude of this 

error is reduced by a reduction in cell size. 

 

4.3   Mesh Based BSM Coupled Transport  

Previous efforts at coupled transport have worked well in certain 1D problems. 

Results are typically compromised when scattering is involved. Many researchers 

have speculated that coupled equations with scattering should produce good results 

in 3D, although these results have not yet been achieved. 

Three dimensional results can be difficult to visualize without an interactive 

environment. In order to deal with these difficulties, two different methods of 

graphical display will be used to interpret the test problem results. All the test 

problems will be set up in a similar fashion to the 1D case for ease of comparison 

and understanding. 

 

If one can imagine a stack of square plates along the z-axis, one could view the 

average of each plate from the side. A plate can also be pulled from the stack to 

view the flux in the xy planes. The plots are constructed in this fashion so that the 

familiar scatter plot used in 1D comparisons can be used to view the results along 

the z-axis. Similarly, surface plots that are commonly used to view 2D problems 

are used in each slice of the problem for a visualization in the x and y directions.  

 

For each problem, the slice averaged flux and the slice averaged relative error will 

be shown, followed by 2D plots of the relative error between the coupled method 

and the brute force method in slices at 10 cells, 30 cells, and 50 cells (the last slice) 

into the problem. Finally, the flux will be shown for slice 50, the farthest plane of 

cells from the source for both the brute force method and the coupled method. 

 

The following types of test problems are considered: 

1. Reflecting boundaries with purely absorbing materials 
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2. Reflecting boundaries with a background scattering material. 

3. Vacuum boundaries with purely absorbing. 

4. Vacuum boundaries with scattering 

5. Atomic Mix Limit 

6. Various Fill Percentages 

The problems all use the same cross sections sets and use the same 10%/90% fill 

ratios. These cross sections were chosen so that the problems would be difficult to 

solve. The absorption cross-sections were chosen to be several orders of 

magnitude apart. The scattering material was chosen to be highly scattering. It is 

hoped that these “worse case” scenarios will allow for a reduction in the number of 

problems needed in order to show the effectiveness of the method.  

Table 5 – Cross Sections for Absorbing Problems 

Absorbing Problems 
Cross 
Sections 

10% 
Fill 

90% 
Fill 

Σc 2.0 0.002
Σt 2.0 0.002

 
Table 6 – Cross Sections for Scattering Background Problems 

Scattering Problems 
Cross 
Sections 

10% 
Fill 

90% 
Fill 

Σc 2.0 1.5
Σt 2.0 2.0

 
Each of the meshes is 5x5x50 cells. In the reflecting problems, each cell is a cube 

of 0.1 cm on a side. The problems with vacuum boundaries, however, change the 

shape of the cell to reduce leakage out of the sides of the problem that result in 

negative fluxes. In these problems the length of the cell along the z-axis is reduced 

by one order of magnitude. 

 

Similar to the 1D benchmarks, the problem is driven by an isotropic source, where 

each incident angular flux on the z=0 plane has a strength of 3.0. 
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The first problem is that with absorbing materials and reflecting boundaries. For 

the brute force method 5000 realizations were averaged. 

 

5x5x50 Mesh, Slice Averaged, Purely Absorbing,  and 
Reflecting Boundaries
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Figure 15 – Slice Averaged Pure Absorber with Reflecting Boundaries 
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Figure 16 – Relative Error for Slice Averaged Pure Absorber with Reflecting Boundaries 
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Figure 17 – Relative Error for Slice 10 of Pure Absorber with Reflecting Boundaries 

 

 

Figure 18– Relative Error for Slice 30 of Pure Absorber with Reflecting Boundaries 
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Figure 19 – Relative Error for Slice 50 of Pure Absorber with Reflecting Boundaries 

 

 

Figure 20 – Brute Force Method: Slice 50 of Pure Absorber with Reflecting Boundaries 
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Figure 21 – Coupled Method: Slice 50 of Pure Absorber with Reflecting Boundaries 

 

The next problem of interest is the same as the previous, except that the scattering 

materials cross section set is used and for the brute force method 10000 

realizations are averaged. 
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Figure 22 – Slice Averaged Scattering Background with Reflecting Boundaries 
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Relative Error: 5x5x50 Mesh, Slice Averaged, Scattering 
Background, and Reflecting Boundaries - 10000 Realizations 
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Figure 23 – Relative Error for Slice Averaged Pure Absorber with Reflecting Boundaries 

 

 

Figure 24 – Relative Error for Slice 10 of Scattering Background with Reflecting Boundaries 
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Figure 25 – Relative Error for Slice 30 of Scattering Background with Reflecting Boundaries 

 

 

Figure 26 – Relative Error for Slice 50 of Scattering Background with Reflecting Boundaries 

 



 40

 

Figure 27 – Brute Force Method:  Slice 50 of Scattering Background with Reflecting 
Boundaries 

 

 

Figure 28 – Coupled Method:  Slice 50 of Scattering Background with Reflecting Boundaries 

 

 

The mesh for the third problem consists of 5x5x50 cells. Each cell, is 0.1 x 0.1 x 

0.01 cm, with the shortest dimension lying along the z-axis. Vacuum boundaries 

are used on all sides of the mesh and the problem is driven on the z=0 face by an 
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isotropic angular flux of 3.0. The absorption cross section set listed in Table 5 is 

used for the materials in a 10%/90% mix. 

 

Slice Averaged: 5x5x50 Mesh with Absorbing Materials and Vacuum 
Boundaries
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Figure 29 – Slice Averaged Pure Absorber with Vacuum Boundaries 

 

Relative Error for Slice averaged 5x5x50 Mesh with Absorbing Materials 
and Vacuum Boundaries
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Figure 30 – Relative Error for Slice Averaged Pure Absorber with Vacuum Boundaries 
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Figure 31 – Relative Error for Slice 10 of Pure Absorber with Vacuum Boundaries 

 

 

Figure 32 – Relative Error for Slice 30 of Pure Absorber with Vacuum Boundaries 
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Figure 33 – Relative Error for Slice 50 of Pure Absorber with Vacuum Boundaries 

 

 

Figure 34 – Brute Force Method: Slice 50 of Pure Absorber with Vacuum Boundaries 
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Figure 35 – Coupled Method: Slice 50 of Pure Absorber with Vacuum Boundaries 

 

The fourth problem is the same as the third, but the scattering cross section set 

listed in Table 6 is used instead. 

 

Slice Averaged: 5x5x50 Mesh with Scattering Background and Vacuum 
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Figure 36 – Slice Averaged Scattering Background with Vacuum Boundaries 
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Relative Error for Slice Averaged 5x5x50 Mesh with Scattering 
Background and Vacuum Boundaries
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Figure 37 – Relative Error for Slice Averaged Scattering Background with Vacuum 
Boundaries 

 

 

Figure 38 – Relative Error for Slice 10 of Scattering Background with Vacuum Boundaries 
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Figure 39 – Relative Error for Slice 30 of Scattering Background with Vacuum Boundaries 

 

 

Figure 40 – Relative Error for Slice 50 of Scattering Background with Vacuum Boundaries 
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Figure 41 – Brute Force Method: Slice 50 of Scattering Background with Vacuum 
Boundaries 

 

 

Figure 42 – Coupled Method: Slice 50 of Scattering Background with Vacuum Boundaries 

 

The next problem of interest is the atomic mix limit problem. If the cells in the 

mesh are small enough and the mesh is filled with two purely absorbing materials 

with different cross sections, the coupled method should produce the same solution 

as a homogenized analytic solution. 
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The 1x1x50 cell mesh is comprised of cubic cells measuring 0.0001 cm on a side. 

Similar to previous 1D problems, four of the sides are reflecting, while the planes 

perpendicular to the z-axis are vacuum boundaries. The problem is driven by an 

isotropic angular flux of 3.0 and two pure absorbers are used: the 10% fill has a σa 

of 20.0 and the 90% fill material has a σa of 0.002. 
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Figure 43 – Atomic Mix Limit of Pure Absorbers 

 

Relative Error: Atomic Mix Limit
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Figure 44 – Relative Error of Atomic Mix Limit of Pure Absorbers 

 

Finally, a 5x5x50 mesh was filled with different fill percentages of materials, 

otherwise the two problem configurations were the same as the vacuum boundary 

problems run previously. The solutions of the brute force method were averaged 

over 1E4 realizations. 
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Table 7 - Maximum Relative Error for Different Fill Percentages 

Maximum Relative Error 
  10% 20% 30% 40% 50% 
Absorbing 0.006778 0.003217 0.001587 0.001989 0.002692 
Scattering 0.003118 0.002108 0.002528 0.003581 0.00216 
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5   Discussion 

 

Discussing the results from the previous section may aid in arriving at the 

appropriate conclusions over the data. Some of the problems need to be qualified 

as to what they show. 

 

Figures (11) and (12) show that the diamond differencing reproduces the analytic 

solution in a pure absorbing medium with the expected error. The error grows 

linearly with distance into the problem and is reduced when the cell size is 

reduced. The error induced is exactly what can be expected from a diamond 

difference method and was derived in the methods section. 

 

Figures (13) and (14) show solutions using the S4 angular quadrature which suffer 

from ray effects. While the best way to avoid the ray is to use quadrature sets with 

many more angles, it is computationally expensive. Using sets with a few more 

angles could have shown the ray effect peaks in the error function change and 

would have been helpful in proving the method, but modifying the code to do so 

would have been too time intensive. 

 

The problems with reflecting boundaries show a lack in the number of realizations 

solved and averaged. The reflecting problems were very time consuming to solve 

due to slow convergence, as discussed in section 3.3. For this reason, not as many 

were run and the results for the brute force method slightly suffered. The flux 

distributions in the last slices of the brute force method reflecting problems, 

figures (19) and (26), lack in symmetry. This symmetry is found, however, in the 

fluxes for the coupled method of the same problems, figures (20) and (27). This 

symmetry is expected. The lack of a resolved average in the brute force method 

can be seen throughout both problems, as shown in the relative error plots, figures 

(19) and (26), which are not yet smooth functions. While more realizations are 

needed in the brute force method, the relative error is still very small, as can be 

seen in the plots of the slices. 
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Figures (29) and (36) show that the relative error functions in the vacuum 

problems are much smoother. The vacuum problems were much quicker to 

converge, and as a result, more realizations were averaged. The effects can also be 

seen in the fluxes in the last slices, which very nearly match each other in the 

respective problems (Figures 33, 34, 40 and 41). 

 

The next objective was to match the atomic mix limit. Figures (42) shows that the 

results match extremely well to the analytic solution. Figure (43) not only echoes 

this through the display of small relative errors, but also shows the same linear 

buildup of error inherent in the diamond differencing scheme. Although though the 

atomic limit in the scattering is not shown, it was investigated and the results were 

very similar. 

 

Table 7 illustrates that, since there is no trend in the data points, there is no 

connection between the effectiveness of the new coupled method and the fill 

percentages of the materials in the problem.  

 

Results were taken from benchmarks produced by Adams et. al. in 1D planar cases 

[12]. The current was calculated at either end of a 1D Markovian distribution of 

materials. Here we look at several of the worst cases – those which involved high 

scattering materials.   

 

Table 10 in their paper shows that the relative error between the LP equations 

result and the brute force result in the far end of a 10 cm long problem was 77.4%. 

In similar problems, relative errors of 24%, 24.3%, and 30% were seen. These 

problems had a pure absorber for material 0 and high scattering material 1. The 

problems in this thesis were designed to look much like these for comparison of 

the methods. 
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The computational time of one iteration of the coupled method is similar to that of 

one iteration of a standard SN code. There is slightly more math being done per 

sweep, as two sets of equations are being solved rather than one. The number of 

iterations per problem solution were also similar. Some coupled solutions required 

slightly ore or less iterations to reach convergence, but no trend was observed with 

the number of problems examined. However, when one takes into account that 

only one solution of the coupled method is required versus thousands using the 

brute force method, it is greatly faster. 
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6   Conclusion 

 

While an exact Markovian distribution of materials is not achievedusing our 

approach for generating realizations, the CLDs did resemble an exponential curve 

and fit with R2>0.95 for most problems. The shape of the mesh had little impact on 

the exponential curve fit, but increasing the number of cells in the mesh did seem 

to make the CLD more exponential in shape. The fill percentage did have a large 

effect on the parameters in the exponential fit, however. 

 

The mesh was shown to be populated correctly by tallying the number of times 

each cell was filled with each material. The CTPs corroborated this conclusion by 

showing that the mesh was being filled to the correct percentages and that the 

distribution was homogeneous. 

 

By using a mesh, it was shown that the difficult closure term from past coupled 

transport methods is not present. The new mesh based coupled BSM transport 

equations are simpler, with material coupling occurring only on cell surfaces. 

These equations are robust and conservative. 

 

Solutions from the coupled equations were then compared to those from the brute 

force method. It was shown that the coupled equations performed well in 

absorbing problems and in scattering problems. They were also shown to solve an 

atomic mix problem correctly, matching an analytical homogenized problem. In 

addition, changing the fill percentages of the materials did not affect the accuracy 

of the solutions produced by the new coupled method. 

 

Relative errors of the fluxes calculated with the new coupled method were 

extremely low compared to previous attempts at coupled transport. The LP 

equations were shown to produce relative errors of up to 77%, while the new 

coupled method steadily produced relative errors of under 1%, much of which can 

be attributed to statistical variance. 
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Solving more problems by averaging over many more realizations would almost 

certainly show even lower errors than were calculated in this work. Future work 

would include exploring different material distributions and better differencing 

schemes than diamond differencing (linear discontinuous, characteristics, etc.). 

 

Using different quadrature sets would also be a beneficial exercise. Interior 

sources were not used in any of the problems, although it is not expected that this 

would affect the accuracy of the new coupled method. Also, calculating the 

variance of the problem solutions would be valuable, as it is expected that the 

solutions most likely lie within the variance of each other. 
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